xref: /linux/drivers/pci/pci.c (revision b8265621f4888af9494e1d685620871ec81bc33d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/of_pci.h>
19 #include <linux/pci.h>
20 #include <linux/pm.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/log2.h>
26 #include <linux/logic_pio.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
35 #include <asm/dma.h>
36 #include <linux/aer.h>
37 #include "pci.h"
38 
39 DEFINE_MUTEX(pci_slot_mutex);
40 
41 const char *pci_power_names[] = {
42 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
43 };
44 EXPORT_SYMBOL_GPL(pci_power_names);
45 
46 int isa_dma_bridge_buggy;
47 EXPORT_SYMBOL(isa_dma_bridge_buggy);
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 static void pci_dev_d3_sleep(struct pci_dev *dev)
68 {
69 	unsigned int delay = dev->d3_delay;
70 
71 	if (delay < pci_pm_d3_delay)
72 		delay = pci_pm_d3_delay;
73 
74 	if (delay)
75 		msleep(delay);
76 }
77 
78 #ifdef CONFIG_PCI_DOMAINS
79 int pci_domains_supported = 1;
80 #endif
81 
82 #define DEFAULT_CARDBUS_IO_SIZE		(256)
83 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
85 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
86 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
87 
88 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
89 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
91 /* hpiosize=nn can override this */
92 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
93 /*
94  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
95  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
96  * pci=hpmemsize=nnM overrides both
97  */
98 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
99 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
100 
101 #define DEFAULT_HOTPLUG_BUS_SIZE	1
102 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
103 
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
105 
106 /*
107  * The default CLS is used if arch didn't set CLS explicitly and not
108  * all pci devices agree on the same value.  Arch can override either
109  * the dfl or actual value as it sees fit.  Don't forget this is
110  * measured in 32-bit words, not bytes.
111  */
112 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
113 u8 pci_cache_line_size;
114 
115 /*
116  * If we set up a device for bus mastering, we need to check the latency
117  * timer as certain BIOSes forget to set it properly.
118  */
119 unsigned int pcibios_max_latency = 255;
120 
121 /* If set, the PCIe ARI capability will not be used. */
122 static bool pcie_ari_disabled;
123 
124 /* If set, the PCIe ATS capability will not be used. */
125 static bool pcie_ats_disabled;
126 
127 /* If set, the PCI config space of each device is printed during boot. */
128 bool pci_early_dump;
129 
130 bool pci_ats_disabled(void)
131 {
132 	return pcie_ats_disabled;
133 }
134 EXPORT_SYMBOL_GPL(pci_ats_disabled);
135 
136 /* Disable bridge_d3 for all PCIe ports */
137 static bool pci_bridge_d3_disable;
138 /* Force bridge_d3 for all PCIe ports */
139 static bool pci_bridge_d3_force;
140 
141 static int __init pcie_port_pm_setup(char *str)
142 {
143 	if (!strcmp(str, "off"))
144 		pci_bridge_d3_disable = true;
145 	else if (!strcmp(str, "force"))
146 		pci_bridge_d3_force = true;
147 	return 1;
148 }
149 __setup("pcie_port_pm=", pcie_port_pm_setup);
150 
151 /* Time to wait after a reset for device to become responsive */
152 #define PCIE_RESET_READY_POLL_MS 60000
153 
154 /**
155  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
156  * @bus: pointer to PCI bus structure to search
157  *
158  * Given a PCI bus, returns the highest PCI bus number present in the set
159  * including the given PCI bus and its list of child PCI buses.
160  */
161 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
162 {
163 	struct pci_bus *tmp;
164 	unsigned char max, n;
165 
166 	max = bus->busn_res.end;
167 	list_for_each_entry(tmp, &bus->children, node) {
168 		n = pci_bus_max_busnr(tmp);
169 		if (n > max)
170 			max = n;
171 	}
172 	return max;
173 }
174 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
175 
176 /**
177  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
178  * @pdev: the PCI device
179  *
180  * Returns error bits set in PCI_STATUS and clears them.
181  */
182 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
183 {
184 	u16 status;
185 	int ret;
186 
187 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
188 	if (ret != PCIBIOS_SUCCESSFUL)
189 		return -EIO;
190 
191 	status &= PCI_STATUS_ERROR_BITS;
192 	if (status)
193 		pci_write_config_word(pdev, PCI_STATUS, status);
194 
195 	return status;
196 }
197 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
198 
199 #ifdef CONFIG_HAS_IOMEM
200 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
201 {
202 	struct resource *res = &pdev->resource[bar];
203 
204 	/*
205 	 * Make sure the BAR is actually a memory resource, not an IO resource
206 	 */
207 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
208 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
209 		return NULL;
210 	}
211 	return ioremap(res->start, resource_size(res));
212 }
213 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
214 
215 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
216 {
217 	/*
218 	 * Make sure the BAR is actually a memory resource, not an IO resource
219 	 */
220 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
221 		WARN_ON(1);
222 		return NULL;
223 	}
224 	return ioremap_wc(pci_resource_start(pdev, bar),
225 			  pci_resource_len(pdev, bar));
226 }
227 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
228 #endif
229 
230 /**
231  * pci_dev_str_match_path - test if a path string matches a device
232  * @dev: the PCI device to test
233  * @path: string to match the device against
234  * @endptr: pointer to the string after the match
235  *
236  * Test if a string (typically from a kernel parameter) formatted as a
237  * path of device/function addresses matches a PCI device. The string must
238  * be of the form:
239  *
240  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
241  *
242  * A path for a device can be obtained using 'lspci -t'.  Using a path
243  * is more robust against bus renumbering than using only a single bus,
244  * device and function address.
245  *
246  * Returns 1 if the string matches the device, 0 if it does not and
247  * a negative error code if it fails to parse the string.
248  */
249 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
250 				  const char **endptr)
251 {
252 	int ret;
253 	int seg, bus, slot, func;
254 	char *wpath, *p;
255 	char end;
256 
257 	*endptr = strchrnul(path, ';');
258 
259 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
260 	if (!wpath)
261 		return -ENOMEM;
262 
263 	while (1) {
264 		p = strrchr(wpath, '/');
265 		if (!p)
266 			break;
267 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
268 		if (ret != 2) {
269 			ret = -EINVAL;
270 			goto free_and_exit;
271 		}
272 
273 		if (dev->devfn != PCI_DEVFN(slot, func)) {
274 			ret = 0;
275 			goto free_and_exit;
276 		}
277 
278 		/*
279 		 * Note: we don't need to get a reference to the upstream
280 		 * bridge because we hold a reference to the top level
281 		 * device which should hold a reference to the bridge,
282 		 * and so on.
283 		 */
284 		dev = pci_upstream_bridge(dev);
285 		if (!dev) {
286 			ret = 0;
287 			goto free_and_exit;
288 		}
289 
290 		*p = 0;
291 	}
292 
293 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
294 		     &func, &end);
295 	if (ret != 4) {
296 		seg = 0;
297 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
298 		if (ret != 3) {
299 			ret = -EINVAL;
300 			goto free_and_exit;
301 		}
302 	}
303 
304 	ret = (seg == pci_domain_nr(dev->bus) &&
305 	       bus == dev->bus->number &&
306 	       dev->devfn == PCI_DEVFN(slot, func));
307 
308 free_and_exit:
309 	kfree(wpath);
310 	return ret;
311 }
312 
313 /**
314  * pci_dev_str_match - test if a string matches a device
315  * @dev: the PCI device to test
316  * @p: string to match the device against
317  * @endptr: pointer to the string after the match
318  *
319  * Test if a string (typically from a kernel parameter) matches a specified
320  * PCI device. The string may be of one of the following formats:
321  *
322  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
323  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
324  *
325  * The first format specifies a PCI bus/device/function address which
326  * may change if new hardware is inserted, if motherboard firmware changes,
327  * or due to changes caused in kernel parameters. If the domain is
328  * left unspecified, it is taken to be 0.  In order to be robust against
329  * bus renumbering issues, a path of PCI device/function numbers may be used
330  * to address the specific device.  The path for a device can be determined
331  * through the use of 'lspci -t'.
332  *
333  * The second format matches devices using IDs in the configuration
334  * space which may match multiple devices in the system. A value of 0
335  * for any field will match all devices. (Note: this differs from
336  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
337  * legacy reasons and convenience so users don't have to specify
338  * FFFFFFFFs on the command line.)
339  *
340  * Returns 1 if the string matches the device, 0 if it does not and
341  * a negative error code if the string cannot be parsed.
342  */
343 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
344 			     const char **endptr)
345 {
346 	int ret;
347 	int count;
348 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
349 
350 	if (strncmp(p, "pci:", 4) == 0) {
351 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
352 		p += 4;
353 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
354 			     &subsystem_vendor, &subsystem_device, &count);
355 		if (ret != 4) {
356 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
357 			if (ret != 2)
358 				return -EINVAL;
359 
360 			subsystem_vendor = 0;
361 			subsystem_device = 0;
362 		}
363 
364 		p += count;
365 
366 		if ((!vendor || vendor == dev->vendor) &&
367 		    (!device || device == dev->device) &&
368 		    (!subsystem_vendor ||
369 			    subsystem_vendor == dev->subsystem_vendor) &&
370 		    (!subsystem_device ||
371 			    subsystem_device == dev->subsystem_device))
372 			goto found;
373 	} else {
374 		/*
375 		 * PCI Bus, Device, Function IDs are specified
376 		 * (optionally, may include a path of devfns following it)
377 		 */
378 		ret = pci_dev_str_match_path(dev, p, &p);
379 		if (ret < 0)
380 			return ret;
381 		else if (ret)
382 			goto found;
383 	}
384 
385 	*endptr = p;
386 	return 0;
387 
388 found:
389 	*endptr = p;
390 	return 1;
391 }
392 
393 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
394 				   u8 pos, int cap, int *ttl)
395 {
396 	u8 id;
397 	u16 ent;
398 
399 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
400 
401 	while ((*ttl)--) {
402 		if (pos < 0x40)
403 			break;
404 		pos &= ~3;
405 		pci_bus_read_config_word(bus, devfn, pos, &ent);
406 
407 		id = ent & 0xff;
408 		if (id == 0xff)
409 			break;
410 		if (id == cap)
411 			return pos;
412 		pos = (ent >> 8);
413 	}
414 	return 0;
415 }
416 
417 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
418 			       u8 pos, int cap)
419 {
420 	int ttl = PCI_FIND_CAP_TTL;
421 
422 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
423 }
424 
425 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
426 {
427 	return __pci_find_next_cap(dev->bus, dev->devfn,
428 				   pos + PCI_CAP_LIST_NEXT, cap);
429 }
430 EXPORT_SYMBOL_GPL(pci_find_next_capability);
431 
432 static int __pci_bus_find_cap_start(struct pci_bus *bus,
433 				    unsigned int devfn, u8 hdr_type)
434 {
435 	u16 status;
436 
437 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
438 	if (!(status & PCI_STATUS_CAP_LIST))
439 		return 0;
440 
441 	switch (hdr_type) {
442 	case PCI_HEADER_TYPE_NORMAL:
443 	case PCI_HEADER_TYPE_BRIDGE:
444 		return PCI_CAPABILITY_LIST;
445 	case PCI_HEADER_TYPE_CARDBUS:
446 		return PCI_CB_CAPABILITY_LIST;
447 	}
448 
449 	return 0;
450 }
451 
452 /**
453  * pci_find_capability - query for devices' capabilities
454  * @dev: PCI device to query
455  * @cap: capability code
456  *
457  * Tell if a device supports a given PCI capability.
458  * Returns the address of the requested capability structure within the
459  * device's PCI configuration space or 0 in case the device does not
460  * support it.  Possible values for @cap include:
461  *
462  *  %PCI_CAP_ID_PM           Power Management
463  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
464  *  %PCI_CAP_ID_VPD          Vital Product Data
465  *  %PCI_CAP_ID_SLOTID       Slot Identification
466  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
467  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
468  *  %PCI_CAP_ID_PCIX         PCI-X
469  *  %PCI_CAP_ID_EXP          PCI Express
470  */
471 int pci_find_capability(struct pci_dev *dev, int cap)
472 {
473 	int pos;
474 
475 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
476 	if (pos)
477 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
478 
479 	return pos;
480 }
481 EXPORT_SYMBOL(pci_find_capability);
482 
483 /**
484  * pci_bus_find_capability - query for devices' capabilities
485  * @bus: the PCI bus to query
486  * @devfn: PCI device to query
487  * @cap: capability code
488  *
489  * Like pci_find_capability() but works for PCI devices that do not have a
490  * pci_dev structure set up yet.
491  *
492  * Returns the address of the requested capability structure within the
493  * device's PCI configuration space or 0 in case the device does not
494  * support it.
495  */
496 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
497 {
498 	int pos;
499 	u8 hdr_type;
500 
501 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
502 
503 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
504 	if (pos)
505 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
506 
507 	return pos;
508 }
509 EXPORT_SYMBOL(pci_bus_find_capability);
510 
511 /**
512  * pci_find_next_ext_capability - Find an extended capability
513  * @dev: PCI device to query
514  * @start: address at which to start looking (0 to start at beginning of list)
515  * @cap: capability code
516  *
517  * Returns the address of the next matching extended capability structure
518  * within the device's PCI configuration space or 0 if the device does
519  * not support it.  Some capabilities can occur several times, e.g., the
520  * vendor-specific capability, and this provides a way to find them all.
521  */
522 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
523 {
524 	u32 header;
525 	int ttl;
526 	int pos = PCI_CFG_SPACE_SIZE;
527 
528 	/* minimum 8 bytes per capability */
529 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
530 
531 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
532 		return 0;
533 
534 	if (start)
535 		pos = start;
536 
537 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
538 		return 0;
539 
540 	/*
541 	 * If we have no capabilities, this is indicated by cap ID,
542 	 * cap version and next pointer all being 0.
543 	 */
544 	if (header == 0)
545 		return 0;
546 
547 	while (ttl-- > 0) {
548 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
549 			return pos;
550 
551 		pos = PCI_EXT_CAP_NEXT(header);
552 		if (pos < PCI_CFG_SPACE_SIZE)
553 			break;
554 
555 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
556 			break;
557 	}
558 
559 	return 0;
560 }
561 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
562 
563 /**
564  * pci_find_ext_capability - Find an extended capability
565  * @dev: PCI device to query
566  * @cap: capability code
567  *
568  * Returns the address of the requested extended capability structure
569  * within the device's PCI configuration space or 0 if the device does
570  * not support it.  Possible values for @cap include:
571  *
572  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
573  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
574  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
575  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
576  */
577 int pci_find_ext_capability(struct pci_dev *dev, int cap)
578 {
579 	return pci_find_next_ext_capability(dev, 0, cap);
580 }
581 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
582 
583 /**
584  * pci_get_dsn - Read and return the 8-byte Device Serial Number
585  * @dev: PCI device to query
586  *
587  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
588  * Number.
589  *
590  * Returns the DSN, or zero if the capability does not exist.
591  */
592 u64 pci_get_dsn(struct pci_dev *dev)
593 {
594 	u32 dword;
595 	u64 dsn;
596 	int pos;
597 
598 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
599 	if (!pos)
600 		return 0;
601 
602 	/*
603 	 * The Device Serial Number is two dwords offset 4 bytes from the
604 	 * capability position. The specification says that the first dword is
605 	 * the lower half, and the second dword is the upper half.
606 	 */
607 	pos += 4;
608 	pci_read_config_dword(dev, pos, &dword);
609 	dsn = (u64)dword;
610 	pci_read_config_dword(dev, pos + 4, &dword);
611 	dsn |= ((u64)dword) << 32;
612 
613 	return dsn;
614 }
615 EXPORT_SYMBOL_GPL(pci_get_dsn);
616 
617 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
618 {
619 	int rc, ttl = PCI_FIND_CAP_TTL;
620 	u8 cap, mask;
621 
622 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
623 		mask = HT_3BIT_CAP_MASK;
624 	else
625 		mask = HT_5BIT_CAP_MASK;
626 
627 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
628 				      PCI_CAP_ID_HT, &ttl);
629 	while (pos) {
630 		rc = pci_read_config_byte(dev, pos + 3, &cap);
631 		if (rc != PCIBIOS_SUCCESSFUL)
632 			return 0;
633 
634 		if ((cap & mask) == ht_cap)
635 			return pos;
636 
637 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
638 					      pos + PCI_CAP_LIST_NEXT,
639 					      PCI_CAP_ID_HT, &ttl);
640 	}
641 
642 	return 0;
643 }
644 /**
645  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
646  * @dev: PCI device to query
647  * @pos: Position from which to continue searching
648  * @ht_cap: Hypertransport capability code
649  *
650  * To be used in conjunction with pci_find_ht_capability() to search for
651  * all capabilities matching @ht_cap. @pos should always be a value returned
652  * from pci_find_ht_capability().
653  *
654  * NB. To be 100% safe against broken PCI devices, the caller should take
655  * steps to avoid an infinite loop.
656  */
657 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
658 {
659 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
660 }
661 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
662 
663 /**
664  * pci_find_ht_capability - query a device's Hypertransport capabilities
665  * @dev: PCI device to query
666  * @ht_cap: Hypertransport capability code
667  *
668  * Tell if a device supports a given Hypertransport capability.
669  * Returns an address within the device's PCI configuration space
670  * or 0 in case the device does not support the request capability.
671  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
672  * which has a Hypertransport capability matching @ht_cap.
673  */
674 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
675 {
676 	int pos;
677 
678 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
679 	if (pos)
680 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
681 
682 	return pos;
683 }
684 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
685 
686 /**
687  * pci_find_parent_resource - return resource region of parent bus of given
688  *			      region
689  * @dev: PCI device structure contains resources to be searched
690  * @res: child resource record for which parent is sought
691  *
692  * For given resource region of given device, return the resource region of
693  * parent bus the given region is contained in.
694  */
695 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
696 					  struct resource *res)
697 {
698 	const struct pci_bus *bus = dev->bus;
699 	struct resource *r;
700 	int i;
701 
702 	pci_bus_for_each_resource(bus, r, i) {
703 		if (!r)
704 			continue;
705 		if (resource_contains(r, res)) {
706 
707 			/*
708 			 * If the window is prefetchable but the BAR is
709 			 * not, the allocator made a mistake.
710 			 */
711 			if (r->flags & IORESOURCE_PREFETCH &&
712 			    !(res->flags & IORESOURCE_PREFETCH))
713 				return NULL;
714 
715 			/*
716 			 * If we're below a transparent bridge, there may
717 			 * be both a positively-decoded aperture and a
718 			 * subtractively-decoded region that contain the BAR.
719 			 * We want the positively-decoded one, so this depends
720 			 * on pci_bus_for_each_resource() giving us those
721 			 * first.
722 			 */
723 			return r;
724 		}
725 	}
726 	return NULL;
727 }
728 EXPORT_SYMBOL(pci_find_parent_resource);
729 
730 /**
731  * pci_find_resource - Return matching PCI device resource
732  * @dev: PCI device to query
733  * @res: Resource to look for
734  *
735  * Goes over standard PCI resources (BARs) and checks if the given resource
736  * is partially or fully contained in any of them. In that case the
737  * matching resource is returned, %NULL otherwise.
738  */
739 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
740 {
741 	int i;
742 
743 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
744 		struct resource *r = &dev->resource[i];
745 
746 		if (r->start && resource_contains(r, res))
747 			return r;
748 	}
749 
750 	return NULL;
751 }
752 EXPORT_SYMBOL(pci_find_resource);
753 
754 /**
755  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
756  * @dev: the PCI device to operate on
757  * @pos: config space offset of status word
758  * @mask: mask of bit(s) to care about in status word
759  *
760  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
761  */
762 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
763 {
764 	int i;
765 
766 	/* Wait for Transaction Pending bit clean */
767 	for (i = 0; i < 4; i++) {
768 		u16 status;
769 		if (i)
770 			msleep((1 << (i - 1)) * 100);
771 
772 		pci_read_config_word(dev, pos, &status);
773 		if (!(status & mask))
774 			return 1;
775 	}
776 
777 	return 0;
778 }
779 
780 /**
781  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
782  * @dev: PCI device to have its BARs restored
783  *
784  * Restore the BAR values for a given device, so as to make it
785  * accessible by its driver.
786  */
787 static void pci_restore_bars(struct pci_dev *dev)
788 {
789 	int i;
790 
791 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
792 		pci_update_resource(dev, i);
793 }
794 
795 static const struct pci_platform_pm_ops *pci_platform_pm;
796 
797 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
798 {
799 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
800 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
801 		return -EINVAL;
802 	pci_platform_pm = ops;
803 	return 0;
804 }
805 
806 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
807 {
808 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
809 }
810 
811 static inline int platform_pci_set_power_state(struct pci_dev *dev,
812 					       pci_power_t t)
813 {
814 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
815 }
816 
817 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
818 {
819 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
820 }
821 
822 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
823 {
824 	if (pci_platform_pm && pci_platform_pm->refresh_state)
825 		pci_platform_pm->refresh_state(dev);
826 }
827 
828 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
829 {
830 	return pci_platform_pm ?
831 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
832 }
833 
834 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
835 {
836 	return pci_platform_pm ?
837 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
838 }
839 
840 static inline bool platform_pci_need_resume(struct pci_dev *dev)
841 {
842 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
843 }
844 
845 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
846 {
847 	if (pci_platform_pm && pci_platform_pm->bridge_d3)
848 		return pci_platform_pm->bridge_d3(dev);
849 	return false;
850 }
851 
852 /**
853  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
854  *			     given PCI device
855  * @dev: PCI device to handle.
856  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
857  *
858  * RETURN VALUE:
859  * -EINVAL if the requested state is invalid.
860  * -EIO if device does not support PCI PM or its PM capabilities register has a
861  * wrong version, or device doesn't support the requested state.
862  * 0 if device already is in the requested state.
863  * 0 if device's power state has been successfully changed.
864  */
865 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
866 {
867 	u16 pmcsr;
868 	bool need_restore = false;
869 
870 	/* Check if we're already there */
871 	if (dev->current_state == state)
872 		return 0;
873 
874 	if (!dev->pm_cap)
875 		return -EIO;
876 
877 	if (state < PCI_D0 || state > PCI_D3hot)
878 		return -EINVAL;
879 
880 	/*
881 	 * Validate transition: We can enter D0 from any state, but if
882 	 * we're already in a low-power state, we can only go deeper.  E.g.,
883 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
884 	 * we'd have to go from D3 to D0, then to D1.
885 	 */
886 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
887 	    && dev->current_state > state) {
888 		pci_err(dev, "invalid power transition (from %s to %s)\n",
889 			pci_power_name(dev->current_state),
890 			pci_power_name(state));
891 		return -EINVAL;
892 	}
893 
894 	/* Check if this device supports the desired state */
895 	if ((state == PCI_D1 && !dev->d1_support)
896 	   || (state == PCI_D2 && !dev->d2_support))
897 		return -EIO;
898 
899 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
900 	if (pmcsr == (u16) ~0) {
901 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
902 			pci_power_name(dev->current_state),
903 			pci_power_name(state));
904 		return -EIO;
905 	}
906 
907 	/*
908 	 * If we're (effectively) in D3, force entire word to 0.
909 	 * This doesn't affect PME_Status, disables PME_En, and
910 	 * sets PowerState to 0.
911 	 */
912 	switch (dev->current_state) {
913 	case PCI_D0:
914 	case PCI_D1:
915 	case PCI_D2:
916 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
917 		pmcsr |= state;
918 		break;
919 	case PCI_D3hot:
920 	case PCI_D3cold:
921 	case PCI_UNKNOWN: /* Boot-up */
922 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
923 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
924 			need_restore = true;
925 		/* Fall-through - force to D0 */
926 	default:
927 		pmcsr = 0;
928 		break;
929 	}
930 
931 	/* Enter specified state */
932 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
933 
934 	/*
935 	 * Mandatory power management transition delays; see PCI PM 1.1
936 	 * 5.6.1 table 18
937 	 */
938 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
939 		pci_dev_d3_sleep(dev);
940 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
941 		msleep(PCI_PM_D2_DELAY);
942 
943 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
944 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
945 	if (dev->current_state != state)
946 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
947 			 pci_power_name(dev->current_state),
948 			 pci_power_name(state));
949 
950 	/*
951 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
952 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
953 	 * from D3hot to D0 _may_ perform an internal reset, thereby
954 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
955 	 * For example, at least some versions of the 3c905B and the
956 	 * 3c556B exhibit this behaviour.
957 	 *
958 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
959 	 * devices in a D3hot state at boot.  Consequently, we need to
960 	 * restore at least the BARs so that the device will be
961 	 * accessible to its driver.
962 	 */
963 	if (need_restore)
964 		pci_restore_bars(dev);
965 
966 	if (dev->bus->self)
967 		pcie_aspm_pm_state_change(dev->bus->self);
968 
969 	return 0;
970 }
971 
972 /**
973  * pci_update_current_state - Read power state of given device and cache it
974  * @dev: PCI device to handle.
975  * @state: State to cache in case the device doesn't have the PM capability
976  *
977  * The power state is read from the PMCSR register, which however is
978  * inaccessible in D3cold.  The platform firmware is therefore queried first
979  * to detect accessibility of the register.  In case the platform firmware
980  * reports an incorrect state or the device isn't power manageable by the
981  * platform at all, we try to detect D3cold by testing accessibility of the
982  * vendor ID in config space.
983  */
984 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
985 {
986 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
987 	    !pci_device_is_present(dev)) {
988 		dev->current_state = PCI_D3cold;
989 	} else if (dev->pm_cap) {
990 		u16 pmcsr;
991 
992 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
993 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
994 	} else {
995 		dev->current_state = state;
996 	}
997 }
998 
999 /**
1000  * pci_refresh_power_state - Refresh the given device's power state data
1001  * @dev: Target PCI device.
1002  *
1003  * Ask the platform to refresh the devices power state information and invoke
1004  * pci_update_current_state() to update its current PCI power state.
1005  */
1006 void pci_refresh_power_state(struct pci_dev *dev)
1007 {
1008 	if (platform_pci_power_manageable(dev))
1009 		platform_pci_refresh_power_state(dev);
1010 
1011 	pci_update_current_state(dev, dev->current_state);
1012 }
1013 
1014 /**
1015  * pci_platform_power_transition - Use platform to change device power state
1016  * @dev: PCI device to handle.
1017  * @state: State to put the device into.
1018  */
1019 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1020 {
1021 	int error;
1022 
1023 	if (platform_pci_power_manageable(dev)) {
1024 		error = platform_pci_set_power_state(dev, state);
1025 		if (!error)
1026 			pci_update_current_state(dev, state);
1027 	} else
1028 		error = -ENODEV;
1029 
1030 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1031 		dev->current_state = PCI_D0;
1032 
1033 	return error;
1034 }
1035 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1036 
1037 /**
1038  * pci_wakeup - Wake up a PCI device
1039  * @pci_dev: Device to handle.
1040  * @ign: ignored parameter
1041  */
1042 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1043 {
1044 	pci_wakeup_event(pci_dev);
1045 	pm_request_resume(&pci_dev->dev);
1046 	return 0;
1047 }
1048 
1049 /**
1050  * pci_wakeup_bus - Walk given bus and wake up devices on it
1051  * @bus: Top bus of the subtree to walk.
1052  */
1053 void pci_wakeup_bus(struct pci_bus *bus)
1054 {
1055 	if (bus)
1056 		pci_walk_bus(bus, pci_wakeup, NULL);
1057 }
1058 
1059 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1060 {
1061 	int delay = 1;
1062 	u32 id;
1063 
1064 	/*
1065 	 * After reset, the device should not silently discard config
1066 	 * requests, but it may still indicate that it needs more time by
1067 	 * responding to them with CRS completions.  The Root Port will
1068 	 * generally synthesize ~0 data to complete the read (except when
1069 	 * CRS SV is enabled and the read was for the Vendor ID; in that
1070 	 * case it synthesizes 0x0001 data).
1071 	 *
1072 	 * Wait for the device to return a non-CRS completion.  Read the
1073 	 * Command register instead of Vendor ID so we don't have to
1074 	 * contend with the CRS SV value.
1075 	 */
1076 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1077 	while (id == ~0) {
1078 		if (delay > timeout) {
1079 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1080 				 delay - 1, reset_type);
1081 			return -ENOTTY;
1082 		}
1083 
1084 		if (delay > 1000)
1085 			pci_info(dev, "not ready %dms after %s; waiting\n",
1086 				 delay - 1, reset_type);
1087 
1088 		msleep(delay);
1089 		delay *= 2;
1090 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1091 	}
1092 
1093 	if (delay > 1000)
1094 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1095 			 reset_type);
1096 
1097 	return 0;
1098 }
1099 
1100 /**
1101  * pci_power_up - Put the given device into D0
1102  * @dev: PCI device to power up
1103  */
1104 int pci_power_up(struct pci_dev *dev)
1105 {
1106 	pci_platform_power_transition(dev, PCI_D0);
1107 
1108 	/*
1109 	 * Mandatory power management transition delays are handled in
1110 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1111 	 * corresponding bridge.
1112 	 */
1113 	if (dev->runtime_d3cold) {
1114 		/*
1115 		 * When powering on a bridge from D3cold, the whole hierarchy
1116 		 * may be powered on into D0uninitialized state, resume them to
1117 		 * give them a chance to suspend again
1118 		 */
1119 		pci_wakeup_bus(dev->subordinate);
1120 	}
1121 
1122 	return pci_raw_set_power_state(dev, PCI_D0);
1123 }
1124 
1125 /**
1126  * __pci_dev_set_current_state - Set current state of a PCI device
1127  * @dev: Device to handle
1128  * @data: pointer to state to be set
1129  */
1130 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1131 {
1132 	pci_power_t state = *(pci_power_t *)data;
1133 
1134 	dev->current_state = state;
1135 	return 0;
1136 }
1137 
1138 /**
1139  * pci_bus_set_current_state - Walk given bus and set current state of devices
1140  * @bus: Top bus of the subtree to walk.
1141  * @state: state to be set
1142  */
1143 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1144 {
1145 	if (bus)
1146 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1147 }
1148 
1149 /**
1150  * pci_set_power_state - Set the power state of a PCI device
1151  * @dev: PCI device to handle.
1152  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1153  *
1154  * Transition a device to a new power state, using the platform firmware and/or
1155  * the device's PCI PM registers.
1156  *
1157  * RETURN VALUE:
1158  * -EINVAL if the requested state is invalid.
1159  * -EIO if device does not support PCI PM or its PM capabilities register has a
1160  * wrong version, or device doesn't support the requested state.
1161  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1162  * 0 if device already is in the requested state.
1163  * 0 if the transition is to D3 but D3 is not supported.
1164  * 0 if device's power state has been successfully changed.
1165  */
1166 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1167 {
1168 	int error;
1169 
1170 	/* Bound the state we're entering */
1171 	if (state > PCI_D3cold)
1172 		state = PCI_D3cold;
1173 	else if (state < PCI_D0)
1174 		state = PCI_D0;
1175 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1176 
1177 		/*
1178 		 * If the device or the parent bridge do not support PCI
1179 		 * PM, ignore the request if we're doing anything other
1180 		 * than putting it into D0 (which would only happen on
1181 		 * boot).
1182 		 */
1183 		return 0;
1184 
1185 	/* Check if we're already there */
1186 	if (dev->current_state == state)
1187 		return 0;
1188 
1189 	if (state == PCI_D0)
1190 		return pci_power_up(dev);
1191 
1192 	/*
1193 	 * This device is quirked not to be put into D3, so don't put it in
1194 	 * D3
1195 	 */
1196 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1197 		return 0;
1198 
1199 	/*
1200 	 * To put device in D3cold, we put device into D3hot in native
1201 	 * way, then put device into D3cold with platform ops
1202 	 */
1203 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1204 					PCI_D3hot : state);
1205 
1206 	if (pci_platform_power_transition(dev, state))
1207 		return error;
1208 
1209 	/* Powering off a bridge may power off the whole hierarchy */
1210 	if (state == PCI_D3cold)
1211 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1212 
1213 	return 0;
1214 }
1215 EXPORT_SYMBOL(pci_set_power_state);
1216 
1217 /**
1218  * pci_choose_state - Choose the power state of a PCI device
1219  * @dev: PCI device to be suspended
1220  * @state: target sleep state for the whole system. This is the value
1221  *	   that is passed to suspend() function.
1222  *
1223  * Returns PCI power state suitable for given device and given system
1224  * message.
1225  */
1226 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1227 {
1228 	pci_power_t ret;
1229 
1230 	if (!dev->pm_cap)
1231 		return PCI_D0;
1232 
1233 	ret = platform_pci_choose_state(dev);
1234 	if (ret != PCI_POWER_ERROR)
1235 		return ret;
1236 
1237 	switch (state.event) {
1238 	case PM_EVENT_ON:
1239 		return PCI_D0;
1240 	case PM_EVENT_FREEZE:
1241 	case PM_EVENT_PRETHAW:
1242 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1243 	case PM_EVENT_SUSPEND:
1244 	case PM_EVENT_HIBERNATE:
1245 		return PCI_D3hot;
1246 	default:
1247 		pci_info(dev, "unrecognized suspend event %d\n",
1248 			 state.event);
1249 		BUG();
1250 	}
1251 	return PCI_D0;
1252 }
1253 EXPORT_SYMBOL(pci_choose_state);
1254 
1255 #define PCI_EXP_SAVE_REGS	7
1256 
1257 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1258 						       u16 cap, bool extended)
1259 {
1260 	struct pci_cap_saved_state *tmp;
1261 
1262 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1263 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1264 			return tmp;
1265 	}
1266 	return NULL;
1267 }
1268 
1269 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1270 {
1271 	return _pci_find_saved_cap(dev, cap, false);
1272 }
1273 
1274 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1275 {
1276 	return _pci_find_saved_cap(dev, cap, true);
1277 }
1278 
1279 static int pci_save_pcie_state(struct pci_dev *dev)
1280 {
1281 	int i = 0;
1282 	struct pci_cap_saved_state *save_state;
1283 	u16 *cap;
1284 
1285 	if (!pci_is_pcie(dev))
1286 		return 0;
1287 
1288 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1289 	if (!save_state) {
1290 		pci_err(dev, "buffer not found in %s\n", __func__);
1291 		return -ENOMEM;
1292 	}
1293 
1294 	cap = (u16 *)&save_state->cap.data[0];
1295 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1296 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1297 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1298 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1299 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1300 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1301 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1302 
1303 	return 0;
1304 }
1305 
1306 static void pci_restore_pcie_state(struct pci_dev *dev)
1307 {
1308 	int i = 0;
1309 	struct pci_cap_saved_state *save_state;
1310 	u16 *cap;
1311 
1312 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1313 	if (!save_state)
1314 		return;
1315 
1316 	cap = (u16 *)&save_state->cap.data[0];
1317 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1318 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1319 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1320 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1321 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1322 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1323 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1324 }
1325 
1326 static int pci_save_pcix_state(struct pci_dev *dev)
1327 {
1328 	int pos;
1329 	struct pci_cap_saved_state *save_state;
1330 
1331 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1332 	if (!pos)
1333 		return 0;
1334 
1335 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1336 	if (!save_state) {
1337 		pci_err(dev, "buffer not found in %s\n", __func__);
1338 		return -ENOMEM;
1339 	}
1340 
1341 	pci_read_config_word(dev, pos + PCI_X_CMD,
1342 			     (u16 *)save_state->cap.data);
1343 
1344 	return 0;
1345 }
1346 
1347 static void pci_restore_pcix_state(struct pci_dev *dev)
1348 {
1349 	int i = 0, pos;
1350 	struct pci_cap_saved_state *save_state;
1351 	u16 *cap;
1352 
1353 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1354 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1355 	if (!save_state || !pos)
1356 		return;
1357 	cap = (u16 *)&save_state->cap.data[0];
1358 
1359 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1360 }
1361 
1362 static void pci_save_ltr_state(struct pci_dev *dev)
1363 {
1364 	int ltr;
1365 	struct pci_cap_saved_state *save_state;
1366 	u16 *cap;
1367 
1368 	if (!pci_is_pcie(dev))
1369 		return;
1370 
1371 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1372 	if (!ltr)
1373 		return;
1374 
1375 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1376 	if (!save_state) {
1377 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1378 		return;
1379 	}
1380 
1381 	cap = (u16 *)&save_state->cap.data[0];
1382 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1383 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1384 }
1385 
1386 static void pci_restore_ltr_state(struct pci_dev *dev)
1387 {
1388 	struct pci_cap_saved_state *save_state;
1389 	int ltr;
1390 	u16 *cap;
1391 
1392 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1393 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1394 	if (!save_state || !ltr)
1395 		return;
1396 
1397 	cap = (u16 *)&save_state->cap.data[0];
1398 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1399 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1400 }
1401 
1402 /**
1403  * pci_save_state - save the PCI configuration space of a device before
1404  *		    suspending
1405  * @dev: PCI device that we're dealing with
1406  */
1407 int pci_save_state(struct pci_dev *dev)
1408 {
1409 	int i;
1410 	/* XXX: 100% dword access ok here? */
1411 	for (i = 0; i < 16; i++) {
1412 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1413 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1414 			i * 4, dev->saved_config_space[i]);
1415 	}
1416 	dev->state_saved = true;
1417 
1418 	i = pci_save_pcie_state(dev);
1419 	if (i != 0)
1420 		return i;
1421 
1422 	i = pci_save_pcix_state(dev);
1423 	if (i != 0)
1424 		return i;
1425 
1426 	pci_save_ltr_state(dev);
1427 	pci_save_dpc_state(dev);
1428 	pci_save_aer_state(dev);
1429 	return pci_save_vc_state(dev);
1430 }
1431 EXPORT_SYMBOL(pci_save_state);
1432 
1433 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1434 				     u32 saved_val, int retry, bool force)
1435 {
1436 	u32 val;
1437 
1438 	pci_read_config_dword(pdev, offset, &val);
1439 	if (!force && val == saved_val)
1440 		return;
1441 
1442 	for (;;) {
1443 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1444 			offset, val, saved_val);
1445 		pci_write_config_dword(pdev, offset, saved_val);
1446 		if (retry-- <= 0)
1447 			return;
1448 
1449 		pci_read_config_dword(pdev, offset, &val);
1450 		if (val == saved_val)
1451 			return;
1452 
1453 		mdelay(1);
1454 	}
1455 }
1456 
1457 static void pci_restore_config_space_range(struct pci_dev *pdev,
1458 					   int start, int end, int retry,
1459 					   bool force)
1460 {
1461 	int index;
1462 
1463 	for (index = end; index >= start; index--)
1464 		pci_restore_config_dword(pdev, 4 * index,
1465 					 pdev->saved_config_space[index],
1466 					 retry, force);
1467 }
1468 
1469 static void pci_restore_config_space(struct pci_dev *pdev)
1470 {
1471 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1472 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1473 		/* Restore BARs before the command register. */
1474 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1475 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1476 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1477 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1478 
1479 		/*
1480 		 * Force rewriting of prefetch registers to avoid S3 resume
1481 		 * issues on Intel PCI bridges that occur when these
1482 		 * registers are not explicitly written.
1483 		 */
1484 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1485 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1486 	} else {
1487 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1488 	}
1489 }
1490 
1491 static void pci_restore_rebar_state(struct pci_dev *pdev)
1492 {
1493 	unsigned int pos, nbars, i;
1494 	u32 ctrl;
1495 
1496 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1497 	if (!pos)
1498 		return;
1499 
1500 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1501 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1502 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1503 
1504 	for (i = 0; i < nbars; i++, pos += 8) {
1505 		struct resource *res;
1506 		int bar_idx, size;
1507 
1508 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1509 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1510 		res = pdev->resource + bar_idx;
1511 		size = ilog2(resource_size(res)) - 20;
1512 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1513 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1514 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1515 	}
1516 }
1517 
1518 /**
1519  * pci_restore_state - Restore the saved state of a PCI device
1520  * @dev: PCI device that we're dealing with
1521  */
1522 void pci_restore_state(struct pci_dev *dev)
1523 {
1524 	if (!dev->state_saved)
1525 		return;
1526 
1527 	/*
1528 	 * Restore max latencies (in the LTR capability) before enabling
1529 	 * LTR itself (in the PCIe capability).
1530 	 */
1531 	pci_restore_ltr_state(dev);
1532 
1533 	pci_restore_pcie_state(dev);
1534 	pci_restore_pasid_state(dev);
1535 	pci_restore_pri_state(dev);
1536 	pci_restore_ats_state(dev);
1537 	pci_restore_vc_state(dev);
1538 	pci_restore_rebar_state(dev);
1539 	pci_restore_dpc_state(dev);
1540 
1541 	pci_aer_clear_status(dev);
1542 	pci_restore_aer_state(dev);
1543 
1544 	pci_restore_config_space(dev);
1545 
1546 	pci_restore_pcix_state(dev);
1547 	pci_restore_msi_state(dev);
1548 
1549 	/* Restore ACS and IOV configuration state */
1550 	pci_enable_acs(dev);
1551 	pci_restore_iov_state(dev);
1552 
1553 	dev->state_saved = false;
1554 }
1555 EXPORT_SYMBOL(pci_restore_state);
1556 
1557 struct pci_saved_state {
1558 	u32 config_space[16];
1559 	struct pci_cap_saved_data cap[];
1560 };
1561 
1562 /**
1563  * pci_store_saved_state - Allocate and return an opaque struct containing
1564  *			   the device saved state.
1565  * @dev: PCI device that we're dealing with
1566  *
1567  * Return NULL if no state or error.
1568  */
1569 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1570 {
1571 	struct pci_saved_state *state;
1572 	struct pci_cap_saved_state *tmp;
1573 	struct pci_cap_saved_data *cap;
1574 	size_t size;
1575 
1576 	if (!dev->state_saved)
1577 		return NULL;
1578 
1579 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1580 
1581 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1582 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1583 
1584 	state = kzalloc(size, GFP_KERNEL);
1585 	if (!state)
1586 		return NULL;
1587 
1588 	memcpy(state->config_space, dev->saved_config_space,
1589 	       sizeof(state->config_space));
1590 
1591 	cap = state->cap;
1592 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1593 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1594 		memcpy(cap, &tmp->cap, len);
1595 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1596 	}
1597 	/* Empty cap_save terminates list */
1598 
1599 	return state;
1600 }
1601 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1602 
1603 /**
1604  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1605  * @dev: PCI device that we're dealing with
1606  * @state: Saved state returned from pci_store_saved_state()
1607  */
1608 int pci_load_saved_state(struct pci_dev *dev,
1609 			 struct pci_saved_state *state)
1610 {
1611 	struct pci_cap_saved_data *cap;
1612 
1613 	dev->state_saved = false;
1614 
1615 	if (!state)
1616 		return 0;
1617 
1618 	memcpy(dev->saved_config_space, state->config_space,
1619 	       sizeof(state->config_space));
1620 
1621 	cap = state->cap;
1622 	while (cap->size) {
1623 		struct pci_cap_saved_state *tmp;
1624 
1625 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1626 		if (!tmp || tmp->cap.size != cap->size)
1627 			return -EINVAL;
1628 
1629 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1630 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1631 		       sizeof(struct pci_cap_saved_data) + cap->size);
1632 	}
1633 
1634 	dev->state_saved = true;
1635 	return 0;
1636 }
1637 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1638 
1639 /**
1640  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1641  *				   and free the memory allocated for it.
1642  * @dev: PCI device that we're dealing with
1643  * @state: Pointer to saved state returned from pci_store_saved_state()
1644  */
1645 int pci_load_and_free_saved_state(struct pci_dev *dev,
1646 				  struct pci_saved_state **state)
1647 {
1648 	int ret = pci_load_saved_state(dev, *state);
1649 	kfree(*state);
1650 	*state = NULL;
1651 	return ret;
1652 }
1653 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1654 
1655 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1656 {
1657 	return pci_enable_resources(dev, bars);
1658 }
1659 
1660 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1661 {
1662 	int err;
1663 	struct pci_dev *bridge;
1664 	u16 cmd;
1665 	u8 pin;
1666 
1667 	err = pci_set_power_state(dev, PCI_D0);
1668 	if (err < 0 && err != -EIO)
1669 		return err;
1670 
1671 	bridge = pci_upstream_bridge(dev);
1672 	if (bridge)
1673 		pcie_aspm_powersave_config_link(bridge);
1674 
1675 	err = pcibios_enable_device(dev, bars);
1676 	if (err < 0)
1677 		return err;
1678 	pci_fixup_device(pci_fixup_enable, dev);
1679 
1680 	if (dev->msi_enabled || dev->msix_enabled)
1681 		return 0;
1682 
1683 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1684 	if (pin) {
1685 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1686 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1687 			pci_write_config_word(dev, PCI_COMMAND,
1688 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1689 	}
1690 
1691 	return 0;
1692 }
1693 
1694 /**
1695  * pci_reenable_device - Resume abandoned device
1696  * @dev: PCI device to be resumed
1697  *
1698  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1699  * to be called by normal code, write proper resume handler and use it instead.
1700  */
1701 int pci_reenable_device(struct pci_dev *dev)
1702 {
1703 	if (pci_is_enabled(dev))
1704 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1705 	return 0;
1706 }
1707 EXPORT_SYMBOL(pci_reenable_device);
1708 
1709 static void pci_enable_bridge(struct pci_dev *dev)
1710 {
1711 	struct pci_dev *bridge;
1712 	int retval;
1713 
1714 	bridge = pci_upstream_bridge(dev);
1715 	if (bridge)
1716 		pci_enable_bridge(bridge);
1717 
1718 	if (pci_is_enabled(dev)) {
1719 		if (!dev->is_busmaster)
1720 			pci_set_master(dev);
1721 		return;
1722 	}
1723 
1724 	retval = pci_enable_device(dev);
1725 	if (retval)
1726 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1727 			retval);
1728 	pci_set_master(dev);
1729 }
1730 
1731 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1732 {
1733 	struct pci_dev *bridge;
1734 	int err;
1735 	int i, bars = 0;
1736 
1737 	/*
1738 	 * Power state could be unknown at this point, either due to a fresh
1739 	 * boot or a device removal call.  So get the current power state
1740 	 * so that things like MSI message writing will behave as expected
1741 	 * (e.g. if the device really is in D0 at enable time).
1742 	 */
1743 	if (dev->pm_cap) {
1744 		u16 pmcsr;
1745 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1746 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1747 	}
1748 
1749 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1750 		return 0;		/* already enabled */
1751 
1752 	bridge = pci_upstream_bridge(dev);
1753 	if (bridge)
1754 		pci_enable_bridge(bridge);
1755 
1756 	/* only skip sriov related */
1757 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1758 		if (dev->resource[i].flags & flags)
1759 			bars |= (1 << i);
1760 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1761 		if (dev->resource[i].flags & flags)
1762 			bars |= (1 << i);
1763 
1764 	err = do_pci_enable_device(dev, bars);
1765 	if (err < 0)
1766 		atomic_dec(&dev->enable_cnt);
1767 	return err;
1768 }
1769 
1770 /**
1771  * pci_enable_device_io - Initialize a device for use with IO space
1772  * @dev: PCI device to be initialized
1773  *
1774  * Initialize device before it's used by a driver. Ask low-level code
1775  * to enable I/O resources. Wake up the device if it was suspended.
1776  * Beware, this function can fail.
1777  */
1778 int pci_enable_device_io(struct pci_dev *dev)
1779 {
1780 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1781 }
1782 EXPORT_SYMBOL(pci_enable_device_io);
1783 
1784 /**
1785  * pci_enable_device_mem - Initialize a device for use with Memory space
1786  * @dev: PCI device to be initialized
1787  *
1788  * Initialize device before it's used by a driver. Ask low-level code
1789  * to enable Memory resources. Wake up the device if it was suspended.
1790  * Beware, this function can fail.
1791  */
1792 int pci_enable_device_mem(struct pci_dev *dev)
1793 {
1794 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1795 }
1796 EXPORT_SYMBOL(pci_enable_device_mem);
1797 
1798 /**
1799  * pci_enable_device - Initialize device before it's used by a driver.
1800  * @dev: PCI device to be initialized
1801  *
1802  * Initialize device before it's used by a driver. Ask low-level code
1803  * to enable I/O and memory. Wake up the device if it was suspended.
1804  * Beware, this function can fail.
1805  *
1806  * Note we don't actually enable the device many times if we call
1807  * this function repeatedly (we just increment the count).
1808  */
1809 int pci_enable_device(struct pci_dev *dev)
1810 {
1811 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1812 }
1813 EXPORT_SYMBOL(pci_enable_device);
1814 
1815 /*
1816  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1817  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1818  * there's no need to track it separately.  pci_devres is initialized
1819  * when a device is enabled using managed PCI device enable interface.
1820  */
1821 struct pci_devres {
1822 	unsigned int enabled:1;
1823 	unsigned int pinned:1;
1824 	unsigned int orig_intx:1;
1825 	unsigned int restore_intx:1;
1826 	unsigned int mwi:1;
1827 	u32 region_mask;
1828 };
1829 
1830 static void pcim_release(struct device *gendev, void *res)
1831 {
1832 	struct pci_dev *dev = to_pci_dev(gendev);
1833 	struct pci_devres *this = res;
1834 	int i;
1835 
1836 	if (dev->msi_enabled)
1837 		pci_disable_msi(dev);
1838 	if (dev->msix_enabled)
1839 		pci_disable_msix(dev);
1840 
1841 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1842 		if (this->region_mask & (1 << i))
1843 			pci_release_region(dev, i);
1844 
1845 	if (this->mwi)
1846 		pci_clear_mwi(dev);
1847 
1848 	if (this->restore_intx)
1849 		pci_intx(dev, this->orig_intx);
1850 
1851 	if (this->enabled && !this->pinned)
1852 		pci_disable_device(dev);
1853 }
1854 
1855 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1856 {
1857 	struct pci_devres *dr, *new_dr;
1858 
1859 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1860 	if (dr)
1861 		return dr;
1862 
1863 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1864 	if (!new_dr)
1865 		return NULL;
1866 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1867 }
1868 
1869 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1870 {
1871 	if (pci_is_managed(pdev))
1872 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1873 	return NULL;
1874 }
1875 
1876 /**
1877  * pcim_enable_device - Managed pci_enable_device()
1878  * @pdev: PCI device to be initialized
1879  *
1880  * Managed pci_enable_device().
1881  */
1882 int pcim_enable_device(struct pci_dev *pdev)
1883 {
1884 	struct pci_devres *dr;
1885 	int rc;
1886 
1887 	dr = get_pci_dr(pdev);
1888 	if (unlikely(!dr))
1889 		return -ENOMEM;
1890 	if (dr->enabled)
1891 		return 0;
1892 
1893 	rc = pci_enable_device(pdev);
1894 	if (!rc) {
1895 		pdev->is_managed = 1;
1896 		dr->enabled = 1;
1897 	}
1898 	return rc;
1899 }
1900 EXPORT_SYMBOL(pcim_enable_device);
1901 
1902 /**
1903  * pcim_pin_device - Pin managed PCI device
1904  * @pdev: PCI device to pin
1905  *
1906  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1907  * driver detach.  @pdev must have been enabled with
1908  * pcim_enable_device().
1909  */
1910 void pcim_pin_device(struct pci_dev *pdev)
1911 {
1912 	struct pci_devres *dr;
1913 
1914 	dr = find_pci_dr(pdev);
1915 	WARN_ON(!dr || !dr->enabled);
1916 	if (dr)
1917 		dr->pinned = 1;
1918 }
1919 EXPORT_SYMBOL(pcim_pin_device);
1920 
1921 /*
1922  * pcibios_add_device - provide arch specific hooks when adding device dev
1923  * @dev: the PCI device being added
1924  *
1925  * Permits the platform to provide architecture specific functionality when
1926  * devices are added. This is the default implementation. Architecture
1927  * implementations can override this.
1928  */
1929 int __weak pcibios_add_device(struct pci_dev *dev)
1930 {
1931 	return 0;
1932 }
1933 
1934 /**
1935  * pcibios_release_device - provide arch specific hooks when releasing
1936  *			    device dev
1937  * @dev: the PCI device being released
1938  *
1939  * Permits the platform to provide architecture specific functionality when
1940  * devices are released. This is the default implementation. Architecture
1941  * implementations can override this.
1942  */
1943 void __weak pcibios_release_device(struct pci_dev *dev) {}
1944 
1945 /**
1946  * pcibios_disable_device - disable arch specific PCI resources for device dev
1947  * @dev: the PCI device to disable
1948  *
1949  * Disables architecture specific PCI resources for the device. This
1950  * is the default implementation. Architecture implementations can
1951  * override this.
1952  */
1953 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1954 
1955 /**
1956  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1957  * @irq: ISA IRQ to penalize
1958  * @active: IRQ active or not
1959  *
1960  * Permits the platform to provide architecture-specific functionality when
1961  * penalizing ISA IRQs. This is the default implementation. Architecture
1962  * implementations can override this.
1963  */
1964 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1965 
1966 static void do_pci_disable_device(struct pci_dev *dev)
1967 {
1968 	u16 pci_command;
1969 
1970 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1971 	if (pci_command & PCI_COMMAND_MASTER) {
1972 		pci_command &= ~PCI_COMMAND_MASTER;
1973 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1974 	}
1975 
1976 	pcibios_disable_device(dev);
1977 }
1978 
1979 /**
1980  * pci_disable_enabled_device - Disable device without updating enable_cnt
1981  * @dev: PCI device to disable
1982  *
1983  * NOTE: This function is a backend of PCI power management routines and is
1984  * not supposed to be called drivers.
1985  */
1986 void pci_disable_enabled_device(struct pci_dev *dev)
1987 {
1988 	if (pci_is_enabled(dev))
1989 		do_pci_disable_device(dev);
1990 }
1991 
1992 /**
1993  * pci_disable_device - Disable PCI device after use
1994  * @dev: PCI device to be disabled
1995  *
1996  * Signal to the system that the PCI device is not in use by the system
1997  * anymore.  This only involves disabling PCI bus-mastering, if active.
1998  *
1999  * Note we don't actually disable the device until all callers of
2000  * pci_enable_device() have called pci_disable_device().
2001  */
2002 void pci_disable_device(struct pci_dev *dev)
2003 {
2004 	struct pci_devres *dr;
2005 
2006 	dr = find_pci_dr(dev);
2007 	if (dr)
2008 		dr->enabled = 0;
2009 
2010 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2011 		      "disabling already-disabled device");
2012 
2013 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2014 		return;
2015 
2016 	do_pci_disable_device(dev);
2017 
2018 	dev->is_busmaster = 0;
2019 }
2020 EXPORT_SYMBOL(pci_disable_device);
2021 
2022 /**
2023  * pcibios_set_pcie_reset_state - set reset state for device dev
2024  * @dev: the PCIe device reset
2025  * @state: Reset state to enter into
2026  *
2027  * Set the PCIe reset state for the device. This is the default
2028  * implementation. Architecture implementations can override this.
2029  */
2030 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2031 					enum pcie_reset_state state)
2032 {
2033 	return -EINVAL;
2034 }
2035 
2036 /**
2037  * pci_set_pcie_reset_state - set reset state for device dev
2038  * @dev: the PCIe device reset
2039  * @state: Reset state to enter into
2040  *
2041  * Sets the PCI reset state for the device.
2042  */
2043 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2044 {
2045 	return pcibios_set_pcie_reset_state(dev, state);
2046 }
2047 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2048 
2049 /**
2050  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2051  * @dev: PCIe root port or event collector.
2052  */
2053 void pcie_clear_root_pme_status(struct pci_dev *dev)
2054 {
2055 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2056 }
2057 
2058 /**
2059  * pci_check_pme_status - Check if given device has generated PME.
2060  * @dev: Device to check.
2061  *
2062  * Check the PME status of the device and if set, clear it and clear PME enable
2063  * (if set).  Return 'true' if PME status and PME enable were both set or
2064  * 'false' otherwise.
2065  */
2066 bool pci_check_pme_status(struct pci_dev *dev)
2067 {
2068 	int pmcsr_pos;
2069 	u16 pmcsr;
2070 	bool ret = false;
2071 
2072 	if (!dev->pm_cap)
2073 		return false;
2074 
2075 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2076 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2077 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2078 		return false;
2079 
2080 	/* Clear PME status. */
2081 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2082 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2083 		/* Disable PME to avoid interrupt flood. */
2084 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2085 		ret = true;
2086 	}
2087 
2088 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2089 
2090 	return ret;
2091 }
2092 
2093 /**
2094  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2095  * @dev: Device to handle.
2096  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2097  *
2098  * Check if @dev has generated PME and queue a resume request for it in that
2099  * case.
2100  */
2101 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2102 {
2103 	if (pme_poll_reset && dev->pme_poll)
2104 		dev->pme_poll = false;
2105 
2106 	if (pci_check_pme_status(dev)) {
2107 		pci_wakeup_event(dev);
2108 		pm_request_resume(&dev->dev);
2109 	}
2110 	return 0;
2111 }
2112 
2113 /**
2114  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2115  * @bus: Top bus of the subtree to walk.
2116  */
2117 void pci_pme_wakeup_bus(struct pci_bus *bus)
2118 {
2119 	if (bus)
2120 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2121 }
2122 
2123 
2124 /**
2125  * pci_pme_capable - check the capability of PCI device to generate PME#
2126  * @dev: PCI device to handle.
2127  * @state: PCI state from which device will issue PME#.
2128  */
2129 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2130 {
2131 	if (!dev->pm_cap)
2132 		return false;
2133 
2134 	return !!(dev->pme_support & (1 << state));
2135 }
2136 EXPORT_SYMBOL(pci_pme_capable);
2137 
2138 static void pci_pme_list_scan(struct work_struct *work)
2139 {
2140 	struct pci_pme_device *pme_dev, *n;
2141 
2142 	mutex_lock(&pci_pme_list_mutex);
2143 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2144 		if (pme_dev->dev->pme_poll) {
2145 			struct pci_dev *bridge;
2146 
2147 			bridge = pme_dev->dev->bus->self;
2148 			/*
2149 			 * If bridge is in low power state, the
2150 			 * configuration space of subordinate devices
2151 			 * may be not accessible
2152 			 */
2153 			if (bridge && bridge->current_state != PCI_D0)
2154 				continue;
2155 			/*
2156 			 * If the device is in D3cold it should not be
2157 			 * polled either.
2158 			 */
2159 			if (pme_dev->dev->current_state == PCI_D3cold)
2160 				continue;
2161 
2162 			pci_pme_wakeup(pme_dev->dev, NULL);
2163 		} else {
2164 			list_del(&pme_dev->list);
2165 			kfree(pme_dev);
2166 		}
2167 	}
2168 	if (!list_empty(&pci_pme_list))
2169 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2170 				   msecs_to_jiffies(PME_TIMEOUT));
2171 	mutex_unlock(&pci_pme_list_mutex);
2172 }
2173 
2174 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2175 {
2176 	u16 pmcsr;
2177 
2178 	if (!dev->pme_support)
2179 		return;
2180 
2181 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2182 	/* Clear PME_Status by writing 1 to it and enable PME# */
2183 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2184 	if (!enable)
2185 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2186 
2187 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2188 }
2189 
2190 /**
2191  * pci_pme_restore - Restore PME configuration after config space restore.
2192  * @dev: PCI device to update.
2193  */
2194 void pci_pme_restore(struct pci_dev *dev)
2195 {
2196 	u16 pmcsr;
2197 
2198 	if (!dev->pme_support)
2199 		return;
2200 
2201 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2202 	if (dev->wakeup_prepared) {
2203 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2204 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2205 	} else {
2206 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2207 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2208 	}
2209 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2210 }
2211 
2212 /**
2213  * pci_pme_active - enable or disable PCI device's PME# function
2214  * @dev: PCI device to handle.
2215  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2216  *
2217  * The caller must verify that the device is capable of generating PME# before
2218  * calling this function with @enable equal to 'true'.
2219  */
2220 void pci_pme_active(struct pci_dev *dev, bool enable)
2221 {
2222 	__pci_pme_active(dev, enable);
2223 
2224 	/*
2225 	 * PCI (as opposed to PCIe) PME requires that the device have
2226 	 * its PME# line hooked up correctly. Not all hardware vendors
2227 	 * do this, so the PME never gets delivered and the device
2228 	 * remains asleep. The easiest way around this is to
2229 	 * periodically walk the list of suspended devices and check
2230 	 * whether any have their PME flag set. The assumption is that
2231 	 * we'll wake up often enough anyway that this won't be a huge
2232 	 * hit, and the power savings from the devices will still be a
2233 	 * win.
2234 	 *
2235 	 * Although PCIe uses in-band PME message instead of PME# line
2236 	 * to report PME, PME does not work for some PCIe devices in
2237 	 * reality.  For example, there are devices that set their PME
2238 	 * status bits, but don't really bother to send a PME message;
2239 	 * there are PCI Express Root Ports that don't bother to
2240 	 * trigger interrupts when they receive PME messages from the
2241 	 * devices below.  So PME poll is used for PCIe devices too.
2242 	 */
2243 
2244 	if (dev->pme_poll) {
2245 		struct pci_pme_device *pme_dev;
2246 		if (enable) {
2247 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2248 					  GFP_KERNEL);
2249 			if (!pme_dev) {
2250 				pci_warn(dev, "can't enable PME#\n");
2251 				return;
2252 			}
2253 			pme_dev->dev = dev;
2254 			mutex_lock(&pci_pme_list_mutex);
2255 			list_add(&pme_dev->list, &pci_pme_list);
2256 			if (list_is_singular(&pci_pme_list))
2257 				queue_delayed_work(system_freezable_wq,
2258 						   &pci_pme_work,
2259 						   msecs_to_jiffies(PME_TIMEOUT));
2260 			mutex_unlock(&pci_pme_list_mutex);
2261 		} else {
2262 			mutex_lock(&pci_pme_list_mutex);
2263 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2264 				if (pme_dev->dev == dev) {
2265 					list_del(&pme_dev->list);
2266 					kfree(pme_dev);
2267 					break;
2268 				}
2269 			}
2270 			mutex_unlock(&pci_pme_list_mutex);
2271 		}
2272 	}
2273 
2274 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2275 }
2276 EXPORT_SYMBOL(pci_pme_active);
2277 
2278 /**
2279  * __pci_enable_wake - enable PCI device as wakeup event source
2280  * @dev: PCI device affected
2281  * @state: PCI state from which device will issue wakeup events
2282  * @enable: True to enable event generation; false to disable
2283  *
2284  * This enables the device as a wakeup event source, or disables it.
2285  * When such events involves platform-specific hooks, those hooks are
2286  * called automatically by this routine.
2287  *
2288  * Devices with legacy power management (no standard PCI PM capabilities)
2289  * always require such platform hooks.
2290  *
2291  * RETURN VALUE:
2292  * 0 is returned on success
2293  * -EINVAL is returned if device is not supposed to wake up the system
2294  * Error code depending on the platform is returned if both the platform and
2295  * the native mechanism fail to enable the generation of wake-up events
2296  */
2297 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2298 {
2299 	int ret = 0;
2300 
2301 	/*
2302 	 * Bridges that are not power-manageable directly only signal
2303 	 * wakeup on behalf of subordinate devices which is set up
2304 	 * elsewhere, so skip them. However, bridges that are
2305 	 * power-manageable may signal wakeup for themselves (for example,
2306 	 * on a hotplug event) and they need to be covered here.
2307 	 */
2308 	if (!pci_power_manageable(dev))
2309 		return 0;
2310 
2311 	/* Don't do the same thing twice in a row for one device. */
2312 	if (!!enable == !!dev->wakeup_prepared)
2313 		return 0;
2314 
2315 	/*
2316 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2317 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2318 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2319 	 */
2320 
2321 	if (enable) {
2322 		int error;
2323 
2324 		if (pci_pme_capable(dev, state))
2325 			pci_pme_active(dev, true);
2326 		else
2327 			ret = 1;
2328 		error = platform_pci_set_wakeup(dev, true);
2329 		if (ret)
2330 			ret = error;
2331 		if (!ret)
2332 			dev->wakeup_prepared = true;
2333 	} else {
2334 		platform_pci_set_wakeup(dev, false);
2335 		pci_pme_active(dev, false);
2336 		dev->wakeup_prepared = false;
2337 	}
2338 
2339 	return ret;
2340 }
2341 
2342 /**
2343  * pci_enable_wake - change wakeup settings for a PCI device
2344  * @pci_dev: Target device
2345  * @state: PCI state from which device will issue wakeup events
2346  * @enable: Whether or not to enable event generation
2347  *
2348  * If @enable is set, check device_may_wakeup() for the device before calling
2349  * __pci_enable_wake() for it.
2350  */
2351 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2352 {
2353 	if (enable && !device_may_wakeup(&pci_dev->dev))
2354 		return -EINVAL;
2355 
2356 	return __pci_enable_wake(pci_dev, state, enable);
2357 }
2358 EXPORT_SYMBOL(pci_enable_wake);
2359 
2360 /**
2361  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2362  * @dev: PCI device to prepare
2363  * @enable: True to enable wake-up event generation; false to disable
2364  *
2365  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2366  * and this function allows them to set that up cleanly - pci_enable_wake()
2367  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2368  * ordering constraints.
2369  *
2370  * This function only returns error code if the device is not allowed to wake
2371  * up the system from sleep or it is not capable of generating PME# from both
2372  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2373  */
2374 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2375 {
2376 	return pci_pme_capable(dev, PCI_D3cold) ?
2377 			pci_enable_wake(dev, PCI_D3cold, enable) :
2378 			pci_enable_wake(dev, PCI_D3hot, enable);
2379 }
2380 EXPORT_SYMBOL(pci_wake_from_d3);
2381 
2382 /**
2383  * pci_target_state - find an appropriate low power state for a given PCI dev
2384  * @dev: PCI device
2385  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2386  *
2387  * Use underlying platform code to find a supported low power state for @dev.
2388  * If the platform can't manage @dev, return the deepest state from which it
2389  * can generate wake events, based on any available PME info.
2390  */
2391 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2392 {
2393 	pci_power_t target_state = PCI_D3hot;
2394 
2395 	if (platform_pci_power_manageable(dev)) {
2396 		/*
2397 		 * Call the platform to find the target state for the device.
2398 		 */
2399 		pci_power_t state = platform_pci_choose_state(dev);
2400 
2401 		switch (state) {
2402 		case PCI_POWER_ERROR:
2403 		case PCI_UNKNOWN:
2404 			break;
2405 		case PCI_D1:
2406 		case PCI_D2:
2407 			if (pci_no_d1d2(dev))
2408 				break;
2409 			/* else, fall through */
2410 		default:
2411 			target_state = state;
2412 		}
2413 
2414 		return target_state;
2415 	}
2416 
2417 	if (!dev->pm_cap)
2418 		target_state = PCI_D0;
2419 
2420 	/*
2421 	 * If the device is in D3cold even though it's not power-manageable by
2422 	 * the platform, it may have been powered down by non-standard means.
2423 	 * Best to let it slumber.
2424 	 */
2425 	if (dev->current_state == PCI_D3cold)
2426 		target_state = PCI_D3cold;
2427 
2428 	if (wakeup) {
2429 		/*
2430 		 * Find the deepest state from which the device can generate
2431 		 * PME#.
2432 		 */
2433 		if (dev->pme_support) {
2434 			while (target_state
2435 			      && !(dev->pme_support & (1 << target_state)))
2436 				target_state--;
2437 		}
2438 	}
2439 
2440 	return target_state;
2441 }
2442 
2443 /**
2444  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2445  *			  into a sleep state
2446  * @dev: Device to handle.
2447  *
2448  * Choose the power state appropriate for the device depending on whether
2449  * it can wake up the system and/or is power manageable by the platform
2450  * (PCI_D3hot is the default) and put the device into that state.
2451  */
2452 int pci_prepare_to_sleep(struct pci_dev *dev)
2453 {
2454 	bool wakeup = device_may_wakeup(&dev->dev);
2455 	pci_power_t target_state = pci_target_state(dev, wakeup);
2456 	int error;
2457 
2458 	if (target_state == PCI_POWER_ERROR)
2459 		return -EIO;
2460 
2461 	pci_enable_wake(dev, target_state, wakeup);
2462 
2463 	error = pci_set_power_state(dev, target_state);
2464 
2465 	if (error)
2466 		pci_enable_wake(dev, target_state, false);
2467 
2468 	return error;
2469 }
2470 EXPORT_SYMBOL(pci_prepare_to_sleep);
2471 
2472 /**
2473  * pci_back_from_sleep - turn PCI device on during system-wide transition
2474  *			 into working state
2475  * @dev: Device to handle.
2476  *
2477  * Disable device's system wake-up capability and put it into D0.
2478  */
2479 int pci_back_from_sleep(struct pci_dev *dev)
2480 {
2481 	pci_enable_wake(dev, PCI_D0, false);
2482 	return pci_set_power_state(dev, PCI_D0);
2483 }
2484 EXPORT_SYMBOL(pci_back_from_sleep);
2485 
2486 /**
2487  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2488  * @dev: PCI device being suspended.
2489  *
2490  * Prepare @dev to generate wake-up events at run time and put it into a low
2491  * power state.
2492  */
2493 int pci_finish_runtime_suspend(struct pci_dev *dev)
2494 {
2495 	pci_power_t target_state;
2496 	int error;
2497 
2498 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2499 	if (target_state == PCI_POWER_ERROR)
2500 		return -EIO;
2501 
2502 	dev->runtime_d3cold = target_state == PCI_D3cold;
2503 
2504 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2505 
2506 	error = pci_set_power_state(dev, target_state);
2507 
2508 	if (error) {
2509 		pci_enable_wake(dev, target_state, false);
2510 		dev->runtime_d3cold = false;
2511 	}
2512 
2513 	return error;
2514 }
2515 
2516 /**
2517  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2518  * @dev: Device to check.
2519  *
2520  * Return true if the device itself is capable of generating wake-up events
2521  * (through the platform or using the native PCIe PME) or if the device supports
2522  * PME and one of its upstream bridges can generate wake-up events.
2523  */
2524 bool pci_dev_run_wake(struct pci_dev *dev)
2525 {
2526 	struct pci_bus *bus = dev->bus;
2527 
2528 	if (!dev->pme_support)
2529 		return false;
2530 
2531 	/* PME-capable in principle, but not from the target power state */
2532 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2533 		return false;
2534 
2535 	if (device_can_wakeup(&dev->dev))
2536 		return true;
2537 
2538 	while (bus->parent) {
2539 		struct pci_dev *bridge = bus->self;
2540 
2541 		if (device_can_wakeup(&bridge->dev))
2542 			return true;
2543 
2544 		bus = bus->parent;
2545 	}
2546 
2547 	/* We have reached the root bus. */
2548 	if (bus->bridge)
2549 		return device_can_wakeup(bus->bridge);
2550 
2551 	return false;
2552 }
2553 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2554 
2555 /**
2556  * pci_dev_need_resume - Check if it is necessary to resume the device.
2557  * @pci_dev: Device to check.
2558  *
2559  * Return 'true' if the device is not runtime-suspended or it has to be
2560  * reconfigured due to wakeup settings difference between system and runtime
2561  * suspend, or the current power state of it is not suitable for the upcoming
2562  * (system-wide) transition.
2563  */
2564 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2565 {
2566 	struct device *dev = &pci_dev->dev;
2567 	pci_power_t target_state;
2568 
2569 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2570 		return true;
2571 
2572 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2573 
2574 	/*
2575 	 * If the earlier platform check has not triggered, D3cold is just power
2576 	 * removal on top of D3hot, so no need to resume the device in that
2577 	 * case.
2578 	 */
2579 	return target_state != pci_dev->current_state &&
2580 		target_state != PCI_D3cold &&
2581 		pci_dev->current_state != PCI_D3hot;
2582 }
2583 
2584 /**
2585  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2586  * @pci_dev: Device to check.
2587  *
2588  * If the device is suspended and it is not configured for system wakeup,
2589  * disable PME for it to prevent it from waking up the system unnecessarily.
2590  *
2591  * Note that if the device's power state is D3cold and the platform check in
2592  * pci_dev_need_resume() has not triggered, the device's configuration need not
2593  * be changed.
2594  */
2595 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2596 {
2597 	struct device *dev = &pci_dev->dev;
2598 
2599 	spin_lock_irq(&dev->power.lock);
2600 
2601 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2602 	    pci_dev->current_state < PCI_D3cold)
2603 		__pci_pme_active(pci_dev, false);
2604 
2605 	spin_unlock_irq(&dev->power.lock);
2606 }
2607 
2608 /**
2609  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2610  * @pci_dev: Device to handle.
2611  *
2612  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2613  * it might have been disabled during the prepare phase of system suspend if
2614  * the device was not configured for system wakeup.
2615  */
2616 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2617 {
2618 	struct device *dev = &pci_dev->dev;
2619 
2620 	if (!pci_dev_run_wake(pci_dev))
2621 		return;
2622 
2623 	spin_lock_irq(&dev->power.lock);
2624 
2625 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2626 		__pci_pme_active(pci_dev, true);
2627 
2628 	spin_unlock_irq(&dev->power.lock);
2629 }
2630 
2631 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2632 {
2633 	struct device *dev = &pdev->dev;
2634 	struct device *parent = dev->parent;
2635 
2636 	if (parent)
2637 		pm_runtime_get_sync(parent);
2638 	pm_runtime_get_noresume(dev);
2639 	/*
2640 	 * pdev->current_state is set to PCI_D3cold during suspending,
2641 	 * so wait until suspending completes
2642 	 */
2643 	pm_runtime_barrier(dev);
2644 	/*
2645 	 * Only need to resume devices in D3cold, because config
2646 	 * registers are still accessible for devices suspended but
2647 	 * not in D3cold.
2648 	 */
2649 	if (pdev->current_state == PCI_D3cold)
2650 		pm_runtime_resume(dev);
2651 }
2652 
2653 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2654 {
2655 	struct device *dev = &pdev->dev;
2656 	struct device *parent = dev->parent;
2657 
2658 	pm_runtime_put(dev);
2659 	if (parent)
2660 		pm_runtime_put_sync(parent);
2661 }
2662 
2663 static const struct dmi_system_id bridge_d3_blacklist[] = {
2664 #ifdef CONFIG_X86
2665 	{
2666 		/*
2667 		 * Gigabyte X299 root port is not marked as hotplug capable
2668 		 * which allows Linux to power manage it.  However, this
2669 		 * confuses the BIOS SMI handler so don't power manage root
2670 		 * ports on that system.
2671 		 */
2672 		.ident = "X299 DESIGNARE EX-CF",
2673 		.matches = {
2674 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2675 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2676 		},
2677 	},
2678 #endif
2679 	{ }
2680 };
2681 
2682 /**
2683  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2684  * @bridge: Bridge to check
2685  *
2686  * This function checks if it is possible to move the bridge to D3.
2687  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2688  */
2689 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2690 {
2691 	if (!pci_is_pcie(bridge))
2692 		return false;
2693 
2694 	switch (pci_pcie_type(bridge)) {
2695 	case PCI_EXP_TYPE_ROOT_PORT:
2696 	case PCI_EXP_TYPE_UPSTREAM:
2697 	case PCI_EXP_TYPE_DOWNSTREAM:
2698 		if (pci_bridge_d3_disable)
2699 			return false;
2700 
2701 		/*
2702 		 * Hotplug ports handled by firmware in System Management Mode
2703 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2704 		 */
2705 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2706 			return false;
2707 
2708 		if (pci_bridge_d3_force)
2709 			return true;
2710 
2711 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2712 		if (bridge->is_thunderbolt)
2713 			return true;
2714 
2715 		/* Platform might know better if the bridge supports D3 */
2716 		if (platform_pci_bridge_d3(bridge))
2717 			return true;
2718 
2719 		/*
2720 		 * Hotplug ports handled natively by the OS were not validated
2721 		 * by vendors for runtime D3 at least until 2018 because there
2722 		 * was no OS support.
2723 		 */
2724 		if (bridge->is_hotplug_bridge)
2725 			return false;
2726 
2727 		if (dmi_check_system(bridge_d3_blacklist))
2728 			return false;
2729 
2730 		/*
2731 		 * It should be safe to put PCIe ports from 2015 or newer
2732 		 * to D3.
2733 		 */
2734 		if (dmi_get_bios_year() >= 2015)
2735 			return true;
2736 		break;
2737 	}
2738 
2739 	return false;
2740 }
2741 
2742 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2743 {
2744 	bool *d3cold_ok = data;
2745 
2746 	if (/* The device needs to be allowed to go D3cold ... */
2747 	    dev->no_d3cold || !dev->d3cold_allowed ||
2748 
2749 	    /* ... and if it is wakeup capable to do so from D3cold. */
2750 	    (device_may_wakeup(&dev->dev) &&
2751 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2752 
2753 	    /* If it is a bridge it must be allowed to go to D3. */
2754 	    !pci_power_manageable(dev))
2755 
2756 		*d3cold_ok = false;
2757 
2758 	return !*d3cold_ok;
2759 }
2760 
2761 /*
2762  * pci_bridge_d3_update - Update bridge D3 capabilities
2763  * @dev: PCI device which is changed
2764  *
2765  * Update upstream bridge PM capabilities accordingly depending on if the
2766  * device PM configuration was changed or the device is being removed.  The
2767  * change is also propagated upstream.
2768  */
2769 void pci_bridge_d3_update(struct pci_dev *dev)
2770 {
2771 	bool remove = !device_is_registered(&dev->dev);
2772 	struct pci_dev *bridge;
2773 	bool d3cold_ok = true;
2774 
2775 	bridge = pci_upstream_bridge(dev);
2776 	if (!bridge || !pci_bridge_d3_possible(bridge))
2777 		return;
2778 
2779 	/*
2780 	 * If D3 is currently allowed for the bridge, removing one of its
2781 	 * children won't change that.
2782 	 */
2783 	if (remove && bridge->bridge_d3)
2784 		return;
2785 
2786 	/*
2787 	 * If D3 is currently allowed for the bridge and a child is added or
2788 	 * changed, disallowance of D3 can only be caused by that child, so
2789 	 * we only need to check that single device, not any of its siblings.
2790 	 *
2791 	 * If D3 is currently not allowed for the bridge, checking the device
2792 	 * first may allow us to skip checking its siblings.
2793 	 */
2794 	if (!remove)
2795 		pci_dev_check_d3cold(dev, &d3cold_ok);
2796 
2797 	/*
2798 	 * If D3 is currently not allowed for the bridge, this may be caused
2799 	 * either by the device being changed/removed or any of its siblings,
2800 	 * so we need to go through all children to find out if one of them
2801 	 * continues to block D3.
2802 	 */
2803 	if (d3cold_ok && !bridge->bridge_d3)
2804 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2805 			     &d3cold_ok);
2806 
2807 	if (bridge->bridge_d3 != d3cold_ok) {
2808 		bridge->bridge_d3 = d3cold_ok;
2809 		/* Propagate change to upstream bridges */
2810 		pci_bridge_d3_update(bridge);
2811 	}
2812 }
2813 
2814 /**
2815  * pci_d3cold_enable - Enable D3cold for device
2816  * @dev: PCI device to handle
2817  *
2818  * This function can be used in drivers to enable D3cold from the device
2819  * they handle.  It also updates upstream PCI bridge PM capabilities
2820  * accordingly.
2821  */
2822 void pci_d3cold_enable(struct pci_dev *dev)
2823 {
2824 	if (dev->no_d3cold) {
2825 		dev->no_d3cold = false;
2826 		pci_bridge_d3_update(dev);
2827 	}
2828 }
2829 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2830 
2831 /**
2832  * pci_d3cold_disable - Disable D3cold for device
2833  * @dev: PCI device to handle
2834  *
2835  * This function can be used in drivers to disable D3cold from the device
2836  * they handle.  It also updates upstream PCI bridge PM capabilities
2837  * accordingly.
2838  */
2839 void pci_d3cold_disable(struct pci_dev *dev)
2840 {
2841 	if (!dev->no_d3cold) {
2842 		dev->no_d3cold = true;
2843 		pci_bridge_d3_update(dev);
2844 	}
2845 }
2846 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2847 
2848 /**
2849  * pci_pm_init - Initialize PM functions of given PCI device
2850  * @dev: PCI device to handle.
2851  */
2852 void pci_pm_init(struct pci_dev *dev)
2853 {
2854 	int pm;
2855 	u16 status;
2856 	u16 pmc;
2857 
2858 	pm_runtime_forbid(&dev->dev);
2859 	pm_runtime_set_active(&dev->dev);
2860 	pm_runtime_enable(&dev->dev);
2861 	device_enable_async_suspend(&dev->dev);
2862 	dev->wakeup_prepared = false;
2863 
2864 	dev->pm_cap = 0;
2865 	dev->pme_support = 0;
2866 
2867 	/* find PCI PM capability in list */
2868 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2869 	if (!pm)
2870 		return;
2871 	/* Check device's ability to generate PME# */
2872 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2873 
2874 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2875 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2876 			pmc & PCI_PM_CAP_VER_MASK);
2877 		return;
2878 	}
2879 
2880 	dev->pm_cap = pm;
2881 	dev->d3_delay = PCI_PM_D3_WAIT;
2882 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2883 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2884 	dev->d3cold_allowed = true;
2885 
2886 	dev->d1_support = false;
2887 	dev->d2_support = false;
2888 	if (!pci_no_d1d2(dev)) {
2889 		if (pmc & PCI_PM_CAP_D1)
2890 			dev->d1_support = true;
2891 		if (pmc & PCI_PM_CAP_D2)
2892 			dev->d2_support = true;
2893 
2894 		if (dev->d1_support || dev->d2_support)
2895 			pci_info(dev, "supports%s%s\n",
2896 				   dev->d1_support ? " D1" : "",
2897 				   dev->d2_support ? " D2" : "");
2898 	}
2899 
2900 	pmc &= PCI_PM_CAP_PME_MASK;
2901 	if (pmc) {
2902 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2903 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2904 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2905 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2906 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2907 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2908 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2909 		dev->pme_poll = true;
2910 		/*
2911 		 * Make device's PM flags reflect the wake-up capability, but
2912 		 * let the user space enable it to wake up the system as needed.
2913 		 */
2914 		device_set_wakeup_capable(&dev->dev, true);
2915 		/* Disable the PME# generation functionality */
2916 		pci_pme_active(dev, false);
2917 	}
2918 
2919 	pci_read_config_word(dev, PCI_STATUS, &status);
2920 	if (status & PCI_STATUS_IMM_READY)
2921 		dev->imm_ready = 1;
2922 }
2923 
2924 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2925 {
2926 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2927 
2928 	switch (prop) {
2929 	case PCI_EA_P_MEM:
2930 	case PCI_EA_P_VF_MEM:
2931 		flags |= IORESOURCE_MEM;
2932 		break;
2933 	case PCI_EA_P_MEM_PREFETCH:
2934 	case PCI_EA_P_VF_MEM_PREFETCH:
2935 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2936 		break;
2937 	case PCI_EA_P_IO:
2938 		flags |= IORESOURCE_IO;
2939 		break;
2940 	default:
2941 		return 0;
2942 	}
2943 
2944 	return flags;
2945 }
2946 
2947 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2948 					    u8 prop)
2949 {
2950 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2951 		return &dev->resource[bei];
2952 #ifdef CONFIG_PCI_IOV
2953 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2954 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2955 		return &dev->resource[PCI_IOV_RESOURCES +
2956 				      bei - PCI_EA_BEI_VF_BAR0];
2957 #endif
2958 	else if (bei == PCI_EA_BEI_ROM)
2959 		return &dev->resource[PCI_ROM_RESOURCE];
2960 	else
2961 		return NULL;
2962 }
2963 
2964 /* Read an Enhanced Allocation (EA) entry */
2965 static int pci_ea_read(struct pci_dev *dev, int offset)
2966 {
2967 	struct resource *res;
2968 	int ent_size, ent_offset = offset;
2969 	resource_size_t start, end;
2970 	unsigned long flags;
2971 	u32 dw0, bei, base, max_offset;
2972 	u8 prop;
2973 	bool support_64 = (sizeof(resource_size_t) >= 8);
2974 
2975 	pci_read_config_dword(dev, ent_offset, &dw0);
2976 	ent_offset += 4;
2977 
2978 	/* Entry size field indicates DWORDs after 1st */
2979 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2980 
2981 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2982 		goto out;
2983 
2984 	bei = (dw0 & PCI_EA_BEI) >> 4;
2985 	prop = (dw0 & PCI_EA_PP) >> 8;
2986 
2987 	/*
2988 	 * If the Property is in the reserved range, try the Secondary
2989 	 * Property instead.
2990 	 */
2991 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2992 		prop = (dw0 & PCI_EA_SP) >> 16;
2993 	if (prop > PCI_EA_P_BRIDGE_IO)
2994 		goto out;
2995 
2996 	res = pci_ea_get_resource(dev, bei, prop);
2997 	if (!res) {
2998 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2999 		goto out;
3000 	}
3001 
3002 	flags = pci_ea_flags(dev, prop);
3003 	if (!flags) {
3004 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3005 		goto out;
3006 	}
3007 
3008 	/* Read Base */
3009 	pci_read_config_dword(dev, ent_offset, &base);
3010 	start = (base & PCI_EA_FIELD_MASK);
3011 	ent_offset += 4;
3012 
3013 	/* Read MaxOffset */
3014 	pci_read_config_dword(dev, ent_offset, &max_offset);
3015 	ent_offset += 4;
3016 
3017 	/* Read Base MSBs (if 64-bit entry) */
3018 	if (base & PCI_EA_IS_64) {
3019 		u32 base_upper;
3020 
3021 		pci_read_config_dword(dev, ent_offset, &base_upper);
3022 		ent_offset += 4;
3023 
3024 		flags |= IORESOURCE_MEM_64;
3025 
3026 		/* entry starts above 32-bit boundary, can't use */
3027 		if (!support_64 && base_upper)
3028 			goto out;
3029 
3030 		if (support_64)
3031 			start |= ((u64)base_upper << 32);
3032 	}
3033 
3034 	end = start + (max_offset | 0x03);
3035 
3036 	/* Read MaxOffset MSBs (if 64-bit entry) */
3037 	if (max_offset & PCI_EA_IS_64) {
3038 		u32 max_offset_upper;
3039 
3040 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3041 		ent_offset += 4;
3042 
3043 		flags |= IORESOURCE_MEM_64;
3044 
3045 		/* entry too big, can't use */
3046 		if (!support_64 && max_offset_upper)
3047 			goto out;
3048 
3049 		if (support_64)
3050 			end += ((u64)max_offset_upper << 32);
3051 	}
3052 
3053 	if (end < start) {
3054 		pci_err(dev, "EA Entry crosses address boundary\n");
3055 		goto out;
3056 	}
3057 
3058 	if (ent_size != ent_offset - offset) {
3059 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3060 			ent_size, ent_offset - offset);
3061 		goto out;
3062 	}
3063 
3064 	res->name = pci_name(dev);
3065 	res->start = start;
3066 	res->end = end;
3067 	res->flags = flags;
3068 
3069 	if (bei <= PCI_EA_BEI_BAR5)
3070 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3071 			   bei, res, prop);
3072 	else if (bei == PCI_EA_BEI_ROM)
3073 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3074 			   res, prop);
3075 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3076 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3077 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3078 	else
3079 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3080 			   bei, res, prop);
3081 
3082 out:
3083 	return offset + ent_size;
3084 }
3085 
3086 /* Enhanced Allocation Initialization */
3087 void pci_ea_init(struct pci_dev *dev)
3088 {
3089 	int ea;
3090 	u8 num_ent;
3091 	int offset;
3092 	int i;
3093 
3094 	/* find PCI EA capability in list */
3095 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3096 	if (!ea)
3097 		return;
3098 
3099 	/* determine the number of entries */
3100 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3101 					&num_ent);
3102 	num_ent &= PCI_EA_NUM_ENT_MASK;
3103 
3104 	offset = ea + PCI_EA_FIRST_ENT;
3105 
3106 	/* Skip DWORD 2 for type 1 functions */
3107 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3108 		offset += 4;
3109 
3110 	/* parse each EA entry */
3111 	for (i = 0; i < num_ent; ++i)
3112 		offset = pci_ea_read(dev, offset);
3113 }
3114 
3115 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3116 	struct pci_cap_saved_state *new_cap)
3117 {
3118 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3119 }
3120 
3121 /**
3122  * _pci_add_cap_save_buffer - allocate buffer for saving given
3123  *			      capability registers
3124  * @dev: the PCI device
3125  * @cap: the capability to allocate the buffer for
3126  * @extended: Standard or Extended capability ID
3127  * @size: requested size of the buffer
3128  */
3129 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3130 				    bool extended, unsigned int size)
3131 {
3132 	int pos;
3133 	struct pci_cap_saved_state *save_state;
3134 
3135 	if (extended)
3136 		pos = pci_find_ext_capability(dev, cap);
3137 	else
3138 		pos = pci_find_capability(dev, cap);
3139 
3140 	if (!pos)
3141 		return 0;
3142 
3143 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3144 	if (!save_state)
3145 		return -ENOMEM;
3146 
3147 	save_state->cap.cap_nr = cap;
3148 	save_state->cap.cap_extended = extended;
3149 	save_state->cap.size = size;
3150 	pci_add_saved_cap(dev, save_state);
3151 
3152 	return 0;
3153 }
3154 
3155 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3156 {
3157 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3158 }
3159 
3160 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3161 {
3162 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3163 }
3164 
3165 /**
3166  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3167  * @dev: the PCI device
3168  */
3169 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3170 {
3171 	int error;
3172 
3173 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3174 					PCI_EXP_SAVE_REGS * sizeof(u16));
3175 	if (error)
3176 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3177 
3178 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3179 	if (error)
3180 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3181 
3182 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3183 					    2 * sizeof(u16));
3184 	if (error)
3185 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3186 
3187 	pci_allocate_vc_save_buffers(dev);
3188 }
3189 
3190 void pci_free_cap_save_buffers(struct pci_dev *dev)
3191 {
3192 	struct pci_cap_saved_state *tmp;
3193 	struct hlist_node *n;
3194 
3195 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3196 		kfree(tmp);
3197 }
3198 
3199 /**
3200  * pci_configure_ari - enable or disable ARI forwarding
3201  * @dev: the PCI device
3202  *
3203  * If @dev and its upstream bridge both support ARI, enable ARI in the
3204  * bridge.  Otherwise, disable ARI in the bridge.
3205  */
3206 void pci_configure_ari(struct pci_dev *dev)
3207 {
3208 	u32 cap;
3209 	struct pci_dev *bridge;
3210 
3211 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3212 		return;
3213 
3214 	bridge = dev->bus->self;
3215 	if (!bridge)
3216 		return;
3217 
3218 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3219 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3220 		return;
3221 
3222 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3223 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3224 					 PCI_EXP_DEVCTL2_ARI);
3225 		bridge->ari_enabled = 1;
3226 	} else {
3227 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3228 					   PCI_EXP_DEVCTL2_ARI);
3229 		bridge->ari_enabled = 0;
3230 	}
3231 }
3232 
3233 static int pci_acs_enable;
3234 
3235 /**
3236  * pci_request_acs - ask for ACS to be enabled if supported
3237  */
3238 void pci_request_acs(void)
3239 {
3240 	pci_acs_enable = 1;
3241 }
3242 
3243 static const char *disable_acs_redir_param;
3244 
3245 /**
3246  * pci_disable_acs_redir - disable ACS redirect capabilities
3247  * @dev: the PCI device
3248  *
3249  * For only devices specified in the disable_acs_redir parameter.
3250  */
3251 static void pci_disable_acs_redir(struct pci_dev *dev)
3252 {
3253 	int ret = 0;
3254 	const char *p;
3255 	int pos;
3256 	u16 ctrl;
3257 
3258 	if (!disable_acs_redir_param)
3259 		return;
3260 
3261 	p = disable_acs_redir_param;
3262 	while (*p) {
3263 		ret = pci_dev_str_match(dev, p, &p);
3264 		if (ret < 0) {
3265 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3266 				     disable_acs_redir_param);
3267 
3268 			break;
3269 		} else if (ret == 1) {
3270 			/* Found a match */
3271 			break;
3272 		}
3273 
3274 		if (*p != ';' && *p != ',') {
3275 			/* End of param or invalid format */
3276 			break;
3277 		}
3278 		p++;
3279 	}
3280 
3281 	if (ret != 1)
3282 		return;
3283 
3284 	if (!pci_dev_specific_disable_acs_redir(dev))
3285 		return;
3286 
3287 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3288 	if (!pos) {
3289 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3290 		return;
3291 	}
3292 
3293 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3294 
3295 	/* P2P Request & Completion Redirect */
3296 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3297 
3298 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3299 
3300 	pci_info(dev, "disabled ACS redirect\n");
3301 }
3302 
3303 /**
3304  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3305  * @dev: the PCI device
3306  */
3307 static void pci_std_enable_acs(struct pci_dev *dev)
3308 {
3309 	int pos;
3310 	u16 cap;
3311 	u16 ctrl;
3312 
3313 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3314 	if (!pos)
3315 		return;
3316 
3317 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3318 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3319 
3320 	/* Source Validation */
3321 	ctrl |= (cap & PCI_ACS_SV);
3322 
3323 	/* P2P Request Redirect */
3324 	ctrl |= (cap & PCI_ACS_RR);
3325 
3326 	/* P2P Completion Redirect */
3327 	ctrl |= (cap & PCI_ACS_CR);
3328 
3329 	/* Upstream Forwarding */
3330 	ctrl |= (cap & PCI_ACS_UF);
3331 
3332 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3333 }
3334 
3335 /**
3336  * pci_enable_acs - enable ACS if hardware support it
3337  * @dev: the PCI device
3338  */
3339 void pci_enable_acs(struct pci_dev *dev)
3340 {
3341 	if (!pci_acs_enable)
3342 		goto disable_acs_redir;
3343 
3344 	if (!pci_dev_specific_enable_acs(dev))
3345 		goto disable_acs_redir;
3346 
3347 	pci_std_enable_acs(dev);
3348 
3349 disable_acs_redir:
3350 	/*
3351 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
3352 	 * enabled by the kernel because it may have been enabled by
3353 	 * platform firmware.  So if we are told to disable it, we should
3354 	 * always disable it after setting the kernel's default
3355 	 * preferences.
3356 	 */
3357 	pci_disable_acs_redir(dev);
3358 }
3359 
3360 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3361 {
3362 	int pos;
3363 	u16 cap, ctrl;
3364 
3365 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3366 	if (!pos)
3367 		return false;
3368 
3369 	/*
3370 	 * Except for egress control, capabilities are either required
3371 	 * or only required if controllable.  Features missing from the
3372 	 * capability field can therefore be assumed as hard-wired enabled.
3373 	 */
3374 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3375 	acs_flags &= (cap | PCI_ACS_EC);
3376 
3377 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3378 	return (ctrl & acs_flags) == acs_flags;
3379 }
3380 
3381 /**
3382  * pci_acs_enabled - test ACS against required flags for a given device
3383  * @pdev: device to test
3384  * @acs_flags: required PCI ACS flags
3385  *
3386  * Return true if the device supports the provided flags.  Automatically
3387  * filters out flags that are not implemented on multifunction devices.
3388  *
3389  * Note that this interface checks the effective ACS capabilities of the
3390  * device rather than the actual capabilities.  For instance, most single
3391  * function endpoints are not required to support ACS because they have no
3392  * opportunity for peer-to-peer access.  We therefore return 'true'
3393  * regardless of whether the device exposes an ACS capability.  This makes
3394  * it much easier for callers of this function to ignore the actual type
3395  * or topology of the device when testing ACS support.
3396  */
3397 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3398 {
3399 	int ret;
3400 
3401 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3402 	if (ret >= 0)
3403 		return ret > 0;
3404 
3405 	/*
3406 	 * Conventional PCI and PCI-X devices never support ACS, either
3407 	 * effectively or actually.  The shared bus topology implies that
3408 	 * any device on the bus can receive or snoop DMA.
3409 	 */
3410 	if (!pci_is_pcie(pdev))
3411 		return false;
3412 
3413 	switch (pci_pcie_type(pdev)) {
3414 	/*
3415 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3416 	 * but since their primary interface is PCI/X, we conservatively
3417 	 * handle them as we would a non-PCIe device.
3418 	 */
3419 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3420 	/*
3421 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3422 	 * applicable... must never implement an ACS Extended Capability...".
3423 	 * This seems arbitrary, but we take a conservative interpretation
3424 	 * of this statement.
3425 	 */
3426 	case PCI_EXP_TYPE_PCI_BRIDGE:
3427 	case PCI_EXP_TYPE_RC_EC:
3428 		return false;
3429 	/*
3430 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3431 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3432 	 * regardless of whether they are single- or multi-function devices.
3433 	 */
3434 	case PCI_EXP_TYPE_DOWNSTREAM:
3435 	case PCI_EXP_TYPE_ROOT_PORT:
3436 		return pci_acs_flags_enabled(pdev, acs_flags);
3437 	/*
3438 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3439 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3440 	 * capabilities, but only when they are part of a multifunction
3441 	 * device.  The footnote for section 6.12 indicates the specific
3442 	 * PCIe types included here.
3443 	 */
3444 	case PCI_EXP_TYPE_ENDPOINT:
3445 	case PCI_EXP_TYPE_UPSTREAM:
3446 	case PCI_EXP_TYPE_LEG_END:
3447 	case PCI_EXP_TYPE_RC_END:
3448 		if (!pdev->multifunction)
3449 			break;
3450 
3451 		return pci_acs_flags_enabled(pdev, acs_flags);
3452 	}
3453 
3454 	/*
3455 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3456 	 * to single function devices with the exception of downstream ports.
3457 	 */
3458 	return true;
3459 }
3460 
3461 /**
3462  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3463  * @start: starting downstream device
3464  * @end: ending upstream device or NULL to search to the root bus
3465  * @acs_flags: required flags
3466  *
3467  * Walk up a device tree from start to end testing PCI ACS support.  If
3468  * any step along the way does not support the required flags, return false.
3469  */
3470 bool pci_acs_path_enabled(struct pci_dev *start,
3471 			  struct pci_dev *end, u16 acs_flags)
3472 {
3473 	struct pci_dev *pdev, *parent = start;
3474 
3475 	do {
3476 		pdev = parent;
3477 
3478 		if (!pci_acs_enabled(pdev, acs_flags))
3479 			return false;
3480 
3481 		if (pci_is_root_bus(pdev->bus))
3482 			return (end == NULL);
3483 
3484 		parent = pdev->bus->self;
3485 	} while (pdev != end);
3486 
3487 	return true;
3488 }
3489 
3490 /**
3491  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3492  * @pdev: PCI device
3493  * @bar: BAR to find
3494  *
3495  * Helper to find the position of the ctrl register for a BAR.
3496  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3497  * Returns -ENOENT if no ctrl register for the BAR could be found.
3498  */
3499 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3500 {
3501 	unsigned int pos, nbars, i;
3502 	u32 ctrl;
3503 
3504 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3505 	if (!pos)
3506 		return -ENOTSUPP;
3507 
3508 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3509 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3510 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3511 
3512 	for (i = 0; i < nbars; i++, pos += 8) {
3513 		int bar_idx;
3514 
3515 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3516 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3517 		if (bar_idx == bar)
3518 			return pos;
3519 	}
3520 
3521 	return -ENOENT;
3522 }
3523 
3524 /**
3525  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3526  * @pdev: PCI device
3527  * @bar: BAR to query
3528  *
3529  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3530  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3531  */
3532 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3533 {
3534 	int pos;
3535 	u32 cap;
3536 
3537 	pos = pci_rebar_find_pos(pdev, bar);
3538 	if (pos < 0)
3539 		return 0;
3540 
3541 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3542 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3543 }
3544 
3545 /**
3546  * pci_rebar_get_current_size - get the current size of a BAR
3547  * @pdev: PCI device
3548  * @bar: BAR to set size to
3549  *
3550  * Read the size of a BAR from the resizable BAR config.
3551  * Returns size if found or negative error code.
3552  */
3553 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3554 {
3555 	int pos;
3556 	u32 ctrl;
3557 
3558 	pos = pci_rebar_find_pos(pdev, bar);
3559 	if (pos < 0)
3560 		return pos;
3561 
3562 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3563 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3564 }
3565 
3566 /**
3567  * pci_rebar_set_size - set a new size for a BAR
3568  * @pdev: PCI device
3569  * @bar: BAR to set size to
3570  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3571  *
3572  * Set the new size of a BAR as defined in the spec.
3573  * Returns zero if resizing was successful, error code otherwise.
3574  */
3575 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3576 {
3577 	int pos;
3578 	u32 ctrl;
3579 
3580 	pos = pci_rebar_find_pos(pdev, bar);
3581 	if (pos < 0)
3582 		return pos;
3583 
3584 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3585 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3586 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3587 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3588 	return 0;
3589 }
3590 
3591 /**
3592  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3593  * @dev: the PCI device
3594  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3595  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3596  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3597  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3598  *
3599  * Return 0 if all upstream bridges support AtomicOp routing, egress
3600  * blocking is disabled on all upstream ports, and the root port supports
3601  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3602  * AtomicOp completion), or negative otherwise.
3603  */
3604 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3605 {
3606 	struct pci_bus *bus = dev->bus;
3607 	struct pci_dev *bridge;
3608 	u32 cap, ctl2;
3609 
3610 	if (!pci_is_pcie(dev))
3611 		return -EINVAL;
3612 
3613 	/*
3614 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3615 	 * AtomicOp requesters.  For now, we only support endpoints as
3616 	 * requesters and root ports as completers.  No endpoints as
3617 	 * completers, and no peer-to-peer.
3618 	 */
3619 
3620 	switch (pci_pcie_type(dev)) {
3621 	case PCI_EXP_TYPE_ENDPOINT:
3622 	case PCI_EXP_TYPE_LEG_END:
3623 	case PCI_EXP_TYPE_RC_END:
3624 		break;
3625 	default:
3626 		return -EINVAL;
3627 	}
3628 
3629 	while (bus->parent) {
3630 		bridge = bus->self;
3631 
3632 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3633 
3634 		switch (pci_pcie_type(bridge)) {
3635 		/* Ensure switch ports support AtomicOp routing */
3636 		case PCI_EXP_TYPE_UPSTREAM:
3637 		case PCI_EXP_TYPE_DOWNSTREAM:
3638 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3639 				return -EINVAL;
3640 			break;
3641 
3642 		/* Ensure root port supports all the sizes we care about */
3643 		case PCI_EXP_TYPE_ROOT_PORT:
3644 			if ((cap & cap_mask) != cap_mask)
3645 				return -EINVAL;
3646 			break;
3647 		}
3648 
3649 		/* Ensure upstream ports don't block AtomicOps on egress */
3650 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3651 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3652 						   &ctl2);
3653 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3654 				return -EINVAL;
3655 		}
3656 
3657 		bus = bus->parent;
3658 	}
3659 
3660 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3661 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3662 	return 0;
3663 }
3664 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3665 
3666 /**
3667  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3668  * @dev: the PCI device
3669  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3670  *
3671  * Perform INTx swizzling for a device behind one level of bridge.  This is
3672  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3673  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3674  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3675  * the PCI Express Base Specification, Revision 2.1)
3676  */
3677 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3678 {
3679 	int slot;
3680 
3681 	if (pci_ari_enabled(dev->bus))
3682 		slot = 0;
3683 	else
3684 		slot = PCI_SLOT(dev->devfn);
3685 
3686 	return (((pin - 1) + slot) % 4) + 1;
3687 }
3688 
3689 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3690 {
3691 	u8 pin;
3692 
3693 	pin = dev->pin;
3694 	if (!pin)
3695 		return -1;
3696 
3697 	while (!pci_is_root_bus(dev->bus)) {
3698 		pin = pci_swizzle_interrupt_pin(dev, pin);
3699 		dev = dev->bus->self;
3700 	}
3701 	*bridge = dev;
3702 	return pin;
3703 }
3704 
3705 /**
3706  * pci_common_swizzle - swizzle INTx all the way to root bridge
3707  * @dev: the PCI device
3708  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3709  *
3710  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3711  * bridges all the way up to a PCI root bus.
3712  */
3713 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3714 {
3715 	u8 pin = *pinp;
3716 
3717 	while (!pci_is_root_bus(dev->bus)) {
3718 		pin = pci_swizzle_interrupt_pin(dev, pin);
3719 		dev = dev->bus->self;
3720 	}
3721 	*pinp = pin;
3722 	return PCI_SLOT(dev->devfn);
3723 }
3724 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3725 
3726 /**
3727  * pci_release_region - Release a PCI bar
3728  * @pdev: PCI device whose resources were previously reserved by
3729  *	  pci_request_region()
3730  * @bar: BAR to release
3731  *
3732  * Releases the PCI I/O and memory resources previously reserved by a
3733  * successful call to pci_request_region().  Call this function only
3734  * after all use of the PCI regions has ceased.
3735  */
3736 void pci_release_region(struct pci_dev *pdev, int bar)
3737 {
3738 	struct pci_devres *dr;
3739 
3740 	if (pci_resource_len(pdev, bar) == 0)
3741 		return;
3742 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3743 		release_region(pci_resource_start(pdev, bar),
3744 				pci_resource_len(pdev, bar));
3745 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3746 		release_mem_region(pci_resource_start(pdev, bar),
3747 				pci_resource_len(pdev, bar));
3748 
3749 	dr = find_pci_dr(pdev);
3750 	if (dr)
3751 		dr->region_mask &= ~(1 << bar);
3752 }
3753 EXPORT_SYMBOL(pci_release_region);
3754 
3755 /**
3756  * __pci_request_region - Reserved PCI I/O and memory resource
3757  * @pdev: PCI device whose resources are to be reserved
3758  * @bar: BAR to be reserved
3759  * @res_name: Name to be associated with resource.
3760  * @exclusive: whether the region access is exclusive or not
3761  *
3762  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3763  * being reserved by owner @res_name.  Do not access any
3764  * address inside the PCI regions unless this call returns
3765  * successfully.
3766  *
3767  * If @exclusive is set, then the region is marked so that userspace
3768  * is explicitly not allowed to map the resource via /dev/mem or
3769  * sysfs MMIO access.
3770  *
3771  * Returns 0 on success, or %EBUSY on error.  A warning
3772  * message is also printed on failure.
3773  */
3774 static int __pci_request_region(struct pci_dev *pdev, int bar,
3775 				const char *res_name, int exclusive)
3776 {
3777 	struct pci_devres *dr;
3778 
3779 	if (pci_resource_len(pdev, bar) == 0)
3780 		return 0;
3781 
3782 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3783 		if (!request_region(pci_resource_start(pdev, bar),
3784 			    pci_resource_len(pdev, bar), res_name))
3785 			goto err_out;
3786 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3787 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3788 					pci_resource_len(pdev, bar), res_name,
3789 					exclusive))
3790 			goto err_out;
3791 	}
3792 
3793 	dr = find_pci_dr(pdev);
3794 	if (dr)
3795 		dr->region_mask |= 1 << bar;
3796 
3797 	return 0;
3798 
3799 err_out:
3800 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3801 		 &pdev->resource[bar]);
3802 	return -EBUSY;
3803 }
3804 
3805 /**
3806  * pci_request_region - Reserve PCI I/O and memory resource
3807  * @pdev: PCI device whose resources are to be reserved
3808  * @bar: BAR to be reserved
3809  * @res_name: Name to be associated with resource
3810  *
3811  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3812  * being reserved by owner @res_name.  Do not access any
3813  * address inside the PCI regions unless this call returns
3814  * successfully.
3815  *
3816  * Returns 0 on success, or %EBUSY on error.  A warning
3817  * message is also printed on failure.
3818  */
3819 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3820 {
3821 	return __pci_request_region(pdev, bar, res_name, 0);
3822 }
3823 EXPORT_SYMBOL(pci_request_region);
3824 
3825 /**
3826  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3827  * @pdev: PCI device whose resources were previously reserved
3828  * @bars: Bitmask of BARs to be released
3829  *
3830  * Release selected PCI I/O and memory resources previously reserved.
3831  * Call this function only after all use of the PCI regions has ceased.
3832  */
3833 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3834 {
3835 	int i;
3836 
3837 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3838 		if (bars & (1 << i))
3839 			pci_release_region(pdev, i);
3840 }
3841 EXPORT_SYMBOL(pci_release_selected_regions);
3842 
3843 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3844 					  const char *res_name, int excl)
3845 {
3846 	int i;
3847 
3848 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3849 		if (bars & (1 << i))
3850 			if (__pci_request_region(pdev, i, res_name, excl))
3851 				goto err_out;
3852 	return 0;
3853 
3854 err_out:
3855 	while (--i >= 0)
3856 		if (bars & (1 << i))
3857 			pci_release_region(pdev, i);
3858 
3859 	return -EBUSY;
3860 }
3861 
3862 
3863 /**
3864  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3865  * @pdev: PCI device whose resources are to be reserved
3866  * @bars: Bitmask of BARs to be requested
3867  * @res_name: Name to be associated with resource
3868  */
3869 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3870 				 const char *res_name)
3871 {
3872 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3873 }
3874 EXPORT_SYMBOL(pci_request_selected_regions);
3875 
3876 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3877 					   const char *res_name)
3878 {
3879 	return __pci_request_selected_regions(pdev, bars, res_name,
3880 			IORESOURCE_EXCLUSIVE);
3881 }
3882 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3883 
3884 /**
3885  * pci_release_regions - Release reserved PCI I/O and memory resources
3886  * @pdev: PCI device whose resources were previously reserved by
3887  *	  pci_request_regions()
3888  *
3889  * Releases all PCI I/O and memory resources previously reserved by a
3890  * successful call to pci_request_regions().  Call this function only
3891  * after all use of the PCI regions has ceased.
3892  */
3893 
3894 void pci_release_regions(struct pci_dev *pdev)
3895 {
3896 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3897 }
3898 EXPORT_SYMBOL(pci_release_regions);
3899 
3900 /**
3901  * pci_request_regions - Reserve PCI I/O and memory resources
3902  * @pdev: PCI device whose resources are to be reserved
3903  * @res_name: Name to be associated with resource.
3904  *
3905  * Mark all PCI regions associated with PCI device @pdev as
3906  * being reserved by owner @res_name.  Do not access any
3907  * address inside the PCI regions unless this call returns
3908  * successfully.
3909  *
3910  * Returns 0 on success, or %EBUSY on error.  A warning
3911  * message is also printed on failure.
3912  */
3913 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3914 {
3915 	return pci_request_selected_regions(pdev,
3916 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
3917 }
3918 EXPORT_SYMBOL(pci_request_regions);
3919 
3920 /**
3921  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3922  * @pdev: PCI device whose resources are to be reserved
3923  * @res_name: Name to be associated with resource.
3924  *
3925  * Mark all PCI regions associated with PCI device @pdev as being reserved
3926  * by owner @res_name.  Do not access any address inside the PCI regions
3927  * unless this call returns successfully.
3928  *
3929  * pci_request_regions_exclusive() will mark the region so that /dev/mem
3930  * and the sysfs MMIO access will not be allowed.
3931  *
3932  * Returns 0 on success, or %EBUSY on error.  A warning message is also
3933  * printed on failure.
3934  */
3935 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3936 {
3937 	return pci_request_selected_regions_exclusive(pdev,
3938 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
3939 }
3940 EXPORT_SYMBOL(pci_request_regions_exclusive);
3941 
3942 /*
3943  * Record the PCI IO range (expressed as CPU physical address + size).
3944  * Return a negative value if an error has occurred, zero otherwise
3945  */
3946 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3947 			resource_size_t	size)
3948 {
3949 	int ret = 0;
3950 #ifdef PCI_IOBASE
3951 	struct logic_pio_hwaddr *range;
3952 
3953 	if (!size || addr + size < addr)
3954 		return -EINVAL;
3955 
3956 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3957 	if (!range)
3958 		return -ENOMEM;
3959 
3960 	range->fwnode = fwnode;
3961 	range->size = size;
3962 	range->hw_start = addr;
3963 	range->flags = LOGIC_PIO_CPU_MMIO;
3964 
3965 	ret = logic_pio_register_range(range);
3966 	if (ret)
3967 		kfree(range);
3968 #endif
3969 
3970 	return ret;
3971 }
3972 
3973 phys_addr_t pci_pio_to_address(unsigned long pio)
3974 {
3975 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3976 
3977 #ifdef PCI_IOBASE
3978 	if (pio >= MMIO_UPPER_LIMIT)
3979 		return address;
3980 
3981 	address = logic_pio_to_hwaddr(pio);
3982 #endif
3983 
3984 	return address;
3985 }
3986 
3987 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3988 {
3989 #ifdef PCI_IOBASE
3990 	return logic_pio_trans_cpuaddr(address);
3991 #else
3992 	if (address > IO_SPACE_LIMIT)
3993 		return (unsigned long)-1;
3994 
3995 	return (unsigned long) address;
3996 #endif
3997 }
3998 
3999 /**
4000  * pci_remap_iospace - Remap the memory mapped I/O space
4001  * @res: Resource describing the I/O space
4002  * @phys_addr: physical address of range to be mapped
4003  *
4004  * Remap the memory mapped I/O space described by the @res and the CPU
4005  * physical address @phys_addr into virtual address space.  Only
4006  * architectures that have memory mapped IO functions defined (and the
4007  * PCI_IOBASE value defined) should call this function.
4008  */
4009 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4010 {
4011 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4012 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4013 
4014 	if (!(res->flags & IORESOURCE_IO))
4015 		return -EINVAL;
4016 
4017 	if (res->end > IO_SPACE_LIMIT)
4018 		return -EINVAL;
4019 
4020 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4021 				  pgprot_device(PAGE_KERNEL));
4022 #else
4023 	/*
4024 	 * This architecture does not have memory mapped I/O space,
4025 	 * so this function should never be called
4026 	 */
4027 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4028 	return -ENODEV;
4029 #endif
4030 }
4031 EXPORT_SYMBOL(pci_remap_iospace);
4032 
4033 /**
4034  * pci_unmap_iospace - Unmap the memory mapped I/O space
4035  * @res: resource to be unmapped
4036  *
4037  * Unmap the CPU virtual address @res from virtual address space.  Only
4038  * architectures that have memory mapped IO functions defined (and the
4039  * PCI_IOBASE value defined) should call this function.
4040  */
4041 void pci_unmap_iospace(struct resource *res)
4042 {
4043 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4044 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4045 
4046 	unmap_kernel_range(vaddr, resource_size(res));
4047 #endif
4048 }
4049 EXPORT_SYMBOL(pci_unmap_iospace);
4050 
4051 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4052 {
4053 	struct resource **res = ptr;
4054 
4055 	pci_unmap_iospace(*res);
4056 }
4057 
4058 /**
4059  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4060  * @dev: Generic device to remap IO address for
4061  * @res: Resource describing the I/O space
4062  * @phys_addr: physical address of range to be mapped
4063  *
4064  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4065  * detach.
4066  */
4067 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4068 			   phys_addr_t phys_addr)
4069 {
4070 	const struct resource **ptr;
4071 	int error;
4072 
4073 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4074 	if (!ptr)
4075 		return -ENOMEM;
4076 
4077 	error = pci_remap_iospace(res, phys_addr);
4078 	if (error) {
4079 		devres_free(ptr);
4080 	} else	{
4081 		*ptr = res;
4082 		devres_add(dev, ptr);
4083 	}
4084 
4085 	return error;
4086 }
4087 EXPORT_SYMBOL(devm_pci_remap_iospace);
4088 
4089 /**
4090  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4091  * @dev: Generic device to remap IO address for
4092  * @offset: Resource address to map
4093  * @size: Size of map
4094  *
4095  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4096  * detach.
4097  */
4098 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4099 				      resource_size_t offset,
4100 				      resource_size_t size)
4101 {
4102 	void __iomem **ptr, *addr;
4103 
4104 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4105 	if (!ptr)
4106 		return NULL;
4107 
4108 	addr = pci_remap_cfgspace(offset, size);
4109 	if (addr) {
4110 		*ptr = addr;
4111 		devres_add(dev, ptr);
4112 	} else
4113 		devres_free(ptr);
4114 
4115 	return addr;
4116 }
4117 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4118 
4119 /**
4120  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4121  * @dev: generic device to handle the resource for
4122  * @res: configuration space resource to be handled
4123  *
4124  * Checks that a resource is a valid memory region, requests the memory
4125  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4126  * proper PCI configuration space memory attributes are guaranteed.
4127  *
4128  * All operations are managed and will be undone on driver detach.
4129  *
4130  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4131  * on failure. Usage example::
4132  *
4133  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4134  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4135  *	if (IS_ERR(base))
4136  *		return PTR_ERR(base);
4137  */
4138 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4139 					  struct resource *res)
4140 {
4141 	resource_size_t size;
4142 	const char *name;
4143 	void __iomem *dest_ptr;
4144 
4145 	BUG_ON(!dev);
4146 
4147 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4148 		dev_err(dev, "invalid resource\n");
4149 		return IOMEM_ERR_PTR(-EINVAL);
4150 	}
4151 
4152 	size = resource_size(res);
4153 	name = res->name ?: dev_name(dev);
4154 
4155 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4156 		dev_err(dev, "can't request region for resource %pR\n", res);
4157 		return IOMEM_ERR_PTR(-EBUSY);
4158 	}
4159 
4160 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4161 	if (!dest_ptr) {
4162 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4163 		devm_release_mem_region(dev, res->start, size);
4164 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4165 	}
4166 
4167 	return dest_ptr;
4168 }
4169 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4170 
4171 static void __pci_set_master(struct pci_dev *dev, bool enable)
4172 {
4173 	u16 old_cmd, cmd;
4174 
4175 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4176 	if (enable)
4177 		cmd = old_cmd | PCI_COMMAND_MASTER;
4178 	else
4179 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4180 	if (cmd != old_cmd) {
4181 		pci_dbg(dev, "%s bus mastering\n",
4182 			enable ? "enabling" : "disabling");
4183 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4184 	}
4185 	dev->is_busmaster = enable;
4186 }
4187 
4188 /**
4189  * pcibios_setup - process "pci=" kernel boot arguments
4190  * @str: string used to pass in "pci=" kernel boot arguments
4191  *
4192  * Process kernel boot arguments.  This is the default implementation.
4193  * Architecture specific implementations can override this as necessary.
4194  */
4195 char * __weak __init pcibios_setup(char *str)
4196 {
4197 	return str;
4198 }
4199 
4200 /**
4201  * pcibios_set_master - enable PCI bus-mastering for device dev
4202  * @dev: the PCI device to enable
4203  *
4204  * Enables PCI bus-mastering for the device.  This is the default
4205  * implementation.  Architecture specific implementations can override
4206  * this if necessary.
4207  */
4208 void __weak pcibios_set_master(struct pci_dev *dev)
4209 {
4210 	u8 lat;
4211 
4212 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4213 	if (pci_is_pcie(dev))
4214 		return;
4215 
4216 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4217 	if (lat < 16)
4218 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4219 	else if (lat > pcibios_max_latency)
4220 		lat = pcibios_max_latency;
4221 	else
4222 		return;
4223 
4224 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4225 }
4226 
4227 /**
4228  * pci_set_master - enables bus-mastering for device dev
4229  * @dev: the PCI device to enable
4230  *
4231  * Enables bus-mastering on the device and calls pcibios_set_master()
4232  * to do the needed arch specific settings.
4233  */
4234 void pci_set_master(struct pci_dev *dev)
4235 {
4236 	__pci_set_master(dev, true);
4237 	pcibios_set_master(dev);
4238 }
4239 EXPORT_SYMBOL(pci_set_master);
4240 
4241 /**
4242  * pci_clear_master - disables bus-mastering for device dev
4243  * @dev: the PCI device to disable
4244  */
4245 void pci_clear_master(struct pci_dev *dev)
4246 {
4247 	__pci_set_master(dev, false);
4248 }
4249 EXPORT_SYMBOL(pci_clear_master);
4250 
4251 /**
4252  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4253  * @dev: the PCI device for which MWI is to be enabled
4254  *
4255  * Helper function for pci_set_mwi.
4256  * Originally copied from drivers/net/acenic.c.
4257  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4258  *
4259  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4260  */
4261 int pci_set_cacheline_size(struct pci_dev *dev)
4262 {
4263 	u8 cacheline_size;
4264 
4265 	if (!pci_cache_line_size)
4266 		return -EINVAL;
4267 
4268 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4269 	   equal to or multiple of the right value. */
4270 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4271 	if (cacheline_size >= pci_cache_line_size &&
4272 	    (cacheline_size % pci_cache_line_size) == 0)
4273 		return 0;
4274 
4275 	/* Write the correct value. */
4276 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4277 	/* Read it back. */
4278 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4279 	if (cacheline_size == pci_cache_line_size)
4280 		return 0;
4281 
4282 	pci_info(dev, "cache line size of %d is not supported\n",
4283 		   pci_cache_line_size << 2);
4284 
4285 	return -EINVAL;
4286 }
4287 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4288 
4289 /**
4290  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4291  * @dev: the PCI device for which MWI is enabled
4292  *
4293  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4294  *
4295  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4296  */
4297 int pci_set_mwi(struct pci_dev *dev)
4298 {
4299 #ifdef PCI_DISABLE_MWI
4300 	return 0;
4301 #else
4302 	int rc;
4303 	u16 cmd;
4304 
4305 	rc = pci_set_cacheline_size(dev);
4306 	if (rc)
4307 		return rc;
4308 
4309 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4310 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4311 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4312 		cmd |= PCI_COMMAND_INVALIDATE;
4313 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4314 	}
4315 	return 0;
4316 #endif
4317 }
4318 EXPORT_SYMBOL(pci_set_mwi);
4319 
4320 /**
4321  * pcim_set_mwi - a device-managed pci_set_mwi()
4322  * @dev: the PCI device for which MWI is enabled
4323  *
4324  * Managed pci_set_mwi().
4325  *
4326  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4327  */
4328 int pcim_set_mwi(struct pci_dev *dev)
4329 {
4330 	struct pci_devres *dr;
4331 
4332 	dr = find_pci_dr(dev);
4333 	if (!dr)
4334 		return -ENOMEM;
4335 
4336 	dr->mwi = 1;
4337 	return pci_set_mwi(dev);
4338 }
4339 EXPORT_SYMBOL(pcim_set_mwi);
4340 
4341 /**
4342  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4343  * @dev: the PCI device for which MWI is enabled
4344  *
4345  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4346  * Callers are not required to check the return value.
4347  *
4348  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4349  */
4350 int pci_try_set_mwi(struct pci_dev *dev)
4351 {
4352 #ifdef PCI_DISABLE_MWI
4353 	return 0;
4354 #else
4355 	return pci_set_mwi(dev);
4356 #endif
4357 }
4358 EXPORT_SYMBOL(pci_try_set_mwi);
4359 
4360 /**
4361  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4362  * @dev: the PCI device to disable
4363  *
4364  * Disables PCI Memory-Write-Invalidate transaction on the device
4365  */
4366 void pci_clear_mwi(struct pci_dev *dev)
4367 {
4368 #ifndef PCI_DISABLE_MWI
4369 	u16 cmd;
4370 
4371 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4372 	if (cmd & PCI_COMMAND_INVALIDATE) {
4373 		cmd &= ~PCI_COMMAND_INVALIDATE;
4374 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4375 	}
4376 #endif
4377 }
4378 EXPORT_SYMBOL(pci_clear_mwi);
4379 
4380 /**
4381  * pci_intx - enables/disables PCI INTx for device dev
4382  * @pdev: the PCI device to operate on
4383  * @enable: boolean: whether to enable or disable PCI INTx
4384  *
4385  * Enables/disables PCI INTx for device @pdev
4386  */
4387 void pci_intx(struct pci_dev *pdev, int enable)
4388 {
4389 	u16 pci_command, new;
4390 
4391 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4392 
4393 	if (enable)
4394 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4395 	else
4396 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4397 
4398 	if (new != pci_command) {
4399 		struct pci_devres *dr;
4400 
4401 		pci_write_config_word(pdev, PCI_COMMAND, new);
4402 
4403 		dr = find_pci_dr(pdev);
4404 		if (dr && !dr->restore_intx) {
4405 			dr->restore_intx = 1;
4406 			dr->orig_intx = !enable;
4407 		}
4408 	}
4409 }
4410 EXPORT_SYMBOL_GPL(pci_intx);
4411 
4412 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4413 {
4414 	struct pci_bus *bus = dev->bus;
4415 	bool mask_updated = true;
4416 	u32 cmd_status_dword;
4417 	u16 origcmd, newcmd;
4418 	unsigned long flags;
4419 	bool irq_pending;
4420 
4421 	/*
4422 	 * We do a single dword read to retrieve both command and status.
4423 	 * Document assumptions that make this possible.
4424 	 */
4425 	BUILD_BUG_ON(PCI_COMMAND % 4);
4426 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4427 
4428 	raw_spin_lock_irqsave(&pci_lock, flags);
4429 
4430 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4431 
4432 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4433 
4434 	/*
4435 	 * Check interrupt status register to see whether our device
4436 	 * triggered the interrupt (when masking) or the next IRQ is
4437 	 * already pending (when unmasking).
4438 	 */
4439 	if (mask != irq_pending) {
4440 		mask_updated = false;
4441 		goto done;
4442 	}
4443 
4444 	origcmd = cmd_status_dword;
4445 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4446 	if (mask)
4447 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4448 	if (newcmd != origcmd)
4449 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4450 
4451 done:
4452 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4453 
4454 	return mask_updated;
4455 }
4456 
4457 /**
4458  * pci_check_and_mask_intx - mask INTx on pending interrupt
4459  * @dev: the PCI device to operate on
4460  *
4461  * Check if the device dev has its INTx line asserted, mask it and return
4462  * true in that case. False is returned if no interrupt was pending.
4463  */
4464 bool pci_check_and_mask_intx(struct pci_dev *dev)
4465 {
4466 	return pci_check_and_set_intx_mask(dev, true);
4467 }
4468 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4469 
4470 /**
4471  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4472  * @dev: the PCI device to operate on
4473  *
4474  * Check if the device dev has its INTx line asserted, unmask it if not and
4475  * return true. False is returned and the mask remains active if there was
4476  * still an interrupt pending.
4477  */
4478 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4479 {
4480 	return pci_check_and_set_intx_mask(dev, false);
4481 }
4482 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4483 
4484 /**
4485  * pci_wait_for_pending_transaction - wait for pending transaction
4486  * @dev: the PCI device to operate on
4487  *
4488  * Return 0 if transaction is pending 1 otherwise.
4489  */
4490 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4491 {
4492 	if (!pci_is_pcie(dev))
4493 		return 1;
4494 
4495 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4496 				    PCI_EXP_DEVSTA_TRPND);
4497 }
4498 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4499 
4500 /**
4501  * pcie_has_flr - check if a device supports function level resets
4502  * @dev: device to check
4503  *
4504  * Returns true if the device advertises support for PCIe function level
4505  * resets.
4506  */
4507 bool pcie_has_flr(struct pci_dev *dev)
4508 {
4509 	u32 cap;
4510 
4511 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4512 		return false;
4513 
4514 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4515 	return cap & PCI_EXP_DEVCAP_FLR;
4516 }
4517 EXPORT_SYMBOL_GPL(pcie_has_flr);
4518 
4519 /**
4520  * pcie_flr - initiate a PCIe function level reset
4521  * @dev: device to reset
4522  *
4523  * Initiate a function level reset on @dev.  The caller should ensure the
4524  * device supports FLR before calling this function, e.g. by using the
4525  * pcie_has_flr() helper.
4526  */
4527 int pcie_flr(struct pci_dev *dev)
4528 {
4529 	if (!pci_wait_for_pending_transaction(dev))
4530 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4531 
4532 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4533 
4534 	if (dev->imm_ready)
4535 		return 0;
4536 
4537 	/*
4538 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4539 	 * 100ms, but may silently discard requests while the FLR is in
4540 	 * progress.  Wait 100ms before trying to access the device.
4541 	 */
4542 	msleep(100);
4543 
4544 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4545 }
4546 EXPORT_SYMBOL_GPL(pcie_flr);
4547 
4548 static int pci_af_flr(struct pci_dev *dev, int probe)
4549 {
4550 	int pos;
4551 	u8 cap;
4552 
4553 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4554 	if (!pos)
4555 		return -ENOTTY;
4556 
4557 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4558 		return -ENOTTY;
4559 
4560 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4561 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4562 		return -ENOTTY;
4563 
4564 	if (probe)
4565 		return 0;
4566 
4567 	/*
4568 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4569 	 * is used, so we use the control offset rather than status and shift
4570 	 * the test bit to match.
4571 	 */
4572 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4573 				 PCI_AF_STATUS_TP << 8))
4574 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4575 
4576 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4577 
4578 	if (dev->imm_ready)
4579 		return 0;
4580 
4581 	/*
4582 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4583 	 * updated 27 July 2006; a device must complete an FLR within
4584 	 * 100ms, but may silently discard requests while the FLR is in
4585 	 * progress.  Wait 100ms before trying to access the device.
4586 	 */
4587 	msleep(100);
4588 
4589 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4590 }
4591 
4592 /**
4593  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4594  * @dev: Device to reset.
4595  * @probe: If set, only check if the device can be reset this way.
4596  *
4597  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4598  * unset, it will be reinitialized internally when going from PCI_D3hot to
4599  * PCI_D0.  If that's the case and the device is not in a low-power state
4600  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4601  *
4602  * NOTE: This causes the caller to sleep for twice the device power transition
4603  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4604  * by default (i.e. unless the @dev's d3_delay field has a different value).
4605  * Moreover, only devices in D0 can be reset by this function.
4606  */
4607 static int pci_pm_reset(struct pci_dev *dev, int probe)
4608 {
4609 	u16 csr;
4610 
4611 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4612 		return -ENOTTY;
4613 
4614 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4615 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4616 		return -ENOTTY;
4617 
4618 	if (probe)
4619 		return 0;
4620 
4621 	if (dev->current_state != PCI_D0)
4622 		return -EINVAL;
4623 
4624 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4625 	csr |= PCI_D3hot;
4626 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4627 	pci_dev_d3_sleep(dev);
4628 
4629 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4630 	csr |= PCI_D0;
4631 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4632 	pci_dev_d3_sleep(dev);
4633 
4634 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4635 }
4636 
4637 /**
4638  * pcie_wait_for_link_delay - Wait until link is active or inactive
4639  * @pdev: Bridge device
4640  * @active: waiting for active or inactive?
4641  * @delay: Delay to wait after link has become active (in ms)
4642  *
4643  * Use this to wait till link becomes active or inactive.
4644  */
4645 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4646 				     int delay)
4647 {
4648 	int timeout = 1000;
4649 	bool ret;
4650 	u16 lnk_status;
4651 
4652 	/*
4653 	 * Some controllers might not implement link active reporting. In this
4654 	 * case, we wait for 1000 ms + any delay requested by the caller.
4655 	 */
4656 	if (!pdev->link_active_reporting) {
4657 		msleep(timeout + delay);
4658 		return true;
4659 	}
4660 
4661 	/*
4662 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4663 	 * after which we should expect an link active if the reset was
4664 	 * successful. If so, software must wait a minimum 100ms before sending
4665 	 * configuration requests to devices downstream this port.
4666 	 *
4667 	 * If the link fails to activate, either the device was physically
4668 	 * removed or the link is permanently failed.
4669 	 */
4670 	if (active)
4671 		msleep(20);
4672 	for (;;) {
4673 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4674 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4675 		if (ret == active)
4676 			break;
4677 		if (timeout <= 0)
4678 			break;
4679 		msleep(10);
4680 		timeout -= 10;
4681 	}
4682 	if (active && ret)
4683 		msleep(delay);
4684 	else if (ret != active)
4685 		pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4686 			active ? "set" : "cleared");
4687 	return ret == active;
4688 }
4689 
4690 /**
4691  * pcie_wait_for_link - Wait until link is active or inactive
4692  * @pdev: Bridge device
4693  * @active: waiting for active or inactive?
4694  *
4695  * Use this to wait till link becomes active or inactive.
4696  */
4697 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4698 {
4699 	return pcie_wait_for_link_delay(pdev, active, 100);
4700 }
4701 
4702 /*
4703  * Find maximum D3cold delay required by all the devices on the bus.  The
4704  * spec says 100 ms, but firmware can lower it and we allow drivers to
4705  * increase it as well.
4706  *
4707  * Called with @pci_bus_sem locked for reading.
4708  */
4709 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4710 {
4711 	const struct pci_dev *pdev;
4712 	int min_delay = 100;
4713 	int max_delay = 0;
4714 
4715 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4716 		if (pdev->d3cold_delay < min_delay)
4717 			min_delay = pdev->d3cold_delay;
4718 		if (pdev->d3cold_delay > max_delay)
4719 			max_delay = pdev->d3cold_delay;
4720 	}
4721 
4722 	return max(min_delay, max_delay);
4723 }
4724 
4725 /**
4726  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4727  * @dev: PCI bridge
4728  *
4729  * Handle necessary delays before access to the devices on the secondary
4730  * side of the bridge are permitted after D3cold to D0 transition.
4731  *
4732  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4733  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4734  * 4.3.2.
4735  */
4736 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4737 {
4738 	struct pci_dev *child;
4739 	int delay;
4740 
4741 	if (pci_dev_is_disconnected(dev))
4742 		return;
4743 
4744 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4745 		return;
4746 
4747 	down_read(&pci_bus_sem);
4748 
4749 	/*
4750 	 * We only deal with devices that are present currently on the bus.
4751 	 * For any hot-added devices the access delay is handled in pciehp
4752 	 * board_added(). In case of ACPI hotplug the firmware is expected
4753 	 * to configure the devices before OS is notified.
4754 	 */
4755 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4756 		up_read(&pci_bus_sem);
4757 		return;
4758 	}
4759 
4760 	/* Take d3cold_delay requirements into account */
4761 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4762 	if (!delay) {
4763 		up_read(&pci_bus_sem);
4764 		return;
4765 	}
4766 
4767 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4768 				 bus_list);
4769 	up_read(&pci_bus_sem);
4770 
4771 	/*
4772 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4773 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4774 	 * practice this should not be needed because we don't do power
4775 	 * management for them (see pci_bridge_d3_possible()).
4776 	 */
4777 	if (!pci_is_pcie(dev)) {
4778 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4779 		msleep(1000 + delay);
4780 		return;
4781 	}
4782 
4783 	/*
4784 	 * For PCIe downstream and root ports that do not support speeds
4785 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4786 	 * speeds (gen3) we need to wait first for the data link layer to
4787 	 * become active.
4788 	 *
4789 	 * However, 100 ms is the minimum and the PCIe spec says the
4790 	 * software must allow at least 1s before it can determine that the
4791 	 * device that did not respond is a broken device. There is
4792 	 * evidence that 100 ms is not always enough, for example certain
4793 	 * Titan Ridge xHCI controller does not always respond to
4794 	 * configuration requests if we only wait for 100 ms (see
4795 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4796 	 *
4797 	 * Therefore we wait for 100 ms and check for the device presence.
4798 	 * If it is still not present give it an additional 100 ms.
4799 	 */
4800 	if (!pcie_downstream_port(dev))
4801 		return;
4802 
4803 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4804 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4805 		msleep(delay);
4806 	} else {
4807 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4808 			delay);
4809 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4810 			/* Did not train, no need to wait any further */
4811 			return;
4812 		}
4813 	}
4814 
4815 	if (!pci_device_is_present(child)) {
4816 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4817 		msleep(delay);
4818 	}
4819 }
4820 
4821 void pci_reset_secondary_bus(struct pci_dev *dev)
4822 {
4823 	u16 ctrl;
4824 
4825 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4826 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4827 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4828 
4829 	/*
4830 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4831 	 * this to 2ms to ensure that we meet the minimum requirement.
4832 	 */
4833 	msleep(2);
4834 
4835 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4836 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4837 
4838 	/*
4839 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4840 	 * Assuming a minimum 33MHz clock this results in a 1s
4841 	 * delay before we can consider subordinate devices to
4842 	 * be re-initialized.  PCIe has some ways to shorten this,
4843 	 * but we don't make use of them yet.
4844 	 */
4845 	ssleep(1);
4846 }
4847 
4848 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4849 {
4850 	pci_reset_secondary_bus(dev);
4851 }
4852 
4853 /**
4854  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4855  * @dev: Bridge device
4856  *
4857  * Use the bridge control register to assert reset on the secondary bus.
4858  * Devices on the secondary bus are left in power-on state.
4859  */
4860 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4861 {
4862 	pcibios_reset_secondary_bus(dev);
4863 
4864 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4865 }
4866 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4867 
4868 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4869 {
4870 	struct pci_dev *pdev;
4871 
4872 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4873 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4874 		return -ENOTTY;
4875 
4876 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4877 		if (pdev != dev)
4878 			return -ENOTTY;
4879 
4880 	if (probe)
4881 		return 0;
4882 
4883 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4884 }
4885 
4886 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4887 {
4888 	int rc = -ENOTTY;
4889 
4890 	if (!hotplug || !try_module_get(hotplug->owner))
4891 		return rc;
4892 
4893 	if (hotplug->ops->reset_slot)
4894 		rc = hotplug->ops->reset_slot(hotplug, probe);
4895 
4896 	module_put(hotplug->owner);
4897 
4898 	return rc;
4899 }
4900 
4901 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4902 {
4903 	struct pci_dev *pdev;
4904 
4905 	if (dev->subordinate || !dev->slot ||
4906 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4907 		return -ENOTTY;
4908 
4909 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4910 		if (pdev != dev && pdev->slot == dev->slot)
4911 			return -ENOTTY;
4912 
4913 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4914 }
4915 
4916 static void pci_dev_lock(struct pci_dev *dev)
4917 {
4918 	pci_cfg_access_lock(dev);
4919 	/* block PM suspend, driver probe, etc. */
4920 	device_lock(&dev->dev);
4921 }
4922 
4923 /* Return 1 on successful lock, 0 on contention */
4924 static int pci_dev_trylock(struct pci_dev *dev)
4925 {
4926 	if (pci_cfg_access_trylock(dev)) {
4927 		if (device_trylock(&dev->dev))
4928 			return 1;
4929 		pci_cfg_access_unlock(dev);
4930 	}
4931 
4932 	return 0;
4933 }
4934 
4935 static void pci_dev_unlock(struct pci_dev *dev)
4936 {
4937 	device_unlock(&dev->dev);
4938 	pci_cfg_access_unlock(dev);
4939 }
4940 
4941 static void pci_dev_save_and_disable(struct pci_dev *dev)
4942 {
4943 	const struct pci_error_handlers *err_handler =
4944 			dev->driver ? dev->driver->err_handler : NULL;
4945 
4946 	/*
4947 	 * dev->driver->err_handler->reset_prepare() is protected against
4948 	 * races with ->remove() by the device lock, which must be held by
4949 	 * the caller.
4950 	 */
4951 	if (err_handler && err_handler->reset_prepare)
4952 		err_handler->reset_prepare(dev);
4953 
4954 	/*
4955 	 * Wake-up device prior to save.  PM registers default to D0 after
4956 	 * reset and a simple register restore doesn't reliably return
4957 	 * to a non-D0 state anyway.
4958 	 */
4959 	pci_set_power_state(dev, PCI_D0);
4960 
4961 	pci_save_state(dev);
4962 	/*
4963 	 * Disable the device by clearing the Command register, except for
4964 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4965 	 * BARs, but also prevents the device from being Bus Master, preventing
4966 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4967 	 * compliant devices, INTx-disable prevents legacy interrupts.
4968 	 */
4969 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4970 }
4971 
4972 static void pci_dev_restore(struct pci_dev *dev)
4973 {
4974 	const struct pci_error_handlers *err_handler =
4975 			dev->driver ? dev->driver->err_handler : NULL;
4976 
4977 	pci_restore_state(dev);
4978 
4979 	/*
4980 	 * dev->driver->err_handler->reset_done() is protected against
4981 	 * races with ->remove() by the device lock, which must be held by
4982 	 * the caller.
4983 	 */
4984 	if (err_handler && err_handler->reset_done)
4985 		err_handler->reset_done(dev);
4986 }
4987 
4988 /**
4989  * __pci_reset_function_locked - reset a PCI device function while holding
4990  * the @dev mutex lock.
4991  * @dev: PCI device to reset
4992  *
4993  * Some devices allow an individual function to be reset without affecting
4994  * other functions in the same device.  The PCI device must be responsive
4995  * to PCI config space in order to use this function.
4996  *
4997  * The device function is presumed to be unused and the caller is holding
4998  * the device mutex lock when this function is called.
4999  *
5000  * Resetting the device will make the contents of PCI configuration space
5001  * random, so any caller of this must be prepared to reinitialise the
5002  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5003  * etc.
5004  *
5005  * Returns 0 if the device function was successfully reset or negative if the
5006  * device doesn't support resetting a single function.
5007  */
5008 int __pci_reset_function_locked(struct pci_dev *dev)
5009 {
5010 	int rc;
5011 
5012 	might_sleep();
5013 
5014 	/*
5015 	 * A reset method returns -ENOTTY if it doesn't support this device
5016 	 * and we should try the next method.
5017 	 *
5018 	 * If it returns 0 (success), we're finished.  If it returns any
5019 	 * other error, we're also finished: this indicates that further
5020 	 * reset mechanisms might be broken on the device.
5021 	 */
5022 	rc = pci_dev_specific_reset(dev, 0);
5023 	if (rc != -ENOTTY)
5024 		return rc;
5025 	if (pcie_has_flr(dev)) {
5026 		rc = pcie_flr(dev);
5027 		if (rc != -ENOTTY)
5028 			return rc;
5029 	}
5030 	rc = pci_af_flr(dev, 0);
5031 	if (rc != -ENOTTY)
5032 		return rc;
5033 	rc = pci_pm_reset(dev, 0);
5034 	if (rc != -ENOTTY)
5035 		return rc;
5036 	rc = pci_dev_reset_slot_function(dev, 0);
5037 	if (rc != -ENOTTY)
5038 		return rc;
5039 	return pci_parent_bus_reset(dev, 0);
5040 }
5041 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5042 
5043 /**
5044  * pci_probe_reset_function - check whether the device can be safely reset
5045  * @dev: PCI device to reset
5046  *
5047  * Some devices allow an individual function to be reset without affecting
5048  * other functions in the same device.  The PCI device must be responsive
5049  * to PCI config space in order to use this function.
5050  *
5051  * Returns 0 if the device function can be reset or negative if the
5052  * device doesn't support resetting a single function.
5053  */
5054 int pci_probe_reset_function(struct pci_dev *dev)
5055 {
5056 	int rc;
5057 
5058 	might_sleep();
5059 
5060 	rc = pci_dev_specific_reset(dev, 1);
5061 	if (rc != -ENOTTY)
5062 		return rc;
5063 	if (pcie_has_flr(dev))
5064 		return 0;
5065 	rc = pci_af_flr(dev, 1);
5066 	if (rc != -ENOTTY)
5067 		return rc;
5068 	rc = pci_pm_reset(dev, 1);
5069 	if (rc != -ENOTTY)
5070 		return rc;
5071 	rc = pci_dev_reset_slot_function(dev, 1);
5072 	if (rc != -ENOTTY)
5073 		return rc;
5074 
5075 	return pci_parent_bus_reset(dev, 1);
5076 }
5077 
5078 /**
5079  * pci_reset_function - quiesce and reset a PCI device function
5080  * @dev: PCI device to reset
5081  *
5082  * Some devices allow an individual function to be reset without affecting
5083  * other functions in the same device.  The PCI device must be responsive
5084  * to PCI config space in order to use this function.
5085  *
5086  * This function does not just reset the PCI portion of a device, but
5087  * clears all the state associated with the device.  This function differs
5088  * from __pci_reset_function_locked() in that it saves and restores device state
5089  * over the reset and takes the PCI device lock.
5090  *
5091  * Returns 0 if the device function was successfully reset or negative if the
5092  * device doesn't support resetting a single function.
5093  */
5094 int pci_reset_function(struct pci_dev *dev)
5095 {
5096 	int rc;
5097 
5098 	if (!dev->reset_fn)
5099 		return -ENOTTY;
5100 
5101 	pci_dev_lock(dev);
5102 	pci_dev_save_and_disable(dev);
5103 
5104 	rc = __pci_reset_function_locked(dev);
5105 
5106 	pci_dev_restore(dev);
5107 	pci_dev_unlock(dev);
5108 
5109 	return rc;
5110 }
5111 EXPORT_SYMBOL_GPL(pci_reset_function);
5112 
5113 /**
5114  * pci_reset_function_locked - quiesce and reset a PCI device function
5115  * @dev: PCI device to reset
5116  *
5117  * Some devices allow an individual function to be reset without affecting
5118  * other functions in the same device.  The PCI device must be responsive
5119  * to PCI config space in order to use this function.
5120  *
5121  * This function does not just reset the PCI portion of a device, but
5122  * clears all the state associated with the device.  This function differs
5123  * from __pci_reset_function_locked() in that it saves and restores device state
5124  * over the reset.  It also differs from pci_reset_function() in that it
5125  * requires the PCI device lock to be held.
5126  *
5127  * Returns 0 if the device function was successfully reset or negative if the
5128  * device doesn't support resetting a single function.
5129  */
5130 int pci_reset_function_locked(struct pci_dev *dev)
5131 {
5132 	int rc;
5133 
5134 	if (!dev->reset_fn)
5135 		return -ENOTTY;
5136 
5137 	pci_dev_save_and_disable(dev);
5138 
5139 	rc = __pci_reset_function_locked(dev);
5140 
5141 	pci_dev_restore(dev);
5142 
5143 	return rc;
5144 }
5145 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5146 
5147 /**
5148  * pci_try_reset_function - quiesce and reset a PCI device function
5149  * @dev: PCI device to reset
5150  *
5151  * Same as above, except return -EAGAIN if unable to lock device.
5152  */
5153 int pci_try_reset_function(struct pci_dev *dev)
5154 {
5155 	int rc;
5156 
5157 	if (!dev->reset_fn)
5158 		return -ENOTTY;
5159 
5160 	if (!pci_dev_trylock(dev))
5161 		return -EAGAIN;
5162 
5163 	pci_dev_save_and_disable(dev);
5164 	rc = __pci_reset_function_locked(dev);
5165 	pci_dev_restore(dev);
5166 	pci_dev_unlock(dev);
5167 
5168 	return rc;
5169 }
5170 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5171 
5172 /* Do any devices on or below this bus prevent a bus reset? */
5173 static bool pci_bus_resetable(struct pci_bus *bus)
5174 {
5175 	struct pci_dev *dev;
5176 
5177 
5178 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5179 		return false;
5180 
5181 	list_for_each_entry(dev, &bus->devices, bus_list) {
5182 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5183 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5184 			return false;
5185 	}
5186 
5187 	return true;
5188 }
5189 
5190 /* Lock devices from the top of the tree down */
5191 static void pci_bus_lock(struct pci_bus *bus)
5192 {
5193 	struct pci_dev *dev;
5194 
5195 	list_for_each_entry(dev, &bus->devices, bus_list) {
5196 		pci_dev_lock(dev);
5197 		if (dev->subordinate)
5198 			pci_bus_lock(dev->subordinate);
5199 	}
5200 }
5201 
5202 /* Unlock devices from the bottom of the tree up */
5203 static void pci_bus_unlock(struct pci_bus *bus)
5204 {
5205 	struct pci_dev *dev;
5206 
5207 	list_for_each_entry(dev, &bus->devices, bus_list) {
5208 		if (dev->subordinate)
5209 			pci_bus_unlock(dev->subordinate);
5210 		pci_dev_unlock(dev);
5211 	}
5212 }
5213 
5214 /* Return 1 on successful lock, 0 on contention */
5215 static int pci_bus_trylock(struct pci_bus *bus)
5216 {
5217 	struct pci_dev *dev;
5218 
5219 	list_for_each_entry(dev, &bus->devices, bus_list) {
5220 		if (!pci_dev_trylock(dev))
5221 			goto unlock;
5222 		if (dev->subordinate) {
5223 			if (!pci_bus_trylock(dev->subordinate)) {
5224 				pci_dev_unlock(dev);
5225 				goto unlock;
5226 			}
5227 		}
5228 	}
5229 	return 1;
5230 
5231 unlock:
5232 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5233 		if (dev->subordinate)
5234 			pci_bus_unlock(dev->subordinate);
5235 		pci_dev_unlock(dev);
5236 	}
5237 	return 0;
5238 }
5239 
5240 /* Do any devices on or below this slot prevent a bus reset? */
5241 static bool pci_slot_resetable(struct pci_slot *slot)
5242 {
5243 	struct pci_dev *dev;
5244 
5245 	if (slot->bus->self &&
5246 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5247 		return false;
5248 
5249 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5250 		if (!dev->slot || dev->slot != slot)
5251 			continue;
5252 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5253 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5254 			return false;
5255 	}
5256 
5257 	return true;
5258 }
5259 
5260 /* Lock devices from the top of the tree down */
5261 static void pci_slot_lock(struct pci_slot *slot)
5262 {
5263 	struct pci_dev *dev;
5264 
5265 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5266 		if (!dev->slot || dev->slot != slot)
5267 			continue;
5268 		pci_dev_lock(dev);
5269 		if (dev->subordinate)
5270 			pci_bus_lock(dev->subordinate);
5271 	}
5272 }
5273 
5274 /* Unlock devices from the bottom of the tree up */
5275 static void pci_slot_unlock(struct pci_slot *slot)
5276 {
5277 	struct pci_dev *dev;
5278 
5279 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5280 		if (!dev->slot || dev->slot != slot)
5281 			continue;
5282 		if (dev->subordinate)
5283 			pci_bus_unlock(dev->subordinate);
5284 		pci_dev_unlock(dev);
5285 	}
5286 }
5287 
5288 /* Return 1 on successful lock, 0 on contention */
5289 static int pci_slot_trylock(struct pci_slot *slot)
5290 {
5291 	struct pci_dev *dev;
5292 
5293 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5294 		if (!dev->slot || dev->slot != slot)
5295 			continue;
5296 		if (!pci_dev_trylock(dev))
5297 			goto unlock;
5298 		if (dev->subordinate) {
5299 			if (!pci_bus_trylock(dev->subordinate)) {
5300 				pci_dev_unlock(dev);
5301 				goto unlock;
5302 			}
5303 		}
5304 	}
5305 	return 1;
5306 
5307 unlock:
5308 	list_for_each_entry_continue_reverse(dev,
5309 					     &slot->bus->devices, bus_list) {
5310 		if (!dev->slot || dev->slot != slot)
5311 			continue;
5312 		if (dev->subordinate)
5313 			pci_bus_unlock(dev->subordinate);
5314 		pci_dev_unlock(dev);
5315 	}
5316 	return 0;
5317 }
5318 
5319 /*
5320  * Save and disable devices from the top of the tree down while holding
5321  * the @dev mutex lock for the entire tree.
5322  */
5323 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5324 {
5325 	struct pci_dev *dev;
5326 
5327 	list_for_each_entry(dev, &bus->devices, bus_list) {
5328 		pci_dev_save_and_disable(dev);
5329 		if (dev->subordinate)
5330 			pci_bus_save_and_disable_locked(dev->subordinate);
5331 	}
5332 }
5333 
5334 /*
5335  * Restore devices from top of the tree down while holding @dev mutex lock
5336  * for the entire tree.  Parent bridges need to be restored before we can
5337  * get to subordinate devices.
5338  */
5339 static void pci_bus_restore_locked(struct pci_bus *bus)
5340 {
5341 	struct pci_dev *dev;
5342 
5343 	list_for_each_entry(dev, &bus->devices, bus_list) {
5344 		pci_dev_restore(dev);
5345 		if (dev->subordinate)
5346 			pci_bus_restore_locked(dev->subordinate);
5347 	}
5348 }
5349 
5350 /*
5351  * Save and disable devices from the top of the tree down while holding
5352  * the @dev mutex lock for the entire tree.
5353  */
5354 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5355 {
5356 	struct pci_dev *dev;
5357 
5358 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5359 		if (!dev->slot || dev->slot != slot)
5360 			continue;
5361 		pci_dev_save_and_disable(dev);
5362 		if (dev->subordinate)
5363 			pci_bus_save_and_disable_locked(dev->subordinate);
5364 	}
5365 }
5366 
5367 /*
5368  * Restore devices from top of the tree down while holding @dev mutex lock
5369  * for the entire tree.  Parent bridges need to be restored before we can
5370  * get to subordinate devices.
5371  */
5372 static void pci_slot_restore_locked(struct pci_slot *slot)
5373 {
5374 	struct pci_dev *dev;
5375 
5376 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5377 		if (!dev->slot || dev->slot != slot)
5378 			continue;
5379 		pci_dev_restore(dev);
5380 		if (dev->subordinate)
5381 			pci_bus_restore_locked(dev->subordinate);
5382 	}
5383 }
5384 
5385 static int pci_slot_reset(struct pci_slot *slot, int probe)
5386 {
5387 	int rc;
5388 
5389 	if (!slot || !pci_slot_resetable(slot))
5390 		return -ENOTTY;
5391 
5392 	if (!probe)
5393 		pci_slot_lock(slot);
5394 
5395 	might_sleep();
5396 
5397 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5398 
5399 	if (!probe)
5400 		pci_slot_unlock(slot);
5401 
5402 	return rc;
5403 }
5404 
5405 /**
5406  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5407  * @slot: PCI slot to probe
5408  *
5409  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5410  */
5411 int pci_probe_reset_slot(struct pci_slot *slot)
5412 {
5413 	return pci_slot_reset(slot, 1);
5414 }
5415 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5416 
5417 /**
5418  * __pci_reset_slot - Try to reset a PCI slot
5419  * @slot: PCI slot to reset
5420  *
5421  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5422  * independent of other slots.  For instance, some slots may support slot power
5423  * control.  In the case of a 1:1 bus to slot architecture, this function may
5424  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5425  * Generally a slot reset should be attempted before a bus reset.  All of the
5426  * function of the slot and any subordinate buses behind the slot are reset
5427  * through this function.  PCI config space of all devices in the slot and
5428  * behind the slot is saved before and restored after reset.
5429  *
5430  * Same as above except return -EAGAIN if the slot cannot be locked
5431  */
5432 static int __pci_reset_slot(struct pci_slot *slot)
5433 {
5434 	int rc;
5435 
5436 	rc = pci_slot_reset(slot, 1);
5437 	if (rc)
5438 		return rc;
5439 
5440 	if (pci_slot_trylock(slot)) {
5441 		pci_slot_save_and_disable_locked(slot);
5442 		might_sleep();
5443 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5444 		pci_slot_restore_locked(slot);
5445 		pci_slot_unlock(slot);
5446 	} else
5447 		rc = -EAGAIN;
5448 
5449 	return rc;
5450 }
5451 
5452 static int pci_bus_reset(struct pci_bus *bus, int probe)
5453 {
5454 	int ret;
5455 
5456 	if (!bus->self || !pci_bus_resetable(bus))
5457 		return -ENOTTY;
5458 
5459 	if (probe)
5460 		return 0;
5461 
5462 	pci_bus_lock(bus);
5463 
5464 	might_sleep();
5465 
5466 	ret = pci_bridge_secondary_bus_reset(bus->self);
5467 
5468 	pci_bus_unlock(bus);
5469 
5470 	return ret;
5471 }
5472 
5473 /**
5474  * pci_bus_error_reset - reset the bridge's subordinate bus
5475  * @bridge: The parent device that connects to the bus to reset
5476  *
5477  * This function will first try to reset the slots on this bus if the method is
5478  * available. If slot reset fails or is not available, this will fall back to a
5479  * secondary bus reset.
5480  */
5481 int pci_bus_error_reset(struct pci_dev *bridge)
5482 {
5483 	struct pci_bus *bus = bridge->subordinate;
5484 	struct pci_slot *slot;
5485 
5486 	if (!bus)
5487 		return -ENOTTY;
5488 
5489 	mutex_lock(&pci_slot_mutex);
5490 	if (list_empty(&bus->slots))
5491 		goto bus_reset;
5492 
5493 	list_for_each_entry(slot, &bus->slots, list)
5494 		if (pci_probe_reset_slot(slot))
5495 			goto bus_reset;
5496 
5497 	list_for_each_entry(slot, &bus->slots, list)
5498 		if (pci_slot_reset(slot, 0))
5499 			goto bus_reset;
5500 
5501 	mutex_unlock(&pci_slot_mutex);
5502 	return 0;
5503 bus_reset:
5504 	mutex_unlock(&pci_slot_mutex);
5505 	return pci_bus_reset(bridge->subordinate, 0);
5506 }
5507 
5508 /**
5509  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5510  * @bus: PCI bus to probe
5511  *
5512  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5513  */
5514 int pci_probe_reset_bus(struct pci_bus *bus)
5515 {
5516 	return pci_bus_reset(bus, 1);
5517 }
5518 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5519 
5520 /**
5521  * __pci_reset_bus - Try to reset a PCI bus
5522  * @bus: top level PCI bus to reset
5523  *
5524  * Same as above except return -EAGAIN if the bus cannot be locked
5525  */
5526 static int __pci_reset_bus(struct pci_bus *bus)
5527 {
5528 	int rc;
5529 
5530 	rc = pci_bus_reset(bus, 1);
5531 	if (rc)
5532 		return rc;
5533 
5534 	if (pci_bus_trylock(bus)) {
5535 		pci_bus_save_and_disable_locked(bus);
5536 		might_sleep();
5537 		rc = pci_bridge_secondary_bus_reset(bus->self);
5538 		pci_bus_restore_locked(bus);
5539 		pci_bus_unlock(bus);
5540 	} else
5541 		rc = -EAGAIN;
5542 
5543 	return rc;
5544 }
5545 
5546 /**
5547  * pci_reset_bus - Try to reset a PCI bus
5548  * @pdev: top level PCI device to reset via slot/bus
5549  *
5550  * Same as above except return -EAGAIN if the bus cannot be locked
5551  */
5552 int pci_reset_bus(struct pci_dev *pdev)
5553 {
5554 	return (!pci_probe_reset_slot(pdev->slot)) ?
5555 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5556 }
5557 EXPORT_SYMBOL_GPL(pci_reset_bus);
5558 
5559 /**
5560  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5561  * @dev: PCI device to query
5562  *
5563  * Returns mmrbc: maximum designed memory read count in bytes or
5564  * appropriate error value.
5565  */
5566 int pcix_get_max_mmrbc(struct pci_dev *dev)
5567 {
5568 	int cap;
5569 	u32 stat;
5570 
5571 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5572 	if (!cap)
5573 		return -EINVAL;
5574 
5575 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5576 		return -EINVAL;
5577 
5578 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5579 }
5580 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5581 
5582 /**
5583  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5584  * @dev: PCI device to query
5585  *
5586  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5587  * value.
5588  */
5589 int pcix_get_mmrbc(struct pci_dev *dev)
5590 {
5591 	int cap;
5592 	u16 cmd;
5593 
5594 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5595 	if (!cap)
5596 		return -EINVAL;
5597 
5598 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5599 		return -EINVAL;
5600 
5601 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5602 }
5603 EXPORT_SYMBOL(pcix_get_mmrbc);
5604 
5605 /**
5606  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5607  * @dev: PCI device to query
5608  * @mmrbc: maximum memory read count in bytes
5609  *    valid values are 512, 1024, 2048, 4096
5610  *
5611  * If possible sets maximum memory read byte count, some bridges have errata
5612  * that prevent this.
5613  */
5614 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5615 {
5616 	int cap;
5617 	u32 stat, v, o;
5618 	u16 cmd;
5619 
5620 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5621 		return -EINVAL;
5622 
5623 	v = ffs(mmrbc) - 10;
5624 
5625 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5626 	if (!cap)
5627 		return -EINVAL;
5628 
5629 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5630 		return -EINVAL;
5631 
5632 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5633 		return -E2BIG;
5634 
5635 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5636 		return -EINVAL;
5637 
5638 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5639 	if (o != v) {
5640 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5641 			return -EIO;
5642 
5643 		cmd &= ~PCI_X_CMD_MAX_READ;
5644 		cmd |= v << 2;
5645 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5646 			return -EIO;
5647 	}
5648 	return 0;
5649 }
5650 EXPORT_SYMBOL(pcix_set_mmrbc);
5651 
5652 /**
5653  * pcie_get_readrq - get PCI Express read request size
5654  * @dev: PCI device to query
5655  *
5656  * Returns maximum memory read request in bytes or appropriate error value.
5657  */
5658 int pcie_get_readrq(struct pci_dev *dev)
5659 {
5660 	u16 ctl;
5661 
5662 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5663 
5664 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5665 }
5666 EXPORT_SYMBOL(pcie_get_readrq);
5667 
5668 /**
5669  * pcie_set_readrq - set PCI Express maximum memory read request
5670  * @dev: PCI device to query
5671  * @rq: maximum memory read count in bytes
5672  *    valid values are 128, 256, 512, 1024, 2048, 4096
5673  *
5674  * If possible sets maximum memory read request in bytes
5675  */
5676 int pcie_set_readrq(struct pci_dev *dev, int rq)
5677 {
5678 	u16 v;
5679 
5680 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5681 		return -EINVAL;
5682 
5683 	/*
5684 	 * If using the "performance" PCIe config, we clamp the read rq
5685 	 * size to the max packet size to keep the host bridge from
5686 	 * generating requests larger than we can cope with.
5687 	 */
5688 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5689 		int mps = pcie_get_mps(dev);
5690 
5691 		if (mps < rq)
5692 			rq = mps;
5693 	}
5694 
5695 	v = (ffs(rq) - 8) << 12;
5696 
5697 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5698 						  PCI_EXP_DEVCTL_READRQ, v);
5699 }
5700 EXPORT_SYMBOL(pcie_set_readrq);
5701 
5702 /**
5703  * pcie_get_mps - get PCI Express maximum payload size
5704  * @dev: PCI device to query
5705  *
5706  * Returns maximum payload size in bytes
5707  */
5708 int pcie_get_mps(struct pci_dev *dev)
5709 {
5710 	u16 ctl;
5711 
5712 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5713 
5714 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5715 }
5716 EXPORT_SYMBOL(pcie_get_mps);
5717 
5718 /**
5719  * pcie_set_mps - set PCI Express maximum payload size
5720  * @dev: PCI device to query
5721  * @mps: maximum payload size in bytes
5722  *    valid values are 128, 256, 512, 1024, 2048, 4096
5723  *
5724  * If possible sets maximum payload size
5725  */
5726 int pcie_set_mps(struct pci_dev *dev, int mps)
5727 {
5728 	u16 v;
5729 
5730 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5731 		return -EINVAL;
5732 
5733 	v = ffs(mps) - 8;
5734 	if (v > dev->pcie_mpss)
5735 		return -EINVAL;
5736 	v <<= 5;
5737 
5738 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5739 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5740 }
5741 EXPORT_SYMBOL(pcie_set_mps);
5742 
5743 /**
5744  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5745  *			      device and its bandwidth limitation
5746  * @dev: PCI device to query
5747  * @limiting_dev: storage for device causing the bandwidth limitation
5748  * @speed: storage for speed of limiting device
5749  * @width: storage for width of limiting device
5750  *
5751  * Walk up the PCI device chain and find the point where the minimum
5752  * bandwidth is available.  Return the bandwidth available there and (if
5753  * limiting_dev, speed, and width pointers are supplied) information about
5754  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5755  * raw bandwidth.
5756  */
5757 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5758 			     enum pci_bus_speed *speed,
5759 			     enum pcie_link_width *width)
5760 {
5761 	u16 lnksta;
5762 	enum pci_bus_speed next_speed;
5763 	enum pcie_link_width next_width;
5764 	u32 bw, next_bw;
5765 
5766 	if (speed)
5767 		*speed = PCI_SPEED_UNKNOWN;
5768 	if (width)
5769 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5770 
5771 	bw = 0;
5772 
5773 	while (dev) {
5774 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5775 
5776 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5777 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5778 			PCI_EXP_LNKSTA_NLW_SHIFT;
5779 
5780 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5781 
5782 		/* Check if current device limits the total bandwidth */
5783 		if (!bw || next_bw <= bw) {
5784 			bw = next_bw;
5785 
5786 			if (limiting_dev)
5787 				*limiting_dev = dev;
5788 			if (speed)
5789 				*speed = next_speed;
5790 			if (width)
5791 				*width = next_width;
5792 		}
5793 
5794 		dev = pci_upstream_bridge(dev);
5795 	}
5796 
5797 	return bw;
5798 }
5799 EXPORT_SYMBOL(pcie_bandwidth_available);
5800 
5801 /**
5802  * pcie_get_speed_cap - query for the PCI device's link speed capability
5803  * @dev: PCI device to query
5804  *
5805  * Query the PCI device speed capability.  Return the maximum link speed
5806  * supported by the device.
5807  */
5808 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5809 {
5810 	u32 lnkcap2, lnkcap;
5811 
5812 	/*
5813 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5814 	 * implementation note there recommends using the Supported Link
5815 	 * Speeds Vector in Link Capabilities 2 when supported.
5816 	 *
5817 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5818 	 * should use the Supported Link Speeds field in Link Capabilities,
5819 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5820 	 */
5821 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5822 
5823 	/* PCIe r3.0-compliant */
5824 	if (lnkcap2)
5825 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5826 
5827 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5828 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5829 		return PCIE_SPEED_5_0GT;
5830 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5831 		return PCIE_SPEED_2_5GT;
5832 
5833 	return PCI_SPEED_UNKNOWN;
5834 }
5835 EXPORT_SYMBOL(pcie_get_speed_cap);
5836 
5837 /**
5838  * pcie_get_width_cap - query for the PCI device's link width capability
5839  * @dev: PCI device to query
5840  *
5841  * Query the PCI device width capability.  Return the maximum link width
5842  * supported by the device.
5843  */
5844 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5845 {
5846 	u32 lnkcap;
5847 
5848 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5849 	if (lnkcap)
5850 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5851 
5852 	return PCIE_LNK_WIDTH_UNKNOWN;
5853 }
5854 EXPORT_SYMBOL(pcie_get_width_cap);
5855 
5856 /**
5857  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5858  * @dev: PCI device
5859  * @speed: storage for link speed
5860  * @width: storage for link width
5861  *
5862  * Calculate a PCI device's link bandwidth by querying for its link speed
5863  * and width, multiplying them, and applying encoding overhead.  The result
5864  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5865  */
5866 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5867 			   enum pcie_link_width *width)
5868 {
5869 	*speed = pcie_get_speed_cap(dev);
5870 	*width = pcie_get_width_cap(dev);
5871 
5872 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5873 		return 0;
5874 
5875 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5876 }
5877 
5878 /**
5879  * __pcie_print_link_status - Report the PCI device's link speed and width
5880  * @dev: PCI device to query
5881  * @verbose: Print info even when enough bandwidth is available
5882  *
5883  * If the available bandwidth at the device is less than the device is
5884  * capable of, report the device's maximum possible bandwidth and the
5885  * upstream link that limits its performance.  If @verbose, always print
5886  * the available bandwidth, even if the device isn't constrained.
5887  */
5888 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5889 {
5890 	enum pcie_link_width width, width_cap;
5891 	enum pci_bus_speed speed, speed_cap;
5892 	struct pci_dev *limiting_dev = NULL;
5893 	u32 bw_avail, bw_cap;
5894 
5895 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5896 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5897 
5898 	if (bw_avail >= bw_cap && verbose)
5899 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5900 			 bw_cap / 1000, bw_cap % 1000,
5901 			 pci_speed_string(speed_cap), width_cap);
5902 	else if (bw_avail < bw_cap)
5903 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5904 			 bw_avail / 1000, bw_avail % 1000,
5905 			 pci_speed_string(speed), width,
5906 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5907 			 bw_cap / 1000, bw_cap % 1000,
5908 			 pci_speed_string(speed_cap), width_cap);
5909 }
5910 
5911 /**
5912  * pcie_print_link_status - Report the PCI device's link speed and width
5913  * @dev: PCI device to query
5914  *
5915  * Report the available bandwidth at the device.
5916  */
5917 void pcie_print_link_status(struct pci_dev *dev)
5918 {
5919 	__pcie_print_link_status(dev, true);
5920 }
5921 EXPORT_SYMBOL(pcie_print_link_status);
5922 
5923 /**
5924  * pci_select_bars - Make BAR mask from the type of resource
5925  * @dev: the PCI device for which BAR mask is made
5926  * @flags: resource type mask to be selected
5927  *
5928  * This helper routine makes bar mask from the type of resource.
5929  */
5930 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5931 {
5932 	int i, bars = 0;
5933 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5934 		if (pci_resource_flags(dev, i) & flags)
5935 			bars |= (1 << i);
5936 	return bars;
5937 }
5938 EXPORT_SYMBOL(pci_select_bars);
5939 
5940 /* Some architectures require additional programming to enable VGA */
5941 static arch_set_vga_state_t arch_set_vga_state;
5942 
5943 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5944 {
5945 	arch_set_vga_state = func;	/* NULL disables */
5946 }
5947 
5948 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5949 				  unsigned int command_bits, u32 flags)
5950 {
5951 	if (arch_set_vga_state)
5952 		return arch_set_vga_state(dev, decode, command_bits,
5953 						flags);
5954 	return 0;
5955 }
5956 
5957 /**
5958  * pci_set_vga_state - set VGA decode state on device and parents if requested
5959  * @dev: the PCI device
5960  * @decode: true = enable decoding, false = disable decoding
5961  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5962  * @flags: traverse ancestors and change bridges
5963  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5964  */
5965 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5966 		      unsigned int command_bits, u32 flags)
5967 {
5968 	struct pci_bus *bus;
5969 	struct pci_dev *bridge;
5970 	u16 cmd;
5971 	int rc;
5972 
5973 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5974 
5975 	/* ARCH specific VGA enables */
5976 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5977 	if (rc)
5978 		return rc;
5979 
5980 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5981 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5982 		if (decode == true)
5983 			cmd |= command_bits;
5984 		else
5985 			cmd &= ~command_bits;
5986 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5987 	}
5988 
5989 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5990 		return 0;
5991 
5992 	bus = dev->bus;
5993 	while (bus) {
5994 		bridge = bus->self;
5995 		if (bridge) {
5996 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5997 					     &cmd);
5998 			if (decode == true)
5999 				cmd |= PCI_BRIDGE_CTL_VGA;
6000 			else
6001 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6002 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6003 					      cmd);
6004 		}
6005 		bus = bus->parent;
6006 	}
6007 	return 0;
6008 }
6009 
6010 #ifdef CONFIG_ACPI
6011 bool pci_pr3_present(struct pci_dev *pdev)
6012 {
6013 	struct acpi_device *adev;
6014 
6015 	if (acpi_disabled)
6016 		return false;
6017 
6018 	adev = ACPI_COMPANION(&pdev->dev);
6019 	if (!adev)
6020 		return false;
6021 
6022 	return adev->power.flags.power_resources &&
6023 		acpi_has_method(adev->handle, "_PR3");
6024 }
6025 EXPORT_SYMBOL_GPL(pci_pr3_present);
6026 #endif
6027 
6028 /**
6029  * pci_add_dma_alias - Add a DMA devfn alias for a device
6030  * @dev: the PCI device for which alias is added
6031  * @devfn_from: alias slot and function
6032  * @nr_devfns: number of subsequent devfns to alias
6033  *
6034  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6035  * which is used to program permissible bus-devfn source addresses for DMA
6036  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6037  * and are useful for devices generating DMA requests beyond or different
6038  * from their logical bus-devfn.  Examples include device quirks where the
6039  * device simply uses the wrong devfn, as well as non-transparent bridges
6040  * where the alias may be a proxy for devices in another domain.
6041  *
6042  * IOMMU group creation is performed during device discovery or addition,
6043  * prior to any potential DMA mapping and therefore prior to driver probing
6044  * (especially for userspace assigned devices where IOMMU group definition
6045  * cannot be left as a userspace activity).  DMA aliases should therefore
6046  * be configured via quirks, such as the PCI fixup header quirk.
6047  */
6048 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6049 {
6050 	int devfn_to;
6051 
6052 	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6053 	devfn_to = devfn_from + nr_devfns - 1;
6054 
6055 	if (!dev->dma_alias_mask)
6056 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6057 	if (!dev->dma_alias_mask) {
6058 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6059 		return;
6060 	}
6061 
6062 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6063 
6064 	if (nr_devfns == 1)
6065 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6066 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6067 	else if (nr_devfns > 1)
6068 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6069 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6070 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6071 }
6072 
6073 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6074 {
6075 	return (dev1->dma_alias_mask &&
6076 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6077 	       (dev2->dma_alias_mask &&
6078 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6079 	       pci_real_dma_dev(dev1) == dev2 ||
6080 	       pci_real_dma_dev(dev2) == dev1;
6081 }
6082 
6083 bool pci_device_is_present(struct pci_dev *pdev)
6084 {
6085 	u32 v;
6086 
6087 	if (pci_dev_is_disconnected(pdev))
6088 		return false;
6089 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6090 }
6091 EXPORT_SYMBOL_GPL(pci_device_is_present);
6092 
6093 void pci_ignore_hotplug(struct pci_dev *dev)
6094 {
6095 	struct pci_dev *bridge = dev->bus->self;
6096 
6097 	dev->ignore_hotplug = 1;
6098 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6099 	if (bridge)
6100 		bridge->ignore_hotplug = 1;
6101 }
6102 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6103 
6104 /**
6105  * pci_real_dma_dev - Get PCI DMA device for PCI device
6106  * @dev: the PCI device that may have a PCI DMA alias
6107  *
6108  * Permits the platform to provide architecture-specific functionality to
6109  * devices needing to alias DMA to another PCI device on another PCI bus. If
6110  * the PCI device is on the same bus, it is recommended to use
6111  * pci_add_dma_alias(). This is the default implementation. Architecture
6112  * implementations can override this.
6113  */
6114 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6115 {
6116 	return dev;
6117 }
6118 
6119 resource_size_t __weak pcibios_default_alignment(void)
6120 {
6121 	return 0;
6122 }
6123 
6124 /*
6125  * Arches that don't want to expose struct resource to userland as-is in
6126  * sysfs and /proc can implement their own pci_resource_to_user().
6127  */
6128 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6129 				 const struct resource *rsrc,
6130 				 resource_size_t *start, resource_size_t *end)
6131 {
6132 	*start = rsrc->start;
6133 	*end = rsrc->end;
6134 }
6135 
6136 static char *resource_alignment_param;
6137 static DEFINE_SPINLOCK(resource_alignment_lock);
6138 
6139 /**
6140  * pci_specified_resource_alignment - get resource alignment specified by user.
6141  * @dev: the PCI device to get
6142  * @resize: whether or not to change resources' size when reassigning alignment
6143  *
6144  * RETURNS: Resource alignment if it is specified.
6145  *          Zero if it is not specified.
6146  */
6147 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6148 							bool *resize)
6149 {
6150 	int align_order, count;
6151 	resource_size_t align = pcibios_default_alignment();
6152 	const char *p;
6153 	int ret;
6154 
6155 	spin_lock(&resource_alignment_lock);
6156 	p = resource_alignment_param;
6157 	if (!p || !*p)
6158 		goto out;
6159 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6160 		align = 0;
6161 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6162 		goto out;
6163 	}
6164 
6165 	while (*p) {
6166 		count = 0;
6167 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6168 							p[count] == '@') {
6169 			p += count + 1;
6170 		} else {
6171 			align_order = -1;
6172 		}
6173 
6174 		ret = pci_dev_str_match(dev, p, &p);
6175 		if (ret == 1) {
6176 			*resize = true;
6177 			if (align_order == -1)
6178 				align = PAGE_SIZE;
6179 			else
6180 				align = 1 << align_order;
6181 			break;
6182 		} else if (ret < 0) {
6183 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6184 			       p);
6185 			break;
6186 		}
6187 
6188 		if (*p != ';' && *p != ',') {
6189 			/* End of param or invalid format */
6190 			break;
6191 		}
6192 		p++;
6193 	}
6194 out:
6195 	spin_unlock(&resource_alignment_lock);
6196 	return align;
6197 }
6198 
6199 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6200 					   resource_size_t align, bool resize)
6201 {
6202 	struct resource *r = &dev->resource[bar];
6203 	resource_size_t size;
6204 
6205 	if (!(r->flags & IORESOURCE_MEM))
6206 		return;
6207 
6208 	if (r->flags & IORESOURCE_PCI_FIXED) {
6209 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6210 			 bar, r, (unsigned long long)align);
6211 		return;
6212 	}
6213 
6214 	size = resource_size(r);
6215 	if (size >= align)
6216 		return;
6217 
6218 	/*
6219 	 * Increase the alignment of the resource.  There are two ways we
6220 	 * can do this:
6221 	 *
6222 	 * 1) Increase the size of the resource.  BARs are aligned on their
6223 	 *    size, so when we reallocate space for this resource, we'll
6224 	 *    allocate it with the larger alignment.  This also prevents
6225 	 *    assignment of any other BARs inside the alignment region, so
6226 	 *    if we're requesting page alignment, this means no other BARs
6227 	 *    will share the page.
6228 	 *
6229 	 *    The disadvantage is that this makes the resource larger than
6230 	 *    the hardware BAR, which may break drivers that compute things
6231 	 *    based on the resource size, e.g., to find registers at a
6232 	 *    fixed offset before the end of the BAR.
6233 	 *
6234 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6235 	 *    set r->start to the desired alignment.  By itself this
6236 	 *    doesn't prevent other BARs being put inside the alignment
6237 	 *    region, but if we realign *every* resource of every device in
6238 	 *    the system, none of them will share an alignment region.
6239 	 *
6240 	 * When the user has requested alignment for only some devices via
6241 	 * the "pci=resource_alignment" argument, "resize" is true and we
6242 	 * use the first method.  Otherwise we assume we're aligning all
6243 	 * devices and we use the second.
6244 	 */
6245 
6246 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6247 		 bar, r, (unsigned long long)align);
6248 
6249 	if (resize) {
6250 		r->start = 0;
6251 		r->end = align - 1;
6252 	} else {
6253 		r->flags &= ~IORESOURCE_SIZEALIGN;
6254 		r->flags |= IORESOURCE_STARTALIGN;
6255 		r->start = align;
6256 		r->end = r->start + size - 1;
6257 	}
6258 	r->flags |= IORESOURCE_UNSET;
6259 }
6260 
6261 /*
6262  * This function disables memory decoding and releases memory resources
6263  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6264  * It also rounds up size to specified alignment.
6265  * Later on, the kernel will assign page-aligned memory resource back
6266  * to the device.
6267  */
6268 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6269 {
6270 	int i;
6271 	struct resource *r;
6272 	resource_size_t align;
6273 	u16 command;
6274 	bool resize = false;
6275 
6276 	/*
6277 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6278 	 * 3.4.1.11.  Their resources are allocated from the space
6279 	 * described by the VF BARx register in the PF's SR-IOV capability.
6280 	 * We can't influence their alignment here.
6281 	 */
6282 	if (dev->is_virtfn)
6283 		return;
6284 
6285 	/* check if specified PCI is target device to reassign */
6286 	align = pci_specified_resource_alignment(dev, &resize);
6287 	if (!align)
6288 		return;
6289 
6290 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6291 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6292 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6293 		return;
6294 	}
6295 
6296 	pci_read_config_word(dev, PCI_COMMAND, &command);
6297 	command &= ~PCI_COMMAND_MEMORY;
6298 	pci_write_config_word(dev, PCI_COMMAND, command);
6299 
6300 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6301 		pci_request_resource_alignment(dev, i, align, resize);
6302 
6303 	/*
6304 	 * Need to disable bridge's resource window,
6305 	 * to enable the kernel to reassign new resource
6306 	 * window later on.
6307 	 */
6308 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6309 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6310 			r = &dev->resource[i];
6311 			if (!(r->flags & IORESOURCE_MEM))
6312 				continue;
6313 			r->flags |= IORESOURCE_UNSET;
6314 			r->end = resource_size(r) - 1;
6315 			r->start = 0;
6316 		}
6317 		pci_disable_bridge_window(dev);
6318 	}
6319 }
6320 
6321 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6322 {
6323 	size_t count = 0;
6324 
6325 	spin_lock(&resource_alignment_lock);
6326 	if (resource_alignment_param)
6327 		count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6328 	spin_unlock(&resource_alignment_lock);
6329 
6330 	/*
6331 	 * When set by the command line, resource_alignment_param will not
6332 	 * have a trailing line feed, which is ugly. So conditionally add
6333 	 * it here.
6334 	 */
6335 	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6336 		buf[count - 1] = '\n';
6337 		buf[count++] = 0;
6338 	}
6339 
6340 	return count;
6341 }
6342 
6343 static ssize_t resource_alignment_store(struct bus_type *bus,
6344 					const char *buf, size_t count)
6345 {
6346 	char *param = kstrndup(buf, count, GFP_KERNEL);
6347 
6348 	if (!param)
6349 		return -ENOMEM;
6350 
6351 	spin_lock(&resource_alignment_lock);
6352 	kfree(resource_alignment_param);
6353 	resource_alignment_param = param;
6354 	spin_unlock(&resource_alignment_lock);
6355 	return count;
6356 }
6357 
6358 static BUS_ATTR_RW(resource_alignment);
6359 
6360 static int __init pci_resource_alignment_sysfs_init(void)
6361 {
6362 	return bus_create_file(&pci_bus_type,
6363 					&bus_attr_resource_alignment);
6364 }
6365 late_initcall(pci_resource_alignment_sysfs_init);
6366 
6367 static void pci_no_domains(void)
6368 {
6369 #ifdef CONFIG_PCI_DOMAINS
6370 	pci_domains_supported = 0;
6371 #endif
6372 }
6373 
6374 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6375 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6376 
6377 static int pci_get_new_domain_nr(void)
6378 {
6379 	return atomic_inc_return(&__domain_nr);
6380 }
6381 
6382 static int of_pci_bus_find_domain_nr(struct device *parent)
6383 {
6384 	static int use_dt_domains = -1;
6385 	int domain = -1;
6386 
6387 	if (parent)
6388 		domain = of_get_pci_domain_nr(parent->of_node);
6389 
6390 	/*
6391 	 * Check DT domain and use_dt_domains values.
6392 	 *
6393 	 * If DT domain property is valid (domain >= 0) and
6394 	 * use_dt_domains != 0, the DT assignment is valid since this means
6395 	 * we have not previously allocated a domain number by using
6396 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6397 	 * 1, to indicate that we have just assigned a domain number from
6398 	 * DT.
6399 	 *
6400 	 * If DT domain property value is not valid (ie domain < 0), and we
6401 	 * have not previously assigned a domain number from DT
6402 	 * (use_dt_domains != 1) we should assign a domain number by
6403 	 * using the:
6404 	 *
6405 	 * pci_get_new_domain_nr()
6406 	 *
6407 	 * API and update the use_dt_domains value to keep track of method we
6408 	 * are using to assign domain numbers (use_dt_domains = 0).
6409 	 *
6410 	 * All other combinations imply we have a platform that is trying
6411 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6412 	 * which is a recipe for domain mishandling and it is prevented by
6413 	 * invalidating the domain value (domain = -1) and printing a
6414 	 * corresponding error.
6415 	 */
6416 	if (domain >= 0 && use_dt_domains) {
6417 		use_dt_domains = 1;
6418 	} else if (domain < 0 && use_dt_domains != 1) {
6419 		use_dt_domains = 0;
6420 		domain = pci_get_new_domain_nr();
6421 	} else {
6422 		if (parent)
6423 			pr_err("Node %pOF has ", parent->of_node);
6424 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6425 		domain = -1;
6426 	}
6427 
6428 	return domain;
6429 }
6430 
6431 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6432 {
6433 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6434 			       acpi_pci_bus_find_domain_nr(bus);
6435 }
6436 #endif
6437 
6438 /**
6439  * pci_ext_cfg_avail - can we access extended PCI config space?
6440  *
6441  * Returns 1 if we can access PCI extended config space (offsets
6442  * greater than 0xff). This is the default implementation. Architecture
6443  * implementations can override this.
6444  */
6445 int __weak pci_ext_cfg_avail(void)
6446 {
6447 	return 1;
6448 }
6449 
6450 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6451 {
6452 }
6453 EXPORT_SYMBOL(pci_fixup_cardbus);
6454 
6455 static int __init pci_setup(char *str)
6456 {
6457 	while (str) {
6458 		char *k = strchr(str, ',');
6459 		if (k)
6460 			*k++ = 0;
6461 		if (*str && (str = pcibios_setup(str)) && *str) {
6462 			if (!strcmp(str, "nomsi")) {
6463 				pci_no_msi();
6464 			} else if (!strncmp(str, "noats", 5)) {
6465 				pr_info("PCIe: ATS is disabled\n");
6466 				pcie_ats_disabled = true;
6467 			} else if (!strcmp(str, "noaer")) {
6468 				pci_no_aer();
6469 			} else if (!strcmp(str, "earlydump")) {
6470 				pci_early_dump = true;
6471 			} else if (!strncmp(str, "realloc=", 8)) {
6472 				pci_realloc_get_opt(str + 8);
6473 			} else if (!strncmp(str, "realloc", 7)) {
6474 				pci_realloc_get_opt("on");
6475 			} else if (!strcmp(str, "nodomains")) {
6476 				pci_no_domains();
6477 			} else if (!strncmp(str, "noari", 5)) {
6478 				pcie_ari_disabled = true;
6479 			} else if (!strncmp(str, "cbiosize=", 9)) {
6480 				pci_cardbus_io_size = memparse(str + 9, &str);
6481 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6482 				pci_cardbus_mem_size = memparse(str + 10, &str);
6483 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6484 				resource_alignment_param = str + 19;
6485 			} else if (!strncmp(str, "ecrc=", 5)) {
6486 				pcie_ecrc_get_policy(str + 5);
6487 			} else if (!strncmp(str, "hpiosize=", 9)) {
6488 				pci_hotplug_io_size = memparse(str + 9, &str);
6489 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6490 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6491 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6492 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6493 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6494 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6495 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6496 			} else if (!strncmp(str, "hpbussize=", 10)) {
6497 				pci_hotplug_bus_size =
6498 					simple_strtoul(str + 10, &str, 0);
6499 				if (pci_hotplug_bus_size > 0xff)
6500 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6501 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6502 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6503 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6504 				pcie_bus_config = PCIE_BUS_SAFE;
6505 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6506 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6507 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6508 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6509 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6510 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6511 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6512 				disable_acs_redir_param = str + 18;
6513 			} else {
6514 				pr_err("PCI: Unknown option `%s'\n", str);
6515 			}
6516 		}
6517 		str = k;
6518 	}
6519 	return 0;
6520 }
6521 early_param("pci", pci_setup);
6522 
6523 /*
6524  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6525  * in pci_setup(), above, to point to data in the __initdata section which
6526  * will be freed after the init sequence is complete. We can't allocate memory
6527  * in pci_setup() because some architectures do not have any memory allocation
6528  * service available during an early_param() call. So we allocate memory and
6529  * copy the variable here before the init section is freed.
6530  *
6531  */
6532 static int __init pci_realloc_setup_params(void)
6533 {
6534 	resource_alignment_param = kstrdup(resource_alignment_param,
6535 					   GFP_KERNEL);
6536 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6537 
6538 	return 0;
6539 }
6540 pure_initcall(pci_realloc_setup_params);
6541