xref: /linux/drivers/pci/pci.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h>	/* isa_dma_bridge_buggy */
23 #include <linux/device.h>
24 #include <asm/setup.h>
25 #include "pci.h"
26 
27 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
28 
29 #ifdef CONFIG_PCI_DOMAINS
30 int pci_domains_supported = 1;
31 #endif
32 
33 #define DEFAULT_CARDBUS_IO_SIZE		(256)
34 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
35 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
36 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
37 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
38 
39 /**
40  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
41  * @bus: pointer to PCI bus structure to search
42  *
43  * Given a PCI bus, returns the highest PCI bus number present in the set
44  * including the given PCI bus and its list of child PCI buses.
45  */
46 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
47 {
48 	struct list_head *tmp;
49 	unsigned char max, n;
50 
51 	max = bus->subordinate;
52 	list_for_each(tmp, &bus->children) {
53 		n = pci_bus_max_busnr(pci_bus_b(tmp));
54 		if(n > max)
55 			max = n;
56 	}
57 	return max;
58 }
59 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
60 
61 #ifdef CONFIG_HAS_IOMEM
62 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
63 {
64 	/*
65 	 * Make sure the BAR is actually a memory resource, not an IO resource
66 	 */
67 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
68 		WARN_ON(1);
69 		return NULL;
70 	}
71 	return ioremap_nocache(pci_resource_start(pdev, bar),
72 				     pci_resource_len(pdev, bar));
73 }
74 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
75 #endif
76 
77 #if 0
78 /**
79  * pci_max_busnr - returns maximum PCI bus number
80  *
81  * Returns the highest PCI bus number present in the system global list of
82  * PCI buses.
83  */
84 unsigned char __devinit
85 pci_max_busnr(void)
86 {
87 	struct pci_bus *bus = NULL;
88 	unsigned char max, n;
89 
90 	max = 0;
91 	while ((bus = pci_find_next_bus(bus)) != NULL) {
92 		n = pci_bus_max_busnr(bus);
93 		if(n > max)
94 			max = n;
95 	}
96 	return max;
97 }
98 
99 #endif  /*  0  */
100 
101 #define PCI_FIND_CAP_TTL	48
102 
103 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
104 				   u8 pos, int cap, int *ttl)
105 {
106 	u8 id;
107 
108 	while ((*ttl)--) {
109 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
110 		if (pos < 0x40)
111 			break;
112 		pos &= ~3;
113 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
114 					 &id);
115 		if (id == 0xff)
116 			break;
117 		if (id == cap)
118 			return pos;
119 		pos += PCI_CAP_LIST_NEXT;
120 	}
121 	return 0;
122 }
123 
124 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
125 			       u8 pos, int cap)
126 {
127 	int ttl = PCI_FIND_CAP_TTL;
128 
129 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
130 }
131 
132 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
133 {
134 	return __pci_find_next_cap(dev->bus, dev->devfn,
135 				   pos + PCI_CAP_LIST_NEXT, cap);
136 }
137 EXPORT_SYMBOL_GPL(pci_find_next_capability);
138 
139 static int __pci_bus_find_cap_start(struct pci_bus *bus,
140 				    unsigned int devfn, u8 hdr_type)
141 {
142 	u16 status;
143 
144 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
145 	if (!(status & PCI_STATUS_CAP_LIST))
146 		return 0;
147 
148 	switch (hdr_type) {
149 	case PCI_HEADER_TYPE_NORMAL:
150 	case PCI_HEADER_TYPE_BRIDGE:
151 		return PCI_CAPABILITY_LIST;
152 	case PCI_HEADER_TYPE_CARDBUS:
153 		return PCI_CB_CAPABILITY_LIST;
154 	default:
155 		return 0;
156 	}
157 
158 	return 0;
159 }
160 
161 /**
162  * pci_find_capability - query for devices' capabilities
163  * @dev: PCI device to query
164  * @cap: capability code
165  *
166  * Tell if a device supports a given PCI capability.
167  * Returns the address of the requested capability structure within the
168  * device's PCI configuration space or 0 in case the device does not
169  * support it.  Possible values for @cap:
170  *
171  *  %PCI_CAP_ID_PM           Power Management
172  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
173  *  %PCI_CAP_ID_VPD          Vital Product Data
174  *  %PCI_CAP_ID_SLOTID       Slot Identification
175  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
176  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
177  *  %PCI_CAP_ID_PCIX         PCI-X
178  *  %PCI_CAP_ID_EXP          PCI Express
179  */
180 int pci_find_capability(struct pci_dev *dev, int cap)
181 {
182 	int pos;
183 
184 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
185 	if (pos)
186 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
187 
188 	return pos;
189 }
190 
191 /**
192  * pci_bus_find_capability - query for devices' capabilities
193  * @bus:   the PCI bus to query
194  * @devfn: PCI device to query
195  * @cap:   capability code
196  *
197  * Like pci_find_capability() but works for pci devices that do not have a
198  * pci_dev structure set up yet.
199  *
200  * Returns the address of the requested capability structure within the
201  * device's PCI configuration space or 0 in case the device does not
202  * support it.
203  */
204 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
205 {
206 	int pos;
207 	u8 hdr_type;
208 
209 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
210 
211 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
212 	if (pos)
213 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
214 
215 	return pos;
216 }
217 
218 /**
219  * pci_find_ext_capability - Find an extended capability
220  * @dev: PCI device to query
221  * @cap: capability code
222  *
223  * Returns the address of the requested extended capability structure
224  * within the device's PCI configuration space or 0 if the device does
225  * not support it.  Possible values for @cap:
226  *
227  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
228  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
229  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
230  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
231  */
232 int pci_find_ext_capability(struct pci_dev *dev, int cap)
233 {
234 	u32 header;
235 	int ttl;
236 	int pos = PCI_CFG_SPACE_SIZE;
237 
238 	/* minimum 8 bytes per capability */
239 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
240 
241 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
242 		return 0;
243 
244 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
245 		return 0;
246 
247 	/*
248 	 * If we have no capabilities, this is indicated by cap ID,
249 	 * cap version and next pointer all being 0.
250 	 */
251 	if (header == 0)
252 		return 0;
253 
254 	while (ttl-- > 0) {
255 		if (PCI_EXT_CAP_ID(header) == cap)
256 			return pos;
257 
258 		pos = PCI_EXT_CAP_NEXT(header);
259 		if (pos < PCI_CFG_SPACE_SIZE)
260 			break;
261 
262 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
263 			break;
264 	}
265 
266 	return 0;
267 }
268 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
269 
270 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
271 {
272 	int rc, ttl = PCI_FIND_CAP_TTL;
273 	u8 cap, mask;
274 
275 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
276 		mask = HT_3BIT_CAP_MASK;
277 	else
278 		mask = HT_5BIT_CAP_MASK;
279 
280 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
281 				      PCI_CAP_ID_HT, &ttl);
282 	while (pos) {
283 		rc = pci_read_config_byte(dev, pos + 3, &cap);
284 		if (rc != PCIBIOS_SUCCESSFUL)
285 			return 0;
286 
287 		if ((cap & mask) == ht_cap)
288 			return pos;
289 
290 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
291 					      pos + PCI_CAP_LIST_NEXT,
292 					      PCI_CAP_ID_HT, &ttl);
293 	}
294 
295 	return 0;
296 }
297 /**
298  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
299  * @dev: PCI device to query
300  * @pos: Position from which to continue searching
301  * @ht_cap: Hypertransport capability code
302  *
303  * To be used in conjunction with pci_find_ht_capability() to search for
304  * all capabilities matching @ht_cap. @pos should always be a value returned
305  * from pci_find_ht_capability().
306  *
307  * NB. To be 100% safe against broken PCI devices, the caller should take
308  * steps to avoid an infinite loop.
309  */
310 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
311 {
312 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
313 }
314 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
315 
316 /**
317  * pci_find_ht_capability - query a device's Hypertransport capabilities
318  * @dev: PCI device to query
319  * @ht_cap: Hypertransport capability code
320  *
321  * Tell if a device supports a given Hypertransport capability.
322  * Returns an address within the device's PCI configuration space
323  * or 0 in case the device does not support the request capability.
324  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
325  * which has a Hypertransport capability matching @ht_cap.
326  */
327 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
328 {
329 	int pos;
330 
331 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
332 	if (pos)
333 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
334 
335 	return pos;
336 }
337 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
338 
339 /**
340  * pci_find_parent_resource - return resource region of parent bus of given region
341  * @dev: PCI device structure contains resources to be searched
342  * @res: child resource record for which parent is sought
343  *
344  *  For given resource region of given device, return the resource
345  *  region of parent bus the given region is contained in or where
346  *  it should be allocated from.
347  */
348 struct resource *
349 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
350 {
351 	const struct pci_bus *bus = dev->bus;
352 	int i;
353 	struct resource *best = NULL;
354 
355 	for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
356 		struct resource *r = bus->resource[i];
357 		if (!r)
358 			continue;
359 		if (res->start && !(res->start >= r->start && res->end <= r->end))
360 			continue;	/* Not contained */
361 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
362 			continue;	/* Wrong type */
363 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
364 			return r;	/* Exact match */
365 		if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
366 			best = r;	/* Approximating prefetchable by non-prefetchable */
367 	}
368 	return best;
369 }
370 
371 /**
372  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
373  * @dev: PCI device to have its BARs restored
374  *
375  * Restore the BAR values for a given device, so as to make it
376  * accessible by its driver.
377  */
378 static void
379 pci_restore_bars(struct pci_dev *dev)
380 {
381 	int i;
382 
383 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
384 		pci_update_resource(dev, i);
385 }
386 
387 static struct pci_platform_pm_ops *pci_platform_pm;
388 
389 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
390 {
391 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
392 	    || !ops->sleep_wake || !ops->can_wakeup)
393 		return -EINVAL;
394 	pci_platform_pm = ops;
395 	return 0;
396 }
397 
398 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
399 {
400 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
401 }
402 
403 static inline int platform_pci_set_power_state(struct pci_dev *dev,
404                                                 pci_power_t t)
405 {
406 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
407 }
408 
409 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
410 {
411 	return pci_platform_pm ?
412 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
413 }
414 
415 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
416 {
417 	return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
418 }
419 
420 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
421 {
422 	return pci_platform_pm ?
423 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
424 }
425 
426 /**
427  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
428  *                           given PCI device
429  * @dev: PCI device to handle.
430  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
431  *
432  * RETURN VALUE:
433  * -EINVAL if the requested state is invalid.
434  * -EIO if device does not support PCI PM or its PM capabilities register has a
435  * wrong version, or device doesn't support the requested state.
436  * 0 if device already is in the requested state.
437  * 0 if device's power state has been successfully changed.
438  */
439 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
440 {
441 	u16 pmcsr;
442 	bool need_restore = false;
443 
444 	/* Check if we're already there */
445 	if (dev->current_state == state)
446 		return 0;
447 
448 	if (!dev->pm_cap)
449 		return -EIO;
450 
451 	if (state < PCI_D0 || state > PCI_D3hot)
452 		return -EINVAL;
453 
454 	/* Validate current state:
455 	 * Can enter D0 from any state, but if we can only go deeper
456 	 * to sleep if we're already in a low power state
457 	 */
458 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
459 	    && dev->current_state > state) {
460 		dev_err(&dev->dev, "invalid power transition "
461 			"(from state %d to %d)\n", dev->current_state, state);
462 		return -EINVAL;
463 	}
464 
465 	/* check if this device supports the desired state */
466 	if ((state == PCI_D1 && !dev->d1_support)
467 	   || (state == PCI_D2 && !dev->d2_support))
468 		return -EIO;
469 
470 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
471 
472 	/* If we're (effectively) in D3, force entire word to 0.
473 	 * This doesn't affect PME_Status, disables PME_En, and
474 	 * sets PowerState to 0.
475 	 */
476 	switch (dev->current_state) {
477 	case PCI_D0:
478 	case PCI_D1:
479 	case PCI_D2:
480 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
481 		pmcsr |= state;
482 		break;
483 	case PCI_UNKNOWN: /* Boot-up */
484 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
485 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
486 			need_restore = true;
487 		/* Fall-through: force to D0 */
488 	default:
489 		pmcsr = 0;
490 		break;
491 	}
492 
493 	/* enter specified state */
494 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
495 
496 	/* Mandatory power management transition delays */
497 	/* see PCI PM 1.1 5.6.1 table 18 */
498 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
499 		msleep(pci_pm_d3_delay);
500 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
501 		udelay(PCI_PM_D2_DELAY);
502 
503 	dev->current_state = state;
504 
505 	/* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
506 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
507 	 * from D3hot to D0 _may_ perform an internal reset, thereby
508 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
509 	 * For example, at least some versions of the 3c905B and the
510 	 * 3c556B exhibit this behaviour.
511 	 *
512 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
513 	 * devices in a D3hot state at boot.  Consequently, we need to
514 	 * restore at least the BARs so that the device will be
515 	 * accessible to its driver.
516 	 */
517 	if (need_restore)
518 		pci_restore_bars(dev);
519 
520 	if (dev->bus->self)
521 		pcie_aspm_pm_state_change(dev->bus->self);
522 
523 	return 0;
524 }
525 
526 /**
527  * pci_update_current_state - Read PCI power state of given device from its
528  *                            PCI PM registers and cache it
529  * @dev: PCI device to handle.
530  * @state: State to cache in case the device doesn't have the PM capability
531  */
532 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
533 {
534 	if (dev->pm_cap) {
535 		u16 pmcsr;
536 
537 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
538 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
539 	} else {
540 		dev->current_state = state;
541 	}
542 }
543 
544 /**
545  * pci_platform_power_transition - Use platform to change device power state
546  * @dev: PCI device to handle.
547  * @state: State to put the device into.
548  */
549 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
550 {
551 	int error;
552 
553 	if (platform_pci_power_manageable(dev)) {
554 		error = platform_pci_set_power_state(dev, state);
555 		if (!error)
556 			pci_update_current_state(dev, state);
557 	} else {
558 		error = -ENODEV;
559 		/* Fall back to PCI_D0 if native PM is not supported */
560 		pci_update_current_state(dev, PCI_D0);
561 	}
562 
563 	return error;
564 }
565 
566 /**
567  * __pci_start_power_transition - Start power transition of a PCI device
568  * @dev: PCI device to handle.
569  * @state: State to put the device into.
570  */
571 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
572 {
573 	if (state == PCI_D0)
574 		pci_platform_power_transition(dev, PCI_D0);
575 }
576 
577 /**
578  * __pci_complete_power_transition - Complete power transition of a PCI device
579  * @dev: PCI device to handle.
580  * @state: State to put the device into.
581  *
582  * This function should not be called directly by device drivers.
583  */
584 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
585 {
586 	return state > PCI_D0 ?
587 			pci_platform_power_transition(dev, state) : -EINVAL;
588 }
589 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
590 
591 /**
592  * pci_set_power_state - Set the power state of a PCI device
593  * @dev: PCI device to handle.
594  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
595  *
596  * Transition a device to a new power state, using the platform formware and/or
597  * the device's PCI PM registers.
598  *
599  * RETURN VALUE:
600  * -EINVAL if the requested state is invalid.
601  * -EIO if device does not support PCI PM or its PM capabilities register has a
602  * wrong version, or device doesn't support the requested state.
603  * 0 if device already is in the requested state.
604  * 0 if device's power state has been successfully changed.
605  */
606 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
607 {
608 	int error;
609 
610 	/* bound the state we're entering */
611 	if (state > PCI_D3hot)
612 		state = PCI_D3hot;
613 	else if (state < PCI_D0)
614 		state = PCI_D0;
615 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
616 		/*
617 		 * If the device or the parent bridge do not support PCI PM,
618 		 * ignore the request if we're doing anything other than putting
619 		 * it into D0 (which would only happen on boot).
620 		 */
621 		return 0;
622 
623 	/* Check if we're already there */
624 	if (dev->current_state == state)
625 		return 0;
626 
627 	__pci_start_power_transition(dev, state);
628 
629 	/* This device is quirked not to be put into D3, so
630 	   don't put it in D3 */
631 	if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
632 		return 0;
633 
634 	error = pci_raw_set_power_state(dev, state);
635 
636 	if (!__pci_complete_power_transition(dev, state))
637 		error = 0;
638 
639 	return error;
640 }
641 
642 /**
643  * pci_choose_state - Choose the power state of a PCI device
644  * @dev: PCI device to be suspended
645  * @state: target sleep state for the whole system. This is the value
646  *	that is passed to suspend() function.
647  *
648  * Returns PCI power state suitable for given device and given system
649  * message.
650  */
651 
652 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
653 {
654 	pci_power_t ret;
655 
656 	if (!pci_find_capability(dev, PCI_CAP_ID_PM))
657 		return PCI_D0;
658 
659 	ret = platform_pci_choose_state(dev);
660 	if (ret != PCI_POWER_ERROR)
661 		return ret;
662 
663 	switch (state.event) {
664 	case PM_EVENT_ON:
665 		return PCI_D0;
666 	case PM_EVENT_FREEZE:
667 	case PM_EVENT_PRETHAW:
668 		/* REVISIT both freeze and pre-thaw "should" use D0 */
669 	case PM_EVENT_SUSPEND:
670 	case PM_EVENT_HIBERNATE:
671 		return PCI_D3hot;
672 	default:
673 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
674 			 state.event);
675 		BUG();
676 	}
677 	return PCI_D0;
678 }
679 
680 EXPORT_SYMBOL(pci_choose_state);
681 
682 #define PCI_EXP_SAVE_REGS	7
683 
684 static int pci_save_pcie_state(struct pci_dev *dev)
685 {
686 	int pos, i = 0;
687 	struct pci_cap_saved_state *save_state;
688 	u16 *cap;
689 
690 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
691 	if (pos <= 0)
692 		return 0;
693 
694 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
695 	if (!save_state) {
696 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
697 		return -ENOMEM;
698 	}
699 	cap = (u16 *)&save_state->data[0];
700 
701 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
702 	pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
703 	pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
704 	pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
705 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
706 	pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
707 	pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
708 
709 	return 0;
710 }
711 
712 static void pci_restore_pcie_state(struct pci_dev *dev)
713 {
714 	int i = 0, pos;
715 	struct pci_cap_saved_state *save_state;
716 	u16 *cap;
717 
718 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
719 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
720 	if (!save_state || pos <= 0)
721 		return;
722 	cap = (u16 *)&save_state->data[0];
723 
724 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
725 	pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
726 	pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
727 	pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
728 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
729 	pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
730 	pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
731 }
732 
733 
734 static int pci_save_pcix_state(struct pci_dev *dev)
735 {
736 	int pos;
737 	struct pci_cap_saved_state *save_state;
738 
739 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
740 	if (pos <= 0)
741 		return 0;
742 
743 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
744 	if (!save_state) {
745 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
746 		return -ENOMEM;
747 	}
748 
749 	pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
750 
751 	return 0;
752 }
753 
754 static void pci_restore_pcix_state(struct pci_dev *dev)
755 {
756 	int i = 0, pos;
757 	struct pci_cap_saved_state *save_state;
758 	u16 *cap;
759 
760 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
761 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
762 	if (!save_state || pos <= 0)
763 		return;
764 	cap = (u16 *)&save_state->data[0];
765 
766 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
767 }
768 
769 
770 /**
771  * pci_save_state - save the PCI configuration space of a device before suspending
772  * @dev: - PCI device that we're dealing with
773  */
774 int
775 pci_save_state(struct pci_dev *dev)
776 {
777 	int i;
778 	/* XXX: 100% dword access ok here? */
779 	for (i = 0; i < 16; i++)
780 		pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
781 	dev->state_saved = true;
782 	if ((i = pci_save_pcie_state(dev)) != 0)
783 		return i;
784 	if ((i = pci_save_pcix_state(dev)) != 0)
785 		return i;
786 	return 0;
787 }
788 
789 /**
790  * pci_restore_state - Restore the saved state of a PCI device
791  * @dev: - PCI device that we're dealing with
792  */
793 int
794 pci_restore_state(struct pci_dev *dev)
795 {
796 	int i;
797 	u32 val;
798 
799 	/* PCI Express register must be restored first */
800 	pci_restore_pcie_state(dev);
801 
802 	/*
803 	 * The Base Address register should be programmed before the command
804 	 * register(s)
805 	 */
806 	for (i = 15; i >= 0; i--) {
807 		pci_read_config_dword(dev, i * 4, &val);
808 		if (val != dev->saved_config_space[i]) {
809 			dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
810 				"space at offset %#x (was %#x, writing %#x)\n",
811 				i, val, (int)dev->saved_config_space[i]);
812 			pci_write_config_dword(dev,i * 4,
813 				dev->saved_config_space[i]);
814 		}
815 	}
816 	pci_restore_pcix_state(dev);
817 	pci_restore_msi_state(dev);
818 	pci_restore_iov_state(dev);
819 
820 	return 0;
821 }
822 
823 static int do_pci_enable_device(struct pci_dev *dev, int bars)
824 {
825 	int err;
826 
827 	err = pci_set_power_state(dev, PCI_D0);
828 	if (err < 0 && err != -EIO)
829 		return err;
830 	err = pcibios_enable_device(dev, bars);
831 	if (err < 0)
832 		return err;
833 	pci_fixup_device(pci_fixup_enable, dev);
834 
835 	return 0;
836 }
837 
838 /**
839  * pci_reenable_device - Resume abandoned device
840  * @dev: PCI device to be resumed
841  *
842  *  Note this function is a backend of pci_default_resume and is not supposed
843  *  to be called by normal code, write proper resume handler and use it instead.
844  */
845 int pci_reenable_device(struct pci_dev *dev)
846 {
847 	if (atomic_read(&dev->enable_cnt))
848 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
849 	return 0;
850 }
851 
852 static int __pci_enable_device_flags(struct pci_dev *dev,
853 				     resource_size_t flags)
854 {
855 	int err;
856 	int i, bars = 0;
857 
858 	if (atomic_add_return(1, &dev->enable_cnt) > 1)
859 		return 0;		/* already enabled */
860 
861 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
862 		if (dev->resource[i].flags & flags)
863 			bars |= (1 << i);
864 
865 	err = do_pci_enable_device(dev, bars);
866 	if (err < 0)
867 		atomic_dec(&dev->enable_cnt);
868 	return err;
869 }
870 
871 /**
872  * pci_enable_device_io - Initialize a device for use with IO space
873  * @dev: PCI device to be initialized
874  *
875  *  Initialize device before it's used by a driver. Ask low-level code
876  *  to enable I/O resources. Wake up the device if it was suspended.
877  *  Beware, this function can fail.
878  */
879 int pci_enable_device_io(struct pci_dev *dev)
880 {
881 	return __pci_enable_device_flags(dev, IORESOURCE_IO);
882 }
883 
884 /**
885  * pci_enable_device_mem - Initialize a device for use with Memory space
886  * @dev: PCI device to be initialized
887  *
888  *  Initialize device before it's used by a driver. Ask low-level code
889  *  to enable Memory resources. Wake up the device if it was suspended.
890  *  Beware, this function can fail.
891  */
892 int pci_enable_device_mem(struct pci_dev *dev)
893 {
894 	return __pci_enable_device_flags(dev, IORESOURCE_MEM);
895 }
896 
897 /**
898  * pci_enable_device - Initialize device before it's used by a driver.
899  * @dev: PCI device to be initialized
900  *
901  *  Initialize device before it's used by a driver. Ask low-level code
902  *  to enable I/O and memory. Wake up the device if it was suspended.
903  *  Beware, this function can fail.
904  *
905  *  Note we don't actually enable the device many times if we call
906  *  this function repeatedly (we just increment the count).
907  */
908 int pci_enable_device(struct pci_dev *dev)
909 {
910 	return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
911 }
912 
913 /*
914  * Managed PCI resources.  This manages device on/off, intx/msi/msix
915  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
916  * there's no need to track it separately.  pci_devres is initialized
917  * when a device is enabled using managed PCI device enable interface.
918  */
919 struct pci_devres {
920 	unsigned int enabled:1;
921 	unsigned int pinned:1;
922 	unsigned int orig_intx:1;
923 	unsigned int restore_intx:1;
924 	u32 region_mask;
925 };
926 
927 static void pcim_release(struct device *gendev, void *res)
928 {
929 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
930 	struct pci_devres *this = res;
931 	int i;
932 
933 	if (dev->msi_enabled)
934 		pci_disable_msi(dev);
935 	if (dev->msix_enabled)
936 		pci_disable_msix(dev);
937 
938 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
939 		if (this->region_mask & (1 << i))
940 			pci_release_region(dev, i);
941 
942 	if (this->restore_intx)
943 		pci_intx(dev, this->orig_intx);
944 
945 	if (this->enabled && !this->pinned)
946 		pci_disable_device(dev);
947 }
948 
949 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
950 {
951 	struct pci_devres *dr, *new_dr;
952 
953 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
954 	if (dr)
955 		return dr;
956 
957 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
958 	if (!new_dr)
959 		return NULL;
960 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
961 }
962 
963 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
964 {
965 	if (pci_is_managed(pdev))
966 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
967 	return NULL;
968 }
969 
970 /**
971  * pcim_enable_device - Managed pci_enable_device()
972  * @pdev: PCI device to be initialized
973  *
974  * Managed pci_enable_device().
975  */
976 int pcim_enable_device(struct pci_dev *pdev)
977 {
978 	struct pci_devres *dr;
979 	int rc;
980 
981 	dr = get_pci_dr(pdev);
982 	if (unlikely(!dr))
983 		return -ENOMEM;
984 	if (dr->enabled)
985 		return 0;
986 
987 	rc = pci_enable_device(pdev);
988 	if (!rc) {
989 		pdev->is_managed = 1;
990 		dr->enabled = 1;
991 	}
992 	return rc;
993 }
994 
995 /**
996  * pcim_pin_device - Pin managed PCI device
997  * @pdev: PCI device to pin
998  *
999  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1000  * driver detach.  @pdev must have been enabled with
1001  * pcim_enable_device().
1002  */
1003 void pcim_pin_device(struct pci_dev *pdev)
1004 {
1005 	struct pci_devres *dr;
1006 
1007 	dr = find_pci_dr(pdev);
1008 	WARN_ON(!dr || !dr->enabled);
1009 	if (dr)
1010 		dr->pinned = 1;
1011 }
1012 
1013 /**
1014  * pcibios_disable_device - disable arch specific PCI resources for device dev
1015  * @dev: the PCI device to disable
1016  *
1017  * Disables architecture specific PCI resources for the device. This
1018  * is the default implementation. Architecture implementations can
1019  * override this.
1020  */
1021 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1022 
1023 static void do_pci_disable_device(struct pci_dev *dev)
1024 {
1025 	u16 pci_command;
1026 
1027 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1028 	if (pci_command & PCI_COMMAND_MASTER) {
1029 		pci_command &= ~PCI_COMMAND_MASTER;
1030 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1031 	}
1032 
1033 	pcibios_disable_device(dev);
1034 }
1035 
1036 /**
1037  * pci_disable_enabled_device - Disable device without updating enable_cnt
1038  * @dev: PCI device to disable
1039  *
1040  * NOTE: This function is a backend of PCI power management routines and is
1041  * not supposed to be called drivers.
1042  */
1043 void pci_disable_enabled_device(struct pci_dev *dev)
1044 {
1045 	if (atomic_read(&dev->enable_cnt))
1046 		do_pci_disable_device(dev);
1047 }
1048 
1049 /**
1050  * pci_disable_device - Disable PCI device after use
1051  * @dev: PCI device to be disabled
1052  *
1053  * Signal to the system that the PCI device is not in use by the system
1054  * anymore.  This only involves disabling PCI bus-mastering, if active.
1055  *
1056  * Note we don't actually disable the device until all callers of
1057  * pci_device_enable() have called pci_device_disable().
1058  */
1059 void
1060 pci_disable_device(struct pci_dev *dev)
1061 {
1062 	struct pci_devres *dr;
1063 
1064 	dr = find_pci_dr(dev);
1065 	if (dr)
1066 		dr->enabled = 0;
1067 
1068 	if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1069 		return;
1070 
1071 	do_pci_disable_device(dev);
1072 
1073 	dev->is_busmaster = 0;
1074 }
1075 
1076 /**
1077  * pcibios_set_pcie_reset_state - set reset state for device dev
1078  * @dev: the PCI-E device reset
1079  * @state: Reset state to enter into
1080  *
1081  *
1082  * Sets the PCI-E reset state for the device. This is the default
1083  * implementation. Architecture implementations can override this.
1084  */
1085 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1086 							enum pcie_reset_state state)
1087 {
1088 	return -EINVAL;
1089 }
1090 
1091 /**
1092  * pci_set_pcie_reset_state - set reset state for device dev
1093  * @dev: the PCI-E device reset
1094  * @state: Reset state to enter into
1095  *
1096  *
1097  * Sets the PCI reset state for the device.
1098  */
1099 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1100 {
1101 	return pcibios_set_pcie_reset_state(dev, state);
1102 }
1103 
1104 /**
1105  * pci_pme_capable - check the capability of PCI device to generate PME#
1106  * @dev: PCI device to handle.
1107  * @state: PCI state from which device will issue PME#.
1108  */
1109 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1110 {
1111 	if (!dev->pm_cap)
1112 		return false;
1113 
1114 	return !!(dev->pme_support & (1 << state));
1115 }
1116 
1117 /**
1118  * pci_pme_active - enable or disable PCI device's PME# function
1119  * @dev: PCI device to handle.
1120  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1121  *
1122  * The caller must verify that the device is capable of generating PME# before
1123  * calling this function with @enable equal to 'true'.
1124  */
1125 void pci_pme_active(struct pci_dev *dev, bool enable)
1126 {
1127 	u16 pmcsr;
1128 
1129 	if (!dev->pm_cap)
1130 		return;
1131 
1132 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1133 	/* Clear PME_Status by writing 1 to it and enable PME# */
1134 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1135 	if (!enable)
1136 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1137 
1138 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1139 
1140 	dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1141 			enable ? "enabled" : "disabled");
1142 }
1143 
1144 /**
1145  * pci_enable_wake - enable PCI device as wakeup event source
1146  * @dev: PCI device affected
1147  * @state: PCI state from which device will issue wakeup events
1148  * @enable: True to enable event generation; false to disable
1149  *
1150  * This enables the device as a wakeup event source, or disables it.
1151  * When such events involves platform-specific hooks, those hooks are
1152  * called automatically by this routine.
1153  *
1154  * Devices with legacy power management (no standard PCI PM capabilities)
1155  * always require such platform hooks.
1156  *
1157  * RETURN VALUE:
1158  * 0 is returned on success
1159  * -EINVAL is returned if device is not supposed to wake up the system
1160  * Error code depending on the platform is returned if both the platform and
1161  * the native mechanism fail to enable the generation of wake-up events
1162  */
1163 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
1164 {
1165 	int error = 0;
1166 	bool pme_done = false;
1167 
1168 	if (enable && !device_may_wakeup(&dev->dev))
1169 		return -EINVAL;
1170 
1171 	/*
1172 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1173 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1174 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1175 	 */
1176 
1177 	if (!enable && platform_pci_can_wakeup(dev))
1178 		error = platform_pci_sleep_wake(dev, false);
1179 
1180 	if (!enable || pci_pme_capable(dev, state)) {
1181 		pci_pme_active(dev, enable);
1182 		pme_done = true;
1183 	}
1184 
1185 	if (enable && platform_pci_can_wakeup(dev))
1186 		error = platform_pci_sleep_wake(dev, true);
1187 
1188 	return pme_done ? 0 : error;
1189 }
1190 
1191 /**
1192  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1193  * @dev: PCI device to prepare
1194  * @enable: True to enable wake-up event generation; false to disable
1195  *
1196  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1197  * and this function allows them to set that up cleanly - pci_enable_wake()
1198  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1199  * ordering constraints.
1200  *
1201  * This function only returns error code if the device is not capable of
1202  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1203  * enable wake-up power for it.
1204  */
1205 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1206 {
1207 	return pci_pme_capable(dev, PCI_D3cold) ?
1208 			pci_enable_wake(dev, PCI_D3cold, enable) :
1209 			pci_enable_wake(dev, PCI_D3hot, enable);
1210 }
1211 
1212 /**
1213  * pci_target_state - find an appropriate low power state for a given PCI dev
1214  * @dev: PCI device
1215  *
1216  * Use underlying platform code to find a supported low power state for @dev.
1217  * If the platform can't manage @dev, return the deepest state from which it
1218  * can generate wake events, based on any available PME info.
1219  */
1220 pci_power_t pci_target_state(struct pci_dev *dev)
1221 {
1222 	pci_power_t target_state = PCI_D3hot;
1223 
1224 	if (platform_pci_power_manageable(dev)) {
1225 		/*
1226 		 * Call the platform to choose the target state of the device
1227 		 * and enable wake-up from this state if supported.
1228 		 */
1229 		pci_power_t state = platform_pci_choose_state(dev);
1230 
1231 		switch (state) {
1232 		case PCI_POWER_ERROR:
1233 		case PCI_UNKNOWN:
1234 			break;
1235 		case PCI_D1:
1236 		case PCI_D2:
1237 			if (pci_no_d1d2(dev))
1238 				break;
1239 		default:
1240 			target_state = state;
1241 		}
1242 	} else if (device_may_wakeup(&dev->dev)) {
1243 		/*
1244 		 * Find the deepest state from which the device can generate
1245 		 * wake-up events, make it the target state and enable device
1246 		 * to generate PME#.
1247 		 */
1248 		if (!dev->pm_cap)
1249 			return PCI_POWER_ERROR;
1250 
1251 		if (dev->pme_support) {
1252 			while (target_state
1253 			      && !(dev->pme_support & (1 << target_state)))
1254 				target_state--;
1255 		}
1256 	}
1257 
1258 	return target_state;
1259 }
1260 
1261 /**
1262  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1263  * @dev: Device to handle.
1264  *
1265  * Choose the power state appropriate for the device depending on whether
1266  * it can wake up the system and/or is power manageable by the platform
1267  * (PCI_D3hot is the default) and put the device into that state.
1268  */
1269 int pci_prepare_to_sleep(struct pci_dev *dev)
1270 {
1271 	pci_power_t target_state = pci_target_state(dev);
1272 	int error;
1273 
1274 	if (target_state == PCI_POWER_ERROR)
1275 		return -EIO;
1276 
1277 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1278 
1279 	error = pci_set_power_state(dev, target_state);
1280 
1281 	if (error)
1282 		pci_enable_wake(dev, target_state, false);
1283 
1284 	return error;
1285 }
1286 
1287 /**
1288  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1289  * @dev: Device to handle.
1290  *
1291  * Disable device's sytem wake-up capability and put it into D0.
1292  */
1293 int pci_back_from_sleep(struct pci_dev *dev)
1294 {
1295 	pci_enable_wake(dev, PCI_D0, false);
1296 	return pci_set_power_state(dev, PCI_D0);
1297 }
1298 
1299 /**
1300  * pci_pm_init - Initialize PM functions of given PCI device
1301  * @dev: PCI device to handle.
1302  */
1303 void pci_pm_init(struct pci_dev *dev)
1304 {
1305 	int pm;
1306 	u16 pmc;
1307 
1308 	dev->pm_cap = 0;
1309 
1310 	/* find PCI PM capability in list */
1311 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1312 	if (!pm)
1313 		return;
1314 	/* Check device's ability to generate PME# */
1315 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1316 
1317 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1318 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1319 			pmc & PCI_PM_CAP_VER_MASK);
1320 		return;
1321 	}
1322 
1323 	dev->pm_cap = pm;
1324 
1325 	dev->d1_support = false;
1326 	dev->d2_support = false;
1327 	if (!pci_no_d1d2(dev)) {
1328 		if (pmc & PCI_PM_CAP_D1)
1329 			dev->d1_support = true;
1330 		if (pmc & PCI_PM_CAP_D2)
1331 			dev->d2_support = true;
1332 
1333 		if (dev->d1_support || dev->d2_support)
1334 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1335 				   dev->d1_support ? " D1" : "",
1336 				   dev->d2_support ? " D2" : "");
1337 	}
1338 
1339 	pmc &= PCI_PM_CAP_PME_MASK;
1340 	if (pmc) {
1341 		dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1342 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1343 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1344 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1345 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1346 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1347 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1348 		/*
1349 		 * Make device's PM flags reflect the wake-up capability, but
1350 		 * let the user space enable it to wake up the system as needed.
1351 		 */
1352 		device_set_wakeup_capable(&dev->dev, true);
1353 		device_set_wakeup_enable(&dev->dev, false);
1354 		/* Disable the PME# generation functionality */
1355 		pci_pme_active(dev, false);
1356 	} else {
1357 		dev->pme_support = 0;
1358 	}
1359 }
1360 
1361 /**
1362  * platform_pci_wakeup_init - init platform wakeup if present
1363  * @dev: PCI device
1364  *
1365  * Some devices don't have PCI PM caps but can still generate wakeup
1366  * events through platform methods (like ACPI events).  If @dev supports
1367  * platform wakeup events, set the device flag to indicate as much.  This
1368  * may be redundant if the device also supports PCI PM caps, but double
1369  * initialization should be safe in that case.
1370  */
1371 void platform_pci_wakeup_init(struct pci_dev *dev)
1372 {
1373 	if (!platform_pci_can_wakeup(dev))
1374 		return;
1375 
1376 	device_set_wakeup_capable(&dev->dev, true);
1377 	device_set_wakeup_enable(&dev->dev, false);
1378 	platform_pci_sleep_wake(dev, false);
1379 }
1380 
1381 /**
1382  * pci_add_save_buffer - allocate buffer for saving given capability registers
1383  * @dev: the PCI device
1384  * @cap: the capability to allocate the buffer for
1385  * @size: requested size of the buffer
1386  */
1387 static int pci_add_cap_save_buffer(
1388 	struct pci_dev *dev, char cap, unsigned int size)
1389 {
1390 	int pos;
1391 	struct pci_cap_saved_state *save_state;
1392 
1393 	pos = pci_find_capability(dev, cap);
1394 	if (pos <= 0)
1395 		return 0;
1396 
1397 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1398 	if (!save_state)
1399 		return -ENOMEM;
1400 
1401 	save_state->cap_nr = cap;
1402 	pci_add_saved_cap(dev, save_state);
1403 
1404 	return 0;
1405 }
1406 
1407 /**
1408  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1409  * @dev: the PCI device
1410  */
1411 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1412 {
1413 	int error;
1414 
1415 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1416 					PCI_EXP_SAVE_REGS * sizeof(u16));
1417 	if (error)
1418 		dev_err(&dev->dev,
1419 			"unable to preallocate PCI Express save buffer\n");
1420 
1421 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1422 	if (error)
1423 		dev_err(&dev->dev,
1424 			"unable to preallocate PCI-X save buffer\n");
1425 }
1426 
1427 /**
1428  * pci_enable_ari - enable ARI forwarding if hardware support it
1429  * @dev: the PCI device
1430  */
1431 void pci_enable_ari(struct pci_dev *dev)
1432 {
1433 	int pos;
1434 	u32 cap;
1435 	u16 ctrl;
1436 	struct pci_dev *bridge;
1437 
1438 	if (!dev->is_pcie || dev->devfn)
1439 		return;
1440 
1441 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1442 	if (!pos)
1443 		return;
1444 
1445 	bridge = dev->bus->self;
1446 	if (!bridge || !bridge->is_pcie)
1447 		return;
1448 
1449 	pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1450 	if (!pos)
1451 		return;
1452 
1453 	pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1454 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
1455 		return;
1456 
1457 	pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1458 	ctrl |= PCI_EXP_DEVCTL2_ARI;
1459 	pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1460 
1461 	bridge->ari_enabled = 1;
1462 }
1463 
1464 /**
1465  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1466  * @dev: the PCI device
1467  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1468  *
1469  * Perform INTx swizzling for a device behind one level of bridge.  This is
1470  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1471  * behind bridges on add-in cards.
1472  */
1473 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1474 {
1475 	return (((pin - 1) + PCI_SLOT(dev->devfn)) % 4) + 1;
1476 }
1477 
1478 int
1479 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1480 {
1481 	u8 pin;
1482 
1483 	pin = dev->pin;
1484 	if (!pin)
1485 		return -1;
1486 
1487 	while (dev->bus->parent) {
1488 		pin = pci_swizzle_interrupt_pin(dev, pin);
1489 		dev = dev->bus->self;
1490 	}
1491 	*bridge = dev;
1492 	return pin;
1493 }
1494 
1495 /**
1496  * pci_common_swizzle - swizzle INTx all the way to root bridge
1497  * @dev: the PCI device
1498  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1499  *
1500  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
1501  * bridges all the way up to a PCI root bus.
1502  */
1503 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1504 {
1505 	u8 pin = *pinp;
1506 
1507 	while (dev->bus->parent) {
1508 		pin = pci_swizzle_interrupt_pin(dev, pin);
1509 		dev = dev->bus->self;
1510 	}
1511 	*pinp = pin;
1512 	return PCI_SLOT(dev->devfn);
1513 }
1514 
1515 /**
1516  *	pci_release_region - Release a PCI bar
1517  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
1518  *	@bar: BAR to release
1519  *
1520  *	Releases the PCI I/O and memory resources previously reserved by a
1521  *	successful call to pci_request_region.  Call this function only
1522  *	after all use of the PCI regions has ceased.
1523  */
1524 void pci_release_region(struct pci_dev *pdev, int bar)
1525 {
1526 	struct pci_devres *dr;
1527 
1528 	if (pci_resource_len(pdev, bar) == 0)
1529 		return;
1530 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1531 		release_region(pci_resource_start(pdev, bar),
1532 				pci_resource_len(pdev, bar));
1533 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1534 		release_mem_region(pci_resource_start(pdev, bar),
1535 				pci_resource_len(pdev, bar));
1536 
1537 	dr = find_pci_dr(pdev);
1538 	if (dr)
1539 		dr->region_mask &= ~(1 << bar);
1540 }
1541 
1542 /**
1543  *	__pci_request_region - Reserved PCI I/O and memory resource
1544  *	@pdev: PCI device whose resources are to be reserved
1545  *	@bar: BAR to be reserved
1546  *	@res_name: Name to be associated with resource.
1547  *	@exclusive: whether the region access is exclusive or not
1548  *
1549  *	Mark the PCI region associated with PCI device @pdev BR @bar as
1550  *	being reserved by owner @res_name.  Do not access any
1551  *	address inside the PCI regions unless this call returns
1552  *	successfully.
1553  *
1554  *	If @exclusive is set, then the region is marked so that userspace
1555  *	is explicitly not allowed to map the resource via /dev/mem or
1556  * 	sysfs MMIO access.
1557  *
1558  *	Returns 0 on success, or %EBUSY on error.  A warning
1559  *	message is also printed on failure.
1560  */
1561 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1562 									int exclusive)
1563 {
1564 	struct pci_devres *dr;
1565 
1566 	if (pci_resource_len(pdev, bar) == 0)
1567 		return 0;
1568 
1569 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1570 		if (!request_region(pci_resource_start(pdev, bar),
1571 			    pci_resource_len(pdev, bar), res_name))
1572 			goto err_out;
1573 	}
1574 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1575 		if (!__request_mem_region(pci_resource_start(pdev, bar),
1576 					pci_resource_len(pdev, bar), res_name,
1577 					exclusive))
1578 			goto err_out;
1579 	}
1580 
1581 	dr = find_pci_dr(pdev);
1582 	if (dr)
1583 		dr->region_mask |= 1 << bar;
1584 
1585 	return 0;
1586 
1587 err_out:
1588 	dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1589 		 bar,
1590 		 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1591 		 &pdev->resource[bar]);
1592 	return -EBUSY;
1593 }
1594 
1595 /**
1596  *	pci_request_region - Reserve PCI I/O and memory resource
1597  *	@pdev: PCI device whose resources are to be reserved
1598  *	@bar: BAR to be reserved
1599  *	@res_name: Name to be associated with resource
1600  *
1601  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
1602  *	being reserved by owner @res_name.  Do not access any
1603  *	address inside the PCI regions unless this call returns
1604  *	successfully.
1605  *
1606  *	Returns 0 on success, or %EBUSY on error.  A warning
1607  *	message is also printed on failure.
1608  */
1609 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1610 {
1611 	return __pci_request_region(pdev, bar, res_name, 0);
1612 }
1613 
1614 /**
1615  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
1616  *	@pdev: PCI device whose resources are to be reserved
1617  *	@bar: BAR to be reserved
1618  *	@res_name: Name to be associated with resource.
1619  *
1620  *	Mark the PCI region associated with PCI device @pdev BR @bar as
1621  *	being reserved by owner @res_name.  Do not access any
1622  *	address inside the PCI regions unless this call returns
1623  *	successfully.
1624  *
1625  *	Returns 0 on success, or %EBUSY on error.  A warning
1626  *	message is also printed on failure.
1627  *
1628  *	The key difference that _exclusive makes it that userspace is
1629  *	explicitly not allowed to map the resource via /dev/mem or
1630  * 	sysfs.
1631  */
1632 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1633 {
1634 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1635 }
1636 /**
1637  * pci_release_selected_regions - Release selected PCI I/O and memory resources
1638  * @pdev: PCI device whose resources were previously reserved
1639  * @bars: Bitmask of BARs to be released
1640  *
1641  * Release selected PCI I/O and memory resources previously reserved.
1642  * Call this function only after all use of the PCI regions has ceased.
1643  */
1644 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1645 {
1646 	int i;
1647 
1648 	for (i = 0; i < 6; i++)
1649 		if (bars & (1 << i))
1650 			pci_release_region(pdev, i);
1651 }
1652 
1653 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1654 				 const char *res_name, int excl)
1655 {
1656 	int i;
1657 
1658 	for (i = 0; i < 6; i++)
1659 		if (bars & (1 << i))
1660 			if (__pci_request_region(pdev, i, res_name, excl))
1661 				goto err_out;
1662 	return 0;
1663 
1664 err_out:
1665 	while(--i >= 0)
1666 		if (bars & (1 << i))
1667 			pci_release_region(pdev, i);
1668 
1669 	return -EBUSY;
1670 }
1671 
1672 
1673 /**
1674  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1675  * @pdev: PCI device whose resources are to be reserved
1676  * @bars: Bitmask of BARs to be requested
1677  * @res_name: Name to be associated with resource
1678  */
1679 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1680 				 const char *res_name)
1681 {
1682 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
1683 }
1684 
1685 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1686 				 int bars, const char *res_name)
1687 {
1688 	return __pci_request_selected_regions(pdev, bars, res_name,
1689 			IORESOURCE_EXCLUSIVE);
1690 }
1691 
1692 /**
1693  *	pci_release_regions - Release reserved PCI I/O and memory resources
1694  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
1695  *
1696  *	Releases all PCI I/O and memory resources previously reserved by a
1697  *	successful call to pci_request_regions.  Call this function only
1698  *	after all use of the PCI regions has ceased.
1699  */
1700 
1701 void pci_release_regions(struct pci_dev *pdev)
1702 {
1703 	pci_release_selected_regions(pdev, (1 << 6) - 1);
1704 }
1705 
1706 /**
1707  *	pci_request_regions - Reserved PCI I/O and memory resources
1708  *	@pdev: PCI device whose resources are to be reserved
1709  *	@res_name: Name to be associated with resource.
1710  *
1711  *	Mark all PCI regions associated with PCI device @pdev as
1712  *	being reserved by owner @res_name.  Do not access any
1713  *	address inside the PCI regions unless this call returns
1714  *	successfully.
1715  *
1716  *	Returns 0 on success, or %EBUSY on error.  A warning
1717  *	message is also printed on failure.
1718  */
1719 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1720 {
1721 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1722 }
1723 
1724 /**
1725  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1726  *	@pdev: PCI device whose resources are to be reserved
1727  *	@res_name: Name to be associated with resource.
1728  *
1729  *	Mark all PCI regions associated with PCI device @pdev as
1730  *	being reserved by owner @res_name.  Do not access any
1731  *	address inside the PCI regions unless this call returns
1732  *	successfully.
1733  *
1734  *	pci_request_regions_exclusive() will mark the region so that
1735  * 	/dev/mem and the sysfs MMIO access will not be allowed.
1736  *
1737  *	Returns 0 on success, or %EBUSY on error.  A warning
1738  *	message is also printed on failure.
1739  */
1740 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1741 {
1742 	return pci_request_selected_regions_exclusive(pdev,
1743 					((1 << 6) - 1), res_name);
1744 }
1745 
1746 static void __pci_set_master(struct pci_dev *dev, bool enable)
1747 {
1748 	u16 old_cmd, cmd;
1749 
1750 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1751 	if (enable)
1752 		cmd = old_cmd | PCI_COMMAND_MASTER;
1753 	else
1754 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
1755 	if (cmd != old_cmd) {
1756 		dev_dbg(&dev->dev, "%s bus mastering\n",
1757 			enable ? "enabling" : "disabling");
1758 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1759 	}
1760 	dev->is_busmaster = enable;
1761 }
1762 
1763 /**
1764  * pci_set_master - enables bus-mastering for device dev
1765  * @dev: the PCI device to enable
1766  *
1767  * Enables bus-mastering on the device and calls pcibios_set_master()
1768  * to do the needed arch specific settings.
1769  */
1770 void pci_set_master(struct pci_dev *dev)
1771 {
1772 	__pci_set_master(dev, true);
1773 	pcibios_set_master(dev);
1774 }
1775 
1776 /**
1777  * pci_clear_master - disables bus-mastering for device dev
1778  * @dev: the PCI device to disable
1779  */
1780 void pci_clear_master(struct pci_dev *dev)
1781 {
1782 	__pci_set_master(dev, false);
1783 }
1784 
1785 #ifdef PCI_DISABLE_MWI
1786 int pci_set_mwi(struct pci_dev *dev)
1787 {
1788 	return 0;
1789 }
1790 
1791 int pci_try_set_mwi(struct pci_dev *dev)
1792 {
1793 	return 0;
1794 }
1795 
1796 void pci_clear_mwi(struct pci_dev *dev)
1797 {
1798 }
1799 
1800 #else
1801 
1802 #ifndef PCI_CACHE_LINE_BYTES
1803 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1804 #endif
1805 
1806 /* This can be overridden by arch code. */
1807 /* Don't forget this is measured in 32-bit words, not bytes */
1808 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1809 
1810 /**
1811  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1812  * @dev: the PCI device for which MWI is to be enabled
1813  *
1814  * Helper function for pci_set_mwi.
1815  * Originally copied from drivers/net/acenic.c.
1816  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1817  *
1818  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1819  */
1820 static int
1821 pci_set_cacheline_size(struct pci_dev *dev)
1822 {
1823 	u8 cacheline_size;
1824 
1825 	if (!pci_cache_line_size)
1826 		return -EINVAL;		/* The system doesn't support MWI. */
1827 
1828 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1829 	   equal to or multiple of the right value. */
1830 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1831 	if (cacheline_size >= pci_cache_line_size &&
1832 	    (cacheline_size % pci_cache_line_size) == 0)
1833 		return 0;
1834 
1835 	/* Write the correct value. */
1836 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1837 	/* Read it back. */
1838 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1839 	if (cacheline_size == pci_cache_line_size)
1840 		return 0;
1841 
1842 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1843 		   "supported\n", pci_cache_line_size << 2);
1844 
1845 	return -EINVAL;
1846 }
1847 
1848 /**
1849  * pci_set_mwi - enables memory-write-invalidate PCI transaction
1850  * @dev: the PCI device for which MWI is enabled
1851  *
1852  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1853  *
1854  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1855  */
1856 int
1857 pci_set_mwi(struct pci_dev *dev)
1858 {
1859 	int rc;
1860 	u16 cmd;
1861 
1862 	rc = pci_set_cacheline_size(dev);
1863 	if (rc)
1864 		return rc;
1865 
1866 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
1867 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1868 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1869 		cmd |= PCI_COMMAND_INVALIDATE;
1870 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1871 	}
1872 
1873 	return 0;
1874 }
1875 
1876 /**
1877  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1878  * @dev: the PCI device for which MWI is enabled
1879  *
1880  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1881  * Callers are not required to check the return value.
1882  *
1883  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1884  */
1885 int pci_try_set_mwi(struct pci_dev *dev)
1886 {
1887 	int rc = pci_set_mwi(dev);
1888 	return rc;
1889 }
1890 
1891 /**
1892  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1893  * @dev: the PCI device to disable
1894  *
1895  * Disables PCI Memory-Write-Invalidate transaction on the device
1896  */
1897 void
1898 pci_clear_mwi(struct pci_dev *dev)
1899 {
1900 	u16 cmd;
1901 
1902 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
1903 	if (cmd & PCI_COMMAND_INVALIDATE) {
1904 		cmd &= ~PCI_COMMAND_INVALIDATE;
1905 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1906 	}
1907 }
1908 #endif /* ! PCI_DISABLE_MWI */
1909 
1910 /**
1911  * pci_intx - enables/disables PCI INTx for device dev
1912  * @pdev: the PCI device to operate on
1913  * @enable: boolean: whether to enable or disable PCI INTx
1914  *
1915  * Enables/disables PCI INTx for device dev
1916  */
1917 void
1918 pci_intx(struct pci_dev *pdev, int enable)
1919 {
1920 	u16 pci_command, new;
1921 
1922 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1923 
1924 	if (enable) {
1925 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1926 	} else {
1927 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
1928 	}
1929 
1930 	if (new != pci_command) {
1931 		struct pci_devres *dr;
1932 
1933 		pci_write_config_word(pdev, PCI_COMMAND, new);
1934 
1935 		dr = find_pci_dr(pdev);
1936 		if (dr && !dr->restore_intx) {
1937 			dr->restore_intx = 1;
1938 			dr->orig_intx = !enable;
1939 		}
1940 	}
1941 }
1942 
1943 /**
1944  * pci_msi_off - disables any msi or msix capabilities
1945  * @dev: the PCI device to operate on
1946  *
1947  * If you want to use msi see pci_enable_msi and friends.
1948  * This is a lower level primitive that allows us to disable
1949  * msi operation at the device level.
1950  */
1951 void pci_msi_off(struct pci_dev *dev)
1952 {
1953 	int pos;
1954 	u16 control;
1955 
1956 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
1957 	if (pos) {
1958 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
1959 		control &= ~PCI_MSI_FLAGS_ENABLE;
1960 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
1961 	}
1962 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
1963 	if (pos) {
1964 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
1965 		control &= ~PCI_MSIX_FLAGS_ENABLE;
1966 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
1967 	}
1968 }
1969 
1970 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
1971 /*
1972  * These can be overridden by arch-specific implementations
1973  */
1974 int
1975 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
1976 {
1977 	if (!pci_dma_supported(dev, mask))
1978 		return -EIO;
1979 
1980 	dev->dma_mask = mask;
1981 
1982 	return 0;
1983 }
1984 
1985 int
1986 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
1987 {
1988 	if (!pci_dma_supported(dev, mask))
1989 		return -EIO;
1990 
1991 	dev->dev.coherent_dma_mask = mask;
1992 
1993 	return 0;
1994 }
1995 #endif
1996 
1997 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
1998 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
1999 {
2000 	return dma_set_max_seg_size(&dev->dev, size);
2001 }
2002 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2003 #endif
2004 
2005 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2006 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2007 {
2008 	return dma_set_seg_boundary(&dev->dev, mask);
2009 }
2010 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2011 #endif
2012 
2013 static int __pcie_flr(struct pci_dev *dev, int probe)
2014 {
2015 	u16 status;
2016 	u32 cap;
2017 	int exppos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2018 
2019 	if (!exppos)
2020 		return -ENOTTY;
2021 	pci_read_config_dword(dev, exppos + PCI_EXP_DEVCAP, &cap);
2022 	if (!(cap & PCI_EXP_DEVCAP_FLR))
2023 		return -ENOTTY;
2024 
2025 	if (probe)
2026 		return 0;
2027 
2028 	pci_block_user_cfg_access(dev);
2029 
2030 	/* Wait for Transaction Pending bit clean */
2031 	pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2032 	if (!(status & PCI_EXP_DEVSTA_TRPND))
2033 		goto transaction_done;
2034 
2035 	msleep(100);
2036 	pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2037 	if (!(status & PCI_EXP_DEVSTA_TRPND))
2038 		goto transaction_done;
2039 
2040 	dev_info(&dev->dev, "Busy after 100ms while trying to reset; "
2041 			"sleeping for 1 second\n");
2042 	ssleep(1);
2043 	pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2044 	if (status & PCI_EXP_DEVSTA_TRPND)
2045 		dev_info(&dev->dev, "Still busy after 1s; "
2046 				"proceeding with reset anyway\n");
2047 
2048 transaction_done:
2049 	pci_write_config_word(dev, exppos + PCI_EXP_DEVCTL,
2050 				PCI_EXP_DEVCTL_BCR_FLR);
2051 	mdelay(100);
2052 
2053 	pci_unblock_user_cfg_access(dev);
2054 	return 0;
2055 }
2056 
2057 static int __pci_af_flr(struct pci_dev *dev, int probe)
2058 {
2059 	int cappos = pci_find_capability(dev, PCI_CAP_ID_AF);
2060 	u8 status;
2061 	u8 cap;
2062 
2063 	if (!cappos)
2064 		return -ENOTTY;
2065 	pci_read_config_byte(dev, cappos + PCI_AF_CAP, &cap);
2066 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2067 		return -ENOTTY;
2068 
2069 	if (probe)
2070 		return 0;
2071 
2072 	pci_block_user_cfg_access(dev);
2073 
2074 	/* Wait for Transaction Pending bit clean */
2075 	pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2076 	if (!(status & PCI_AF_STATUS_TP))
2077 		goto transaction_done;
2078 
2079 	msleep(100);
2080 	pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2081 	if (!(status & PCI_AF_STATUS_TP))
2082 		goto transaction_done;
2083 
2084 	dev_info(&dev->dev, "Busy after 100ms while trying to"
2085 			" reset; sleeping for 1 second\n");
2086 	ssleep(1);
2087 	pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2088 	if (status & PCI_AF_STATUS_TP)
2089 		dev_info(&dev->dev, "Still busy after 1s; "
2090 				"proceeding with reset anyway\n");
2091 
2092 transaction_done:
2093 	pci_write_config_byte(dev, cappos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2094 	mdelay(100);
2095 
2096 	pci_unblock_user_cfg_access(dev);
2097 	return 0;
2098 }
2099 
2100 static int __pci_reset_function(struct pci_dev *pdev, int probe)
2101 {
2102 	int res;
2103 
2104 	res = __pcie_flr(pdev, probe);
2105 	if (res != -ENOTTY)
2106 		return res;
2107 
2108 	res = __pci_af_flr(pdev, probe);
2109 	if (res != -ENOTTY)
2110 		return res;
2111 
2112 	return res;
2113 }
2114 
2115 /**
2116  * pci_execute_reset_function() - Reset a PCI device function
2117  * @dev: Device function to reset
2118  *
2119  * Some devices allow an individual function to be reset without affecting
2120  * other functions in the same device.  The PCI device must be responsive
2121  * to PCI config space in order to use this function.
2122  *
2123  * The device function is presumed to be unused when this function is called.
2124  * Resetting the device will make the contents of PCI configuration space
2125  * random, so any caller of this must be prepared to reinitialise the
2126  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2127  * etc.
2128  *
2129  * Returns 0 if the device function was successfully reset or -ENOTTY if the
2130  * device doesn't support resetting a single function.
2131  */
2132 int pci_execute_reset_function(struct pci_dev *dev)
2133 {
2134 	return __pci_reset_function(dev, 0);
2135 }
2136 EXPORT_SYMBOL_GPL(pci_execute_reset_function);
2137 
2138 /**
2139  * pci_reset_function() - quiesce and reset a PCI device function
2140  * @dev: Device function to reset
2141  *
2142  * Some devices allow an individual function to be reset without affecting
2143  * other functions in the same device.  The PCI device must be responsive
2144  * to PCI config space in order to use this function.
2145  *
2146  * This function does not just reset the PCI portion of a device, but
2147  * clears all the state associated with the device.  This function differs
2148  * from pci_execute_reset_function in that it saves and restores device state
2149  * over the reset.
2150  *
2151  * Returns 0 if the device function was successfully reset or -ENOTTY if the
2152  * device doesn't support resetting a single function.
2153  */
2154 int pci_reset_function(struct pci_dev *dev)
2155 {
2156 	int r = __pci_reset_function(dev, 1);
2157 
2158 	if (r < 0)
2159 		return r;
2160 
2161 	if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2162 		disable_irq(dev->irq);
2163 	pci_save_state(dev);
2164 
2165 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2166 
2167 	r = pci_execute_reset_function(dev);
2168 
2169 	pci_restore_state(dev);
2170 	if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2171 		enable_irq(dev->irq);
2172 
2173 	return r;
2174 }
2175 EXPORT_SYMBOL_GPL(pci_reset_function);
2176 
2177 /**
2178  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2179  * @dev: PCI device to query
2180  *
2181  * Returns mmrbc: maximum designed memory read count in bytes
2182  *    or appropriate error value.
2183  */
2184 int pcix_get_max_mmrbc(struct pci_dev *dev)
2185 {
2186 	int err, cap;
2187 	u32 stat;
2188 
2189 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2190 	if (!cap)
2191 		return -EINVAL;
2192 
2193 	err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2194 	if (err)
2195 		return -EINVAL;
2196 
2197 	return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2198 }
2199 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2200 
2201 /**
2202  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2203  * @dev: PCI device to query
2204  *
2205  * Returns mmrbc: maximum memory read count in bytes
2206  *    or appropriate error value.
2207  */
2208 int pcix_get_mmrbc(struct pci_dev *dev)
2209 {
2210 	int ret, cap;
2211 	u32 cmd;
2212 
2213 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2214 	if (!cap)
2215 		return -EINVAL;
2216 
2217 	ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2218 	if (!ret)
2219 		ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2220 
2221 	return ret;
2222 }
2223 EXPORT_SYMBOL(pcix_get_mmrbc);
2224 
2225 /**
2226  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2227  * @dev: PCI device to query
2228  * @mmrbc: maximum memory read count in bytes
2229  *    valid values are 512, 1024, 2048, 4096
2230  *
2231  * If possible sets maximum memory read byte count, some bridges have erratas
2232  * that prevent this.
2233  */
2234 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2235 {
2236 	int cap, err = -EINVAL;
2237 	u32 stat, cmd, v, o;
2238 
2239 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2240 		goto out;
2241 
2242 	v = ffs(mmrbc) - 10;
2243 
2244 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2245 	if (!cap)
2246 		goto out;
2247 
2248 	err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2249 	if (err)
2250 		goto out;
2251 
2252 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2253 		return -E2BIG;
2254 
2255 	err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2256 	if (err)
2257 		goto out;
2258 
2259 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2260 	if (o != v) {
2261 		if (v > o && dev->bus &&
2262 		   (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2263 			return -EIO;
2264 
2265 		cmd &= ~PCI_X_CMD_MAX_READ;
2266 		cmd |= v << 2;
2267 		err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2268 	}
2269 out:
2270 	return err;
2271 }
2272 EXPORT_SYMBOL(pcix_set_mmrbc);
2273 
2274 /**
2275  * pcie_get_readrq - get PCI Express read request size
2276  * @dev: PCI device to query
2277  *
2278  * Returns maximum memory read request in bytes
2279  *    or appropriate error value.
2280  */
2281 int pcie_get_readrq(struct pci_dev *dev)
2282 {
2283 	int ret, cap;
2284 	u16 ctl;
2285 
2286 	cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2287 	if (!cap)
2288 		return -EINVAL;
2289 
2290 	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2291 	if (!ret)
2292 	ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2293 
2294 	return ret;
2295 }
2296 EXPORT_SYMBOL(pcie_get_readrq);
2297 
2298 /**
2299  * pcie_set_readrq - set PCI Express maximum memory read request
2300  * @dev: PCI device to query
2301  * @rq: maximum memory read count in bytes
2302  *    valid values are 128, 256, 512, 1024, 2048, 4096
2303  *
2304  * If possible sets maximum read byte count
2305  */
2306 int pcie_set_readrq(struct pci_dev *dev, int rq)
2307 {
2308 	int cap, err = -EINVAL;
2309 	u16 ctl, v;
2310 
2311 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2312 		goto out;
2313 
2314 	v = (ffs(rq) - 8) << 12;
2315 
2316 	cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2317 	if (!cap)
2318 		goto out;
2319 
2320 	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2321 	if (err)
2322 		goto out;
2323 
2324 	if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2325 		ctl &= ~PCI_EXP_DEVCTL_READRQ;
2326 		ctl |= v;
2327 		err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2328 	}
2329 
2330 out:
2331 	return err;
2332 }
2333 EXPORT_SYMBOL(pcie_set_readrq);
2334 
2335 /**
2336  * pci_select_bars - Make BAR mask from the type of resource
2337  * @dev: the PCI device for which BAR mask is made
2338  * @flags: resource type mask to be selected
2339  *
2340  * This helper routine makes bar mask from the type of resource.
2341  */
2342 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2343 {
2344 	int i, bars = 0;
2345 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
2346 		if (pci_resource_flags(dev, i) & flags)
2347 			bars |= (1 << i);
2348 	return bars;
2349 }
2350 
2351 /**
2352  * pci_resource_bar - get position of the BAR associated with a resource
2353  * @dev: the PCI device
2354  * @resno: the resource number
2355  * @type: the BAR type to be filled in
2356  *
2357  * Returns BAR position in config space, or 0 if the BAR is invalid.
2358  */
2359 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2360 {
2361 	int reg;
2362 
2363 	if (resno < PCI_ROM_RESOURCE) {
2364 		*type = pci_bar_unknown;
2365 		return PCI_BASE_ADDRESS_0 + 4 * resno;
2366 	} else if (resno == PCI_ROM_RESOURCE) {
2367 		*type = pci_bar_mem32;
2368 		return dev->rom_base_reg;
2369 	} else if (resno < PCI_BRIDGE_RESOURCES) {
2370 		/* device specific resource */
2371 		reg = pci_iov_resource_bar(dev, resno, type);
2372 		if (reg)
2373 			return reg;
2374 	}
2375 
2376 	dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2377 	return 0;
2378 }
2379 
2380 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2381 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2382 spinlock_t resource_alignment_lock = SPIN_LOCK_UNLOCKED;
2383 
2384 /**
2385  * pci_specified_resource_alignment - get resource alignment specified by user.
2386  * @dev: the PCI device to get
2387  *
2388  * RETURNS: Resource alignment if it is specified.
2389  *          Zero if it is not specified.
2390  */
2391 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2392 {
2393 	int seg, bus, slot, func, align_order, count;
2394 	resource_size_t align = 0;
2395 	char *p;
2396 
2397 	spin_lock(&resource_alignment_lock);
2398 	p = resource_alignment_param;
2399 	while (*p) {
2400 		count = 0;
2401 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2402 							p[count] == '@') {
2403 			p += count + 1;
2404 		} else {
2405 			align_order = -1;
2406 		}
2407 		if (sscanf(p, "%x:%x:%x.%x%n",
2408 			&seg, &bus, &slot, &func, &count) != 4) {
2409 			seg = 0;
2410 			if (sscanf(p, "%x:%x.%x%n",
2411 					&bus, &slot, &func, &count) != 3) {
2412 				/* Invalid format */
2413 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2414 					p);
2415 				break;
2416 			}
2417 		}
2418 		p += count;
2419 		if (seg == pci_domain_nr(dev->bus) &&
2420 			bus == dev->bus->number &&
2421 			slot == PCI_SLOT(dev->devfn) &&
2422 			func == PCI_FUNC(dev->devfn)) {
2423 			if (align_order == -1) {
2424 				align = PAGE_SIZE;
2425 			} else {
2426 				align = 1 << align_order;
2427 			}
2428 			/* Found */
2429 			break;
2430 		}
2431 		if (*p != ';' && *p != ',') {
2432 			/* End of param or invalid format */
2433 			break;
2434 		}
2435 		p++;
2436 	}
2437 	spin_unlock(&resource_alignment_lock);
2438 	return align;
2439 }
2440 
2441 /**
2442  * pci_is_reassigndev - check if specified PCI is target device to reassign
2443  * @dev: the PCI device to check
2444  *
2445  * RETURNS: non-zero for PCI device is a target device to reassign,
2446  *          or zero is not.
2447  */
2448 int pci_is_reassigndev(struct pci_dev *dev)
2449 {
2450 	return (pci_specified_resource_alignment(dev) != 0);
2451 }
2452 
2453 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2454 {
2455 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2456 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2457 	spin_lock(&resource_alignment_lock);
2458 	strncpy(resource_alignment_param, buf, count);
2459 	resource_alignment_param[count] = '\0';
2460 	spin_unlock(&resource_alignment_lock);
2461 	return count;
2462 }
2463 
2464 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2465 {
2466 	size_t count;
2467 	spin_lock(&resource_alignment_lock);
2468 	count = snprintf(buf, size, "%s", resource_alignment_param);
2469 	spin_unlock(&resource_alignment_lock);
2470 	return count;
2471 }
2472 
2473 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2474 {
2475 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2476 }
2477 
2478 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2479 					const char *buf, size_t count)
2480 {
2481 	return pci_set_resource_alignment_param(buf, count);
2482 }
2483 
2484 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2485 					pci_resource_alignment_store);
2486 
2487 static int __init pci_resource_alignment_sysfs_init(void)
2488 {
2489 	return bus_create_file(&pci_bus_type,
2490 					&bus_attr_resource_alignment);
2491 }
2492 
2493 late_initcall(pci_resource_alignment_sysfs_init);
2494 
2495 static void __devinit pci_no_domains(void)
2496 {
2497 #ifdef CONFIG_PCI_DOMAINS
2498 	pci_domains_supported = 0;
2499 #endif
2500 }
2501 
2502 /**
2503  * pci_ext_cfg_enabled - can we access extended PCI config space?
2504  * @dev: The PCI device of the root bridge.
2505  *
2506  * Returns 1 if we can access PCI extended config space (offsets
2507  * greater than 0xff). This is the default implementation. Architecture
2508  * implementations can override this.
2509  */
2510 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2511 {
2512 	return 1;
2513 }
2514 
2515 static int __devinit pci_init(void)
2516 {
2517 	struct pci_dev *dev = NULL;
2518 
2519 	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2520 		pci_fixup_device(pci_fixup_final, dev);
2521 	}
2522 
2523 	return 0;
2524 }
2525 
2526 static int __init pci_setup(char *str)
2527 {
2528 	while (str) {
2529 		char *k = strchr(str, ',');
2530 		if (k)
2531 			*k++ = 0;
2532 		if (*str && (str = pcibios_setup(str)) && *str) {
2533 			if (!strcmp(str, "nomsi")) {
2534 				pci_no_msi();
2535 			} else if (!strcmp(str, "noaer")) {
2536 				pci_no_aer();
2537 			} else if (!strcmp(str, "nodomains")) {
2538 				pci_no_domains();
2539 			} else if (!strncmp(str, "cbiosize=", 9)) {
2540 				pci_cardbus_io_size = memparse(str + 9, &str);
2541 			} else if (!strncmp(str, "cbmemsize=", 10)) {
2542 				pci_cardbus_mem_size = memparse(str + 10, &str);
2543 			} else if (!strncmp(str, "resource_alignment=", 19)) {
2544 				pci_set_resource_alignment_param(str + 19,
2545 							strlen(str + 19));
2546 			} else {
2547 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
2548 						str);
2549 			}
2550 		}
2551 		str = k;
2552 	}
2553 	return 0;
2554 }
2555 early_param("pci", pci_setup);
2556 
2557 device_initcall(pci_init);
2558 
2559 EXPORT_SYMBOL(pci_reenable_device);
2560 EXPORT_SYMBOL(pci_enable_device_io);
2561 EXPORT_SYMBOL(pci_enable_device_mem);
2562 EXPORT_SYMBOL(pci_enable_device);
2563 EXPORT_SYMBOL(pcim_enable_device);
2564 EXPORT_SYMBOL(pcim_pin_device);
2565 EXPORT_SYMBOL(pci_disable_device);
2566 EXPORT_SYMBOL(pci_find_capability);
2567 EXPORT_SYMBOL(pci_bus_find_capability);
2568 EXPORT_SYMBOL(pci_release_regions);
2569 EXPORT_SYMBOL(pci_request_regions);
2570 EXPORT_SYMBOL(pci_request_regions_exclusive);
2571 EXPORT_SYMBOL(pci_release_region);
2572 EXPORT_SYMBOL(pci_request_region);
2573 EXPORT_SYMBOL(pci_request_region_exclusive);
2574 EXPORT_SYMBOL(pci_release_selected_regions);
2575 EXPORT_SYMBOL(pci_request_selected_regions);
2576 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2577 EXPORT_SYMBOL(pci_set_master);
2578 EXPORT_SYMBOL(pci_clear_master);
2579 EXPORT_SYMBOL(pci_set_mwi);
2580 EXPORT_SYMBOL(pci_try_set_mwi);
2581 EXPORT_SYMBOL(pci_clear_mwi);
2582 EXPORT_SYMBOL_GPL(pci_intx);
2583 EXPORT_SYMBOL(pci_set_dma_mask);
2584 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2585 EXPORT_SYMBOL(pci_assign_resource);
2586 EXPORT_SYMBOL(pci_find_parent_resource);
2587 EXPORT_SYMBOL(pci_select_bars);
2588 
2589 EXPORT_SYMBOL(pci_set_power_state);
2590 EXPORT_SYMBOL(pci_save_state);
2591 EXPORT_SYMBOL(pci_restore_state);
2592 EXPORT_SYMBOL(pci_pme_capable);
2593 EXPORT_SYMBOL(pci_pme_active);
2594 EXPORT_SYMBOL(pci_enable_wake);
2595 EXPORT_SYMBOL(pci_wake_from_d3);
2596 EXPORT_SYMBOL(pci_target_state);
2597 EXPORT_SYMBOL(pci_prepare_to_sleep);
2598 EXPORT_SYMBOL(pci_back_from_sleep);
2599 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2600 
2601