1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/of.h> 17 #include <linux/of_pci.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <linux/pci-ats.h> 33 #include <asm/setup.h> 34 #include <asm/dma.h> 35 #include <linux/aer.h> 36 #include "pci.h" 37 38 DEFINE_MUTEX(pci_slot_mutex); 39 40 const char *pci_power_names[] = { 41 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 42 }; 43 EXPORT_SYMBOL_GPL(pci_power_names); 44 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 48 int pci_pci_problems; 49 EXPORT_SYMBOL(pci_pci_problems); 50 51 unsigned int pci_pm_d3_delay; 52 53 static void pci_pme_list_scan(struct work_struct *work); 54 55 static LIST_HEAD(pci_pme_list); 56 static DEFINE_MUTEX(pci_pme_list_mutex); 57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 58 59 struct pci_pme_device { 60 struct list_head list; 61 struct pci_dev *dev; 62 }; 63 64 #define PME_TIMEOUT 1000 /* How long between PME checks */ 65 66 static void pci_dev_d3_sleep(struct pci_dev *dev) 67 { 68 unsigned int delay = dev->d3_delay; 69 70 if (delay < pci_pm_d3_delay) 71 delay = pci_pm_d3_delay; 72 73 if (delay) 74 msleep(delay); 75 } 76 77 #ifdef CONFIG_PCI_DOMAINS 78 int pci_domains_supported = 1; 79 #endif 80 81 #define DEFAULT_CARDBUS_IO_SIZE (256) 82 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 84 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 85 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 86 87 #define DEFAULT_HOTPLUG_IO_SIZE (256) 88 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 90 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 91 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 92 93 #define DEFAULT_HOTPLUG_BUS_SIZE 1 94 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 95 96 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 97 98 /* 99 * The default CLS is used if arch didn't set CLS explicitly and not 100 * all pci devices agree on the same value. Arch can override either 101 * the dfl or actual value as it sees fit. Don't forget this is 102 * measured in 32-bit words, not bytes. 103 */ 104 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 105 u8 pci_cache_line_size; 106 107 /* 108 * If we set up a device for bus mastering, we need to check the latency 109 * timer as certain BIOSes forget to set it properly. 110 */ 111 unsigned int pcibios_max_latency = 255; 112 113 /* If set, the PCIe ARI capability will not be used. */ 114 static bool pcie_ari_disabled; 115 116 /* If set, the PCIe ATS capability will not be used. */ 117 static bool pcie_ats_disabled; 118 119 /* If set, the PCI config space of each device is printed during boot. */ 120 bool pci_early_dump; 121 122 bool pci_ats_disabled(void) 123 { 124 return pcie_ats_disabled; 125 } 126 127 /* Disable bridge_d3 for all PCIe ports */ 128 static bool pci_bridge_d3_disable; 129 /* Force bridge_d3 for all PCIe ports */ 130 static bool pci_bridge_d3_force; 131 132 static int __init pcie_port_pm_setup(char *str) 133 { 134 if (!strcmp(str, "off")) 135 pci_bridge_d3_disable = true; 136 else if (!strcmp(str, "force")) 137 pci_bridge_d3_force = true; 138 return 1; 139 } 140 __setup("pcie_port_pm=", pcie_port_pm_setup); 141 142 /* Time to wait after a reset for device to become responsive */ 143 #define PCIE_RESET_READY_POLL_MS 60000 144 145 /** 146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 147 * @bus: pointer to PCI bus structure to search 148 * 149 * Given a PCI bus, returns the highest PCI bus number present in the set 150 * including the given PCI bus and its list of child PCI buses. 151 */ 152 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 153 { 154 struct pci_bus *tmp; 155 unsigned char max, n; 156 157 max = bus->busn_res.end; 158 list_for_each_entry(tmp, &bus->children, node) { 159 n = pci_bus_max_busnr(tmp); 160 if (n > max) 161 max = n; 162 } 163 return max; 164 } 165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 166 167 #ifdef CONFIG_HAS_IOMEM 168 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 169 { 170 struct resource *res = &pdev->resource[bar]; 171 172 /* 173 * Make sure the BAR is actually a memory resource, not an IO resource 174 */ 175 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 176 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 177 return NULL; 178 } 179 return ioremap_nocache(res->start, resource_size(res)); 180 } 181 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 182 183 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 184 { 185 /* 186 * Make sure the BAR is actually a memory resource, not an IO resource 187 */ 188 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 189 WARN_ON(1); 190 return NULL; 191 } 192 return ioremap_wc(pci_resource_start(pdev, bar), 193 pci_resource_len(pdev, bar)); 194 } 195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 196 #endif 197 198 /** 199 * pci_dev_str_match_path - test if a path string matches a device 200 * @dev: the PCI device to test 201 * @path: string to match the device against 202 * @endptr: pointer to the string after the match 203 * 204 * Test if a string (typically from a kernel parameter) formatted as a 205 * path of device/function addresses matches a PCI device. The string must 206 * be of the form: 207 * 208 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 209 * 210 * A path for a device can be obtained using 'lspci -t'. Using a path 211 * is more robust against bus renumbering than using only a single bus, 212 * device and function address. 213 * 214 * Returns 1 if the string matches the device, 0 if it does not and 215 * a negative error code if it fails to parse the string. 216 */ 217 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 218 const char **endptr) 219 { 220 int ret; 221 int seg, bus, slot, func; 222 char *wpath, *p; 223 char end; 224 225 *endptr = strchrnul(path, ';'); 226 227 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 228 if (!wpath) 229 return -ENOMEM; 230 231 while (1) { 232 p = strrchr(wpath, '/'); 233 if (!p) 234 break; 235 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 236 if (ret != 2) { 237 ret = -EINVAL; 238 goto free_and_exit; 239 } 240 241 if (dev->devfn != PCI_DEVFN(slot, func)) { 242 ret = 0; 243 goto free_and_exit; 244 } 245 246 /* 247 * Note: we don't need to get a reference to the upstream 248 * bridge because we hold a reference to the top level 249 * device which should hold a reference to the bridge, 250 * and so on. 251 */ 252 dev = pci_upstream_bridge(dev); 253 if (!dev) { 254 ret = 0; 255 goto free_and_exit; 256 } 257 258 *p = 0; 259 } 260 261 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 262 &func, &end); 263 if (ret != 4) { 264 seg = 0; 265 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 266 if (ret != 3) { 267 ret = -EINVAL; 268 goto free_and_exit; 269 } 270 } 271 272 ret = (seg == pci_domain_nr(dev->bus) && 273 bus == dev->bus->number && 274 dev->devfn == PCI_DEVFN(slot, func)); 275 276 free_and_exit: 277 kfree(wpath); 278 return ret; 279 } 280 281 /** 282 * pci_dev_str_match - test if a string matches a device 283 * @dev: the PCI device to test 284 * @p: string to match the device against 285 * @endptr: pointer to the string after the match 286 * 287 * Test if a string (typically from a kernel parameter) matches a specified 288 * PCI device. The string may be of one of the following formats: 289 * 290 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 291 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 292 * 293 * The first format specifies a PCI bus/device/function address which 294 * may change if new hardware is inserted, if motherboard firmware changes, 295 * or due to changes caused in kernel parameters. If the domain is 296 * left unspecified, it is taken to be 0. In order to be robust against 297 * bus renumbering issues, a path of PCI device/function numbers may be used 298 * to address the specific device. The path for a device can be determined 299 * through the use of 'lspci -t'. 300 * 301 * The second format matches devices using IDs in the configuration 302 * space which may match multiple devices in the system. A value of 0 303 * for any field will match all devices. (Note: this differs from 304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 305 * legacy reasons and convenience so users don't have to specify 306 * FFFFFFFFs on the command line.) 307 * 308 * Returns 1 if the string matches the device, 0 if it does not and 309 * a negative error code if the string cannot be parsed. 310 */ 311 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 312 const char **endptr) 313 { 314 int ret; 315 int count; 316 unsigned short vendor, device, subsystem_vendor, subsystem_device; 317 318 if (strncmp(p, "pci:", 4) == 0) { 319 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 320 p += 4; 321 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 322 &subsystem_vendor, &subsystem_device, &count); 323 if (ret != 4) { 324 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 325 if (ret != 2) 326 return -EINVAL; 327 328 subsystem_vendor = 0; 329 subsystem_device = 0; 330 } 331 332 p += count; 333 334 if ((!vendor || vendor == dev->vendor) && 335 (!device || device == dev->device) && 336 (!subsystem_vendor || 337 subsystem_vendor == dev->subsystem_vendor) && 338 (!subsystem_device || 339 subsystem_device == dev->subsystem_device)) 340 goto found; 341 } else { 342 /* 343 * PCI Bus, Device, Function IDs are specified 344 * (optionally, may include a path of devfns following it) 345 */ 346 ret = pci_dev_str_match_path(dev, p, &p); 347 if (ret < 0) 348 return ret; 349 else if (ret) 350 goto found; 351 } 352 353 *endptr = p; 354 return 0; 355 356 found: 357 *endptr = p; 358 return 1; 359 } 360 361 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 362 u8 pos, int cap, int *ttl) 363 { 364 u8 id; 365 u16 ent; 366 367 pci_bus_read_config_byte(bus, devfn, pos, &pos); 368 369 while ((*ttl)--) { 370 if (pos < 0x40) 371 break; 372 pos &= ~3; 373 pci_bus_read_config_word(bus, devfn, pos, &ent); 374 375 id = ent & 0xff; 376 if (id == 0xff) 377 break; 378 if (id == cap) 379 return pos; 380 pos = (ent >> 8); 381 } 382 return 0; 383 } 384 385 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 386 u8 pos, int cap) 387 { 388 int ttl = PCI_FIND_CAP_TTL; 389 390 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 391 } 392 393 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 394 { 395 return __pci_find_next_cap(dev->bus, dev->devfn, 396 pos + PCI_CAP_LIST_NEXT, cap); 397 } 398 EXPORT_SYMBOL_GPL(pci_find_next_capability); 399 400 static int __pci_bus_find_cap_start(struct pci_bus *bus, 401 unsigned int devfn, u8 hdr_type) 402 { 403 u16 status; 404 405 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 406 if (!(status & PCI_STATUS_CAP_LIST)) 407 return 0; 408 409 switch (hdr_type) { 410 case PCI_HEADER_TYPE_NORMAL: 411 case PCI_HEADER_TYPE_BRIDGE: 412 return PCI_CAPABILITY_LIST; 413 case PCI_HEADER_TYPE_CARDBUS: 414 return PCI_CB_CAPABILITY_LIST; 415 } 416 417 return 0; 418 } 419 420 /** 421 * pci_find_capability - query for devices' capabilities 422 * @dev: PCI device to query 423 * @cap: capability code 424 * 425 * Tell if a device supports a given PCI capability. 426 * Returns the address of the requested capability structure within the 427 * device's PCI configuration space or 0 in case the device does not 428 * support it. Possible values for @cap include: 429 * 430 * %PCI_CAP_ID_PM Power Management 431 * %PCI_CAP_ID_AGP Accelerated Graphics Port 432 * %PCI_CAP_ID_VPD Vital Product Data 433 * %PCI_CAP_ID_SLOTID Slot Identification 434 * %PCI_CAP_ID_MSI Message Signalled Interrupts 435 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 436 * %PCI_CAP_ID_PCIX PCI-X 437 * %PCI_CAP_ID_EXP PCI Express 438 */ 439 int pci_find_capability(struct pci_dev *dev, int cap) 440 { 441 int pos; 442 443 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 444 if (pos) 445 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 446 447 return pos; 448 } 449 EXPORT_SYMBOL(pci_find_capability); 450 451 /** 452 * pci_bus_find_capability - query for devices' capabilities 453 * @bus: the PCI bus to query 454 * @devfn: PCI device to query 455 * @cap: capability code 456 * 457 * Like pci_find_capability() but works for PCI devices that do not have a 458 * pci_dev structure set up yet. 459 * 460 * Returns the address of the requested capability structure within the 461 * device's PCI configuration space or 0 in case the device does not 462 * support it. 463 */ 464 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 465 { 466 int pos; 467 u8 hdr_type; 468 469 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 470 471 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 472 if (pos) 473 pos = __pci_find_next_cap(bus, devfn, pos, cap); 474 475 return pos; 476 } 477 EXPORT_SYMBOL(pci_bus_find_capability); 478 479 /** 480 * pci_find_next_ext_capability - Find an extended capability 481 * @dev: PCI device to query 482 * @start: address at which to start looking (0 to start at beginning of list) 483 * @cap: capability code 484 * 485 * Returns the address of the next matching extended capability structure 486 * within the device's PCI configuration space or 0 if the device does 487 * not support it. Some capabilities can occur several times, e.g., the 488 * vendor-specific capability, and this provides a way to find them all. 489 */ 490 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 491 { 492 u32 header; 493 int ttl; 494 int pos = PCI_CFG_SPACE_SIZE; 495 496 /* minimum 8 bytes per capability */ 497 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 498 499 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 500 return 0; 501 502 if (start) 503 pos = start; 504 505 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 506 return 0; 507 508 /* 509 * If we have no capabilities, this is indicated by cap ID, 510 * cap version and next pointer all being 0. 511 */ 512 if (header == 0) 513 return 0; 514 515 while (ttl-- > 0) { 516 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 517 return pos; 518 519 pos = PCI_EXT_CAP_NEXT(header); 520 if (pos < PCI_CFG_SPACE_SIZE) 521 break; 522 523 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 524 break; 525 } 526 527 return 0; 528 } 529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 530 531 /** 532 * pci_find_ext_capability - Find an extended capability 533 * @dev: PCI device to query 534 * @cap: capability code 535 * 536 * Returns the address of the requested extended capability structure 537 * within the device's PCI configuration space or 0 if the device does 538 * not support it. Possible values for @cap include: 539 * 540 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 541 * %PCI_EXT_CAP_ID_VC Virtual Channel 542 * %PCI_EXT_CAP_ID_DSN Device Serial Number 543 * %PCI_EXT_CAP_ID_PWR Power Budgeting 544 */ 545 int pci_find_ext_capability(struct pci_dev *dev, int cap) 546 { 547 return pci_find_next_ext_capability(dev, 0, cap); 548 } 549 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 550 551 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 552 { 553 int rc, ttl = PCI_FIND_CAP_TTL; 554 u8 cap, mask; 555 556 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 557 mask = HT_3BIT_CAP_MASK; 558 else 559 mask = HT_5BIT_CAP_MASK; 560 561 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 562 PCI_CAP_ID_HT, &ttl); 563 while (pos) { 564 rc = pci_read_config_byte(dev, pos + 3, &cap); 565 if (rc != PCIBIOS_SUCCESSFUL) 566 return 0; 567 568 if ((cap & mask) == ht_cap) 569 return pos; 570 571 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 572 pos + PCI_CAP_LIST_NEXT, 573 PCI_CAP_ID_HT, &ttl); 574 } 575 576 return 0; 577 } 578 /** 579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 580 * @dev: PCI device to query 581 * @pos: Position from which to continue searching 582 * @ht_cap: Hypertransport capability code 583 * 584 * To be used in conjunction with pci_find_ht_capability() to search for 585 * all capabilities matching @ht_cap. @pos should always be a value returned 586 * from pci_find_ht_capability(). 587 * 588 * NB. To be 100% safe against broken PCI devices, the caller should take 589 * steps to avoid an infinite loop. 590 */ 591 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 592 { 593 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 594 } 595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 596 597 /** 598 * pci_find_ht_capability - query a device's Hypertransport capabilities 599 * @dev: PCI device to query 600 * @ht_cap: Hypertransport capability code 601 * 602 * Tell if a device supports a given Hypertransport capability. 603 * Returns an address within the device's PCI configuration space 604 * or 0 in case the device does not support the request capability. 605 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 606 * which has a Hypertransport capability matching @ht_cap. 607 */ 608 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 609 { 610 int pos; 611 612 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 613 if (pos) 614 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 615 616 return pos; 617 } 618 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 619 620 /** 621 * pci_find_parent_resource - return resource region of parent bus of given 622 * region 623 * @dev: PCI device structure contains resources to be searched 624 * @res: child resource record for which parent is sought 625 * 626 * For given resource region of given device, return the resource region of 627 * parent bus the given region is contained in. 628 */ 629 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 630 struct resource *res) 631 { 632 const struct pci_bus *bus = dev->bus; 633 struct resource *r; 634 int i; 635 636 pci_bus_for_each_resource(bus, r, i) { 637 if (!r) 638 continue; 639 if (resource_contains(r, res)) { 640 641 /* 642 * If the window is prefetchable but the BAR is 643 * not, the allocator made a mistake. 644 */ 645 if (r->flags & IORESOURCE_PREFETCH && 646 !(res->flags & IORESOURCE_PREFETCH)) 647 return NULL; 648 649 /* 650 * If we're below a transparent bridge, there may 651 * be both a positively-decoded aperture and a 652 * subtractively-decoded region that contain the BAR. 653 * We want the positively-decoded one, so this depends 654 * on pci_bus_for_each_resource() giving us those 655 * first. 656 */ 657 return r; 658 } 659 } 660 return NULL; 661 } 662 EXPORT_SYMBOL(pci_find_parent_resource); 663 664 /** 665 * pci_find_resource - Return matching PCI device resource 666 * @dev: PCI device to query 667 * @res: Resource to look for 668 * 669 * Goes over standard PCI resources (BARs) and checks if the given resource 670 * is partially or fully contained in any of them. In that case the 671 * matching resource is returned, %NULL otherwise. 672 */ 673 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 674 { 675 int i; 676 677 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 678 struct resource *r = &dev->resource[i]; 679 680 if (r->start && resource_contains(r, res)) 681 return r; 682 } 683 684 return NULL; 685 } 686 EXPORT_SYMBOL(pci_find_resource); 687 688 /** 689 * pci_find_pcie_root_port - return PCIe Root Port 690 * @dev: PCI device to query 691 * 692 * Traverse up the parent chain and return the PCIe Root Port PCI Device 693 * for a given PCI Device. 694 */ 695 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 696 { 697 struct pci_dev *bridge, *highest_pcie_bridge = dev; 698 699 bridge = pci_upstream_bridge(dev); 700 while (bridge && pci_is_pcie(bridge)) { 701 highest_pcie_bridge = bridge; 702 bridge = pci_upstream_bridge(bridge); 703 } 704 705 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 706 return NULL; 707 708 return highest_pcie_bridge; 709 } 710 EXPORT_SYMBOL(pci_find_pcie_root_port); 711 712 /** 713 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 714 * @dev: the PCI device to operate on 715 * @pos: config space offset of status word 716 * @mask: mask of bit(s) to care about in status word 717 * 718 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 719 */ 720 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 721 { 722 int i; 723 724 /* Wait for Transaction Pending bit clean */ 725 for (i = 0; i < 4; i++) { 726 u16 status; 727 if (i) 728 msleep((1 << (i - 1)) * 100); 729 730 pci_read_config_word(dev, pos, &status); 731 if (!(status & mask)) 732 return 1; 733 } 734 735 return 0; 736 } 737 738 /** 739 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 740 * @dev: PCI device to have its BARs restored 741 * 742 * Restore the BAR values for a given device, so as to make it 743 * accessible by its driver. 744 */ 745 static void pci_restore_bars(struct pci_dev *dev) 746 { 747 int i; 748 749 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 750 pci_update_resource(dev, i); 751 } 752 753 static const struct pci_platform_pm_ops *pci_platform_pm; 754 755 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 756 { 757 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 758 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 759 return -EINVAL; 760 pci_platform_pm = ops; 761 return 0; 762 } 763 764 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 765 { 766 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 767 } 768 769 static inline int platform_pci_set_power_state(struct pci_dev *dev, 770 pci_power_t t) 771 { 772 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 773 } 774 775 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 776 { 777 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 778 } 779 780 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 781 { 782 if (pci_platform_pm && pci_platform_pm->refresh_state) 783 pci_platform_pm->refresh_state(dev); 784 } 785 786 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 787 { 788 return pci_platform_pm ? 789 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 790 } 791 792 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 793 { 794 return pci_platform_pm ? 795 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 796 } 797 798 static inline bool platform_pci_need_resume(struct pci_dev *dev) 799 { 800 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 801 } 802 803 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 804 { 805 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false; 806 } 807 808 /** 809 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 810 * given PCI device 811 * @dev: PCI device to handle. 812 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 813 * 814 * RETURN VALUE: 815 * -EINVAL if the requested state is invalid. 816 * -EIO if device does not support PCI PM or its PM capabilities register has a 817 * wrong version, or device doesn't support the requested state. 818 * 0 if device already is in the requested state. 819 * 0 if device's power state has been successfully changed. 820 */ 821 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 822 { 823 u16 pmcsr; 824 bool need_restore = false; 825 826 /* Check if we're already there */ 827 if (dev->current_state == state) 828 return 0; 829 830 if (!dev->pm_cap) 831 return -EIO; 832 833 if (state < PCI_D0 || state > PCI_D3hot) 834 return -EINVAL; 835 836 /* 837 * Validate current state: 838 * Can enter D0 from any state, but if we can only go deeper 839 * to sleep if we're already in a low power state 840 */ 841 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 842 && dev->current_state > state) { 843 pci_err(dev, "invalid power transition (from state %d to %d)\n", 844 dev->current_state, state); 845 return -EINVAL; 846 } 847 848 /* Check if this device supports the desired state */ 849 if ((state == PCI_D1 && !dev->d1_support) 850 || (state == PCI_D2 && !dev->d2_support)) 851 return -EIO; 852 853 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 854 855 /* 856 * If we're (effectively) in D3, force entire word to 0. 857 * This doesn't affect PME_Status, disables PME_En, and 858 * sets PowerState to 0. 859 */ 860 switch (dev->current_state) { 861 case PCI_D0: 862 case PCI_D1: 863 case PCI_D2: 864 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 865 pmcsr |= state; 866 break; 867 case PCI_D3hot: 868 case PCI_D3cold: 869 case PCI_UNKNOWN: /* Boot-up */ 870 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 871 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 872 need_restore = true; 873 /* Fall-through - force to D0 */ 874 default: 875 pmcsr = 0; 876 break; 877 } 878 879 /* Enter specified state */ 880 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 881 882 /* 883 * Mandatory power management transition delays; see PCI PM 1.1 884 * 5.6.1 table 18 885 */ 886 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 887 pci_dev_d3_sleep(dev); 888 else if (state == PCI_D2 || dev->current_state == PCI_D2) 889 udelay(PCI_PM_D2_DELAY); 890 891 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 892 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 893 if (dev->current_state != state && printk_ratelimit()) 894 pci_info(dev, "Refused to change power state, currently in D%d\n", 895 dev->current_state); 896 897 /* 898 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 899 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 900 * from D3hot to D0 _may_ perform an internal reset, thereby 901 * going to "D0 Uninitialized" rather than "D0 Initialized". 902 * For example, at least some versions of the 3c905B and the 903 * 3c556B exhibit this behaviour. 904 * 905 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 906 * devices in a D3hot state at boot. Consequently, we need to 907 * restore at least the BARs so that the device will be 908 * accessible to its driver. 909 */ 910 if (need_restore) 911 pci_restore_bars(dev); 912 913 if (dev->bus->self) 914 pcie_aspm_pm_state_change(dev->bus->self); 915 916 return 0; 917 } 918 919 /** 920 * pci_update_current_state - Read power state of given device and cache it 921 * @dev: PCI device to handle. 922 * @state: State to cache in case the device doesn't have the PM capability 923 * 924 * The power state is read from the PMCSR register, which however is 925 * inaccessible in D3cold. The platform firmware is therefore queried first 926 * to detect accessibility of the register. In case the platform firmware 927 * reports an incorrect state or the device isn't power manageable by the 928 * platform at all, we try to detect D3cold by testing accessibility of the 929 * vendor ID in config space. 930 */ 931 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 932 { 933 if (platform_pci_get_power_state(dev) == PCI_D3cold || 934 !pci_device_is_present(dev)) { 935 dev->current_state = PCI_D3cold; 936 } else if (dev->pm_cap) { 937 u16 pmcsr; 938 939 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 940 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 941 } else { 942 dev->current_state = state; 943 } 944 } 945 946 /** 947 * pci_refresh_power_state - Refresh the given device's power state data 948 * @dev: Target PCI device. 949 * 950 * Ask the platform to refresh the devices power state information and invoke 951 * pci_update_current_state() to update its current PCI power state. 952 */ 953 void pci_refresh_power_state(struct pci_dev *dev) 954 { 955 if (platform_pci_power_manageable(dev)) 956 platform_pci_refresh_power_state(dev); 957 958 pci_update_current_state(dev, dev->current_state); 959 } 960 961 /** 962 * pci_power_up - Put the given device into D0 forcibly 963 * @dev: PCI device to power up 964 */ 965 void pci_power_up(struct pci_dev *dev) 966 { 967 if (platform_pci_power_manageable(dev)) 968 platform_pci_set_power_state(dev, PCI_D0); 969 970 pci_raw_set_power_state(dev, PCI_D0); 971 pci_update_current_state(dev, PCI_D0); 972 } 973 974 /** 975 * pci_platform_power_transition - Use platform to change device power state 976 * @dev: PCI device to handle. 977 * @state: State to put the device into. 978 */ 979 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 980 { 981 int error; 982 983 if (platform_pci_power_manageable(dev)) { 984 error = platform_pci_set_power_state(dev, state); 985 if (!error) 986 pci_update_current_state(dev, state); 987 } else 988 error = -ENODEV; 989 990 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 991 dev->current_state = PCI_D0; 992 993 return error; 994 } 995 996 /** 997 * pci_wakeup - Wake up a PCI device 998 * @pci_dev: Device to handle. 999 * @ign: ignored parameter 1000 */ 1001 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 1002 { 1003 pci_wakeup_event(pci_dev); 1004 pm_request_resume(&pci_dev->dev); 1005 return 0; 1006 } 1007 1008 /** 1009 * pci_wakeup_bus - Walk given bus and wake up devices on it 1010 * @bus: Top bus of the subtree to walk. 1011 */ 1012 void pci_wakeup_bus(struct pci_bus *bus) 1013 { 1014 if (bus) 1015 pci_walk_bus(bus, pci_wakeup, NULL); 1016 } 1017 1018 /** 1019 * __pci_start_power_transition - Start power transition of a PCI device 1020 * @dev: PCI device to handle. 1021 * @state: State to put the device into. 1022 */ 1023 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 1024 { 1025 if (state == PCI_D0) { 1026 pci_platform_power_transition(dev, PCI_D0); 1027 /* 1028 * Mandatory power management transition delays, see 1029 * PCI Express Base Specification Revision 2.0 Section 1030 * 6.6.1: Conventional Reset. Do not delay for 1031 * devices powered on/off by corresponding bridge, 1032 * because have already delayed for the bridge. 1033 */ 1034 if (dev->runtime_d3cold) { 1035 if (dev->d3cold_delay && !dev->imm_ready) 1036 msleep(dev->d3cold_delay); 1037 /* 1038 * When powering on a bridge from D3cold, the 1039 * whole hierarchy may be powered on into 1040 * D0uninitialized state, resume them to give 1041 * them a chance to suspend again 1042 */ 1043 pci_wakeup_bus(dev->subordinate); 1044 } 1045 } 1046 } 1047 1048 /** 1049 * __pci_dev_set_current_state - Set current state of a PCI device 1050 * @dev: Device to handle 1051 * @data: pointer to state to be set 1052 */ 1053 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1054 { 1055 pci_power_t state = *(pci_power_t *)data; 1056 1057 dev->current_state = state; 1058 return 0; 1059 } 1060 1061 /** 1062 * pci_bus_set_current_state - Walk given bus and set current state of devices 1063 * @bus: Top bus of the subtree to walk. 1064 * @state: state to be set 1065 */ 1066 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1067 { 1068 if (bus) 1069 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1070 } 1071 1072 /** 1073 * __pci_complete_power_transition - Complete power transition of a PCI device 1074 * @dev: PCI device to handle. 1075 * @state: State to put the device into. 1076 * 1077 * This function should not be called directly by device drivers. 1078 */ 1079 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 1080 { 1081 int ret; 1082 1083 if (state <= PCI_D0) 1084 return -EINVAL; 1085 ret = pci_platform_power_transition(dev, state); 1086 /* Power off the bridge may power off the whole hierarchy */ 1087 if (!ret && state == PCI_D3cold) 1088 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1089 return ret; 1090 } 1091 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 1092 1093 /** 1094 * pci_set_power_state - Set the power state of a PCI device 1095 * @dev: PCI device to handle. 1096 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1097 * 1098 * Transition a device to a new power state, using the platform firmware and/or 1099 * the device's PCI PM registers. 1100 * 1101 * RETURN VALUE: 1102 * -EINVAL if the requested state is invalid. 1103 * -EIO if device does not support PCI PM or its PM capabilities register has a 1104 * wrong version, or device doesn't support the requested state. 1105 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1106 * 0 if device already is in the requested state. 1107 * 0 if the transition is to D3 but D3 is not supported. 1108 * 0 if device's power state has been successfully changed. 1109 */ 1110 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1111 { 1112 int error; 1113 1114 /* Bound the state we're entering */ 1115 if (state > PCI_D3cold) 1116 state = PCI_D3cold; 1117 else if (state < PCI_D0) 1118 state = PCI_D0; 1119 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1120 1121 /* 1122 * If the device or the parent bridge do not support PCI 1123 * PM, ignore the request if we're doing anything other 1124 * than putting it into D0 (which would only happen on 1125 * boot). 1126 */ 1127 return 0; 1128 1129 /* Check if we're already there */ 1130 if (dev->current_state == state) 1131 return 0; 1132 1133 __pci_start_power_transition(dev, state); 1134 1135 /* 1136 * This device is quirked not to be put into D3, so don't put it in 1137 * D3 1138 */ 1139 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1140 return 0; 1141 1142 /* 1143 * To put device in D3cold, we put device into D3hot in native 1144 * way, then put device into D3cold with platform ops 1145 */ 1146 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1147 PCI_D3hot : state); 1148 1149 if (!__pci_complete_power_transition(dev, state)) 1150 error = 0; 1151 1152 return error; 1153 } 1154 EXPORT_SYMBOL(pci_set_power_state); 1155 1156 /** 1157 * pci_choose_state - Choose the power state of a PCI device 1158 * @dev: PCI device to be suspended 1159 * @state: target sleep state for the whole system. This is the value 1160 * that is passed to suspend() function. 1161 * 1162 * Returns PCI power state suitable for given device and given system 1163 * message. 1164 */ 1165 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1166 { 1167 pci_power_t ret; 1168 1169 if (!dev->pm_cap) 1170 return PCI_D0; 1171 1172 ret = platform_pci_choose_state(dev); 1173 if (ret != PCI_POWER_ERROR) 1174 return ret; 1175 1176 switch (state.event) { 1177 case PM_EVENT_ON: 1178 return PCI_D0; 1179 case PM_EVENT_FREEZE: 1180 case PM_EVENT_PRETHAW: 1181 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1182 case PM_EVENT_SUSPEND: 1183 case PM_EVENT_HIBERNATE: 1184 return PCI_D3hot; 1185 default: 1186 pci_info(dev, "unrecognized suspend event %d\n", 1187 state.event); 1188 BUG(); 1189 } 1190 return PCI_D0; 1191 } 1192 EXPORT_SYMBOL(pci_choose_state); 1193 1194 #define PCI_EXP_SAVE_REGS 7 1195 1196 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1197 u16 cap, bool extended) 1198 { 1199 struct pci_cap_saved_state *tmp; 1200 1201 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1202 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1203 return tmp; 1204 } 1205 return NULL; 1206 } 1207 1208 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1209 { 1210 return _pci_find_saved_cap(dev, cap, false); 1211 } 1212 1213 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1214 { 1215 return _pci_find_saved_cap(dev, cap, true); 1216 } 1217 1218 static int pci_save_pcie_state(struct pci_dev *dev) 1219 { 1220 int i = 0; 1221 struct pci_cap_saved_state *save_state; 1222 u16 *cap; 1223 1224 if (!pci_is_pcie(dev)) 1225 return 0; 1226 1227 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1228 if (!save_state) { 1229 pci_err(dev, "buffer not found in %s\n", __func__); 1230 return -ENOMEM; 1231 } 1232 1233 cap = (u16 *)&save_state->cap.data[0]; 1234 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1235 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1236 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1237 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1238 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1239 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1240 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1241 1242 return 0; 1243 } 1244 1245 static void pci_restore_pcie_state(struct pci_dev *dev) 1246 { 1247 int i = 0; 1248 struct pci_cap_saved_state *save_state; 1249 u16 *cap; 1250 1251 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1252 if (!save_state) 1253 return; 1254 1255 cap = (u16 *)&save_state->cap.data[0]; 1256 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1257 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1258 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1259 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1260 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1261 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1262 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1263 } 1264 1265 static int pci_save_pcix_state(struct pci_dev *dev) 1266 { 1267 int pos; 1268 struct pci_cap_saved_state *save_state; 1269 1270 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1271 if (!pos) 1272 return 0; 1273 1274 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1275 if (!save_state) { 1276 pci_err(dev, "buffer not found in %s\n", __func__); 1277 return -ENOMEM; 1278 } 1279 1280 pci_read_config_word(dev, pos + PCI_X_CMD, 1281 (u16 *)save_state->cap.data); 1282 1283 return 0; 1284 } 1285 1286 static void pci_restore_pcix_state(struct pci_dev *dev) 1287 { 1288 int i = 0, pos; 1289 struct pci_cap_saved_state *save_state; 1290 u16 *cap; 1291 1292 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1293 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1294 if (!save_state || !pos) 1295 return; 1296 cap = (u16 *)&save_state->cap.data[0]; 1297 1298 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1299 } 1300 1301 static void pci_save_ltr_state(struct pci_dev *dev) 1302 { 1303 int ltr; 1304 struct pci_cap_saved_state *save_state; 1305 u16 *cap; 1306 1307 if (!pci_is_pcie(dev)) 1308 return; 1309 1310 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1311 if (!ltr) 1312 return; 1313 1314 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1315 if (!save_state) { 1316 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1317 return; 1318 } 1319 1320 cap = (u16 *)&save_state->cap.data[0]; 1321 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1322 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1323 } 1324 1325 static void pci_restore_ltr_state(struct pci_dev *dev) 1326 { 1327 struct pci_cap_saved_state *save_state; 1328 int ltr; 1329 u16 *cap; 1330 1331 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1332 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1333 if (!save_state || !ltr) 1334 return; 1335 1336 cap = (u16 *)&save_state->cap.data[0]; 1337 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1338 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1339 } 1340 1341 /** 1342 * pci_save_state - save the PCI configuration space of a device before 1343 * suspending 1344 * @dev: PCI device that we're dealing with 1345 */ 1346 int pci_save_state(struct pci_dev *dev) 1347 { 1348 int i; 1349 /* XXX: 100% dword access ok here? */ 1350 for (i = 0; i < 16; i++) 1351 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1352 dev->state_saved = true; 1353 1354 i = pci_save_pcie_state(dev); 1355 if (i != 0) 1356 return i; 1357 1358 i = pci_save_pcix_state(dev); 1359 if (i != 0) 1360 return i; 1361 1362 pci_save_ltr_state(dev); 1363 pci_save_dpc_state(dev); 1364 return pci_save_vc_state(dev); 1365 } 1366 EXPORT_SYMBOL(pci_save_state); 1367 1368 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1369 u32 saved_val, int retry, bool force) 1370 { 1371 u32 val; 1372 1373 pci_read_config_dword(pdev, offset, &val); 1374 if (!force && val == saved_val) 1375 return; 1376 1377 for (;;) { 1378 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1379 offset, val, saved_val); 1380 pci_write_config_dword(pdev, offset, saved_val); 1381 if (retry-- <= 0) 1382 return; 1383 1384 pci_read_config_dword(pdev, offset, &val); 1385 if (val == saved_val) 1386 return; 1387 1388 mdelay(1); 1389 } 1390 } 1391 1392 static void pci_restore_config_space_range(struct pci_dev *pdev, 1393 int start, int end, int retry, 1394 bool force) 1395 { 1396 int index; 1397 1398 for (index = end; index >= start; index--) 1399 pci_restore_config_dword(pdev, 4 * index, 1400 pdev->saved_config_space[index], 1401 retry, force); 1402 } 1403 1404 static void pci_restore_config_space(struct pci_dev *pdev) 1405 { 1406 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1407 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1408 /* Restore BARs before the command register. */ 1409 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1410 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1411 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1412 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1413 1414 /* 1415 * Force rewriting of prefetch registers to avoid S3 resume 1416 * issues on Intel PCI bridges that occur when these 1417 * registers are not explicitly written. 1418 */ 1419 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1420 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1421 } else { 1422 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1423 } 1424 } 1425 1426 static void pci_restore_rebar_state(struct pci_dev *pdev) 1427 { 1428 unsigned int pos, nbars, i; 1429 u32 ctrl; 1430 1431 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1432 if (!pos) 1433 return; 1434 1435 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1436 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1437 PCI_REBAR_CTRL_NBAR_SHIFT; 1438 1439 for (i = 0; i < nbars; i++, pos += 8) { 1440 struct resource *res; 1441 int bar_idx, size; 1442 1443 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1444 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1445 res = pdev->resource + bar_idx; 1446 size = order_base_2((resource_size(res) >> 20) | 1) - 1; 1447 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1448 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1449 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1450 } 1451 } 1452 1453 /** 1454 * pci_restore_state - Restore the saved state of a PCI device 1455 * @dev: PCI device that we're dealing with 1456 */ 1457 void pci_restore_state(struct pci_dev *dev) 1458 { 1459 if (!dev->state_saved) 1460 return; 1461 1462 /* 1463 * Restore max latencies (in the LTR capability) before enabling 1464 * LTR itself (in the PCIe capability). 1465 */ 1466 pci_restore_ltr_state(dev); 1467 1468 pci_restore_pcie_state(dev); 1469 pci_restore_pasid_state(dev); 1470 pci_restore_pri_state(dev); 1471 pci_restore_ats_state(dev); 1472 pci_restore_vc_state(dev); 1473 pci_restore_rebar_state(dev); 1474 pci_restore_dpc_state(dev); 1475 1476 pci_cleanup_aer_error_status_regs(dev); 1477 1478 pci_restore_config_space(dev); 1479 1480 pci_restore_pcix_state(dev); 1481 pci_restore_msi_state(dev); 1482 1483 /* Restore ACS and IOV configuration state */ 1484 pci_enable_acs(dev); 1485 pci_restore_iov_state(dev); 1486 1487 dev->state_saved = false; 1488 } 1489 EXPORT_SYMBOL(pci_restore_state); 1490 1491 struct pci_saved_state { 1492 u32 config_space[16]; 1493 struct pci_cap_saved_data cap[0]; 1494 }; 1495 1496 /** 1497 * pci_store_saved_state - Allocate and return an opaque struct containing 1498 * the device saved state. 1499 * @dev: PCI device that we're dealing with 1500 * 1501 * Return NULL if no state or error. 1502 */ 1503 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1504 { 1505 struct pci_saved_state *state; 1506 struct pci_cap_saved_state *tmp; 1507 struct pci_cap_saved_data *cap; 1508 size_t size; 1509 1510 if (!dev->state_saved) 1511 return NULL; 1512 1513 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1514 1515 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1516 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1517 1518 state = kzalloc(size, GFP_KERNEL); 1519 if (!state) 1520 return NULL; 1521 1522 memcpy(state->config_space, dev->saved_config_space, 1523 sizeof(state->config_space)); 1524 1525 cap = state->cap; 1526 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1527 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1528 memcpy(cap, &tmp->cap, len); 1529 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1530 } 1531 /* Empty cap_save terminates list */ 1532 1533 return state; 1534 } 1535 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1536 1537 /** 1538 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1539 * @dev: PCI device that we're dealing with 1540 * @state: Saved state returned from pci_store_saved_state() 1541 */ 1542 int pci_load_saved_state(struct pci_dev *dev, 1543 struct pci_saved_state *state) 1544 { 1545 struct pci_cap_saved_data *cap; 1546 1547 dev->state_saved = false; 1548 1549 if (!state) 1550 return 0; 1551 1552 memcpy(dev->saved_config_space, state->config_space, 1553 sizeof(state->config_space)); 1554 1555 cap = state->cap; 1556 while (cap->size) { 1557 struct pci_cap_saved_state *tmp; 1558 1559 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1560 if (!tmp || tmp->cap.size != cap->size) 1561 return -EINVAL; 1562 1563 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1564 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1565 sizeof(struct pci_cap_saved_data) + cap->size); 1566 } 1567 1568 dev->state_saved = true; 1569 return 0; 1570 } 1571 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1572 1573 /** 1574 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1575 * and free the memory allocated for it. 1576 * @dev: PCI device that we're dealing with 1577 * @state: Pointer to saved state returned from pci_store_saved_state() 1578 */ 1579 int pci_load_and_free_saved_state(struct pci_dev *dev, 1580 struct pci_saved_state **state) 1581 { 1582 int ret = pci_load_saved_state(dev, *state); 1583 kfree(*state); 1584 *state = NULL; 1585 return ret; 1586 } 1587 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1588 1589 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1590 { 1591 return pci_enable_resources(dev, bars); 1592 } 1593 1594 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1595 { 1596 int err; 1597 struct pci_dev *bridge; 1598 u16 cmd; 1599 u8 pin; 1600 1601 err = pci_set_power_state(dev, PCI_D0); 1602 if (err < 0 && err != -EIO) 1603 return err; 1604 1605 bridge = pci_upstream_bridge(dev); 1606 if (bridge) 1607 pcie_aspm_powersave_config_link(bridge); 1608 1609 err = pcibios_enable_device(dev, bars); 1610 if (err < 0) 1611 return err; 1612 pci_fixup_device(pci_fixup_enable, dev); 1613 1614 if (dev->msi_enabled || dev->msix_enabled) 1615 return 0; 1616 1617 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1618 if (pin) { 1619 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1620 if (cmd & PCI_COMMAND_INTX_DISABLE) 1621 pci_write_config_word(dev, PCI_COMMAND, 1622 cmd & ~PCI_COMMAND_INTX_DISABLE); 1623 } 1624 1625 return 0; 1626 } 1627 1628 /** 1629 * pci_reenable_device - Resume abandoned device 1630 * @dev: PCI device to be resumed 1631 * 1632 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1633 * to be called by normal code, write proper resume handler and use it instead. 1634 */ 1635 int pci_reenable_device(struct pci_dev *dev) 1636 { 1637 if (pci_is_enabled(dev)) 1638 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1639 return 0; 1640 } 1641 EXPORT_SYMBOL(pci_reenable_device); 1642 1643 static void pci_enable_bridge(struct pci_dev *dev) 1644 { 1645 struct pci_dev *bridge; 1646 int retval; 1647 1648 bridge = pci_upstream_bridge(dev); 1649 if (bridge) 1650 pci_enable_bridge(bridge); 1651 1652 if (pci_is_enabled(dev)) { 1653 if (!dev->is_busmaster) 1654 pci_set_master(dev); 1655 return; 1656 } 1657 1658 retval = pci_enable_device(dev); 1659 if (retval) 1660 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1661 retval); 1662 pci_set_master(dev); 1663 } 1664 1665 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1666 { 1667 struct pci_dev *bridge; 1668 int err; 1669 int i, bars = 0; 1670 1671 /* 1672 * Power state could be unknown at this point, either due to a fresh 1673 * boot or a device removal call. So get the current power state 1674 * so that things like MSI message writing will behave as expected 1675 * (e.g. if the device really is in D0 at enable time). 1676 */ 1677 if (dev->pm_cap) { 1678 u16 pmcsr; 1679 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1680 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1681 } 1682 1683 if (atomic_inc_return(&dev->enable_cnt) > 1) 1684 return 0; /* already enabled */ 1685 1686 bridge = pci_upstream_bridge(dev); 1687 if (bridge) 1688 pci_enable_bridge(bridge); 1689 1690 /* only skip sriov related */ 1691 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1692 if (dev->resource[i].flags & flags) 1693 bars |= (1 << i); 1694 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1695 if (dev->resource[i].flags & flags) 1696 bars |= (1 << i); 1697 1698 err = do_pci_enable_device(dev, bars); 1699 if (err < 0) 1700 atomic_dec(&dev->enable_cnt); 1701 return err; 1702 } 1703 1704 /** 1705 * pci_enable_device_io - Initialize a device for use with IO space 1706 * @dev: PCI device to be initialized 1707 * 1708 * Initialize device before it's used by a driver. Ask low-level code 1709 * to enable I/O resources. Wake up the device if it was suspended. 1710 * Beware, this function can fail. 1711 */ 1712 int pci_enable_device_io(struct pci_dev *dev) 1713 { 1714 return pci_enable_device_flags(dev, IORESOURCE_IO); 1715 } 1716 EXPORT_SYMBOL(pci_enable_device_io); 1717 1718 /** 1719 * pci_enable_device_mem - Initialize a device for use with Memory space 1720 * @dev: PCI device to be initialized 1721 * 1722 * Initialize device before it's used by a driver. Ask low-level code 1723 * to enable Memory resources. Wake up the device if it was suspended. 1724 * Beware, this function can fail. 1725 */ 1726 int pci_enable_device_mem(struct pci_dev *dev) 1727 { 1728 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1729 } 1730 EXPORT_SYMBOL(pci_enable_device_mem); 1731 1732 /** 1733 * pci_enable_device - Initialize device before it's used by a driver. 1734 * @dev: PCI device to be initialized 1735 * 1736 * Initialize device before it's used by a driver. Ask low-level code 1737 * to enable I/O and memory. Wake up the device if it was suspended. 1738 * Beware, this function can fail. 1739 * 1740 * Note we don't actually enable the device many times if we call 1741 * this function repeatedly (we just increment the count). 1742 */ 1743 int pci_enable_device(struct pci_dev *dev) 1744 { 1745 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1746 } 1747 EXPORT_SYMBOL(pci_enable_device); 1748 1749 /* 1750 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1751 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1752 * there's no need to track it separately. pci_devres is initialized 1753 * when a device is enabled using managed PCI device enable interface. 1754 */ 1755 struct pci_devres { 1756 unsigned int enabled:1; 1757 unsigned int pinned:1; 1758 unsigned int orig_intx:1; 1759 unsigned int restore_intx:1; 1760 unsigned int mwi:1; 1761 u32 region_mask; 1762 }; 1763 1764 static void pcim_release(struct device *gendev, void *res) 1765 { 1766 struct pci_dev *dev = to_pci_dev(gendev); 1767 struct pci_devres *this = res; 1768 int i; 1769 1770 if (dev->msi_enabled) 1771 pci_disable_msi(dev); 1772 if (dev->msix_enabled) 1773 pci_disable_msix(dev); 1774 1775 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1776 if (this->region_mask & (1 << i)) 1777 pci_release_region(dev, i); 1778 1779 if (this->mwi) 1780 pci_clear_mwi(dev); 1781 1782 if (this->restore_intx) 1783 pci_intx(dev, this->orig_intx); 1784 1785 if (this->enabled && !this->pinned) 1786 pci_disable_device(dev); 1787 } 1788 1789 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1790 { 1791 struct pci_devres *dr, *new_dr; 1792 1793 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1794 if (dr) 1795 return dr; 1796 1797 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1798 if (!new_dr) 1799 return NULL; 1800 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1801 } 1802 1803 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1804 { 1805 if (pci_is_managed(pdev)) 1806 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1807 return NULL; 1808 } 1809 1810 /** 1811 * pcim_enable_device - Managed pci_enable_device() 1812 * @pdev: PCI device to be initialized 1813 * 1814 * Managed pci_enable_device(). 1815 */ 1816 int pcim_enable_device(struct pci_dev *pdev) 1817 { 1818 struct pci_devres *dr; 1819 int rc; 1820 1821 dr = get_pci_dr(pdev); 1822 if (unlikely(!dr)) 1823 return -ENOMEM; 1824 if (dr->enabled) 1825 return 0; 1826 1827 rc = pci_enable_device(pdev); 1828 if (!rc) { 1829 pdev->is_managed = 1; 1830 dr->enabled = 1; 1831 } 1832 return rc; 1833 } 1834 EXPORT_SYMBOL(pcim_enable_device); 1835 1836 /** 1837 * pcim_pin_device - Pin managed PCI device 1838 * @pdev: PCI device to pin 1839 * 1840 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1841 * driver detach. @pdev must have been enabled with 1842 * pcim_enable_device(). 1843 */ 1844 void pcim_pin_device(struct pci_dev *pdev) 1845 { 1846 struct pci_devres *dr; 1847 1848 dr = find_pci_dr(pdev); 1849 WARN_ON(!dr || !dr->enabled); 1850 if (dr) 1851 dr->pinned = 1; 1852 } 1853 EXPORT_SYMBOL(pcim_pin_device); 1854 1855 /* 1856 * pcibios_add_device - provide arch specific hooks when adding device dev 1857 * @dev: the PCI device being added 1858 * 1859 * Permits the platform to provide architecture specific functionality when 1860 * devices are added. This is the default implementation. Architecture 1861 * implementations can override this. 1862 */ 1863 int __weak pcibios_add_device(struct pci_dev *dev) 1864 { 1865 return 0; 1866 } 1867 1868 /** 1869 * pcibios_release_device - provide arch specific hooks when releasing 1870 * device dev 1871 * @dev: the PCI device being released 1872 * 1873 * Permits the platform to provide architecture specific functionality when 1874 * devices are released. This is the default implementation. Architecture 1875 * implementations can override this. 1876 */ 1877 void __weak pcibios_release_device(struct pci_dev *dev) {} 1878 1879 /** 1880 * pcibios_disable_device - disable arch specific PCI resources for device dev 1881 * @dev: the PCI device to disable 1882 * 1883 * Disables architecture specific PCI resources for the device. This 1884 * is the default implementation. Architecture implementations can 1885 * override this. 1886 */ 1887 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1888 1889 /** 1890 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1891 * @irq: ISA IRQ to penalize 1892 * @active: IRQ active or not 1893 * 1894 * Permits the platform to provide architecture-specific functionality when 1895 * penalizing ISA IRQs. This is the default implementation. Architecture 1896 * implementations can override this. 1897 */ 1898 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1899 1900 static void do_pci_disable_device(struct pci_dev *dev) 1901 { 1902 u16 pci_command; 1903 1904 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1905 if (pci_command & PCI_COMMAND_MASTER) { 1906 pci_command &= ~PCI_COMMAND_MASTER; 1907 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1908 } 1909 1910 pcibios_disable_device(dev); 1911 } 1912 1913 /** 1914 * pci_disable_enabled_device - Disable device without updating enable_cnt 1915 * @dev: PCI device to disable 1916 * 1917 * NOTE: This function is a backend of PCI power management routines and is 1918 * not supposed to be called drivers. 1919 */ 1920 void pci_disable_enabled_device(struct pci_dev *dev) 1921 { 1922 if (pci_is_enabled(dev)) 1923 do_pci_disable_device(dev); 1924 } 1925 1926 /** 1927 * pci_disable_device - Disable PCI device after use 1928 * @dev: PCI device to be disabled 1929 * 1930 * Signal to the system that the PCI device is not in use by the system 1931 * anymore. This only involves disabling PCI bus-mastering, if active. 1932 * 1933 * Note we don't actually disable the device until all callers of 1934 * pci_enable_device() have called pci_disable_device(). 1935 */ 1936 void pci_disable_device(struct pci_dev *dev) 1937 { 1938 struct pci_devres *dr; 1939 1940 dr = find_pci_dr(dev); 1941 if (dr) 1942 dr->enabled = 0; 1943 1944 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1945 "disabling already-disabled device"); 1946 1947 if (atomic_dec_return(&dev->enable_cnt) != 0) 1948 return; 1949 1950 do_pci_disable_device(dev); 1951 1952 dev->is_busmaster = 0; 1953 } 1954 EXPORT_SYMBOL(pci_disable_device); 1955 1956 /** 1957 * pcibios_set_pcie_reset_state - set reset state for device dev 1958 * @dev: the PCIe device reset 1959 * @state: Reset state to enter into 1960 * 1961 * Set the PCIe reset state for the device. This is the default 1962 * implementation. Architecture implementations can override this. 1963 */ 1964 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1965 enum pcie_reset_state state) 1966 { 1967 return -EINVAL; 1968 } 1969 1970 /** 1971 * pci_set_pcie_reset_state - set reset state for device dev 1972 * @dev: the PCIe device reset 1973 * @state: Reset state to enter into 1974 * 1975 * Sets the PCI reset state for the device. 1976 */ 1977 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1978 { 1979 return pcibios_set_pcie_reset_state(dev, state); 1980 } 1981 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1982 1983 /** 1984 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 1985 * @dev: PCIe root port or event collector. 1986 */ 1987 void pcie_clear_root_pme_status(struct pci_dev *dev) 1988 { 1989 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 1990 } 1991 1992 /** 1993 * pci_check_pme_status - Check if given device has generated PME. 1994 * @dev: Device to check. 1995 * 1996 * Check the PME status of the device and if set, clear it and clear PME enable 1997 * (if set). Return 'true' if PME status and PME enable were both set or 1998 * 'false' otherwise. 1999 */ 2000 bool pci_check_pme_status(struct pci_dev *dev) 2001 { 2002 int pmcsr_pos; 2003 u16 pmcsr; 2004 bool ret = false; 2005 2006 if (!dev->pm_cap) 2007 return false; 2008 2009 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2010 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2011 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2012 return false; 2013 2014 /* Clear PME status. */ 2015 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2016 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2017 /* Disable PME to avoid interrupt flood. */ 2018 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2019 ret = true; 2020 } 2021 2022 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2023 2024 return ret; 2025 } 2026 2027 /** 2028 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2029 * @dev: Device to handle. 2030 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2031 * 2032 * Check if @dev has generated PME and queue a resume request for it in that 2033 * case. 2034 */ 2035 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2036 { 2037 if (pme_poll_reset && dev->pme_poll) 2038 dev->pme_poll = false; 2039 2040 if (pci_check_pme_status(dev)) { 2041 pci_wakeup_event(dev); 2042 pm_request_resume(&dev->dev); 2043 } 2044 return 0; 2045 } 2046 2047 /** 2048 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2049 * @bus: Top bus of the subtree to walk. 2050 */ 2051 void pci_pme_wakeup_bus(struct pci_bus *bus) 2052 { 2053 if (bus) 2054 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2055 } 2056 2057 2058 /** 2059 * pci_pme_capable - check the capability of PCI device to generate PME# 2060 * @dev: PCI device to handle. 2061 * @state: PCI state from which device will issue PME#. 2062 */ 2063 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2064 { 2065 if (!dev->pm_cap) 2066 return false; 2067 2068 return !!(dev->pme_support & (1 << state)); 2069 } 2070 EXPORT_SYMBOL(pci_pme_capable); 2071 2072 static void pci_pme_list_scan(struct work_struct *work) 2073 { 2074 struct pci_pme_device *pme_dev, *n; 2075 2076 mutex_lock(&pci_pme_list_mutex); 2077 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2078 if (pme_dev->dev->pme_poll) { 2079 struct pci_dev *bridge; 2080 2081 bridge = pme_dev->dev->bus->self; 2082 /* 2083 * If bridge is in low power state, the 2084 * configuration space of subordinate devices 2085 * may be not accessible 2086 */ 2087 if (bridge && bridge->current_state != PCI_D0) 2088 continue; 2089 /* 2090 * If the device is in D3cold it should not be 2091 * polled either. 2092 */ 2093 if (pme_dev->dev->current_state == PCI_D3cold) 2094 continue; 2095 2096 pci_pme_wakeup(pme_dev->dev, NULL); 2097 } else { 2098 list_del(&pme_dev->list); 2099 kfree(pme_dev); 2100 } 2101 } 2102 if (!list_empty(&pci_pme_list)) 2103 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2104 msecs_to_jiffies(PME_TIMEOUT)); 2105 mutex_unlock(&pci_pme_list_mutex); 2106 } 2107 2108 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2109 { 2110 u16 pmcsr; 2111 2112 if (!dev->pme_support) 2113 return; 2114 2115 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2116 /* Clear PME_Status by writing 1 to it and enable PME# */ 2117 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2118 if (!enable) 2119 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2120 2121 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2122 } 2123 2124 /** 2125 * pci_pme_restore - Restore PME configuration after config space restore. 2126 * @dev: PCI device to update. 2127 */ 2128 void pci_pme_restore(struct pci_dev *dev) 2129 { 2130 u16 pmcsr; 2131 2132 if (!dev->pme_support) 2133 return; 2134 2135 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2136 if (dev->wakeup_prepared) { 2137 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2138 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2139 } else { 2140 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2141 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2142 } 2143 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2144 } 2145 2146 /** 2147 * pci_pme_active - enable or disable PCI device's PME# function 2148 * @dev: PCI device to handle. 2149 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2150 * 2151 * The caller must verify that the device is capable of generating PME# before 2152 * calling this function with @enable equal to 'true'. 2153 */ 2154 void pci_pme_active(struct pci_dev *dev, bool enable) 2155 { 2156 __pci_pme_active(dev, enable); 2157 2158 /* 2159 * PCI (as opposed to PCIe) PME requires that the device have 2160 * its PME# line hooked up correctly. Not all hardware vendors 2161 * do this, so the PME never gets delivered and the device 2162 * remains asleep. The easiest way around this is to 2163 * periodically walk the list of suspended devices and check 2164 * whether any have their PME flag set. The assumption is that 2165 * we'll wake up often enough anyway that this won't be a huge 2166 * hit, and the power savings from the devices will still be a 2167 * win. 2168 * 2169 * Although PCIe uses in-band PME message instead of PME# line 2170 * to report PME, PME does not work for some PCIe devices in 2171 * reality. For example, there are devices that set their PME 2172 * status bits, but don't really bother to send a PME message; 2173 * there are PCI Express Root Ports that don't bother to 2174 * trigger interrupts when they receive PME messages from the 2175 * devices below. So PME poll is used for PCIe devices too. 2176 */ 2177 2178 if (dev->pme_poll) { 2179 struct pci_pme_device *pme_dev; 2180 if (enable) { 2181 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2182 GFP_KERNEL); 2183 if (!pme_dev) { 2184 pci_warn(dev, "can't enable PME#\n"); 2185 return; 2186 } 2187 pme_dev->dev = dev; 2188 mutex_lock(&pci_pme_list_mutex); 2189 list_add(&pme_dev->list, &pci_pme_list); 2190 if (list_is_singular(&pci_pme_list)) 2191 queue_delayed_work(system_freezable_wq, 2192 &pci_pme_work, 2193 msecs_to_jiffies(PME_TIMEOUT)); 2194 mutex_unlock(&pci_pme_list_mutex); 2195 } else { 2196 mutex_lock(&pci_pme_list_mutex); 2197 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2198 if (pme_dev->dev == dev) { 2199 list_del(&pme_dev->list); 2200 kfree(pme_dev); 2201 break; 2202 } 2203 } 2204 mutex_unlock(&pci_pme_list_mutex); 2205 } 2206 } 2207 2208 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2209 } 2210 EXPORT_SYMBOL(pci_pme_active); 2211 2212 /** 2213 * __pci_enable_wake - enable PCI device as wakeup event source 2214 * @dev: PCI device affected 2215 * @state: PCI state from which device will issue wakeup events 2216 * @enable: True to enable event generation; false to disable 2217 * 2218 * This enables the device as a wakeup event source, or disables it. 2219 * When such events involves platform-specific hooks, those hooks are 2220 * called automatically by this routine. 2221 * 2222 * Devices with legacy power management (no standard PCI PM capabilities) 2223 * always require such platform hooks. 2224 * 2225 * RETURN VALUE: 2226 * 0 is returned on success 2227 * -EINVAL is returned if device is not supposed to wake up the system 2228 * Error code depending on the platform is returned if both the platform and 2229 * the native mechanism fail to enable the generation of wake-up events 2230 */ 2231 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2232 { 2233 int ret = 0; 2234 2235 /* 2236 * Bridges that are not power-manageable directly only signal 2237 * wakeup on behalf of subordinate devices which is set up 2238 * elsewhere, so skip them. However, bridges that are 2239 * power-manageable may signal wakeup for themselves (for example, 2240 * on a hotplug event) and they need to be covered here. 2241 */ 2242 if (!pci_power_manageable(dev)) 2243 return 0; 2244 2245 /* Don't do the same thing twice in a row for one device. */ 2246 if (!!enable == !!dev->wakeup_prepared) 2247 return 0; 2248 2249 /* 2250 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2251 * Anderson we should be doing PME# wake enable followed by ACPI wake 2252 * enable. To disable wake-up we call the platform first, for symmetry. 2253 */ 2254 2255 if (enable) { 2256 int error; 2257 2258 if (pci_pme_capable(dev, state)) 2259 pci_pme_active(dev, true); 2260 else 2261 ret = 1; 2262 error = platform_pci_set_wakeup(dev, true); 2263 if (ret) 2264 ret = error; 2265 if (!ret) 2266 dev->wakeup_prepared = true; 2267 } else { 2268 platform_pci_set_wakeup(dev, false); 2269 pci_pme_active(dev, false); 2270 dev->wakeup_prepared = false; 2271 } 2272 2273 return ret; 2274 } 2275 2276 /** 2277 * pci_enable_wake - change wakeup settings for a PCI device 2278 * @pci_dev: Target device 2279 * @state: PCI state from which device will issue wakeup events 2280 * @enable: Whether or not to enable event generation 2281 * 2282 * If @enable is set, check device_may_wakeup() for the device before calling 2283 * __pci_enable_wake() for it. 2284 */ 2285 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2286 { 2287 if (enable && !device_may_wakeup(&pci_dev->dev)) 2288 return -EINVAL; 2289 2290 return __pci_enable_wake(pci_dev, state, enable); 2291 } 2292 EXPORT_SYMBOL(pci_enable_wake); 2293 2294 /** 2295 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2296 * @dev: PCI device to prepare 2297 * @enable: True to enable wake-up event generation; false to disable 2298 * 2299 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2300 * and this function allows them to set that up cleanly - pci_enable_wake() 2301 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2302 * ordering constraints. 2303 * 2304 * This function only returns error code if the device is not allowed to wake 2305 * up the system from sleep or it is not capable of generating PME# from both 2306 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2307 */ 2308 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2309 { 2310 return pci_pme_capable(dev, PCI_D3cold) ? 2311 pci_enable_wake(dev, PCI_D3cold, enable) : 2312 pci_enable_wake(dev, PCI_D3hot, enable); 2313 } 2314 EXPORT_SYMBOL(pci_wake_from_d3); 2315 2316 /** 2317 * pci_target_state - find an appropriate low power state for a given PCI dev 2318 * @dev: PCI device 2319 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2320 * 2321 * Use underlying platform code to find a supported low power state for @dev. 2322 * If the platform can't manage @dev, return the deepest state from which it 2323 * can generate wake events, based on any available PME info. 2324 */ 2325 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2326 { 2327 pci_power_t target_state = PCI_D3hot; 2328 2329 if (platform_pci_power_manageable(dev)) { 2330 /* 2331 * Call the platform to find the target state for the device. 2332 */ 2333 pci_power_t state = platform_pci_choose_state(dev); 2334 2335 switch (state) { 2336 case PCI_POWER_ERROR: 2337 case PCI_UNKNOWN: 2338 break; 2339 case PCI_D1: 2340 case PCI_D2: 2341 if (pci_no_d1d2(dev)) 2342 break; 2343 /* else, fall through */ 2344 default: 2345 target_state = state; 2346 } 2347 2348 return target_state; 2349 } 2350 2351 if (!dev->pm_cap) 2352 target_state = PCI_D0; 2353 2354 /* 2355 * If the device is in D3cold even though it's not power-manageable by 2356 * the platform, it may have been powered down by non-standard means. 2357 * Best to let it slumber. 2358 */ 2359 if (dev->current_state == PCI_D3cold) 2360 target_state = PCI_D3cold; 2361 2362 if (wakeup) { 2363 /* 2364 * Find the deepest state from which the device can generate 2365 * PME#. 2366 */ 2367 if (dev->pme_support) { 2368 while (target_state 2369 && !(dev->pme_support & (1 << target_state))) 2370 target_state--; 2371 } 2372 } 2373 2374 return target_state; 2375 } 2376 2377 /** 2378 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2379 * into a sleep state 2380 * @dev: Device to handle. 2381 * 2382 * Choose the power state appropriate for the device depending on whether 2383 * it can wake up the system and/or is power manageable by the platform 2384 * (PCI_D3hot is the default) and put the device into that state. 2385 */ 2386 int pci_prepare_to_sleep(struct pci_dev *dev) 2387 { 2388 bool wakeup = device_may_wakeup(&dev->dev); 2389 pci_power_t target_state = pci_target_state(dev, wakeup); 2390 int error; 2391 2392 if (target_state == PCI_POWER_ERROR) 2393 return -EIO; 2394 2395 pci_enable_wake(dev, target_state, wakeup); 2396 2397 error = pci_set_power_state(dev, target_state); 2398 2399 if (error) 2400 pci_enable_wake(dev, target_state, false); 2401 2402 return error; 2403 } 2404 EXPORT_SYMBOL(pci_prepare_to_sleep); 2405 2406 /** 2407 * pci_back_from_sleep - turn PCI device on during system-wide transition 2408 * into working state 2409 * @dev: Device to handle. 2410 * 2411 * Disable device's system wake-up capability and put it into D0. 2412 */ 2413 int pci_back_from_sleep(struct pci_dev *dev) 2414 { 2415 pci_enable_wake(dev, PCI_D0, false); 2416 return pci_set_power_state(dev, PCI_D0); 2417 } 2418 EXPORT_SYMBOL(pci_back_from_sleep); 2419 2420 /** 2421 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2422 * @dev: PCI device being suspended. 2423 * 2424 * Prepare @dev to generate wake-up events at run time and put it into a low 2425 * power state. 2426 */ 2427 int pci_finish_runtime_suspend(struct pci_dev *dev) 2428 { 2429 pci_power_t target_state; 2430 int error; 2431 2432 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2433 if (target_state == PCI_POWER_ERROR) 2434 return -EIO; 2435 2436 dev->runtime_d3cold = target_state == PCI_D3cold; 2437 2438 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2439 2440 error = pci_set_power_state(dev, target_state); 2441 2442 if (error) { 2443 pci_enable_wake(dev, target_state, false); 2444 dev->runtime_d3cold = false; 2445 } 2446 2447 return error; 2448 } 2449 2450 /** 2451 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2452 * @dev: Device to check. 2453 * 2454 * Return true if the device itself is capable of generating wake-up events 2455 * (through the platform or using the native PCIe PME) or if the device supports 2456 * PME and one of its upstream bridges can generate wake-up events. 2457 */ 2458 bool pci_dev_run_wake(struct pci_dev *dev) 2459 { 2460 struct pci_bus *bus = dev->bus; 2461 2462 if (!dev->pme_support) 2463 return false; 2464 2465 /* PME-capable in principle, but not from the target power state */ 2466 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2467 return false; 2468 2469 if (device_can_wakeup(&dev->dev)) 2470 return true; 2471 2472 while (bus->parent) { 2473 struct pci_dev *bridge = bus->self; 2474 2475 if (device_can_wakeup(&bridge->dev)) 2476 return true; 2477 2478 bus = bus->parent; 2479 } 2480 2481 /* We have reached the root bus. */ 2482 if (bus->bridge) 2483 return device_can_wakeup(bus->bridge); 2484 2485 return false; 2486 } 2487 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2488 2489 /** 2490 * pci_dev_need_resume - Check if it is necessary to resume the device. 2491 * @pci_dev: Device to check. 2492 * 2493 * Return 'true' if the device is not runtime-suspended or it has to be 2494 * reconfigured due to wakeup settings difference between system and runtime 2495 * suspend, or the current power state of it is not suitable for the upcoming 2496 * (system-wide) transition. 2497 */ 2498 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2499 { 2500 struct device *dev = &pci_dev->dev; 2501 pci_power_t target_state; 2502 2503 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2504 return true; 2505 2506 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2507 2508 /* 2509 * If the earlier platform check has not triggered, D3cold is just power 2510 * removal on top of D3hot, so no need to resume the device in that 2511 * case. 2512 */ 2513 return target_state != pci_dev->current_state && 2514 target_state != PCI_D3cold && 2515 pci_dev->current_state != PCI_D3hot; 2516 } 2517 2518 /** 2519 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2520 * @pci_dev: Device to check. 2521 * 2522 * If the device is suspended and it is not configured for system wakeup, 2523 * disable PME for it to prevent it from waking up the system unnecessarily. 2524 * 2525 * Note that if the device's power state is D3cold and the platform check in 2526 * pci_dev_need_resume() has not triggered, the device's configuration need not 2527 * be changed. 2528 */ 2529 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2530 { 2531 struct device *dev = &pci_dev->dev; 2532 2533 spin_lock_irq(&dev->power.lock); 2534 2535 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2536 pci_dev->current_state < PCI_D3cold) 2537 __pci_pme_active(pci_dev, false); 2538 2539 spin_unlock_irq(&dev->power.lock); 2540 } 2541 2542 /** 2543 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2544 * @pci_dev: Device to handle. 2545 * 2546 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2547 * it might have been disabled during the prepare phase of system suspend if 2548 * the device was not configured for system wakeup. 2549 */ 2550 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2551 { 2552 struct device *dev = &pci_dev->dev; 2553 2554 if (!pci_dev_run_wake(pci_dev)) 2555 return; 2556 2557 spin_lock_irq(&dev->power.lock); 2558 2559 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2560 __pci_pme_active(pci_dev, true); 2561 2562 spin_unlock_irq(&dev->power.lock); 2563 } 2564 2565 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2566 { 2567 struct device *dev = &pdev->dev; 2568 struct device *parent = dev->parent; 2569 2570 if (parent) 2571 pm_runtime_get_sync(parent); 2572 pm_runtime_get_noresume(dev); 2573 /* 2574 * pdev->current_state is set to PCI_D3cold during suspending, 2575 * so wait until suspending completes 2576 */ 2577 pm_runtime_barrier(dev); 2578 /* 2579 * Only need to resume devices in D3cold, because config 2580 * registers are still accessible for devices suspended but 2581 * not in D3cold. 2582 */ 2583 if (pdev->current_state == PCI_D3cold) 2584 pm_runtime_resume(dev); 2585 } 2586 2587 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2588 { 2589 struct device *dev = &pdev->dev; 2590 struct device *parent = dev->parent; 2591 2592 pm_runtime_put(dev); 2593 if (parent) 2594 pm_runtime_put_sync(parent); 2595 } 2596 2597 static const struct dmi_system_id bridge_d3_blacklist[] = { 2598 #ifdef CONFIG_X86 2599 { 2600 /* 2601 * Gigabyte X299 root port is not marked as hotplug capable 2602 * which allows Linux to power manage it. However, this 2603 * confuses the BIOS SMI handler so don't power manage root 2604 * ports on that system. 2605 */ 2606 .ident = "X299 DESIGNARE EX-CF", 2607 .matches = { 2608 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2609 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2610 }, 2611 }, 2612 #endif 2613 { } 2614 }; 2615 2616 /** 2617 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2618 * @bridge: Bridge to check 2619 * 2620 * This function checks if it is possible to move the bridge to D3. 2621 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2622 */ 2623 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2624 { 2625 if (!pci_is_pcie(bridge)) 2626 return false; 2627 2628 switch (pci_pcie_type(bridge)) { 2629 case PCI_EXP_TYPE_ROOT_PORT: 2630 case PCI_EXP_TYPE_UPSTREAM: 2631 case PCI_EXP_TYPE_DOWNSTREAM: 2632 if (pci_bridge_d3_disable) 2633 return false; 2634 2635 /* 2636 * Hotplug ports handled by firmware in System Management Mode 2637 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2638 */ 2639 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2640 return false; 2641 2642 if (pci_bridge_d3_force) 2643 return true; 2644 2645 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2646 if (bridge->is_thunderbolt) 2647 return true; 2648 2649 /* Platform might know better if the bridge supports D3 */ 2650 if (platform_pci_bridge_d3(bridge)) 2651 return true; 2652 2653 /* 2654 * Hotplug ports handled natively by the OS were not validated 2655 * by vendors for runtime D3 at least until 2018 because there 2656 * was no OS support. 2657 */ 2658 if (bridge->is_hotplug_bridge) 2659 return false; 2660 2661 if (dmi_check_system(bridge_d3_blacklist)) 2662 return false; 2663 2664 /* 2665 * It should be safe to put PCIe ports from 2015 or newer 2666 * to D3. 2667 */ 2668 if (dmi_get_bios_year() >= 2015) 2669 return true; 2670 break; 2671 } 2672 2673 return false; 2674 } 2675 2676 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2677 { 2678 bool *d3cold_ok = data; 2679 2680 if (/* The device needs to be allowed to go D3cold ... */ 2681 dev->no_d3cold || !dev->d3cold_allowed || 2682 2683 /* ... and if it is wakeup capable to do so from D3cold. */ 2684 (device_may_wakeup(&dev->dev) && 2685 !pci_pme_capable(dev, PCI_D3cold)) || 2686 2687 /* If it is a bridge it must be allowed to go to D3. */ 2688 !pci_power_manageable(dev)) 2689 2690 *d3cold_ok = false; 2691 2692 return !*d3cold_ok; 2693 } 2694 2695 /* 2696 * pci_bridge_d3_update - Update bridge D3 capabilities 2697 * @dev: PCI device which is changed 2698 * 2699 * Update upstream bridge PM capabilities accordingly depending on if the 2700 * device PM configuration was changed or the device is being removed. The 2701 * change is also propagated upstream. 2702 */ 2703 void pci_bridge_d3_update(struct pci_dev *dev) 2704 { 2705 bool remove = !device_is_registered(&dev->dev); 2706 struct pci_dev *bridge; 2707 bool d3cold_ok = true; 2708 2709 bridge = pci_upstream_bridge(dev); 2710 if (!bridge || !pci_bridge_d3_possible(bridge)) 2711 return; 2712 2713 /* 2714 * If D3 is currently allowed for the bridge, removing one of its 2715 * children won't change that. 2716 */ 2717 if (remove && bridge->bridge_d3) 2718 return; 2719 2720 /* 2721 * If D3 is currently allowed for the bridge and a child is added or 2722 * changed, disallowance of D3 can only be caused by that child, so 2723 * we only need to check that single device, not any of its siblings. 2724 * 2725 * If D3 is currently not allowed for the bridge, checking the device 2726 * first may allow us to skip checking its siblings. 2727 */ 2728 if (!remove) 2729 pci_dev_check_d3cold(dev, &d3cold_ok); 2730 2731 /* 2732 * If D3 is currently not allowed for the bridge, this may be caused 2733 * either by the device being changed/removed or any of its siblings, 2734 * so we need to go through all children to find out if one of them 2735 * continues to block D3. 2736 */ 2737 if (d3cold_ok && !bridge->bridge_d3) 2738 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2739 &d3cold_ok); 2740 2741 if (bridge->bridge_d3 != d3cold_ok) { 2742 bridge->bridge_d3 = d3cold_ok; 2743 /* Propagate change to upstream bridges */ 2744 pci_bridge_d3_update(bridge); 2745 } 2746 } 2747 2748 /** 2749 * pci_d3cold_enable - Enable D3cold for device 2750 * @dev: PCI device to handle 2751 * 2752 * This function can be used in drivers to enable D3cold from the device 2753 * they handle. It also updates upstream PCI bridge PM capabilities 2754 * accordingly. 2755 */ 2756 void pci_d3cold_enable(struct pci_dev *dev) 2757 { 2758 if (dev->no_d3cold) { 2759 dev->no_d3cold = false; 2760 pci_bridge_d3_update(dev); 2761 } 2762 } 2763 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2764 2765 /** 2766 * pci_d3cold_disable - Disable D3cold for device 2767 * @dev: PCI device to handle 2768 * 2769 * This function can be used in drivers to disable D3cold from the device 2770 * they handle. It also updates upstream PCI bridge PM capabilities 2771 * accordingly. 2772 */ 2773 void pci_d3cold_disable(struct pci_dev *dev) 2774 { 2775 if (!dev->no_d3cold) { 2776 dev->no_d3cold = true; 2777 pci_bridge_d3_update(dev); 2778 } 2779 } 2780 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2781 2782 /** 2783 * pci_pm_init - Initialize PM functions of given PCI device 2784 * @dev: PCI device to handle. 2785 */ 2786 void pci_pm_init(struct pci_dev *dev) 2787 { 2788 int pm; 2789 u16 status; 2790 u16 pmc; 2791 2792 pm_runtime_forbid(&dev->dev); 2793 pm_runtime_set_active(&dev->dev); 2794 pm_runtime_enable(&dev->dev); 2795 device_enable_async_suspend(&dev->dev); 2796 dev->wakeup_prepared = false; 2797 2798 dev->pm_cap = 0; 2799 dev->pme_support = 0; 2800 2801 /* find PCI PM capability in list */ 2802 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2803 if (!pm) 2804 return; 2805 /* Check device's ability to generate PME# */ 2806 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2807 2808 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2809 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2810 pmc & PCI_PM_CAP_VER_MASK); 2811 return; 2812 } 2813 2814 dev->pm_cap = pm; 2815 dev->d3_delay = PCI_PM_D3_WAIT; 2816 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2817 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2818 dev->d3cold_allowed = true; 2819 2820 dev->d1_support = false; 2821 dev->d2_support = false; 2822 if (!pci_no_d1d2(dev)) { 2823 if (pmc & PCI_PM_CAP_D1) 2824 dev->d1_support = true; 2825 if (pmc & PCI_PM_CAP_D2) 2826 dev->d2_support = true; 2827 2828 if (dev->d1_support || dev->d2_support) 2829 pci_info(dev, "supports%s%s\n", 2830 dev->d1_support ? " D1" : "", 2831 dev->d2_support ? " D2" : ""); 2832 } 2833 2834 pmc &= PCI_PM_CAP_PME_MASK; 2835 if (pmc) { 2836 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 2837 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2838 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2839 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2840 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2841 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2842 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2843 dev->pme_poll = true; 2844 /* 2845 * Make device's PM flags reflect the wake-up capability, but 2846 * let the user space enable it to wake up the system as needed. 2847 */ 2848 device_set_wakeup_capable(&dev->dev, true); 2849 /* Disable the PME# generation functionality */ 2850 pci_pme_active(dev, false); 2851 } 2852 2853 pci_read_config_word(dev, PCI_STATUS, &status); 2854 if (status & PCI_STATUS_IMM_READY) 2855 dev->imm_ready = 1; 2856 } 2857 2858 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2859 { 2860 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2861 2862 switch (prop) { 2863 case PCI_EA_P_MEM: 2864 case PCI_EA_P_VF_MEM: 2865 flags |= IORESOURCE_MEM; 2866 break; 2867 case PCI_EA_P_MEM_PREFETCH: 2868 case PCI_EA_P_VF_MEM_PREFETCH: 2869 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2870 break; 2871 case PCI_EA_P_IO: 2872 flags |= IORESOURCE_IO; 2873 break; 2874 default: 2875 return 0; 2876 } 2877 2878 return flags; 2879 } 2880 2881 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2882 u8 prop) 2883 { 2884 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2885 return &dev->resource[bei]; 2886 #ifdef CONFIG_PCI_IOV 2887 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2888 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2889 return &dev->resource[PCI_IOV_RESOURCES + 2890 bei - PCI_EA_BEI_VF_BAR0]; 2891 #endif 2892 else if (bei == PCI_EA_BEI_ROM) 2893 return &dev->resource[PCI_ROM_RESOURCE]; 2894 else 2895 return NULL; 2896 } 2897 2898 /* Read an Enhanced Allocation (EA) entry */ 2899 static int pci_ea_read(struct pci_dev *dev, int offset) 2900 { 2901 struct resource *res; 2902 int ent_size, ent_offset = offset; 2903 resource_size_t start, end; 2904 unsigned long flags; 2905 u32 dw0, bei, base, max_offset; 2906 u8 prop; 2907 bool support_64 = (sizeof(resource_size_t) >= 8); 2908 2909 pci_read_config_dword(dev, ent_offset, &dw0); 2910 ent_offset += 4; 2911 2912 /* Entry size field indicates DWORDs after 1st */ 2913 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2914 2915 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2916 goto out; 2917 2918 bei = (dw0 & PCI_EA_BEI) >> 4; 2919 prop = (dw0 & PCI_EA_PP) >> 8; 2920 2921 /* 2922 * If the Property is in the reserved range, try the Secondary 2923 * Property instead. 2924 */ 2925 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2926 prop = (dw0 & PCI_EA_SP) >> 16; 2927 if (prop > PCI_EA_P_BRIDGE_IO) 2928 goto out; 2929 2930 res = pci_ea_get_resource(dev, bei, prop); 2931 if (!res) { 2932 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 2933 goto out; 2934 } 2935 2936 flags = pci_ea_flags(dev, prop); 2937 if (!flags) { 2938 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 2939 goto out; 2940 } 2941 2942 /* Read Base */ 2943 pci_read_config_dword(dev, ent_offset, &base); 2944 start = (base & PCI_EA_FIELD_MASK); 2945 ent_offset += 4; 2946 2947 /* Read MaxOffset */ 2948 pci_read_config_dword(dev, ent_offset, &max_offset); 2949 ent_offset += 4; 2950 2951 /* Read Base MSBs (if 64-bit entry) */ 2952 if (base & PCI_EA_IS_64) { 2953 u32 base_upper; 2954 2955 pci_read_config_dword(dev, ent_offset, &base_upper); 2956 ent_offset += 4; 2957 2958 flags |= IORESOURCE_MEM_64; 2959 2960 /* entry starts above 32-bit boundary, can't use */ 2961 if (!support_64 && base_upper) 2962 goto out; 2963 2964 if (support_64) 2965 start |= ((u64)base_upper << 32); 2966 } 2967 2968 end = start + (max_offset | 0x03); 2969 2970 /* Read MaxOffset MSBs (if 64-bit entry) */ 2971 if (max_offset & PCI_EA_IS_64) { 2972 u32 max_offset_upper; 2973 2974 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2975 ent_offset += 4; 2976 2977 flags |= IORESOURCE_MEM_64; 2978 2979 /* entry too big, can't use */ 2980 if (!support_64 && max_offset_upper) 2981 goto out; 2982 2983 if (support_64) 2984 end += ((u64)max_offset_upper << 32); 2985 } 2986 2987 if (end < start) { 2988 pci_err(dev, "EA Entry crosses address boundary\n"); 2989 goto out; 2990 } 2991 2992 if (ent_size != ent_offset - offset) { 2993 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 2994 ent_size, ent_offset - offset); 2995 goto out; 2996 } 2997 2998 res->name = pci_name(dev); 2999 res->start = start; 3000 res->end = end; 3001 res->flags = flags; 3002 3003 if (bei <= PCI_EA_BEI_BAR5) 3004 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3005 bei, res, prop); 3006 else if (bei == PCI_EA_BEI_ROM) 3007 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3008 res, prop); 3009 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3010 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3011 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3012 else 3013 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3014 bei, res, prop); 3015 3016 out: 3017 return offset + ent_size; 3018 } 3019 3020 /* Enhanced Allocation Initialization */ 3021 void pci_ea_init(struct pci_dev *dev) 3022 { 3023 int ea; 3024 u8 num_ent; 3025 int offset; 3026 int i; 3027 3028 /* find PCI EA capability in list */ 3029 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3030 if (!ea) 3031 return; 3032 3033 /* determine the number of entries */ 3034 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3035 &num_ent); 3036 num_ent &= PCI_EA_NUM_ENT_MASK; 3037 3038 offset = ea + PCI_EA_FIRST_ENT; 3039 3040 /* Skip DWORD 2 for type 1 functions */ 3041 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3042 offset += 4; 3043 3044 /* parse each EA entry */ 3045 for (i = 0; i < num_ent; ++i) 3046 offset = pci_ea_read(dev, offset); 3047 } 3048 3049 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3050 struct pci_cap_saved_state *new_cap) 3051 { 3052 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3053 } 3054 3055 /** 3056 * _pci_add_cap_save_buffer - allocate buffer for saving given 3057 * capability registers 3058 * @dev: the PCI device 3059 * @cap: the capability to allocate the buffer for 3060 * @extended: Standard or Extended capability ID 3061 * @size: requested size of the buffer 3062 */ 3063 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3064 bool extended, unsigned int size) 3065 { 3066 int pos; 3067 struct pci_cap_saved_state *save_state; 3068 3069 if (extended) 3070 pos = pci_find_ext_capability(dev, cap); 3071 else 3072 pos = pci_find_capability(dev, cap); 3073 3074 if (!pos) 3075 return 0; 3076 3077 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3078 if (!save_state) 3079 return -ENOMEM; 3080 3081 save_state->cap.cap_nr = cap; 3082 save_state->cap.cap_extended = extended; 3083 save_state->cap.size = size; 3084 pci_add_saved_cap(dev, save_state); 3085 3086 return 0; 3087 } 3088 3089 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3090 { 3091 return _pci_add_cap_save_buffer(dev, cap, false, size); 3092 } 3093 3094 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3095 { 3096 return _pci_add_cap_save_buffer(dev, cap, true, size); 3097 } 3098 3099 /** 3100 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3101 * @dev: the PCI device 3102 */ 3103 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3104 { 3105 int error; 3106 3107 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3108 PCI_EXP_SAVE_REGS * sizeof(u16)); 3109 if (error) 3110 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3111 3112 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3113 if (error) 3114 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3115 3116 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3117 2 * sizeof(u16)); 3118 if (error) 3119 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3120 3121 pci_allocate_vc_save_buffers(dev); 3122 } 3123 3124 void pci_free_cap_save_buffers(struct pci_dev *dev) 3125 { 3126 struct pci_cap_saved_state *tmp; 3127 struct hlist_node *n; 3128 3129 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3130 kfree(tmp); 3131 } 3132 3133 /** 3134 * pci_configure_ari - enable or disable ARI forwarding 3135 * @dev: the PCI device 3136 * 3137 * If @dev and its upstream bridge both support ARI, enable ARI in the 3138 * bridge. Otherwise, disable ARI in the bridge. 3139 */ 3140 void pci_configure_ari(struct pci_dev *dev) 3141 { 3142 u32 cap; 3143 struct pci_dev *bridge; 3144 3145 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3146 return; 3147 3148 bridge = dev->bus->self; 3149 if (!bridge) 3150 return; 3151 3152 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3153 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3154 return; 3155 3156 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3157 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3158 PCI_EXP_DEVCTL2_ARI); 3159 bridge->ari_enabled = 1; 3160 } else { 3161 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3162 PCI_EXP_DEVCTL2_ARI); 3163 bridge->ari_enabled = 0; 3164 } 3165 } 3166 3167 static int pci_acs_enable; 3168 3169 /** 3170 * pci_request_acs - ask for ACS to be enabled if supported 3171 */ 3172 void pci_request_acs(void) 3173 { 3174 pci_acs_enable = 1; 3175 } 3176 3177 static const char *disable_acs_redir_param; 3178 3179 /** 3180 * pci_disable_acs_redir - disable ACS redirect capabilities 3181 * @dev: the PCI device 3182 * 3183 * For only devices specified in the disable_acs_redir parameter. 3184 */ 3185 static void pci_disable_acs_redir(struct pci_dev *dev) 3186 { 3187 int ret = 0; 3188 const char *p; 3189 int pos; 3190 u16 ctrl; 3191 3192 if (!disable_acs_redir_param) 3193 return; 3194 3195 p = disable_acs_redir_param; 3196 while (*p) { 3197 ret = pci_dev_str_match(dev, p, &p); 3198 if (ret < 0) { 3199 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 3200 disable_acs_redir_param); 3201 3202 break; 3203 } else if (ret == 1) { 3204 /* Found a match */ 3205 break; 3206 } 3207 3208 if (*p != ';' && *p != ',') { 3209 /* End of param or invalid format */ 3210 break; 3211 } 3212 p++; 3213 } 3214 3215 if (ret != 1) 3216 return; 3217 3218 if (!pci_dev_specific_disable_acs_redir(dev)) 3219 return; 3220 3221 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3222 if (!pos) { 3223 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 3224 return; 3225 } 3226 3227 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3228 3229 /* P2P Request & Completion Redirect */ 3230 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 3231 3232 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3233 3234 pci_info(dev, "disabled ACS redirect\n"); 3235 } 3236 3237 /** 3238 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 3239 * @dev: the PCI device 3240 */ 3241 static void pci_std_enable_acs(struct pci_dev *dev) 3242 { 3243 int pos; 3244 u16 cap; 3245 u16 ctrl; 3246 3247 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3248 if (!pos) 3249 return; 3250 3251 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 3252 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3253 3254 /* Source Validation */ 3255 ctrl |= (cap & PCI_ACS_SV); 3256 3257 /* P2P Request Redirect */ 3258 ctrl |= (cap & PCI_ACS_RR); 3259 3260 /* P2P Completion Redirect */ 3261 ctrl |= (cap & PCI_ACS_CR); 3262 3263 /* Upstream Forwarding */ 3264 ctrl |= (cap & PCI_ACS_UF); 3265 3266 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3267 } 3268 3269 /** 3270 * pci_enable_acs - enable ACS if hardware support it 3271 * @dev: the PCI device 3272 */ 3273 void pci_enable_acs(struct pci_dev *dev) 3274 { 3275 if (!pci_acs_enable) 3276 goto disable_acs_redir; 3277 3278 if (!pci_dev_specific_enable_acs(dev)) 3279 goto disable_acs_redir; 3280 3281 pci_std_enable_acs(dev); 3282 3283 disable_acs_redir: 3284 /* 3285 * Note: pci_disable_acs_redir() must be called even if ACS was not 3286 * enabled by the kernel because it may have been enabled by 3287 * platform firmware. So if we are told to disable it, we should 3288 * always disable it after setting the kernel's default 3289 * preferences. 3290 */ 3291 pci_disable_acs_redir(dev); 3292 } 3293 3294 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3295 { 3296 int pos; 3297 u16 cap, ctrl; 3298 3299 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 3300 if (!pos) 3301 return false; 3302 3303 /* 3304 * Except for egress control, capabilities are either required 3305 * or only required if controllable. Features missing from the 3306 * capability field can therefore be assumed as hard-wired enabled. 3307 */ 3308 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3309 acs_flags &= (cap | PCI_ACS_EC); 3310 3311 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3312 return (ctrl & acs_flags) == acs_flags; 3313 } 3314 3315 /** 3316 * pci_acs_enabled - test ACS against required flags for a given device 3317 * @pdev: device to test 3318 * @acs_flags: required PCI ACS flags 3319 * 3320 * Return true if the device supports the provided flags. Automatically 3321 * filters out flags that are not implemented on multifunction devices. 3322 * 3323 * Note that this interface checks the effective ACS capabilities of the 3324 * device rather than the actual capabilities. For instance, most single 3325 * function endpoints are not required to support ACS because they have no 3326 * opportunity for peer-to-peer access. We therefore return 'true' 3327 * regardless of whether the device exposes an ACS capability. This makes 3328 * it much easier for callers of this function to ignore the actual type 3329 * or topology of the device when testing ACS support. 3330 */ 3331 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3332 { 3333 int ret; 3334 3335 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3336 if (ret >= 0) 3337 return ret > 0; 3338 3339 /* 3340 * Conventional PCI and PCI-X devices never support ACS, either 3341 * effectively or actually. The shared bus topology implies that 3342 * any device on the bus can receive or snoop DMA. 3343 */ 3344 if (!pci_is_pcie(pdev)) 3345 return false; 3346 3347 switch (pci_pcie_type(pdev)) { 3348 /* 3349 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3350 * but since their primary interface is PCI/X, we conservatively 3351 * handle them as we would a non-PCIe device. 3352 */ 3353 case PCI_EXP_TYPE_PCIE_BRIDGE: 3354 /* 3355 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3356 * applicable... must never implement an ACS Extended Capability...". 3357 * This seems arbitrary, but we take a conservative interpretation 3358 * of this statement. 3359 */ 3360 case PCI_EXP_TYPE_PCI_BRIDGE: 3361 case PCI_EXP_TYPE_RC_EC: 3362 return false; 3363 /* 3364 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3365 * implement ACS in order to indicate their peer-to-peer capabilities, 3366 * regardless of whether they are single- or multi-function devices. 3367 */ 3368 case PCI_EXP_TYPE_DOWNSTREAM: 3369 case PCI_EXP_TYPE_ROOT_PORT: 3370 return pci_acs_flags_enabled(pdev, acs_flags); 3371 /* 3372 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3373 * implemented by the remaining PCIe types to indicate peer-to-peer 3374 * capabilities, but only when they are part of a multifunction 3375 * device. The footnote for section 6.12 indicates the specific 3376 * PCIe types included here. 3377 */ 3378 case PCI_EXP_TYPE_ENDPOINT: 3379 case PCI_EXP_TYPE_UPSTREAM: 3380 case PCI_EXP_TYPE_LEG_END: 3381 case PCI_EXP_TYPE_RC_END: 3382 if (!pdev->multifunction) 3383 break; 3384 3385 return pci_acs_flags_enabled(pdev, acs_flags); 3386 } 3387 3388 /* 3389 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3390 * to single function devices with the exception of downstream ports. 3391 */ 3392 return true; 3393 } 3394 3395 /** 3396 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 3397 * @start: starting downstream device 3398 * @end: ending upstream device or NULL to search to the root bus 3399 * @acs_flags: required flags 3400 * 3401 * Walk up a device tree from start to end testing PCI ACS support. If 3402 * any step along the way does not support the required flags, return false. 3403 */ 3404 bool pci_acs_path_enabled(struct pci_dev *start, 3405 struct pci_dev *end, u16 acs_flags) 3406 { 3407 struct pci_dev *pdev, *parent = start; 3408 3409 do { 3410 pdev = parent; 3411 3412 if (!pci_acs_enabled(pdev, acs_flags)) 3413 return false; 3414 3415 if (pci_is_root_bus(pdev->bus)) 3416 return (end == NULL); 3417 3418 parent = pdev->bus->self; 3419 } while (pdev != end); 3420 3421 return true; 3422 } 3423 3424 /** 3425 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3426 * @pdev: PCI device 3427 * @bar: BAR to find 3428 * 3429 * Helper to find the position of the ctrl register for a BAR. 3430 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3431 * Returns -ENOENT if no ctrl register for the BAR could be found. 3432 */ 3433 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3434 { 3435 unsigned int pos, nbars, i; 3436 u32 ctrl; 3437 3438 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3439 if (!pos) 3440 return -ENOTSUPP; 3441 3442 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3443 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3444 PCI_REBAR_CTRL_NBAR_SHIFT; 3445 3446 for (i = 0; i < nbars; i++, pos += 8) { 3447 int bar_idx; 3448 3449 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3450 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3451 if (bar_idx == bar) 3452 return pos; 3453 } 3454 3455 return -ENOENT; 3456 } 3457 3458 /** 3459 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3460 * @pdev: PCI device 3461 * @bar: BAR to query 3462 * 3463 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3464 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3465 */ 3466 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3467 { 3468 int pos; 3469 u32 cap; 3470 3471 pos = pci_rebar_find_pos(pdev, bar); 3472 if (pos < 0) 3473 return 0; 3474 3475 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3476 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3477 } 3478 3479 /** 3480 * pci_rebar_get_current_size - get the current size of a BAR 3481 * @pdev: PCI device 3482 * @bar: BAR to set size to 3483 * 3484 * Read the size of a BAR from the resizable BAR config. 3485 * Returns size if found or negative error code. 3486 */ 3487 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3488 { 3489 int pos; 3490 u32 ctrl; 3491 3492 pos = pci_rebar_find_pos(pdev, bar); 3493 if (pos < 0) 3494 return pos; 3495 3496 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3497 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3498 } 3499 3500 /** 3501 * pci_rebar_set_size - set a new size for a BAR 3502 * @pdev: PCI device 3503 * @bar: BAR to set size to 3504 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3505 * 3506 * Set the new size of a BAR as defined in the spec. 3507 * Returns zero if resizing was successful, error code otherwise. 3508 */ 3509 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3510 { 3511 int pos; 3512 u32 ctrl; 3513 3514 pos = pci_rebar_find_pos(pdev, bar); 3515 if (pos < 0) 3516 return pos; 3517 3518 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3519 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3520 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3521 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3522 return 0; 3523 } 3524 3525 /** 3526 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3527 * @dev: the PCI device 3528 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3529 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3530 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3531 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3532 * 3533 * Return 0 if all upstream bridges support AtomicOp routing, egress 3534 * blocking is disabled on all upstream ports, and the root port supports 3535 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3536 * AtomicOp completion), or negative otherwise. 3537 */ 3538 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3539 { 3540 struct pci_bus *bus = dev->bus; 3541 struct pci_dev *bridge; 3542 u32 cap, ctl2; 3543 3544 if (!pci_is_pcie(dev)) 3545 return -EINVAL; 3546 3547 /* 3548 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3549 * AtomicOp requesters. For now, we only support endpoints as 3550 * requesters and root ports as completers. No endpoints as 3551 * completers, and no peer-to-peer. 3552 */ 3553 3554 switch (pci_pcie_type(dev)) { 3555 case PCI_EXP_TYPE_ENDPOINT: 3556 case PCI_EXP_TYPE_LEG_END: 3557 case PCI_EXP_TYPE_RC_END: 3558 break; 3559 default: 3560 return -EINVAL; 3561 } 3562 3563 while (bus->parent) { 3564 bridge = bus->self; 3565 3566 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3567 3568 switch (pci_pcie_type(bridge)) { 3569 /* Ensure switch ports support AtomicOp routing */ 3570 case PCI_EXP_TYPE_UPSTREAM: 3571 case PCI_EXP_TYPE_DOWNSTREAM: 3572 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3573 return -EINVAL; 3574 break; 3575 3576 /* Ensure root port supports all the sizes we care about */ 3577 case PCI_EXP_TYPE_ROOT_PORT: 3578 if ((cap & cap_mask) != cap_mask) 3579 return -EINVAL; 3580 break; 3581 } 3582 3583 /* Ensure upstream ports don't block AtomicOps on egress */ 3584 if (!bridge->has_secondary_link) { 3585 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3586 &ctl2); 3587 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3588 return -EINVAL; 3589 } 3590 3591 bus = bus->parent; 3592 } 3593 3594 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3595 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3596 return 0; 3597 } 3598 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3599 3600 /** 3601 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3602 * @dev: the PCI device 3603 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3604 * 3605 * Perform INTx swizzling for a device behind one level of bridge. This is 3606 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3607 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3608 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3609 * the PCI Express Base Specification, Revision 2.1) 3610 */ 3611 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3612 { 3613 int slot; 3614 3615 if (pci_ari_enabled(dev->bus)) 3616 slot = 0; 3617 else 3618 slot = PCI_SLOT(dev->devfn); 3619 3620 return (((pin - 1) + slot) % 4) + 1; 3621 } 3622 3623 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3624 { 3625 u8 pin; 3626 3627 pin = dev->pin; 3628 if (!pin) 3629 return -1; 3630 3631 while (!pci_is_root_bus(dev->bus)) { 3632 pin = pci_swizzle_interrupt_pin(dev, pin); 3633 dev = dev->bus->self; 3634 } 3635 *bridge = dev; 3636 return pin; 3637 } 3638 3639 /** 3640 * pci_common_swizzle - swizzle INTx all the way to root bridge 3641 * @dev: the PCI device 3642 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3643 * 3644 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3645 * bridges all the way up to a PCI root bus. 3646 */ 3647 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3648 { 3649 u8 pin = *pinp; 3650 3651 while (!pci_is_root_bus(dev->bus)) { 3652 pin = pci_swizzle_interrupt_pin(dev, pin); 3653 dev = dev->bus->self; 3654 } 3655 *pinp = pin; 3656 return PCI_SLOT(dev->devfn); 3657 } 3658 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3659 3660 /** 3661 * pci_release_region - Release a PCI bar 3662 * @pdev: PCI device whose resources were previously reserved by 3663 * pci_request_region() 3664 * @bar: BAR to release 3665 * 3666 * Releases the PCI I/O and memory resources previously reserved by a 3667 * successful call to pci_request_region(). Call this function only 3668 * after all use of the PCI regions has ceased. 3669 */ 3670 void pci_release_region(struct pci_dev *pdev, int bar) 3671 { 3672 struct pci_devres *dr; 3673 3674 if (pci_resource_len(pdev, bar) == 0) 3675 return; 3676 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3677 release_region(pci_resource_start(pdev, bar), 3678 pci_resource_len(pdev, bar)); 3679 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3680 release_mem_region(pci_resource_start(pdev, bar), 3681 pci_resource_len(pdev, bar)); 3682 3683 dr = find_pci_dr(pdev); 3684 if (dr) 3685 dr->region_mask &= ~(1 << bar); 3686 } 3687 EXPORT_SYMBOL(pci_release_region); 3688 3689 /** 3690 * __pci_request_region - Reserved PCI I/O and memory resource 3691 * @pdev: PCI device whose resources are to be reserved 3692 * @bar: BAR to be reserved 3693 * @res_name: Name to be associated with resource. 3694 * @exclusive: whether the region access is exclusive or not 3695 * 3696 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3697 * being reserved by owner @res_name. Do not access any 3698 * address inside the PCI regions unless this call returns 3699 * successfully. 3700 * 3701 * If @exclusive is set, then the region is marked so that userspace 3702 * is explicitly not allowed to map the resource via /dev/mem or 3703 * sysfs MMIO access. 3704 * 3705 * Returns 0 on success, or %EBUSY on error. A warning 3706 * message is also printed on failure. 3707 */ 3708 static int __pci_request_region(struct pci_dev *pdev, int bar, 3709 const char *res_name, int exclusive) 3710 { 3711 struct pci_devres *dr; 3712 3713 if (pci_resource_len(pdev, bar) == 0) 3714 return 0; 3715 3716 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3717 if (!request_region(pci_resource_start(pdev, bar), 3718 pci_resource_len(pdev, bar), res_name)) 3719 goto err_out; 3720 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3721 if (!__request_mem_region(pci_resource_start(pdev, bar), 3722 pci_resource_len(pdev, bar), res_name, 3723 exclusive)) 3724 goto err_out; 3725 } 3726 3727 dr = find_pci_dr(pdev); 3728 if (dr) 3729 dr->region_mask |= 1 << bar; 3730 3731 return 0; 3732 3733 err_out: 3734 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3735 &pdev->resource[bar]); 3736 return -EBUSY; 3737 } 3738 3739 /** 3740 * pci_request_region - Reserve PCI I/O and memory resource 3741 * @pdev: PCI device whose resources are to be reserved 3742 * @bar: BAR to be reserved 3743 * @res_name: Name to be associated with resource 3744 * 3745 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3746 * being reserved by owner @res_name. Do not access any 3747 * address inside the PCI regions unless this call returns 3748 * successfully. 3749 * 3750 * Returns 0 on success, or %EBUSY on error. A warning 3751 * message is also printed on failure. 3752 */ 3753 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3754 { 3755 return __pci_request_region(pdev, bar, res_name, 0); 3756 } 3757 EXPORT_SYMBOL(pci_request_region); 3758 3759 /** 3760 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3761 * @pdev: PCI device whose resources were previously reserved 3762 * @bars: Bitmask of BARs to be released 3763 * 3764 * Release selected PCI I/O and memory resources previously reserved. 3765 * Call this function only after all use of the PCI regions has ceased. 3766 */ 3767 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3768 { 3769 int i; 3770 3771 for (i = 0; i < 6; i++) 3772 if (bars & (1 << i)) 3773 pci_release_region(pdev, i); 3774 } 3775 EXPORT_SYMBOL(pci_release_selected_regions); 3776 3777 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3778 const char *res_name, int excl) 3779 { 3780 int i; 3781 3782 for (i = 0; i < 6; i++) 3783 if (bars & (1 << i)) 3784 if (__pci_request_region(pdev, i, res_name, excl)) 3785 goto err_out; 3786 return 0; 3787 3788 err_out: 3789 while (--i >= 0) 3790 if (bars & (1 << i)) 3791 pci_release_region(pdev, i); 3792 3793 return -EBUSY; 3794 } 3795 3796 3797 /** 3798 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3799 * @pdev: PCI device whose resources are to be reserved 3800 * @bars: Bitmask of BARs to be requested 3801 * @res_name: Name to be associated with resource 3802 */ 3803 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3804 const char *res_name) 3805 { 3806 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3807 } 3808 EXPORT_SYMBOL(pci_request_selected_regions); 3809 3810 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3811 const char *res_name) 3812 { 3813 return __pci_request_selected_regions(pdev, bars, res_name, 3814 IORESOURCE_EXCLUSIVE); 3815 } 3816 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3817 3818 /** 3819 * pci_release_regions - Release reserved PCI I/O and memory resources 3820 * @pdev: PCI device whose resources were previously reserved by 3821 * pci_request_regions() 3822 * 3823 * Releases all PCI I/O and memory resources previously reserved by a 3824 * successful call to pci_request_regions(). Call this function only 3825 * after all use of the PCI regions has ceased. 3826 */ 3827 3828 void pci_release_regions(struct pci_dev *pdev) 3829 { 3830 pci_release_selected_regions(pdev, (1 << 6) - 1); 3831 } 3832 EXPORT_SYMBOL(pci_release_regions); 3833 3834 /** 3835 * pci_request_regions - Reserve PCI I/O and memory resources 3836 * @pdev: PCI device whose resources are to be reserved 3837 * @res_name: Name to be associated with resource. 3838 * 3839 * Mark all PCI regions associated with PCI device @pdev as 3840 * being reserved by owner @res_name. Do not access any 3841 * address inside the PCI regions unless this call returns 3842 * successfully. 3843 * 3844 * Returns 0 on success, or %EBUSY on error. A warning 3845 * message is also printed on failure. 3846 */ 3847 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3848 { 3849 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3850 } 3851 EXPORT_SYMBOL(pci_request_regions); 3852 3853 /** 3854 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 3855 * @pdev: PCI device whose resources are to be reserved 3856 * @res_name: Name to be associated with resource. 3857 * 3858 * Mark all PCI regions associated with PCI device @pdev as being reserved 3859 * by owner @res_name. Do not access any address inside the PCI regions 3860 * unless this call returns successfully. 3861 * 3862 * pci_request_regions_exclusive() will mark the region so that /dev/mem 3863 * and the sysfs MMIO access will not be allowed. 3864 * 3865 * Returns 0 on success, or %EBUSY on error. A warning message is also 3866 * printed on failure. 3867 */ 3868 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3869 { 3870 return pci_request_selected_regions_exclusive(pdev, 3871 ((1 << 6) - 1), res_name); 3872 } 3873 EXPORT_SYMBOL(pci_request_regions_exclusive); 3874 3875 /* 3876 * Record the PCI IO range (expressed as CPU physical address + size). 3877 * Return a negative value if an error has occurred, zero otherwise 3878 */ 3879 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3880 resource_size_t size) 3881 { 3882 int ret = 0; 3883 #ifdef PCI_IOBASE 3884 struct logic_pio_hwaddr *range; 3885 3886 if (!size || addr + size < addr) 3887 return -EINVAL; 3888 3889 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3890 if (!range) 3891 return -ENOMEM; 3892 3893 range->fwnode = fwnode; 3894 range->size = size; 3895 range->hw_start = addr; 3896 range->flags = LOGIC_PIO_CPU_MMIO; 3897 3898 ret = logic_pio_register_range(range); 3899 if (ret) 3900 kfree(range); 3901 #endif 3902 3903 return ret; 3904 } 3905 3906 phys_addr_t pci_pio_to_address(unsigned long pio) 3907 { 3908 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3909 3910 #ifdef PCI_IOBASE 3911 if (pio >= MMIO_UPPER_LIMIT) 3912 return address; 3913 3914 address = logic_pio_to_hwaddr(pio); 3915 #endif 3916 3917 return address; 3918 } 3919 3920 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3921 { 3922 #ifdef PCI_IOBASE 3923 return logic_pio_trans_cpuaddr(address); 3924 #else 3925 if (address > IO_SPACE_LIMIT) 3926 return (unsigned long)-1; 3927 3928 return (unsigned long) address; 3929 #endif 3930 } 3931 3932 /** 3933 * pci_remap_iospace - Remap the memory mapped I/O space 3934 * @res: Resource describing the I/O space 3935 * @phys_addr: physical address of range to be mapped 3936 * 3937 * Remap the memory mapped I/O space described by the @res and the CPU 3938 * physical address @phys_addr into virtual address space. Only 3939 * architectures that have memory mapped IO functions defined (and the 3940 * PCI_IOBASE value defined) should call this function. 3941 */ 3942 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3943 { 3944 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3945 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3946 3947 if (!(res->flags & IORESOURCE_IO)) 3948 return -EINVAL; 3949 3950 if (res->end > IO_SPACE_LIMIT) 3951 return -EINVAL; 3952 3953 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3954 pgprot_device(PAGE_KERNEL)); 3955 #else 3956 /* 3957 * This architecture does not have memory mapped I/O space, 3958 * so this function should never be called 3959 */ 3960 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3961 return -ENODEV; 3962 #endif 3963 } 3964 EXPORT_SYMBOL(pci_remap_iospace); 3965 3966 /** 3967 * pci_unmap_iospace - Unmap the memory mapped I/O space 3968 * @res: resource to be unmapped 3969 * 3970 * Unmap the CPU virtual address @res from virtual address space. Only 3971 * architectures that have memory mapped IO functions defined (and the 3972 * PCI_IOBASE value defined) should call this function. 3973 */ 3974 void pci_unmap_iospace(struct resource *res) 3975 { 3976 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3977 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3978 3979 unmap_kernel_range(vaddr, resource_size(res)); 3980 #endif 3981 } 3982 EXPORT_SYMBOL(pci_unmap_iospace); 3983 3984 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 3985 { 3986 struct resource **res = ptr; 3987 3988 pci_unmap_iospace(*res); 3989 } 3990 3991 /** 3992 * devm_pci_remap_iospace - Managed pci_remap_iospace() 3993 * @dev: Generic device to remap IO address for 3994 * @res: Resource describing the I/O space 3995 * @phys_addr: physical address of range to be mapped 3996 * 3997 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 3998 * detach. 3999 */ 4000 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4001 phys_addr_t phys_addr) 4002 { 4003 const struct resource **ptr; 4004 int error; 4005 4006 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4007 if (!ptr) 4008 return -ENOMEM; 4009 4010 error = pci_remap_iospace(res, phys_addr); 4011 if (error) { 4012 devres_free(ptr); 4013 } else { 4014 *ptr = res; 4015 devres_add(dev, ptr); 4016 } 4017 4018 return error; 4019 } 4020 EXPORT_SYMBOL(devm_pci_remap_iospace); 4021 4022 /** 4023 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4024 * @dev: Generic device to remap IO address for 4025 * @offset: Resource address to map 4026 * @size: Size of map 4027 * 4028 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4029 * detach. 4030 */ 4031 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4032 resource_size_t offset, 4033 resource_size_t size) 4034 { 4035 void __iomem **ptr, *addr; 4036 4037 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4038 if (!ptr) 4039 return NULL; 4040 4041 addr = pci_remap_cfgspace(offset, size); 4042 if (addr) { 4043 *ptr = addr; 4044 devres_add(dev, ptr); 4045 } else 4046 devres_free(ptr); 4047 4048 return addr; 4049 } 4050 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4051 4052 /** 4053 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4054 * @dev: generic device to handle the resource for 4055 * @res: configuration space resource to be handled 4056 * 4057 * Checks that a resource is a valid memory region, requests the memory 4058 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4059 * proper PCI configuration space memory attributes are guaranteed. 4060 * 4061 * All operations are managed and will be undone on driver detach. 4062 * 4063 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4064 * on failure. Usage example:: 4065 * 4066 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4067 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4068 * if (IS_ERR(base)) 4069 * return PTR_ERR(base); 4070 */ 4071 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4072 struct resource *res) 4073 { 4074 resource_size_t size; 4075 const char *name; 4076 void __iomem *dest_ptr; 4077 4078 BUG_ON(!dev); 4079 4080 if (!res || resource_type(res) != IORESOURCE_MEM) { 4081 dev_err(dev, "invalid resource\n"); 4082 return IOMEM_ERR_PTR(-EINVAL); 4083 } 4084 4085 size = resource_size(res); 4086 name = res->name ?: dev_name(dev); 4087 4088 if (!devm_request_mem_region(dev, res->start, size, name)) { 4089 dev_err(dev, "can't request region for resource %pR\n", res); 4090 return IOMEM_ERR_PTR(-EBUSY); 4091 } 4092 4093 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4094 if (!dest_ptr) { 4095 dev_err(dev, "ioremap failed for resource %pR\n", res); 4096 devm_release_mem_region(dev, res->start, size); 4097 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4098 } 4099 4100 return dest_ptr; 4101 } 4102 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4103 4104 static void __pci_set_master(struct pci_dev *dev, bool enable) 4105 { 4106 u16 old_cmd, cmd; 4107 4108 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4109 if (enable) 4110 cmd = old_cmd | PCI_COMMAND_MASTER; 4111 else 4112 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4113 if (cmd != old_cmd) { 4114 pci_dbg(dev, "%s bus mastering\n", 4115 enable ? "enabling" : "disabling"); 4116 pci_write_config_word(dev, PCI_COMMAND, cmd); 4117 } 4118 dev->is_busmaster = enable; 4119 } 4120 4121 /** 4122 * pcibios_setup - process "pci=" kernel boot arguments 4123 * @str: string used to pass in "pci=" kernel boot arguments 4124 * 4125 * Process kernel boot arguments. This is the default implementation. 4126 * Architecture specific implementations can override this as necessary. 4127 */ 4128 char * __weak __init pcibios_setup(char *str) 4129 { 4130 return str; 4131 } 4132 4133 /** 4134 * pcibios_set_master - enable PCI bus-mastering for device dev 4135 * @dev: the PCI device to enable 4136 * 4137 * Enables PCI bus-mastering for the device. This is the default 4138 * implementation. Architecture specific implementations can override 4139 * this if necessary. 4140 */ 4141 void __weak pcibios_set_master(struct pci_dev *dev) 4142 { 4143 u8 lat; 4144 4145 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4146 if (pci_is_pcie(dev)) 4147 return; 4148 4149 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4150 if (lat < 16) 4151 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4152 else if (lat > pcibios_max_latency) 4153 lat = pcibios_max_latency; 4154 else 4155 return; 4156 4157 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4158 } 4159 4160 /** 4161 * pci_set_master - enables bus-mastering for device dev 4162 * @dev: the PCI device to enable 4163 * 4164 * Enables bus-mastering on the device and calls pcibios_set_master() 4165 * to do the needed arch specific settings. 4166 */ 4167 void pci_set_master(struct pci_dev *dev) 4168 { 4169 __pci_set_master(dev, true); 4170 pcibios_set_master(dev); 4171 } 4172 EXPORT_SYMBOL(pci_set_master); 4173 4174 /** 4175 * pci_clear_master - disables bus-mastering for device dev 4176 * @dev: the PCI device to disable 4177 */ 4178 void pci_clear_master(struct pci_dev *dev) 4179 { 4180 __pci_set_master(dev, false); 4181 } 4182 EXPORT_SYMBOL(pci_clear_master); 4183 4184 /** 4185 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4186 * @dev: the PCI device for which MWI is to be enabled 4187 * 4188 * Helper function for pci_set_mwi. 4189 * Originally copied from drivers/net/acenic.c. 4190 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4191 * 4192 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4193 */ 4194 int pci_set_cacheline_size(struct pci_dev *dev) 4195 { 4196 u8 cacheline_size; 4197 4198 if (!pci_cache_line_size) 4199 return -EINVAL; 4200 4201 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4202 equal to or multiple of the right value. */ 4203 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4204 if (cacheline_size >= pci_cache_line_size && 4205 (cacheline_size % pci_cache_line_size) == 0) 4206 return 0; 4207 4208 /* Write the correct value. */ 4209 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4210 /* Read it back. */ 4211 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4212 if (cacheline_size == pci_cache_line_size) 4213 return 0; 4214 4215 pci_info(dev, "cache line size of %d is not supported\n", 4216 pci_cache_line_size << 2); 4217 4218 return -EINVAL; 4219 } 4220 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4221 4222 /** 4223 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4224 * @dev: the PCI device for which MWI is enabled 4225 * 4226 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4227 * 4228 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4229 */ 4230 int pci_set_mwi(struct pci_dev *dev) 4231 { 4232 #ifdef PCI_DISABLE_MWI 4233 return 0; 4234 #else 4235 int rc; 4236 u16 cmd; 4237 4238 rc = pci_set_cacheline_size(dev); 4239 if (rc) 4240 return rc; 4241 4242 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4243 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4244 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4245 cmd |= PCI_COMMAND_INVALIDATE; 4246 pci_write_config_word(dev, PCI_COMMAND, cmd); 4247 } 4248 return 0; 4249 #endif 4250 } 4251 EXPORT_SYMBOL(pci_set_mwi); 4252 4253 /** 4254 * pcim_set_mwi - a device-managed pci_set_mwi() 4255 * @dev: the PCI device for which MWI is enabled 4256 * 4257 * Managed pci_set_mwi(). 4258 * 4259 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4260 */ 4261 int pcim_set_mwi(struct pci_dev *dev) 4262 { 4263 struct pci_devres *dr; 4264 4265 dr = find_pci_dr(dev); 4266 if (!dr) 4267 return -ENOMEM; 4268 4269 dr->mwi = 1; 4270 return pci_set_mwi(dev); 4271 } 4272 EXPORT_SYMBOL(pcim_set_mwi); 4273 4274 /** 4275 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4276 * @dev: the PCI device for which MWI is enabled 4277 * 4278 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4279 * Callers are not required to check the return value. 4280 * 4281 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4282 */ 4283 int pci_try_set_mwi(struct pci_dev *dev) 4284 { 4285 #ifdef PCI_DISABLE_MWI 4286 return 0; 4287 #else 4288 return pci_set_mwi(dev); 4289 #endif 4290 } 4291 EXPORT_SYMBOL(pci_try_set_mwi); 4292 4293 /** 4294 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4295 * @dev: the PCI device to disable 4296 * 4297 * Disables PCI Memory-Write-Invalidate transaction on the device 4298 */ 4299 void pci_clear_mwi(struct pci_dev *dev) 4300 { 4301 #ifndef PCI_DISABLE_MWI 4302 u16 cmd; 4303 4304 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4305 if (cmd & PCI_COMMAND_INVALIDATE) { 4306 cmd &= ~PCI_COMMAND_INVALIDATE; 4307 pci_write_config_word(dev, PCI_COMMAND, cmd); 4308 } 4309 #endif 4310 } 4311 EXPORT_SYMBOL(pci_clear_mwi); 4312 4313 /** 4314 * pci_intx - enables/disables PCI INTx for device dev 4315 * @pdev: the PCI device to operate on 4316 * @enable: boolean: whether to enable or disable PCI INTx 4317 * 4318 * Enables/disables PCI INTx for device @pdev 4319 */ 4320 void pci_intx(struct pci_dev *pdev, int enable) 4321 { 4322 u16 pci_command, new; 4323 4324 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4325 4326 if (enable) 4327 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4328 else 4329 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4330 4331 if (new != pci_command) { 4332 struct pci_devres *dr; 4333 4334 pci_write_config_word(pdev, PCI_COMMAND, new); 4335 4336 dr = find_pci_dr(pdev); 4337 if (dr && !dr->restore_intx) { 4338 dr->restore_intx = 1; 4339 dr->orig_intx = !enable; 4340 } 4341 } 4342 } 4343 EXPORT_SYMBOL_GPL(pci_intx); 4344 4345 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4346 { 4347 struct pci_bus *bus = dev->bus; 4348 bool mask_updated = true; 4349 u32 cmd_status_dword; 4350 u16 origcmd, newcmd; 4351 unsigned long flags; 4352 bool irq_pending; 4353 4354 /* 4355 * We do a single dword read to retrieve both command and status. 4356 * Document assumptions that make this possible. 4357 */ 4358 BUILD_BUG_ON(PCI_COMMAND % 4); 4359 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4360 4361 raw_spin_lock_irqsave(&pci_lock, flags); 4362 4363 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4364 4365 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4366 4367 /* 4368 * Check interrupt status register to see whether our device 4369 * triggered the interrupt (when masking) or the next IRQ is 4370 * already pending (when unmasking). 4371 */ 4372 if (mask != irq_pending) { 4373 mask_updated = false; 4374 goto done; 4375 } 4376 4377 origcmd = cmd_status_dword; 4378 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4379 if (mask) 4380 newcmd |= PCI_COMMAND_INTX_DISABLE; 4381 if (newcmd != origcmd) 4382 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4383 4384 done: 4385 raw_spin_unlock_irqrestore(&pci_lock, flags); 4386 4387 return mask_updated; 4388 } 4389 4390 /** 4391 * pci_check_and_mask_intx - mask INTx on pending interrupt 4392 * @dev: the PCI device to operate on 4393 * 4394 * Check if the device dev has its INTx line asserted, mask it and return 4395 * true in that case. False is returned if no interrupt was pending. 4396 */ 4397 bool pci_check_and_mask_intx(struct pci_dev *dev) 4398 { 4399 return pci_check_and_set_intx_mask(dev, true); 4400 } 4401 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4402 4403 /** 4404 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4405 * @dev: the PCI device to operate on 4406 * 4407 * Check if the device dev has its INTx line asserted, unmask it if not and 4408 * return true. False is returned and the mask remains active if there was 4409 * still an interrupt pending. 4410 */ 4411 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4412 { 4413 return pci_check_and_set_intx_mask(dev, false); 4414 } 4415 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4416 4417 /** 4418 * pci_wait_for_pending_transaction - wait for pending transaction 4419 * @dev: the PCI device to operate on 4420 * 4421 * Return 0 if transaction is pending 1 otherwise. 4422 */ 4423 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4424 { 4425 if (!pci_is_pcie(dev)) 4426 return 1; 4427 4428 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4429 PCI_EXP_DEVSTA_TRPND); 4430 } 4431 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4432 4433 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 4434 { 4435 int delay = 1; 4436 u32 id; 4437 4438 /* 4439 * After reset, the device should not silently discard config 4440 * requests, but it may still indicate that it needs more time by 4441 * responding to them with CRS completions. The Root Port will 4442 * generally synthesize ~0 data to complete the read (except when 4443 * CRS SV is enabled and the read was for the Vendor ID; in that 4444 * case it synthesizes 0x0001 data). 4445 * 4446 * Wait for the device to return a non-CRS completion. Read the 4447 * Command register instead of Vendor ID so we don't have to 4448 * contend with the CRS SV value. 4449 */ 4450 pci_read_config_dword(dev, PCI_COMMAND, &id); 4451 while (id == ~0) { 4452 if (delay > timeout) { 4453 pci_warn(dev, "not ready %dms after %s; giving up\n", 4454 delay - 1, reset_type); 4455 return -ENOTTY; 4456 } 4457 4458 if (delay > 1000) 4459 pci_info(dev, "not ready %dms after %s; waiting\n", 4460 delay - 1, reset_type); 4461 4462 msleep(delay); 4463 delay *= 2; 4464 pci_read_config_dword(dev, PCI_COMMAND, &id); 4465 } 4466 4467 if (delay > 1000) 4468 pci_info(dev, "ready %dms after %s\n", delay - 1, 4469 reset_type); 4470 4471 return 0; 4472 } 4473 4474 /** 4475 * pcie_has_flr - check if a device supports function level resets 4476 * @dev: device to check 4477 * 4478 * Returns true if the device advertises support for PCIe function level 4479 * resets. 4480 */ 4481 bool pcie_has_flr(struct pci_dev *dev) 4482 { 4483 u32 cap; 4484 4485 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4486 return false; 4487 4488 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4489 return cap & PCI_EXP_DEVCAP_FLR; 4490 } 4491 EXPORT_SYMBOL_GPL(pcie_has_flr); 4492 4493 /** 4494 * pcie_flr - initiate a PCIe function level reset 4495 * @dev: device to reset 4496 * 4497 * Initiate a function level reset on @dev. The caller should ensure the 4498 * device supports FLR before calling this function, e.g. by using the 4499 * pcie_has_flr() helper. 4500 */ 4501 int pcie_flr(struct pci_dev *dev) 4502 { 4503 if (!pci_wait_for_pending_transaction(dev)) 4504 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4505 4506 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4507 4508 if (dev->imm_ready) 4509 return 0; 4510 4511 /* 4512 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4513 * 100ms, but may silently discard requests while the FLR is in 4514 * progress. Wait 100ms before trying to access the device. 4515 */ 4516 msleep(100); 4517 4518 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4519 } 4520 EXPORT_SYMBOL_GPL(pcie_flr); 4521 4522 static int pci_af_flr(struct pci_dev *dev, int probe) 4523 { 4524 int pos; 4525 u8 cap; 4526 4527 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4528 if (!pos) 4529 return -ENOTTY; 4530 4531 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4532 return -ENOTTY; 4533 4534 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4535 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4536 return -ENOTTY; 4537 4538 if (probe) 4539 return 0; 4540 4541 /* 4542 * Wait for Transaction Pending bit to clear. A word-aligned test 4543 * is used, so we use the control offset rather than status and shift 4544 * the test bit to match. 4545 */ 4546 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4547 PCI_AF_STATUS_TP << 8)) 4548 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4549 4550 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4551 4552 if (dev->imm_ready) 4553 return 0; 4554 4555 /* 4556 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4557 * updated 27 July 2006; a device must complete an FLR within 4558 * 100ms, but may silently discard requests while the FLR is in 4559 * progress. Wait 100ms before trying to access the device. 4560 */ 4561 msleep(100); 4562 4563 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4564 } 4565 4566 /** 4567 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4568 * @dev: Device to reset. 4569 * @probe: If set, only check if the device can be reset this way. 4570 * 4571 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4572 * unset, it will be reinitialized internally when going from PCI_D3hot to 4573 * PCI_D0. If that's the case and the device is not in a low-power state 4574 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4575 * 4576 * NOTE: This causes the caller to sleep for twice the device power transition 4577 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4578 * by default (i.e. unless the @dev's d3_delay field has a different value). 4579 * Moreover, only devices in D0 can be reset by this function. 4580 */ 4581 static int pci_pm_reset(struct pci_dev *dev, int probe) 4582 { 4583 u16 csr; 4584 4585 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4586 return -ENOTTY; 4587 4588 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4589 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4590 return -ENOTTY; 4591 4592 if (probe) 4593 return 0; 4594 4595 if (dev->current_state != PCI_D0) 4596 return -EINVAL; 4597 4598 csr &= ~PCI_PM_CTRL_STATE_MASK; 4599 csr |= PCI_D3hot; 4600 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4601 pci_dev_d3_sleep(dev); 4602 4603 csr &= ~PCI_PM_CTRL_STATE_MASK; 4604 csr |= PCI_D0; 4605 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4606 pci_dev_d3_sleep(dev); 4607 4608 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS); 4609 } 4610 /** 4611 * pcie_wait_for_link - Wait until link is active or inactive 4612 * @pdev: Bridge device 4613 * @active: waiting for active or inactive? 4614 * 4615 * Use this to wait till link becomes active or inactive. 4616 */ 4617 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4618 { 4619 int timeout = 1000; 4620 bool ret; 4621 u16 lnk_status; 4622 4623 /* 4624 * Some controllers might not implement link active reporting. In this 4625 * case, we wait for 1000 + 100 ms. 4626 */ 4627 if (!pdev->link_active_reporting) { 4628 msleep(1100); 4629 return true; 4630 } 4631 4632 /* 4633 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4634 * after which we should expect an link active if the reset was 4635 * successful. If so, software must wait a minimum 100ms before sending 4636 * configuration requests to devices downstream this port. 4637 * 4638 * If the link fails to activate, either the device was physically 4639 * removed or the link is permanently failed. 4640 */ 4641 if (active) 4642 msleep(20); 4643 for (;;) { 4644 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4645 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4646 if (ret == active) 4647 break; 4648 if (timeout <= 0) 4649 break; 4650 msleep(10); 4651 timeout -= 10; 4652 } 4653 if (active && ret) 4654 msleep(100); 4655 else if (ret != active) 4656 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n", 4657 active ? "set" : "cleared"); 4658 return ret == active; 4659 } 4660 4661 void pci_reset_secondary_bus(struct pci_dev *dev) 4662 { 4663 u16 ctrl; 4664 4665 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4666 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4667 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4668 4669 /* 4670 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4671 * this to 2ms to ensure that we meet the minimum requirement. 4672 */ 4673 msleep(2); 4674 4675 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4676 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4677 4678 /* 4679 * Trhfa for conventional PCI is 2^25 clock cycles. 4680 * Assuming a minimum 33MHz clock this results in a 1s 4681 * delay before we can consider subordinate devices to 4682 * be re-initialized. PCIe has some ways to shorten this, 4683 * but we don't make use of them yet. 4684 */ 4685 ssleep(1); 4686 } 4687 4688 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4689 { 4690 pci_reset_secondary_bus(dev); 4691 } 4692 4693 /** 4694 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4695 * @dev: Bridge device 4696 * 4697 * Use the bridge control register to assert reset on the secondary bus. 4698 * Devices on the secondary bus are left in power-on state. 4699 */ 4700 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4701 { 4702 pcibios_reset_secondary_bus(dev); 4703 4704 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4705 } 4706 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4707 4708 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4709 { 4710 struct pci_dev *pdev; 4711 4712 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4713 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4714 return -ENOTTY; 4715 4716 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4717 if (pdev != dev) 4718 return -ENOTTY; 4719 4720 if (probe) 4721 return 0; 4722 4723 return pci_bridge_secondary_bus_reset(dev->bus->self); 4724 } 4725 4726 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4727 { 4728 int rc = -ENOTTY; 4729 4730 if (!hotplug || !try_module_get(hotplug->owner)) 4731 return rc; 4732 4733 if (hotplug->ops->reset_slot) 4734 rc = hotplug->ops->reset_slot(hotplug, probe); 4735 4736 module_put(hotplug->owner); 4737 4738 return rc; 4739 } 4740 4741 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4742 { 4743 struct pci_dev *pdev; 4744 4745 if (dev->subordinate || !dev->slot || 4746 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4747 return -ENOTTY; 4748 4749 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4750 if (pdev != dev && pdev->slot == dev->slot) 4751 return -ENOTTY; 4752 4753 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4754 } 4755 4756 static void pci_dev_lock(struct pci_dev *dev) 4757 { 4758 pci_cfg_access_lock(dev); 4759 /* block PM suspend, driver probe, etc. */ 4760 device_lock(&dev->dev); 4761 } 4762 4763 /* Return 1 on successful lock, 0 on contention */ 4764 static int pci_dev_trylock(struct pci_dev *dev) 4765 { 4766 if (pci_cfg_access_trylock(dev)) { 4767 if (device_trylock(&dev->dev)) 4768 return 1; 4769 pci_cfg_access_unlock(dev); 4770 } 4771 4772 return 0; 4773 } 4774 4775 static void pci_dev_unlock(struct pci_dev *dev) 4776 { 4777 device_unlock(&dev->dev); 4778 pci_cfg_access_unlock(dev); 4779 } 4780 4781 static void pci_dev_save_and_disable(struct pci_dev *dev) 4782 { 4783 const struct pci_error_handlers *err_handler = 4784 dev->driver ? dev->driver->err_handler : NULL; 4785 4786 /* 4787 * dev->driver->err_handler->reset_prepare() is protected against 4788 * races with ->remove() by the device lock, which must be held by 4789 * the caller. 4790 */ 4791 if (err_handler && err_handler->reset_prepare) 4792 err_handler->reset_prepare(dev); 4793 4794 /* 4795 * Wake-up device prior to save. PM registers default to D0 after 4796 * reset and a simple register restore doesn't reliably return 4797 * to a non-D0 state anyway. 4798 */ 4799 pci_set_power_state(dev, PCI_D0); 4800 4801 pci_save_state(dev); 4802 /* 4803 * Disable the device by clearing the Command register, except for 4804 * INTx-disable which is set. This not only disables MMIO and I/O port 4805 * BARs, but also prevents the device from being Bus Master, preventing 4806 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4807 * compliant devices, INTx-disable prevents legacy interrupts. 4808 */ 4809 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4810 } 4811 4812 static void pci_dev_restore(struct pci_dev *dev) 4813 { 4814 const struct pci_error_handlers *err_handler = 4815 dev->driver ? dev->driver->err_handler : NULL; 4816 4817 pci_restore_state(dev); 4818 4819 /* 4820 * dev->driver->err_handler->reset_done() is protected against 4821 * races with ->remove() by the device lock, which must be held by 4822 * the caller. 4823 */ 4824 if (err_handler && err_handler->reset_done) 4825 err_handler->reset_done(dev); 4826 } 4827 4828 /** 4829 * __pci_reset_function_locked - reset a PCI device function while holding 4830 * the @dev mutex lock. 4831 * @dev: PCI device to reset 4832 * 4833 * Some devices allow an individual function to be reset without affecting 4834 * other functions in the same device. The PCI device must be responsive 4835 * to PCI config space in order to use this function. 4836 * 4837 * The device function is presumed to be unused and the caller is holding 4838 * the device mutex lock when this function is called. 4839 * 4840 * Resetting the device will make the contents of PCI configuration space 4841 * random, so any caller of this must be prepared to reinitialise the 4842 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4843 * etc. 4844 * 4845 * Returns 0 if the device function was successfully reset or negative if the 4846 * device doesn't support resetting a single function. 4847 */ 4848 int __pci_reset_function_locked(struct pci_dev *dev) 4849 { 4850 int rc; 4851 4852 might_sleep(); 4853 4854 /* 4855 * A reset method returns -ENOTTY if it doesn't support this device 4856 * and we should try the next method. 4857 * 4858 * If it returns 0 (success), we're finished. If it returns any 4859 * other error, we're also finished: this indicates that further 4860 * reset mechanisms might be broken on the device. 4861 */ 4862 rc = pci_dev_specific_reset(dev, 0); 4863 if (rc != -ENOTTY) 4864 return rc; 4865 if (pcie_has_flr(dev)) { 4866 rc = pcie_flr(dev); 4867 if (rc != -ENOTTY) 4868 return rc; 4869 } 4870 rc = pci_af_flr(dev, 0); 4871 if (rc != -ENOTTY) 4872 return rc; 4873 rc = pci_pm_reset(dev, 0); 4874 if (rc != -ENOTTY) 4875 return rc; 4876 rc = pci_dev_reset_slot_function(dev, 0); 4877 if (rc != -ENOTTY) 4878 return rc; 4879 return pci_parent_bus_reset(dev, 0); 4880 } 4881 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4882 4883 /** 4884 * pci_probe_reset_function - check whether the device can be safely reset 4885 * @dev: PCI device to reset 4886 * 4887 * Some devices allow an individual function to be reset without affecting 4888 * other functions in the same device. The PCI device must be responsive 4889 * to PCI config space in order to use this function. 4890 * 4891 * Returns 0 if the device function can be reset or negative if the 4892 * device doesn't support resetting a single function. 4893 */ 4894 int pci_probe_reset_function(struct pci_dev *dev) 4895 { 4896 int rc; 4897 4898 might_sleep(); 4899 4900 rc = pci_dev_specific_reset(dev, 1); 4901 if (rc != -ENOTTY) 4902 return rc; 4903 if (pcie_has_flr(dev)) 4904 return 0; 4905 rc = pci_af_flr(dev, 1); 4906 if (rc != -ENOTTY) 4907 return rc; 4908 rc = pci_pm_reset(dev, 1); 4909 if (rc != -ENOTTY) 4910 return rc; 4911 rc = pci_dev_reset_slot_function(dev, 1); 4912 if (rc != -ENOTTY) 4913 return rc; 4914 4915 return pci_parent_bus_reset(dev, 1); 4916 } 4917 4918 /** 4919 * pci_reset_function - quiesce and reset a PCI device function 4920 * @dev: PCI device to reset 4921 * 4922 * Some devices allow an individual function to be reset without affecting 4923 * other functions in the same device. The PCI device must be responsive 4924 * to PCI config space in order to use this function. 4925 * 4926 * This function does not just reset the PCI portion of a device, but 4927 * clears all the state associated with the device. This function differs 4928 * from __pci_reset_function_locked() in that it saves and restores device state 4929 * over the reset and takes the PCI device lock. 4930 * 4931 * Returns 0 if the device function was successfully reset or negative if the 4932 * device doesn't support resetting a single function. 4933 */ 4934 int pci_reset_function(struct pci_dev *dev) 4935 { 4936 int rc; 4937 4938 if (!dev->reset_fn) 4939 return -ENOTTY; 4940 4941 pci_dev_lock(dev); 4942 pci_dev_save_and_disable(dev); 4943 4944 rc = __pci_reset_function_locked(dev); 4945 4946 pci_dev_restore(dev); 4947 pci_dev_unlock(dev); 4948 4949 return rc; 4950 } 4951 EXPORT_SYMBOL_GPL(pci_reset_function); 4952 4953 /** 4954 * pci_reset_function_locked - quiesce and reset a PCI device function 4955 * @dev: PCI device to reset 4956 * 4957 * Some devices allow an individual function to be reset without affecting 4958 * other functions in the same device. The PCI device must be responsive 4959 * to PCI config space in order to use this function. 4960 * 4961 * This function does not just reset the PCI portion of a device, but 4962 * clears all the state associated with the device. This function differs 4963 * from __pci_reset_function_locked() in that it saves and restores device state 4964 * over the reset. It also differs from pci_reset_function() in that it 4965 * requires the PCI device lock to be held. 4966 * 4967 * Returns 0 if the device function was successfully reset or negative if the 4968 * device doesn't support resetting a single function. 4969 */ 4970 int pci_reset_function_locked(struct pci_dev *dev) 4971 { 4972 int rc; 4973 4974 if (!dev->reset_fn) 4975 return -ENOTTY; 4976 4977 pci_dev_save_and_disable(dev); 4978 4979 rc = __pci_reset_function_locked(dev); 4980 4981 pci_dev_restore(dev); 4982 4983 return rc; 4984 } 4985 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 4986 4987 /** 4988 * pci_try_reset_function - quiesce and reset a PCI device function 4989 * @dev: PCI device to reset 4990 * 4991 * Same as above, except return -EAGAIN if unable to lock device. 4992 */ 4993 int pci_try_reset_function(struct pci_dev *dev) 4994 { 4995 int rc; 4996 4997 if (!dev->reset_fn) 4998 return -ENOTTY; 4999 5000 if (!pci_dev_trylock(dev)) 5001 return -EAGAIN; 5002 5003 pci_dev_save_and_disable(dev); 5004 rc = __pci_reset_function_locked(dev); 5005 pci_dev_restore(dev); 5006 pci_dev_unlock(dev); 5007 5008 return rc; 5009 } 5010 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5011 5012 /* Do any devices on or below this bus prevent a bus reset? */ 5013 static bool pci_bus_resetable(struct pci_bus *bus) 5014 { 5015 struct pci_dev *dev; 5016 5017 5018 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5019 return false; 5020 5021 list_for_each_entry(dev, &bus->devices, bus_list) { 5022 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5023 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5024 return false; 5025 } 5026 5027 return true; 5028 } 5029 5030 /* Lock devices from the top of the tree down */ 5031 static void pci_bus_lock(struct pci_bus *bus) 5032 { 5033 struct pci_dev *dev; 5034 5035 list_for_each_entry(dev, &bus->devices, bus_list) { 5036 pci_dev_lock(dev); 5037 if (dev->subordinate) 5038 pci_bus_lock(dev->subordinate); 5039 } 5040 } 5041 5042 /* Unlock devices from the bottom of the tree up */ 5043 static void pci_bus_unlock(struct pci_bus *bus) 5044 { 5045 struct pci_dev *dev; 5046 5047 list_for_each_entry(dev, &bus->devices, bus_list) { 5048 if (dev->subordinate) 5049 pci_bus_unlock(dev->subordinate); 5050 pci_dev_unlock(dev); 5051 } 5052 } 5053 5054 /* Return 1 on successful lock, 0 on contention */ 5055 static int pci_bus_trylock(struct pci_bus *bus) 5056 { 5057 struct pci_dev *dev; 5058 5059 list_for_each_entry(dev, &bus->devices, bus_list) { 5060 if (!pci_dev_trylock(dev)) 5061 goto unlock; 5062 if (dev->subordinate) { 5063 if (!pci_bus_trylock(dev->subordinate)) { 5064 pci_dev_unlock(dev); 5065 goto unlock; 5066 } 5067 } 5068 } 5069 return 1; 5070 5071 unlock: 5072 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5073 if (dev->subordinate) 5074 pci_bus_unlock(dev->subordinate); 5075 pci_dev_unlock(dev); 5076 } 5077 return 0; 5078 } 5079 5080 /* Do any devices on or below this slot prevent a bus reset? */ 5081 static bool pci_slot_resetable(struct pci_slot *slot) 5082 { 5083 struct pci_dev *dev; 5084 5085 if (slot->bus->self && 5086 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5087 return false; 5088 5089 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5090 if (!dev->slot || dev->slot != slot) 5091 continue; 5092 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5093 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5094 return false; 5095 } 5096 5097 return true; 5098 } 5099 5100 /* Lock devices from the top of the tree down */ 5101 static void pci_slot_lock(struct pci_slot *slot) 5102 { 5103 struct pci_dev *dev; 5104 5105 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5106 if (!dev->slot || dev->slot != slot) 5107 continue; 5108 pci_dev_lock(dev); 5109 if (dev->subordinate) 5110 pci_bus_lock(dev->subordinate); 5111 } 5112 } 5113 5114 /* Unlock devices from the bottom of the tree up */ 5115 static void pci_slot_unlock(struct pci_slot *slot) 5116 { 5117 struct pci_dev *dev; 5118 5119 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5120 if (!dev->slot || dev->slot != slot) 5121 continue; 5122 if (dev->subordinate) 5123 pci_bus_unlock(dev->subordinate); 5124 pci_dev_unlock(dev); 5125 } 5126 } 5127 5128 /* Return 1 on successful lock, 0 on contention */ 5129 static int pci_slot_trylock(struct pci_slot *slot) 5130 { 5131 struct pci_dev *dev; 5132 5133 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5134 if (!dev->slot || dev->slot != slot) 5135 continue; 5136 if (!pci_dev_trylock(dev)) 5137 goto unlock; 5138 if (dev->subordinate) { 5139 if (!pci_bus_trylock(dev->subordinate)) { 5140 pci_dev_unlock(dev); 5141 goto unlock; 5142 } 5143 } 5144 } 5145 return 1; 5146 5147 unlock: 5148 list_for_each_entry_continue_reverse(dev, 5149 &slot->bus->devices, bus_list) { 5150 if (!dev->slot || dev->slot != slot) 5151 continue; 5152 if (dev->subordinate) 5153 pci_bus_unlock(dev->subordinate); 5154 pci_dev_unlock(dev); 5155 } 5156 return 0; 5157 } 5158 5159 /* 5160 * Save and disable devices from the top of the tree down while holding 5161 * the @dev mutex lock for the entire tree. 5162 */ 5163 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5164 { 5165 struct pci_dev *dev; 5166 5167 list_for_each_entry(dev, &bus->devices, bus_list) { 5168 pci_dev_save_and_disable(dev); 5169 if (dev->subordinate) 5170 pci_bus_save_and_disable_locked(dev->subordinate); 5171 } 5172 } 5173 5174 /* 5175 * Restore devices from top of the tree down while holding @dev mutex lock 5176 * for the entire tree. Parent bridges need to be restored before we can 5177 * get to subordinate devices. 5178 */ 5179 static void pci_bus_restore_locked(struct pci_bus *bus) 5180 { 5181 struct pci_dev *dev; 5182 5183 list_for_each_entry(dev, &bus->devices, bus_list) { 5184 pci_dev_restore(dev); 5185 if (dev->subordinate) 5186 pci_bus_restore_locked(dev->subordinate); 5187 } 5188 } 5189 5190 /* 5191 * Save and disable devices from the top of the tree down while holding 5192 * the @dev mutex lock for the entire tree. 5193 */ 5194 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5195 { 5196 struct pci_dev *dev; 5197 5198 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5199 if (!dev->slot || dev->slot != slot) 5200 continue; 5201 pci_dev_save_and_disable(dev); 5202 if (dev->subordinate) 5203 pci_bus_save_and_disable_locked(dev->subordinate); 5204 } 5205 } 5206 5207 /* 5208 * Restore devices from top of the tree down while holding @dev mutex lock 5209 * for the entire tree. Parent bridges need to be restored before we can 5210 * get to subordinate devices. 5211 */ 5212 static void pci_slot_restore_locked(struct pci_slot *slot) 5213 { 5214 struct pci_dev *dev; 5215 5216 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5217 if (!dev->slot || dev->slot != slot) 5218 continue; 5219 pci_dev_restore(dev); 5220 if (dev->subordinate) 5221 pci_bus_restore_locked(dev->subordinate); 5222 } 5223 } 5224 5225 static int pci_slot_reset(struct pci_slot *slot, int probe) 5226 { 5227 int rc; 5228 5229 if (!slot || !pci_slot_resetable(slot)) 5230 return -ENOTTY; 5231 5232 if (!probe) 5233 pci_slot_lock(slot); 5234 5235 might_sleep(); 5236 5237 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5238 5239 if (!probe) 5240 pci_slot_unlock(slot); 5241 5242 return rc; 5243 } 5244 5245 /** 5246 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5247 * @slot: PCI slot to probe 5248 * 5249 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5250 */ 5251 int pci_probe_reset_slot(struct pci_slot *slot) 5252 { 5253 return pci_slot_reset(slot, 1); 5254 } 5255 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5256 5257 /** 5258 * __pci_reset_slot - Try to reset a PCI slot 5259 * @slot: PCI slot to reset 5260 * 5261 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5262 * independent of other slots. For instance, some slots may support slot power 5263 * control. In the case of a 1:1 bus to slot architecture, this function may 5264 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5265 * Generally a slot reset should be attempted before a bus reset. All of the 5266 * function of the slot and any subordinate buses behind the slot are reset 5267 * through this function. PCI config space of all devices in the slot and 5268 * behind the slot is saved before and restored after reset. 5269 * 5270 * Same as above except return -EAGAIN if the slot cannot be locked 5271 */ 5272 static int __pci_reset_slot(struct pci_slot *slot) 5273 { 5274 int rc; 5275 5276 rc = pci_slot_reset(slot, 1); 5277 if (rc) 5278 return rc; 5279 5280 if (pci_slot_trylock(slot)) { 5281 pci_slot_save_and_disable_locked(slot); 5282 might_sleep(); 5283 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5284 pci_slot_restore_locked(slot); 5285 pci_slot_unlock(slot); 5286 } else 5287 rc = -EAGAIN; 5288 5289 return rc; 5290 } 5291 5292 static int pci_bus_reset(struct pci_bus *bus, int probe) 5293 { 5294 int ret; 5295 5296 if (!bus->self || !pci_bus_resetable(bus)) 5297 return -ENOTTY; 5298 5299 if (probe) 5300 return 0; 5301 5302 pci_bus_lock(bus); 5303 5304 might_sleep(); 5305 5306 ret = pci_bridge_secondary_bus_reset(bus->self); 5307 5308 pci_bus_unlock(bus); 5309 5310 return ret; 5311 } 5312 5313 /** 5314 * pci_bus_error_reset - reset the bridge's subordinate bus 5315 * @bridge: The parent device that connects to the bus to reset 5316 * 5317 * This function will first try to reset the slots on this bus if the method is 5318 * available. If slot reset fails or is not available, this will fall back to a 5319 * secondary bus reset. 5320 */ 5321 int pci_bus_error_reset(struct pci_dev *bridge) 5322 { 5323 struct pci_bus *bus = bridge->subordinate; 5324 struct pci_slot *slot; 5325 5326 if (!bus) 5327 return -ENOTTY; 5328 5329 mutex_lock(&pci_slot_mutex); 5330 if (list_empty(&bus->slots)) 5331 goto bus_reset; 5332 5333 list_for_each_entry(slot, &bus->slots, list) 5334 if (pci_probe_reset_slot(slot)) 5335 goto bus_reset; 5336 5337 list_for_each_entry(slot, &bus->slots, list) 5338 if (pci_slot_reset(slot, 0)) 5339 goto bus_reset; 5340 5341 mutex_unlock(&pci_slot_mutex); 5342 return 0; 5343 bus_reset: 5344 mutex_unlock(&pci_slot_mutex); 5345 return pci_bus_reset(bridge->subordinate, 0); 5346 } 5347 5348 /** 5349 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5350 * @bus: PCI bus to probe 5351 * 5352 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5353 */ 5354 int pci_probe_reset_bus(struct pci_bus *bus) 5355 { 5356 return pci_bus_reset(bus, 1); 5357 } 5358 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5359 5360 /** 5361 * __pci_reset_bus - Try to reset a PCI bus 5362 * @bus: top level PCI bus to reset 5363 * 5364 * Same as above except return -EAGAIN if the bus cannot be locked 5365 */ 5366 static int __pci_reset_bus(struct pci_bus *bus) 5367 { 5368 int rc; 5369 5370 rc = pci_bus_reset(bus, 1); 5371 if (rc) 5372 return rc; 5373 5374 if (pci_bus_trylock(bus)) { 5375 pci_bus_save_and_disable_locked(bus); 5376 might_sleep(); 5377 rc = pci_bridge_secondary_bus_reset(bus->self); 5378 pci_bus_restore_locked(bus); 5379 pci_bus_unlock(bus); 5380 } else 5381 rc = -EAGAIN; 5382 5383 return rc; 5384 } 5385 5386 /** 5387 * pci_reset_bus - Try to reset a PCI bus 5388 * @pdev: top level PCI device to reset via slot/bus 5389 * 5390 * Same as above except return -EAGAIN if the bus cannot be locked 5391 */ 5392 int pci_reset_bus(struct pci_dev *pdev) 5393 { 5394 return (!pci_probe_reset_slot(pdev->slot)) ? 5395 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5396 } 5397 EXPORT_SYMBOL_GPL(pci_reset_bus); 5398 5399 /** 5400 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5401 * @dev: PCI device to query 5402 * 5403 * Returns mmrbc: maximum designed memory read count in bytes or 5404 * appropriate error value. 5405 */ 5406 int pcix_get_max_mmrbc(struct pci_dev *dev) 5407 { 5408 int cap; 5409 u32 stat; 5410 5411 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5412 if (!cap) 5413 return -EINVAL; 5414 5415 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5416 return -EINVAL; 5417 5418 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5419 } 5420 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5421 5422 /** 5423 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5424 * @dev: PCI device to query 5425 * 5426 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5427 * value. 5428 */ 5429 int pcix_get_mmrbc(struct pci_dev *dev) 5430 { 5431 int cap; 5432 u16 cmd; 5433 5434 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5435 if (!cap) 5436 return -EINVAL; 5437 5438 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5439 return -EINVAL; 5440 5441 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5442 } 5443 EXPORT_SYMBOL(pcix_get_mmrbc); 5444 5445 /** 5446 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5447 * @dev: PCI device to query 5448 * @mmrbc: maximum memory read count in bytes 5449 * valid values are 512, 1024, 2048, 4096 5450 * 5451 * If possible sets maximum memory read byte count, some bridges have errata 5452 * that prevent this. 5453 */ 5454 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5455 { 5456 int cap; 5457 u32 stat, v, o; 5458 u16 cmd; 5459 5460 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5461 return -EINVAL; 5462 5463 v = ffs(mmrbc) - 10; 5464 5465 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5466 if (!cap) 5467 return -EINVAL; 5468 5469 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5470 return -EINVAL; 5471 5472 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5473 return -E2BIG; 5474 5475 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5476 return -EINVAL; 5477 5478 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5479 if (o != v) { 5480 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5481 return -EIO; 5482 5483 cmd &= ~PCI_X_CMD_MAX_READ; 5484 cmd |= v << 2; 5485 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5486 return -EIO; 5487 } 5488 return 0; 5489 } 5490 EXPORT_SYMBOL(pcix_set_mmrbc); 5491 5492 /** 5493 * pcie_get_readrq - get PCI Express read request size 5494 * @dev: PCI device to query 5495 * 5496 * Returns maximum memory read request in bytes or appropriate error value. 5497 */ 5498 int pcie_get_readrq(struct pci_dev *dev) 5499 { 5500 u16 ctl; 5501 5502 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5503 5504 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5505 } 5506 EXPORT_SYMBOL(pcie_get_readrq); 5507 5508 /** 5509 * pcie_set_readrq - set PCI Express maximum memory read request 5510 * @dev: PCI device to query 5511 * @rq: maximum memory read count in bytes 5512 * valid values are 128, 256, 512, 1024, 2048, 4096 5513 * 5514 * If possible sets maximum memory read request in bytes 5515 */ 5516 int pcie_set_readrq(struct pci_dev *dev, int rq) 5517 { 5518 u16 v; 5519 5520 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5521 return -EINVAL; 5522 5523 /* 5524 * If using the "performance" PCIe config, we clamp the read rq 5525 * size to the max packet size to keep the host bridge from 5526 * generating requests larger than we can cope with. 5527 */ 5528 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5529 int mps = pcie_get_mps(dev); 5530 5531 if (mps < rq) 5532 rq = mps; 5533 } 5534 5535 v = (ffs(rq) - 8) << 12; 5536 5537 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5538 PCI_EXP_DEVCTL_READRQ, v); 5539 } 5540 EXPORT_SYMBOL(pcie_set_readrq); 5541 5542 /** 5543 * pcie_get_mps - get PCI Express maximum payload size 5544 * @dev: PCI device to query 5545 * 5546 * Returns maximum payload size in bytes 5547 */ 5548 int pcie_get_mps(struct pci_dev *dev) 5549 { 5550 u16 ctl; 5551 5552 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5553 5554 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5555 } 5556 EXPORT_SYMBOL(pcie_get_mps); 5557 5558 /** 5559 * pcie_set_mps - set PCI Express maximum payload size 5560 * @dev: PCI device to query 5561 * @mps: maximum payload size in bytes 5562 * valid values are 128, 256, 512, 1024, 2048, 4096 5563 * 5564 * If possible sets maximum payload size 5565 */ 5566 int pcie_set_mps(struct pci_dev *dev, int mps) 5567 { 5568 u16 v; 5569 5570 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5571 return -EINVAL; 5572 5573 v = ffs(mps) - 8; 5574 if (v > dev->pcie_mpss) 5575 return -EINVAL; 5576 v <<= 5; 5577 5578 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5579 PCI_EXP_DEVCTL_PAYLOAD, v); 5580 } 5581 EXPORT_SYMBOL(pcie_set_mps); 5582 5583 /** 5584 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5585 * device and its bandwidth limitation 5586 * @dev: PCI device to query 5587 * @limiting_dev: storage for device causing the bandwidth limitation 5588 * @speed: storage for speed of limiting device 5589 * @width: storage for width of limiting device 5590 * 5591 * Walk up the PCI device chain and find the point where the minimum 5592 * bandwidth is available. Return the bandwidth available there and (if 5593 * limiting_dev, speed, and width pointers are supplied) information about 5594 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5595 * raw bandwidth. 5596 */ 5597 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5598 enum pci_bus_speed *speed, 5599 enum pcie_link_width *width) 5600 { 5601 u16 lnksta; 5602 enum pci_bus_speed next_speed; 5603 enum pcie_link_width next_width; 5604 u32 bw, next_bw; 5605 5606 if (speed) 5607 *speed = PCI_SPEED_UNKNOWN; 5608 if (width) 5609 *width = PCIE_LNK_WIDTH_UNKNOWN; 5610 5611 bw = 0; 5612 5613 while (dev) { 5614 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5615 5616 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5617 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5618 PCI_EXP_LNKSTA_NLW_SHIFT; 5619 5620 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5621 5622 /* Check if current device limits the total bandwidth */ 5623 if (!bw || next_bw <= bw) { 5624 bw = next_bw; 5625 5626 if (limiting_dev) 5627 *limiting_dev = dev; 5628 if (speed) 5629 *speed = next_speed; 5630 if (width) 5631 *width = next_width; 5632 } 5633 5634 dev = pci_upstream_bridge(dev); 5635 } 5636 5637 return bw; 5638 } 5639 EXPORT_SYMBOL(pcie_bandwidth_available); 5640 5641 /** 5642 * pcie_get_speed_cap - query for the PCI device's link speed capability 5643 * @dev: PCI device to query 5644 * 5645 * Query the PCI device speed capability. Return the maximum link speed 5646 * supported by the device. 5647 */ 5648 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5649 { 5650 u32 lnkcap2, lnkcap; 5651 5652 /* 5653 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5654 * implementation note there recommends using the Supported Link 5655 * Speeds Vector in Link Capabilities 2 when supported. 5656 * 5657 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5658 * should use the Supported Link Speeds field in Link Capabilities, 5659 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5660 */ 5661 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5662 if (lnkcap2) { /* PCIe r3.0-compliant */ 5663 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB) 5664 return PCIE_SPEED_32_0GT; 5665 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB) 5666 return PCIE_SPEED_16_0GT; 5667 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 5668 return PCIE_SPEED_8_0GT; 5669 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 5670 return PCIE_SPEED_5_0GT; 5671 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 5672 return PCIE_SPEED_2_5GT; 5673 return PCI_SPEED_UNKNOWN; 5674 } 5675 5676 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5677 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5678 return PCIE_SPEED_5_0GT; 5679 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5680 return PCIE_SPEED_2_5GT; 5681 5682 return PCI_SPEED_UNKNOWN; 5683 } 5684 EXPORT_SYMBOL(pcie_get_speed_cap); 5685 5686 /** 5687 * pcie_get_width_cap - query for the PCI device's link width capability 5688 * @dev: PCI device to query 5689 * 5690 * Query the PCI device width capability. Return the maximum link width 5691 * supported by the device. 5692 */ 5693 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5694 { 5695 u32 lnkcap; 5696 5697 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5698 if (lnkcap) 5699 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5700 5701 return PCIE_LNK_WIDTH_UNKNOWN; 5702 } 5703 EXPORT_SYMBOL(pcie_get_width_cap); 5704 5705 /** 5706 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5707 * @dev: PCI device 5708 * @speed: storage for link speed 5709 * @width: storage for link width 5710 * 5711 * Calculate a PCI device's link bandwidth by querying for its link speed 5712 * and width, multiplying them, and applying encoding overhead. The result 5713 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5714 */ 5715 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5716 enum pcie_link_width *width) 5717 { 5718 *speed = pcie_get_speed_cap(dev); 5719 *width = pcie_get_width_cap(dev); 5720 5721 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5722 return 0; 5723 5724 return *width * PCIE_SPEED2MBS_ENC(*speed); 5725 } 5726 5727 /** 5728 * __pcie_print_link_status - Report the PCI device's link speed and width 5729 * @dev: PCI device to query 5730 * @verbose: Print info even when enough bandwidth is available 5731 * 5732 * If the available bandwidth at the device is less than the device is 5733 * capable of, report the device's maximum possible bandwidth and the 5734 * upstream link that limits its performance. If @verbose, always print 5735 * the available bandwidth, even if the device isn't constrained. 5736 */ 5737 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5738 { 5739 enum pcie_link_width width, width_cap; 5740 enum pci_bus_speed speed, speed_cap; 5741 struct pci_dev *limiting_dev = NULL; 5742 u32 bw_avail, bw_cap; 5743 5744 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5745 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5746 5747 if (bw_avail >= bw_cap && verbose) 5748 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5749 bw_cap / 1000, bw_cap % 1000, 5750 PCIE_SPEED2STR(speed_cap), width_cap); 5751 else if (bw_avail < bw_cap) 5752 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5753 bw_avail / 1000, bw_avail % 1000, 5754 PCIE_SPEED2STR(speed), width, 5755 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5756 bw_cap / 1000, bw_cap % 1000, 5757 PCIE_SPEED2STR(speed_cap), width_cap); 5758 } 5759 5760 /** 5761 * pcie_print_link_status - Report the PCI device's link speed and width 5762 * @dev: PCI device to query 5763 * 5764 * Report the available bandwidth at the device. 5765 */ 5766 void pcie_print_link_status(struct pci_dev *dev) 5767 { 5768 __pcie_print_link_status(dev, true); 5769 } 5770 EXPORT_SYMBOL(pcie_print_link_status); 5771 5772 /** 5773 * pci_select_bars - Make BAR mask from the type of resource 5774 * @dev: the PCI device for which BAR mask is made 5775 * @flags: resource type mask to be selected 5776 * 5777 * This helper routine makes bar mask from the type of resource. 5778 */ 5779 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5780 { 5781 int i, bars = 0; 5782 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5783 if (pci_resource_flags(dev, i) & flags) 5784 bars |= (1 << i); 5785 return bars; 5786 } 5787 EXPORT_SYMBOL(pci_select_bars); 5788 5789 /* Some architectures require additional programming to enable VGA */ 5790 static arch_set_vga_state_t arch_set_vga_state; 5791 5792 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5793 { 5794 arch_set_vga_state = func; /* NULL disables */ 5795 } 5796 5797 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5798 unsigned int command_bits, u32 flags) 5799 { 5800 if (arch_set_vga_state) 5801 return arch_set_vga_state(dev, decode, command_bits, 5802 flags); 5803 return 0; 5804 } 5805 5806 /** 5807 * pci_set_vga_state - set VGA decode state on device and parents if requested 5808 * @dev: the PCI device 5809 * @decode: true = enable decoding, false = disable decoding 5810 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5811 * @flags: traverse ancestors and change bridges 5812 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5813 */ 5814 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5815 unsigned int command_bits, u32 flags) 5816 { 5817 struct pci_bus *bus; 5818 struct pci_dev *bridge; 5819 u16 cmd; 5820 int rc; 5821 5822 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5823 5824 /* ARCH specific VGA enables */ 5825 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5826 if (rc) 5827 return rc; 5828 5829 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5830 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5831 if (decode == true) 5832 cmd |= command_bits; 5833 else 5834 cmd &= ~command_bits; 5835 pci_write_config_word(dev, PCI_COMMAND, cmd); 5836 } 5837 5838 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5839 return 0; 5840 5841 bus = dev->bus; 5842 while (bus) { 5843 bridge = bus->self; 5844 if (bridge) { 5845 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5846 &cmd); 5847 if (decode == true) 5848 cmd |= PCI_BRIDGE_CTL_VGA; 5849 else 5850 cmd &= ~PCI_BRIDGE_CTL_VGA; 5851 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5852 cmd); 5853 } 5854 bus = bus->parent; 5855 } 5856 return 0; 5857 } 5858 5859 /** 5860 * pci_add_dma_alias - Add a DMA devfn alias for a device 5861 * @dev: the PCI device for which alias is added 5862 * @devfn: alias slot and function 5863 * 5864 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 5865 * which is used to program permissible bus-devfn source addresses for DMA 5866 * requests in an IOMMU. These aliases factor into IOMMU group creation 5867 * and are useful for devices generating DMA requests beyond or different 5868 * from their logical bus-devfn. Examples include device quirks where the 5869 * device simply uses the wrong devfn, as well as non-transparent bridges 5870 * where the alias may be a proxy for devices in another domain. 5871 * 5872 * IOMMU group creation is performed during device discovery or addition, 5873 * prior to any potential DMA mapping and therefore prior to driver probing 5874 * (especially for userspace assigned devices where IOMMU group definition 5875 * cannot be left as a userspace activity). DMA aliases should therefore 5876 * be configured via quirks, such as the PCI fixup header quirk. 5877 */ 5878 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5879 { 5880 if (!dev->dma_alias_mask) 5881 dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL); 5882 if (!dev->dma_alias_mask) { 5883 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 5884 return; 5885 } 5886 5887 set_bit(devfn, dev->dma_alias_mask); 5888 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 5889 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5890 } 5891 5892 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5893 { 5894 return (dev1->dma_alias_mask && 5895 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5896 (dev2->dma_alias_mask && 5897 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5898 } 5899 5900 bool pci_device_is_present(struct pci_dev *pdev) 5901 { 5902 u32 v; 5903 5904 if (pci_dev_is_disconnected(pdev)) 5905 return false; 5906 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5907 } 5908 EXPORT_SYMBOL_GPL(pci_device_is_present); 5909 5910 void pci_ignore_hotplug(struct pci_dev *dev) 5911 { 5912 struct pci_dev *bridge = dev->bus->self; 5913 5914 dev->ignore_hotplug = 1; 5915 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5916 if (bridge) 5917 bridge->ignore_hotplug = 1; 5918 } 5919 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5920 5921 resource_size_t __weak pcibios_default_alignment(void) 5922 { 5923 return 0; 5924 } 5925 5926 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 5927 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 5928 static DEFINE_SPINLOCK(resource_alignment_lock); 5929 5930 /** 5931 * pci_specified_resource_alignment - get resource alignment specified by user. 5932 * @dev: the PCI device to get 5933 * @resize: whether or not to change resources' size when reassigning alignment 5934 * 5935 * RETURNS: Resource alignment if it is specified. 5936 * Zero if it is not specified. 5937 */ 5938 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5939 bool *resize) 5940 { 5941 int align_order, count; 5942 resource_size_t align = pcibios_default_alignment(); 5943 const char *p; 5944 int ret; 5945 5946 spin_lock(&resource_alignment_lock); 5947 p = resource_alignment_param; 5948 if (!*p && !align) 5949 goto out; 5950 if (pci_has_flag(PCI_PROBE_ONLY)) { 5951 align = 0; 5952 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5953 goto out; 5954 } 5955 5956 while (*p) { 5957 count = 0; 5958 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5959 p[count] == '@') { 5960 p += count + 1; 5961 } else { 5962 align_order = -1; 5963 } 5964 5965 ret = pci_dev_str_match(dev, p, &p); 5966 if (ret == 1) { 5967 *resize = true; 5968 if (align_order == -1) 5969 align = PAGE_SIZE; 5970 else 5971 align = 1 << align_order; 5972 break; 5973 } else if (ret < 0) { 5974 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 5975 p); 5976 break; 5977 } 5978 5979 if (*p != ';' && *p != ',') { 5980 /* End of param or invalid format */ 5981 break; 5982 } 5983 p++; 5984 } 5985 out: 5986 spin_unlock(&resource_alignment_lock); 5987 return align; 5988 } 5989 5990 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 5991 resource_size_t align, bool resize) 5992 { 5993 struct resource *r = &dev->resource[bar]; 5994 resource_size_t size; 5995 5996 if (!(r->flags & IORESOURCE_MEM)) 5997 return; 5998 5999 if (r->flags & IORESOURCE_PCI_FIXED) { 6000 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6001 bar, r, (unsigned long long)align); 6002 return; 6003 } 6004 6005 size = resource_size(r); 6006 if (size >= align) 6007 return; 6008 6009 /* 6010 * Increase the alignment of the resource. There are two ways we 6011 * can do this: 6012 * 6013 * 1) Increase the size of the resource. BARs are aligned on their 6014 * size, so when we reallocate space for this resource, we'll 6015 * allocate it with the larger alignment. This also prevents 6016 * assignment of any other BARs inside the alignment region, so 6017 * if we're requesting page alignment, this means no other BARs 6018 * will share the page. 6019 * 6020 * The disadvantage is that this makes the resource larger than 6021 * the hardware BAR, which may break drivers that compute things 6022 * based on the resource size, e.g., to find registers at a 6023 * fixed offset before the end of the BAR. 6024 * 6025 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6026 * set r->start to the desired alignment. By itself this 6027 * doesn't prevent other BARs being put inside the alignment 6028 * region, but if we realign *every* resource of every device in 6029 * the system, none of them will share an alignment region. 6030 * 6031 * When the user has requested alignment for only some devices via 6032 * the "pci=resource_alignment" argument, "resize" is true and we 6033 * use the first method. Otherwise we assume we're aligning all 6034 * devices and we use the second. 6035 */ 6036 6037 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6038 bar, r, (unsigned long long)align); 6039 6040 if (resize) { 6041 r->start = 0; 6042 r->end = align - 1; 6043 } else { 6044 r->flags &= ~IORESOURCE_SIZEALIGN; 6045 r->flags |= IORESOURCE_STARTALIGN; 6046 r->start = align; 6047 r->end = r->start + size - 1; 6048 } 6049 r->flags |= IORESOURCE_UNSET; 6050 } 6051 6052 /* 6053 * This function disables memory decoding and releases memory resources 6054 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6055 * It also rounds up size to specified alignment. 6056 * Later on, the kernel will assign page-aligned memory resource back 6057 * to the device. 6058 */ 6059 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6060 { 6061 int i; 6062 struct resource *r; 6063 resource_size_t align; 6064 u16 command; 6065 bool resize = false; 6066 6067 /* 6068 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6069 * 3.4.1.11. Their resources are allocated from the space 6070 * described by the VF BARx register in the PF's SR-IOV capability. 6071 * We can't influence their alignment here. 6072 */ 6073 if (dev->is_virtfn) 6074 return; 6075 6076 /* check if specified PCI is target device to reassign */ 6077 align = pci_specified_resource_alignment(dev, &resize); 6078 if (!align) 6079 return; 6080 6081 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6082 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6083 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6084 return; 6085 } 6086 6087 pci_read_config_word(dev, PCI_COMMAND, &command); 6088 command &= ~PCI_COMMAND_MEMORY; 6089 pci_write_config_word(dev, PCI_COMMAND, command); 6090 6091 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6092 pci_request_resource_alignment(dev, i, align, resize); 6093 6094 /* 6095 * Need to disable bridge's resource window, 6096 * to enable the kernel to reassign new resource 6097 * window later on. 6098 */ 6099 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6100 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6101 r = &dev->resource[i]; 6102 if (!(r->flags & IORESOURCE_MEM)) 6103 continue; 6104 r->flags |= IORESOURCE_UNSET; 6105 r->end = resource_size(r) - 1; 6106 r->start = 0; 6107 } 6108 pci_disable_bridge_window(dev); 6109 } 6110 } 6111 6112 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 6113 { 6114 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 6115 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 6116 spin_lock(&resource_alignment_lock); 6117 strncpy(resource_alignment_param, buf, count); 6118 resource_alignment_param[count] = '\0'; 6119 spin_unlock(&resource_alignment_lock); 6120 return count; 6121 } 6122 6123 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 6124 { 6125 size_t count; 6126 spin_lock(&resource_alignment_lock); 6127 count = snprintf(buf, size, "%s", resource_alignment_param); 6128 spin_unlock(&resource_alignment_lock); 6129 return count; 6130 } 6131 6132 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6133 { 6134 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 6135 } 6136 6137 static ssize_t resource_alignment_store(struct bus_type *bus, 6138 const char *buf, size_t count) 6139 { 6140 return pci_set_resource_alignment_param(buf, count); 6141 } 6142 6143 static BUS_ATTR_RW(resource_alignment); 6144 6145 static int __init pci_resource_alignment_sysfs_init(void) 6146 { 6147 return bus_create_file(&pci_bus_type, 6148 &bus_attr_resource_alignment); 6149 } 6150 late_initcall(pci_resource_alignment_sysfs_init); 6151 6152 static void pci_no_domains(void) 6153 { 6154 #ifdef CONFIG_PCI_DOMAINS 6155 pci_domains_supported = 0; 6156 #endif 6157 } 6158 6159 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6160 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6161 6162 static int pci_get_new_domain_nr(void) 6163 { 6164 return atomic_inc_return(&__domain_nr); 6165 } 6166 6167 static int of_pci_bus_find_domain_nr(struct device *parent) 6168 { 6169 static int use_dt_domains = -1; 6170 int domain = -1; 6171 6172 if (parent) 6173 domain = of_get_pci_domain_nr(parent->of_node); 6174 6175 /* 6176 * Check DT domain and use_dt_domains values. 6177 * 6178 * If DT domain property is valid (domain >= 0) and 6179 * use_dt_domains != 0, the DT assignment is valid since this means 6180 * we have not previously allocated a domain number by using 6181 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6182 * 1, to indicate that we have just assigned a domain number from 6183 * DT. 6184 * 6185 * If DT domain property value is not valid (ie domain < 0), and we 6186 * have not previously assigned a domain number from DT 6187 * (use_dt_domains != 1) we should assign a domain number by 6188 * using the: 6189 * 6190 * pci_get_new_domain_nr() 6191 * 6192 * API and update the use_dt_domains value to keep track of method we 6193 * are using to assign domain numbers (use_dt_domains = 0). 6194 * 6195 * All other combinations imply we have a platform that is trying 6196 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6197 * which is a recipe for domain mishandling and it is prevented by 6198 * invalidating the domain value (domain = -1) and printing a 6199 * corresponding error. 6200 */ 6201 if (domain >= 0 && use_dt_domains) { 6202 use_dt_domains = 1; 6203 } else if (domain < 0 && use_dt_domains != 1) { 6204 use_dt_domains = 0; 6205 domain = pci_get_new_domain_nr(); 6206 } else { 6207 if (parent) 6208 pr_err("Node %pOF has ", parent->of_node); 6209 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6210 domain = -1; 6211 } 6212 6213 return domain; 6214 } 6215 6216 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6217 { 6218 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6219 acpi_pci_bus_find_domain_nr(bus); 6220 } 6221 #endif 6222 6223 /** 6224 * pci_ext_cfg_avail - can we access extended PCI config space? 6225 * 6226 * Returns 1 if we can access PCI extended config space (offsets 6227 * greater than 0xff). This is the default implementation. Architecture 6228 * implementations can override this. 6229 */ 6230 int __weak pci_ext_cfg_avail(void) 6231 { 6232 return 1; 6233 } 6234 6235 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6236 { 6237 } 6238 EXPORT_SYMBOL(pci_fixup_cardbus); 6239 6240 static int __init pci_setup(char *str) 6241 { 6242 while (str) { 6243 char *k = strchr(str, ','); 6244 if (k) 6245 *k++ = 0; 6246 if (*str && (str = pcibios_setup(str)) && *str) { 6247 if (!strcmp(str, "nomsi")) { 6248 pci_no_msi(); 6249 } else if (!strncmp(str, "noats", 5)) { 6250 pr_info("PCIe: ATS is disabled\n"); 6251 pcie_ats_disabled = true; 6252 } else if (!strcmp(str, "noaer")) { 6253 pci_no_aer(); 6254 } else if (!strcmp(str, "earlydump")) { 6255 pci_early_dump = true; 6256 } else if (!strncmp(str, "realloc=", 8)) { 6257 pci_realloc_get_opt(str + 8); 6258 } else if (!strncmp(str, "realloc", 7)) { 6259 pci_realloc_get_opt("on"); 6260 } else if (!strcmp(str, "nodomains")) { 6261 pci_no_domains(); 6262 } else if (!strncmp(str, "noari", 5)) { 6263 pcie_ari_disabled = true; 6264 } else if (!strncmp(str, "cbiosize=", 9)) { 6265 pci_cardbus_io_size = memparse(str + 9, &str); 6266 } else if (!strncmp(str, "cbmemsize=", 10)) { 6267 pci_cardbus_mem_size = memparse(str + 10, &str); 6268 } else if (!strncmp(str, "resource_alignment=", 19)) { 6269 pci_set_resource_alignment_param(str + 19, 6270 strlen(str + 19)); 6271 } else if (!strncmp(str, "ecrc=", 5)) { 6272 pcie_ecrc_get_policy(str + 5); 6273 } else if (!strncmp(str, "hpiosize=", 9)) { 6274 pci_hotplug_io_size = memparse(str + 9, &str); 6275 } else if (!strncmp(str, "hpmemsize=", 10)) { 6276 pci_hotplug_mem_size = memparse(str + 10, &str); 6277 } else if (!strncmp(str, "hpbussize=", 10)) { 6278 pci_hotplug_bus_size = 6279 simple_strtoul(str + 10, &str, 0); 6280 if (pci_hotplug_bus_size > 0xff) 6281 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6282 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6283 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6284 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6285 pcie_bus_config = PCIE_BUS_SAFE; 6286 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6287 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6288 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6289 pcie_bus_config = PCIE_BUS_PEER2PEER; 6290 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6291 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6292 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6293 disable_acs_redir_param = str + 18; 6294 } else { 6295 pr_err("PCI: Unknown option `%s'\n", str); 6296 } 6297 } 6298 str = k; 6299 } 6300 return 0; 6301 } 6302 early_param("pci", pci_setup); 6303 6304 /* 6305 * 'disable_acs_redir_param' is initialized in pci_setup(), above, to point 6306 * to data in the __initdata section which will be freed after the init 6307 * sequence is complete. We can't allocate memory in pci_setup() because some 6308 * architectures do not have any memory allocation service available during 6309 * an early_param() call. So we allocate memory and copy the variable here 6310 * before the init section is freed. 6311 */ 6312 static int __init pci_realloc_setup_params(void) 6313 { 6314 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6315 6316 return 0; 6317 } 6318 pure_initcall(pci_realloc_setup_params); 6319