1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/pm.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/spinlock.h> 18 #include <linux/string.h> 19 #include <linux/log2.h> 20 #include <linux/pci-aspm.h> 21 #include <linux/pm_wakeup.h> 22 #include <linux/interrupt.h> 23 #include <linux/device.h> 24 #include <linux/pm_runtime.h> 25 #include <asm/setup.h> 26 #include "pci.h" 27 28 const char *pci_power_names[] = { 29 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 30 }; 31 EXPORT_SYMBOL_GPL(pci_power_names); 32 33 int isa_dma_bridge_buggy; 34 EXPORT_SYMBOL(isa_dma_bridge_buggy); 35 36 int pci_pci_problems; 37 EXPORT_SYMBOL(pci_pci_problems); 38 39 unsigned int pci_pm_d3_delay; 40 41 static void pci_pme_list_scan(struct work_struct *work); 42 43 static LIST_HEAD(pci_pme_list); 44 static DEFINE_MUTEX(pci_pme_list_mutex); 45 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 46 47 struct pci_pme_device { 48 struct list_head list; 49 struct pci_dev *dev; 50 }; 51 52 #define PME_TIMEOUT 1000 /* How long between PME checks */ 53 54 static void pci_dev_d3_sleep(struct pci_dev *dev) 55 { 56 unsigned int delay = dev->d3_delay; 57 58 if (delay < pci_pm_d3_delay) 59 delay = pci_pm_d3_delay; 60 61 msleep(delay); 62 } 63 64 #ifdef CONFIG_PCI_DOMAINS 65 int pci_domains_supported = 1; 66 #endif 67 68 #define DEFAULT_CARDBUS_IO_SIZE (256) 69 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 70 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 71 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 72 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 73 74 #define DEFAULT_HOTPLUG_IO_SIZE (256) 75 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 76 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 77 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 78 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 79 80 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 81 82 /* 83 * The default CLS is used if arch didn't set CLS explicitly and not 84 * all pci devices agree on the same value. Arch can override either 85 * the dfl or actual value as it sees fit. Don't forget this is 86 * measured in 32-bit words, not bytes. 87 */ 88 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2; 89 u8 pci_cache_line_size; 90 91 /* 92 * If we set up a device for bus mastering, we need to check the latency 93 * timer as certain BIOSes forget to set it properly. 94 */ 95 unsigned int pcibios_max_latency = 255; 96 97 /** 98 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 99 * @bus: pointer to PCI bus structure to search 100 * 101 * Given a PCI bus, returns the highest PCI bus number present in the set 102 * including the given PCI bus and its list of child PCI buses. 103 */ 104 unsigned char pci_bus_max_busnr(struct pci_bus* bus) 105 { 106 struct list_head *tmp; 107 unsigned char max, n; 108 109 max = bus->subordinate; 110 list_for_each(tmp, &bus->children) { 111 n = pci_bus_max_busnr(pci_bus_b(tmp)); 112 if(n > max) 113 max = n; 114 } 115 return max; 116 } 117 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 118 119 #ifdef CONFIG_HAS_IOMEM 120 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 121 { 122 /* 123 * Make sure the BAR is actually a memory resource, not an IO resource 124 */ 125 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 126 WARN_ON(1); 127 return NULL; 128 } 129 return ioremap_nocache(pci_resource_start(pdev, bar), 130 pci_resource_len(pdev, bar)); 131 } 132 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 133 #endif 134 135 #if 0 136 /** 137 * pci_max_busnr - returns maximum PCI bus number 138 * 139 * Returns the highest PCI bus number present in the system global list of 140 * PCI buses. 141 */ 142 unsigned char __devinit 143 pci_max_busnr(void) 144 { 145 struct pci_bus *bus = NULL; 146 unsigned char max, n; 147 148 max = 0; 149 while ((bus = pci_find_next_bus(bus)) != NULL) { 150 n = pci_bus_max_busnr(bus); 151 if(n > max) 152 max = n; 153 } 154 return max; 155 } 156 157 #endif /* 0 */ 158 159 #define PCI_FIND_CAP_TTL 48 160 161 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 162 u8 pos, int cap, int *ttl) 163 { 164 u8 id; 165 166 while ((*ttl)--) { 167 pci_bus_read_config_byte(bus, devfn, pos, &pos); 168 if (pos < 0x40) 169 break; 170 pos &= ~3; 171 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID, 172 &id); 173 if (id == 0xff) 174 break; 175 if (id == cap) 176 return pos; 177 pos += PCI_CAP_LIST_NEXT; 178 } 179 return 0; 180 } 181 182 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 183 u8 pos, int cap) 184 { 185 int ttl = PCI_FIND_CAP_TTL; 186 187 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 188 } 189 190 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 191 { 192 return __pci_find_next_cap(dev->bus, dev->devfn, 193 pos + PCI_CAP_LIST_NEXT, cap); 194 } 195 EXPORT_SYMBOL_GPL(pci_find_next_capability); 196 197 static int __pci_bus_find_cap_start(struct pci_bus *bus, 198 unsigned int devfn, u8 hdr_type) 199 { 200 u16 status; 201 202 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 203 if (!(status & PCI_STATUS_CAP_LIST)) 204 return 0; 205 206 switch (hdr_type) { 207 case PCI_HEADER_TYPE_NORMAL: 208 case PCI_HEADER_TYPE_BRIDGE: 209 return PCI_CAPABILITY_LIST; 210 case PCI_HEADER_TYPE_CARDBUS: 211 return PCI_CB_CAPABILITY_LIST; 212 default: 213 return 0; 214 } 215 216 return 0; 217 } 218 219 /** 220 * pci_find_capability - query for devices' capabilities 221 * @dev: PCI device to query 222 * @cap: capability code 223 * 224 * Tell if a device supports a given PCI capability. 225 * Returns the address of the requested capability structure within the 226 * device's PCI configuration space or 0 in case the device does not 227 * support it. Possible values for @cap: 228 * 229 * %PCI_CAP_ID_PM Power Management 230 * %PCI_CAP_ID_AGP Accelerated Graphics Port 231 * %PCI_CAP_ID_VPD Vital Product Data 232 * %PCI_CAP_ID_SLOTID Slot Identification 233 * %PCI_CAP_ID_MSI Message Signalled Interrupts 234 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 235 * %PCI_CAP_ID_PCIX PCI-X 236 * %PCI_CAP_ID_EXP PCI Express 237 */ 238 int pci_find_capability(struct pci_dev *dev, int cap) 239 { 240 int pos; 241 242 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 243 if (pos) 244 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 245 246 return pos; 247 } 248 249 /** 250 * pci_bus_find_capability - query for devices' capabilities 251 * @bus: the PCI bus to query 252 * @devfn: PCI device to query 253 * @cap: capability code 254 * 255 * Like pci_find_capability() but works for pci devices that do not have a 256 * pci_dev structure set up yet. 257 * 258 * Returns the address of the requested capability structure within the 259 * device's PCI configuration space or 0 in case the device does not 260 * support it. 261 */ 262 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 263 { 264 int pos; 265 u8 hdr_type; 266 267 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 268 269 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 270 if (pos) 271 pos = __pci_find_next_cap(bus, devfn, pos, cap); 272 273 return pos; 274 } 275 276 /** 277 * pci_find_ext_capability - Find an extended capability 278 * @dev: PCI device to query 279 * @cap: capability code 280 * 281 * Returns the address of the requested extended capability structure 282 * within the device's PCI configuration space or 0 if the device does 283 * not support it. Possible values for @cap: 284 * 285 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 286 * %PCI_EXT_CAP_ID_VC Virtual Channel 287 * %PCI_EXT_CAP_ID_DSN Device Serial Number 288 * %PCI_EXT_CAP_ID_PWR Power Budgeting 289 */ 290 int pci_find_ext_capability(struct pci_dev *dev, int cap) 291 { 292 u32 header; 293 int ttl; 294 int pos = PCI_CFG_SPACE_SIZE; 295 296 /* minimum 8 bytes per capability */ 297 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 298 299 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 300 return 0; 301 302 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 303 return 0; 304 305 /* 306 * If we have no capabilities, this is indicated by cap ID, 307 * cap version and next pointer all being 0. 308 */ 309 if (header == 0) 310 return 0; 311 312 while (ttl-- > 0) { 313 if (PCI_EXT_CAP_ID(header) == cap) 314 return pos; 315 316 pos = PCI_EXT_CAP_NEXT(header); 317 if (pos < PCI_CFG_SPACE_SIZE) 318 break; 319 320 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 321 break; 322 } 323 324 return 0; 325 } 326 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 327 328 /** 329 * pci_bus_find_ext_capability - find an extended capability 330 * @bus: the PCI bus to query 331 * @devfn: PCI device to query 332 * @cap: capability code 333 * 334 * Like pci_find_ext_capability() but works for pci devices that do not have a 335 * pci_dev structure set up yet. 336 * 337 * Returns the address of the requested capability structure within the 338 * device's PCI configuration space or 0 in case the device does not 339 * support it. 340 */ 341 int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn, 342 int cap) 343 { 344 u32 header; 345 int ttl; 346 int pos = PCI_CFG_SPACE_SIZE; 347 348 /* minimum 8 bytes per capability */ 349 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 350 351 if (!pci_bus_read_config_dword(bus, devfn, pos, &header)) 352 return 0; 353 if (header == 0xffffffff || header == 0) 354 return 0; 355 356 while (ttl-- > 0) { 357 if (PCI_EXT_CAP_ID(header) == cap) 358 return pos; 359 360 pos = PCI_EXT_CAP_NEXT(header); 361 if (pos < PCI_CFG_SPACE_SIZE) 362 break; 363 364 if (!pci_bus_read_config_dword(bus, devfn, pos, &header)) 365 break; 366 } 367 368 return 0; 369 } 370 371 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 372 { 373 int rc, ttl = PCI_FIND_CAP_TTL; 374 u8 cap, mask; 375 376 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 377 mask = HT_3BIT_CAP_MASK; 378 else 379 mask = HT_5BIT_CAP_MASK; 380 381 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 382 PCI_CAP_ID_HT, &ttl); 383 while (pos) { 384 rc = pci_read_config_byte(dev, pos + 3, &cap); 385 if (rc != PCIBIOS_SUCCESSFUL) 386 return 0; 387 388 if ((cap & mask) == ht_cap) 389 return pos; 390 391 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 392 pos + PCI_CAP_LIST_NEXT, 393 PCI_CAP_ID_HT, &ttl); 394 } 395 396 return 0; 397 } 398 /** 399 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 400 * @dev: PCI device to query 401 * @pos: Position from which to continue searching 402 * @ht_cap: Hypertransport capability code 403 * 404 * To be used in conjunction with pci_find_ht_capability() to search for 405 * all capabilities matching @ht_cap. @pos should always be a value returned 406 * from pci_find_ht_capability(). 407 * 408 * NB. To be 100% safe against broken PCI devices, the caller should take 409 * steps to avoid an infinite loop. 410 */ 411 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 412 { 413 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 414 } 415 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 416 417 /** 418 * pci_find_ht_capability - query a device's Hypertransport capabilities 419 * @dev: PCI device to query 420 * @ht_cap: Hypertransport capability code 421 * 422 * Tell if a device supports a given Hypertransport capability. 423 * Returns an address within the device's PCI configuration space 424 * or 0 in case the device does not support the request capability. 425 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 426 * which has a Hypertransport capability matching @ht_cap. 427 */ 428 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 429 { 430 int pos; 431 432 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 433 if (pos) 434 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 435 436 return pos; 437 } 438 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 439 440 /** 441 * pci_find_parent_resource - return resource region of parent bus of given region 442 * @dev: PCI device structure contains resources to be searched 443 * @res: child resource record for which parent is sought 444 * 445 * For given resource region of given device, return the resource 446 * region of parent bus the given region is contained in or where 447 * it should be allocated from. 448 */ 449 struct resource * 450 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res) 451 { 452 const struct pci_bus *bus = dev->bus; 453 int i; 454 struct resource *best = NULL, *r; 455 456 pci_bus_for_each_resource(bus, r, i) { 457 if (!r) 458 continue; 459 if (res->start && !(res->start >= r->start && res->end <= r->end)) 460 continue; /* Not contained */ 461 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM)) 462 continue; /* Wrong type */ 463 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH)) 464 return r; /* Exact match */ 465 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */ 466 if (r->flags & IORESOURCE_PREFETCH) 467 continue; 468 /* .. but we can put a prefetchable resource inside a non-prefetchable one */ 469 if (!best) 470 best = r; 471 } 472 return best; 473 } 474 475 /** 476 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up) 477 * @dev: PCI device to have its BARs restored 478 * 479 * Restore the BAR values for a given device, so as to make it 480 * accessible by its driver. 481 */ 482 static void 483 pci_restore_bars(struct pci_dev *dev) 484 { 485 int i; 486 487 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 488 pci_update_resource(dev, i); 489 } 490 491 static struct pci_platform_pm_ops *pci_platform_pm; 492 493 int pci_set_platform_pm(struct pci_platform_pm_ops *ops) 494 { 495 if (!ops->is_manageable || !ops->set_state || !ops->choose_state 496 || !ops->sleep_wake || !ops->can_wakeup) 497 return -EINVAL; 498 pci_platform_pm = ops; 499 return 0; 500 } 501 502 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 503 { 504 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 505 } 506 507 static inline int platform_pci_set_power_state(struct pci_dev *dev, 508 pci_power_t t) 509 { 510 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 511 } 512 513 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 514 { 515 return pci_platform_pm ? 516 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 517 } 518 519 static inline bool platform_pci_can_wakeup(struct pci_dev *dev) 520 { 521 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false; 522 } 523 524 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 525 { 526 return pci_platform_pm ? 527 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 528 } 529 530 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 531 { 532 return pci_platform_pm ? 533 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 534 } 535 536 /** 537 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 538 * given PCI device 539 * @dev: PCI device to handle. 540 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 541 * 542 * RETURN VALUE: 543 * -EINVAL if the requested state is invalid. 544 * -EIO if device does not support PCI PM or its PM capabilities register has a 545 * wrong version, or device doesn't support the requested state. 546 * 0 if device already is in the requested state. 547 * 0 if device's power state has been successfully changed. 548 */ 549 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 550 { 551 u16 pmcsr; 552 bool need_restore = false; 553 554 /* Check if we're already there */ 555 if (dev->current_state == state) 556 return 0; 557 558 if (!dev->pm_cap) 559 return -EIO; 560 561 if (state < PCI_D0 || state > PCI_D3hot) 562 return -EINVAL; 563 564 /* Validate current state: 565 * Can enter D0 from any state, but if we can only go deeper 566 * to sleep if we're already in a low power state 567 */ 568 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 569 && dev->current_state > state) { 570 dev_err(&dev->dev, "invalid power transition " 571 "(from state %d to %d)\n", dev->current_state, state); 572 return -EINVAL; 573 } 574 575 /* check if this device supports the desired state */ 576 if ((state == PCI_D1 && !dev->d1_support) 577 || (state == PCI_D2 && !dev->d2_support)) 578 return -EIO; 579 580 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 581 582 /* If we're (effectively) in D3, force entire word to 0. 583 * This doesn't affect PME_Status, disables PME_En, and 584 * sets PowerState to 0. 585 */ 586 switch (dev->current_state) { 587 case PCI_D0: 588 case PCI_D1: 589 case PCI_D2: 590 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 591 pmcsr |= state; 592 break; 593 case PCI_D3hot: 594 case PCI_D3cold: 595 case PCI_UNKNOWN: /* Boot-up */ 596 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 597 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 598 need_restore = true; 599 /* Fall-through: force to D0 */ 600 default: 601 pmcsr = 0; 602 break; 603 } 604 605 /* enter specified state */ 606 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 607 608 /* Mandatory power management transition delays */ 609 /* see PCI PM 1.1 5.6.1 table 18 */ 610 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 611 pci_dev_d3_sleep(dev); 612 else if (state == PCI_D2 || dev->current_state == PCI_D2) 613 udelay(PCI_PM_D2_DELAY); 614 615 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 616 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 617 if (dev->current_state != state && printk_ratelimit()) 618 dev_info(&dev->dev, "Refused to change power state, " 619 "currently in D%d\n", dev->current_state); 620 621 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 622 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 623 * from D3hot to D0 _may_ perform an internal reset, thereby 624 * going to "D0 Uninitialized" rather than "D0 Initialized". 625 * For example, at least some versions of the 3c905B and the 626 * 3c556B exhibit this behaviour. 627 * 628 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 629 * devices in a D3hot state at boot. Consequently, we need to 630 * restore at least the BARs so that the device will be 631 * accessible to its driver. 632 */ 633 if (need_restore) 634 pci_restore_bars(dev); 635 636 if (dev->bus->self) 637 pcie_aspm_pm_state_change(dev->bus->self); 638 639 return 0; 640 } 641 642 /** 643 * pci_update_current_state - Read PCI power state of given device from its 644 * PCI PM registers and cache it 645 * @dev: PCI device to handle. 646 * @state: State to cache in case the device doesn't have the PM capability 647 */ 648 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 649 { 650 if (dev->pm_cap) { 651 u16 pmcsr; 652 653 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 654 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 655 } else { 656 dev->current_state = state; 657 } 658 } 659 660 /** 661 * pci_platform_power_transition - Use platform to change device power state 662 * @dev: PCI device to handle. 663 * @state: State to put the device into. 664 */ 665 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 666 { 667 int error; 668 669 if (platform_pci_power_manageable(dev)) { 670 error = platform_pci_set_power_state(dev, state); 671 if (!error) 672 pci_update_current_state(dev, state); 673 /* Fall back to PCI_D0 if native PM is not supported */ 674 if (!dev->pm_cap) 675 dev->current_state = PCI_D0; 676 } else { 677 error = -ENODEV; 678 /* Fall back to PCI_D0 if native PM is not supported */ 679 if (!dev->pm_cap) 680 dev->current_state = PCI_D0; 681 } 682 683 return error; 684 } 685 686 /** 687 * __pci_start_power_transition - Start power transition of a PCI device 688 * @dev: PCI device to handle. 689 * @state: State to put the device into. 690 */ 691 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 692 { 693 if (state == PCI_D0) 694 pci_platform_power_transition(dev, PCI_D0); 695 } 696 697 /** 698 * __pci_complete_power_transition - Complete power transition of a PCI device 699 * @dev: PCI device to handle. 700 * @state: State to put the device into. 701 * 702 * This function should not be called directly by device drivers. 703 */ 704 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 705 { 706 return state >= PCI_D0 ? 707 pci_platform_power_transition(dev, state) : -EINVAL; 708 } 709 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 710 711 /** 712 * pci_set_power_state - Set the power state of a PCI device 713 * @dev: PCI device to handle. 714 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 715 * 716 * Transition a device to a new power state, using the platform firmware and/or 717 * the device's PCI PM registers. 718 * 719 * RETURN VALUE: 720 * -EINVAL if the requested state is invalid. 721 * -EIO if device does not support PCI PM or its PM capabilities register has a 722 * wrong version, or device doesn't support the requested state. 723 * 0 if device already is in the requested state. 724 * 0 if device's power state has been successfully changed. 725 */ 726 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 727 { 728 int error; 729 730 /* bound the state we're entering */ 731 if (state > PCI_D3hot) 732 state = PCI_D3hot; 733 else if (state < PCI_D0) 734 state = PCI_D0; 735 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 736 /* 737 * If the device or the parent bridge do not support PCI PM, 738 * ignore the request if we're doing anything other than putting 739 * it into D0 (which would only happen on boot). 740 */ 741 return 0; 742 743 __pci_start_power_transition(dev, state); 744 745 /* This device is quirked not to be put into D3, so 746 don't put it in D3 */ 747 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 748 return 0; 749 750 error = pci_raw_set_power_state(dev, state); 751 752 if (!__pci_complete_power_transition(dev, state)) 753 error = 0; 754 /* 755 * When aspm_policy is "powersave" this call ensures 756 * that ASPM is configured. 757 */ 758 if (!error && dev->bus->self) 759 pcie_aspm_powersave_config_link(dev->bus->self); 760 761 return error; 762 } 763 764 /** 765 * pci_choose_state - Choose the power state of a PCI device 766 * @dev: PCI device to be suspended 767 * @state: target sleep state for the whole system. This is the value 768 * that is passed to suspend() function. 769 * 770 * Returns PCI power state suitable for given device and given system 771 * message. 772 */ 773 774 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 775 { 776 pci_power_t ret; 777 778 if (!pci_find_capability(dev, PCI_CAP_ID_PM)) 779 return PCI_D0; 780 781 ret = platform_pci_choose_state(dev); 782 if (ret != PCI_POWER_ERROR) 783 return ret; 784 785 switch (state.event) { 786 case PM_EVENT_ON: 787 return PCI_D0; 788 case PM_EVENT_FREEZE: 789 case PM_EVENT_PRETHAW: 790 /* REVISIT both freeze and pre-thaw "should" use D0 */ 791 case PM_EVENT_SUSPEND: 792 case PM_EVENT_HIBERNATE: 793 return PCI_D3hot; 794 default: 795 dev_info(&dev->dev, "unrecognized suspend event %d\n", 796 state.event); 797 BUG(); 798 } 799 return PCI_D0; 800 } 801 802 EXPORT_SYMBOL(pci_choose_state); 803 804 #define PCI_EXP_SAVE_REGS 7 805 806 #define pcie_cap_has_devctl(type, flags) 1 807 #define pcie_cap_has_lnkctl(type, flags) \ 808 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \ 809 (type == PCI_EXP_TYPE_ROOT_PORT || \ 810 type == PCI_EXP_TYPE_ENDPOINT || \ 811 type == PCI_EXP_TYPE_LEG_END)) 812 #define pcie_cap_has_sltctl(type, flags) \ 813 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \ 814 ((type == PCI_EXP_TYPE_ROOT_PORT) || \ 815 (type == PCI_EXP_TYPE_DOWNSTREAM && \ 816 (flags & PCI_EXP_FLAGS_SLOT)))) 817 #define pcie_cap_has_rtctl(type, flags) \ 818 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \ 819 (type == PCI_EXP_TYPE_ROOT_PORT || \ 820 type == PCI_EXP_TYPE_RC_EC)) 821 #define pcie_cap_has_devctl2(type, flags) \ 822 ((flags & PCI_EXP_FLAGS_VERS) > 1) 823 #define pcie_cap_has_lnkctl2(type, flags) \ 824 ((flags & PCI_EXP_FLAGS_VERS) > 1) 825 #define pcie_cap_has_sltctl2(type, flags) \ 826 ((flags & PCI_EXP_FLAGS_VERS) > 1) 827 828 static int pci_save_pcie_state(struct pci_dev *dev) 829 { 830 int pos, i = 0; 831 struct pci_cap_saved_state *save_state; 832 u16 *cap; 833 u16 flags; 834 835 pos = pci_pcie_cap(dev); 836 if (!pos) 837 return 0; 838 839 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 840 if (!save_state) { 841 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 842 return -ENOMEM; 843 } 844 cap = (u16 *)&save_state->cap.data[0]; 845 846 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags); 847 848 if (pcie_cap_has_devctl(dev->pcie_type, flags)) 849 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]); 850 if (pcie_cap_has_lnkctl(dev->pcie_type, flags)) 851 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]); 852 if (pcie_cap_has_sltctl(dev->pcie_type, flags)) 853 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]); 854 if (pcie_cap_has_rtctl(dev->pcie_type, flags)) 855 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]); 856 if (pcie_cap_has_devctl2(dev->pcie_type, flags)) 857 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]); 858 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags)) 859 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]); 860 if (pcie_cap_has_sltctl2(dev->pcie_type, flags)) 861 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]); 862 863 return 0; 864 } 865 866 static void pci_restore_pcie_state(struct pci_dev *dev) 867 { 868 int i = 0, pos; 869 struct pci_cap_saved_state *save_state; 870 u16 *cap; 871 u16 flags; 872 873 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 874 pos = pci_find_capability(dev, PCI_CAP_ID_EXP); 875 if (!save_state || pos <= 0) 876 return; 877 cap = (u16 *)&save_state->cap.data[0]; 878 879 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags); 880 881 if (pcie_cap_has_devctl(dev->pcie_type, flags)) 882 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]); 883 if (pcie_cap_has_lnkctl(dev->pcie_type, flags)) 884 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]); 885 if (pcie_cap_has_sltctl(dev->pcie_type, flags)) 886 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]); 887 if (pcie_cap_has_rtctl(dev->pcie_type, flags)) 888 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]); 889 if (pcie_cap_has_devctl2(dev->pcie_type, flags)) 890 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]); 891 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags)) 892 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]); 893 if (pcie_cap_has_sltctl2(dev->pcie_type, flags)) 894 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]); 895 } 896 897 898 static int pci_save_pcix_state(struct pci_dev *dev) 899 { 900 int pos; 901 struct pci_cap_saved_state *save_state; 902 903 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 904 if (pos <= 0) 905 return 0; 906 907 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 908 if (!save_state) { 909 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 910 return -ENOMEM; 911 } 912 913 pci_read_config_word(dev, pos + PCI_X_CMD, 914 (u16 *)save_state->cap.data); 915 916 return 0; 917 } 918 919 static void pci_restore_pcix_state(struct pci_dev *dev) 920 { 921 int i = 0, pos; 922 struct pci_cap_saved_state *save_state; 923 u16 *cap; 924 925 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 926 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 927 if (!save_state || pos <= 0) 928 return; 929 cap = (u16 *)&save_state->cap.data[0]; 930 931 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 932 } 933 934 935 /** 936 * pci_save_state - save the PCI configuration space of a device before suspending 937 * @dev: - PCI device that we're dealing with 938 */ 939 int 940 pci_save_state(struct pci_dev *dev) 941 { 942 int i; 943 /* XXX: 100% dword access ok here? */ 944 for (i = 0; i < 16; i++) 945 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 946 dev->state_saved = true; 947 if ((i = pci_save_pcie_state(dev)) != 0) 948 return i; 949 if ((i = pci_save_pcix_state(dev)) != 0) 950 return i; 951 return 0; 952 } 953 954 /** 955 * pci_restore_state - Restore the saved state of a PCI device 956 * @dev: - PCI device that we're dealing with 957 */ 958 void pci_restore_state(struct pci_dev *dev) 959 { 960 int i; 961 u32 val; 962 963 if (!dev->state_saved) 964 return; 965 966 /* PCI Express register must be restored first */ 967 pci_restore_pcie_state(dev); 968 pci_restore_ats_state(dev); 969 970 /* 971 * The Base Address register should be programmed before the command 972 * register(s) 973 */ 974 for (i = 15; i >= 0; i--) { 975 pci_read_config_dword(dev, i * 4, &val); 976 if (val != dev->saved_config_space[i]) { 977 dev_dbg(&dev->dev, "restoring config " 978 "space at offset %#x (was %#x, writing %#x)\n", 979 i, val, (int)dev->saved_config_space[i]); 980 pci_write_config_dword(dev,i * 4, 981 dev->saved_config_space[i]); 982 } 983 } 984 pci_restore_pcix_state(dev); 985 pci_restore_msi_state(dev); 986 pci_restore_iov_state(dev); 987 988 dev->state_saved = false; 989 } 990 991 struct pci_saved_state { 992 u32 config_space[16]; 993 struct pci_cap_saved_data cap[0]; 994 }; 995 996 /** 997 * pci_store_saved_state - Allocate and return an opaque struct containing 998 * the device saved state. 999 * @dev: PCI device that we're dealing with 1000 * 1001 * Rerturn NULL if no state or error. 1002 */ 1003 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1004 { 1005 struct pci_saved_state *state; 1006 struct pci_cap_saved_state *tmp; 1007 struct pci_cap_saved_data *cap; 1008 struct hlist_node *pos; 1009 size_t size; 1010 1011 if (!dev->state_saved) 1012 return NULL; 1013 1014 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1015 1016 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) 1017 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1018 1019 state = kzalloc(size, GFP_KERNEL); 1020 if (!state) 1021 return NULL; 1022 1023 memcpy(state->config_space, dev->saved_config_space, 1024 sizeof(state->config_space)); 1025 1026 cap = state->cap; 1027 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) { 1028 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1029 memcpy(cap, &tmp->cap, len); 1030 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1031 } 1032 /* Empty cap_save terminates list */ 1033 1034 return state; 1035 } 1036 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1037 1038 /** 1039 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1040 * @dev: PCI device that we're dealing with 1041 * @state: Saved state returned from pci_store_saved_state() 1042 */ 1043 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state) 1044 { 1045 struct pci_cap_saved_data *cap; 1046 1047 dev->state_saved = false; 1048 1049 if (!state) 1050 return 0; 1051 1052 memcpy(dev->saved_config_space, state->config_space, 1053 sizeof(state->config_space)); 1054 1055 cap = state->cap; 1056 while (cap->size) { 1057 struct pci_cap_saved_state *tmp; 1058 1059 tmp = pci_find_saved_cap(dev, cap->cap_nr); 1060 if (!tmp || tmp->cap.size != cap->size) 1061 return -EINVAL; 1062 1063 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1064 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1065 sizeof(struct pci_cap_saved_data) + cap->size); 1066 } 1067 1068 dev->state_saved = true; 1069 return 0; 1070 } 1071 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1072 1073 /** 1074 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1075 * and free the memory allocated for it. 1076 * @dev: PCI device that we're dealing with 1077 * @state: Pointer to saved state returned from pci_store_saved_state() 1078 */ 1079 int pci_load_and_free_saved_state(struct pci_dev *dev, 1080 struct pci_saved_state **state) 1081 { 1082 int ret = pci_load_saved_state(dev, *state); 1083 kfree(*state); 1084 *state = NULL; 1085 return ret; 1086 } 1087 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1088 1089 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1090 { 1091 int err; 1092 1093 err = pci_set_power_state(dev, PCI_D0); 1094 if (err < 0 && err != -EIO) 1095 return err; 1096 err = pcibios_enable_device(dev, bars); 1097 if (err < 0) 1098 return err; 1099 pci_fixup_device(pci_fixup_enable, dev); 1100 1101 return 0; 1102 } 1103 1104 /** 1105 * pci_reenable_device - Resume abandoned device 1106 * @dev: PCI device to be resumed 1107 * 1108 * Note this function is a backend of pci_default_resume and is not supposed 1109 * to be called by normal code, write proper resume handler and use it instead. 1110 */ 1111 int pci_reenable_device(struct pci_dev *dev) 1112 { 1113 if (pci_is_enabled(dev)) 1114 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1115 return 0; 1116 } 1117 1118 static int __pci_enable_device_flags(struct pci_dev *dev, 1119 resource_size_t flags) 1120 { 1121 int err; 1122 int i, bars = 0; 1123 1124 /* 1125 * Power state could be unknown at this point, either due to a fresh 1126 * boot or a device removal call. So get the current power state 1127 * so that things like MSI message writing will behave as expected 1128 * (e.g. if the device really is in D0 at enable time). 1129 */ 1130 if (dev->pm_cap) { 1131 u16 pmcsr; 1132 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1133 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1134 } 1135 1136 if (atomic_add_return(1, &dev->enable_cnt) > 1) 1137 return 0; /* already enabled */ 1138 1139 /* only skip sriov related */ 1140 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1141 if (dev->resource[i].flags & flags) 1142 bars |= (1 << i); 1143 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1144 if (dev->resource[i].flags & flags) 1145 bars |= (1 << i); 1146 1147 err = do_pci_enable_device(dev, bars); 1148 if (err < 0) 1149 atomic_dec(&dev->enable_cnt); 1150 return err; 1151 } 1152 1153 /** 1154 * pci_enable_device_io - Initialize a device for use with IO space 1155 * @dev: PCI device to be initialized 1156 * 1157 * Initialize device before it's used by a driver. Ask low-level code 1158 * to enable I/O resources. Wake up the device if it was suspended. 1159 * Beware, this function can fail. 1160 */ 1161 int pci_enable_device_io(struct pci_dev *dev) 1162 { 1163 return __pci_enable_device_flags(dev, IORESOURCE_IO); 1164 } 1165 1166 /** 1167 * pci_enable_device_mem - Initialize a device for use with Memory space 1168 * @dev: PCI device to be initialized 1169 * 1170 * Initialize device before it's used by a driver. Ask low-level code 1171 * to enable Memory resources. Wake up the device if it was suspended. 1172 * Beware, this function can fail. 1173 */ 1174 int pci_enable_device_mem(struct pci_dev *dev) 1175 { 1176 return __pci_enable_device_flags(dev, IORESOURCE_MEM); 1177 } 1178 1179 /** 1180 * pci_enable_device - Initialize device before it's used by a driver. 1181 * @dev: PCI device to be initialized 1182 * 1183 * Initialize device before it's used by a driver. Ask low-level code 1184 * to enable I/O and memory. Wake up the device if it was suspended. 1185 * Beware, this function can fail. 1186 * 1187 * Note we don't actually enable the device many times if we call 1188 * this function repeatedly (we just increment the count). 1189 */ 1190 int pci_enable_device(struct pci_dev *dev) 1191 { 1192 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1193 } 1194 1195 /* 1196 * Managed PCI resources. This manages device on/off, intx/msi/msix 1197 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1198 * there's no need to track it separately. pci_devres is initialized 1199 * when a device is enabled using managed PCI device enable interface. 1200 */ 1201 struct pci_devres { 1202 unsigned int enabled:1; 1203 unsigned int pinned:1; 1204 unsigned int orig_intx:1; 1205 unsigned int restore_intx:1; 1206 u32 region_mask; 1207 }; 1208 1209 static void pcim_release(struct device *gendev, void *res) 1210 { 1211 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); 1212 struct pci_devres *this = res; 1213 int i; 1214 1215 if (dev->msi_enabled) 1216 pci_disable_msi(dev); 1217 if (dev->msix_enabled) 1218 pci_disable_msix(dev); 1219 1220 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1221 if (this->region_mask & (1 << i)) 1222 pci_release_region(dev, i); 1223 1224 if (this->restore_intx) 1225 pci_intx(dev, this->orig_intx); 1226 1227 if (this->enabled && !this->pinned) 1228 pci_disable_device(dev); 1229 } 1230 1231 static struct pci_devres * get_pci_dr(struct pci_dev *pdev) 1232 { 1233 struct pci_devres *dr, *new_dr; 1234 1235 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1236 if (dr) 1237 return dr; 1238 1239 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1240 if (!new_dr) 1241 return NULL; 1242 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1243 } 1244 1245 static struct pci_devres * find_pci_dr(struct pci_dev *pdev) 1246 { 1247 if (pci_is_managed(pdev)) 1248 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1249 return NULL; 1250 } 1251 1252 /** 1253 * pcim_enable_device - Managed pci_enable_device() 1254 * @pdev: PCI device to be initialized 1255 * 1256 * Managed pci_enable_device(). 1257 */ 1258 int pcim_enable_device(struct pci_dev *pdev) 1259 { 1260 struct pci_devres *dr; 1261 int rc; 1262 1263 dr = get_pci_dr(pdev); 1264 if (unlikely(!dr)) 1265 return -ENOMEM; 1266 if (dr->enabled) 1267 return 0; 1268 1269 rc = pci_enable_device(pdev); 1270 if (!rc) { 1271 pdev->is_managed = 1; 1272 dr->enabled = 1; 1273 } 1274 return rc; 1275 } 1276 1277 /** 1278 * pcim_pin_device - Pin managed PCI device 1279 * @pdev: PCI device to pin 1280 * 1281 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1282 * driver detach. @pdev must have been enabled with 1283 * pcim_enable_device(). 1284 */ 1285 void pcim_pin_device(struct pci_dev *pdev) 1286 { 1287 struct pci_devres *dr; 1288 1289 dr = find_pci_dr(pdev); 1290 WARN_ON(!dr || !dr->enabled); 1291 if (dr) 1292 dr->pinned = 1; 1293 } 1294 1295 /** 1296 * pcibios_disable_device - disable arch specific PCI resources for device dev 1297 * @dev: the PCI device to disable 1298 * 1299 * Disables architecture specific PCI resources for the device. This 1300 * is the default implementation. Architecture implementations can 1301 * override this. 1302 */ 1303 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {} 1304 1305 static void do_pci_disable_device(struct pci_dev *dev) 1306 { 1307 u16 pci_command; 1308 1309 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1310 if (pci_command & PCI_COMMAND_MASTER) { 1311 pci_command &= ~PCI_COMMAND_MASTER; 1312 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1313 } 1314 1315 pcibios_disable_device(dev); 1316 } 1317 1318 /** 1319 * pci_disable_enabled_device - Disable device without updating enable_cnt 1320 * @dev: PCI device to disable 1321 * 1322 * NOTE: This function is a backend of PCI power management routines and is 1323 * not supposed to be called drivers. 1324 */ 1325 void pci_disable_enabled_device(struct pci_dev *dev) 1326 { 1327 if (pci_is_enabled(dev)) 1328 do_pci_disable_device(dev); 1329 } 1330 1331 /** 1332 * pci_disable_device - Disable PCI device after use 1333 * @dev: PCI device to be disabled 1334 * 1335 * Signal to the system that the PCI device is not in use by the system 1336 * anymore. This only involves disabling PCI bus-mastering, if active. 1337 * 1338 * Note we don't actually disable the device until all callers of 1339 * pci_enable_device() have called pci_disable_device(). 1340 */ 1341 void 1342 pci_disable_device(struct pci_dev *dev) 1343 { 1344 struct pci_devres *dr; 1345 1346 dr = find_pci_dr(dev); 1347 if (dr) 1348 dr->enabled = 0; 1349 1350 if (atomic_sub_return(1, &dev->enable_cnt) != 0) 1351 return; 1352 1353 do_pci_disable_device(dev); 1354 1355 dev->is_busmaster = 0; 1356 } 1357 1358 /** 1359 * pcibios_set_pcie_reset_state - set reset state for device dev 1360 * @dev: the PCIe device reset 1361 * @state: Reset state to enter into 1362 * 1363 * 1364 * Sets the PCIe reset state for the device. This is the default 1365 * implementation. Architecture implementations can override this. 1366 */ 1367 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev, 1368 enum pcie_reset_state state) 1369 { 1370 return -EINVAL; 1371 } 1372 1373 /** 1374 * pci_set_pcie_reset_state - set reset state for device dev 1375 * @dev: the PCIe device reset 1376 * @state: Reset state to enter into 1377 * 1378 * 1379 * Sets the PCI reset state for the device. 1380 */ 1381 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1382 { 1383 return pcibios_set_pcie_reset_state(dev, state); 1384 } 1385 1386 /** 1387 * pci_check_pme_status - Check if given device has generated PME. 1388 * @dev: Device to check. 1389 * 1390 * Check the PME status of the device and if set, clear it and clear PME enable 1391 * (if set). Return 'true' if PME status and PME enable were both set or 1392 * 'false' otherwise. 1393 */ 1394 bool pci_check_pme_status(struct pci_dev *dev) 1395 { 1396 int pmcsr_pos; 1397 u16 pmcsr; 1398 bool ret = false; 1399 1400 if (!dev->pm_cap) 1401 return false; 1402 1403 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1404 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1405 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1406 return false; 1407 1408 /* Clear PME status. */ 1409 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1410 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1411 /* Disable PME to avoid interrupt flood. */ 1412 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1413 ret = true; 1414 } 1415 1416 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1417 1418 return ret; 1419 } 1420 1421 /** 1422 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1423 * @dev: Device to handle. 1424 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1425 * 1426 * Check if @dev has generated PME and queue a resume request for it in that 1427 * case. 1428 */ 1429 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1430 { 1431 if (pme_poll_reset && dev->pme_poll) 1432 dev->pme_poll = false; 1433 1434 if (pci_check_pme_status(dev)) { 1435 pci_wakeup_event(dev); 1436 pm_request_resume(&dev->dev); 1437 } 1438 return 0; 1439 } 1440 1441 /** 1442 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1443 * @bus: Top bus of the subtree to walk. 1444 */ 1445 void pci_pme_wakeup_bus(struct pci_bus *bus) 1446 { 1447 if (bus) 1448 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1449 } 1450 1451 /** 1452 * pci_pme_capable - check the capability of PCI device to generate PME# 1453 * @dev: PCI device to handle. 1454 * @state: PCI state from which device will issue PME#. 1455 */ 1456 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1457 { 1458 if (!dev->pm_cap) 1459 return false; 1460 1461 return !!(dev->pme_support & (1 << state)); 1462 } 1463 1464 static void pci_pme_list_scan(struct work_struct *work) 1465 { 1466 struct pci_pme_device *pme_dev, *n; 1467 1468 mutex_lock(&pci_pme_list_mutex); 1469 if (!list_empty(&pci_pme_list)) { 1470 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1471 if (pme_dev->dev->pme_poll) { 1472 pci_pme_wakeup(pme_dev->dev, NULL); 1473 } else { 1474 list_del(&pme_dev->list); 1475 kfree(pme_dev); 1476 } 1477 } 1478 if (!list_empty(&pci_pme_list)) 1479 schedule_delayed_work(&pci_pme_work, 1480 msecs_to_jiffies(PME_TIMEOUT)); 1481 } 1482 mutex_unlock(&pci_pme_list_mutex); 1483 } 1484 1485 /** 1486 * pci_pme_active - enable or disable PCI device's PME# function 1487 * @dev: PCI device to handle. 1488 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1489 * 1490 * The caller must verify that the device is capable of generating PME# before 1491 * calling this function with @enable equal to 'true'. 1492 */ 1493 void pci_pme_active(struct pci_dev *dev, bool enable) 1494 { 1495 u16 pmcsr; 1496 1497 if (!dev->pm_cap) 1498 return; 1499 1500 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1501 /* Clear PME_Status by writing 1 to it and enable PME# */ 1502 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1503 if (!enable) 1504 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1505 1506 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1507 1508 /* PCI (as opposed to PCIe) PME requires that the device have 1509 its PME# line hooked up correctly. Not all hardware vendors 1510 do this, so the PME never gets delivered and the device 1511 remains asleep. The easiest way around this is to 1512 periodically walk the list of suspended devices and check 1513 whether any have their PME flag set. The assumption is that 1514 we'll wake up often enough anyway that this won't be a huge 1515 hit, and the power savings from the devices will still be a 1516 win. */ 1517 1518 if (dev->pme_poll) { 1519 struct pci_pme_device *pme_dev; 1520 if (enable) { 1521 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1522 GFP_KERNEL); 1523 if (!pme_dev) 1524 goto out; 1525 pme_dev->dev = dev; 1526 mutex_lock(&pci_pme_list_mutex); 1527 list_add(&pme_dev->list, &pci_pme_list); 1528 if (list_is_singular(&pci_pme_list)) 1529 schedule_delayed_work(&pci_pme_work, 1530 msecs_to_jiffies(PME_TIMEOUT)); 1531 mutex_unlock(&pci_pme_list_mutex); 1532 } else { 1533 mutex_lock(&pci_pme_list_mutex); 1534 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1535 if (pme_dev->dev == dev) { 1536 list_del(&pme_dev->list); 1537 kfree(pme_dev); 1538 break; 1539 } 1540 } 1541 mutex_unlock(&pci_pme_list_mutex); 1542 } 1543 } 1544 1545 out: 1546 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1547 } 1548 1549 /** 1550 * __pci_enable_wake - enable PCI device as wakeup event source 1551 * @dev: PCI device affected 1552 * @state: PCI state from which device will issue wakeup events 1553 * @runtime: True if the events are to be generated at run time 1554 * @enable: True to enable event generation; false to disable 1555 * 1556 * This enables the device as a wakeup event source, or disables it. 1557 * When such events involves platform-specific hooks, those hooks are 1558 * called automatically by this routine. 1559 * 1560 * Devices with legacy power management (no standard PCI PM capabilities) 1561 * always require such platform hooks. 1562 * 1563 * RETURN VALUE: 1564 * 0 is returned on success 1565 * -EINVAL is returned if device is not supposed to wake up the system 1566 * Error code depending on the platform is returned if both the platform and 1567 * the native mechanism fail to enable the generation of wake-up events 1568 */ 1569 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1570 bool runtime, bool enable) 1571 { 1572 int ret = 0; 1573 1574 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1575 return -EINVAL; 1576 1577 /* Don't do the same thing twice in a row for one device. */ 1578 if (!!enable == !!dev->wakeup_prepared) 1579 return 0; 1580 1581 /* 1582 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1583 * Anderson we should be doing PME# wake enable followed by ACPI wake 1584 * enable. To disable wake-up we call the platform first, for symmetry. 1585 */ 1586 1587 if (enable) { 1588 int error; 1589 1590 if (pci_pme_capable(dev, state)) 1591 pci_pme_active(dev, true); 1592 else 1593 ret = 1; 1594 error = runtime ? platform_pci_run_wake(dev, true) : 1595 platform_pci_sleep_wake(dev, true); 1596 if (ret) 1597 ret = error; 1598 if (!ret) 1599 dev->wakeup_prepared = true; 1600 } else { 1601 if (runtime) 1602 platform_pci_run_wake(dev, false); 1603 else 1604 platform_pci_sleep_wake(dev, false); 1605 pci_pme_active(dev, false); 1606 dev->wakeup_prepared = false; 1607 } 1608 1609 return ret; 1610 } 1611 EXPORT_SYMBOL(__pci_enable_wake); 1612 1613 /** 1614 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1615 * @dev: PCI device to prepare 1616 * @enable: True to enable wake-up event generation; false to disable 1617 * 1618 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1619 * and this function allows them to set that up cleanly - pci_enable_wake() 1620 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1621 * ordering constraints. 1622 * 1623 * This function only returns error code if the device is not capable of 1624 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1625 * enable wake-up power for it. 1626 */ 1627 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1628 { 1629 return pci_pme_capable(dev, PCI_D3cold) ? 1630 pci_enable_wake(dev, PCI_D3cold, enable) : 1631 pci_enable_wake(dev, PCI_D3hot, enable); 1632 } 1633 1634 /** 1635 * pci_target_state - find an appropriate low power state for a given PCI dev 1636 * @dev: PCI device 1637 * 1638 * Use underlying platform code to find a supported low power state for @dev. 1639 * If the platform can't manage @dev, return the deepest state from which it 1640 * can generate wake events, based on any available PME info. 1641 */ 1642 pci_power_t pci_target_state(struct pci_dev *dev) 1643 { 1644 pci_power_t target_state = PCI_D3hot; 1645 1646 if (platform_pci_power_manageable(dev)) { 1647 /* 1648 * Call the platform to choose the target state of the device 1649 * and enable wake-up from this state if supported. 1650 */ 1651 pci_power_t state = platform_pci_choose_state(dev); 1652 1653 switch (state) { 1654 case PCI_POWER_ERROR: 1655 case PCI_UNKNOWN: 1656 break; 1657 case PCI_D1: 1658 case PCI_D2: 1659 if (pci_no_d1d2(dev)) 1660 break; 1661 default: 1662 target_state = state; 1663 } 1664 } else if (!dev->pm_cap) { 1665 target_state = PCI_D0; 1666 } else if (device_may_wakeup(&dev->dev)) { 1667 /* 1668 * Find the deepest state from which the device can generate 1669 * wake-up events, make it the target state and enable device 1670 * to generate PME#. 1671 */ 1672 if (dev->pme_support) { 1673 while (target_state 1674 && !(dev->pme_support & (1 << target_state))) 1675 target_state--; 1676 } 1677 } 1678 1679 return target_state; 1680 } 1681 1682 /** 1683 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 1684 * @dev: Device to handle. 1685 * 1686 * Choose the power state appropriate for the device depending on whether 1687 * it can wake up the system and/or is power manageable by the platform 1688 * (PCI_D3hot is the default) and put the device into that state. 1689 */ 1690 int pci_prepare_to_sleep(struct pci_dev *dev) 1691 { 1692 pci_power_t target_state = pci_target_state(dev); 1693 int error; 1694 1695 if (target_state == PCI_POWER_ERROR) 1696 return -EIO; 1697 1698 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 1699 1700 error = pci_set_power_state(dev, target_state); 1701 1702 if (error) 1703 pci_enable_wake(dev, target_state, false); 1704 1705 return error; 1706 } 1707 1708 /** 1709 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 1710 * @dev: Device to handle. 1711 * 1712 * Disable device's system wake-up capability and put it into D0. 1713 */ 1714 int pci_back_from_sleep(struct pci_dev *dev) 1715 { 1716 pci_enable_wake(dev, PCI_D0, false); 1717 return pci_set_power_state(dev, PCI_D0); 1718 } 1719 1720 /** 1721 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 1722 * @dev: PCI device being suspended. 1723 * 1724 * Prepare @dev to generate wake-up events at run time and put it into a low 1725 * power state. 1726 */ 1727 int pci_finish_runtime_suspend(struct pci_dev *dev) 1728 { 1729 pci_power_t target_state = pci_target_state(dev); 1730 int error; 1731 1732 if (target_state == PCI_POWER_ERROR) 1733 return -EIO; 1734 1735 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 1736 1737 error = pci_set_power_state(dev, target_state); 1738 1739 if (error) 1740 __pci_enable_wake(dev, target_state, true, false); 1741 1742 return error; 1743 } 1744 1745 /** 1746 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 1747 * @dev: Device to check. 1748 * 1749 * Return true if the device itself is cabable of generating wake-up events 1750 * (through the platform or using the native PCIe PME) or if the device supports 1751 * PME and one of its upstream bridges can generate wake-up events. 1752 */ 1753 bool pci_dev_run_wake(struct pci_dev *dev) 1754 { 1755 struct pci_bus *bus = dev->bus; 1756 1757 if (device_run_wake(&dev->dev)) 1758 return true; 1759 1760 if (!dev->pme_support) 1761 return false; 1762 1763 while (bus->parent) { 1764 struct pci_dev *bridge = bus->self; 1765 1766 if (device_run_wake(&bridge->dev)) 1767 return true; 1768 1769 bus = bus->parent; 1770 } 1771 1772 /* We have reached the root bus. */ 1773 if (bus->bridge) 1774 return device_run_wake(bus->bridge); 1775 1776 return false; 1777 } 1778 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 1779 1780 /** 1781 * pci_pm_init - Initialize PM functions of given PCI device 1782 * @dev: PCI device to handle. 1783 */ 1784 void pci_pm_init(struct pci_dev *dev) 1785 { 1786 int pm; 1787 u16 pmc; 1788 1789 pm_runtime_forbid(&dev->dev); 1790 device_enable_async_suspend(&dev->dev); 1791 dev->wakeup_prepared = false; 1792 1793 dev->pm_cap = 0; 1794 1795 /* find PCI PM capability in list */ 1796 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 1797 if (!pm) 1798 return; 1799 /* Check device's ability to generate PME# */ 1800 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 1801 1802 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 1803 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 1804 pmc & PCI_PM_CAP_VER_MASK); 1805 return; 1806 } 1807 1808 dev->pm_cap = pm; 1809 dev->d3_delay = PCI_PM_D3_WAIT; 1810 1811 dev->d1_support = false; 1812 dev->d2_support = false; 1813 if (!pci_no_d1d2(dev)) { 1814 if (pmc & PCI_PM_CAP_D1) 1815 dev->d1_support = true; 1816 if (pmc & PCI_PM_CAP_D2) 1817 dev->d2_support = true; 1818 1819 if (dev->d1_support || dev->d2_support) 1820 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 1821 dev->d1_support ? " D1" : "", 1822 dev->d2_support ? " D2" : ""); 1823 } 1824 1825 pmc &= PCI_PM_CAP_PME_MASK; 1826 if (pmc) { 1827 dev_printk(KERN_DEBUG, &dev->dev, 1828 "PME# supported from%s%s%s%s%s\n", 1829 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 1830 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 1831 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 1832 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 1833 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 1834 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 1835 dev->pme_poll = true; 1836 /* 1837 * Make device's PM flags reflect the wake-up capability, but 1838 * let the user space enable it to wake up the system as needed. 1839 */ 1840 device_set_wakeup_capable(&dev->dev, true); 1841 /* Disable the PME# generation functionality */ 1842 pci_pme_active(dev, false); 1843 } else { 1844 dev->pme_support = 0; 1845 } 1846 } 1847 1848 /** 1849 * platform_pci_wakeup_init - init platform wakeup if present 1850 * @dev: PCI device 1851 * 1852 * Some devices don't have PCI PM caps but can still generate wakeup 1853 * events through platform methods (like ACPI events). If @dev supports 1854 * platform wakeup events, set the device flag to indicate as much. This 1855 * may be redundant if the device also supports PCI PM caps, but double 1856 * initialization should be safe in that case. 1857 */ 1858 void platform_pci_wakeup_init(struct pci_dev *dev) 1859 { 1860 if (!platform_pci_can_wakeup(dev)) 1861 return; 1862 1863 device_set_wakeup_capable(&dev->dev, true); 1864 platform_pci_sleep_wake(dev, false); 1865 } 1866 1867 /** 1868 * pci_add_save_buffer - allocate buffer for saving given capability registers 1869 * @dev: the PCI device 1870 * @cap: the capability to allocate the buffer for 1871 * @size: requested size of the buffer 1872 */ 1873 static int pci_add_cap_save_buffer( 1874 struct pci_dev *dev, char cap, unsigned int size) 1875 { 1876 int pos; 1877 struct pci_cap_saved_state *save_state; 1878 1879 pos = pci_find_capability(dev, cap); 1880 if (pos <= 0) 1881 return 0; 1882 1883 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 1884 if (!save_state) 1885 return -ENOMEM; 1886 1887 save_state->cap.cap_nr = cap; 1888 save_state->cap.size = size; 1889 pci_add_saved_cap(dev, save_state); 1890 1891 return 0; 1892 } 1893 1894 /** 1895 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 1896 * @dev: the PCI device 1897 */ 1898 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 1899 { 1900 int error; 1901 1902 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 1903 PCI_EXP_SAVE_REGS * sizeof(u16)); 1904 if (error) 1905 dev_err(&dev->dev, 1906 "unable to preallocate PCI Express save buffer\n"); 1907 1908 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 1909 if (error) 1910 dev_err(&dev->dev, 1911 "unable to preallocate PCI-X save buffer\n"); 1912 } 1913 1914 /** 1915 * pci_enable_ari - enable ARI forwarding if hardware support it 1916 * @dev: the PCI device 1917 */ 1918 void pci_enable_ari(struct pci_dev *dev) 1919 { 1920 int pos; 1921 u32 cap; 1922 u16 flags, ctrl; 1923 struct pci_dev *bridge; 1924 1925 if (!pci_is_pcie(dev) || dev->devfn) 1926 return; 1927 1928 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI); 1929 if (!pos) 1930 return; 1931 1932 bridge = dev->bus->self; 1933 if (!bridge || !pci_is_pcie(bridge)) 1934 return; 1935 1936 pos = pci_pcie_cap(bridge); 1937 if (!pos) 1938 return; 1939 1940 /* ARI is a PCIe v2 feature */ 1941 pci_read_config_word(bridge, pos + PCI_EXP_FLAGS, &flags); 1942 if ((flags & PCI_EXP_FLAGS_VERS) < 2) 1943 return; 1944 1945 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap); 1946 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 1947 return; 1948 1949 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl); 1950 ctrl |= PCI_EXP_DEVCTL2_ARI; 1951 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl); 1952 1953 bridge->ari_enabled = 1; 1954 } 1955 1956 /** 1957 * pci_enable_ido - enable ID-based ordering on a device 1958 * @dev: the PCI device 1959 * @type: which types of IDO to enable 1960 * 1961 * Enable ID-based ordering on @dev. @type can contain the bits 1962 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate 1963 * which types of transactions are allowed to be re-ordered. 1964 */ 1965 void pci_enable_ido(struct pci_dev *dev, unsigned long type) 1966 { 1967 int pos; 1968 u16 ctrl; 1969 1970 pos = pci_pcie_cap(dev); 1971 if (!pos) 1972 return; 1973 1974 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl); 1975 if (type & PCI_EXP_IDO_REQUEST) 1976 ctrl |= PCI_EXP_IDO_REQ_EN; 1977 if (type & PCI_EXP_IDO_COMPLETION) 1978 ctrl |= PCI_EXP_IDO_CMP_EN; 1979 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl); 1980 } 1981 EXPORT_SYMBOL(pci_enable_ido); 1982 1983 /** 1984 * pci_disable_ido - disable ID-based ordering on a device 1985 * @dev: the PCI device 1986 * @type: which types of IDO to disable 1987 */ 1988 void pci_disable_ido(struct pci_dev *dev, unsigned long type) 1989 { 1990 int pos; 1991 u16 ctrl; 1992 1993 if (!pci_is_pcie(dev)) 1994 return; 1995 1996 pos = pci_pcie_cap(dev); 1997 if (!pos) 1998 return; 1999 2000 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl); 2001 if (type & PCI_EXP_IDO_REQUEST) 2002 ctrl &= ~PCI_EXP_IDO_REQ_EN; 2003 if (type & PCI_EXP_IDO_COMPLETION) 2004 ctrl &= ~PCI_EXP_IDO_CMP_EN; 2005 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl); 2006 } 2007 EXPORT_SYMBOL(pci_disable_ido); 2008 2009 /** 2010 * pci_enable_obff - enable optimized buffer flush/fill 2011 * @dev: PCI device 2012 * @type: type of signaling to use 2013 * 2014 * Try to enable @type OBFF signaling on @dev. It will try using WAKE# 2015 * signaling if possible, falling back to message signaling only if 2016 * WAKE# isn't supported. @type should indicate whether the PCIe link 2017 * be brought out of L0s or L1 to send the message. It should be either 2018 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0. 2019 * 2020 * If your device can benefit from receiving all messages, even at the 2021 * power cost of bringing the link back up from a low power state, use 2022 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the 2023 * preferred type). 2024 * 2025 * RETURNS: 2026 * Zero on success, appropriate error number on failure. 2027 */ 2028 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type) 2029 { 2030 int pos; 2031 u32 cap; 2032 u16 ctrl; 2033 int ret; 2034 2035 if (!pci_is_pcie(dev)) 2036 return -ENOTSUPP; 2037 2038 pos = pci_pcie_cap(dev); 2039 if (!pos) 2040 return -ENOTSUPP; 2041 2042 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap); 2043 if (!(cap & PCI_EXP_OBFF_MASK)) 2044 return -ENOTSUPP; /* no OBFF support at all */ 2045 2046 /* Make sure the topology supports OBFF as well */ 2047 if (dev->bus) { 2048 ret = pci_enable_obff(dev->bus->self, type); 2049 if (ret) 2050 return ret; 2051 } 2052 2053 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl); 2054 if (cap & PCI_EXP_OBFF_WAKE) 2055 ctrl |= PCI_EXP_OBFF_WAKE_EN; 2056 else { 2057 switch (type) { 2058 case PCI_EXP_OBFF_SIGNAL_L0: 2059 if (!(ctrl & PCI_EXP_OBFF_WAKE_EN)) 2060 ctrl |= PCI_EXP_OBFF_MSGA_EN; 2061 break; 2062 case PCI_EXP_OBFF_SIGNAL_ALWAYS: 2063 ctrl &= ~PCI_EXP_OBFF_WAKE_EN; 2064 ctrl |= PCI_EXP_OBFF_MSGB_EN; 2065 break; 2066 default: 2067 WARN(1, "bad OBFF signal type\n"); 2068 return -ENOTSUPP; 2069 } 2070 } 2071 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl); 2072 2073 return 0; 2074 } 2075 EXPORT_SYMBOL(pci_enable_obff); 2076 2077 /** 2078 * pci_disable_obff - disable optimized buffer flush/fill 2079 * @dev: PCI device 2080 * 2081 * Disable OBFF on @dev. 2082 */ 2083 void pci_disable_obff(struct pci_dev *dev) 2084 { 2085 int pos; 2086 u16 ctrl; 2087 2088 if (!pci_is_pcie(dev)) 2089 return; 2090 2091 pos = pci_pcie_cap(dev); 2092 if (!pos) 2093 return; 2094 2095 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl); 2096 ctrl &= ~PCI_EXP_OBFF_WAKE_EN; 2097 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl); 2098 } 2099 EXPORT_SYMBOL(pci_disable_obff); 2100 2101 /** 2102 * pci_ltr_supported - check whether a device supports LTR 2103 * @dev: PCI device 2104 * 2105 * RETURNS: 2106 * True if @dev supports latency tolerance reporting, false otherwise. 2107 */ 2108 bool pci_ltr_supported(struct pci_dev *dev) 2109 { 2110 int pos; 2111 u32 cap; 2112 2113 if (!pci_is_pcie(dev)) 2114 return false; 2115 2116 pos = pci_pcie_cap(dev); 2117 if (!pos) 2118 return false; 2119 2120 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap); 2121 2122 return cap & PCI_EXP_DEVCAP2_LTR; 2123 } 2124 EXPORT_SYMBOL(pci_ltr_supported); 2125 2126 /** 2127 * pci_enable_ltr - enable latency tolerance reporting 2128 * @dev: PCI device 2129 * 2130 * Enable LTR on @dev if possible, which means enabling it first on 2131 * upstream ports. 2132 * 2133 * RETURNS: 2134 * Zero on success, errno on failure. 2135 */ 2136 int pci_enable_ltr(struct pci_dev *dev) 2137 { 2138 int pos; 2139 u16 ctrl; 2140 int ret; 2141 2142 if (!pci_ltr_supported(dev)) 2143 return -ENOTSUPP; 2144 2145 pos = pci_pcie_cap(dev); 2146 if (!pos) 2147 return -ENOTSUPP; 2148 2149 /* Only primary function can enable/disable LTR */ 2150 if (PCI_FUNC(dev->devfn) != 0) 2151 return -EINVAL; 2152 2153 /* Enable upstream ports first */ 2154 if (dev->bus) { 2155 ret = pci_enable_ltr(dev->bus->self); 2156 if (ret) 2157 return ret; 2158 } 2159 2160 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl); 2161 ctrl |= PCI_EXP_LTR_EN; 2162 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl); 2163 2164 return 0; 2165 } 2166 EXPORT_SYMBOL(pci_enable_ltr); 2167 2168 /** 2169 * pci_disable_ltr - disable latency tolerance reporting 2170 * @dev: PCI device 2171 */ 2172 void pci_disable_ltr(struct pci_dev *dev) 2173 { 2174 int pos; 2175 u16 ctrl; 2176 2177 if (!pci_ltr_supported(dev)) 2178 return; 2179 2180 pos = pci_pcie_cap(dev); 2181 if (!pos) 2182 return; 2183 2184 /* Only primary function can enable/disable LTR */ 2185 if (PCI_FUNC(dev->devfn) != 0) 2186 return; 2187 2188 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl); 2189 ctrl &= ~PCI_EXP_LTR_EN; 2190 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl); 2191 } 2192 EXPORT_SYMBOL(pci_disable_ltr); 2193 2194 static int __pci_ltr_scale(int *val) 2195 { 2196 int scale = 0; 2197 2198 while (*val > 1023) { 2199 *val = (*val + 31) / 32; 2200 scale++; 2201 } 2202 return scale; 2203 } 2204 2205 /** 2206 * pci_set_ltr - set LTR latency values 2207 * @dev: PCI device 2208 * @snoop_lat_ns: snoop latency in nanoseconds 2209 * @nosnoop_lat_ns: nosnoop latency in nanoseconds 2210 * 2211 * Figure out the scale and set the LTR values accordingly. 2212 */ 2213 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns) 2214 { 2215 int pos, ret, snoop_scale, nosnoop_scale; 2216 u16 val; 2217 2218 if (!pci_ltr_supported(dev)) 2219 return -ENOTSUPP; 2220 2221 snoop_scale = __pci_ltr_scale(&snoop_lat_ns); 2222 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns); 2223 2224 if (snoop_lat_ns > PCI_LTR_VALUE_MASK || 2225 nosnoop_lat_ns > PCI_LTR_VALUE_MASK) 2226 return -EINVAL; 2227 2228 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) || 2229 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT))) 2230 return -EINVAL; 2231 2232 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 2233 if (!pos) 2234 return -ENOTSUPP; 2235 2236 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns; 2237 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val); 2238 if (ret != 4) 2239 return -EIO; 2240 2241 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns; 2242 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val); 2243 if (ret != 4) 2244 return -EIO; 2245 2246 return 0; 2247 } 2248 EXPORT_SYMBOL(pci_set_ltr); 2249 2250 static int pci_acs_enable; 2251 2252 /** 2253 * pci_request_acs - ask for ACS to be enabled if supported 2254 */ 2255 void pci_request_acs(void) 2256 { 2257 pci_acs_enable = 1; 2258 } 2259 2260 /** 2261 * pci_enable_acs - enable ACS if hardware support it 2262 * @dev: the PCI device 2263 */ 2264 void pci_enable_acs(struct pci_dev *dev) 2265 { 2266 int pos; 2267 u16 cap; 2268 u16 ctrl; 2269 2270 if (!pci_acs_enable) 2271 return; 2272 2273 if (!pci_is_pcie(dev)) 2274 return; 2275 2276 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2277 if (!pos) 2278 return; 2279 2280 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2281 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2282 2283 /* Source Validation */ 2284 ctrl |= (cap & PCI_ACS_SV); 2285 2286 /* P2P Request Redirect */ 2287 ctrl |= (cap & PCI_ACS_RR); 2288 2289 /* P2P Completion Redirect */ 2290 ctrl |= (cap & PCI_ACS_CR); 2291 2292 /* Upstream Forwarding */ 2293 ctrl |= (cap & PCI_ACS_UF); 2294 2295 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2296 } 2297 2298 /** 2299 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2300 * @dev: the PCI device 2301 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2302 * 2303 * Perform INTx swizzling for a device behind one level of bridge. This is 2304 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2305 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2306 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2307 * the PCI Express Base Specification, Revision 2.1) 2308 */ 2309 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin) 2310 { 2311 int slot; 2312 2313 if (pci_ari_enabled(dev->bus)) 2314 slot = 0; 2315 else 2316 slot = PCI_SLOT(dev->devfn); 2317 2318 return (((pin - 1) + slot) % 4) + 1; 2319 } 2320 2321 int 2322 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2323 { 2324 u8 pin; 2325 2326 pin = dev->pin; 2327 if (!pin) 2328 return -1; 2329 2330 while (!pci_is_root_bus(dev->bus)) { 2331 pin = pci_swizzle_interrupt_pin(dev, pin); 2332 dev = dev->bus->self; 2333 } 2334 *bridge = dev; 2335 return pin; 2336 } 2337 2338 /** 2339 * pci_common_swizzle - swizzle INTx all the way to root bridge 2340 * @dev: the PCI device 2341 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2342 * 2343 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 2344 * bridges all the way up to a PCI root bus. 2345 */ 2346 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 2347 { 2348 u8 pin = *pinp; 2349 2350 while (!pci_is_root_bus(dev->bus)) { 2351 pin = pci_swizzle_interrupt_pin(dev, pin); 2352 dev = dev->bus->self; 2353 } 2354 *pinp = pin; 2355 return PCI_SLOT(dev->devfn); 2356 } 2357 2358 /** 2359 * pci_release_region - Release a PCI bar 2360 * @pdev: PCI device whose resources were previously reserved by pci_request_region 2361 * @bar: BAR to release 2362 * 2363 * Releases the PCI I/O and memory resources previously reserved by a 2364 * successful call to pci_request_region. Call this function only 2365 * after all use of the PCI regions has ceased. 2366 */ 2367 void pci_release_region(struct pci_dev *pdev, int bar) 2368 { 2369 struct pci_devres *dr; 2370 2371 if (pci_resource_len(pdev, bar) == 0) 2372 return; 2373 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 2374 release_region(pci_resource_start(pdev, bar), 2375 pci_resource_len(pdev, bar)); 2376 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 2377 release_mem_region(pci_resource_start(pdev, bar), 2378 pci_resource_len(pdev, bar)); 2379 2380 dr = find_pci_dr(pdev); 2381 if (dr) 2382 dr->region_mask &= ~(1 << bar); 2383 } 2384 2385 /** 2386 * __pci_request_region - Reserved PCI I/O and memory resource 2387 * @pdev: PCI device whose resources are to be reserved 2388 * @bar: BAR to be reserved 2389 * @res_name: Name to be associated with resource. 2390 * @exclusive: whether the region access is exclusive or not 2391 * 2392 * Mark the PCI region associated with PCI device @pdev BR @bar as 2393 * being reserved by owner @res_name. Do not access any 2394 * address inside the PCI regions unless this call returns 2395 * successfully. 2396 * 2397 * If @exclusive is set, then the region is marked so that userspace 2398 * is explicitly not allowed to map the resource via /dev/mem or 2399 * sysfs MMIO access. 2400 * 2401 * Returns 0 on success, or %EBUSY on error. A warning 2402 * message is also printed on failure. 2403 */ 2404 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name, 2405 int exclusive) 2406 { 2407 struct pci_devres *dr; 2408 2409 if (pci_resource_len(pdev, bar) == 0) 2410 return 0; 2411 2412 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 2413 if (!request_region(pci_resource_start(pdev, bar), 2414 pci_resource_len(pdev, bar), res_name)) 2415 goto err_out; 2416 } 2417 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 2418 if (!__request_mem_region(pci_resource_start(pdev, bar), 2419 pci_resource_len(pdev, bar), res_name, 2420 exclusive)) 2421 goto err_out; 2422 } 2423 2424 dr = find_pci_dr(pdev); 2425 if (dr) 2426 dr->region_mask |= 1 << bar; 2427 2428 return 0; 2429 2430 err_out: 2431 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 2432 &pdev->resource[bar]); 2433 return -EBUSY; 2434 } 2435 2436 /** 2437 * pci_request_region - Reserve PCI I/O and memory resource 2438 * @pdev: PCI device whose resources are to be reserved 2439 * @bar: BAR to be reserved 2440 * @res_name: Name to be associated with resource 2441 * 2442 * Mark the PCI region associated with PCI device @pdev BAR @bar as 2443 * being reserved by owner @res_name. Do not access any 2444 * address inside the PCI regions unless this call returns 2445 * successfully. 2446 * 2447 * Returns 0 on success, or %EBUSY on error. A warning 2448 * message is also printed on failure. 2449 */ 2450 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 2451 { 2452 return __pci_request_region(pdev, bar, res_name, 0); 2453 } 2454 2455 /** 2456 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 2457 * @pdev: PCI device whose resources are to be reserved 2458 * @bar: BAR to be reserved 2459 * @res_name: Name to be associated with resource. 2460 * 2461 * Mark the PCI region associated with PCI device @pdev BR @bar as 2462 * being reserved by owner @res_name. Do not access any 2463 * address inside the PCI regions unless this call returns 2464 * successfully. 2465 * 2466 * Returns 0 on success, or %EBUSY on error. A warning 2467 * message is also printed on failure. 2468 * 2469 * The key difference that _exclusive makes it that userspace is 2470 * explicitly not allowed to map the resource via /dev/mem or 2471 * sysfs. 2472 */ 2473 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name) 2474 { 2475 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 2476 } 2477 /** 2478 * pci_release_selected_regions - Release selected PCI I/O and memory resources 2479 * @pdev: PCI device whose resources were previously reserved 2480 * @bars: Bitmask of BARs to be released 2481 * 2482 * Release selected PCI I/O and memory resources previously reserved. 2483 * Call this function only after all use of the PCI regions has ceased. 2484 */ 2485 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 2486 { 2487 int i; 2488 2489 for (i = 0; i < 6; i++) 2490 if (bars & (1 << i)) 2491 pci_release_region(pdev, i); 2492 } 2493 2494 int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 2495 const char *res_name, int excl) 2496 { 2497 int i; 2498 2499 for (i = 0; i < 6; i++) 2500 if (bars & (1 << i)) 2501 if (__pci_request_region(pdev, i, res_name, excl)) 2502 goto err_out; 2503 return 0; 2504 2505 err_out: 2506 while(--i >= 0) 2507 if (bars & (1 << i)) 2508 pci_release_region(pdev, i); 2509 2510 return -EBUSY; 2511 } 2512 2513 2514 /** 2515 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 2516 * @pdev: PCI device whose resources are to be reserved 2517 * @bars: Bitmask of BARs to be requested 2518 * @res_name: Name to be associated with resource 2519 */ 2520 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 2521 const char *res_name) 2522 { 2523 return __pci_request_selected_regions(pdev, bars, res_name, 0); 2524 } 2525 2526 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, 2527 int bars, const char *res_name) 2528 { 2529 return __pci_request_selected_regions(pdev, bars, res_name, 2530 IORESOURCE_EXCLUSIVE); 2531 } 2532 2533 /** 2534 * pci_release_regions - Release reserved PCI I/O and memory resources 2535 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 2536 * 2537 * Releases all PCI I/O and memory resources previously reserved by a 2538 * successful call to pci_request_regions. Call this function only 2539 * after all use of the PCI regions has ceased. 2540 */ 2541 2542 void pci_release_regions(struct pci_dev *pdev) 2543 { 2544 pci_release_selected_regions(pdev, (1 << 6) - 1); 2545 } 2546 2547 /** 2548 * pci_request_regions - Reserved PCI I/O and memory resources 2549 * @pdev: PCI device whose resources are to be reserved 2550 * @res_name: Name to be associated with resource. 2551 * 2552 * Mark all PCI regions associated with PCI device @pdev as 2553 * being reserved by owner @res_name. Do not access any 2554 * address inside the PCI regions unless this call returns 2555 * successfully. 2556 * 2557 * Returns 0 on success, or %EBUSY on error. A warning 2558 * message is also printed on failure. 2559 */ 2560 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 2561 { 2562 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 2563 } 2564 2565 /** 2566 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 2567 * @pdev: PCI device whose resources are to be reserved 2568 * @res_name: Name to be associated with resource. 2569 * 2570 * Mark all PCI regions associated with PCI device @pdev as 2571 * being reserved by owner @res_name. Do not access any 2572 * address inside the PCI regions unless this call returns 2573 * successfully. 2574 * 2575 * pci_request_regions_exclusive() will mark the region so that 2576 * /dev/mem and the sysfs MMIO access will not be allowed. 2577 * 2578 * Returns 0 on success, or %EBUSY on error. A warning 2579 * message is also printed on failure. 2580 */ 2581 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 2582 { 2583 return pci_request_selected_regions_exclusive(pdev, 2584 ((1 << 6) - 1), res_name); 2585 } 2586 2587 static void __pci_set_master(struct pci_dev *dev, bool enable) 2588 { 2589 u16 old_cmd, cmd; 2590 2591 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 2592 if (enable) 2593 cmd = old_cmd | PCI_COMMAND_MASTER; 2594 else 2595 cmd = old_cmd & ~PCI_COMMAND_MASTER; 2596 if (cmd != old_cmd) { 2597 dev_dbg(&dev->dev, "%s bus mastering\n", 2598 enable ? "enabling" : "disabling"); 2599 pci_write_config_word(dev, PCI_COMMAND, cmd); 2600 } 2601 dev->is_busmaster = enable; 2602 } 2603 2604 /** 2605 * pcibios_set_master - enable PCI bus-mastering for device dev 2606 * @dev: the PCI device to enable 2607 * 2608 * Enables PCI bus-mastering for the device. This is the default 2609 * implementation. Architecture specific implementations can override 2610 * this if necessary. 2611 */ 2612 void __weak pcibios_set_master(struct pci_dev *dev) 2613 { 2614 u8 lat; 2615 2616 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 2617 if (pci_is_pcie(dev)) 2618 return; 2619 2620 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 2621 if (lat < 16) 2622 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 2623 else if (lat > pcibios_max_latency) 2624 lat = pcibios_max_latency; 2625 else 2626 return; 2627 dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat); 2628 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 2629 } 2630 2631 /** 2632 * pci_set_master - enables bus-mastering for device dev 2633 * @dev: the PCI device to enable 2634 * 2635 * Enables bus-mastering on the device and calls pcibios_set_master() 2636 * to do the needed arch specific settings. 2637 */ 2638 void pci_set_master(struct pci_dev *dev) 2639 { 2640 __pci_set_master(dev, true); 2641 pcibios_set_master(dev); 2642 } 2643 2644 /** 2645 * pci_clear_master - disables bus-mastering for device dev 2646 * @dev: the PCI device to disable 2647 */ 2648 void pci_clear_master(struct pci_dev *dev) 2649 { 2650 __pci_set_master(dev, false); 2651 } 2652 2653 /** 2654 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 2655 * @dev: the PCI device for which MWI is to be enabled 2656 * 2657 * Helper function for pci_set_mwi. 2658 * Originally copied from drivers/net/acenic.c. 2659 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 2660 * 2661 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2662 */ 2663 int pci_set_cacheline_size(struct pci_dev *dev) 2664 { 2665 u8 cacheline_size; 2666 2667 if (!pci_cache_line_size) 2668 return -EINVAL; 2669 2670 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 2671 equal to or multiple of the right value. */ 2672 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2673 if (cacheline_size >= pci_cache_line_size && 2674 (cacheline_size % pci_cache_line_size) == 0) 2675 return 0; 2676 2677 /* Write the correct value. */ 2678 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 2679 /* Read it back. */ 2680 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2681 if (cacheline_size == pci_cache_line_size) 2682 return 0; 2683 2684 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not " 2685 "supported\n", pci_cache_line_size << 2); 2686 2687 return -EINVAL; 2688 } 2689 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 2690 2691 #ifdef PCI_DISABLE_MWI 2692 int pci_set_mwi(struct pci_dev *dev) 2693 { 2694 return 0; 2695 } 2696 2697 int pci_try_set_mwi(struct pci_dev *dev) 2698 { 2699 return 0; 2700 } 2701 2702 void pci_clear_mwi(struct pci_dev *dev) 2703 { 2704 } 2705 2706 #else 2707 2708 /** 2709 * pci_set_mwi - enables memory-write-invalidate PCI transaction 2710 * @dev: the PCI device for which MWI is enabled 2711 * 2712 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2713 * 2714 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2715 */ 2716 int 2717 pci_set_mwi(struct pci_dev *dev) 2718 { 2719 int rc; 2720 u16 cmd; 2721 2722 rc = pci_set_cacheline_size(dev); 2723 if (rc) 2724 return rc; 2725 2726 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2727 if (! (cmd & PCI_COMMAND_INVALIDATE)) { 2728 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 2729 cmd |= PCI_COMMAND_INVALIDATE; 2730 pci_write_config_word(dev, PCI_COMMAND, cmd); 2731 } 2732 2733 return 0; 2734 } 2735 2736 /** 2737 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 2738 * @dev: the PCI device for which MWI is enabled 2739 * 2740 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2741 * Callers are not required to check the return value. 2742 * 2743 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2744 */ 2745 int pci_try_set_mwi(struct pci_dev *dev) 2746 { 2747 int rc = pci_set_mwi(dev); 2748 return rc; 2749 } 2750 2751 /** 2752 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 2753 * @dev: the PCI device to disable 2754 * 2755 * Disables PCI Memory-Write-Invalidate transaction on the device 2756 */ 2757 void 2758 pci_clear_mwi(struct pci_dev *dev) 2759 { 2760 u16 cmd; 2761 2762 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2763 if (cmd & PCI_COMMAND_INVALIDATE) { 2764 cmd &= ~PCI_COMMAND_INVALIDATE; 2765 pci_write_config_word(dev, PCI_COMMAND, cmd); 2766 } 2767 } 2768 #endif /* ! PCI_DISABLE_MWI */ 2769 2770 /** 2771 * pci_intx - enables/disables PCI INTx for device dev 2772 * @pdev: the PCI device to operate on 2773 * @enable: boolean: whether to enable or disable PCI INTx 2774 * 2775 * Enables/disables PCI INTx for device dev 2776 */ 2777 void 2778 pci_intx(struct pci_dev *pdev, int enable) 2779 { 2780 u16 pci_command, new; 2781 2782 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 2783 2784 if (enable) { 2785 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 2786 } else { 2787 new = pci_command | PCI_COMMAND_INTX_DISABLE; 2788 } 2789 2790 if (new != pci_command) { 2791 struct pci_devres *dr; 2792 2793 pci_write_config_word(pdev, PCI_COMMAND, new); 2794 2795 dr = find_pci_dr(pdev); 2796 if (dr && !dr->restore_intx) { 2797 dr->restore_intx = 1; 2798 dr->orig_intx = !enable; 2799 } 2800 } 2801 } 2802 2803 /** 2804 * pci_intx_mask_supported - probe for INTx masking support 2805 * @pdev: the PCI device to operate on 2806 * 2807 * Check if the device dev support INTx masking via the config space 2808 * command word. 2809 */ 2810 bool pci_intx_mask_supported(struct pci_dev *dev) 2811 { 2812 bool mask_supported = false; 2813 u16 orig, new; 2814 2815 pci_cfg_access_lock(dev); 2816 2817 pci_read_config_word(dev, PCI_COMMAND, &orig); 2818 pci_write_config_word(dev, PCI_COMMAND, 2819 orig ^ PCI_COMMAND_INTX_DISABLE); 2820 pci_read_config_word(dev, PCI_COMMAND, &new); 2821 2822 /* 2823 * There's no way to protect against hardware bugs or detect them 2824 * reliably, but as long as we know what the value should be, let's 2825 * go ahead and check it. 2826 */ 2827 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) { 2828 dev_err(&dev->dev, "Command register changed from " 2829 "0x%x to 0x%x: driver or hardware bug?\n", orig, new); 2830 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) { 2831 mask_supported = true; 2832 pci_write_config_word(dev, PCI_COMMAND, orig); 2833 } 2834 2835 pci_cfg_access_unlock(dev); 2836 return mask_supported; 2837 } 2838 EXPORT_SYMBOL_GPL(pci_intx_mask_supported); 2839 2840 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 2841 { 2842 struct pci_bus *bus = dev->bus; 2843 bool mask_updated = true; 2844 u32 cmd_status_dword; 2845 u16 origcmd, newcmd; 2846 unsigned long flags; 2847 bool irq_pending; 2848 2849 /* 2850 * We do a single dword read to retrieve both command and status. 2851 * Document assumptions that make this possible. 2852 */ 2853 BUILD_BUG_ON(PCI_COMMAND % 4); 2854 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 2855 2856 raw_spin_lock_irqsave(&pci_lock, flags); 2857 2858 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 2859 2860 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 2861 2862 /* 2863 * Check interrupt status register to see whether our device 2864 * triggered the interrupt (when masking) or the next IRQ is 2865 * already pending (when unmasking). 2866 */ 2867 if (mask != irq_pending) { 2868 mask_updated = false; 2869 goto done; 2870 } 2871 2872 origcmd = cmd_status_dword; 2873 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 2874 if (mask) 2875 newcmd |= PCI_COMMAND_INTX_DISABLE; 2876 if (newcmd != origcmd) 2877 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 2878 2879 done: 2880 raw_spin_unlock_irqrestore(&pci_lock, flags); 2881 2882 return mask_updated; 2883 } 2884 2885 /** 2886 * pci_check_and_mask_intx - mask INTx on pending interrupt 2887 * @pdev: the PCI device to operate on 2888 * 2889 * Check if the device dev has its INTx line asserted, mask it and 2890 * return true in that case. False is returned if not interrupt was 2891 * pending. 2892 */ 2893 bool pci_check_and_mask_intx(struct pci_dev *dev) 2894 { 2895 return pci_check_and_set_intx_mask(dev, true); 2896 } 2897 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 2898 2899 /** 2900 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending 2901 * @pdev: the PCI device to operate on 2902 * 2903 * Check if the device dev has its INTx line asserted, unmask it if not 2904 * and return true. False is returned and the mask remains active if 2905 * there was still an interrupt pending. 2906 */ 2907 bool pci_check_and_unmask_intx(struct pci_dev *dev) 2908 { 2909 return pci_check_and_set_intx_mask(dev, false); 2910 } 2911 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 2912 2913 /** 2914 * pci_msi_off - disables any msi or msix capabilities 2915 * @dev: the PCI device to operate on 2916 * 2917 * If you want to use msi see pci_enable_msi and friends. 2918 * This is a lower level primitive that allows us to disable 2919 * msi operation at the device level. 2920 */ 2921 void pci_msi_off(struct pci_dev *dev) 2922 { 2923 int pos; 2924 u16 control; 2925 2926 pos = pci_find_capability(dev, PCI_CAP_ID_MSI); 2927 if (pos) { 2928 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control); 2929 control &= ~PCI_MSI_FLAGS_ENABLE; 2930 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control); 2931 } 2932 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); 2933 if (pos) { 2934 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control); 2935 control &= ~PCI_MSIX_FLAGS_ENABLE; 2936 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control); 2937 } 2938 } 2939 EXPORT_SYMBOL_GPL(pci_msi_off); 2940 2941 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size) 2942 { 2943 return dma_set_max_seg_size(&dev->dev, size); 2944 } 2945 EXPORT_SYMBOL(pci_set_dma_max_seg_size); 2946 2947 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask) 2948 { 2949 return dma_set_seg_boundary(&dev->dev, mask); 2950 } 2951 EXPORT_SYMBOL(pci_set_dma_seg_boundary); 2952 2953 static int pcie_flr(struct pci_dev *dev, int probe) 2954 { 2955 int i; 2956 int pos; 2957 u32 cap; 2958 u16 status, control; 2959 2960 pos = pci_pcie_cap(dev); 2961 if (!pos) 2962 return -ENOTTY; 2963 2964 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap); 2965 if (!(cap & PCI_EXP_DEVCAP_FLR)) 2966 return -ENOTTY; 2967 2968 if (probe) 2969 return 0; 2970 2971 /* Wait for Transaction Pending bit clean */ 2972 for (i = 0; i < 4; i++) { 2973 if (i) 2974 msleep((1 << (i - 1)) * 100); 2975 2976 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status); 2977 if (!(status & PCI_EXP_DEVSTA_TRPND)) 2978 goto clear; 2979 } 2980 2981 dev_err(&dev->dev, "transaction is not cleared; " 2982 "proceeding with reset anyway\n"); 2983 2984 clear: 2985 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control); 2986 control |= PCI_EXP_DEVCTL_BCR_FLR; 2987 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control); 2988 2989 msleep(100); 2990 2991 return 0; 2992 } 2993 2994 static int pci_af_flr(struct pci_dev *dev, int probe) 2995 { 2996 int i; 2997 int pos; 2998 u8 cap; 2999 u8 status; 3000 3001 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3002 if (!pos) 3003 return -ENOTTY; 3004 3005 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3006 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3007 return -ENOTTY; 3008 3009 if (probe) 3010 return 0; 3011 3012 /* Wait for Transaction Pending bit clean */ 3013 for (i = 0; i < 4; i++) { 3014 if (i) 3015 msleep((1 << (i - 1)) * 100); 3016 3017 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status); 3018 if (!(status & PCI_AF_STATUS_TP)) 3019 goto clear; 3020 } 3021 3022 dev_err(&dev->dev, "transaction is not cleared; " 3023 "proceeding with reset anyway\n"); 3024 3025 clear: 3026 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3027 msleep(100); 3028 3029 return 0; 3030 } 3031 3032 /** 3033 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3034 * @dev: Device to reset. 3035 * @probe: If set, only check if the device can be reset this way. 3036 * 3037 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3038 * unset, it will be reinitialized internally when going from PCI_D3hot to 3039 * PCI_D0. If that's the case and the device is not in a low-power state 3040 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3041 * 3042 * NOTE: This causes the caller to sleep for twice the device power transition 3043 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3044 * by devault (i.e. unless the @dev's d3_delay field has a different value). 3045 * Moreover, only devices in D0 can be reset by this function. 3046 */ 3047 static int pci_pm_reset(struct pci_dev *dev, int probe) 3048 { 3049 u16 csr; 3050 3051 if (!dev->pm_cap) 3052 return -ENOTTY; 3053 3054 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3055 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3056 return -ENOTTY; 3057 3058 if (probe) 3059 return 0; 3060 3061 if (dev->current_state != PCI_D0) 3062 return -EINVAL; 3063 3064 csr &= ~PCI_PM_CTRL_STATE_MASK; 3065 csr |= PCI_D3hot; 3066 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3067 pci_dev_d3_sleep(dev); 3068 3069 csr &= ~PCI_PM_CTRL_STATE_MASK; 3070 csr |= PCI_D0; 3071 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3072 pci_dev_d3_sleep(dev); 3073 3074 return 0; 3075 } 3076 3077 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 3078 { 3079 u16 ctrl; 3080 struct pci_dev *pdev; 3081 3082 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self) 3083 return -ENOTTY; 3084 3085 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3086 if (pdev != dev) 3087 return -ENOTTY; 3088 3089 if (probe) 3090 return 0; 3091 3092 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl); 3093 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3094 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl); 3095 msleep(100); 3096 3097 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3098 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl); 3099 msleep(100); 3100 3101 return 0; 3102 } 3103 3104 static int pci_dev_reset(struct pci_dev *dev, int probe) 3105 { 3106 int rc; 3107 3108 might_sleep(); 3109 3110 if (!probe) { 3111 pci_cfg_access_lock(dev); 3112 /* block PM suspend, driver probe, etc. */ 3113 device_lock(&dev->dev); 3114 } 3115 3116 rc = pci_dev_specific_reset(dev, probe); 3117 if (rc != -ENOTTY) 3118 goto done; 3119 3120 rc = pcie_flr(dev, probe); 3121 if (rc != -ENOTTY) 3122 goto done; 3123 3124 rc = pci_af_flr(dev, probe); 3125 if (rc != -ENOTTY) 3126 goto done; 3127 3128 rc = pci_pm_reset(dev, probe); 3129 if (rc != -ENOTTY) 3130 goto done; 3131 3132 rc = pci_parent_bus_reset(dev, probe); 3133 done: 3134 if (!probe) { 3135 device_unlock(&dev->dev); 3136 pci_cfg_access_unlock(dev); 3137 } 3138 3139 return rc; 3140 } 3141 3142 /** 3143 * __pci_reset_function - reset a PCI device function 3144 * @dev: PCI device to reset 3145 * 3146 * Some devices allow an individual function to be reset without affecting 3147 * other functions in the same device. The PCI device must be responsive 3148 * to PCI config space in order to use this function. 3149 * 3150 * The device function is presumed to be unused when this function is called. 3151 * Resetting the device will make the contents of PCI configuration space 3152 * random, so any caller of this must be prepared to reinitialise the 3153 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3154 * etc. 3155 * 3156 * Returns 0 if the device function was successfully reset or negative if the 3157 * device doesn't support resetting a single function. 3158 */ 3159 int __pci_reset_function(struct pci_dev *dev) 3160 { 3161 return pci_dev_reset(dev, 0); 3162 } 3163 EXPORT_SYMBOL_GPL(__pci_reset_function); 3164 3165 /** 3166 * pci_probe_reset_function - check whether the device can be safely reset 3167 * @dev: PCI device to reset 3168 * 3169 * Some devices allow an individual function to be reset without affecting 3170 * other functions in the same device. The PCI device must be responsive 3171 * to PCI config space in order to use this function. 3172 * 3173 * Returns 0 if the device function can be reset or negative if the 3174 * device doesn't support resetting a single function. 3175 */ 3176 int pci_probe_reset_function(struct pci_dev *dev) 3177 { 3178 return pci_dev_reset(dev, 1); 3179 } 3180 3181 /** 3182 * pci_reset_function - quiesce and reset a PCI device function 3183 * @dev: PCI device to reset 3184 * 3185 * Some devices allow an individual function to be reset without affecting 3186 * other functions in the same device. The PCI device must be responsive 3187 * to PCI config space in order to use this function. 3188 * 3189 * This function does not just reset the PCI portion of a device, but 3190 * clears all the state associated with the device. This function differs 3191 * from __pci_reset_function in that it saves and restores device state 3192 * over the reset. 3193 * 3194 * Returns 0 if the device function was successfully reset or negative if the 3195 * device doesn't support resetting a single function. 3196 */ 3197 int pci_reset_function(struct pci_dev *dev) 3198 { 3199 int rc; 3200 3201 rc = pci_dev_reset(dev, 1); 3202 if (rc) 3203 return rc; 3204 3205 pci_save_state(dev); 3206 3207 /* 3208 * both INTx and MSI are disabled after the Interrupt Disable bit 3209 * is set and the Bus Master bit is cleared. 3210 */ 3211 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 3212 3213 rc = pci_dev_reset(dev, 0); 3214 3215 pci_restore_state(dev); 3216 3217 return rc; 3218 } 3219 EXPORT_SYMBOL_GPL(pci_reset_function); 3220 3221 /** 3222 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 3223 * @dev: PCI device to query 3224 * 3225 * Returns mmrbc: maximum designed memory read count in bytes 3226 * or appropriate error value. 3227 */ 3228 int pcix_get_max_mmrbc(struct pci_dev *dev) 3229 { 3230 int cap; 3231 u32 stat; 3232 3233 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3234 if (!cap) 3235 return -EINVAL; 3236 3237 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3238 return -EINVAL; 3239 3240 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 3241 } 3242 EXPORT_SYMBOL(pcix_get_max_mmrbc); 3243 3244 /** 3245 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 3246 * @dev: PCI device to query 3247 * 3248 * Returns mmrbc: maximum memory read count in bytes 3249 * or appropriate error value. 3250 */ 3251 int pcix_get_mmrbc(struct pci_dev *dev) 3252 { 3253 int cap; 3254 u16 cmd; 3255 3256 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3257 if (!cap) 3258 return -EINVAL; 3259 3260 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3261 return -EINVAL; 3262 3263 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 3264 } 3265 EXPORT_SYMBOL(pcix_get_mmrbc); 3266 3267 /** 3268 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 3269 * @dev: PCI device to query 3270 * @mmrbc: maximum memory read count in bytes 3271 * valid values are 512, 1024, 2048, 4096 3272 * 3273 * If possible sets maximum memory read byte count, some bridges have erratas 3274 * that prevent this. 3275 */ 3276 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 3277 { 3278 int cap; 3279 u32 stat, v, o; 3280 u16 cmd; 3281 3282 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 3283 return -EINVAL; 3284 3285 v = ffs(mmrbc) - 10; 3286 3287 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3288 if (!cap) 3289 return -EINVAL; 3290 3291 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3292 return -EINVAL; 3293 3294 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 3295 return -E2BIG; 3296 3297 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3298 return -EINVAL; 3299 3300 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 3301 if (o != v) { 3302 if (v > o && dev->bus && 3303 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 3304 return -EIO; 3305 3306 cmd &= ~PCI_X_CMD_MAX_READ; 3307 cmd |= v << 2; 3308 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 3309 return -EIO; 3310 } 3311 return 0; 3312 } 3313 EXPORT_SYMBOL(pcix_set_mmrbc); 3314 3315 /** 3316 * pcie_get_readrq - get PCI Express read request size 3317 * @dev: PCI device to query 3318 * 3319 * Returns maximum memory read request in bytes 3320 * or appropriate error value. 3321 */ 3322 int pcie_get_readrq(struct pci_dev *dev) 3323 { 3324 int ret, cap; 3325 u16 ctl; 3326 3327 cap = pci_pcie_cap(dev); 3328 if (!cap) 3329 return -EINVAL; 3330 3331 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl); 3332 if (!ret) 3333 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 3334 3335 return ret; 3336 } 3337 EXPORT_SYMBOL(pcie_get_readrq); 3338 3339 /** 3340 * pcie_set_readrq - set PCI Express maximum memory read request 3341 * @dev: PCI device to query 3342 * @rq: maximum memory read count in bytes 3343 * valid values are 128, 256, 512, 1024, 2048, 4096 3344 * 3345 * If possible sets maximum memory read request in bytes 3346 */ 3347 int pcie_set_readrq(struct pci_dev *dev, int rq) 3348 { 3349 int cap, err = -EINVAL; 3350 u16 ctl, v; 3351 3352 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 3353 goto out; 3354 3355 cap = pci_pcie_cap(dev); 3356 if (!cap) 3357 goto out; 3358 3359 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl); 3360 if (err) 3361 goto out; 3362 /* 3363 * If using the "performance" PCIe config, we clamp the 3364 * read rq size to the max packet size to prevent the 3365 * host bridge generating requests larger than we can 3366 * cope with 3367 */ 3368 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 3369 int mps = pcie_get_mps(dev); 3370 3371 if (mps < 0) 3372 return mps; 3373 if (mps < rq) 3374 rq = mps; 3375 } 3376 3377 v = (ffs(rq) - 8) << 12; 3378 3379 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) { 3380 ctl &= ~PCI_EXP_DEVCTL_READRQ; 3381 ctl |= v; 3382 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl); 3383 } 3384 3385 out: 3386 return err; 3387 } 3388 EXPORT_SYMBOL(pcie_set_readrq); 3389 3390 /** 3391 * pcie_get_mps - get PCI Express maximum payload size 3392 * @dev: PCI device to query 3393 * 3394 * Returns maximum payload size in bytes 3395 * or appropriate error value. 3396 */ 3397 int pcie_get_mps(struct pci_dev *dev) 3398 { 3399 int ret, cap; 3400 u16 ctl; 3401 3402 cap = pci_pcie_cap(dev); 3403 if (!cap) 3404 return -EINVAL; 3405 3406 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl); 3407 if (!ret) 3408 ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 3409 3410 return ret; 3411 } 3412 3413 /** 3414 * pcie_set_mps - set PCI Express maximum payload size 3415 * @dev: PCI device to query 3416 * @mps: maximum payload size in bytes 3417 * valid values are 128, 256, 512, 1024, 2048, 4096 3418 * 3419 * If possible sets maximum payload size 3420 */ 3421 int pcie_set_mps(struct pci_dev *dev, int mps) 3422 { 3423 int cap, err = -EINVAL; 3424 u16 ctl, v; 3425 3426 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 3427 goto out; 3428 3429 v = ffs(mps) - 8; 3430 if (v > dev->pcie_mpss) 3431 goto out; 3432 v <<= 5; 3433 3434 cap = pci_pcie_cap(dev); 3435 if (!cap) 3436 goto out; 3437 3438 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl); 3439 if (err) 3440 goto out; 3441 3442 if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) { 3443 ctl &= ~PCI_EXP_DEVCTL_PAYLOAD; 3444 ctl |= v; 3445 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl); 3446 } 3447 out: 3448 return err; 3449 } 3450 3451 /** 3452 * pci_select_bars - Make BAR mask from the type of resource 3453 * @dev: the PCI device for which BAR mask is made 3454 * @flags: resource type mask to be selected 3455 * 3456 * This helper routine makes bar mask from the type of resource. 3457 */ 3458 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 3459 { 3460 int i, bars = 0; 3461 for (i = 0; i < PCI_NUM_RESOURCES; i++) 3462 if (pci_resource_flags(dev, i) & flags) 3463 bars |= (1 << i); 3464 return bars; 3465 } 3466 3467 /** 3468 * pci_resource_bar - get position of the BAR associated with a resource 3469 * @dev: the PCI device 3470 * @resno: the resource number 3471 * @type: the BAR type to be filled in 3472 * 3473 * Returns BAR position in config space, or 0 if the BAR is invalid. 3474 */ 3475 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 3476 { 3477 int reg; 3478 3479 if (resno < PCI_ROM_RESOURCE) { 3480 *type = pci_bar_unknown; 3481 return PCI_BASE_ADDRESS_0 + 4 * resno; 3482 } else if (resno == PCI_ROM_RESOURCE) { 3483 *type = pci_bar_mem32; 3484 return dev->rom_base_reg; 3485 } else if (resno < PCI_BRIDGE_RESOURCES) { 3486 /* device specific resource */ 3487 reg = pci_iov_resource_bar(dev, resno, type); 3488 if (reg) 3489 return reg; 3490 } 3491 3492 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno); 3493 return 0; 3494 } 3495 3496 /* Some architectures require additional programming to enable VGA */ 3497 static arch_set_vga_state_t arch_set_vga_state; 3498 3499 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 3500 { 3501 arch_set_vga_state = func; /* NULL disables */ 3502 } 3503 3504 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 3505 unsigned int command_bits, u32 flags) 3506 { 3507 if (arch_set_vga_state) 3508 return arch_set_vga_state(dev, decode, command_bits, 3509 flags); 3510 return 0; 3511 } 3512 3513 /** 3514 * pci_set_vga_state - set VGA decode state on device and parents if requested 3515 * @dev: the PCI device 3516 * @decode: true = enable decoding, false = disable decoding 3517 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 3518 * @flags: traverse ancestors and change bridges 3519 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 3520 */ 3521 int pci_set_vga_state(struct pci_dev *dev, bool decode, 3522 unsigned int command_bits, u32 flags) 3523 { 3524 struct pci_bus *bus; 3525 struct pci_dev *bridge; 3526 u16 cmd; 3527 int rc; 3528 3529 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 3530 3531 /* ARCH specific VGA enables */ 3532 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 3533 if (rc) 3534 return rc; 3535 3536 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 3537 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3538 if (decode == true) 3539 cmd |= command_bits; 3540 else 3541 cmd &= ~command_bits; 3542 pci_write_config_word(dev, PCI_COMMAND, cmd); 3543 } 3544 3545 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 3546 return 0; 3547 3548 bus = dev->bus; 3549 while (bus) { 3550 bridge = bus->self; 3551 if (bridge) { 3552 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 3553 &cmd); 3554 if (decode == true) 3555 cmd |= PCI_BRIDGE_CTL_VGA; 3556 else 3557 cmd &= ~PCI_BRIDGE_CTL_VGA; 3558 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 3559 cmd); 3560 } 3561 bus = bus->parent; 3562 } 3563 return 0; 3564 } 3565 3566 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 3567 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 3568 static DEFINE_SPINLOCK(resource_alignment_lock); 3569 3570 /** 3571 * pci_specified_resource_alignment - get resource alignment specified by user. 3572 * @dev: the PCI device to get 3573 * 3574 * RETURNS: Resource alignment if it is specified. 3575 * Zero if it is not specified. 3576 */ 3577 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 3578 { 3579 int seg, bus, slot, func, align_order, count; 3580 resource_size_t align = 0; 3581 char *p; 3582 3583 spin_lock(&resource_alignment_lock); 3584 p = resource_alignment_param; 3585 while (*p) { 3586 count = 0; 3587 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 3588 p[count] == '@') { 3589 p += count + 1; 3590 } else { 3591 align_order = -1; 3592 } 3593 if (sscanf(p, "%x:%x:%x.%x%n", 3594 &seg, &bus, &slot, &func, &count) != 4) { 3595 seg = 0; 3596 if (sscanf(p, "%x:%x.%x%n", 3597 &bus, &slot, &func, &count) != 3) { 3598 /* Invalid format */ 3599 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 3600 p); 3601 break; 3602 } 3603 } 3604 p += count; 3605 if (seg == pci_domain_nr(dev->bus) && 3606 bus == dev->bus->number && 3607 slot == PCI_SLOT(dev->devfn) && 3608 func == PCI_FUNC(dev->devfn)) { 3609 if (align_order == -1) { 3610 align = PAGE_SIZE; 3611 } else { 3612 align = 1 << align_order; 3613 } 3614 /* Found */ 3615 break; 3616 } 3617 if (*p != ';' && *p != ',') { 3618 /* End of param or invalid format */ 3619 break; 3620 } 3621 p++; 3622 } 3623 spin_unlock(&resource_alignment_lock); 3624 return align; 3625 } 3626 3627 /** 3628 * pci_is_reassigndev - check if specified PCI is target device to reassign 3629 * @dev: the PCI device to check 3630 * 3631 * RETURNS: non-zero for PCI device is a target device to reassign, 3632 * or zero is not. 3633 */ 3634 int pci_is_reassigndev(struct pci_dev *dev) 3635 { 3636 return (pci_specified_resource_alignment(dev) != 0); 3637 } 3638 3639 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 3640 { 3641 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 3642 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 3643 spin_lock(&resource_alignment_lock); 3644 strncpy(resource_alignment_param, buf, count); 3645 resource_alignment_param[count] = '\0'; 3646 spin_unlock(&resource_alignment_lock); 3647 return count; 3648 } 3649 3650 ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 3651 { 3652 size_t count; 3653 spin_lock(&resource_alignment_lock); 3654 count = snprintf(buf, size, "%s", resource_alignment_param); 3655 spin_unlock(&resource_alignment_lock); 3656 return count; 3657 } 3658 3659 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 3660 { 3661 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 3662 } 3663 3664 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 3665 const char *buf, size_t count) 3666 { 3667 return pci_set_resource_alignment_param(buf, count); 3668 } 3669 3670 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 3671 pci_resource_alignment_store); 3672 3673 static int __init pci_resource_alignment_sysfs_init(void) 3674 { 3675 return bus_create_file(&pci_bus_type, 3676 &bus_attr_resource_alignment); 3677 } 3678 3679 late_initcall(pci_resource_alignment_sysfs_init); 3680 3681 static void __devinit pci_no_domains(void) 3682 { 3683 #ifdef CONFIG_PCI_DOMAINS 3684 pci_domains_supported = 0; 3685 #endif 3686 } 3687 3688 /** 3689 * pci_ext_cfg_enabled - can we access extended PCI config space? 3690 * @dev: The PCI device of the root bridge. 3691 * 3692 * Returns 1 if we can access PCI extended config space (offsets 3693 * greater than 0xff). This is the default implementation. Architecture 3694 * implementations can override this. 3695 */ 3696 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev) 3697 { 3698 return 1; 3699 } 3700 3701 void __weak pci_fixup_cardbus(struct pci_bus *bus) 3702 { 3703 } 3704 EXPORT_SYMBOL(pci_fixup_cardbus); 3705 3706 static int __init pci_setup(char *str) 3707 { 3708 while (str) { 3709 char *k = strchr(str, ','); 3710 if (k) 3711 *k++ = 0; 3712 if (*str && (str = pcibios_setup(str)) && *str) { 3713 if (!strcmp(str, "nomsi")) { 3714 pci_no_msi(); 3715 } else if (!strcmp(str, "noaer")) { 3716 pci_no_aer(); 3717 } else if (!strncmp(str, "realloc", 7)) { 3718 pci_realloc(); 3719 } else if (!strcmp(str, "nodomains")) { 3720 pci_no_domains(); 3721 } else if (!strncmp(str, "cbiosize=", 9)) { 3722 pci_cardbus_io_size = memparse(str + 9, &str); 3723 } else if (!strncmp(str, "cbmemsize=", 10)) { 3724 pci_cardbus_mem_size = memparse(str + 10, &str); 3725 } else if (!strncmp(str, "resource_alignment=", 19)) { 3726 pci_set_resource_alignment_param(str + 19, 3727 strlen(str + 19)); 3728 } else if (!strncmp(str, "ecrc=", 5)) { 3729 pcie_ecrc_get_policy(str + 5); 3730 } else if (!strncmp(str, "hpiosize=", 9)) { 3731 pci_hotplug_io_size = memparse(str + 9, &str); 3732 } else if (!strncmp(str, "hpmemsize=", 10)) { 3733 pci_hotplug_mem_size = memparse(str + 10, &str); 3734 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 3735 pcie_bus_config = PCIE_BUS_TUNE_OFF; 3736 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 3737 pcie_bus_config = PCIE_BUS_SAFE; 3738 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 3739 pcie_bus_config = PCIE_BUS_PERFORMANCE; 3740 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 3741 pcie_bus_config = PCIE_BUS_PEER2PEER; 3742 } else { 3743 printk(KERN_ERR "PCI: Unknown option `%s'\n", 3744 str); 3745 } 3746 } 3747 str = k; 3748 } 3749 return 0; 3750 } 3751 early_param("pci", pci_setup); 3752 3753 EXPORT_SYMBOL(pci_reenable_device); 3754 EXPORT_SYMBOL(pci_enable_device_io); 3755 EXPORT_SYMBOL(pci_enable_device_mem); 3756 EXPORT_SYMBOL(pci_enable_device); 3757 EXPORT_SYMBOL(pcim_enable_device); 3758 EXPORT_SYMBOL(pcim_pin_device); 3759 EXPORT_SYMBOL(pci_disable_device); 3760 EXPORT_SYMBOL(pci_find_capability); 3761 EXPORT_SYMBOL(pci_bus_find_capability); 3762 EXPORT_SYMBOL(pci_release_regions); 3763 EXPORT_SYMBOL(pci_request_regions); 3764 EXPORT_SYMBOL(pci_request_regions_exclusive); 3765 EXPORT_SYMBOL(pci_release_region); 3766 EXPORT_SYMBOL(pci_request_region); 3767 EXPORT_SYMBOL(pci_request_region_exclusive); 3768 EXPORT_SYMBOL(pci_release_selected_regions); 3769 EXPORT_SYMBOL(pci_request_selected_regions); 3770 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3771 EXPORT_SYMBOL(pci_set_master); 3772 EXPORT_SYMBOL(pci_clear_master); 3773 EXPORT_SYMBOL(pci_set_mwi); 3774 EXPORT_SYMBOL(pci_try_set_mwi); 3775 EXPORT_SYMBOL(pci_clear_mwi); 3776 EXPORT_SYMBOL_GPL(pci_intx); 3777 EXPORT_SYMBOL(pci_assign_resource); 3778 EXPORT_SYMBOL(pci_find_parent_resource); 3779 EXPORT_SYMBOL(pci_select_bars); 3780 3781 EXPORT_SYMBOL(pci_set_power_state); 3782 EXPORT_SYMBOL(pci_save_state); 3783 EXPORT_SYMBOL(pci_restore_state); 3784 EXPORT_SYMBOL(pci_pme_capable); 3785 EXPORT_SYMBOL(pci_pme_active); 3786 EXPORT_SYMBOL(pci_wake_from_d3); 3787 EXPORT_SYMBOL(pci_target_state); 3788 EXPORT_SYMBOL(pci_prepare_to_sleep); 3789 EXPORT_SYMBOL(pci_back_from_sleep); 3790 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 3791