1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/of.h> 17 #include <linux/of_pci.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pci-aspm.h> 27 #include <linux/pm_wakeup.h> 28 #include <linux/interrupt.h> 29 #include <linux/device.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/pci_hotplug.h> 32 #include <linux/vmalloc.h> 33 #include <linux/pci-ats.h> 34 #include <asm/setup.h> 35 #include <asm/dma.h> 36 #include <linux/aer.h> 37 #include "pci.h" 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 int isa_dma_bridge_buggy; 45 EXPORT_SYMBOL(isa_dma_bridge_buggy); 46 47 int pci_pci_problems; 48 EXPORT_SYMBOL(pci_pci_problems); 49 50 unsigned int pci_pm_d3_delay; 51 52 static void pci_pme_list_scan(struct work_struct *work); 53 54 static LIST_HEAD(pci_pme_list); 55 static DEFINE_MUTEX(pci_pme_list_mutex); 56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 57 58 struct pci_pme_device { 59 struct list_head list; 60 struct pci_dev *dev; 61 }; 62 63 #define PME_TIMEOUT 1000 /* How long between PME checks */ 64 65 static void pci_dev_d3_sleep(struct pci_dev *dev) 66 { 67 unsigned int delay = dev->d3_delay; 68 69 if (delay < pci_pm_d3_delay) 70 delay = pci_pm_d3_delay; 71 72 if (delay) 73 msleep(delay); 74 } 75 76 #ifdef CONFIG_PCI_DOMAINS 77 int pci_domains_supported = 1; 78 #endif 79 80 #define DEFAULT_CARDBUS_IO_SIZE (256) 81 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 82 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 83 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 84 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 85 86 #define DEFAULT_HOTPLUG_IO_SIZE (256) 87 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 88 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 90 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 91 92 #define DEFAULT_HOTPLUG_BUS_SIZE 1 93 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 94 95 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 96 97 /* 98 * The default CLS is used if arch didn't set CLS explicitly and not 99 * all pci devices agree on the same value. Arch can override either 100 * the dfl or actual value as it sees fit. Don't forget this is 101 * measured in 32-bit words, not bytes. 102 */ 103 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 104 u8 pci_cache_line_size; 105 106 /* 107 * If we set up a device for bus mastering, we need to check the latency 108 * timer as certain BIOSes forget to set it properly. 109 */ 110 unsigned int pcibios_max_latency = 255; 111 112 /* If set, the PCIe ARI capability will not be used. */ 113 static bool pcie_ari_disabled; 114 115 /* If set, the PCIe ATS capability will not be used. */ 116 static bool pcie_ats_disabled; 117 118 bool pci_ats_disabled(void) 119 { 120 return pcie_ats_disabled; 121 } 122 123 /* Disable bridge_d3 for all PCIe ports */ 124 static bool pci_bridge_d3_disable; 125 /* Force bridge_d3 for all PCIe ports */ 126 static bool pci_bridge_d3_force; 127 128 static int __init pcie_port_pm_setup(char *str) 129 { 130 if (!strcmp(str, "off")) 131 pci_bridge_d3_disable = true; 132 else if (!strcmp(str, "force")) 133 pci_bridge_d3_force = true; 134 return 1; 135 } 136 __setup("pcie_port_pm=", pcie_port_pm_setup); 137 138 /* Time to wait after a reset for device to become responsive */ 139 #define PCIE_RESET_READY_POLL_MS 60000 140 141 /** 142 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 143 * @bus: pointer to PCI bus structure to search 144 * 145 * Given a PCI bus, returns the highest PCI bus number present in the set 146 * including the given PCI bus and its list of child PCI buses. 147 */ 148 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 149 { 150 struct pci_bus *tmp; 151 unsigned char max, n; 152 153 max = bus->busn_res.end; 154 list_for_each_entry(tmp, &bus->children, node) { 155 n = pci_bus_max_busnr(tmp); 156 if (n > max) 157 max = n; 158 } 159 return max; 160 } 161 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 162 163 #ifdef CONFIG_HAS_IOMEM 164 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 165 { 166 struct resource *res = &pdev->resource[bar]; 167 168 /* 169 * Make sure the BAR is actually a memory resource, not an IO resource 170 */ 171 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 172 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 173 return NULL; 174 } 175 return ioremap_nocache(res->start, resource_size(res)); 176 } 177 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 178 179 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 180 { 181 /* 182 * Make sure the BAR is actually a memory resource, not an IO resource 183 */ 184 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 185 WARN_ON(1); 186 return NULL; 187 } 188 return ioremap_wc(pci_resource_start(pdev, bar), 189 pci_resource_len(pdev, bar)); 190 } 191 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 192 #endif 193 194 195 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 196 u8 pos, int cap, int *ttl) 197 { 198 u8 id; 199 u16 ent; 200 201 pci_bus_read_config_byte(bus, devfn, pos, &pos); 202 203 while ((*ttl)--) { 204 if (pos < 0x40) 205 break; 206 pos &= ~3; 207 pci_bus_read_config_word(bus, devfn, pos, &ent); 208 209 id = ent & 0xff; 210 if (id == 0xff) 211 break; 212 if (id == cap) 213 return pos; 214 pos = (ent >> 8); 215 } 216 return 0; 217 } 218 219 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 220 u8 pos, int cap) 221 { 222 int ttl = PCI_FIND_CAP_TTL; 223 224 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 225 } 226 227 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 228 { 229 return __pci_find_next_cap(dev->bus, dev->devfn, 230 pos + PCI_CAP_LIST_NEXT, cap); 231 } 232 EXPORT_SYMBOL_GPL(pci_find_next_capability); 233 234 static int __pci_bus_find_cap_start(struct pci_bus *bus, 235 unsigned int devfn, u8 hdr_type) 236 { 237 u16 status; 238 239 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 240 if (!(status & PCI_STATUS_CAP_LIST)) 241 return 0; 242 243 switch (hdr_type) { 244 case PCI_HEADER_TYPE_NORMAL: 245 case PCI_HEADER_TYPE_BRIDGE: 246 return PCI_CAPABILITY_LIST; 247 case PCI_HEADER_TYPE_CARDBUS: 248 return PCI_CB_CAPABILITY_LIST; 249 } 250 251 return 0; 252 } 253 254 /** 255 * pci_find_capability - query for devices' capabilities 256 * @dev: PCI device to query 257 * @cap: capability code 258 * 259 * Tell if a device supports a given PCI capability. 260 * Returns the address of the requested capability structure within the 261 * device's PCI configuration space or 0 in case the device does not 262 * support it. Possible values for @cap: 263 * 264 * %PCI_CAP_ID_PM Power Management 265 * %PCI_CAP_ID_AGP Accelerated Graphics Port 266 * %PCI_CAP_ID_VPD Vital Product Data 267 * %PCI_CAP_ID_SLOTID Slot Identification 268 * %PCI_CAP_ID_MSI Message Signalled Interrupts 269 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 270 * %PCI_CAP_ID_PCIX PCI-X 271 * %PCI_CAP_ID_EXP PCI Express 272 */ 273 int pci_find_capability(struct pci_dev *dev, int cap) 274 { 275 int pos; 276 277 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 278 if (pos) 279 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 280 281 return pos; 282 } 283 EXPORT_SYMBOL(pci_find_capability); 284 285 /** 286 * pci_bus_find_capability - query for devices' capabilities 287 * @bus: the PCI bus to query 288 * @devfn: PCI device to query 289 * @cap: capability code 290 * 291 * Like pci_find_capability() but works for pci devices that do not have a 292 * pci_dev structure set up yet. 293 * 294 * Returns the address of the requested capability structure within the 295 * device's PCI configuration space or 0 in case the device does not 296 * support it. 297 */ 298 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 299 { 300 int pos; 301 u8 hdr_type; 302 303 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 304 305 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 306 if (pos) 307 pos = __pci_find_next_cap(bus, devfn, pos, cap); 308 309 return pos; 310 } 311 EXPORT_SYMBOL(pci_bus_find_capability); 312 313 /** 314 * pci_find_next_ext_capability - Find an extended capability 315 * @dev: PCI device to query 316 * @start: address at which to start looking (0 to start at beginning of list) 317 * @cap: capability code 318 * 319 * Returns the address of the next matching extended capability structure 320 * within the device's PCI configuration space or 0 if the device does 321 * not support it. Some capabilities can occur several times, e.g., the 322 * vendor-specific capability, and this provides a way to find them all. 323 */ 324 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 325 { 326 u32 header; 327 int ttl; 328 int pos = PCI_CFG_SPACE_SIZE; 329 330 /* minimum 8 bytes per capability */ 331 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 332 333 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 334 return 0; 335 336 if (start) 337 pos = start; 338 339 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 340 return 0; 341 342 /* 343 * If we have no capabilities, this is indicated by cap ID, 344 * cap version and next pointer all being 0. 345 */ 346 if (header == 0) 347 return 0; 348 349 while (ttl-- > 0) { 350 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 351 return pos; 352 353 pos = PCI_EXT_CAP_NEXT(header); 354 if (pos < PCI_CFG_SPACE_SIZE) 355 break; 356 357 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 358 break; 359 } 360 361 return 0; 362 } 363 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 364 365 /** 366 * pci_find_ext_capability - Find an extended capability 367 * @dev: PCI device to query 368 * @cap: capability code 369 * 370 * Returns the address of the requested extended capability structure 371 * within the device's PCI configuration space or 0 if the device does 372 * not support it. Possible values for @cap: 373 * 374 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 375 * %PCI_EXT_CAP_ID_VC Virtual Channel 376 * %PCI_EXT_CAP_ID_DSN Device Serial Number 377 * %PCI_EXT_CAP_ID_PWR Power Budgeting 378 */ 379 int pci_find_ext_capability(struct pci_dev *dev, int cap) 380 { 381 return pci_find_next_ext_capability(dev, 0, cap); 382 } 383 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 384 385 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 386 { 387 int rc, ttl = PCI_FIND_CAP_TTL; 388 u8 cap, mask; 389 390 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 391 mask = HT_3BIT_CAP_MASK; 392 else 393 mask = HT_5BIT_CAP_MASK; 394 395 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 396 PCI_CAP_ID_HT, &ttl); 397 while (pos) { 398 rc = pci_read_config_byte(dev, pos + 3, &cap); 399 if (rc != PCIBIOS_SUCCESSFUL) 400 return 0; 401 402 if ((cap & mask) == ht_cap) 403 return pos; 404 405 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 406 pos + PCI_CAP_LIST_NEXT, 407 PCI_CAP_ID_HT, &ttl); 408 } 409 410 return 0; 411 } 412 /** 413 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 414 * @dev: PCI device to query 415 * @pos: Position from which to continue searching 416 * @ht_cap: Hypertransport capability code 417 * 418 * To be used in conjunction with pci_find_ht_capability() to search for 419 * all capabilities matching @ht_cap. @pos should always be a value returned 420 * from pci_find_ht_capability(). 421 * 422 * NB. To be 100% safe against broken PCI devices, the caller should take 423 * steps to avoid an infinite loop. 424 */ 425 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 426 { 427 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 428 } 429 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 430 431 /** 432 * pci_find_ht_capability - query a device's Hypertransport capabilities 433 * @dev: PCI device to query 434 * @ht_cap: Hypertransport capability code 435 * 436 * Tell if a device supports a given Hypertransport capability. 437 * Returns an address within the device's PCI configuration space 438 * or 0 in case the device does not support the request capability. 439 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 440 * which has a Hypertransport capability matching @ht_cap. 441 */ 442 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 443 { 444 int pos; 445 446 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 447 if (pos) 448 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 449 450 return pos; 451 } 452 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 453 454 /** 455 * pci_find_parent_resource - return resource region of parent bus of given region 456 * @dev: PCI device structure contains resources to be searched 457 * @res: child resource record for which parent is sought 458 * 459 * For given resource region of given device, return the resource 460 * region of parent bus the given region is contained in. 461 */ 462 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 463 struct resource *res) 464 { 465 const struct pci_bus *bus = dev->bus; 466 struct resource *r; 467 int i; 468 469 pci_bus_for_each_resource(bus, r, i) { 470 if (!r) 471 continue; 472 if (resource_contains(r, res)) { 473 474 /* 475 * If the window is prefetchable but the BAR is 476 * not, the allocator made a mistake. 477 */ 478 if (r->flags & IORESOURCE_PREFETCH && 479 !(res->flags & IORESOURCE_PREFETCH)) 480 return NULL; 481 482 /* 483 * If we're below a transparent bridge, there may 484 * be both a positively-decoded aperture and a 485 * subtractively-decoded region that contain the BAR. 486 * We want the positively-decoded one, so this depends 487 * on pci_bus_for_each_resource() giving us those 488 * first. 489 */ 490 return r; 491 } 492 } 493 return NULL; 494 } 495 EXPORT_SYMBOL(pci_find_parent_resource); 496 497 /** 498 * pci_find_resource - Return matching PCI device resource 499 * @dev: PCI device to query 500 * @res: Resource to look for 501 * 502 * Goes over standard PCI resources (BARs) and checks if the given resource 503 * is partially or fully contained in any of them. In that case the 504 * matching resource is returned, %NULL otherwise. 505 */ 506 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 507 { 508 int i; 509 510 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 511 struct resource *r = &dev->resource[i]; 512 513 if (r->start && resource_contains(r, res)) 514 return r; 515 } 516 517 return NULL; 518 } 519 EXPORT_SYMBOL(pci_find_resource); 520 521 /** 522 * pci_find_pcie_root_port - return PCIe Root Port 523 * @dev: PCI device to query 524 * 525 * Traverse up the parent chain and return the PCIe Root Port PCI Device 526 * for a given PCI Device. 527 */ 528 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 529 { 530 struct pci_dev *bridge, *highest_pcie_bridge = dev; 531 532 bridge = pci_upstream_bridge(dev); 533 while (bridge && pci_is_pcie(bridge)) { 534 highest_pcie_bridge = bridge; 535 bridge = pci_upstream_bridge(bridge); 536 } 537 538 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 539 return NULL; 540 541 return highest_pcie_bridge; 542 } 543 EXPORT_SYMBOL(pci_find_pcie_root_port); 544 545 /** 546 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 547 * @dev: the PCI device to operate on 548 * @pos: config space offset of status word 549 * @mask: mask of bit(s) to care about in status word 550 * 551 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 552 */ 553 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 554 { 555 int i; 556 557 /* Wait for Transaction Pending bit clean */ 558 for (i = 0; i < 4; i++) { 559 u16 status; 560 if (i) 561 msleep((1 << (i - 1)) * 100); 562 563 pci_read_config_word(dev, pos, &status); 564 if (!(status & mask)) 565 return 1; 566 } 567 568 return 0; 569 } 570 571 /** 572 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 573 * @dev: PCI device to have its BARs restored 574 * 575 * Restore the BAR values for a given device, so as to make it 576 * accessible by its driver. 577 */ 578 static void pci_restore_bars(struct pci_dev *dev) 579 { 580 int i; 581 582 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 583 pci_update_resource(dev, i); 584 } 585 586 static const struct pci_platform_pm_ops *pci_platform_pm; 587 588 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 589 { 590 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 591 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 592 return -EINVAL; 593 pci_platform_pm = ops; 594 return 0; 595 } 596 597 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 598 { 599 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 600 } 601 602 static inline int platform_pci_set_power_state(struct pci_dev *dev, 603 pci_power_t t) 604 { 605 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 606 } 607 608 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 609 { 610 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 611 } 612 613 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 614 { 615 return pci_platform_pm ? 616 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 617 } 618 619 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 620 { 621 return pci_platform_pm ? 622 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 623 } 624 625 static inline bool platform_pci_need_resume(struct pci_dev *dev) 626 { 627 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 628 } 629 630 /** 631 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 632 * given PCI device 633 * @dev: PCI device to handle. 634 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 635 * 636 * RETURN VALUE: 637 * -EINVAL if the requested state is invalid. 638 * -EIO if device does not support PCI PM or its PM capabilities register has a 639 * wrong version, or device doesn't support the requested state. 640 * 0 if device already is in the requested state. 641 * 0 if device's power state has been successfully changed. 642 */ 643 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 644 { 645 u16 pmcsr; 646 bool need_restore = false; 647 648 /* Check if we're already there */ 649 if (dev->current_state == state) 650 return 0; 651 652 if (!dev->pm_cap) 653 return -EIO; 654 655 if (state < PCI_D0 || state > PCI_D3hot) 656 return -EINVAL; 657 658 /* Validate current state: 659 * Can enter D0 from any state, but if we can only go deeper 660 * to sleep if we're already in a low power state 661 */ 662 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 663 && dev->current_state > state) { 664 pci_err(dev, "invalid power transition (from state %d to %d)\n", 665 dev->current_state, state); 666 return -EINVAL; 667 } 668 669 /* check if this device supports the desired state */ 670 if ((state == PCI_D1 && !dev->d1_support) 671 || (state == PCI_D2 && !dev->d2_support)) 672 return -EIO; 673 674 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 675 676 /* If we're (effectively) in D3, force entire word to 0. 677 * This doesn't affect PME_Status, disables PME_En, and 678 * sets PowerState to 0. 679 */ 680 switch (dev->current_state) { 681 case PCI_D0: 682 case PCI_D1: 683 case PCI_D2: 684 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 685 pmcsr |= state; 686 break; 687 case PCI_D3hot: 688 case PCI_D3cold: 689 case PCI_UNKNOWN: /* Boot-up */ 690 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 691 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 692 need_restore = true; 693 /* Fall-through: force to D0 */ 694 default: 695 pmcsr = 0; 696 break; 697 } 698 699 /* enter specified state */ 700 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 701 702 /* Mandatory power management transition delays */ 703 /* see PCI PM 1.1 5.6.1 table 18 */ 704 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 705 pci_dev_d3_sleep(dev); 706 else if (state == PCI_D2 || dev->current_state == PCI_D2) 707 udelay(PCI_PM_D2_DELAY); 708 709 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 710 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 711 if (dev->current_state != state && printk_ratelimit()) 712 pci_info(dev, "Refused to change power state, currently in D%d\n", 713 dev->current_state); 714 715 /* 716 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 717 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 718 * from D3hot to D0 _may_ perform an internal reset, thereby 719 * going to "D0 Uninitialized" rather than "D0 Initialized". 720 * For example, at least some versions of the 3c905B and the 721 * 3c556B exhibit this behaviour. 722 * 723 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 724 * devices in a D3hot state at boot. Consequently, we need to 725 * restore at least the BARs so that the device will be 726 * accessible to its driver. 727 */ 728 if (need_restore) 729 pci_restore_bars(dev); 730 731 if (dev->bus->self) 732 pcie_aspm_pm_state_change(dev->bus->self); 733 734 return 0; 735 } 736 737 /** 738 * pci_update_current_state - Read power state of given device and cache it 739 * @dev: PCI device to handle. 740 * @state: State to cache in case the device doesn't have the PM capability 741 * 742 * The power state is read from the PMCSR register, which however is 743 * inaccessible in D3cold. The platform firmware is therefore queried first 744 * to detect accessibility of the register. In case the platform firmware 745 * reports an incorrect state or the device isn't power manageable by the 746 * platform at all, we try to detect D3cold by testing accessibility of the 747 * vendor ID in config space. 748 */ 749 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 750 { 751 if (platform_pci_get_power_state(dev) == PCI_D3cold || 752 !pci_device_is_present(dev)) { 753 dev->current_state = PCI_D3cold; 754 } else if (dev->pm_cap) { 755 u16 pmcsr; 756 757 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 758 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 759 } else { 760 dev->current_state = state; 761 } 762 } 763 764 /** 765 * pci_power_up - Put the given device into D0 forcibly 766 * @dev: PCI device to power up 767 */ 768 void pci_power_up(struct pci_dev *dev) 769 { 770 if (platform_pci_power_manageable(dev)) 771 platform_pci_set_power_state(dev, PCI_D0); 772 773 pci_raw_set_power_state(dev, PCI_D0); 774 pci_update_current_state(dev, PCI_D0); 775 } 776 777 /** 778 * pci_platform_power_transition - Use platform to change device power state 779 * @dev: PCI device to handle. 780 * @state: State to put the device into. 781 */ 782 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 783 { 784 int error; 785 786 if (platform_pci_power_manageable(dev)) { 787 error = platform_pci_set_power_state(dev, state); 788 if (!error) 789 pci_update_current_state(dev, state); 790 } else 791 error = -ENODEV; 792 793 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 794 dev->current_state = PCI_D0; 795 796 return error; 797 } 798 799 /** 800 * pci_wakeup - Wake up a PCI device 801 * @pci_dev: Device to handle. 802 * @ign: ignored parameter 803 */ 804 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 805 { 806 pci_wakeup_event(pci_dev); 807 pm_request_resume(&pci_dev->dev); 808 return 0; 809 } 810 811 /** 812 * pci_wakeup_bus - Walk given bus and wake up devices on it 813 * @bus: Top bus of the subtree to walk. 814 */ 815 void pci_wakeup_bus(struct pci_bus *bus) 816 { 817 if (bus) 818 pci_walk_bus(bus, pci_wakeup, NULL); 819 } 820 821 /** 822 * __pci_start_power_transition - Start power transition of a PCI device 823 * @dev: PCI device to handle. 824 * @state: State to put the device into. 825 */ 826 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 827 { 828 if (state == PCI_D0) { 829 pci_platform_power_transition(dev, PCI_D0); 830 /* 831 * Mandatory power management transition delays, see 832 * PCI Express Base Specification Revision 2.0 Section 833 * 6.6.1: Conventional Reset. Do not delay for 834 * devices powered on/off by corresponding bridge, 835 * because have already delayed for the bridge. 836 */ 837 if (dev->runtime_d3cold) { 838 if (dev->d3cold_delay) 839 msleep(dev->d3cold_delay); 840 /* 841 * When powering on a bridge from D3cold, the 842 * whole hierarchy may be powered on into 843 * D0uninitialized state, resume them to give 844 * them a chance to suspend again 845 */ 846 pci_wakeup_bus(dev->subordinate); 847 } 848 } 849 } 850 851 /** 852 * __pci_dev_set_current_state - Set current state of a PCI device 853 * @dev: Device to handle 854 * @data: pointer to state to be set 855 */ 856 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 857 { 858 pci_power_t state = *(pci_power_t *)data; 859 860 dev->current_state = state; 861 return 0; 862 } 863 864 /** 865 * pci_bus_set_current_state - Walk given bus and set current state of devices 866 * @bus: Top bus of the subtree to walk. 867 * @state: state to be set 868 */ 869 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 870 { 871 if (bus) 872 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 873 } 874 875 /** 876 * __pci_complete_power_transition - Complete power transition of a PCI device 877 * @dev: PCI device to handle. 878 * @state: State to put the device into. 879 * 880 * This function should not be called directly by device drivers. 881 */ 882 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 883 { 884 int ret; 885 886 if (state <= PCI_D0) 887 return -EINVAL; 888 ret = pci_platform_power_transition(dev, state); 889 /* Power off the bridge may power off the whole hierarchy */ 890 if (!ret && state == PCI_D3cold) 891 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 892 return ret; 893 } 894 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 895 896 /** 897 * pci_set_power_state - Set the power state of a PCI device 898 * @dev: PCI device to handle. 899 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 900 * 901 * Transition a device to a new power state, using the platform firmware and/or 902 * the device's PCI PM registers. 903 * 904 * RETURN VALUE: 905 * -EINVAL if the requested state is invalid. 906 * -EIO if device does not support PCI PM or its PM capabilities register has a 907 * wrong version, or device doesn't support the requested state. 908 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 909 * 0 if device already is in the requested state. 910 * 0 if the transition is to D3 but D3 is not supported. 911 * 0 if device's power state has been successfully changed. 912 */ 913 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 914 { 915 int error; 916 917 /* bound the state we're entering */ 918 if (state > PCI_D3cold) 919 state = PCI_D3cold; 920 else if (state < PCI_D0) 921 state = PCI_D0; 922 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 923 /* 924 * If the device or the parent bridge do not support PCI PM, 925 * ignore the request if we're doing anything other than putting 926 * it into D0 (which would only happen on boot). 927 */ 928 return 0; 929 930 /* Check if we're already there */ 931 if (dev->current_state == state) 932 return 0; 933 934 __pci_start_power_transition(dev, state); 935 936 /* This device is quirked not to be put into D3, so 937 don't put it in D3 */ 938 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 939 return 0; 940 941 /* 942 * To put device in D3cold, we put device into D3hot in native 943 * way, then put device into D3cold with platform ops 944 */ 945 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 946 PCI_D3hot : state); 947 948 if (!__pci_complete_power_transition(dev, state)) 949 error = 0; 950 951 return error; 952 } 953 EXPORT_SYMBOL(pci_set_power_state); 954 955 /** 956 * pci_choose_state - Choose the power state of a PCI device 957 * @dev: PCI device to be suspended 958 * @state: target sleep state for the whole system. This is the value 959 * that is passed to suspend() function. 960 * 961 * Returns PCI power state suitable for given device and given system 962 * message. 963 */ 964 965 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 966 { 967 pci_power_t ret; 968 969 if (!dev->pm_cap) 970 return PCI_D0; 971 972 ret = platform_pci_choose_state(dev); 973 if (ret != PCI_POWER_ERROR) 974 return ret; 975 976 switch (state.event) { 977 case PM_EVENT_ON: 978 return PCI_D0; 979 case PM_EVENT_FREEZE: 980 case PM_EVENT_PRETHAW: 981 /* REVISIT both freeze and pre-thaw "should" use D0 */ 982 case PM_EVENT_SUSPEND: 983 case PM_EVENT_HIBERNATE: 984 return PCI_D3hot; 985 default: 986 pci_info(dev, "unrecognized suspend event %d\n", 987 state.event); 988 BUG(); 989 } 990 return PCI_D0; 991 } 992 EXPORT_SYMBOL(pci_choose_state); 993 994 #define PCI_EXP_SAVE_REGS 7 995 996 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 997 u16 cap, bool extended) 998 { 999 struct pci_cap_saved_state *tmp; 1000 1001 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1002 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1003 return tmp; 1004 } 1005 return NULL; 1006 } 1007 1008 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1009 { 1010 return _pci_find_saved_cap(dev, cap, false); 1011 } 1012 1013 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1014 { 1015 return _pci_find_saved_cap(dev, cap, true); 1016 } 1017 1018 static int pci_save_pcie_state(struct pci_dev *dev) 1019 { 1020 int i = 0; 1021 struct pci_cap_saved_state *save_state; 1022 u16 *cap; 1023 1024 if (!pci_is_pcie(dev)) 1025 return 0; 1026 1027 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1028 if (!save_state) { 1029 pci_err(dev, "buffer not found in %s\n", __func__); 1030 return -ENOMEM; 1031 } 1032 1033 cap = (u16 *)&save_state->cap.data[0]; 1034 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1035 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1036 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1037 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1038 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1039 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1040 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1041 1042 return 0; 1043 } 1044 1045 static void pci_restore_pcie_state(struct pci_dev *dev) 1046 { 1047 int i = 0; 1048 struct pci_cap_saved_state *save_state; 1049 u16 *cap; 1050 1051 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1052 if (!save_state) 1053 return; 1054 1055 cap = (u16 *)&save_state->cap.data[0]; 1056 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1057 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1058 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1059 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1060 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1061 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1062 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1063 } 1064 1065 1066 static int pci_save_pcix_state(struct pci_dev *dev) 1067 { 1068 int pos; 1069 struct pci_cap_saved_state *save_state; 1070 1071 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1072 if (!pos) 1073 return 0; 1074 1075 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1076 if (!save_state) { 1077 pci_err(dev, "buffer not found in %s\n", __func__); 1078 return -ENOMEM; 1079 } 1080 1081 pci_read_config_word(dev, pos + PCI_X_CMD, 1082 (u16 *)save_state->cap.data); 1083 1084 return 0; 1085 } 1086 1087 static void pci_restore_pcix_state(struct pci_dev *dev) 1088 { 1089 int i = 0, pos; 1090 struct pci_cap_saved_state *save_state; 1091 u16 *cap; 1092 1093 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1094 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1095 if (!save_state || !pos) 1096 return; 1097 cap = (u16 *)&save_state->cap.data[0]; 1098 1099 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1100 } 1101 1102 1103 /** 1104 * pci_save_state - save the PCI configuration space of a device before suspending 1105 * @dev: - PCI device that we're dealing with 1106 */ 1107 int pci_save_state(struct pci_dev *dev) 1108 { 1109 int i; 1110 /* XXX: 100% dword access ok here? */ 1111 for (i = 0; i < 16; i++) 1112 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1113 dev->state_saved = true; 1114 1115 i = pci_save_pcie_state(dev); 1116 if (i != 0) 1117 return i; 1118 1119 i = pci_save_pcix_state(dev); 1120 if (i != 0) 1121 return i; 1122 1123 return pci_save_vc_state(dev); 1124 } 1125 EXPORT_SYMBOL(pci_save_state); 1126 1127 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1128 u32 saved_val, int retry) 1129 { 1130 u32 val; 1131 1132 pci_read_config_dword(pdev, offset, &val); 1133 if (val == saved_val) 1134 return; 1135 1136 for (;;) { 1137 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1138 offset, val, saved_val); 1139 pci_write_config_dword(pdev, offset, saved_val); 1140 if (retry-- <= 0) 1141 return; 1142 1143 pci_read_config_dword(pdev, offset, &val); 1144 if (val == saved_val) 1145 return; 1146 1147 mdelay(1); 1148 } 1149 } 1150 1151 static void pci_restore_config_space_range(struct pci_dev *pdev, 1152 int start, int end, int retry) 1153 { 1154 int index; 1155 1156 for (index = end; index >= start; index--) 1157 pci_restore_config_dword(pdev, 4 * index, 1158 pdev->saved_config_space[index], 1159 retry); 1160 } 1161 1162 static void pci_restore_config_space(struct pci_dev *pdev) 1163 { 1164 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1165 pci_restore_config_space_range(pdev, 10, 15, 0); 1166 /* Restore BARs before the command register. */ 1167 pci_restore_config_space_range(pdev, 4, 9, 10); 1168 pci_restore_config_space_range(pdev, 0, 3, 0); 1169 } else { 1170 pci_restore_config_space_range(pdev, 0, 15, 0); 1171 } 1172 } 1173 1174 /** 1175 * pci_restore_state - Restore the saved state of a PCI device 1176 * @dev: - PCI device that we're dealing with 1177 */ 1178 void pci_restore_state(struct pci_dev *dev) 1179 { 1180 if (!dev->state_saved) 1181 return; 1182 1183 /* PCI Express register must be restored first */ 1184 pci_restore_pcie_state(dev); 1185 pci_restore_pasid_state(dev); 1186 pci_restore_pri_state(dev); 1187 pci_restore_ats_state(dev); 1188 pci_restore_vc_state(dev); 1189 1190 pci_cleanup_aer_error_status_regs(dev); 1191 1192 pci_restore_config_space(dev); 1193 1194 pci_restore_pcix_state(dev); 1195 pci_restore_msi_state(dev); 1196 1197 /* Restore ACS and IOV configuration state */ 1198 pci_enable_acs(dev); 1199 pci_restore_iov_state(dev); 1200 1201 dev->state_saved = false; 1202 } 1203 EXPORT_SYMBOL(pci_restore_state); 1204 1205 struct pci_saved_state { 1206 u32 config_space[16]; 1207 struct pci_cap_saved_data cap[0]; 1208 }; 1209 1210 /** 1211 * pci_store_saved_state - Allocate and return an opaque struct containing 1212 * the device saved state. 1213 * @dev: PCI device that we're dealing with 1214 * 1215 * Return NULL if no state or error. 1216 */ 1217 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1218 { 1219 struct pci_saved_state *state; 1220 struct pci_cap_saved_state *tmp; 1221 struct pci_cap_saved_data *cap; 1222 size_t size; 1223 1224 if (!dev->state_saved) 1225 return NULL; 1226 1227 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1228 1229 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1230 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1231 1232 state = kzalloc(size, GFP_KERNEL); 1233 if (!state) 1234 return NULL; 1235 1236 memcpy(state->config_space, dev->saved_config_space, 1237 sizeof(state->config_space)); 1238 1239 cap = state->cap; 1240 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1241 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1242 memcpy(cap, &tmp->cap, len); 1243 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1244 } 1245 /* Empty cap_save terminates list */ 1246 1247 return state; 1248 } 1249 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1250 1251 /** 1252 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1253 * @dev: PCI device that we're dealing with 1254 * @state: Saved state returned from pci_store_saved_state() 1255 */ 1256 int pci_load_saved_state(struct pci_dev *dev, 1257 struct pci_saved_state *state) 1258 { 1259 struct pci_cap_saved_data *cap; 1260 1261 dev->state_saved = false; 1262 1263 if (!state) 1264 return 0; 1265 1266 memcpy(dev->saved_config_space, state->config_space, 1267 sizeof(state->config_space)); 1268 1269 cap = state->cap; 1270 while (cap->size) { 1271 struct pci_cap_saved_state *tmp; 1272 1273 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1274 if (!tmp || tmp->cap.size != cap->size) 1275 return -EINVAL; 1276 1277 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1278 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1279 sizeof(struct pci_cap_saved_data) + cap->size); 1280 } 1281 1282 dev->state_saved = true; 1283 return 0; 1284 } 1285 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1286 1287 /** 1288 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1289 * and free the memory allocated for it. 1290 * @dev: PCI device that we're dealing with 1291 * @state: Pointer to saved state returned from pci_store_saved_state() 1292 */ 1293 int pci_load_and_free_saved_state(struct pci_dev *dev, 1294 struct pci_saved_state **state) 1295 { 1296 int ret = pci_load_saved_state(dev, *state); 1297 kfree(*state); 1298 *state = NULL; 1299 return ret; 1300 } 1301 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1302 1303 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1304 { 1305 return pci_enable_resources(dev, bars); 1306 } 1307 1308 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1309 { 1310 int err; 1311 struct pci_dev *bridge; 1312 u16 cmd; 1313 u8 pin; 1314 1315 err = pci_set_power_state(dev, PCI_D0); 1316 if (err < 0 && err != -EIO) 1317 return err; 1318 1319 bridge = pci_upstream_bridge(dev); 1320 if (bridge) 1321 pcie_aspm_powersave_config_link(bridge); 1322 1323 err = pcibios_enable_device(dev, bars); 1324 if (err < 0) 1325 return err; 1326 pci_fixup_device(pci_fixup_enable, dev); 1327 1328 if (dev->msi_enabled || dev->msix_enabled) 1329 return 0; 1330 1331 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1332 if (pin) { 1333 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1334 if (cmd & PCI_COMMAND_INTX_DISABLE) 1335 pci_write_config_word(dev, PCI_COMMAND, 1336 cmd & ~PCI_COMMAND_INTX_DISABLE); 1337 } 1338 1339 return 0; 1340 } 1341 1342 /** 1343 * pci_reenable_device - Resume abandoned device 1344 * @dev: PCI device to be resumed 1345 * 1346 * Note this function is a backend of pci_default_resume and is not supposed 1347 * to be called by normal code, write proper resume handler and use it instead. 1348 */ 1349 int pci_reenable_device(struct pci_dev *dev) 1350 { 1351 if (pci_is_enabled(dev)) 1352 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1353 return 0; 1354 } 1355 EXPORT_SYMBOL(pci_reenable_device); 1356 1357 static void pci_enable_bridge(struct pci_dev *dev) 1358 { 1359 struct pci_dev *bridge; 1360 int retval; 1361 1362 bridge = pci_upstream_bridge(dev); 1363 if (bridge) 1364 pci_enable_bridge(bridge); 1365 1366 if (pci_is_enabled(dev)) { 1367 if (!dev->is_busmaster) 1368 pci_set_master(dev); 1369 return; 1370 } 1371 1372 retval = pci_enable_device(dev); 1373 if (retval) 1374 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1375 retval); 1376 pci_set_master(dev); 1377 } 1378 1379 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1380 { 1381 struct pci_dev *bridge; 1382 int err; 1383 int i, bars = 0; 1384 1385 /* 1386 * Power state could be unknown at this point, either due to a fresh 1387 * boot or a device removal call. So get the current power state 1388 * so that things like MSI message writing will behave as expected 1389 * (e.g. if the device really is in D0 at enable time). 1390 */ 1391 if (dev->pm_cap) { 1392 u16 pmcsr; 1393 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1394 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1395 } 1396 1397 if (atomic_inc_return(&dev->enable_cnt) > 1) 1398 return 0; /* already enabled */ 1399 1400 bridge = pci_upstream_bridge(dev); 1401 if (bridge) 1402 pci_enable_bridge(bridge); 1403 1404 /* only skip sriov related */ 1405 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1406 if (dev->resource[i].flags & flags) 1407 bars |= (1 << i); 1408 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1409 if (dev->resource[i].flags & flags) 1410 bars |= (1 << i); 1411 1412 err = do_pci_enable_device(dev, bars); 1413 if (err < 0) 1414 atomic_dec(&dev->enable_cnt); 1415 return err; 1416 } 1417 1418 /** 1419 * pci_enable_device_io - Initialize a device for use with IO space 1420 * @dev: PCI device to be initialized 1421 * 1422 * Initialize device before it's used by a driver. Ask low-level code 1423 * to enable I/O resources. Wake up the device if it was suspended. 1424 * Beware, this function can fail. 1425 */ 1426 int pci_enable_device_io(struct pci_dev *dev) 1427 { 1428 return pci_enable_device_flags(dev, IORESOURCE_IO); 1429 } 1430 EXPORT_SYMBOL(pci_enable_device_io); 1431 1432 /** 1433 * pci_enable_device_mem - Initialize a device for use with Memory space 1434 * @dev: PCI device to be initialized 1435 * 1436 * Initialize device before it's used by a driver. Ask low-level code 1437 * to enable Memory resources. Wake up the device if it was suspended. 1438 * Beware, this function can fail. 1439 */ 1440 int pci_enable_device_mem(struct pci_dev *dev) 1441 { 1442 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1443 } 1444 EXPORT_SYMBOL(pci_enable_device_mem); 1445 1446 /** 1447 * pci_enable_device - Initialize device before it's used by a driver. 1448 * @dev: PCI device to be initialized 1449 * 1450 * Initialize device before it's used by a driver. Ask low-level code 1451 * to enable I/O and memory. Wake up the device if it was suspended. 1452 * Beware, this function can fail. 1453 * 1454 * Note we don't actually enable the device many times if we call 1455 * this function repeatedly (we just increment the count). 1456 */ 1457 int pci_enable_device(struct pci_dev *dev) 1458 { 1459 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1460 } 1461 EXPORT_SYMBOL(pci_enable_device); 1462 1463 /* 1464 * Managed PCI resources. This manages device on/off, intx/msi/msix 1465 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1466 * there's no need to track it separately. pci_devres is initialized 1467 * when a device is enabled using managed PCI device enable interface. 1468 */ 1469 struct pci_devres { 1470 unsigned int enabled:1; 1471 unsigned int pinned:1; 1472 unsigned int orig_intx:1; 1473 unsigned int restore_intx:1; 1474 unsigned int mwi:1; 1475 u32 region_mask; 1476 }; 1477 1478 static void pcim_release(struct device *gendev, void *res) 1479 { 1480 struct pci_dev *dev = to_pci_dev(gendev); 1481 struct pci_devres *this = res; 1482 int i; 1483 1484 if (dev->msi_enabled) 1485 pci_disable_msi(dev); 1486 if (dev->msix_enabled) 1487 pci_disable_msix(dev); 1488 1489 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1490 if (this->region_mask & (1 << i)) 1491 pci_release_region(dev, i); 1492 1493 if (this->mwi) 1494 pci_clear_mwi(dev); 1495 1496 if (this->restore_intx) 1497 pci_intx(dev, this->orig_intx); 1498 1499 if (this->enabled && !this->pinned) 1500 pci_disable_device(dev); 1501 } 1502 1503 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1504 { 1505 struct pci_devres *dr, *new_dr; 1506 1507 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1508 if (dr) 1509 return dr; 1510 1511 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1512 if (!new_dr) 1513 return NULL; 1514 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1515 } 1516 1517 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1518 { 1519 if (pci_is_managed(pdev)) 1520 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1521 return NULL; 1522 } 1523 1524 /** 1525 * pcim_enable_device - Managed pci_enable_device() 1526 * @pdev: PCI device to be initialized 1527 * 1528 * Managed pci_enable_device(). 1529 */ 1530 int pcim_enable_device(struct pci_dev *pdev) 1531 { 1532 struct pci_devres *dr; 1533 int rc; 1534 1535 dr = get_pci_dr(pdev); 1536 if (unlikely(!dr)) 1537 return -ENOMEM; 1538 if (dr->enabled) 1539 return 0; 1540 1541 rc = pci_enable_device(pdev); 1542 if (!rc) { 1543 pdev->is_managed = 1; 1544 dr->enabled = 1; 1545 } 1546 return rc; 1547 } 1548 EXPORT_SYMBOL(pcim_enable_device); 1549 1550 /** 1551 * pcim_pin_device - Pin managed PCI device 1552 * @pdev: PCI device to pin 1553 * 1554 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1555 * driver detach. @pdev must have been enabled with 1556 * pcim_enable_device(). 1557 */ 1558 void pcim_pin_device(struct pci_dev *pdev) 1559 { 1560 struct pci_devres *dr; 1561 1562 dr = find_pci_dr(pdev); 1563 WARN_ON(!dr || !dr->enabled); 1564 if (dr) 1565 dr->pinned = 1; 1566 } 1567 EXPORT_SYMBOL(pcim_pin_device); 1568 1569 /* 1570 * pcibios_add_device - provide arch specific hooks when adding device dev 1571 * @dev: the PCI device being added 1572 * 1573 * Permits the platform to provide architecture specific functionality when 1574 * devices are added. This is the default implementation. Architecture 1575 * implementations can override this. 1576 */ 1577 int __weak pcibios_add_device(struct pci_dev *dev) 1578 { 1579 return 0; 1580 } 1581 1582 /** 1583 * pcibios_release_device - provide arch specific hooks when releasing device dev 1584 * @dev: the PCI device being released 1585 * 1586 * Permits the platform to provide architecture specific functionality when 1587 * devices are released. This is the default implementation. Architecture 1588 * implementations can override this. 1589 */ 1590 void __weak pcibios_release_device(struct pci_dev *dev) {} 1591 1592 /** 1593 * pcibios_disable_device - disable arch specific PCI resources for device dev 1594 * @dev: the PCI device to disable 1595 * 1596 * Disables architecture specific PCI resources for the device. This 1597 * is the default implementation. Architecture implementations can 1598 * override this. 1599 */ 1600 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1601 1602 /** 1603 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1604 * @irq: ISA IRQ to penalize 1605 * @active: IRQ active or not 1606 * 1607 * Permits the platform to provide architecture-specific functionality when 1608 * penalizing ISA IRQs. This is the default implementation. Architecture 1609 * implementations can override this. 1610 */ 1611 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1612 1613 static void do_pci_disable_device(struct pci_dev *dev) 1614 { 1615 u16 pci_command; 1616 1617 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1618 if (pci_command & PCI_COMMAND_MASTER) { 1619 pci_command &= ~PCI_COMMAND_MASTER; 1620 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1621 } 1622 1623 pcibios_disable_device(dev); 1624 } 1625 1626 /** 1627 * pci_disable_enabled_device - Disable device without updating enable_cnt 1628 * @dev: PCI device to disable 1629 * 1630 * NOTE: This function is a backend of PCI power management routines and is 1631 * not supposed to be called drivers. 1632 */ 1633 void pci_disable_enabled_device(struct pci_dev *dev) 1634 { 1635 if (pci_is_enabled(dev)) 1636 do_pci_disable_device(dev); 1637 } 1638 1639 /** 1640 * pci_disable_device - Disable PCI device after use 1641 * @dev: PCI device to be disabled 1642 * 1643 * Signal to the system that the PCI device is not in use by the system 1644 * anymore. This only involves disabling PCI bus-mastering, if active. 1645 * 1646 * Note we don't actually disable the device until all callers of 1647 * pci_enable_device() have called pci_disable_device(). 1648 */ 1649 void pci_disable_device(struct pci_dev *dev) 1650 { 1651 struct pci_devres *dr; 1652 1653 dr = find_pci_dr(dev); 1654 if (dr) 1655 dr->enabled = 0; 1656 1657 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1658 "disabling already-disabled device"); 1659 1660 if (atomic_dec_return(&dev->enable_cnt) != 0) 1661 return; 1662 1663 do_pci_disable_device(dev); 1664 1665 dev->is_busmaster = 0; 1666 } 1667 EXPORT_SYMBOL(pci_disable_device); 1668 1669 /** 1670 * pcibios_set_pcie_reset_state - set reset state for device dev 1671 * @dev: the PCIe device reset 1672 * @state: Reset state to enter into 1673 * 1674 * 1675 * Sets the PCIe reset state for the device. This is the default 1676 * implementation. Architecture implementations can override this. 1677 */ 1678 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1679 enum pcie_reset_state state) 1680 { 1681 return -EINVAL; 1682 } 1683 1684 /** 1685 * pci_set_pcie_reset_state - set reset state for device dev 1686 * @dev: the PCIe device reset 1687 * @state: Reset state to enter into 1688 * 1689 * 1690 * Sets the PCI reset state for the device. 1691 */ 1692 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1693 { 1694 return pcibios_set_pcie_reset_state(dev, state); 1695 } 1696 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1697 1698 /** 1699 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 1700 * @dev: PCIe root port or event collector. 1701 */ 1702 void pcie_clear_root_pme_status(struct pci_dev *dev) 1703 { 1704 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 1705 } 1706 1707 /** 1708 * pci_check_pme_status - Check if given device has generated PME. 1709 * @dev: Device to check. 1710 * 1711 * Check the PME status of the device and if set, clear it and clear PME enable 1712 * (if set). Return 'true' if PME status and PME enable were both set or 1713 * 'false' otherwise. 1714 */ 1715 bool pci_check_pme_status(struct pci_dev *dev) 1716 { 1717 int pmcsr_pos; 1718 u16 pmcsr; 1719 bool ret = false; 1720 1721 if (!dev->pm_cap) 1722 return false; 1723 1724 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1725 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1726 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1727 return false; 1728 1729 /* Clear PME status. */ 1730 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1731 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1732 /* Disable PME to avoid interrupt flood. */ 1733 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1734 ret = true; 1735 } 1736 1737 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1738 1739 return ret; 1740 } 1741 1742 /** 1743 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1744 * @dev: Device to handle. 1745 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1746 * 1747 * Check if @dev has generated PME and queue a resume request for it in that 1748 * case. 1749 */ 1750 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1751 { 1752 if (pme_poll_reset && dev->pme_poll) 1753 dev->pme_poll = false; 1754 1755 if (pci_check_pme_status(dev)) { 1756 pci_wakeup_event(dev); 1757 pm_request_resume(&dev->dev); 1758 } 1759 return 0; 1760 } 1761 1762 /** 1763 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1764 * @bus: Top bus of the subtree to walk. 1765 */ 1766 void pci_pme_wakeup_bus(struct pci_bus *bus) 1767 { 1768 if (bus) 1769 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1770 } 1771 1772 1773 /** 1774 * pci_pme_capable - check the capability of PCI device to generate PME# 1775 * @dev: PCI device to handle. 1776 * @state: PCI state from which device will issue PME#. 1777 */ 1778 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1779 { 1780 if (!dev->pm_cap) 1781 return false; 1782 1783 return !!(dev->pme_support & (1 << state)); 1784 } 1785 EXPORT_SYMBOL(pci_pme_capable); 1786 1787 static void pci_pme_list_scan(struct work_struct *work) 1788 { 1789 struct pci_pme_device *pme_dev, *n; 1790 1791 mutex_lock(&pci_pme_list_mutex); 1792 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1793 if (pme_dev->dev->pme_poll) { 1794 struct pci_dev *bridge; 1795 1796 bridge = pme_dev->dev->bus->self; 1797 /* 1798 * If bridge is in low power state, the 1799 * configuration space of subordinate devices 1800 * may be not accessible 1801 */ 1802 if (bridge && bridge->current_state != PCI_D0) 1803 continue; 1804 pci_pme_wakeup(pme_dev->dev, NULL); 1805 } else { 1806 list_del(&pme_dev->list); 1807 kfree(pme_dev); 1808 } 1809 } 1810 if (!list_empty(&pci_pme_list)) 1811 queue_delayed_work(system_freezable_wq, &pci_pme_work, 1812 msecs_to_jiffies(PME_TIMEOUT)); 1813 mutex_unlock(&pci_pme_list_mutex); 1814 } 1815 1816 static void __pci_pme_active(struct pci_dev *dev, bool enable) 1817 { 1818 u16 pmcsr; 1819 1820 if (!dev->pme_support) 1821 return; 1822 1823 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1824 /* Clear PME_Status by writing 1 to it and enable PME# */ 1825 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1826 if (!enable) 1827 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1828 1829 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1830 } 1831 1832 /** 1833 * pci_pme_restore - Restore PME configuration after config space restore. 1834 * @dev: PCI device to update. 1835 */ 1836 void pci_pme_restore(struct pci_dev *dev) 1837 { 1838 u16 pmcsr; 1839 1840 if (!dev->pme_support) 1841 return; 1842 1843 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1844 if (dev->wakeup_prepared) { 1845 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 1846 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 1847 } else { 1848 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1849 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1850 } 1851 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1852 } 1853 1854 /** 1855 * pci_pme_active - enable or disable PCI device's PME# function 1856 * @dev: PCI device to handle. 1857 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1858 * 1859 * The caller must verify that the device is capable of generating PME# before 1860 * calling this function with @enable equal to 'true'. 1861 */ 1862 void pci_pme_active(struct pci_dev *dev, bool enable) 1863 { 1864 __pci_pme_active(dev, enable); 1865 1866 /* 1867 * PCI (as opposed to PCIe) PME requires that the device have 1868 * its PME# line hooked up correctly. Not all hardware vendors 1869 * do this, so the PME never gets delivered and the device 1870 * remains asleep. The easiest way around this is to 1871 * periodically walk the list of suspended devices and check 1872 * whether any have their PME flag set. The assumption is that 1873 * we'll wake up often enough anyway that this won't be a huge 1874 * hit, and the power savings from the devices will still be a 1875 * win. 1876 * 1877 * Although PCIe uses in-band PME message instead of PME# line 1878 * to report PME, PME does not work for some PCIe devices in 1879 * reality. For example, there are devices that set their PME 1880 * status bits, but don't really bother to send a PME message; 1881 * there are PCI Express Root Ports that don't bother to 1882 * trigger interrupts when they receive PME messages from the 1883 * devices below. So PME poll is used for PCIe devices too. 1884 */ 1885 1886 if (dev->pme_poll) { 1887 struct pci_pme_device *pme_dev; 1888 if (enable) { 1889 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1890 GFP_KERNEL); 1891 if (!pme_dev) { 1892 pci_warn(dev, "can't enable PME#\n"); 1893 return; 1894 } 1895 pme_dev->dev = dev; 1896 mutex_lock(&pci_pme_list_mutex); 1897 list_add(&pme_dev->list, &pci_pme_list); 1898 if (list_is_singular(&pci_pme_list)) 1899 queue_delayed_work(system_freezable_wq, 1900 &pci_pme_work, 1901 msecs_to_jiffies(PME_TIMEOUT)); 1902 mutex_unlock(&pci_pme_list_mutex); 1903 } else { 1904 mutex_lock(&pci_pme_list_mutex); 1905 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1906 if (pme_dev->dev == dev) { 1907 list_del(&pme_dev->list); 1908 kfree(pme_dev); 1909 break; 1910 } 1911 } 1912 mutex_unlock(&pci_pme_list_mutex); 1913 } 1914 } 1915 1916 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1917 } 1918 EXPORT_SYMBOL(pci_pme_active); 1919 1920 /** 1921 * __pci_enable_wake - enable PCI device as wakeup event source 1922 * @dev: PCI device affected 1923 * @state: PCI state from which device will issue wakeup events 1924 * @enable: True to enable event generation; false to disable 1925 * 1926 * This enables the device as a wakeup event source, or disables it. 1927 * When such events involves platform-specific hooks, those hooks are 1928 * called automatically by this routine. 1929 * 1930 * Devices with legacy power management (no standard PCI PM capabilities) 1931 * always require such platform hooks. 1932 * 1933 * RETURN VALUE: 1934 * 0 is returned on success 1935 * -EINVAL is returned if device is not supposed to wake up the system 1936 * Error code depending on the platform is returned if both the platform and 1937 * the native mechanism fail to enable the generation of wake-up events 1938 */ 1939 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 1940 { 1941 int ret = 0; 1942 1943 /* 1944 * Bridges can only signal wakeup on behalf of subordinate devices, 1945 * but that is set up elsewhere, so skip them. 1946 */ 1947 if (pci_has_subordinate(dev)) 1948 return 0; 1949 1950 /* Don't do the same thing twice in a row for one device. */ 1951 if (!!enable == !!dev->wakeup_prepared) 1952 return 0; 1953 1954 /* 1955 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1956 * Anderson we should be doing PME# wake enable followed by ACPI wake 1957 * enable. To disable wake-up we call the platform first, for symmetry. 1958 */ 1959 1960 if (enable) { 1961 int error; 1962 1963 if (pci_pme_capable(dev, state)) 1964 pci_pme_active(dev, true); 1965 else 1966 ret = 1; 1967 error = platform_pci_set_wakeup(dev, true); 1968 if (ret) 1969 ret = error; 1970 if (!ret) 1971 dev->wakeup_prepared = true; 1972 } else { 1973 platform_pci_set_wakeup(dev, false); 1974 pci_pme_active(dev, false); 1975 dev->wakeup_prepared = false; 1976 } 1977 1978 return ret; 1979 } 1980 1981 /** 1982 * pci_enable_wake - change wakeup settings for a PCI device 1983 * @pci_dev: Target device 1984 * @state: PCI state from which device will issue wakeup events 1985 * @enable: Whether or not to enable event generation 1986 * 1987 * If @enable is set, check device_may_wakeup() for the device before calling 1988 * __pci_enable_wake() for it. 1989 */ 1990 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 1991 { 1992 if (enable && !device_may_wakeup(&pci_dev->dev)) 1993 return -EINVAL; 1994 1995 return __pci_enable_wake(pci_dev, state, enable); 1996 } 1997 EXPORT_SYMBOL(pci_enable_wake); 1998 1999 /** 2000 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2001 * @dev: PCI device to prepare 2002 * @enable: True to enable wake-up event generation; false to disable 2003 * 2004 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2005 * and this function allows them to set that up cleanly - pci_enable_wake() 2006 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2007 * ordering constraints. 2008 * 2009 * This function only returns error code if the device is not allowed to wake 2010 * up the system from sleep or it is not capable of generating PME# from both 2011 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2012 */ 2013 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2014 { 2015 return pci_pme_capable(dev, PCI_D3cold) ? 2016 pci_enable_wake(dev, PCI_D3cold, enable) : 2017 pci_enable_wake(dev, PCI_D3hot, enable); 2018 } 2019 EXPORT_SYMBOL(pci_wake_from_d3); 2020 2021 /** 2022 * pci_target_state - find an appropriate low power state for a given PCI dev 2023 * @dev: PCI device 2024 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2025 * 2026 * Use underlying platform code to find a supported low power state for @dev. 2027 * If the platform can't manage @dev, return the deepest state from which it 2028 * can generate wake events, based on any available PME info. 2029 */ 2030 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2031 { 2032 pci_power_t target_state = PCI_D3hot; 2033 2034 if (platform_pci_power_manageable(dev)) { 2035 /* 2036 * Call the platform to find the target state for the device. 2037 */ 2038 pci_power_t state = platform_pci_choose_state(dev); 2039 2040 switch (state) { 2041 case PCI_POWER_ERROR: 2042 case PCI_UNKNOWN: 2043 break; 2044 case PCI_D1: 2045 case PCI_D2: 2046 if (pci_no_d1d2(dev)) 2047 break; 2048 default: 2049 target_state = state; 2050 } 2051 2052 return target_state; 2053 } 2054 2055 if (!dev->pm_cap) 2056 target_state = PCI_D0; 2057 2058 /* 2059 * If the device is in D3cold even though it's not power-manageable by 2060 * the platform, it may have been powered down by non-standard means. 2061 * Best to let it slumber. 2062 */ 2063 if (dev->current_state == PCI_D3cold) 2064 target_state = PCI_D3cold; 2065 2066 if (wakeup) { 2067 /* 2068 * Find the deepest state from which the device can generate 2069 * PME#. 2070 */ 2071 if (dev->pme_support) { 2072 while (target_state 2073 && !(dev->pme_support & (1 << target_state))) 2074 target_state--; 2075 } 2076 } 2077 2078 return target_state; 2079 } 2080 2081 /** 2082 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 2083 * @dev: Device to handle. 2084 * 2085 * Choose the power state appropriate for the device depending on whether 2086 * it can wake up the system and/or is power manageable by the platform 2087 * (PCI_D3hot is the default) and put the device into that state. 2088 */ 2089 int pci_prepare_to_sleep(struct pci_dev *dev) 2090 { 2091 bool wakeup = device_may_wakeup(&dev->dev); 2092 pci_power_t target_state = pci_target_state(dev, wakeup); 2093 int error; 2094 2095 if (target_state == PCI_POWER_ERROR) 2096 return -EIO; 2097 2098 pci_enable_wake(dev, target_state, wakeup); 2099 2100 error = pci_set_power_state(dev, target_state); 2101 2102 if (error) 2103 pci_enable_wake(dev, target_state, false); 2104 2105 return error; 2106 } 2107 EXPORT_SYMBOL(pci_prepare_to_sleep); 2108 2109 /** 2110 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 2111 * @dev: Device to handle. 2112 * 2113 * Disable device's system wake-up capability and put it into D0. 2114 */ 2115 int pci_back_from_sleep(struct pci_dev *dev) 2116 { 2117 pci_enable_wake(dev, PCI_D0, false); 2118 return pci_set_power_state(dev, PCI_D0); 2119 } 2120 EXPORT_SYMBOL(pci_back_from_sleep); 2121 2122 /** 2123 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2124 * @dev: PCI device being suspended. 2125 * 2126 * Prepare @dev to generate wake-up events at run time and put it into a low 2127 * power state. 2128 */ 2129 int pci_finish_runtime_suspend(struct pci_dev *dev) 2130 { 2131 pci_power_t target_state; 2132 int error; 2133 2134 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2135 if (target_state == PCI_POWER_ERROR) 2136 return -EIO; 2137 2138 dev->runtime_d3cold = target_state == PCI_D3cold; 2139 2140 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2141 2142 error = pci_set_power_state(dev, target_state); 2143 2144 if (error) { 2145 pci_enable_wake(dev, target_state, false); 2146 dev->runtime_d3cold = false; 2147 } 2148 2149 return error; 2150 } 2151 2152 /** 2153 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2154 * @dev: Device to check. 2155 * 2156 * Return true if the device itself is capable of generating wake-up events 2157 * (through the platform or using the native PCIe PME) or if the device supports 2158 * PME and one of its upstream bridges can generate wake-up events. 2159 */ 2160 bool pci_dev_run_wake(struct pci_dev *dev) 2161 { 2162 struct pci_bus *bus = dev->bus; 2163 2164 if (!dev->pme_support) 2165 return false; 2166 2167 /* PME-capable in principle, but not from the target power state */ 2168 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2169 return false; 2170 2171 if (device_can_wakeup(&dev->dev)) 2172 return true; 2173 2174 while (bus->parent) { 2175 struct pci_dev *bridge = bus->self; 2176 2177 if (device_can_wakeup(&bridge->dev)) 2178 return true; 2179 2180 bus = bus->parent; 2181 } 2182 2183 /* We have reached the root bus. */ 2184 if (bus->bridge) 2185 return device_can_wakeup(bus->bridge); 2186 2187 return false; 2188 } 2189 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2190 2191 /** 2192 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2193 * @pci_dev: Device to check. 2194 * 2195 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2196 * reconfigured due to wakeup settings difference between system and runtime 2197 * suspend and the current power state of it is suitable for the upcoming 2198 * (system) transition. 2199 * 2200 * If the device is not configured for system wakeup, disable PME for it before 2201 * returning 'true' to prevent it from waking up the system unnecessarily. 2202 */ 2203 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2204 { 2205 struct device *dev = &pci_dev->dev; 2206 bool wakeup = device_may_wakeup(dev); 2207 2208 if (!pm_runtime_suspended(dev) 2209 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state 2210 || platform_pci_need_resume(pci_dev)) 2211 return false; 2212 2213 /* 2214 * At this point the device is good to go unless it's been configured 2215 * to generate PME at the runtime suspend time, but it is not supposed 2216 * to wake up the system. In that case, simply disable PME for it 2217 * (it will have to be re-enabled on exit from system resume). 2218 * 2219 * If the device's power state is D3cold and the platform check above 2220 * hasn't triggered, the device's configuration is suitable and we don't 2221 * need to manipulate it at all. 2222 */ 2223 spin_lock_irq(&dev->power.lock); 2224 2225 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2226 !wakeup) 2227 __pci_pme_active(pci_dev, false); 2228 2229 spin_unlock_irq(&dev->power.lock); 2230 return true; 2231 } 2232 2233 /** 2234 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2235 * @pci_dev: Device to handle. 2236 * 2237 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2238 * it might have been disabled during the prepare phase of system suspend if 2239 * the device was not configured for system wakeup. 2240 */ 2241 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2242 { 2243 struct device *dev = &pci_dev->dev; 2244 2245 if (!pci_dev_run_wake(pci_dev)) 2246 return; 2247 2248 spin_lock_irq(&dev->power.lock); 2249 2250 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2251 __pci_pme_active(pci_dev, true); 2252 2253 spin_unlock_irq(&dev->power.lock); 2254 } 2255 2256 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2257 { 2258 struct device *dev = &pdev->dev; 2259 struct device *parent = dev->parent; 2260 2261 if (parent) 2262 pm_runtime_get_sync(parent); 2263 pm_runtime_get_noresume(dev); 2264 /* 2265 * pdev->current_state is set to PCI_D3cold during suspending, 2266 * so wait until suspending completes 2267 */ 2268 pm_runtime_barrier(dev); 2269 /* 2270 * Only need to resume devices in D3cold, because config 2271 * registers are still accessible for devices suspended but 2272 * not in D3cold. 2273 */ 2274 if (pdev->current_state == PCI_D3cold) 2275 pm_runtime_resume(dev); 2276 } 2277 2278 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2279 { 2280 struct device *dev = &pdev->dev; 2281 struct device *parent = dev->parent; 2282 2283 pm_runtime_put(dev); 2284 if (parent) 2285 pm_runtime_put_sync(parent); 2286 } 2287 2288 /** 2289 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2290 * @bridge: Bridge to check 2291 * 2292 * This function checks if it is possible to move the bridge to D3. 2293 * Currently we only allow D3 for recent enough PCIe ports. 2294 */ 2295 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2296 { 2297 if (!pci_is_pcie(bridge)) 2298 return false; 2299 2300 switch (pci_pcie_type(bridge)) { 2301 case PCI_EXP_TYPE_ROOT_PORT: 2302 case PCI_EXP_TYPE_UPSTREAM: 2303 case PCI_EXP_TYPE_DOWNSTREAM: 2304 if (pci_bridge_d3_disable) 2305 return false; 2306 2307 /* 2308 * Hotplug interrupts cannot be delivered if the link is down, 2309 * so parents of a hotplug port must stay awake. In addition, 2310 * hotplug ports handled by firmware in System Management Mode 2311 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2312 * For simplicity, disallow in general for now. 2313 */ 2314 if (bridge->is_hotplug_bridge) 2315 return false; 2316 2317 if (pci_bridge_d3_force) 2318 return true; 2319 2320 /* 2321 * It should be safe to put PCIe ports from 2015 or newer 2322 * to D3. 2323 */ 2324 if (dmi_get_bios_year() >= 2015) 2325 return true; 2326 break; 2327 } 2328 2329 return false; 2330 } 2331 2332 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2333 { 2334 bool *d3cold_ok = data; 2335 2336 if (/* The device needs to be allowed to go D3cold ... */ 2337 dev->no_d3cold || !dev->d3cold_allowed || 2338 2339 /* ... and if it is wakeup capable to do so from D3cold. */ 2340 (device_may_wakeup(&dev->dev) && 2341 !pci_pme_capable(dev, PCI_D3cold)) || 2342 2343 /* If it is a bridge it must be allowed to go to D3. */ 2344 !pci_power_manageable(dev)) 2345 2346 *d3cold_ok = false; 2347 2348 return !*d3cold_ok; 2349 } 2350 2351 /* 2352 * pci_bridge_d3_update - Update bridge D3 capabilities 2353 * @dev: PCI device which is changed 2354 * 2355 * Update upstream bridge PM capabilities accordingly depending on if the 2356 * device PM configuration was changed or the device is being removed. The 2357 * change is also propagated upstream. 2358 */ 2359 void pci_bridge_d3_update(struct pci_dev *dev) 2360 { 2361 bool remove = !device_is_registered(&dev->dev); 2362 struct pci_dev *bridge; 2363 bool d3cold_ok = true; 2364 2365 bridge = pci_upstream_bridge(dev); 2366 if (!bridge || !pci_bridge_d3_possible(bridge)) 2367 return; 2368 2369 /* 2370 * If D3 is currently allowed for the bridge, removing one of its 2371 * children won't change that. 2372 */ 2373 if (remove && bridge->bridge_d3) 2374 return; 2375 2376 /* 2377 * If D3 is currently allowed for the bridge and a child is added or 2378 * changed, disallowance of D3 can only be caused by that child, so 2379 * we only need to check that single device, not any of its siblings. 2380 * 2381 * If D3 is currently not allowed for the bridge, checking the device 2382 * first may allow us to skip checking its siblings. 2383 */ 2384 if (!remove) 2385 pci_dev_check_d3cold(dev, &d3cold_ok); 2386 2387 /* 2388 * If D3 is currently not allowed for the bridge, this may be caused 2389 * either by the device being changed/removed or any of its siblings, 2390 * so we need to go through all children to find out if one of them 2391 * continues to block D3. 2392 */ 2393 if (d3cold_ok && !bridge->bridge_d3) 2394 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2395 &d3cold_ok); 2396 2397 if (bridge->bridge_d3 != d3cold_ok) { 2398 bridge->bridge_d3 = d3cold_ok; 2399 /* Propagate change to upstream bridges */ 2400 pci_bridge_d3_update(bridge); 2401 } 2402 } 2403 2404 /** 2405 * pci_d3cold_enable - Enable D3cold for device 2406 * @dev: PCI device to handle 2407 * 2408 * This function can be used in drivers to enable D3cold from the device 2409 * they handle. It also updates upstream PCI bridge PM capabilities 2410 * accordingly. 2411 */ 2412 void pci_d3cold_enable(struct pci_dev *dev) 2413 { 2414 if (dev->no_d3cold) { 2415 dev->no_d3cold = false; 2416 pci_bridge_d3_update(dev); 2417 } 2418 } 2419 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2420 2421 /** 2422 * pci_d3cold_disable - Disable D3cold for device 2423 * @dev: PCI device to handle 2424 * 2425 * This function can be used in drivers to disable D3cold from the device 2426 * they handle. It also updates upstream PCI bridge PM capabilities 2427 * accordingly. 2428 */ 2429 void pci_d3cold_disable(struct pci_dev *dev) 2430 { 2431 if (!dev->no_d3cold) { 2432 dev->no_d3cold = true; 2433 pci_bridge_d3_update(dev); 2434 } 2435 } 2436 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2437 2438 /** 2439 * pci_pm_init - Initialize PM functions of given PCI device 2440 * @dev: PCI device to handle. 2441 */ 2442 void pci_pm_init(struct pci_dev *dev) 2443 { 2444 int pm; 2445 u16 pmc; 2446 2447 pm_runtime_forbid(&dev->dev); 2448 pm_runtime_set_active(&dev->dev); 2449 pm_runtime_enable(&dev->dev); 2450 device_enable_async_suspend(&dev->dev); 2451 dev->wakeup_prepared = false; 2452 2453 dev->pm_cap = 0; 2454 dev->pme_support = 0; 2455 2456 /* find PCI PM capability in list */ 2457 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2458 if (!pm) 2459 return; 2460 /* Check device's ability to generate PME# */ 2461 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2462 2463 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2464 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2465 pmc & PCI_PM_CAP_VER_MASK); 2466 return; 2467 } 2468 2469 dev->pm_cap = pm; 2470 dev->d3_delay = PCI_PM_D3_WAIT; 2471 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2472 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2473 dev->d3cold_allowed = true; 2474 2475 dev->d1_support = false; 2476 dev->d2_support = false; 2477 if (!pci_no_d1d2(dev)) { 2478 if (pmc & PCI_PM_CAP_D1) 2479 dev->d1_support = true; 2480 if (pmc & PCI_PM_CAP_D2) 2481 dev->d2_support = true; 2482 2483 if (dev->d1_support || dev->d2_support) 2484 pci_printk(KERN_DEBUG, dev, "supports%s%s\n", 2485 dev->d1_support ? " D1" : "", 2486 dev->d2_support ? " D2" : ""); 2487 } 2488 2489 pmc &= PCI_PM_CAP_PME_MASK; 2490 if (pmc) { 2491 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n", 2492 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2493 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2494 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2495 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2496 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2497 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2498 dev->pme_poll = true; 2499 /* 2500 * Make device's PM flags reflect the wake-up capability, but 2501 * let the user space enable it to wake up the system as needed. 2502 */ 2503 device_set_wakeup_capable(&dev->dev, true); 2504 /* Disable the PME# generation functionality */ 2505 pci_pme_active(dev, false); 2506 } 2507 } 2508 2509 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2510 { 2511 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2512 2513 switch (prop) { 2514 case PCI_EA_P_MEM: 2515 case PCI_EA_P_VF_MEM: 2516 flags |= IORESOURCE_MEM; 2517 break; 2518 case PCI_EA_P_MEM_PREFETCH: 2519 case PCI_EA_P_VF_MEM_PREFETCH: 2520 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2521 break; 2522 case PCI_EA_P_IO: 2523 flags |= IORESOURCE_IO; 2524 break; 2525 default: 2526 return 0; 2527 } 2528 2529 return flags; 2530 } 2531 2532 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2533 u8 prop) 2534 { 2535 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2536 return &dev->resource[bei]; 2537 #ifdef CONFIG_PCI_IOV 2538 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2539 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2540 return &dev->resource[PCI_IOV_RESOURCES + 2541 bei - PCI_EA_BEI_VF_BAR0]; 2542 #endif 2543 else if (bei == PCI_EA_BEI_ROM) 2544 return &dev->resource[PCI_ROM_RESOURCE]; 2545 else 2546 return NULL; 2547 } 2548 2549 /* Read an Enhanced Allocation (EA) entry */ 2550 static int pci_ea_read(struct pci_dev *dev, int offset) 2551 { 2552 struct resource *res; 2553 int ent_size, ent_offset = offset; 2554 resource_size_t start, end; 2555 unsigned long flags; 2556 u32 dw0, bei, base, max_offset; 2557 u8 prop; 2558 bool support_64 = (sizeof(resource_size_t) >= 8); 2559 2560 pci_read_config_dword(dev, ent_offset, &dw0); 2561 ent_offset += 4; 2562 2563 /* Entry size field indicates DWORDs after 1st */ 2564 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2565 2566 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2567 goto out; 2568 2569 bei = (dw0 & PCI_EA_BEI) >> 4; 2570 prop = (dw0 & PCI_EA_PP) >> 8; 2571 2572 /* 2573 * If the Property is in the reserved range, try the Secondary 2574 * Property instead. 2575 */ 2576 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2577 prop = (dw0 & PCI_EA_SP) >> 16; 2578 if (prop > PCI_EA_P_BRIDGE_IO) 2579 goto out; 2580 2581 res = pci_ea_get_resource(dev, bei, prop); 2582 if (!res) { 2583 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 2584 goto out; 2585 } 2586 2587 flags = pci_ea_flags(dev, prop); 2588 if (!flags) { 2589 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 2590 goto out; 2591 } 2592 2593 /* Read Base */ 2594 pci_read_config_dword(dev, ent_offset, &base); 2595 start = (base & PCI_EA_FIELD_MASK); 2596 ent_offset += 4; 2597 2598 /* Read MaxOffset */ 2599 pci_read_config_dword(dev, ent_offset, &max_offset); 2600 ent_offset += 4; 2601 2602 /* Read Base MSBs (if 64-bit entry) */ 2603 if (base & PCI_EA_IS_64) { 2604 u32 base_upper; 2605 2606 pci_read_config_dword(dev, ent_offset, &base_upper); 2607 ent_offset += 4; 2608 2609 flags |= IORESOURCE_MEM_64; 2610 2611 /* entry starts above 32-bit boundary, can't use */ 2612 if (!support_64 && base_upper) 2613 goto out; 2614 2615 if (support_64) 2616 start |= ((u64)base_upper << 32); 2617 } 2618 2619 end = start + (max_offset | 0x03); 2620 2621 /* Read MaxOffset MSBs (if 64-bit entry) */ 2622 if (max_offset & PCI_EA_IS_64) { 2623 u32 max_offset_upper; 2624 2625 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2626 ent_offset += 4; 2627 2628 flags |= IORESOURCE_MEM_64; 2629 2630 /* entry too big, can't use */ 2631 if (!support_64 && max_offset_upper) 2632 goto out; 2633 2634 if (support_64) 2635 end += ((u64)max_offset_upper << 32); 2636 } 2637 2638 if (end < start) { 2639 pci_err(dev, "EA Entry crosses address boundary\n"); 2640 goto out; 2641 } 2642 2643 if (ent_size != ent_offset - offset) { 2644 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 2645 ent_size, ent_offset - offset); 2646 goto out; 2647 } 2648 2649 res->name = pci_name(dev); 2650 res->start = start; 2651 res->end = end; 2652 res->flags = flags; 2653 2654 if (bei <= PCI_EA_BEI_BAR5) 2655 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2656 bei, res, prop); 2657 else if (bei == PCI_EA_BEI_ROM) 2658 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2659 res, prop); 2660 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2661 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2662 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2663 else 2664 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2665 bei, res, prop); 2666 2667 out: 2668 return offset + ent_size; 2669 } 2670 2671 /* Enhanced Allocation Initialization */ 2672 void pci_ea_init(struct pci_dev *dev) 2673 { 2674 int ea; 2675 u8 num_ent; 2676 int offset; 2677 int i; 2678 2679 /* find PCI EA capability in list */ 2680 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2681 if (!ea) 2682 return; 2683 2684 /* determine the number of entries */ 2685 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2686 &num_ent); 2687 num_ent &= PCI_EA_NUM_ENT_MASK; 2688 2689 offset = ea + PCI_EA_FIRST_ENT; 2690 2691 /* Skip DWORD 2 for type 1 functions */ 2692 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2693 offset += 4; 2694 2695 /* parse each EA entry */ 2696 for (i = 0; i < num_ent; ++i) 2697 offset = pci_ea_read(dev, offset); 2698 } 2699 2700 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2701 struct pci_cap_saved_state *new_cap) 2702 { 2703 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2704 } 2705 2706 /** 2707 * _pci_add_cap_save_buffer - allocate buffer for saving given 2708 * capability registers 2709 * @dev: the PCI device 2710 * @cap: the capability to allocate the buffer for 2711 * @extended: Standard or Extended capability ID 2712 * @size: requested size of the buffer 2713 */ 2714 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2715 bool extended, unsigned int size) 2716 { 2717 int pos; 2718 struct pci_cap_saved_state *save_state; 2719 2720 if (extended) 2721 pos = pci_find_ext_capability(dev, cap); 2722 else 2723 pos = pci_find_capability(dev, cap); 2724 2725 if (!pos) 2726 return 0; 2727 2728 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2729 if (!save_state) 2730 return -ENOMEM; 2731 2732 save_state->cap.cap_nr = cap; 2733 save_state->cap.cap_extended = extended; 2734 save_state->cap.size = size; 2735 pci_add_saved_cap(dev, save_state); 2736 2737 return 0; 2738 } 2739 2740 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2741 { 2742 return _pci_add_cap_save_buffer(dev, cap, false, size); 2743 } 2744 2745 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2746 { 2747 return _pci_add_cap_save_buffer(dev, cap, true, size); 2748 } 2749 2750 /** 2751 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2752 * @dev: the PCI device 2753 */ 2754 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2755 { 2756 int error; 2757 2758 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2759 PCI_EXP_SAVE_REGS * sizeof(u16)); 2760 if (error) 2761 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 2762 2763 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2764 if (error) 2765 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 2766 2767 pci_allocate_vc_save_buffers(dev); 2768 } 2769 2770 void pci_free_cap_save_buffers(struct pci_dev *dev) 2771 { 2772 struct pci_cap_saved_state *tmp; 2773 struct hlist_node *n; 2774 2775 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2776 kfree(tmp); 2777 } 2778 2779 /** 2780 * pci_configure_ari - enable or disable ARI forwarding 2781 * @dev: the PCI device 2782 * 2783 * If @dev and its upstream bridge both support ARI, enable ARI in the 2784 * bridge. Otherwise, disable ARI in the bridge. 2785 */ 2786 void pci_configure_ari(struct pci_dev *dev) 2787 { 2788 u32 cap; 2789 struct pci_dev *bridge; 2790 2791 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2792 return; 2793 2794 bridge = dev->bus->self; 2795 if (!bridge) 2796 return; 2797 2798 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2799 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2800 return; 2801 2802 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2803 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2804 PCI_EXP_DEVCTL2_ARI); 2805 bridge->ari_enabled = 1; 2806 } else { 2807 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2808 PCI_EXP_DEVCTL2_ARI); 2809 bridge->ari_enabled = 0; 2810 } 2811 } 2812 2813 static int pci_acs_enable; 2814 2815 /** 2816 * pci_request_acs - ask for ACS to be enabled if supported 2817 */ 2818 void pci_request_acs(void) 2819 { 2820 pci_acs_enable = 1; 2821 } 2822 2823 /** 2824 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2825 * @dev: the PCI device 2826 */ 2827 static void pci_std_enable_acs(struct pci_dev *dev) 2828 { 2829 int pos; 2830 u16 cap; 2831 u16 ctrl; 2832 2833 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2834 if (!pos) 2835 return; 2836 2837 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2838 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2839 2840 /* Source Validation */ 2841 ctrl |= (cap & PCI_ACS_SV); 2842 2843 /* P2P Request Redirect */ 2844 ctrl |= (cap & PCI_ACS_RR); 2845 2846 /* P2P Completion Redirect */ 2847 ctrl |= (cap & PCI_ACS_CR); 2848 2849 /* Upstream Forwarding */ 2850 ctrl |= (cap & PCI_ACS_UF); 2851 2852 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2853 } 2854 2855 /** 2856 * pci_enable_acs - enable ACS if hardware support it 2857 * @dev: the PCI device 2858 */ 2859 void pci_enable_acs(struct pci_dev *dev) 2860 { 2861 if (!pci_acs_enable) 2862 return; 2863 2864 if (!pci_dev_specific_enable_acs(dev)) 2865 return; 2866 2867 pci_std_enable_acs(dev); 2868 } 2869 2870 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2871 { 2872 int pos; 2873 u16 cap, ctrl; 2874 2875 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2876 if (!pos) 2877 return false; 2878 2879 /* 2880 * Except for egress control, capabilities are either required 2881 * or only required if controllable. Features missing from the 2882 * capability field can therefore be assumed as hard-wired enabled. 2883 */ 2884 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2885 acs_flags &= (cap | PCI_ACS_EC); 2886 2887 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2888 return (ctrl & acs_flags) == acs_flags; 2889 } 2890 2891 /** 2892 * pci_acs_enabled - test ACS against required flags for a given device 2893 * @pdev: device to test 2894 * @acs_flags: required PCI ACS flags 2895 * 2896 * Return true if the device supports the provided flags. Automatically 2897 * filters out flags that are not implemented on multifunction devices. 2898 * 2899 * Note that this interface checks the effective ACS capabilities of the 2900 * device rather than the actual capabilities. For instance, most single 2901 * function endpoints are not required to support ACS because they have no 2902 * opportunity for peer-to-peer access. We therefore return 'true' 2903 * regardless of whether the device exposes an ACS capability. This makes 2904 * it much easier for callers of this function to ignore the actual type 2905 * or topology of the device when testing ACS support. 2906 */ 2907 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2908 { 2909 int ret; 2910 2911 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2912 if (ret >= 0) 2913 return ret > 0; 2914 2915 /* 2916 * Conventional PCI and PCI-X devices never support ACS, either 2917 * effectively or actually. The shared bus topology implies that 2918 * any device on the bus can receive or snoop DMA. 2919 */ 2920 if (!pci_is_pcie(pdev)) 2921 return false; 2922 2923 switch (pci_pcie_type(pdev)) { 2924 /* 2925 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2926 * but since their primary interface is PCI/X, we conservatively 2927 * handle them as we would a non-PCIe device. 2928 */ 2929 case PCI_EXP_TYPE_PCIE_BRIDGE: 2930 /* 2931 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2932 * applicable... must never implement an ACS Extended Capability...". 2933 * This seems arbitrary, but we take a conservative interpretation 2934 * of this statement. 2935 */ 2936 case PCI_EXP_TYPE_PCI_BRIDGE: 2937 case PCI_EXP_TYPE_RC_EC: 2938 return false; 2939 /* 2940 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2941 * implement ACS in order to indicate their peer-to-peer capabilities, 2942 * regardless of whether they are single- or multi-function devices. 2943 */ 2944 case PCI_EXP_TYPE_DOWNSTREAM: 2945 case PCI_EXP_TYPE_ROOT_PORT: 2946 return pci_acs_flags_enabled(pdev, acs_flags); 2947 /* 2948 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2949 * implemented by the remaining PCIe types to indicate peer-to-peer 2950 * capabilities, but only when they are part of a multifunction 2951 * device. The footnote for section 6.12 indicates the specific 2952 * PCIe types included here. 2953 */ 2954 case PCI_EXP_TYPE_ENDPOINT: 2955 case PCI_EXP_TYPE_UPSTREAM: 2956 case PCI_EXP_TYPE_LEG_END: 2957 case PCI_EXP_TYPE_RC_END: 2958 if (!pdev->multifunction) 2959 break; 2960 2961 return pci_acs_flags_enabled(pdev, acs_flags); 2962 } 2963 2964 /* 2965 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2966 * to single function devices with the exception of downstream ports. 2967 */ 2968 return true; 2969 } 2970 2971 /** 2972 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2973 * @start: starting downstream device 2974 * @end: ending upstream device or NULL to search to the root bus 2975 * @acs_flags: required flags 2976 * 2977 * Walk up a device tree from start to end testing PCI ACS support. If 2978 * any step along the way does not support the required flags, return false. 2979 */ 2980 bool pci_acs_path_enabled(struct pci_dev *start, 2981 struct pci_dev *end, u16 acs_flags) 2982 { 2983 struct pci_dev *pdev, *parent = start; 2984 2985 do { 2986 pdev = parent; 2987 2988 if (!pci_acs_enabled(pdev, acs_flags)) 2989 return false; 2990 2991 if (pci_is_root_bus(pdev->bus)) 2992 return (end == NULL); 2993 2994 parent = pdev->bus->self; 2995 } while (pdev != end); 2996 2997 return true; 2998 } 2999 3000 /** 3001 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3002 * @pdev: PCI device 3003 * @bar: BAR to find 3004 * 3005 * Helper to find the position of the ctrl register for a BAR. 3006 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3007 * Returns -ENOENT if no ctrl register for the BAR could be found. 3008 */ 3009 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3010 { 3011 unsigned int pos, nbars, i; 3012 u32 ctrl; 3013 3014 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3015 if (!pos) 3016 return -ENOTSUPP; 3017 3018 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3019 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3020 PCI_REBAR_CTRL_NBAR_SHIFT; 3021 3022 for (i = 0; i < nbars; i++, pos += 8) { 3023 int bar_idx; 3024 3025 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3026 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3027 if (bar_idx == bar) 3028 return pos; 3029 } 3030 3031 return -ENOENT; 3032 } 3033 3034 /** 3035 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3036 * @pdev: PCI device 3037 * @bar: BAR to query 3038 * 3039 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3040 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3041 */ 3042 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3043 { 3044 int pos; 3045 u32 cap; 3046 3047 pos = pci_rebar_find_pos(pdev, bar); 3048 if (pos < 0) 3049 return 0; 3050 3051 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3052 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3053 } 3054 3055 /** 3056 * pci_rebar_get_current_size - get the current size of a BAR 3057 * @pdev: PCI device 3058 * @bar: BAR to set size to 3059 * 3060 * Read the size of a BAR from the resizable BAR config. 3061 * Returns size if found or negative error code. 3062 */ 3063 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3064 { 3065 int pos; 3066 u32 ctrl; 3067 3068 pos = pci_rebar_find_pos(pdev, bar); 3069 if (pos < 0) 3070 return pos; 3071 3072 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3073 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8; 3074 } 3075 3076 /** 3077 * pci_rebar_set_size - set a new size for a BAR 3078 * @pdev: PCI device 3079 * @bar: BAR to set size to 3080 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3081 * 3082 * Set the new size of a BAR as defined in the spec. 3083 * Returns zero if resizing was successful, error code otherwise. 3084 */ 3085 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3086 { 3087 int pos; 3088 u32 ctrl; 3089 3090 pos = pci_rebar_find_pos(pdev, bar); 3091 if (pos < 0) 3092 return pos; 3093 3094 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3095 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3096 ctrl |= size << 8; 3097 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3098 return 0; 3099 } 3100 3101 /** 3102 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3103 * @dev: the PCI device 3104 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3105 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3106 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3107 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3108 * 3109 * Return 0 if all upstream bridges support AtomicOp routing, egress 3110 * blocking is disabled on all upstream ports, and the root port supports 3111 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3112 * AtomicOp completion), or negative otherwise. 3113 */ 3114 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3115 { 3116 struct pci_bus *bus = dev->bus; 3117 struct pci_dev *bridge; 3118 u32 cap, ctl2; 3119 3120 if (!pci_is_pcie(dev)) 3121 return -EINVAL; 3122 3123 /* 3124 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3125 * AtomicOp requesters. For now, we only support endpoints as 3126 * requesters and root ports as completers. No endpoints as 3127 * completers, and no peer-to-peer. 3128 */ 3129 3130 switch (pci_pcie_type(dev)) { 3131 case PCI_EXP_TYPE_ENDPOINT: 3132 case PCI_EXP_TYPE_LEG_END: 3133 case PCI_EXP_TYPE_RC_END: 3134 break; 3135 default: 3136 return -EINVAL; 3137 } 3138 3139 while (bus->parent) { 3140 bridge = bus->self; 3141 3142 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3143 3144 switch (pci_pcie_type(bridge)) { 3145 /* Ensure switch ports support AtomicOp routing */ 3146 case PCI_EXP_TYPE_UPSTREAM: 3147 case PCI_EXP_TYPE_DOWNSTREAM: 3148 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3149 return -EINVAL; 3150 break; 3151 3152 /* Ensure root port supports all the sizes we care about */ 3153 case PCI_EXP_TYPE_ROOT_PORT: 3154 if ((cap & cap_mask) != cap_mask) 3155 return -EINVAL; 3156 break; 3157 } 3158 3159 /* Ensure upstream ports don't block AtomicOps on egress */ 3160 if (!bridge->has_secondary_link) { 3161 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3162 &ctl2); 3163 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3164 return -EINVAL; 3165 } 3166 3167 bus = bus->parent; 3168 } 3169 3170 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3171 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3172 return 0; 3173 } 3174 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3175 3176 /** 3177 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3178 * @dev: the PCI device 3179 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3180 * 3181 * Perform INTx swizzling for a device behind one level of bridge. This is 3182 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3183 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3184 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3185 * the PCI Express Base Specification, Revision 2.1) 3186 */ 3187 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3188 { 3189 int slot; 3190 3191 if (pci_ari_enabled(dev->bus)) 3192 slot = 0; 3193 else 3194 slot = PCI_SLOT(dev->devfn); 3195 3196 return (((pin - 1) + slot) % 4) + 1; 3197 } 3198 3199 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3200 { 3201 u8 pin; 3202 3203 pin = dev->pin; 3204 if (!pin) 3205 return -1; 3206 3207 while (!pci_is_root_bus(dev->bus)) { 3208 pin = pci_swizzle_interrupt_pin(dev, pin); 3209 dev = dev->bus->self; 3210 } 3211 *bridge = dev; 3212 return pin; 3213 } 3214 3215 /** 3216 * pci_common_swizzle - swizzle INTx all the way to root bridge 3217 * @dev: the PCI device 3218 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3219 * 3220 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3221 * bridges all the way up to a PCI root bus. 3222 */ 3223 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3224 { 3225 u8 pin = *pinp; 3226 3227 while (!pci_is_root_bus(dev->bus)) { 3228 pin = pci_swizzle_interrupt_pin(dev, pin); 3229 dev = dev->bus->self; 3230 } 3231 *pinp = pin; 3232 return PCI_SLOT(dev->devfn); 3233 } 3234 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3235 3236 /** 3237 * pci_release_region - Release a PCI bar 3238 * @pdev: PCI device whose resources were previously reserved by pci_request_region 3239 * @bar: BAR to release 3240 * 3241 * Releases the PCI I/O and memory resources previously reserved by a 3242 * successful call to pci_request_region. Call this function only 3243 * after all use of the PCI regions has ceased. 3244 */ 3245 void pci_release_region(struct pci_dev *pdev, int bar) 3246 { 3247 struct pci_devres *dr; 3248 3249 if (pci_resource_len(pdev, bar) == 0) 3250 return; 3251 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3252 release_region(pci_resource_start(pdev, bar), 3253 pci_resource_len(pdev, bar)); 3254 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3255 release_mem_region(pci_resource_start(pdev, bar), 3256 pci_resource_len(pdev, bar)); 3257 3258 dr = find_pci_dr(pdev); 3259 if (dr) 3260 dr->region_mask &= ~(1 << bar); 3261 } 3262 EXPORT_SYMBOL(pci_release_region); 3263 3264 /** 3265 * __pci_request_region - Reserved PCI I/O and memory resource 3266 * @pdev: PCI device whose resources are to be reserved 3267 * @bar: BAR to be reserved 3268 * @res_name: Name to be associated with resource. 3269 * @exclusive: whether the region access is exclusive or not 3270 * 3271 * Mark the PCI region associated with PCI device @pdev BR @bar as 3272 * being reserved by owner @res_name. Do not access any 3273 * address inside the PCI regions unless this call returns 3274 * successfully. 3275 * 3276 * If @exclusive is set, then the region is marked so that userspace 3277 * is explicitly not allowed to map the resource via /dev/mem or 3278 * sysfs MMIO access. 3279 * 3280 * Returns 0 on success, or %EBUSY on error. A warning 3281 * message is also printed on failure. 3282 */ 3283 static int __pci_request_region(struct pci_dev *pdev, int bar, 3284 const char *res_name, int exclusive) 3285 { 3286 struct pci_devres *dr; 3287 3288 if (pci_resource_len(pdev, bar) == 0) 3289 return 0; 3290 3291 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3292 if (!request_region(pci_resource_start(pdev, bar), 3293 pci_resource_len(pdev, bar), res_name)) 3294 goto err_out; 3295 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3296 if (!__request_mem_region(pci_resource_start(pdev, bar), 3297 pci_resource_len(pdev, bar), res_name, 3298 exclusive)) 3299 goto err_out; 3300 } 3301 3302 dr = find_pci_dr(pdev); 3303 if (dr) 3304 dr->region_mask |= 1 << bar; 3305 3306 return 0; 3307 3308 err_out: 3309 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3310 &pdev->resource[bar]); 3311 return -EBUSY; 3312 } 3313 3314 /** 3315 * pci_request_region - Reserve PCI I/O and memory resource 3316 * @pdev: PCI device whose resources are to be reserved 3317 * @bar: BAR to be reserved 3318 * @res_name: Name to be associated with resource 3319 * 3320 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3321 * being reserved by owner @res_name. Do not access any 3322 * address inside the PCI regions unless this call returns 3323 * successfully. 3324 * 3325 * Returns 0 on success, or %EBUSY on error. A warning 3326 * message is also printed on failure. 3327 */ 3328 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3329 { 3330 return __pci_request_region(pdev, bar, res_name, 0); 3331 } 3332 EXPORT_SYMBOL(pci_request_region); 3333 3334 /** 3335 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 3336 * @pdev: PCI device whose resources are to be reserved 3337 * @bar: BAR to be reserved 3338 * @res_name: Name to be associated with resource. 3339 * 3340 * Mark the PCI region associated with PCI device @pdev BR @bar as 3341 * being reserved by owner @res_name. Do not access any 3342 * address inside the PCI regions unless this call returns 3343 * successfully. 3344 * 3345 * Returns 0 on success, or %EBUSY on error. A warning 3346 * message is also printed on failure. 3347 * 3348 * The key difference that _exclusive makes it that userspace is 3349 * explicitly not allowed to map the resource via /dev/mem or 3350 * sysfs. 3351 */ 3352 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 3353 const char *res_name) 3354 { 3355 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 3356 } 3357 EXPORT_SYMBOL(pci_request_region_exclusive); 3358 3359 /** 3360 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3361 * @pdev: PCI device whose resources were previously reserved 3362 * @bars: Bitmask of BARs to be released 3363 * 3364 * Release selected PCI I/O and memory resources previously reserved. 3365 * Call this function only after all use of the PCI regions has ceased. 3366 */ 3367 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3368 { 3369 int i; 3370 3371 for (i = 0; i < 6; i++) 3372 if (bars & (1 << i)) 3373 pci_release_region(pdev, i); 3374 } 3375 EXPORT_SYMBOL(pci_release_selected_regions); 3376 3377 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3378 const char *res_name, int excl) 3379 { 3380 int i; 3381 3382 for (i = 0; i < 6; i++) 3383 if (bars & (1 << i)) 3384 if (__pci_request_region(pdev, i, res_name, excl)) 3385 goto err_out; 3386 return 0; 3387 3388 err_out: 3389 while (--i >= 0) 3390 if (bars & (1 << i)) 3391 pci_release_region(pdev, i); 3392 3393 return -EBUSY; 3394 } 3395 3396 3397 /** 3398 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3399 * @pdev: PCI device whose resources are to be reserved 3400 * @bars: Bitmask of BARs to be requested 3401 * @res_name: Name to be associated with resource 3402 */ 3403 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3404 const char *res_name) 3405 { 3406 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3407 } 3408 EXPORT_SYMBOL(pci_request_selected_regions); 3409 3410 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3411 const char *res_name) 3412 { 3413 return __pci_request_selected_regions(pdev, bars, res_name, 3414 IORESOURCE_EXCLUSIVE); 3415 } 3416 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3417 3418 /** 3419 * pci_release_regions - Release reserved PCI I/O and memory resources 3420 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 3421 * 3422 * Releases all PCI I/O and memory resources previously reserved by a 3423 * successful call to pci_request_regions. Call this function only 3424 * after all use of the PCI regions has ceased. 3425 */ 3426 3427 void pci_release_regions(struct pci_dev *pdev) 3428 { 3429 pci_release_selected_regions(pdev, (1 << 6) - 1); 3430 } 3431 EXPORT_SYMBOL(pci_release_regions); 3432 3433 /** 3434 * pci_request_regions - Reserved PCI I/O and memory resources 3435 * @pdev: PCI device whose resources are to be reserved 3436 * @res_name: Name to be associated with resource. 3437 * 3438 * Mark all PCI regions associated with PCI device @pdev as 3439 * being reserved by owner @res_name. Do not access any 3440 * address inside the PCI regions unless this call returns 3441 * successfully. 3442 * 3443 * Returns 0 on success, or %EBUSY on error. A warning 3444 * message is also printed on failure. 3445 */ 3446 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3447 { 3448 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3449 } 3450 EXPORT_SYMBOL(pci_request_regions); 3451 3452 /** 3453 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3454 * @pdev: PCI device whose resources are to be reserved 3455 * @res_name: Name to be associated with resource. 3456 * 3457 * Mark all PCI regions associated with PCI device @pdev as 3458 * being reserved by owner @res_name. Do not access any 3459 * address inside the PCI regions unless this call returns 3460 * successfully. 3461 * 3462 * pci_request_regions_exclusive() will mark the region so that 3463 * /dev/mem and the sysfs MMIO access will not be allowed. 3464 * 3465 * Returns 0 on success, or %EBUSY on error. A warning 3466 * message is also printed on failure. 3467 */ 3468 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3469 { 3470 return pci_request_selected_regions_exclusive(pdev, 3471 ((1 << 6) - 1), res_name); 3472 } 3473 EXPORT_SYMBOL(pci_request_regions_exclusive); 3474 3475 /* 3476 * Record the PCI IO range (expressed as CPU physical address + size). 3477 * Return a negative value if an error has occured, zero otherwise 3478 */ 3479 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3480 resource_size_t size) 3481 { 3482 int ret = 0; 3483 #ifdef PCI_IOBASE 3484 struct logic_pio_hwaddr *range; 3485 3486 if (!size || addr + size < addr) 3487 return -EINVAL; 3488 3489 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3490 if (!range) 3491 return -ENOMEM; 3492 3493 range->fwnode = fwnode; 3494 range->size = size; 3495 range->hw_start = addr; 3496 range->flags = LOGIC_PIO_CPU_MMIO; 3497 3498 ret = logic_pio_register_range(range); 3499 if (ret) 3500 kfree(range); 3501 #endif 3502 3503 return ret; 3504 } 3505 3506 phys_addr_t pci_pio_to_address(unsigned long pio) 3507 { 3508 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3509 3510 #ifdef PCI_IOBASE 3511 if (pio >= MMIO_UPPER_LIMIT) 3512 return address; 3513 3514 address = logic_pio_to_hwaddr(pio); 3515 #endif 3516 3517 return address; 3518 } 3519 3520 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3521 { 3522 #ifdef PCI_IOBASE 3523 return logic_pio_trans_cpuaddr(address); 3524 #else 3525 if (address > IO_SPACE_LIMIT) 3526 return (unsigned long)-1; 3527 3528 return (unsigned long) address; 3529 #endif 3530 } 3531 3532 /** 3533 * pci_remap_iospace - Remap the memory mapped I/O space 3534 * @res: Resource describing the I/O space 3535 * @phys_addr: physical address of range to be mapped 3536 * 3537 * Remap the memory mapped I/O space described by the @res 3538 * and the CPU physical address @phys_addr into virtual address space. 3539 * Only architectures that have memory mapped IO functions defined 3540 * (and the PCI_IOBASE value defined) should call this function. 3541 */ 3542 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3543 { 3544 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3545 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3546 3547 if (!(res->flags & IORESOURCE_IO)) 3548 return -EINVAL; 3549 3550 if (res->end > IO_SPACE_LIMIT) 3551 return -EINVAL; 3552 3553 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3554 pgprot_device(PAGE_KERNEL)); 3555 #else 3556 /* this architecture does not have memory mapped I/O space, 3557 so this function should never be called */ 3558 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3559 return -ENODEV; 3560 #endif 3561 } 3562 EXPORT_SYMBOL(pci_remap_iospace); 3563 3564 /** 3565 * pci_unmap_iospace - Unmap the memory mapped I/O space 3566 * @res: resource to be unmapped 3567 * 3568 * Unmap the CPU virtual address @res from virtual address space. 3569 * Only architectures that have memory mapped IO functions defined 3570 * (and the PCI_IOBASE value defined) should call this function. 3571 */ 3572 void pci_unmap_iospace(struct resource *res) 3573 { 3574 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3575 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3576 3577 unmap_kernel_range(vaddr, resource_size(res)); 3578 #endif 3579 } 3580 EXPORT_SYMBOL(pci_unmap_iospace); 3581 3582 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 3583 { 3584 struct resource **res = ptr; 3585 3586 pci_unmap_iospace(*res); 3587 } 3588 3589 /** 3590 * devm_pci_remap_iospace - Managed pci_remap_iospace() 3591 * @dev: Generic device to remap IO address for 3592 * @res: Resource describing the I/O space 3593 * @phys_addr: physical address of range to be mapped 3594 * 3595 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 3596 * detach. 3597 */ 3598 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 3599 phys_addr_t phys_addr) 3600 { 3601 const struct resource **ptr; 3602 int error; 3603 3604 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 3605 if (!ptr) 3606 return -ENOMEM; 3607 3608 error = pci_remap_iospace(res, phys_addr); 3609 if (error) { 3610 devres_free(ptr); 3611 } else { 3612 *ptr = res; 3613 devres_add(dev, ptr); 3614 } 3615 3616 return error; 3617 } 3618 EXPORT_SYMBOL(devm_pci_remap_iospace); 3619 3620 /** 3621 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 3622 * @dev: Generic device to remap IO address for 3623 * @offset: Resource address to map 3624 * @size: Size of map 3625 * 3626 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 3627 * detach. 3628 */ 3629 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 3630 resource_size_t offset, 3631 resource_size_t size) 3632 { 3633 void __iomem **ptr, *addr; 3634 3635 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 3636 if (!ptr) 3637 return NULL; 3638 3639 addr = pci_remap_cfgspace(offset, size); 3640 if (addr) { 3641 *ptr = addr; 3642 devres_add(dev, ptr); 3643 } else 3644 devres_free(ptr); 3645 3646 return addr; 3647 } 3648 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 3649 3650 /** 3651 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 3652 * @dev: generic device to handle the resource for 3653 * @res: configuration space resource to be handled 3654 * 3655 * Checks that a resource is a valid memory region, requests the memory 3656 * region and ioremaps with pci_remap_cfgspace() API that ensures the 3657 * proper PCI configuration space memory attributes are guaranteed. 3658 * 3659 * All operations are managed and will be undone on driver detach. 3660 * 3661 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 3662 * on failure. Usage example:: 3663 * 3664 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3665 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 3666 * if (IS_ERR(base)) 3667 * return PTR_ERR(base); 3668 */ 3669 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 3670 struct resource *res) 3671 { 3672 resource_size_t size; 3673 const char *name; 3674 void __iomem *dest_ptr; 3675 3676 BUG_ON(!dev); 3677 3678 if (!res || resource_type(res) != IORESOURCE_MEM) { 3679 dev_err(dev, "invalid resource\n"); 3680 return IOMEM_ERR_PTR(-EINVAL); 3681 } 3682 3683 size = resource_size(res); 3684 name = res->name ?: dev_name(dev); 3685 3686 if (!devm_request_mem_region(dev, res->start, size, name)) { 3687 dev_err(dev, "can't request region for resource %pR\n", res); 3688 return IOMEM_ERR_PTR(-EBUSY); 3689 } 3690 3691 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 3692 if (!dest_ptr) { 3693 dev_err(dev, "ioremap failed for resource %pR\n", res); 3694 devm_release_mem_region(dev, res->start, size); 3695 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 3696 } 3697 3698 return dest_ptr; 3699 } 3700 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 3701 3702 static void __pci_set_master(struct pci_dev *dev, bool enable) 3703 { 3704 u16 old_cmd, cmd; 3705 3706 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 3707 if (enable) 3708 cmd = old_cmd | PCI_COMMAND_MASTER; 3709 else 3710 cmd = old_cmd & ~PCI_COMMAND_MASTER; 3711 if (cmd != old_cmd) { 3712 pci_dbg(dev, "%s bus mastering\n", 3713 enable ? "enabling" : "disabling"); 3714 pci_write_config_word(dev, PCI_COMMAND, cmd); 3715 } 3716 dev->is_busmaster = enable; 3717 } 3718 3719 /** 3720 * pcibios_setup - process "pci=" kernel boot arguments 3721 * @str: string used to pass in "pci=" kernel boot arguments 3722 * 3723 * Process kernel boot arguments. This is the default implementation. 3724 * Architecture specific implementations can override this as necessary. 3725 */ 3726 char * __weak __init pcibios_setup(char *str) 3727 { 3728 return str; 3729 } 3730 3731 /** 3732 * pcibios_set_master - enable PCI bus-mastering for device dev 3733 * @dev: the PCI device to enable 3734 * 3735 * Enables PCI bus-mastering for the device. This is the default 3736 * implementation. Architecture specific implementations can override 3737 * this if necessary. 3738 */ 3739 void __weak pcibios_set_master(struct pci_dev *dev) 3740 { 3741 u8 lat; 3742 3743 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 3744 if (pci_is_pcie(dev)) 3745 return; 3746 3747 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 3748 if (lat < 16) 3749 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 3750 else if (lat > pcibios_max_latency) 3751 lat = pcibios_max_latency; 3752 else 3753 return; 3754 3755 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 3756 } 3757 3758 /** 3759 * pci_set_master - enables bus-mastering for device dev 3760 * @dev: the PCI device to enable 3761 * 3762 * Enables bus-mastering on the device and calls pcibios_set_master() 3763 * to do the needed arch specific settings. 3764 */ 3765 void pci_set_master(struct pci_dev *dev) 3766 { 3767 __pci_set_master(dev, true); 3768 pcibios_set_master(dev); 3769 } 3770 EXPORT_SYMBOL(pci_set_master); 3771 3772 /** 3773 * pci_clear_master - disables bus-mastering for device dev 3774 * @dev: the PCI device to disable 3775 */ 3776 void pci_clear_master(struct pci_dev *dev) 3777 { 3778 __pci_set_master(dev, false); 3779 } 3780 EXPORT_SYMBOL(pci_clear_master); 3781 3782 /** 3783 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 3784 * @dev: the PCI device for which MWI is to be enabled 3785 * 3786 * Helper function for pci_set_mwi. 3787 * Originally copied from drivers/net/acenic.c. 3788 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 3789 * 3790 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3791 */ 3792 int pci_set_cacheline_size(struct pci_dev *dev) 3793 { 3794 u8 cacheline_size; 3795 3796 if (!pci_cache_line_size) 3797 return -EINVAL; 3798 3799 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 3800 equal to or multiple of the right value. */ 3801 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3802 if (cacheline_size >= pci_cache_line_size && 3803 (cacheline_size % pci_cache_line_size) == 0) 3804 return 0; 3805 3806 /* Write the correct value. */ 3807 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 3808 /* Read it back. */ 3809 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3810 if (cacheline_size == pci_cache_line_size) 3811 return 0; 3812 3813 pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n", 3814 pci_cache_line_size << 2); 3815 3816 return -EINVAL; 3817 } 3818 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 3819 3820 /** 3821 * pci_set_mwi - enables memory-write-invalidate PCI transaction 3822 * @dev: the PCI device for which MWI is enabled 3823 * 3824 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3825 * 3826 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3827 */ 3828 int pci_set_mwi(struct pci_dev *dev) 3829 { 3830 #ifdef PCI_DISABLE_MWI 3831 return 0; 3832 #else 3833 int rc; 3834 u16 cmd; 3835 3836 rc = pci_set_cacheline_size(dev); 3837 if (rc) 3838 return rc; 3839 3840 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3841 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 3842 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 3843 cmd |= PCI_COMMAND_INVALIDATE; 3844 pci_write_config_word(dev, PCI_COMMAND, cmd); 3845 } 3846 return 0; 3847 #endif 3848 } 3849 EXPORT_SYMBOL(pci_set_mwi); 3850 3851 /** 3852 * pcim_set_mwi - a device-managed pci_set_mwi() 3853 * @dev: the PCI device for which MWI is enabled 3854 * 3855 * Managed pci_set_mwi(). 3856 * 3857 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3858 */ 3859 int pcim_set_mwi(struct pci_dev *dev) 3860 { 3861 struct pci_devres *dr; 3862 3863 dr = find_pci_dr(dev); 3864 if (!dr) 3865 return -ENOMEM; 3866 3867 dr->mwi = 1; 3868 return pci_set_mwi(dev); 3869 } 3870 EXPORT_SYMBOL(pcim_set_mwi); 3871 3872 /** 3873 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 3874 * @dev: the PCI device for which MWI is enabled 3875 * 3876 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3877 * Callers are not required to check the return value. 3878 * 3879 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3880 */ 3881 int pci_try_set_mwi(struct pci_dev *dev) 3882 { 3883 #ifdef PCI_DISABLE_MWI 3884 return 0; 3885 #else 3886 return pci_set_mwi(dev); 3887 #endif 3888 } 3889 EXPORT_SYMBOL(pci_try_set_mwi); 3890 3891 /** 3892 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 3893 * @dev: the PCI device to disable 3894 * 3895 * Disables PCI Memory-Write-Invalidate transaction on the device 3896 */ 3897 void pci_clear_mwi(struct pci_dev *dev) 3898 { 3899 #ifndef PCI_DISABLE_MWI 3900 u16 cmd; 3901 3902 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3903 if (cmd & PCI_COMMAND_INVALIDATE) { 3904 cmd &= ~PCI_COMMAND_INVALIDATE; 3905 pci_write_config_word(dev, PCI_COMMAND, cmd); 3906 } 3907 #endif 3908 } 3909 EXPORT_SYMBOL(pci_clear_mwi); 3910 3911 /** 3912 * pci_intx - enables/disables PCI INTx for device dev 3913 * @pdev: the PCI device to operate on 3914 * @enable: boolean: whether to enable or disable PCI INTx 3915 * 3916 * Enables/disables PCI INTx for device dev 3917 */ 3918 void pci_intx(struct pci_dev *pdev, int enable) 3919 { 3920 u16 pci_command, new; 3921 3922 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 3923 3924 if (enable) 3925 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 3926 else 3927 new = pci_command | PCI_COMMAND_INTX_DISABLE; 3928 3929 if (new != pci_command) { 3930 struct pci_devres *dr; 3931 3932 pci_write_config_word(pdev, PCI_COMMAND, new); 3933 3934 dr = find_pci_dr(pdev); 3935 if (dr && !dr->restore_intx) { 3936 dr->restore_intx = 1; 3937 dr->orig_intx = !enable; 3938 } 3939 } 3940 } 3941 EXPORT_SYMBOL_GPL(pci_intx); 3942 3943 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3944 { 3945 struct pci_bus *bus = dev->bus; 3946 bool mask_updated = true; 3947 u32 cmd_status_dword; 3948 u16 origcmd, newcmd; 3949 unsigned long flags; 3950 bool irq_pending; 3951 3952 /* 3953 * We do a single dword read to retrieve both command and status. 3954 * Document assumptions that make this possible. 3955 */ 3956 BUILD_BUG_ON(PCI_COMMAND % 4); 3957 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3958 3959 raw_spin_lock_irqsave(&pci_lock, flags); 3960 3961 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3962 3963 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3964 3965 /* 3966 * Check interrupt status register to see whether our device 3967 * triggered the interrupt (when masking) or the next IRQ is 3968 * already pending (when unmasking). 3969 */ 3970 if (mask != irq_pending) { 3971 mask_updated = false; 3972 goto done; 3973 } 3974 3975 origcmd = cmd_status_dword; 3976 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3977 if (mask) 3978 newcmd |= PCI_COMMAND_INTX_DISABLE; 3979 if (newcmd != origcmd) 3980 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3981 3982 done: 3983 raw_spin_unlock_irqrestore(&pci_lock, flags); 3984 3985 return mask_updated; 3986 } 3987 3988 /** 3989 * pci_check_and_mask_intx - mask INTx on pending interrupt 3990 * @dev: the PCI device to operate on 3991 * 3992 * Check if the device dev has its INTx line asserted, mask it and 3993 * return true in that case. False is returned if no interrupt was 3994 * pending. 3995 */ 3996 bool pci_check_and_mask_intx(struct pci_dev *dev) 3997 { 3998 return pci_check_and_set_intx_mask(dev, true); 3999 } 4000 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4001 4002 /** 4003 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4004 * @dev: the PCI device to operate on 4005 * 4006 * Check if the device dev has its INTx line asserted, unmask it if not 4007 * and return true. False is returned and the mask remains active if 4008 * there was still an interrupt pending. 4009 */ 4010 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4011 { 4012 return pci_check_and_set_intx_mask(dev, false); 4013 } 4014 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4015 4016 /** 4017 * pci_wait_for_pending_transaction - waits for pending transaction 4018 * @dev: the PCI device to operate on 4019 * 4020 * Return 0 if transaction is pending 1 otherwise. 4021 */ 4022 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4023 { 4024 if (!pci_is_pcie(dev)) 4025 return 1; 4026 4027 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4028 PCI_EXP_DEVSTA_TRPND); 4029 } 4030 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4031 4032 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 4033 { 4034 int delay = 1; 4035 u32 id; 4036 4037 /* 4038 * After reset, the device should not silently discard config 4039 * requests, but it may still indicate that it needs more time by 4040 * responding to them with CRS completions. The Root Port will 4041 * generally synthesize ~0 data to complete the read (except when 4042 * CRS SV is enabled and the read was for the Vendor ID; in that 4043 * case it synthesizes 0x0001 data). 4044 * 4045 * Wait for the device to return a non-CRS completion. Read the 4046 * Command register instead of Vendor ID so we don't have to 4047 * contend with the CRS SV value. 4048 */ 4049 pci_read_config_dword(dev, PCI_COMMAND, &id); 4050 while (id == ~0) { 4051 if (delay > timeout) { 4052 pci_warn(dev, "not ready %dms after %s; giving up\n", 4053 delay - 1, reset_type); 4054 return -ENOTTY; 4055 } 4056 4057 if (delay > 1000) 4058 pci_info(dev, "not ready %dms after %s; waiting\n", 4059 delay - 1, reset_type); 4060 4061 msleep(delay); 4062 delay *= 2; 4063 pci_read_config_dword(dev, PCI_COMMAND, &id); 4064 } 4065 4066 if (delay > 1000) 4067 pci_info(dev, "ready %dms after %s\n", delay - 1, 4068 reset_type); 4069 4070 return 0; 4071 } 4072 4073 /** 4074 * pcie_has_flr - check if a device supports function level resets 4075 * @dev: device to check 4076 * 4077 * Returns true if the device advertises support for PCIe function level 4078 * resets. 4079 */ 4080 static bool pcie_has_flr(struct pci_dev *dev) 4081 { 4082 u32 cap; 4083 4084 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4085 return false; 4086 4087 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4088 return cap & PCI_EXP_DEVCAP_FLR; 4089 } 4090 4091 /** 4092 * pcie_flr - initiate a PCIe function level reset 4093 * @dev: device to reset 4094 * 4095 * Initiate a function level reset on @dev. The caller should ensure the 4096 * device supports FLR before calling this function, e.g. by using the 4097 * pcie_has_flr() helper. 4098 */ 4099 int pcie_flr(struct pci_dev *dev) 4100 { 4101 if (!pci_wait_for_pending_transaction(dev)) 4102 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4103 4104 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4105 4106 /* 4107 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4108 * 100ms, but may silently discard requests while the FLR is in 4109 * progress. Wait 100ms before trying to access the device. 4110 */ 4111 msleep(100); 4112 4113 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4114 } 4115 EXPORT_SYMBOL_GPL(pcie_flr); 4116 4117 static int pci_af_flr(struct pci_dev *dev, int probe) 4118 { 4119 int pos; 4120 u8 cap; 4121 4122 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4123 if (!pos) 4124 return -ENOTTY; 4125 4126 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4127 return -ENOTTY; 4128 4129 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4130 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4131 return -ENOTTY; 4132 4133 if (probe) 4134 return 0; 4135 4136 /* 4137 * Wait for Transaction Pending bit to clear. A word-aligned test 4138 * is used, so we use the conrol offset rather than status and shift 4139 * the test bit to match. 4140 */ 4141 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4142 PCI_AF_STATUS_TP << 8)) 4143 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4144 4145 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4146 4147 /* 4148 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4149 * updated 27 July 2006; a device must complete an FLR within 4150 * 100ms, but may silently discard requests while the FLR is in 4151 * progress. Wait 100ms before trying to access the device. 4152 */ 4153 msleep(100); 4154 4155 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4156 } 4157 4158 /** 4159 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4160 * @dev: Device to reset. 4161 * @probe: If set, only check if the device can be reset this way. 4162 * 4163 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4164 * unset, it will be reinitialized internally when going from PCI_D3hot to 4165 * PCI_D0. If that's the case and the device is not in a low-power state 4166 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4167 * 4168 * NOTE: This causes the caller to sleep for twice the device power transition 4169 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4170 * by default (i.e. unless the @dev's d3_delay field has a different value). 4171 * Moreover, only devices in D0 can be reset by this function. 4172 */ 4173 static int pci_pm_reset(struct pci_dev *dev, int probe) 4174 { 4175 u16 csr; 4176 4177 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4178 return -ENOTTY; 4179 4180 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4181 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4182 return -ENOTTY; 4183 4184 if (probe) 4185 return 0; 4186 4187 if (dev->current_state != PCI_D0) 4188 return -EINVAL; 4189 4190 csr &= ~PCI_PM_CTRL_STATE_MASK; 4191 csr |= PCI_D3hot; 4192 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4193 pci_dev_d3_sleep(dev); 4194 4195 csr &= ~PCI_PM_CTRL_STATE_MASK; 4196 csr |= PCI_D0; 4197 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4198 pci_dev_d3_sleep(dev); 4199 4200 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS); 4201 } 4202 /** 4203 * pcie_wait_for_link - Wait until link is active or inactive 4204 * @pdev: Bridge device 4205 * @active: waiting for active or inactive? 4206 * 4207 * Use this to wait till link becomes active or inactive. 4208 */ 4209 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4210 { 4211 int timeout = 1000; 4212 bool ret; 4213 u16 lnk_status; 4214 4215 for (;;) { 4216 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4217 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4218 if (ret == active) 4219 return true; 4220 if (timeout <= 0) 4221 break; 4222 msleep(10); 4223 timeout -= 10; 4224 } 4225 4226 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n", 4227 active ? "set" : "cleared"); 4228 4229 return false; 4230 } 4231 4232 void pci_reset_secondary_bus(struct pci_dev *dev) 4233 { 4234 u16 ctrl; 4235 4236 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4237 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4238 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4239 4240 /* 4241 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4242 * this to 2ms to ensure that we meet the minimum requirement. 4243 */ 4244 msleep(2); 4245 4246 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4247 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4248 4249 /* 4250 * Trhfa for conventional PCI is 2^25 clock cycles. 4251 * Assuming a minimum 33MHz clock this results in a 1s 4252 * delay before we can consider subordinate devices to 4253 * be re-initialized. PCIe has some ways to shorten this, 4254 * but we don't make use of them yet. 4255 */ 4256 ssleep(1); 4257 } 4258 4259 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4260 { 4261 pci_reset_secondary_bus(dev); 4262 } 4263 4264 /** 4265 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 4266 * @dev: Bridge device 4267 * 4268 * Use the bridge control register to assert reset on the secondary bus. 4269 * Devices on the secondary bus are left in power-on state. 4270 */ 4271 int pci_reset_bridge_secondary_bus(struct pci_dev *dev) 4272 { 4273 pcibios_reset_secondary_bus(dev); 4274 4275 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4276 } 4277 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 4278 4279 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4280 { 4281 struct pci_dev *pdev; 4282 4283 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4284 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4285 return -ENOTTY; 4286 4287 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4288 if (pdev != dev) 4289 return -ENOTTY; 4290 4291 if (probe) 4292 return 0; 4293 4294 pci_reset_bridge_secondary_bus(dev->bus->self); 4295 4296 return 0; 4297 } 4298 4299 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4300 { 4301 int rc = -ENOTTY; 4302 4303 if (!hotplug || !try_module_get(hotplug->ops->owner)) 4304 return rc; 4305 4306 if (hotplug->ops->reset_slot) 4307 rc = hotplug->ops->reset_slot(hotplug, probe); 4308 4309 module_put(hotplug->ops->owner); 4310 4311 return rc; 4312 } 4313 4314 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4315 { 4316 struct pci_dev *pdev; 4317 4318 if (dev->subordinate || !dev->slot || 4319 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4320 return -ENOTTY; 4321 4322 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4323 if (pdev != dev && pdev->slot == dev->slot) 4324 return -ENOTTY; 4325 4326 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4327 } 4328 4329 static void pci_dev_lock(struct pci_dev *dev) 4330 { 4331 pci_cfg_access_lock(dev); 4332 /* block PM suspend, driver probe, etc. */ 4333 device_lock(&dev->dev); 4334 } 4335 4336 /* Return 1 on successful lock, 0 on contention */ 4337 static int pci_dev_trylock(struct pci_dev *dev) 4338 { 4339 if (pci_cfg_access_trylock(dev)) { 4340 if (device_trylock(&dev->dev)) 4341 return 1; 4342 pci_cfg_access_unlock(dev); 4343 } 4344 4345 return 0; 4346 } 4347 4348 static void pci_dev_unlock(struct pci_dev *dev) 4349 { 4350 device_unlock(&dev->dev); 4351 pci_cfg_access_unlock(dev); 4352 } 4353 4354 static void pci_dev_save_and_disable(struct pci_dev *dev) 4355 { 4356 const struct pci_error_handlers *err_handler = 4357 dev->driver ? dev->driver->err_handler : NULL; 4358 4359 /* 4360 * dev->driver->err_handler->reset_prepare() is protected against 4361 * races with ->remove() by the device lock, which must be held by 4362 * the caller. 4363 */ 4364 if (err_handler && err_handler->reset_prepare) 4365 err_handler->reset_prepare(dev); 4366 4367 /* 4368 * Wake-up device prior to save. PM registers default to D0 after 4369 * reset and a simple register restore doesn't reliably return 4370 * to a non-D0 state anyway. 4371 */ 4372 pci_set_power_state(dev, PCI_D0); 4373 4374 pci_save_state(dev); 4375 /* 4376 * Disable the device by clearing the Command register, except for 4377 * INTx-disable which is set. This not only disables MMIO and I/O port 4378 * BARs, but also prevents the device from being Bus Master, preventing 4379 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4380 * compliant devices, INTx-disable prevents legacy interrupts. 4381 */ 4382 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4383 } 4384 4385 static void pci_dev_restore(struct pci_dev *dev) 4386 { 4387 const struct pci_error_handlers *err_handler = 4388 dev->driver ? dev->driver->err_handler : NULL; 4389 4390 pci_restore_state(dev); 4391 4392 /* 4393 * dev->driver->err_handler->reset_done() is protected against 4394 * races with ->remove() by the device lock, which must be held by 4395 * the caller. 4396 */ 4397 if (err_handler && err_handler->reset_done) 4398 err_handler->reset_done(dev); 4399 } 4400 4401 /** 4402 * __pci_reset_function_locked - reset a PCI device function while holding 4403 * the @dev mutex lock. 4404 * @dev: PCI device to reset 4405 * 4406 * Some devices allow an individual function to be reset without affecting 4407 * other functions in the same device. The PCI device must be responsive 4408 * to PCI config space in order to use this function. 4409 * 4410 * The device function is presumed to be unused and the caller is holding 4411 * the device mutex lock when this function is called. 4412 * Resetting the device will make the contents of PCI configuration space 4413 * random, so any caller of this must be prepared to reinitialise the 4414 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4415 * etc. 4416 * 4417 * Returns 0 if the device function was successfully reset or negative if the 4418 * device doesn't support resetting a single function. 4419 */ 4420 int __pci_reset_function_locked(struct pci_dev *dev) 4421 { 4422 int rc; 4423 4424 might_sleep(); 4425 4426 /* 4427 * A reset method returns -ENOTTY if it doesn't support this device 4428 * and we should try the next method. 4429 * 4430 * If it returns 0 (success), we're finished. If it returns any 4431 * other error, we're also finished: this indicates that further 4432 * reset mechanisms might be broken on the device. 4433 */ 4434 rc = pci_dev_specific_reset(dev, 0); 4435 if (rc != -ENOTTY) 4436 return rc; 4437 if (pcie_has_flr(dev)) { 4438 rc = pcie_flr(dev); 4439 if (rc != -ENOTTY) 4440 return rc; 4441 } 4442 rc = pci_af_flr(dev, 0); 4443 if (rc != -ENOTTY) 4444 return rc; 4445 rc = pci_pm_reset(dev, 0); 4446 if (rc != -ENOTTY) 4447 return rc; 4448 rc = pci_dev_reset_slot_function(dev, 0); 4449 if (rc != -ENOTTY) 4450 return rc; 4451 return pci_parent_bus_reset(dev, 0); 4452 } 4453 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4454 4455 /** 4456 * pci_probe_reset_function - check whether the device can be safely reset 4457 * @dev: PCI device to reset 4458 * 4459 * Some devices allow an individual function to be reset without affecting 4460 * other functions in the same device. The PCI device must be responsive 4461 * to PCI config space in order to use this function. 4462 * 4463 * Returns 0 if the device function can be reset or negative if the 4464 * device doesn't support resetting a single function. 4465 */ 4466 int pci_probe_reset_function(struct pci_dev *dev) 4467 { 4468 int rc; 4469 4470 might_sleep(); 4471 4472 rc = pci_dev_specific_reset(dev, 1); 4473 if (rc != -ENOTTY) 4474 return rc; 4475 if (pcie_has_flr(dev)) 4476 return 0; 4477 rc = pci_af_flr(dev, 1); 4478 if (rc != -ENOTTY) 4479 return rc; 4480 rc = pci_pm_reset(dev, 1); 4481 if (rc != -ENOTTY) 4482 return rc; 4483 rc = pci_dev_reset_slot_function(dev, 1); 4484 if (rc != -ENOTTY) 4485 return rc; 4486 4487 return pci_parent_bus_reset(dev, 1); 4488 } 4489 4490 /** 4491 * pci_reset_function - quiesce and reset a PCI device function 4492 * @dev: PCI device to reset 4493 * 4494 * Some devices allow an individual function to be reset without affecting 4495 * other functions in the same device. The PCI device must be responsive 4496 * to PCI config space in order to use this function. 4497 * 4498 * This function does not just reset the PCI portion of a device, but 4499 * clears all the state associated with the device. This function differs 4500 * from __pci_reset_function_locked() in that it saves and restores device state 4501 * over the reset and takes the PCI device lock. 4502 * 4503 * Returns 0 if the device function was successfully reset or negative if the 4504 * device doesn't support resetting a single function. 4505 */ 4506 int pci_reset_function(struct pci_dev *dev) 4507 { 4508 int rc; 4509 4510 if (!dev->reset_fn) 4511 return -ENOTTY; 4512 4513 pci_dev_lock(dev); 4514 pci_dev_save_and_disable(dev); 4515 4516 rc = __pci_reset_function_locked(dev); 4517 4518 pci_dev_restore(dev); 4519 pci_dev_unlock(dev); 4520 4521 return rc; 4522 } 4523 EXPORT_SYMBOL_GPL(pci_reset_function); 4524 4525 /** 4526 * pci_reset_function_locked - quiesce and reset a PCI device function 4527 * @dev: PCI device to reset 4528 * 4529 * Some devices allow an individual function to be reset without affecting 4530 * other functions in the same device. The PCI device must be responsive 4531 * to PCI config space in order to use this function. 4532 * 4533 * This function does not just reset the PCI portion of a device, but 4534 * clears all the state associated with the device. This function differs 4535 * from __pci_reset_function_locked() in that it saves and restores device state 4536 * over the reset. It also differs from pci_reset_function() in that it 4537 * requires the PCI device lock to be held. 4538 * 4539 * Returns 0 if the device function was successfully reset or negative if the 4540 * device doesn't support resetting a single function. 4541 */ 4542 int pci_reset_function_locked(struct pci_dev *dev) 4543 { 4544 int rc; 4545 4546 if (!dev->reset_fn) 4547 return -ENOTTY; 4548 4549 pci_dev_save_and_disable(dev); 4550 4551 rc = __pci_reset_function_locked(dev); 4552 4553 pci_dev_restore(dev); 4554 4555 return rc; 4556 } 4557 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 4558 4559 /** 4560 * pci_try_reset_function - quiesce and reset a PCI device function 4561 * @dev: PCI device to reset 4562 * 4563 * Same as above, except return -EAGAIN if unable to lock device. 4564 */ 4565 int pci_try_reset_function(struct pci_dev *dev) 4566 { 4567 int rc; 4568 4569 if (!dev->reset_fn) 4570 return -ENOTTY; 4571 4572 if (!pci_dev_trylock(dev)) 4573 return -EAGAIN; 4574 4575 pci_dev_save_and_disable(dev); 4576 rc = __pci_reset_function_locked(dev); 4577 pci_dev_restore(dev); 4578 pci_dev_unlock(dev); 4579 4580 return rc; 4581 } 4582 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4583 4584 /* Do any devices on or below this bus prevent a bus reset? */ 4585 static bool pci_bus_resetable(struct pci_bus *bus) 4586 { 4587 struct pci_dev *dev; 4588 4589 4590 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4591 return false; 4592 4593 list_for_each_entry(dev, &bus->devices, bus_list) { 4594 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4595 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4596 return false; 4597 } 4598 4599 return true; 4600 } 4601 4602 /* Lock devices from the top of the tree down */ 4603 static void pci_bus_lock(struct pci_bus *bus) 4604 { 4605 struct pci_dev *dev; 4606 4607 list_for_each_entry(dev, &bus->devices, bus_list) { 4608 pci_dev_lock(dev); 4609 if (dev->subordinate) 4610 pci_bus_lock(dev->subordinate); 4611 } 4612 } 4613 4614 /* Unlock devices from the bottom of the tree up */ 4615 static void pci_bus_unlock(struct pci_bus *bus) 4616 { 4617 struct pci_dev *dev; 4618 4619 list_for_each_entry(dev, &bus->devices, bus_list) { 4620 if (dev->subordinate) 4621 pci_bus_unlock(dev->subordinate); 4622 pci_dev_unlock(dev); 4623 } 4624 } 4625 4626 /* Return 1 on successful lock, 0 on contention */ 4627 static int pci_bus_trylock(struct pci_bus *bus) 4628 { 4629 struct pci_dev *dev; 4630 4631 list_for_each_entry(dev, &bus->devices, bus_list) { 4632 if (!pci_dev_trylock(dev)) 4633 goto unlock; 4634 if (dev->subordinate) { 4635 if (!pci_bus_trylock(dev->subordinate)) { 4636 pci_dev_unlock(dev); 4637 goto unlock; 4638 } 4639 } 4640 } 4641 return 1; 4642 4643 unlock: 4644 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 4645 if (dev->subordinate) 4646 pci_bus_unlock(dev->subordinate); 4647 pci_dev_unlock(dev); 4648 } 4649 return 0; 4650 } 4651 4652 /* Do any devices on or below this slot prevent a bus reset? */ 4653 static bool pci_slot_resetable(struct pci_slot *slot) 4654 { 4655 struct pci_dev *dev; 4656 4657 if (slot->bus->self && 4658 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4659 return false; 4660 4661 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4662 if (!dev->slot || dev->slot != slot) 4663 continue; 4664 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4665 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4666 return false; 4667 } 4668 4669 return true; 4670 } 4671 4672 /* Lock devices from the top of the tree down */ 4673 static void pci_slot_lock(struct pci_slot *slot) 4674 { 4675 struct pci_dev *dev; 4676 4677 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4678 if (!dev->slot || dev->slot != slot) 4679 continue; 4680 pci_dev_lock(dev); 4681 if (dev->subordinate) 4682 pci_bus_lock(dev->subordinate); 4683 } 4684 } 4685 4686 /* Unlock devices from the bottom of the tree up */ 4687 static void pci_slot_unlock(struct pci_slot *slot) 4688 { 4689 struct pci_dev *dev; 4690 4691 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4692 if (!dev->slot || dev->slot != slot) 4693 continue; 4694 if (dev->subordinate) 4695 pci_bus_unlock(dev->subordinate); 4696 pci_dev_unlock(dev); 4697 } 4698 } 4699 4700 /* Return 1 on successful lock, 0 on contention */ 4701 static int pci_slot_trylock(struct pci_slot *slot) 4702 { 4703 struct pci_dev *dev; 4704 4705 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4706 if (!dev->slot || dev->slot != slot) 4707 continue; 4708 if (!pci_dev_trylock(dev)) 4709 goto unlock; 4710 if (dev->subordinate) { 4711 if (!pci_bus_trylock(dev->subordinate)) { 4712 pci_dev_unlock(dev); 4713 goto unlock; 4714 } 4715 } 4716 } 4717 return 1; 4718 4719 unlock: 4720 list_for_each_entry_continue_reverse(dev, 4721 &slot->bus->devices, bus_list) { 4722 if (!dev->slot || dev->slot != slot) 4723 continue; 4724 if (dev->subordinate) 4725 pci_bus_unlock(dev->subordinate); 4726 pci_dev_unlock(dev); 4727 } 4728 return 0; 4729 } 4730 4731 /* Save and disable devices from the top of the tree down */ 4732 static void pci_bus_save_and_disable(struct pci_bus *bus) 4733 { 4734 struct pci_dev *dev; 4735 4736 list_for_each_entry(dev, &bus->devices, bus_list) { 4737 pci_dev_lock(dev); 4738 pci_dev_save_and_disable(dev); 4739 pci_dev_unlock(dev); 4740 if (dev->subordinate) 4741 pci_bus_save_and_disable(dev->subordinate); 4742 } 4743 } 4744 4745 /* 4746 * Restore devices from top of the tree down - parent bridges need to be 4747 * restored before we can get to subordinate devices. 4748 */ 4749 static void pci_bus_restore(struct pci_bus *bus) 4750 { 4751 struct pci_dev *dev; 4752 4753 list_for_each_entry(dev, &bus->devices, bus_list) { 4754 pci_dev_lock(dev); 4755 pci_dev_restore(dev); 4756 pci_dev_unlock(dev); 4757 if (dev->subordinate) 4758 pci_bus_restore(dev->subordinate); 4759 } 4760 } 4761 4762 /* Save and disable devices from the top of the tree down */ 4763 static void pci_slot_save_and_disable(struct pci_slot *slot) 4764 { 4765 struct pci_dev *dev; 4766 4767 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4768 if (!dev->slot || dev->slot != slot) 4769 continue; 4770 pci_dev_save_and_disable(dev); 4771 if (dev->subordinate) 4772 pci_bus_save_and_disable(dev->subordinate); 4773 } 4774 } 4775 4776 /* 4777 * Restore devices from top of the tree down - parent bridges need to be 4778 * restored before we can get to subordinate devices. 4779 */ 4780 static void pci_slot_restore(struct pci_slot *slot) 4781 { 4782 struct pci_dev *dev; 4783 4784 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4785 if (!dev->slot || dev->slot != slot) 4786 continue; 4787 pci_dev_lock(dev); 4788 pci_dev_restore(dev); 4789 pci_dev_unlock(dev); 4790 if (dev->subordinate) 4791 pci_bus_restore(dev->subordinate); 4792 } 4793 } 4794 4795 static int pci_slot_reset(struct pci_slot *slot, int probe) 4796 { 4797 int rc; 4798 4799 if (!slot || !pci_slot_resetable(slot)) 4800 return -ENOTTY; 4801 4802 if (!probe) 4803 pci_slot_lock(slot); 4804 4805 might_sleep(); 4806 4807 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 4808 4809 if (!probe) 4810 pci_slot_unlock(slot); 4811 4812 return rc; 4813 } 4814 4815 /** 4816 * pci_probe_reset_slot - probe whether a PCI slot can be reset 4817 * @slot: PCI slot to probe 4818 * 4819 * Return 0 if slot can be reset, negative if a slot reset is not supported. 4820 */ 4821 int pci_probe_reset_slot(struct pci_slot *slot) 4822 { 4823 return pci_slot_reset(slot, 1); 4824 } 4825 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 4826 4827 /** 4828 * pci_reset_slot - reset a PCI slot 4829 * @slot: PCI slot to reset 4830 * 4831 * A PCI bus may host multiple slots, each slot may support a reset mechanism 4832 * independent of other slots. For instance, some slots may support slot power 4833 * control. In the case of a 1:1 bus to slot architecture, this function may 4834 * wrap the bus reset to avoid spurious slot related events such as hotplug. 4835 * Generally a slot reset should be attempted before a bus reset. All of the 4836 * function of the slot and any subordinate buses behind the slot are reset 4837 * through this function. PCI config space of all devices in the slot and 4838 * behind the slot is saved before and restored after reset. 4839 * 4840 * Return 0 on success, non-zero on error. 4841 */ 4842 int pci_reset_slot(struct pci_slot *slot) 4843 { 4844 int rc; 4845 4846 rc = pci_slot_reset(slot, 1); 4847 if (rc) 4848 return rc; 4849 4850 pci_slot_save_and_disable(slot); 4851 4852 rc = pci_slot_reset(slot, 0); 4853 4854 pci_slot_restore(slot); 4855 4856 return rc; 4857 } 4858 EXPORT_SYMBOL_GPL(pci_reset_slot); 4859 4860 /** 4861 * pci_try_reset_slot - Try to reset a PCI slot 4862 * @slot: PCI slot to reset 4863 * 4864 * Same as above except return -EAGAIN if the slot cannot be locked 4865 */ 4866 int pci_try_reset_slot(struct pci_slot *slot) 4867 { 4868 int rc; 4869 4870 rc = pci_slot_reset(slot, 1); 4871 if (rc) 4872 return rc; 4873 4874 pci_slot_save_and_disable(slot); 4875 4876 if (pci_slot_trylock(slot)) { 4877 might_sleep(); 4878 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 4879 pci_slot_unlock(slot); 4880 } else 4881 rc = -EAGAIN; 4882 4883 pci_slot_restore(slot); 4884 4885 return rc; 4886 } 4887 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 4888 4889 static int pci_bus_reset(struct pci_bus *bus, int probe) 4890 { 4891 if (!bus->self || !pci_bus_resetable(bus)) 4892 return -ENOTTY; 4893 4894 if (probe) 4895 return 0; 4896 4897 pci_bus_lock(bus); 4898 4899 might_sleep(); 4900 4901 pci_reset_bridge_secondary_bus(bus->self); 4902 4903 pci_bus_unlock(bus); 4904 4905 return 0; 4906 } 4907 4908 /** 4909 * pci_probe_reset_bus - probe whether a PCI bus can be reset 4910 * @bus: PCI bus to probe 4911 * 4912 * Return 0 if bus can be reset, negative if a bus reset is not supported. 4913 */ 4914 int pci_probe_reset_bus(struct pci_bus *bus) 4915 { 4916 return pci_bus_reset(bus, 1); 4917 } 4918 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 4919 4920 /** 4921 * pci_reset_bus - reset a PCI bus 4922 * @bus: top level PCI bus to reset 4923 * 4924 * Do a bus reset on the given bus and any subordinate buses, saving 4925 * and restoring state of all devices. 4926 * 4927 * Return 0 on success, non-zero on error. 4928 */ 4929 int pci_reset_bus(struct pci_bus *bus) 4930 { 4931 int rc; 4932 4933 rc = pci_bus_reset(bus, 1); 4934 if (rc) 4935 return rc; 4936 4937 pci_bus_save_and_disable(bus); 4938 4939 rc = pci_bus_reset(bus, 0); 4940 4941 pci_bus_restore(bus); 4942 4943 return rc; 4944 } 4945 EXPORT_SYMBOL_GPL(pci_reset_bus); 4946 4947 /** 4948 * pci_try_reset_bus - Try to reset a PCI bus 4949 * @bus: top level PCI bus to reset 4950 * 4951 * Same as above except return -EAGAIN if the bus cannot be locked 4952 */ 4953 int pci_try_reset_bus(struct pci_bus *bus) 4954 { 4955 int rc; 4956 4957 rc = pci_bus_reset(bus, 1); 4958 if (rc) 4959 return rc; 4960 4961 pci_bus_save_and_disable(bus); 4962 4963 if (pci_bus_trylock(bus)) { 4964 might_sleep(); 4965 pci_reset_bridge_secondary_bus(bus->self); 4966 pci_bus_unlock(bus); 4967 } else 4968 rc = -EAGAIN; 4969 4970 pci_bus_restore(bus); 4971 4972 return rc; 4973 } 4974 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 4975 4976 /** 4977 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 4978 * @dev: PCI device to query 4979 * 4980 * Returns mmrbc: maximum designed memory read count in bytes 4981 * or appropriate error value. 4982 */ 4983 int pcix_get_max_mmrbc(struct pci_dev *dev) 4984 { 4985 int cap; 4986 u32 stat; 4987 4988 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4989 if (!cap) 4990 return -EINVAL; 4991 4992 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4993 return -EINVAL; 4994 4995 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 4996 } 4997 EXPORT_SYMBOL(pcix_get_max_mmrbc); 4998 4999 /** 5000 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5001 * @dev: PCI device to query 5002 * 5003 * Returns mmrbc: maximum memory read count in bytes 5004 * or appropriate error value. 5005 */ 5006 int pcix_get_mmrbc(struct pci_dev *dev) 5007 { 5008 int cap; 5009 u16 cmd; 5010 5011 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5012 if (!cap) 5013 return -EINVAL; 5014 5015 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5016 return -EINVAL; 5017 5018 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5019 } 5020 EXPORT_SYMBOL(pcix_get_mmrbc); 5021 5022 /** 5023 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5024 * @dev: PCI device to query 5025 * @mmrbc: maximum memory read count in bytes 5026 * valid values are 512, 1024, 2048, 4096 5027 * 5028 * If possible sets maximum memory read byte count, some bridges have erratas 5029 * that prevent this. 5030 */ 5031 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5032 { 5033 int cap; 5034 u32 stat, v, o; 5035 u16 cmd; 5036 5037 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5038 return -EINVAL; 5039 5040 v = ffs(mmrbc) - 10; 5041 5042 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5043 if (!cap) 5044 return -EINVAL; 5045 5046 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5047 return -EINVAL; 5048 5049 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5050 return -E2BIG; 5051 5052 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5053 return -EINVAL; 5054 5055 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5056 if (o != v) { 5057 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5058 return -EIO; 5059 5060 cmd &= ~PCI_X_CMD_MAX_READ; 5061 cmd |= v << 2; 5062 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5063 return -EIO; 5064 } 5065 return 0; 5066 } 5067 EXPORT_SYMBOL(pcix_set_mmrbc); 5068 5069 /** 5070 * pcie_get_readrq - get PCI Express read request size 5071 * @dev: PCI device to query 5072 * 5073 * Returns maximum memory read request in bytes 5074 * or appropriate error value. 5075 */ 5076 int pcie_get_readrq(struct pci_dev *dev) 5077 { 5078 u16 ctl; 5079 5080 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5081 5082 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5083 } 5084 EXPORT_SYMBOL(pcie_get_readrq); 5085 5086 /** 5087 * pcie_set_readrq - set PCI Express maximum memory read request 5088 * @dev: PCI device to query 5089 * @rq: maximum memory read count in bytes 5090 * valid values are 128, 256, 512, 1024, 2048, 4096 5091 * 5092 * If possible sets maximum memory read request in bytes 5093 */ 5094 int pcie_set_readrq(struct pci_dev *dev, int rq) 5095 { 5096 u16 v; 5097 5098 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5099 return -EINVAL; 5100 5101 /* 5102 * If using the "performance" PCIe config, we clamp the 5103 * read rq size to the max packet size to prevent the 5104 * host bridge generating requests larger than we can 5105 * cope with 5106 */ 5107 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5108 int mps = pcie_get_mps(dev); 5109 5110 if (mps < rq) 5111 rq = mps; 5112 } 5113 5114 v = (ffs(rq) - 8) << 12; 5115 5116 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5117 PCI_EXP_DEVCTL_READRQ, v); 5118 } 5119 EXPORT_SYMBOL(pcie_set_readrq); 5120 5121 /** 5122 * pcie_get_mps - get PCI Express maximum payload size 5123 * @dev: PCI device to query 5124 * 5125 * Returns maximum payload size in bytes 5126 */ 5127 int pcie_get_mps(struct pci_dev *dev) 5128 { 5129 u16 ctl; 5130 5131 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5132 5133 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5134 } 5135 EXPORT_SYMBOL(pcie_get_mps); 5136 5137 /** 5138 * pcie_set_mps - set PCI Express maximum payload size 5139 * @dev: PCI device to query 5140 * @mps: maximum payload size in bytes 5141 * valid values are 128, 256, 512, 1024, 2048, 4096 5142 * 5143 * If possible sets maximum payload size 5144 */ 5145 int pcie_set_mps(struct pci_dev *dev, int mps) 5146 { 5147 u16 v; 5148 5149 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5150 return -EINVAL; 5151 5152 v = ffs(mps) - 8; 5153 if (v > dev->pcie_mpss) 5154 return -EINVAL; 5155 v <<= 5; 5156 5157 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5158 PCI_EXP_DEVCTL_PAYLOAD, v); 5159 } 5160 EXPORT_SYMBOL(pcie_set_mps); 5161 5162 /** 5163 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5164 * device and its bandwidth limitation 5165 * @dev: PCI device to query 5166 * @limiting_dev: storage for device causing the bandwidth limitation 5167 * @speed: storage for speed of limiting device 5168 * @width: storage for width of limiting device 5169 * 5170 * Walk up the PCI device chain and find the point where the minimum 5171 * bandwidth is available. Return the bandwidth available there and (if 5172 * limiting_dev, speed, and width pointers are supplied) information about 5173 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5174 * raw bandwidth. 5175 */ 5176 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5177 enum pci_bus_speed *speed, 5178 enum pcie_link_width *width) 5179 { 5180 u16 lnksta; 5181 enum pci_bus_speed next_speed; 5182 enum pcie_link_width next_width; 5183 u32 bw, next_bw; 5184 5185 if (speed) 5186 *speed = PCI_SPEED_UNKNOWN; 5187 if (width) 5188 *width = PCIE_LNK_WIDTH_UNKNOWN; 5189 5190 bw = 0; 5191 5192 while (dev) { 5193 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5194 5195 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5196 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5197 PCI_EXP_LNKSTA_NLW_SHIFT; 5198 5199 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5200 5201 /* Check if current device limits the total bandwidth */ 5202 if (!bw || next_bw <= bw) { 5203 bw = next_bw; 5204 5205 if (limiting_dev) 5206 *limiting_dev = dev; 5207 if (speed) 5208 *speed = next_speed; 5209 if (width) 5210 *width = next_width; 5211 } 5212 5213 dev = pci_upstream_bridge(dev); 5214 } 5215 5216 return bw; 5217 } 5218 EXPORT_SYMBOL(pcie_bandwidth_available); 5219 5220 /** 5221 * pcie_get_speed_cap - query for the PCI device's link speed capability 5222 * @dev: PCI device to query 5223 * 5224 * Query the PCI device speed capability. Return the maximum link speed 5225 * supported by the device. 5226 */ 5227 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5228 { 5229 u32 lnkcap2, lnkcap; 5230 5231 /* 5232 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link 5233 * Speeds Vector in Link Capabilities 2 when supported, falling 5234 * back to Max Link Speed in Link Capabilities otherwise. 5235 */ 5236 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5237 if (lnkcap2) { /* PCIe r3.0-compliant */ 5238 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB) 5239 return PCIE_SPEED_16_0GT; 5240 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 5241 return PCIE_SPEED_8_0GT; 5242 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 5243 return PCIE_SPEED_5_0GT; 5244 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 5245 return PCIE_SPEED_2_5GT; 5246 return PCI_SPEED_UNKNOWN; 5247 } 5248 5249 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5250 if (lnkcap) { 5251 if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB) 5252 return PCIE_SPEED_16_0GT; 5253 else if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB) 5254 return PCIE_SPEED_8_0GT; 5255 else if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB) 5256 return PCIE_SPEED_5_0GT; 5257 else if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB) 5258 return PCIE_SPEED_2_5GT; 5259 } 5260 5261 return PCI_SPEED_UNKNOWN; 5262 } 5263 5264 /** 5265 * pcie_get_width_cap - query for the PCI device's link width capability 5266 * @dev: PCI device to query 5267 * 5268 * Query the PCI device width capability. Return the maximum link width 5269 * supported by the device. 5270 */ 5271 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5272 { 5273 u32 lnkcap; 5274 5275 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5276 if (lnkcap) 5277 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5278 5279 return PCIE_LNK_WIDTH_UNKNOWN; 5280 } 5281 5282 /** 5283 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5284 * @dev: PCI device 5285 * @speed: storage for link speed 5286 * @width: storage for link width 5287 * 5288 * Calculate a PCI device's link bandwidth by querying for its link speed 5289 * and width, multiplying them, and applying encoding overhead. The result 5290 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5291 */ 5292 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5293 enum pcie_link_width *width) 5294 { 5295 *speed = pcie_get_speed_cap(dev); 5296 *width = pcie_get_width_cap(dev); 5297 5298 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5299 return 0; 5300 5301 return *width * PCIE_SPEED2MBS_ENC(*speed); 5302 } 5303 5304 /** 5305 * pcie_print_link_status - Report the PCI device's link speed and width 5306 * @dev: PCI device to query 5307 * 5308 * Report the available bandwidth at the device. If this is less than the 5309 * device is capable of, report the device's maximum possible bandwidth and 5310 * the upstream link that limits its performance to less than that. 5311 */ 5312 void pcie_print_link_status(struct pci_dev *dev) 5313 { 5314 enum pcie_link_width width, width_cap; 5315 enum pci_bus_speed speed, speed_cap; 5316 struct pci_dev *limiting_dev = NULL; 5317 u32 bw_avail, bw_cap; 5318 5319 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5320 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5321 5322 if (bw_avail >= bw_cap) 5323 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5324 bw_cap / 1000, bw_cap % 1000, 5325 PCIE_SPEED2STR(speed_cap), width_cap); 5326 else 5327 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5328 bw_avail / 1000, bw_avail % 1000, 5329 PCIE_SPEED2STR(speed), width, 5330 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5331 bw_cap / 1000, bw_cap % 1000, 5332 PCIE_SPEED2STR(speed_cap), width_cap); 5333 } 5334 EXPORT_SYMBOL(pcie_print_link_status); 5335 5336 /** 5337 * pci_select_bars - Make BAR mask from the type of resource 5338 * @dev: the PCI device for which BAR mask is made 5339 * @flags: resource type mask to be selected 5340 * 5341 * This helper routine makes bar mask from the type of resource. 5342 */ 5343 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5344 { 5345 int i, bars = 0; 5346 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5347 if (pci_resource_flags(dev, i) & flags) 5348 bars |= (1 << i); 5349 return bars; 5350 } 5351 EXPORT_SYMBOL(pci_select_bars); 5352 5353 /* Some architectures require additional programming to enable VGA */ 5354 static arch_set_vga_state_t arch_set_vga_state; 5355 5356 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5357 { 5358 arch_set_vga_state = func; /* NULL disables */ 5359 } 5360 5361 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5362 unsigned int command_bits, u32 flags) 5363 { 5364 if (arch_set_vga_state) 5365 return arch_set_vga_state(dev, decode, command_bits, 5366 flags); 5367 return 0; 5368 } 5369 5370 /** 5371 * pci_set_vga_state - set VGA decode state on device and parents if requested 5372 * @dev: the PCI device 5373 * @decode: true = enable decoding, false = disable decoding 5374 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5375 * @flags: traverse ancestors and change bridges 5376 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5377 */ 5378 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5379 unsigned int command_bits, u32 flags) 5380 { 5381 struct pci_bus *bus; 5382 struct pci_dev *bridge; 5383 u16 cmd; 5384 int rc; 5385 5386 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5387 5388 /* ARCH specific VGA enables */ 5389 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5390 if (rc) 5391 return rc; 5392 5393 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5394 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5395 if (decode == true) 5396 cmd |= command_bits; 5397 else 5398 cmd &= ~command_bits; 5399 pci_write_config_word(dev, PCI_COMMAND, cmd); 5400 } 5401 5402 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5403 return 0; 5404 5405 bus = dev->bus; 5406 while (bus) { 5407 bridge = bus->self; 5408 if (bridge) { 5409 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5410 &cmd); 5411 if (decode == true) 5412 cmd |= PCI_BRIDGE_CTL_VGA; 5413 else 5414 cmd &= ~PCI_BRIDGE_CTL_VGA; 5415 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5416 cmd); 5417 } 5418 bus = bus->parent; 5419 } 5420 return 0; 5421 } 5422 5423 /** 5424 * pci_add_dma_alias - Add a DMA devfn alias for a device 5425 * @dev: the PCI device for which alias is added 5426 * @devfn: alias slot and function 5427 * 5428 * This helper encodes 8-bit devfn as bit number in dma_alias_mask. 5429 * It should be called early, preferably as PCI fixup header quirk. 5430 */ 5431 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5432 { 5433 if (!dev->dma_alias_mask) 5434 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX), 5435 sizeof(long), GFP_KERNEL); 5436 if (!dev->dma_alias_mask) { 5437 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 5438 return; 5439 } 5440 5441 set_bit(devfn, dev->dma_alias_mask); 5442 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 5443 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5444 } 5445 5446 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5447 { 5448 return (dev1->dma_alias_mask && 5449 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5450 (dev2->dma_alias_mask && 5451 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5452 } 5453 5454 bool pci_device_is_present(struct pci_dev *pdev) 5455 { 5456 u32 v; 5457 5458 if (pci_dev_is_disconnected(pdev)) 5459 return false; 5460 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5461 } 5462 EXPORT_SYMBOL_GPL(pci_device_is_present); 5463 5464 void pci_ignore_hotplug(struct pci_dev *dev) 5465 { 5466 struct pci_dev *bridge = dev->bus->self; 5467 5468 dev->ignore_hotplug = 1; 5469 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5470 if (bridge) 5471 bridge->ignore_hotplug = 1; 5472 } 5473 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5474 5475 resource_size_t __weak pcibios_default_alignment(void) 5476 { 5477 return 0; 5478 } 5479 5480 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 5481 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 5482 static DEFINE_SPINLOCK(resource_alignment_lock); 5483 5484 /** 5485 * pci_specified_resource_alignment - get resource alignment specified by user. 5486 * @dev: the PCI device to get 5487 * @resize: whether or not to change resources' size when reassigning alignment 5488 * 5489 * RETURNS: Resource alignment if it is specified. 5490 * Zero if it is not specified. 5491 */ 5492 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5493 bool *resize) 5494 { 5495 int seg, bus, slot, func, align_order, count; 5496 unsigned short vendor, device, subsystem_vendor, subsystem_device; 5497 resource_size_t align = pcibios_default_alignment(); 5498 char *p; 5499 5500 spin_lock(&resource_alignment_lock); 5501 p = resource_alignment_param; 5502 if (!*p && !align) 5503 goto out; 5504 if (pci_has_flag(PCI_PROBE_ONLY)) { 5505 align = 0; 5506 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5507 goto out; 5508 } 5509 5510 while (*p) { 5511 count = 0; 5512 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5513 p[count] == '@') { 5514 p += count + 1; 5515 } else { 5516 align_order = -1; 5517 } 5518 if (strncmp(p, "pci:", 4) == 0) { 5519 /* PCI vendor/device (subvendor/subdevice) ids are specified */ 5520 p += 4; 5521 if (sscanf(p, "%hx:%hx:%hx:%hx%n", 5522 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) { 5523 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) { 5524 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n", 5525 p); 5526 break; 5527 } 5528 subsystem_vendor = subsystem_device = 0; 5529 } 5530 p += count; 5531 if ((!vendor || (vendor == dev->vendor)) && 5532 (!device || (device == dev->device)) && 5533 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) && 5534 (!subsystem_device || (subsystem_device == dev->subsystem_device))) { 5535 *resize = true; 5536 if (align_order == -1) 5537 align = PAGE_SIZE; 5538 else 5539 align = 1 << align_order; 5540 /* Found */ 5541 break; 5542 } 5543 } 5544 else { 5545 if (sscanf(p, "%x:%x:%x.%x%n", 5546 &seg, &bus, &slot, &func, &count) != 4) { 5547 seg = 0; 5548 if (sscanf(p, "%x:%x.%x%n", 5549 &bus, &slot, &func, &count) != 3) { 5550 /* Invalid format */ 5551 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 5552 p); 5553 break; 5554 } 5555 } 5556 p += count; 5557 if (seg == pci_domain_nr(dev->bus) && 5558 bus == dev->bus->number && 5559 slot == PCI_SLOT(dev->devfn) && 5560 func == PCI_FUNC(dev->devfn)) { 5561 *resize = true; 5562 if (align_order == -1) 5563 align = PAGE_SIZE; 5564 else 5565 align = 1 << align_order; 5566 /* Found */ 5567 break; 5568 } 5569 } 5570 if (*p != ';' && *p != ',') { 5571 /* End of param or invalid format */ 5572 break; 5573 } 5574 p++; 5575 } 5576 out: 5577 spin_unlock(&resource_alignment_lock); 5578 return align; 5579 } 5580 5581 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 5582 resource_size_t align, bool resize) 5583 { 5584 struct resource *r = &dev->resource[bar]; 5585 resource_size_t size; 5586 5587 if (!(r->flags & IORESOURCE_MEM)) 5588 return; 5589 5590 if (r->flags & IORESOURCE_PCI_FIXED) { 5591 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 5592 bar, r, (unsigned long long)align); 5593 return; 5594 } 5595 5596 size = resource_size(r); 5597 if (size >= align) 5598 return; 5599 5600 /* 5601 * Increase the alignment of the resource. There are two ways we 5602 * can do this: 5603 * 5604 * 1) Increase the size of the resource. BARs are aligned on their 5605 * size, so when we reallocate space for this resource, we'll 5606 * allocate it with the larger alignment. This also prevents 5607 * assignment of any other BARs inside the alignment region, so 5608 * if we're requesting page alignment, this means no other BARs 5609 * will share the page. 5610 * 5611 * The disadvantage is that this makes the resource larger than 5612 * the hardware BAR, which may break drivers that compute things 5613 * based on the resource size, e.g., to find registers at a 5614 * fixed offset before the end of the BAR. 5615 * 5616 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 5617 * set r->start to the desired alignment. By itself this 5618 * doesn't prevent other BARs being put inside the alignment 5619 * region, but if we realign *every* resource of every device in 5620 * the system, none of them will share an alignment region. 5621 * 5622 * When the user has requested alignment for only some devices via 5623 * the "pci=resource_alignment" argument, "resize" is true and we 5624 * use the first method. Otherwise we assume we're aligning all 5625 * devices and we use the second. 5626 */ 5627 5628 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 5629 bar, r, (unsigned long long)align); 5630 5631 if (resize) { 5632 r->start = 0; 5633 r->end = align - 1; 5634 } else { 5635 r->flags &= ~IORESOURCE_SIZEALIGN; 5636 r->flags |= IORESOURCE_STARTALIGN; 5637 r->start = align; 5638 r->end = r->start + size - 1; 5639 } 5640 r->flags |= IORESOURCE_UNSET; 5641 } 5642 5643 /* 5644 * This function disables memory decoding and releases memory resources 5645 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 5646 * It also rounds up size to specified alignment. 5647 * Later on, the kernel will assign page-aligned memory resource back 5648 * to the device. 5649 */ 5650 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 5651 { 5652 int i; 5653 struct resource *r; 5654 resource_size_t align; 5655 u16 command; 5656 bool resize = false; 5657 5658 /* 5659 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 5660 * 3.4.1.11. Their resources are allocated from the space 5661 * described by the VF BARx register in the PF's SR-IOV capability. 5662 * We can't influence their alignment here. 5663 */ 5664 if (dev->is_virtfn) 5665 return; 5666 5667 /* check if specified PCI is target device to reassign */ 5668 align = pci_specified_resource_alignment(dev, &resize); 5669 if (!align) 5670 return; 5671 5672 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 5673 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 5674 pci_warn(dev, "Can't reassign resources to host bridge\n"); 5675 return; 5676 } 5677 5678 pci_read_config_word(dev, PCI_COMMAND, &command); 5679 command &= ~PCI_COMMAND_MEMORY; 5680 pci_write_config_word(dev, PCI_COMMAND, command); 5681 5682 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 5683 pci_request_resource_alignment(dev, i, align, resize); 5684 5685 /* 5686 * Need to disable bridge's resource window, 5687 * to enable the kernel to reassign new resource 5688 * window later on. 5689 */ 5690 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 5691 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 5692 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 5693 r = &dev->resource[i]; 5694 if (!(r->flags & IORESOURCE_MEM)) 5695 continue; 5696 r->flags |= IORESOURCE_UNSET; 5697 r->end = resource_size(r) - 1; 5698 r->start = 0; 5699 } 5700 pci_disable_bridge_window(dev); 5701 } 5702 } 5703 5704 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 5705 { 5706 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 5707 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 5708 spin_lock(&resource_alignment_lock); 5709 strncpy(resource_alignment_param, buf, count); 5710 resource_alignment_param[count] = '\0'; 5711 spin_unlock(&resource_alignment_lock); 5712 return count; 5713 } 5714 5715 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 5716 { 5717 size_t count; 5718 spin_lock(&resource_alignment_lock); 5719 count = snprintf(buf, size, "%s", resource_alignment_param); 5720 spin_unlock(&resource_alignment_lock); 5721 return count; 5722 } 5723 5724 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 5725 { 5726 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 5727 } 5728 5729 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 5730 const char *buf, size_t count) 5731 { 5732 return pci_set_resource_alignment_param(buf, count); 5733 } 5734 5735 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 5736 pci_resource_alignment_store); 5737 5738 static int __init pci_resource_alignment_sysfs_init(void) 5739 { 5740 return bus_create_file(&pci_bus_type, 5741 &bus_attr_resource_alignment); 5742 } 5743 late_initcall(pci_resource_alignment_sysfs_init); 5744 5745 static void pci_no_domains(void) 5746 { 5747 #ifdef CONFIG_PCI_DOMAINS 5748 pci_domains_supported = 0; 5749 #endif 5750 } 5751 5752 #ifdef CONFIG_PCI_DOMAINS_GENERIC 5753 static atomic_t __domain_nr = ATOMIC_INIT(-1); 5754 5755 static int pci_get_new_domain_nr(void) 5756 { 5757 return atomic_inc_return(&__domain_nr); 5758 } 5759 5760 static int of_pci_bus_find_domain_nr(struct device *parent) 5761 { 5762 static int use_dt_domains = -1; 5763 int domain = -1; 5764 5765 if (parent) 5766 domain = of_get_pci_domain_nr(parent->of_node); 5767 /* 5768 * Check DT domain and use_dt_domains values. 5769 * 5770 * If DT domain property is valid (domain >= 0) and 5771 * use_dt_domains != 0, the DT assignment is valid since this means 5772 * we have not previously allocated a domain number by using 5773 * pci_get_new_domain_nr(); we should also update use_dt_domains to 5774 * 1, to indicate that we have just assigned a domain number from 5775 * DT. 5776 * 5777 * If DT domain property value is not valid (ie domain < 0), and we 5778 * have not previously assigned a domain number from DT 5779 * (use_dt_domains != 1) we should assign a domain number by 5780 * using the: 5781 * 5782 * pci_get_new_domain_nr() 5783 * 5784 * API and update the use_dt_domains value to keep track of method we 5785 * are using to assign domain numbers (use_dt_domains = 0). 5786 * 5787 * All other combinations imply we have a platform that is trying 5788 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 5789 * which is a recipe for domain mishandling and it is prevented by 5790 * invalidating the domain value (domain = -1) and printing a 5791 * corresponding error. 5792 */ 5793 if (domain >= 0 && use_dt_domains) { 5794 use_dt_domains = 1; 5795 } else if (domain < 0 && use_dt_domains != 1) { 5796 use_dt_domains = 0; 5797 domain = pci_get_new_domain_nr(); 5798 } else { 5799 if (parent) 5800 pr_err("Node %pOF has ", parent->of_node); 5801 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 5802 domain = -1; 5803 } 5804 5805 return domain; 5806 } 5807 5808 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 5809 { 5810 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 5811 acpi_pci_bus_find_domain_nr(bus); 5812 } 5813 #endif 5814 5815 /** 5816 * pci_ext_cfg_avail - can we access extended PCI config space? 5817 * 5818 * Returns 1 if we can access PCI extended config space (offsets 5819 * greater than 0xff). This is the default implementation. Architecture 5820 * implementations can override this. 5821 */ 5822 int __weak pci_ext_cfg_avail(void) 5823 { 5824 return 1; 5825 } 5826 5827 void __weak pci_fixup_cardbus(struct pci_bus *bus) 5828 { 5829 } 5830 EXPORT_SYMBOL(pci_fixup_cardbus); 5831 5832 static int __init pci_setup(char *str) 5833 { 5834 while (str) { 5835 char *k = strchr(str, ','); 5836 if (k) 5837 *k++ = 0; 5838 if (*str && (str = pcibios_setup(str)) && *str) { 5839 if (!strcmp(str, "nomsi")) { 5840 pci_no_msi(); 5841 } else if (!strncmp(str, "noats", 5)) { 5842 pr_info("PCIe: ATS is disabled\n"); 5843 pcie_ats_disabled = true; 5844 } else if (!strcmp(str, "noaer")) { 5845 pci_no_aer(); 5846 } else if (!strncmp(str, "realloc=", 8)) { 5847 pci_realloc_get_opt(str + 8); 5848 } else if (!strncmp(str, "realloc", 7)) { 5849 pci_realloc_get_opt("on"); 5850 } else if (!strcmp(str, "nodomains")) { 5851 pci_no_domains(); 5852 } else if (!strncmp(str, "noari", 5)) { 5853 pcie_ari_disabled = true; 5854 } else if (!strncmp(str, "cbiosize=", 9)) { 5855 pci_cardbus_io_size = memparse(str + 9, &str); 5856 } else if (!strncmp(str, "cbmemsize=", 10)) { 5857 pci_cardbus_mem_size = memparse(str + 10, &str); 5858 } else if (!strncmp(str, "resource_alignment=", 19)) { 5859 pci_set_resource_alignment_param(str + 19, 5860 strlen(str + 19)); 5861 } else if (!strncmp(str, "ecrc=", 5)) { 5862 pcie_ecrc_get_policy(str + 5); 5863 } else if (!strncmp(str, "hpiosize=", 9)) { 5864 pci_hotplug_io_size = memparse(str + 9, &str); 5865 } else if (!strncmp(str, "hpmemsize=", 10)) { 5866 pci_hotplug_mem_size = memparse(str + 10, &str); 5867 } else if (!strncmp(str, "hpbussize=", 10)) { 5868 pci_hotplug_bus_size = 5869 simple_strtoul(str + 10, &str, 0); 5870 if (pci_hotplug_bus_size > 0xff) 5871 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 5872 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 5873 pcie_bus_config = PCIE_BUS_TUNE_OFF; 5874 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 5875 pcie_bus_config = PCIE_BUS_SAFE; 5876 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 5877 pcie_bus_config = PCIE_BUS_PERFORMANCE; 5878 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 5879 pcie_bus_config = PCIE_BUS_PEER2PEER; 5880 } else if (!strncmp(str, "pcie_scan_all", 13)) { 5881 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 5882 } else { 5883 printk(KERN_ERR "PCI: Unknown option `%s'\n", 5884 str); 5885 } 5886 } 5887 str = k; 5888 } 5889 return 0; 5890 } 5891 early_param("pci", pci_setup); 5892