1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 #ifdef CONFIG_X86_32 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 #endif 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3hot_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 /* 68 * Following exit from Conventional Reset, devices must be ready within 1 sec 69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 70 * Reset (PCIe r6.0 sec 5.8). 71 */ 72 #define PCI_RESET_WAIT 1000 /* msec */ 73 74 /* 75 * Devices may extend the 1 sec period through Request Retry Status 76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 77 * limit, but 60 sec ought to be enough for any device to become 78 * responsive. 79 */ 80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 81 82 static void pci_dev_d3_sleep(struct pci_dev *dev) 83 { 84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 85 unsigned int upper; 86 87 if (delay_ms) { 88 /* Use a 20% upper bound, 1ms minimum */ 89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 90 usleep_range(delay_ms * USEC_PER_MSEC, 91 (delay_ms + upper) * USEC_PER_MSEC); 92 } 93 } 94 95 bool pci_reset_supported(struct pci_dev *dev) 96 { 97 return dev->reset_methods[0] != 0; 98 } 99 100 #ifdef CONFIG_PCI_DOMAINS 101 int pci_domains_supported = 1; 102 #endif 103 104 #define DEFAULT_CARDBUS_IO_SIZE (256) 105 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 109 110 #define DEFAULT_HOTPLUG_IO_SIZE (256) 111 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 113 /* hpiosize=nn can override this */ 114 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 115 /* 116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 118 * pci=hpmemsize=nnM overrides both 119 */ 120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 122 123 #define DEFAULT_HOTPLUG_BUS_SIZE 1 124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 125 126 127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 130 #elif defined CONFIG_PCIE_BUS_SAFE 131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 134 #elif defined CONFIG_PCIE_BUS_PEER2PEER 135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 136 #else 137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 138 #endif 139 140 /* 141 * The default CLS is used if arch didn't set CLS explicitly and not 142 * all pci devices agree on the same value. Arch can override either 143 * the dfl or actual value as it sees fit. Don't forget this is 144 * measured in 32-bit words, not bytes. 145 */ 146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 147 u8 pci_cache_line_size; 148 149 /* 150 * If we set up a device for bus mastering, we need to check the latency 151 * timer as certain BIOSes forget to set it properly. 152 */ 153 unsigned int pcibios_max_latency = 255; 154 155 /* If set, the PCIe ARI capability will not be used. */ 156 static bool pcie_ari_disabled; 157 158 /* If set, the PCIe ATS capability will not be used. */ 159 static bool pcie_ats_disabled; 160 161 /* If set, the PCI config space of each device is printed during boot. */ 162 bool pci_early_dump; 163 164 bool pci_ats_disabled(void) 165 { 166 return pcie_ats_disabled; 167 } 168 EXPORT_SYMBOL_GPL(pci_ats_disabled); 169 170 /* Disable bridge_d3 for all PCIe ports */ 171 static bool pci_bridge_d3_disable; 172 /* Force bridge_d3 for all PCIe ports */ 173 static bool pci_bridge_d3_force; 174 175 static int __init pcie_port_pm_setup(char *str) 176 { 177 if (!strcmp(str, "off")) 178 pci_bridge_d3_disable = true; 179 else if (!strcmp(str, "force")) 180 pci_bridge_d3_force = true; 181 return 1; 182 } 183 __setup("pcie_port_pm=", pcie_port_pm_setup); 184 185 /** 186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 187 * @bus: pointer to PCI bus structure to search 188 * 189 * Given a PCI bus, returns the highest PCI bus number present in the set 190 * including the given PCI bus and its list of child PCI buses. 191 */ 192 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 193 { 194 struct pci_bus *tmp; 195 unsigned char max, n; 196 197 max = bus->busn_res.end; 198 list_for_each_entry(tmp, &bus->children, node) { 199 n = pci_bus_max_busnr(tmp); 200 if (n > max) 201 max = n; 202 } 203 return max; 204 } 205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 206 207 /** 208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 209 * @pdev: the PCI device 210 * 211 * Returns error bits set in PCI_STATUS and clears them. 212 */ 213 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 214 { 215 u16 status; 216 int ret; 217 218 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 219 if (ret != PCIBIOS_SUCCESSFUL) 220 return -EIO; 221 222 status &= PCI_STATUS_ERROR_BITS; 223 if (status) 224 pci_write_config_word(pdev, PCI_STATUS, status); 225 226 return status; 227 } 228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 229 230 #ifdef CONFIG_HAS_IOMEM 231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 232 bool write_combine) 233 { 234 struct resource *res = &pdev->resource[bar]; 235 resource_size_t start = res->start; 236 resource_size_t size = resource_size(res); 237 238 /* 239 * Make sure the BAR is actually a memory resource, not an IO resource 240 */ 241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 243 return NULL; 244 } 245 246 if (write_combine) 247 return ioremap_wc(start, size); 248 249 return ioremap(start, size); 250 } 251 252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 253 { 254 return __pci_ioremap_resource(pdev, bar, false); 255 } 256 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 257 258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 259 { 260 return __pci_ioremap_resource(pdev, bar, true); 261 } 262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 263 #endif 264 265 /** 266 * pci_dev_str_match_path - test if a path string matches a device 267 * @dev: the PCI device to test 268 * @path: string to match the device against 269 * @endptr: pointer to the string after the match 270 * 271 * Test if a string (typically from a kernel parameter) formatted as a 272 * path of device/function addresses matches a PCI device. The string must 273 * be of the form: 274 * 275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 276 * 277 * A path for a device can be obtained using 'lspci -t'. Using a path 278 * is more robust against bus renumbering than using only a single bus, 279 * device and function address. 280 * 281 * Returns 1 if the string matches the device, 0 if it does not and 282 * a negative error code if it fails to parse the string. 283 */ 284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 285 const char **endptr) 286 { 287 int ret; 288 unsigned int seg, bus, slot, func; 289 char *wpath, *p; 290 char end; 291 292 *endptr = strchrnul(path, ';'); 293 294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 295 if (!wpath) 296 return -ENOMEM; 297 298 while (1) { 299 p = strrchr(wpath, '/'); 300 if (!p) 301 break; 302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 303 if (ret != 2) { 304 ret = -EINVAL; 305 goto free_and_exit; 306 } 307 308 if (dev->devfn != PCI_DEVFN(slot, func)) { 309 ret = 0; 310 goto free_and_exit; 311 } 312 313 /* 314 * Note: we don't need to get a reference to the upstream 315 * bridge because we hold a reference to the top level 316 * device which should hold a reference to the bridge, 317 * and so on. 318 */ 319 dev = pci_upstream_bridge(dev); 320 if (!dev) { 321 ret = 0; 322 goto free_and_exit; 323 } 324 325 *p = 0; 326 } 327 328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 329 &func, &end); 330 if (ret != 4) { 331 seg = 0; 332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 333 if (ret != 3) { 334 ret = -EINVAL; 335 goto free_and_exit; 336 } 337 } 338 339 ret = (seg == pci_domain_nr(dev->bus) && 340 bus == dev->bus->number && 341 dev->devfn == PCI_DEVFN(slot, func)); 342 343 free_and_exit: 344 kfree(wpath); 345 return ret; 346 } 347 348 /** 349 * pci_dev_str_match - test if a string matches a device 350 * @dev: the PCI device to test 351 * @p: string to match the device against 352 * @endptr: pointer to the string after the match 353 * 354 * Test if a string (typically from a kernel parameter) matches a specified 355 * PCI device. The string may be of one of the following formats: 356 * 357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 359 * 360 * The first format specifies a PCI bus/device/function address which 361 * may change if new hardware is inserted, if motherboard firmware changes, 362 * or due to changes caused in kernel parameters. If the domain is 363 * left unspecified, it is taken to be 0. In order to be robust against 364 * bus renumbering issues, a path of PCI device/function numbers may be used 365 * to address the specific device. The path for a device can be determined 366 * through the use of 'lspci -t'. 367 * 368 * The second format matches devices using IDs in the configuration 369 * space which may match multiple devices in the system. A value of 0 370 * for any field will match all devices. (Note: this differs from 371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 372 * legacy reasons and convenience so users don't have to specify 373 * FFFFFFFFs on the command line.) 374 * 375 * Returns 1 if the string matches the device, 0 if it does not and 376 * a negative error code if the string cannot be parsed. 377 */ 378 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 379 const char **endptr) 380 { 381 int ret; 382 int count; 383 unsigned short vendor, device, subsystem_vendor, subsystem_device; 384 385 if (strncmp(p, "pci:", 4) == 0) { 386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 387 p += 4; 388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 389 &subsystem_vendor, &subsystem_device, &count); 390 if (ret != 4) { 391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 392 if (ret != 2) 393 return -EINVAL; 394 395 subsystem_vendor = 0; 396 subsystem_device = 0; 397 } 398 399 p += count; 400 401 if ((!vendor || vendor == dev->vendor) && 402 (!device || device == dev->device) && 403 (!subsystem_vendor || 404 subsystem_vendor == dev->subsystem_vendor) && 405 (!subsystem_device || 406 subsystem_device == dev->subsystem_device)) 407 goto found; 408 } else { 409 /* 410 * PCI Bus, Device, Function IDs are specified 411 * (optionally, may include a path of devfns following it) 412 */ 413 ret = pci_dev_str_match_path(dev, p, &p); 414 if (ret < 0) 415 return ret; 416 else if (ret) 417 goto found; 418 } 419 420 *endptr = p; 421 return 0; 422 423 found: 424 *endptr = p; 425 return 1; 426 } 427 428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 429 u8 pos, int cap, int *ttl) 430 { 431 u8 id; 432 u16 ent; 433 434 pci_bus_read_config_byte(bus, devfn, pos, &pos); 435 436 while ((*ttl)--) { 437 if (pos < 0x40) 438 break; 439 pos &= ~3; 440 pci_bus_read_config_word(bus, devfn, pos, &ent); 441 442 id = ent & 0xff; 443 if (id == 0xff) 444 break; 445 if (id == cap) 446 return pos; 447 pos = (ent >> 8); 448 } 449 return 0; 450 } 451 452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 453 u8 pos, int cap) 454 { 455 int ttl = PCI_FIND_CAP_TTL; 456 457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 458 } 459 460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 461 { 462 return __pci_find_next_cap(dev->bus, dev->devfn, 463 pos + PCI_CAP_LIST_NEXT, cap); 464 } 465 EXPORT_SYMBOL_GPL(pci_find_next_capability); 466 467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 468 unsigned int devfn, u8 hdr_type) 469 { 470 u16 status; 471 472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 473 if (!(status & PCI_STATUS_CAP_LIST)) 474 return 0; 475 476 switch (hdr_type) { 477 case PCI_HEADER_TYPE_NORMAL: 478 case PCI_HEADER_TYPE_BRIDGE: 479 return PCI_CAPABILITY_LIST; 480 case PCI_HEADER_TYPE_CARDBUS: 481 return PCI_CB_CAPABILITY_LIST; 482 } 483 484 return 0; 485 } 486 487 /** 488 * pci_find_capability - query for devices' capabilities 489 * @dev: PCI device to query 490 * @cap: capability code 491 * 492 * Tell if a device supports a given PCI capability. 493 * Returns the address of the requested capability structure within the 494 * device's PCI configuration space or 0 in case the device does not 495 * support it. Possible values for @cap include: 496 * 497 * %PCI_CAP_ID_PM Power Management 498 * %PCI_CAP_ID_AGP Accelerated Graphics Port 499 * %PCI_CAP_ID_VPD Vital Product Data 500 * %PCI_CAP_ID_SLOTID Slot Identification 501 * %PCI_CAP_ID_MSI Message Signalled Interrupts 502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 503 * %PCI_CAP_ID_PCIX PCI-X 504 * %PCI_CAP_ID_EXP PCI Express 505 */ 506 u8 pci_find_capability(struct pci_dev *dev, int cap) 507 { 508 u8 pos; 509 510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 511 if (pos) 512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 513 514 return pos; 515 } 516 EXPORT_SYMBOL(pci_find_capability); 517 518 /** 519 * pci_bus_find_capability - query for devices' capabilities 520 * @bus: the PCI bus to query 521 * @devfn: PCI device to query 522 * @cap: capability code 523 * 524 * Like pci_find_capability() but works for PCI devices that do not have a 525 * pci_dev structure set up yet. 526 * 527 * Returns the address of the requested capability structure within the 528 * device's PCI configuration space or 0 in case the device does not 529 * support it. 530 */ 531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 532 { 533 u8 hdr_type, pos; 534 535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 536 537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK); 538 if (pos) 539 pos = __pci_find_next_cap(bus, devfn, pos, cap); 540 541 return pos; 542 } 543 EXPORT_SYMBOL(pci_bus_find_capability); 544 545 /** 546 * pci_find_next_ext_capability - Find an extended capability 547 * @dev: PCI device to query 548 * @start: address at which to start looking (0 to start at beginning of list) 549 * @cap: capability code 550 * 551 * Returns the address of the next matching extended capability structure 552 * within the device's PCI configuration space or 0 if the device does 553 * not support it. Some capabilities can occur several times, e.g., the 554 * vendor-specific capability, and this provides a way to find them all. 555 */ 556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 557 { 558 u32 header; 559 int ttl; 560 u16 pos = PCI_CFG_SPACE_SIZE; 561 562 /* minimum 8 bytes per capability */ 563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 564 565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 566 return 0; 567 568 if (start) 569 pos = start; 570 571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 572 return 0; 573 574 /* 575 * If we have no capabilities, this is indicated by cap ID, 576 * cap version and next pointer all being 0. 577 */ 578 if (header == 0) 579 return 0; 580 581 while (ttl-- > 0) { 582 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 583 return pos; 584 585 pos = PCI_EXT_CAP_NEXT(header); 586 if (pos < PCI_CFG_SPACE_SIZE) 587 break; 588 589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 590 break; 591 } 592 593 return 0; 594 } 595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 596 597 /** 598 * pci_find_ext_capability - Find an extended capability 599 * @dev: PCI device to query 600 * @cap: capability code 601 * 602 * Returns the address of the requested extended capability structure 603 * within the device's PCI configuration space or 0 if the device does 604 * not support it. Possible values for @cap include: 605 * 606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 607 * %PCI_EXT_CAP_ID_VC Virtual Channel 608 * %PCI_EXT_CAP_ID_DSN Device Serial Number 609 * %PCI_EXT_CAP_ID_PWR Power Budgeting 610 */ 611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 612 { 613 return pci_find_next_ext_capability(dev, 0, cap); 614 } 615 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 616 617 /** 618 * pci_get_dsn - Read and return the 8-byte Device Serial Number 619 * @dev: PCI device to query 620 * 621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 622 * Number. 623 * 624 * Returns the DSN, or zero if the capability does not exist. 625 */ 626 u64 pci_get_dsn(struct pci_dev *dev) 627 { 628 u32 dword; 629 u64 dsn; 630 int pos; 631 632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 633 if (!pos) 634 return 0; 635 636 /* 637 * The Device Serial Number is two dwords offset 4 bytes from the 638 * capability position. The specification says that the first dword is 639 * the lower half, and the second dword is the upper half. 640 */ 641 pos += 4; 642 pci_read_config_dword(dev, pos, &dword); 643 dsn = (u64)dword; 644 pci_read_config_dword(dev, pos + 4, &dword); 645 dsn |= ((u64)dword) << 32; 646 647 return dsn; 648 } 649 EXPORT_SYMBOL_GPL(pci_get_dsn); 650 651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 652 { 653 int rc, ttl = PCI_FIND_CAP_TTL; 654 u8 cap, mask; 655 656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 657 mask = HT_3BIT_CAP_MASK; 658 else 659 mask = HT_5BIT_CAP_MASK; 660 661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 662 PCI_CAP_ID_HT, &ttl); 663 while (pos) { 664 rc = pci_read_config_byte(dev, pos + 3, &cap); 665 if (rc != PCIBIOS_SUCCESSFUL) 666 return 0; 667 668 if ((cap & mask) == ht_cap) 669 return pos; 670 671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 672 pos + PCI_CAP_LIST_NEXT, 673 PCI_CAP_ID_HT, &ttl); 674 } 675 676 return 0; 677 } 678 679 /** 680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 681 * @dev: PCI device to query 682 * @pos: Position from which to continue searching 683 * @ht_cap: HyperTransport capability code 684 * 685 * To be used in conjunction with pci_find_ht_capability() to search for 686 * all capabilities matching @ht_cap. @pos should always be a value returned 687 * from pci_find_ht_capability(). 688 * 689 * NB. To be 100% safe against broken PCI devices, the caller should take 690 * steps to avoid an infinite loop. 691 */ 692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 693 { 694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 695 } 696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 697 698 /** 699 * pci_find_ht_capability - query a device's HyperTransport capabilities 700 * @dev: PCI device to query 701 * @ht_cap: HyperTransport capability code 702 * 703 * Tell if a device supports a given HyperTransport capability. 704 * Returns an address within the device's PCI configuration space 705 * or 0 in case the device does not support the request capability. 706 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 707 * which has a HyperTransport capability matching @ht_cap. 708 */ 709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 710 { 711 u8 pos; 712 713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 714 if (pos) 715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 716 717 return pos; 718 } 719 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 720 721 /** 722 * pci_find_vsec_capability - Find a vendor-specific extended capability 723 * @dev: PCI device to query 724 * @vendor: Vendor ID for which capability is defined 725 * @cap: Vendor-specific capability ID 726 * 727 * If @dev has Vendor ID @vendor, search for a VSEC capability with 728 * VSEC ID @cap. If found, return the capability offset in 729 * config space; otherwise return 0. 730 */ 731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 732 { 733 u16 vsec = 0; 734 u32 header; 735 int ret; 736 737 if (vendor != dev->vendor) 738 return 0; 739 740 while ((vsec = pci_find_next_ext_capability(dev, vsec, 741 PCI_EXT_CAP_ID_VNDR))) { 742 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 743 if (ret != PCIBIOS_SUCCESSFUL) 744 continue; 745 746 if (PCI_VNDR_HEADER_ID(header) == cap) 747 return vsec; 748 } 749 750 return 0; 751 } 752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 753 754 /** 755 * pci_find_dvsec_capability - Find DVSEC for vendor 756 * @dev: PCI device to query 757 * @vendor: Vendor ID to match for the DVSEC 758 * @dvsec: Designated Vendor-specific capability ID 759 * 760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 761 * offset in config space; otherwise return 0. 762 */ 763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 764 { 765 int pos; 766 767 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 768 if (!pos) 769 return 0; 770 771 while (pos) { 772 u16 v, id; 773 774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 775 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 776 if (vendor == v && dvsec == id) 777 return pos; 778 779 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 780 } 781 782 return 0; 783 } 784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 785 786 /** 787 * pci_find_parent_resource - return resource region of parent bus of given 788 * region 789 * @dev: PCI device structure contains resources to be searched 790 * @res: child resource record for which parent is sought 791 * 792 * For given resource region of given device, return the resource region of 793 * parent bus the given region is contained in. 794 */ 795 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 796 struct resource *res) 797 { 798 const struct pci_bus *bus = dev->bus; 799 struct resource *r; 800 801 pci_bus_for_each_resource(bus, r) { 802 if (!r) 803 continue; 804 if (resource_contains(r, res)) { 805 806 /* 807 * If the window is prefetchable but the BAR is 808 * not, the allocator made a mistake. 809 */ 810 if (r->flags & IORESOURCE_PREFETCH && 811 !(res->flags & IORESOURCE_PREFETCH)) 812 return NULL; 813 814 /* 815 * If we're below a transparent bridge, there may 816 * be both a positively-decoded aperture and a 817 * subtractively-decoded region that contain the BAR. 818 * We want the positively-decoded one, so this depends 819 * on pci_bus_for_each_resource() giving us those 820 * first. 821 */ 822 return r; 823 } 824 } 825 return NULL; 826 } 827 EXPORT_SYMBOL(pci_find_parent_resource); 828 829 /** 830 * pci_find_resource - Return matching PCI device resource 831 * @dev: PCI device to query 832 * @res: Resource to look for 833 * 834 * Goes over standard PCI resources (BARs) and checks if the given resource 835 * is partially or fully contained in any of them. In that case the 836 * matching resource is returned, %NULL otherwise. 837 */ 838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 839 { 840 int i; 841 842 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 843 struct resource *r = &dev->resource[i]; 844 845 if (r->start && resource_contains(r, res)) 846 return r; 847 } 848 849 return NULL; 850 } 851 EXPORT_SYMBOL(pci_find_resource); 852 853 /** 854 * pci_resource_name - Return the name of the PCI resource 855 * @dev: PCI device to query 856 * @i: index of the resource 857 * 858 * Return the standard PCI resource (BAR) name according to their index. 859 */ 860 const char *pci_resource_name(struct pci_dev *dev, unsigned int i) 861 { 862 static const char * const bar_name[] = { 863 "BAR 0", 864 "BAR 1", 865 "BAR 2", 866 "BAR 3", 867 "BAR 4", 868 "BAR 5", 869 "ROM", 870 #ifdef CONFIG_PCI_IOV 871 "VF BAR 0", 872 "VF BAR 1", 873 "VF BAR 2", 874 "VF BAR 3", 875 "VF BAR 4", 876 "VF BAR 5", 877 #endif 878 "bridge window", /* "io" included in %pR */ 879 "bridge window", /* "mem" included in %pR */ 880 "bridge window", /* "mem pref" included in %pR */ 881 }; 882 static const char * const cardbus_name[] = { 883 "BAR 1", 884 "unknown", 885 "unknown", 886 "unknown", 887 "unknown", 888 "unknown", 889 #ifdef CONFIG_PCI_IOV 890 "unknown", 891 "unknown", 892 "unknown", 893 "unknown", 894 "unknown", 895 "unknown", 896 #endif 897 "CardBus bridge window 0", /* I/O */ 898 "CardBus bridge window 1", /* I/O */ 899 "CardBus bridge window 0", /* mem */ 900 "CardBus bridge window 1", /* mem */ 901 }; 902 903 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS && 904 i < ARRAY_SIZE(cardbus_name)) 905 return cardbus_name[i]; 906 907 if (i < ARRAY_SIZE(bar_name)) 908 return bar_name[i]; 909 910 return "unknown"; 911 } 912 913 /** 914 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 915 * @dev: the PCI device to operate on 916 * @pos: config space offset of status word 917 * @mask: mask of bit(s) to care about in status word 918 * 919 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 920 */ 921 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 922 { 923 int i; 924 925 /* Wait for Transaction Pending bit clean */ 926 for (i = 0; i < 4; i++) { 927 u16 status; 928 if (i) 929 msleep((1 << (i - 1)) * 100); 930 931 pci_read_config_word(dev, pos, &status); 932 if (!(status & mask)) 933 return 1; 934 } 935 936 return 0; 937 } 938 939 static int pci_acs_enable; 940 941 /** 942 * pci_request_acs - ask for ACS to be enabled if supported 943 */ 944 void pci_request_acs(void) 945 { 946 pci_acs_enable = 1; 947 } 948 949 static const char *disable_acs_redir_param; 950 951 /** 952 * pci_disable_acs_redir - disable ACS redirect capabilities 953 * @dev: the PCI device 954 * 955 * For only devices specified in the disable_acs_redir parameter. 956 */ 957 static void pci_disable_acs_redir(struct pci_dev *dev) 958 { 959 int ret = 0; 960 const char *p; 961 int pos; 962 u16 ctrl; 963 964 if (!disable_acs_redir_param) 965 return; 966 967 p = disable_acs_redir_param; 968 while (*p) { 969 ret = pci_dev_str_match(dev, p, &p); 970 if (ret < 0) { 971 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 972 disable_acs_redir_param); 973 974 break; 975 } else if (ret == 1) { 976 /* Found a match */ 977 break; 978 } 979 980 if (*p != ';' && *p != ',') { 981 /* End of param or invalid format */ 982 break; 983 } 984 p++; 985 } 986 987 if (ret != 1) 988 return; 989 990 if (!pci_dev_specific_disable_acs_redir(dev)) 991 return; 992 993 pos = dev->acs_cap; 994 if (!pos) { 995 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 996 return; 997 } 998 999 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 1000 1001 /* P2P Request & Completion Redirect */ 1002 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 1003 1004 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 1005 1006 pci_info(dev, "disabled ACS redirect\n"); 1007 } 1008 1009 /** 1010 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 1011 * @dev: the PCI device 1012 */ 1013 static void pci_std_enable_acs(struct pci_dev *dev) 1014 { 1015 int pos; 1016 u16 cap; 1017 u16 ctrl; 1018 1019 pos = dev->acs_cap; 1020 if (!pos) 1021 return; 1022 1023 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 1024 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 1025 1026 /* Source Validation */ 1027 ctrl |= (cap & PCI_ACS_SV); 1028 1029 /* P2P Request Redirect */ 1030 ctrl |= (cap & PCI_ACS_RR); 1031 1032 /* P2P Completion Redirect */ 1033 ctrl |= (cap & PCI_ACS_CR); 1034 1035 /* Upstream Forwarding */ 1036 ctrl |= (cap & PCI_ACS_UF); 1037 1038 /* Enable Translation Blocking for external devices and noats */ 1039 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 1040 ctrl |= (cap & PCI_ACS_TB); 1041 1042 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 1043 } 1044 1045 /** 1046 * pci_enable_acs - enable ACS if hardware support it 1047 * @dev: the PCI device 1048 */ 1049 static void pci_enable_acs(struct pci_dev *dev) 1050 { 1051 if (!pci_acs_enable) 1052 goto disable_acs_redir; 1053 1054 if (!pci_dev_specific_enable_acs(dev)) 1055 goto disable_acs_redir; 1056 1057 pci_std_enable_acs(dev); 1058 1059 disable_acs_redir: 1060 /* 1061 * Note: pci_disable_acs_redir() must be called even if ACS was not 1062 * enabled by the kernel because it may have been enabled by 1063 * platform firmware. So if we are told to disable it, we should 1064 * always disable it after setting the kernel's default 1065 * preferences. 1066 */ 1067 pci_disable_acs_redir(dev); 1068 } 1069 1070 /** 1071 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1072 * @dev: PCI device to have its BARs restored 1073 * 1074 * Restore the BAR values for a given device, so as to make it 1075 * accessible by its driver. 1076 */ 1077 static void pci_restore_bars(struct pci_dev *dev) 1078 { 1079 int i; 1080 1081 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1082 pci_update_resource(dev, i); 1083 } 1084 1085 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1086 { 1087 if (pci_use_mid_pm()) 1088 return true; 1089 1090 return acpi_pci_power_manageable(dev); 1091 } 1092 1093 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1094 pci_power_t t) 1095 { 1096 if (pci_use_mid_pm()) 1097 return mid_pci_set_power_state(dev, t); 1098 1099 return acpi_pci_set_power_state(dev, t); 1100 } 1101 1102 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1103 { 1104 if (pci_use_mid_pm()) 1105 return mid_pci_get_power_state(dev); 1106 1107 return acpi_pci_get_power_state(dev); 1108 } 1109 1110 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1111 { 1112 if (!pci_use_mid_pm()) 1113 acpi_pci_refresh_power_state(dev); 1114 } 1115 1116 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1117 { 1118 if (pci_use_mid_pm()) 1119 return PCI_POWER_ERROR; 1120 1121 return acpi_pci_choose_state(dev); 1122 } 1123 1124 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1125 { 1126 if (pci_use_mid_pm()) 1127 return PCI_POWER_ERROR; 1128 1129 return acpi_pci_wakeup(dev, enable); 1130 } 1131 1132 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1133 { 1134 if (pci_use_mid_pm()) 1135 return false; 1136 1137 return acpi_pci_need_resume(dev); 1138 } 1139 1140 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1141 { 1142 if (pci_use_mid_pm()) 1143 return false; 1144 1145 return acpi_pci_bridge_d3(dev); 1146 } 1147 1148 /** 1149 * pci_update_current_state - Read power state of given device and cache it 1150 * @dev: PCI device to handle. 1151 * @state: State to cache in case the device doesn't have the PM capability 1152 * 1153 * The power state is read from the PMCSR register, which however is 1154 * inaccessible in D3cold. The platform firmware is therefore queried first 1155 * to detect accessibility of the register. In case the platform firmware 1156 * reports an incorrect state or the device isn't power manageable by the 1157 * platform at all, we try to detect D3cold by testing accessibility of the 1158 * vendor ID in config space. 1159 */ 1160 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1161 { 1162 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1163 dev->current_state = PCI_D3cold; 1164 } else if (dev->pm_cap) { 1165 u16 pmcsr; 1166 1167 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1168 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1169 dev->current_state = PCI_D3cold; 1170 return; 1171 } 1172 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1173 } else { 1174 dev->current_state = state; 1175 } 1176 } 1177 1178 /** 1179 * pci_refresh_power_state - Refresh the given device's power state data 1180 * @dev: Target PCI device. 1181 * 1182 * Ask the platform to refresh the devices power state information and invoke 1183 * pci_update_current_state() to update its current PCI power state. 1184 */ 1185 void pci_refresh_power_state(struct pci_dev *dev) 1186 { 1187 platform_pci_refresh_power_state(dev); 1188 pci_update_current_state(dev, dev->current_state); 1189 } 1190 1191 /** 1192 * pci_platform_power_transition - Use platform to change device power state 1193 * @dev: PCI device to handle. 1194 * @state: State to put the device into. 1195 */ 1196 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1197 { 1198 int error; 1199 1200 error = platform_pci_set_power_state(dev, state); 1201 if (!error) 1202 pci_update_current_state(dev, state); 1203 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1204 dev->current_state = PCI_D0; 1205 1206 return error; 1207 } 1208 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1209 1210 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1211 { 1212 pm_request_resume(&pci_dev->dev); 1213 return 0; 1214 } 1215 1216 /** 1217 * pci_resume_bus - Walk given bus and runtime resume devices on it 1218 * @bus: Top bus of the subtree to walk. 1219 */ 1220 void pci_resume_bus(struct pci_bus *bus) 1221 { 1222 if (bus) 1223 pci_walk_bus(bus, pci_resume_one, NULL); 1224 } 1225 1226 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1227 { 1228 int delay = 1; 1229 bool retrain = false; 1230 struct pci_dev *bridge; 1231 1232 if (pci_is_pcie(dev)) { 1233 bridge = pci_upstream_bridge(dev); 1234 if (bridge) 1235 retrain = true; 1236 } 1237 1238 /* 1239 * After reset, the device should not silently discard config 1240 * requests, but it may still indicate that it needs more time by 1241 * responding to them with CRS completions. The Root Port will 1242 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1243 * the read (except when CRS SV is enabled and the read was for the 1244 * Vendor ID; in that case it synthesizes 0x0001 data). 1245 * 1246 * Wait for the device to return a non-CRS completion. Read the 1247 * Command register instead of Vendor ID so we don't have to 1248 * contend with the CRS SV value. 1249 */ 1250 for (;;) { 1251 u32 id; 1252 1253 pci_read_config_dword(dev, PCI_COMMAND, &id); 1254 if (!PCI_POSSIBLE_ERROR(id)) 1255 break; 1256 1257 if (delay > timeout) { 1258 pci_warn(dev, "not ready %dms after %s; giving up\n", 1259 delay - 1, reset_type); 1260 return -ENOTTY; 1261 } 1262 1263 if (delay > PCI_RESET_WAIT) { 1264 if (retrain) { 1265 retrain = false; 1266 if (pcie_failed_link_retrain(bridge)) { 1267 delay = 1; 1268 continue; 1269 } 1270 } 1271 pci_info(dev, "not ready %dms after %s; waiting\n", 1272 delay - 1, reset_type); 1273 } 1274 1275 msleep(delay); 1276 delay *= 2; 1277 } 1278 1279 if (delay > PCI_RESET_WAIT) 1280 pci_info(dev, "ready %dms after %s\n", delay - 1, 1281 reset_type); 1282 else 1283 pci_dbg(dev, "ready %dms after %s\n", delay - 1, 1284 reset_type); 1285 1286 return 0; 1287 } 1288 1289 /** 1290 * pci_power_up - Put the given device into D0 1291 * @dev: PCI device to power up 1292 * 1293 * On success, return 0 or 1, depending on whether or not it is necessary to 1294 * restore the device's BARs subsequently (1 is returned in that case). 1295 * 1296 * On failure, return a negative error code. Always return failure if @dev 1297 * lacks a Power Management Capability, even if the platform was able to 1298 * put the device in D0 via non-PCI means. 1299 */ 1300 int pci_power_up(struct pci_dev *dev) 1301 { 1302 bool need_restore; 1303 pci_power_t state; 1304 u16 pmcsr; 1305 1306 platform_pci_set_power_state(dev, PCI_D0); 1307 1308 if (!dev->pm_cap) { 1309 state = platform_pci_get_power_state(dev); 1310 if (state == PCI_UNKNOWN) 1311 dev->current_state = PCI_D0; 1312 else 1313 dev->current_state = state; 1314 1315 return -EIO; 1316 } 1317 1318 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1319 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1320 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1321 pci_power_name(dev->current_state)); 1322 dev->current_state = PCI_D3cold; 1323 return -EIO; 1324 } 1325 1326 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1327 1328 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1329 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1330 1331 if (state == PCI_D0) 1332 goto end; 1333 1334 /* 1335 * Force the entire word to 0. This doesn't affect PME_Status, disables 1336 * PME_En, and sets PowerState to 0. 1337 */ 1338 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1339 1340 /* Mandatory transition delays; see PCI PM 1.2. */ 1341 if (state == PCI_D3hot) 1342 pci_dev_d3_sleep(dev); 1343 else if (state == PCI_D2) 1344 udelay(PCI_PM_D2_DELAY); 1345 1346 end: 1347 dev->current_state = PCI_D0; 1348 if (need_restore) 1349 return 1; 1350 1351 return 0; 1352 } 1353 1354 /** 1355 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1356 * @dev: PCI device to power up 1357 * 1358 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1359 * to confirm the state change, restore its BARs if they might be lost and 1360 * reconfigure ASPM in accordance with the new power state. 1361 * 1362 * If pci_restore_state() is going to be called right after a power state change 1363 * to D0, it is more efficient to use pci_power_up() directly instead of this 1364 * function. 1365 */ 1366 static int pci_set_full_power_state(struct pci_dev *dev) 1367 { 1368 u16 pmcsr; 1369 int ret; 1370 1371 ret = pci_power_up(dev); 1372 if (ret < 0) { 1373 if (dev->current_state == PCI_D0) 1374 return 0; 1375 1376 return ret; 1377 } 1378 1379 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1380 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1381 if (dev->current_state != PCI_D0) { 1382 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1383 pci_power_name(dev->current_state)); 1384 } else if (ret > 0) { 1385 /* 1386 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1387 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1388 * from D3hot to D0 _may_ perform an internal reset, thereby 1389 * going to "D0 Uninitialized" rather than "D0 Initialized". 1390 * For example, at least some versions of the 3c905B and the 1391 * 3c556B exhibit this behaviour. 1392 * 1393 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1394 * devices in a D3hot state at boot. Consequently, we need to 1395 * restore at least the BARs so that the device will be 1396 * accessible to its driver. 1397 */ 1398 pci_restore_bars(dev); 1399 } 1400 1401 if (dev->bus->self) 1402 pcie_aspm_pm_state_change(dev->bus->self); 1403 1404 return 0; 1405 } 1406 1407 /** 1408 * __pci_dev_set_current_state - Set current state of a PCI device 1409 * @dev: Device to handle 1410 * @data: pointer to state to be set 1411 */ 1412 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1413 { 1414 pci_power_t state = *(pci_power_t *)data; 1415 1416 dev->current_state = state; 1417 return 0; 1418 } 1419 1420 /** 1421 * pci_bus_set_current_state - Walk given bus and set current state of devices 1422 * @bus: Top bus of the subtree to walk. 1423 * @state: state to be set 1424 */ 1425 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1426 { 1427 if (bus) 1428 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1429 } 1430 1431 /** 1432 * pci_set_low_power_state - Put a PCI device into a low-power state. 1433 * @dev: PCI device to handle. 1434 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1435 * 1436 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1437 * 1438 * RETURN VALUE: 1439 * -EINVAL if the requested state is invalid. 1440 * -EIO if device does not support PCI PM or its PM capabilities register has a 1441 * wrong version, or device doesn't support the requested state. 1442 * 0 if device already is in the requested state. 1443 * 0 if device's power state has been successfully changed. 1444 */ 1445 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state) 1446 { 1447 u16 pmcsr; 1448 1449 if (!dev->pm_cap) 1450 return -EIO; 1451 1452 /* 1453 * Validate transition: We can enter D0 from any state, but if 1454 * we're already in a low-power state, we can only go deeper. E.g., 1455 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1456 * we'd have to go from D3 to D0, then to D1. 1457 */ 1458 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1459 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1460 pci_power_name(dev->current_state), 1461 pci_power_name(state)); 1462 return -EINVAL; 1463 } 1464 1465 /* Check if this device supports the desired state */ 1466 if ((state == PCI_D1 && !dev->d1_support) 1467 || (state == PCI_D2 && !dev->d2_support)) 1468 return -EIO; 1469 1470 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1471 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1472 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1473 pci_power_name(dev->current_state), 1474 pci_power_name(state)); 1475 dev->current_state = PCI_D3cold; 1476 return -EIO; 1477 } 1478 1479 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1480 pmcsr |= state; 1481 1482 /* Enter specified state */ 1483 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1484 1485 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1486 if (state == PCI_D3hot) 1487 pci_dev_d3_sleep(dev); 1488 else if (state == PCI_D2) 1489 udelay(PCI_PM_D2_DELAY); 1490 1491 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1492 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1493 if (dev->current_state != state) 1494 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1495 pci_power_name(dev->current_state), 1496 pci_power_name(state)); 1497 1498 if (dev->bus->self) 1499 pcie_aspm_pm_state_change(dev->bus->self); 1500 1501 return 0; 1502 } 1503 1504 /** 1505 * pci_set_power_state - Set the power state of a PCI device 1506 * @dev: PCI device to handle. 1507 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1508 * 1509 * Transition a device to a new power state, using the platform firmware and/or 1510 * the device's PCI PM registers. 1511 * 1512 * RETURN VALUE: 1513 * -EINVAL if the requested state is invalid. 1514 * -EIO if device does not support PCI PM or its PM capabilities register has a 1515 * wrong version, or device doesn't support the requested state. 1516 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1517 * 0 if device already is in the requested state. 1518 * 0 if the transition is to D3 but D3 is not supported. 1519 * 0 if device's power state has been successfully changed. 1520 */ 1521 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1522 { 1523 int error; 1524 1525 /* Bound the state we're entering */ 1526 if (state > PCI_D3cold) 1527 state = PCI_D3cold; 1528 else if (state < PCI_D0) 1529 state = PCI_D0; 1530 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1531 1532 /* 1533 * If the device or the parent bridge do not support PCI 1534 * PM, ignore the request if we're doing anything other 1535 * than putting it into D0 (which would only happen on 1536 * boot). 1537 */ 1538 return 0; 1539 1540 /* Check if we're already there */ 1541 if (dev->current_state == state) 1542 return 0; 1543 1544 if (state == PCI_D0) 1545 return pci_set_full_power_state(dev); 1546 1547 /* 1548 * This device is quirked not to be put into D3, so don't put it in 1549 * D3 1550 */ 1551 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1552 return 0; 1553 1554 if (state == PCI_D3cold) { 1555 /* 1556 * To put the device in D3cold, put it into D3hot in the native 1557 * way, then put it into D3cold using platform ops. 1558 */ 1559 error = pci_set_low_power_state(dev, PCI_D3hot); 1560 1561 if (pci_platform_power_transition(dev, PCI_D3cold)) 1562 return error; 1563 1564 /* Powering off a bridge may power off the whole hierarchy */ 1565 if (dev->current_state == PCI_D3cold) 1566 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1567 } else { 1568 error = pci_set_low_power_state(dev, state); 1569 1570 if (pci_platform_power_transition(dev, state)) 1571 return error; 1572 } 1573 1574 return 0; 1575 } 1576 EXPORT_SYMBOL(pci_set_power_state); 1577 1578 #define PCI_EXP_SAVE_REGS 7 1579 1580 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1581 u16 cap, bool extended) 1582 { 1583 struct pci_cap_saved_state *tmp; 1584 1585 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1586 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1587 return tmp; 1588 } 1589 return NULL; 1590 } 1591 1592 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1593 { 1594 return _pci_find_saved_cap(dev, cap, false); 1595 } 1596 1597 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1598 { 1599 return _pci_find_saved_cap(dev, cap, true); 1600 } 1601 1602 static int pci_save_pcie_state(struct pci_dev *dev) 1603 { 1604 int i = 0; 1605 struct pci_cap_saved_state *save_state; 1606 u16 *cap; 1607 1608 if (!pci_is_pcie(dev)) 1609 return 0; 1610 1611 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1612 if (!save_state) { 1613 pci_err(dev, "buffer not found in %s\n", __func__); 1614 return -ENOMEM; 1615 } 1616 1617 cap = (u16 *)&save_state->cap.data[0]; 1618 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1619 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1620 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1621 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1622 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1623 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1624 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1625 1626 return 0; 1627 } 1628 1629 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1630 { 1631 #ifdef CONFIG_PCIEASPM 1632 struct pci_dev *bridge; 1633 u32 ctl; 1634 1635 bridge = pci_upstream_bridge(dev); 1636 if (bridge && bridge->ltr_path) { 1637 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1638 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1639 pci_dbg(bridge, "re-enabling LTR\n"); 1640 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1641 PCI_EXP_DEVCTL2_LTR_EN); 1642 } 1643 } 1644 #endif 1645 } 1646 1647 static void pci_restore_pcie_state(struct pci_dev *dev) 1648 { 1649 int i = 0; 1650 struct pci_cap_saved_state *save_state; 1651 u16 *cap; 1652 1653 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1654 if (!save_state) 1655 return; 1656 1657 /* 1658 * Downstream ports reset the LTR enable bit when link goes down. 1659 * Check and re-configure the bit here before restoring device. 1660 * PCIe r5.0, sec 7.5.3.16. 1661 */ 1662 pci_bridge_reconfigure_ltr(dev); 1663 1664 cap = (u16 *)&save_state->cap.data[0]; 1665 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1666 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1667 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1668 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1669 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1670 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1671 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1672 } 1673 1674 static int pci_save_pcix_state(struct pci_dev *dev) 1675 { 1676 int pos; 1677 struct pci_cap_saved_state *save_state; 1678 1679 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1680 if (!pos) 1681 return 0; 1682 1683 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1684 if (!save_state) { 1685 pci_err(dev, "buffer not found in %s\n", __func__); 1686 return -ENOMEM; 1687 } 1688 1689 pci_read_config_word(dev, pos + PCI_X_CMD, 1690 (u16 *)save_state->cap.data); 1691 1692 return 0; 1693 } 1694 1695 static void pci_restore_pcix_state(struct pci_dev *dev) 1696 { 1697 int i = 0, pos; 1698 struct pci_cap_saved_state *save_state; 1699 u16 *cap; 1700 1701 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1702 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1703 if (!save_state || !pos) 1704 return; 1705 cap = (u16 *)&save_state->cap.data[0]; 1706 1707 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1708 } 1709 1710 static void pci_save_ltr_state(struct pci_dev *dev) 1711 { 1712 int ltr; 1713 struct pci_cap_saved_state *save_state; 1714 u32 *cap; 1715 1716 if (!pci_is_pcie(dev)) 1717 return; 1718 1719 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1720 if (!ltr) 1721 return; 1722 1723 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1724 if (!save_state) { 1725 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1726 return; 1727 } 1728 1729 /* Some broken devices only support dword access to LTR */ 1730 cap = &save_state->cap.data[0]; 1731 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap); 1732 } 1733 1734 static void pci_restore_ltr_state(struct pci_dev *dev) 1735 { 1736 struct pci_cap_saved_state *save_state; 1737 int ltr; 1738 u32 *cap; 1739 1740 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1741 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1742 if (!save_state || !ltr) 1743 return; 1744 1745 /* Some broken devices only support dword access to LTR */ 1746 cap = &save_state->cap.data[0]; 1747 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap); 1748 } 1749 1750 /** 1751 * pci_save_state - save the PCI configuration space of a device before 1752 * suspending 1753 * @dev: PCI device that we're dealing with 1754 */ 1755 int pci_save_state(struct pci_dev *dev) 1756 { 1757 int i; 1758 /* XXX: 100% dword access ok here? */ 1759 for (i = 0; i < 16; i++) { 1760 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1761 pci_dbg(dev, "save config %#04x: %#010x\n", 1762 i * 4, dev->saved_config_space[i]); 1763 } 1764 dev->state_saved = true; 1765 1766 i = pci_save_pcie_state(dev); 1767 if (i != 0) 1768 return i; 1769 1770 i = pci_save_pcix_state(dev); 1771 if (i != 0) 1772 return i; 1773 1774 pci_save_ltr_state(dev); 1775 pci_save_dpc_state(dev); 1776 pci_save_aer_state(dev); 1777 pci_save_ptm_state(dev); 1778 return pci_save_vc_state(dev); 1779 } 1780 EXPORT_SYMBOL(pci_save_state); 1781 1782 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1783 u32 saved_val, int retry, bool force) 1784 { 1785 u32 val; 1786 1787 pci_read_config_dword(pdev, offset, &val); 1788 if (!force && val == saved_val) 1789 return; 1790 1791 for (;;) { 1792 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1793 offset, val, saved_val); 1794 pci_write_config_dword(pdev, offset, saved_val); 1795 if (retry-- <= 0) 1796 return; 1797 1798 pci_read_config_dword(pdev, offset, &val); 1799 if (val == saved_val) 1800 return; 1801 1802 mdelay(1); 1803 } 1804 } 1805 1806 static void pci_restore_config_space_range(struct pci_dev *pdev, 1807 int start, int end, int retry, 1808 bool force) 1809 { 1810 int index; 1811 1812 for (index = end; index >= start; index--) 1813 pci_restore_config_dword(pdev, 4 * index, 1814 pdev->saved_config_space[index], 1815 retry, force); 1816 } 1817 1818 static void pci_restore_config_space(struct pci_dev *pdev) 1819 { 1820 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1821 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1822 /* Restore BARs before the command register. */ 1823 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1824 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1825 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1826 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1827 1828 /* 1829 * Force rewriting of prefetch registers to avoid S3 resume 1830 * issues on Intel PCI bridges that occur when these 1831 * registers are not explicitly written. 1832 */ 1833 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1834 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1835 } else { 1836 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1837 } 1838 } 1839 1840 static void pci_restore_rebar_state(struct pci_dev *pdev) 1841 { 1842 unsigned int pos, nbars, i; 1843 u32 ctrl; 1844 1845 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1846 if (!pos) 1847 return; 1848 1849 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1850 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 1851 1852 for (i = 0; i < nbars; i++, pos += 8) { 1853 struct resource *res; 1854 int bar_idx, size; 1855 1856 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1857 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1858 res = pdev->resource + bar_idx; 1859 size = pci_rebar_bytes_to_size(resource_size(res)); 1860 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1861 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 1862 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1863 } 1864 } 1865 1866 /** 1867 * pci_restore_state - Restore the saved state of a PCI device 1868 * @dev: PCI device that we're dealing with 1869 */ 1870 void pci_restore_state(struct pci_dev *dev) 1871 { 1872 if (!dev->state_saved) 1873 return; 1874 1875 /* 1876 * Restore max latencies (in the LTR capability) before enabling 1877 * LTR itself (in the PCIe capability). 1878 */ 1879 pci_restore_ltr_state(dev); 1880 1881 pci_restore_pcie_state(dev); 1882 pci_restore_pasid_state(dev); 1883 pci_restore_pri_state(dev); 1884 pci_restore_ats_state(dev); 1885 pci_restore_vc_state(dev); 1886 pci_restore_rebar_state(dev); 1887 pci_restore_dpc_state(dev); 1888 pci_restore_ptm_state(dev); 1889 1890 pci_aer_clear_status(dev); 1891 pci_restore_aer_state(dev); 1892 1893 pci_restore_config_space(dev); 1894 1895 pci_restore_pcix_state(dev); 1896 pci_restore_msi_state(dev); 1897 1898 /* Restore ACS and IOV configuration state */ 1899 pci_enable_acs(dev); 1900 pci_restore_iov_state(dev); 1901 1902 dev->state_saved = false; 1903 } 1904 EXPORT_SYMBOL(pci_restore_state); 1905 1906 struct pci_saved_state { 1907 u32 config_space[16]; 1908 struct pci_cap_saved_data cap[]; 1909 }; 1910 1911 /** 1912 * pci_store_saved_state - Allocate and return an opaque struct containing 1913 * the device saved state. 1914 * @dev: PCI device that we're dealing with 1915 * 1916 * Return NULL if no state or error. 1917 */ 1918 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1919 { 1920 struct pci_saved_state *state; 1921 struct pci_cap_saved_state *tmp; 1922 struct pci_cap_saved_data *cap; 1923 size_t size; 1924 1925 if (!dev->state_saved) 1926 return NULL; 1927 1928 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1929 1930 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1931 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1932 1933 state = kzalloc(size, GFP_KERNEL); 1934 if (!state) 1935 return NULL; 1936 1937 memcpy(state->config_space, dev->saved_config_space, 1938 sizeof(state->config_space)); 1939 1940 cap = state->cap; 1941 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1942 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1943 memcpy(cap, &tmp->cap, len); 1944 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1945 } 1946 /* Empty cap_save terminates list */ 1947 1948 return state; 1949 } 1950 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1951 1952 /** 1953 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1954 * @dev: PCI device that we're dealing with 1955 * @state: Saved state returned from pci_store_saved_state() 1956 */ 1957 int pci_load_saved_state(struct pci_dev *dev, 1958 struct pci_saved_state *state) 1959 { 1960 struct pci_cap_saved_data *cap; 1961 1962 dev->state_saved = false; 1963 1964 if (!state) 1965 return 0; 1966 1967 memcpy(dev->saved_config_space, state->config_space, 1968 sizeof(state->config_space)); 1969 1970 cap = state->cap; 1971 while (cap->size) { 1972 struct pci_cap_saved_state *tmp; 1973 1974 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1975 if (!tmp || tmp->cap.size != cap->size) 1976 return -EINVAL; 1977 1978 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1979 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1980 sizeof(struct pci_cap_saved_data) + cap->size); 1981 } 1982 1983 dev->state_saved = true; 1984 return 0; 1985 } 1986 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1987 1988 /** 1989 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1990 * and free the memory allocated for it. 1991 * @dev: PCI device that we're dealing with 1992 * @state: Pointer to saved state returned from pci_store_saved_state() 1993 */ 1994 int pci_load_and_free_saved_state(struct pci_dev *dev, 1995 struct pci_saved_state **state) 1996 { 1997 int ret = pci_load_saved_state(dev, *state); 1998 kfree(*state); 1999 *state = NULL; 2000 return ret; 2001 } 2002 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 2003 2004 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 2005 { 2006 return pci_enable_resources(dev, bars); 2007 } 2008 2009 static int do_pci_enable_device(struct pci_dev *dev, int bars) 2010 { 2011 int err; 2012 struct pci_dev *bridge; 2013 u16 cmd; 2014 u8 pin; 2015 2016 err = pci_set_power_state(dev, PCI_D0); 2017 if (err < 0 && err != -EIO) 2018 return err; 2019 2020 bridge = pci_upstream_bridge(dev); 2021 if (bridge) 2022 pcie_aspm_powersave_config_link(bridge); 2023 2024 err = pcibios_enable_device(dev, bars); 2025 if (err < 0) 2026 return err; 2027 pci_fixup_device(pci_fixup_enable, dev); 2028 2029 if (dev->msi_enabled || dev->msix_enabled) 2030 return 0; 2031 2032 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 2033 if (pin) { 2034 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2035 if (cmd & PCI_COMMAND_INTX_DISABLE) 2036 pci_write_config_word(dev, PCI_COMMAND, 2037 cmd & ~PCI_COMMAND_INTX_DISABLE); 2038 } 2039 2040 return 0; 2041 } 2042 2043 /** 2044 * pci_reenable_device - Resume abandoned device 2045 * @dev: PCI device to be resumed 2046 * 2047 * NOTE: This function is a backend of pci_default_resume() and is not supposed 2048 * to be called by normal code, write proper resume handler and use it instead. 2049 */ 2050 int pci_reenable_device(struct pci_dev *dev) 2051 { 2052 if (pci_is_enabled(dev)) 2053 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 2054 return 0; 2055 } 2056 EXPORT_SYMBOL(pci_reenable_device); 2057 2058 static void pci_enable_bridge(struct pci_dev *dev) 2059 { 2060 struct pci_dev *bridge; 2061 int retval; 2062 2063 bridge = pci_upstream_bridge(dev); 2064 if (bridge) 2065 pci_enable_bridge(bridge); 2066 2067 if (pci_is_enabled(dev)) { 2068 if (!dev->is_busmaster) 2069 pci_set_master(dev); 2070 return; 2071 } 2072 2073 retval = pci_enable_device(dev); 2074 if (retval) 2075 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2076 retval); 2077 pci_set_master(dev); 2078 } 2079 2080 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2081 { 2082 struct pci_dev *bridge; 2083 int err; 2084 int i, bars = 0; 2085 2086 /* 2087 * Power state could be unknown at this point, either due to a fresh 2088 * boot or a device removal call. So get the current power state 2089 * so that things like MSI message writing will behave as expected 2090 * (e.g. if the device really is in D0 at enable time). 2091 */ 2092 pci_update_current_state(dev, dev->current_state); 2093 2094 if (atomic_inc_return(&dev->enable_cnt) > 1) 2095 return 0; /* already enabled */ 2096 2097 bridge = pci_upstream_bridge(dev); 2098 if (bridge) 2099 pci_enable_bridge(bridge); 2100 2101 /* only skip sriov related */ 2102 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2103 if (dev->resource[i].flags & flags) 2104 bars |= (1 << i); 2105 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2106 if (dev->resource[i].flags & flags) 2107 bars |= (1 << i); 2108 2109 err = do_pci_enable_device(dev, bars); 2110 if (err < 0) 2111 atomic_dec(&dev->enable_cnt); 2112 return err; 2113 } 2114 2115 /** 2116 * pci_enable_device_io - Initialize a device for use with IO space 2117 * @dev: PCI device to be initialized 2118 * 2119 * Initialize device before it's used by a driver. Ask low-level code 2120 * to enable I/O resources. Wake up the device if it was suspended. 2121 * Beware, this function can fail. 2122 */ 2123 int pci_enable_device_io(struct pci_dev *dev) 2124 { 2125 return pci_enable_device_flags(dev, IORESOURCE_IO); 2126 } 2127 EXPORT_SYMBOL(pci_enable_device_io); 2128 2129 /** 2130 * pci_enable_device_mem - Initialize a device for use with Memory space 2131 * @dev: PCI device to be initialized 2132 * 2133 * Initialize device before it's used by a driver. Ask low-level code 2134 * to enable Memory resources. Wake up the device if it was suspended. 2135 * Beware, this function can fail. 2136 */ 2137 int pci_enable_device_mem(struct pci_dev *dev) 2138 { 2139 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2140 } 2141 EXPORT_SYMBOL(pci_enable_device_mem); 2142 2143 /** 2144 * pci_enable_device - Initialize device before it's used by a driver. 2145 * @dev: PCI device to be initialized 2146 * 2147 * Initialize device before it's used by a driver. Ask low-level code 2148 * to enable I/O and memory. Wake up the device if it was suspended. 2149 * Beware, this function can fail. 2150 * 2151 * Note we don't actually enable the device many times if we call 2152 * this function repeatedly (we just increment the count). 2153 */ 2154 int pci_enable_device(struct pci_dev *dev) 2155 { 2156 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2157 } 2158 EXPORT_SYMBOL(pci_enable_device); 2159 2160 /* 2161 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2162 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2163 * there's no need to track it separately. pci_devres is initialized 2164 * when a device is enabled using managed PCI device enable interface. 2165 */ 2166 struct pci_devres { 2167 unsigned int enabled:1; 2168 unsigned int pinned:1; 2169 unsigned int orig_intx:1; 2170 unsigned int restore_intx:1; 2171 unsigned int mwi:1; 2172 u32 region_mask; 2173 }; 2174 2175 static void pcim_release(struct device *gendev, void *res) 2176 { 2177 struct pci_dev *dev = to_pci_dev(gendev); 2178 struct pci_devres *this = res; 2179 int i; 2180 2181 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2182 if (this->region_mask & (1 << i)) 2183 pci_release_region(dev, i); 2184 2185 if (this->mwi) 2186 pci_clear_mwi(dev); 2187 2188 if (this->restore_intx) 2189 pci_intx(dev, this->orig_intx); 2190 2191 if (this->enabled && !this->pinned) 2192 pci_disable_device(dev); 2193 } 2194 2195 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2196 { 2197 struct pci_devres *dr, *new_dr; 2198 2199 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2200 if (dr) 2201 return dr; 2202 2203 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2204 if (!new_dr) 2205 return NULL; 2206 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2207 } 2208 2209 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2210 { 2211 if (pci_is_managed(pdev)) 2212 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2213 return NULL; 2214 } 2215 2216 /** 2217 * pcim_enable_device - Managed pci_enable_device() 2218 * @pdev: PCI device to be initialized 2219 * 2220 * Managed pci_enable_device(). 2221 */ 2222 int pcim_enable_device(struct pci_dev *pdev) 2223 { 2224 struct pci_devres *dr; 2225 int rc; 2226 2227 dr = get_pci_dr(pdev); 2228 if (unlikely(!dr)) 2229 return -ENOMEM; 2230 if (dr->enabled) 2231 return 0; 2232 2233 rc = pci_enable_device(pdev); 2234 if (!rc) { 2235 pdev->is_managed = 1; 2236 dr->enabled = 1; 2237 } 2238 return rc; 2239 } 2240 EXPORT_SYMBOL(pcim_enable_device); 2241 2242 /** 2243 * pcim_pin_device - Pin managed PCI device 2244 * @pdev: PCI device to pin 2245 * 2246 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2247 * driver detach. @pdev must have been enabled with 2248 * pcim_enable_device(). 2249 */ 2250 void pcim_pin_device(struct pci_dev *pdev) 2251 { 2252 struct pci_devres *dr; 2253 2254 dr = find_pci_dr(pdev); 2255 WARN_ON(!dr || !dr->enabled); 2256 if (dr) 2257 dr->pinned = 1; 2258 } 2259 EXPORT_SYMBOL(pcim_pin_device); 2260 2261 /* 2262 * pcibios_device_add - provide arch specific hooks when adding device dev 2263 * @dev: the PCI device being added 2264 * 2265 * Permits the platform to provide architecture specific functionality when 2266 * devices are added. This is the default implementation. Architecture 2267 * implementations can override this. 2268 */ 2269 int __weak pcibios_device_add(struct pci_dev *dev) 2270 { 2271 return 0; 2272 } 2273 2274 /** 2275 * pcibios_release_device - provide arch specific hooks when releasing 2276 * device dev 2277 * @dev: the PCI device being released 2278 * 2279 * Permits the platform to provide architecture specific functionality when 2280 * devices are released. This is the default implementation. Architecture 2281 * implementations can override this. 2282 */ 2283 void __weak pcibios_release_device(struct pci_dev *dev) {} 2284 2285 /** 2286 * pcibios_disable_device - disable arch specific PCI resources for device dev 2287 * @dev: the PCI device to disable 2288 * 2289 * Disables architecture specific PCI resources for the device. This 2290 * is the default implementation. Architecture implementations can 2291 * override this. 2292 */ 2293 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2294 2295 /** 2296 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2297 * @irq: ISA IRQ to penalize 2298 * @active: IRQ active or not 2299 * 2300 * Permits the platform to provide architecture-specific functionality when 2301 * penalizing ISA IRQs. This is the default implementation. Architecture 2302 * implementations can override this. 2303 */ 2304 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2305 2306 static void do_pci_disable_device(struct pci_dev *dev) 2307 { 2308 u16 pci_command; 2309 2310 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2311 if (pci_command & PCI_COMMAND_MASTER) { 2312 pci_command &= ~PCI_COMMAND_MASTER; 2313 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2314 } 2315 2316 pcibios_disable_device(dev); 2317 } 2318 2319 /** 2320 * pci_disable_enabled_device - Disable device without updating enable_cnt 2321 * @dev: PCI device to disable 2322 * 2323 * NOTE: This function is a backend of PCI power management routines and is 2324 * not supposed to be called drivers. 2325 */ 2326 void pci_disable_enabled_device(struct pci_dev *dev) 2327 { 2328 if (pci_is_enabled(dev)) 2329 do_pci_disable_device(dev); 2330 } 2331 2332 /** 2333 * pci_disable_device - Disable PCI device after use 2334 * @dev: PCI device to be disabled 2335 * 2336 * Signal to the system that the PCI device is not in use by the system 2337 * anymore. This only involves disabling PCI bus-mastering, if active. 2338 * 2339 * Note we don't actually disable the device until all callers of 2340 * pci_enable_device() have called pci_disable_device(). 2341 */ 2342 void pci_disable_device(struct pci_dev *dev) 2343 { 2344 struct pci_devres *dr; 2345 2346 dr = find_pci_dr(dev); 2347 if (dr) 2348 dr->enabled = 0; 2349 2350 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2351 "disabling already-disabled device"); 2352 2353 if (atomic_dec_return(&dev->enable_cnt) != 0) 2354 return; 2355 2356 do_pci_disable_device(dev); 2357 2358 dev->is_busmaster = 0; 2359 } 2360 EXPORT_SYMBOL(pci_disable_device); 2361 2362 /** 2363 * pcibios_set_pcie_reset_state - set reset state for device dev 2364 * @dev: the PCIe device reset 2365 * @state: Reset state to enter into 2366 * 2367 * Set the PCIe reset state for the device. This is the default 2368 * implementation. Architecture implementations can override this. 2369 */ 2370 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2371 enum pcie_reset_state state) 2372 { 2373 return -EINVAL; 2374 } 2375 2376 /** 2377 * pci_set_pcie_reset_state - set reset state for device dev 2378 * @dev: the PCIe device reset 2379 * @state: Reset state to enter into 2380 * 2381 * Sets the PCI reset state for the device. 2382 */ 2383 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2384 { 2385 return pcibios_set_pcie_reset_state(dev, state); 2386 } 2387 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2388 2389 #ifdef CONFIG_PCIEAER 2390 void pcie_clear_device_status(struct pci_dev *dev) 2391 { 2392 u16 sta; 2393 2394 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2395 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2396 } 2397 #endif 2398 2399 /** 2400 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2401 * @dev: PCIe root port or event collector. 2402 */ 2403 void pcie_clear_root_pme_status(struct pci_dev *dev) 2404 { 2405 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2406 } 2407 2408 /** 2409 * pci_check_pme_status - Check if given device has generated PME. 2410 * @dev: Device to check. 2411 * 2412 * Check the PME status of the device and if set, clear it and clear PME enable 2413 * (if set). Return 'true' if PME status and PME enable were both set or 2414 * 'false' otherwise. 2415 */ 2416 bool pci_check_pme_status(struct pci_dev *dev) 2417 { 2418 int pmcsr_pos; 2419 u16 pmcsr; 2420 bool ret = false; 2421 2422 if (!dev->pm_cap) 2423 return false; 2424 2425 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2426 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2427 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2428 return false; 2429 2430 /* Clear PME status. */ 2431 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2432 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2433 /* Disable PME to avoid interrupt flood. */ 2434 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2435 ret = true; 2436 } 2437 2438 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2439 2440 return ret; 2441 } 2442 2443 /** 2444 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2445 * @dev: Device to handle. 2446 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2447 * 2448 * Check if @dev has generated PME and queue a resume request for it in that 2449 * case. 2450 */ 2451 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2452 { 2453 if (pme_poll_reset && dev->pme_poll) 2454 dev->pme_poll = false; 2455 2456 if (pci_check_pme_status(dev)) { 2457 pci_wakeup_event(dev); 2458 pm_request_resume(&dev->dev); 2459 } 2460 return 0; 2461 } 2462 2463 /** 2464 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2465 * @bus: Top bus of the subtree to walk. 2466 */ 2467 void pci_pme_wakeup_bus(struct pci_bus *bus) 2468 { 2469 if (bus) 2470 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2471 } 2472 2473 2474 /** 2475 * pci_pme_capable - check the capability of PCI device to generate PME# 2476 * @dev: PCI device to handle. 2477 * @state: PCI state from which device will issue PME#. 2478 */ 2479 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2480 { 2481 if (!dev->pm_cap) 2482 return false; 2483 2484 return !!(dev->pme_support & (1 << state)); 2485 } 2486 EXPORT_SYMBOL(pci_pme_capable); 2487 2488 static void pci_pme_list_scan(struct work_struct *work) 2489 { 2490 struct pci_pme_device *pme_dev, *n; 2491 2492 mutex_lock(&pci_pme_list_mutex); 2493 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2494 struct pci_dev *pdev = pme_dev->dev; 2495 2496 if (pdev->pme_poll) { 2497 struct pci_dev *bridge = pdev->bus->self; 2498 struct device *dev = &pdev->dev; 2499 int pm_status; 2500 2501 /* 2502 * If bridge is in low power state, the 2503 * configuration space of subordinate devices 2504 * may be not accessible 2505 */ 2506 if (bridge && bridge->current_state != PCI_D0) 2507 continue; 2508 2509 /* 2510 * If the device is in a low power state it 2511 * should not be polled either. 2512 */ 2513 pm_status = pm_runtime_get_if_active(dev, true); 2514 if (!pm_status) 2515 continue; 2516 2517 if (pdev->current_state != PCI_D3cold) 2518 pci_pme_wakeup(pdev, NULL); 2519 2520 if (pm_status > 0) 2521 pm_runtime_put(dev); 2522 } else { 2523 list_del(&pme_dev->list); 2524 kfree(pme_dev); 2525 } 2526 } 2527 if (!list_empty(&pci_pme_list)) 2528 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2529 msecs_to_jiffies(PME_TIMEOUT)); 2530 mutex_unlock(&pci_pme_list_mutex); 2531 } 2532 2533 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2534 { 2535 u16 pmcsr; 2536 2537 if (!dev->pme_support) 2538 return; 2539 2540 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2541 /* Clear PME_Status by writing 1 to it and enable PME# */ 2542 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2543 if (!enable) 2544 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2545 2546 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2547 } 2548 2549 /** 2550 * pci_pme_restore - Restore PME configuration after config space restore. 2551 * @dev: PCI device to update. 2552 */ 2553 void pci_pme_restore(struct pci_dev *dev) 2554 { 2555 u16 pmcsr; 2556 2557 if (!dev->pme_support) 2558 return; 2559 2560 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2561 if (dev->wakeup_prepared) { 2562 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2563 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2564 } else { 2565 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2566 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2567 } 2568 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2569 } 2570 2571 /** 2572 * pci_pme_active - enable or disable PCI device's PME# function 2573 * @dev: PCI device to handle. 2574 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2575 * 2576 * The caller must verify that the device is capable of generating PME# before 2577 * calling this function with @enable equal to 'true'. 2578 */ 2579 void pci_pme_active(struct pci_dev *dev, bool enable) 2580 { 2581 __pci_pme_active(dev, enable); 2582 2583 /* 2584 * PCI (as opposed to PCIe) PME requires that the device have 2585 * its PME# line hooked up correctly. Not all hardware vendors 2586 * do this, so the PME never gets delivered and the device 2587 * remains asleep. The easiest way around this is to 2588 * periodically walk the list of suspended devices and check 2589 * whether any have their PME flag set. The assumption is that 2590 * we'll wake up often enough anyway that this won't be a huge 2591 * hit, and the power savings from the devices will still be a 2592 * win. 2593 * 2594 * Although PCIe uses in-band PME message instead of PME# line 2595 * to report PME, PME does not work for some PCIe devices in 2596 * reality. For example, there are devices that set their PME 2597 * status bits, but don't really bother to send a PME message; 2598 * there are PCI Express Root Ports that don't bother to 2599 * trigger interrupts when they receive PME messages from the 2600 * devices below. So PME poll is used for PCIe devices too. 2601 */ 2602 2603 if (dev->pme_poll) { 2604 struct pci_pme_device *pme_dev; 2605 if (enable) { 2606 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2607 GFP_KERNEL); 2608 if (!pme_dev) { 2609 pci_warn(dev, "can't enable PME#\n"); 2610 return; 2611 } 2612 pme_dev->dev = dev; 2613 mutex_lock(&pci_pme_list_mutex); 2614 list_add(&pme_dev->list, &pci_pme_list); 2615 if (list_is_singular(&pci_pme_list)) 2616 queue_delayed_work(system_freezable_wq, 2617 &pci_pme_work, 2618 msecs_to_jiffies(PME_TIMEOUT)); 2619 mutex_unlock(&pci_pme_list_mutex); 2620 } else { 2621 mutex_lock(&pci_pme_list_mutex); 2622 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2623 if (pme_dev->dev == dev) { 2624 list_del(&pme_dev->list); 2625 kfree(pme_dev); 2626 break; 2627 } 2628 } 2629 mutex_unlock(&pci_pme_list_mutex); 2630 } 2631 } 2632 2633 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2634 } 2635 EXPORT_SYMBOL(pci_pme_active); 2636 2637 /** 2638 * __pci_enable_wake - enable PCI device as wakeup event source 2639 * @dev: PCI device affected 2640 * @state: PCI state from which device will issue wakeup events 2641 * @enable: True to enable event generation; false to disable 2642 * 2643 * This enables the device as a wakeup event source, or disables it. 2644 * When such events involves platform-specific hooks, those hooks are 2645 * called automatically by this routine. 2646 * 2647 * Devices with legacy power management (no standard PCI PM capabilities) 2648 * always require such platform hooks. 2649 * 2650 * RETURN VALUE: 2651 * 0 is returned on success 2652 * -EINVAL is returned if device is not supposed to wake up the system 2653 * Error code depending on the platform is returned if both the platform and 2654 * the native mechanism fail to enable the generation of wake-up events 2655 */ 2656 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2657 { 2658 int ret = 0; 2659 2660 /* 2661 * Bridges that are not power-manageable directly only signal 2662 * wakeup on behalf of subordinate devices which is set up 2663 * elsewhere, so skip them. However, bridges that are 2664 * power-manageable may signal wakeup for themselves (for example, 2665 * on a hotplug event) and they need to be covered here. 2666 */ 2667 if (!pci_power_manageable(dev)) 2668 return 0; 2669 2670 /* Don't do the same thing twice in a row for one device. */ 2671 if (!!enable == !!dev->wakeup_prepared) 2672 return 0; 2673 2674 /* 2675 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2676 * Anderson we should be doing PME# wake enable followed by ACPI wake 2677 * enable. To disable wake-up we call the platform first, for symmetry. 2678 */ 2679 2680 if (enable) { 2681 int error; 2682 2683 /* 2684 * Enable PME signaling if the device can signal PME from 2685 * D3cold regardless of whether or not it can signal PME from 2686 * the current target state, because that will allow it to 2687 * signal PME when the hierarchy above it goes into D3cold and 2688 * the device itself ends up in D3cold as a result of that. 2689 */ 2690 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2691 pci_pme_active(dev, true); 2692 else 2693 ret = 1; 2694 error = platform_pci_set_wakeup(dev, true); 2695 if (ret) 2696 ret = error; 2697 if (!ret) 2698 dev->wakeup_prepared = true; 2699 } else { 2700 platform_pci_set_wakeup(dev, false); 2701 pci_pme_active(dev, false); 2702 dev->wakeup_prepared = false; 2703 } 2704 2705 return ret; 2706 } 2707 2708 /** 2709 * pci_enable_wake - change wakeup settings for a PCI device 2710 * @pci_dev: Target device 2711 * @state: PCI state from which device will issue wakeup events 2712 * @enable: Whether or not to enable event generation 2713 * 2714 * If @enable is set, check device_may_wakeup() for the device before calling 2715 * __pci_enable_wake() for it. 2716 */ 2717 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2718 { 2719 if (enable && !device_may_wakeup(&pci_dev->dev)) 2720 return -EINVAL; 2721 2722 return __pci_enable_wake(pci_dev, state, enable); 2723 } 2724 EXPORT_SYMBOL(pci_enable_wake); 2725 2726 /** 2727 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2728 * @dev: PCI device to prepare 2729 * @enable: True to enable wake-up event generation; false to disable 2730 * 2731 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2732 * and this function allows them to set that up cleanly - pci_enable_wake() 2733 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2734 * ordering constraints. 2735 * 2736 * This function only returns error code if the device is not allowed to wake 2737 * up the system from sleep or it is not capable of generating PME# from both 2738 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2739 */ 2740 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2741 { 2742 return pci_pme_capable(dev, PCI_D3cold) ? 2743 pci_enable_wake(dev, PCI_D3cold, enable) : 2744 pci_enable_wake(dev, PCI_D3hot, enable); 2745 } 2746 EXPORT_SYMBOL(pci_wake_from_d3); 2747 2748 /** 2749 * pci_target_state - find an appropriate low power state for a given PCI dev 2750 * @dev: PCI device 2751 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2752 * 2753 * Use underlying platform code to find a supported low power state for @dev. 2754 * If the platform can't manage @dev, return the deepest state from which it 2755 * can generate wake events, based on any available PME info. 2756 */ 2757 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2758 { 2759 if (platform_pci_power_manageable(dev)) { 2760 /* 2761 * Call the platform to find the target state for the device. 2762 */ 2763 pci_power_t state = platform_pci_choose_state(dev); 2764 2765 switch (state) { 2766 case PCI_POWER_ERROR: 2767 case PCI_UNKNOWN: 2768 return PCI_D3hot; 2769 2770 case PCI_D1: 2771 case PCI_D2: 2772 if (pci_no_d1d2(dev)) 2773 return PCI_D3hot; 2774 } 2775 2776 return state; 2777 } 2778 2779 /* 2780 * If the device is in D3cold even though it's not power-manageable by 2781 * the platform, it may have been powered down by non-standard means. 2782 * Best to let it slumber. 2783 */ 2784 if (dev->current_state == PCI_D3cold) 2785 return PCI_D3cold; 2786 else if (!dev->pm_cap) 2787 return PCI_D0; 2788 2789 if (wakeup && dev->pme_support) { 2790 pci_power_t state = PCI_D3hot; 2791 2792 /* 2793 * Find the deepest state from which the device can generate 2794 * PME#. 2795 */ 2796 while (state && !(dev->pme_support & (1 << state))) 2797 state--; 2798 2799 if (state) 2800 return state; 2801 else if (dev->pme_support & 1) 2802 return PCI_D0; 2803 } 2804 2805 return PCI_D3hot; 2806 } 2807 2808 /** 2809 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2810 * into a sleep state 2811 * @dev: Device to handle. 2812 * 2813 * Choose the power state appropriate for the device depending on whether 2814 * it can wake up the system and/or is power manageable by the platform 2815 * (PCI_D3hot is the default) and put the device into that state. 2816 */ 2817 int pci_prepare_to_sleep(struct pci_dev *dev) 2818 { 2819 bool wakeup = device_may_wakeup(&dev->dev); 2820 pci_power_t target_state = pci_target_state(dev, wakeup); 2821 int error; 2822 2823 if (target_state == PCI_POWER_ERROR) 2824 return -EIO; 2825 2826 pci_enable_wake(dev, target_state, wakeup); 2827 2828 error = pci_set_power_state(dev, target_state); 2829 2830 if (error) 2831 pci_enable_wake(dev, target_state, false); 2832 2833 return error; 2834 } 2835 EXPORT_SYMBOL(pci_prepare_to_sleep); 2836 2837 /** 2838 * pci_back_from_sleep - turn PCI device on during system-wide transition 2839 * into working state 2840 * @dev: Device to handle. 2841 * 2842 * Disable device's system wake-up capability and put it into D0. 2843 */ 2844 int pci_back_from_sleep(struct pci_dev *dev) 2845 { 2846 int ret = pci_set_power_state(dev, PCI_D0); 2847 2848 if (ret) 2849 return ret; 2850 2851 pci_enable_wake(dev, PCI_D0, false); 2852 return 0; 2853 } 2854 EXPORT_SYMBOL(pci_back_from_sleep); 2855 2856 /** 2857 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2858 * @dev: PCI device being suspended. 2859 * 2860 * Prepare @dev to generate wake-up events at run time and put it into a low 2861 * power state. 2862 */ 2863 int pci_finish_runtime_suspend(struct pci_dev *dev) 2864 { 2865 pci_power_t target_state; 2866 int error; 2867 2868 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2869 if (target_state == PCI_POWER_ERROR) 2870 return -EIO; 2871 2872 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2873 2874 error = pci_set_power_state(dev, target_state); 2875 2876 if (error) 2877 pci_enable_wake(dev, target_state, false); 2878 2879 return error; 2880 } 2881 2882 /** 2883 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2884 * @dev: Device to check. 2885 * 2886 * Return true if the device itself is capable of generating wake-up events 2887 * (through the platform or using the native PCIe PME) or if the device supports 2888 * PME and one of its upstream bridges can generate wake-up events. 2889 */ 2890 bool pci_dev_run_wake(struct pci_dev *dev) 2891 { 2892 struct pci_bus *bus = dev->bus; 2893 2894 if (!dev->pme_support) 2895 return false; 2896 2897 /* PME-capable in principle, but not from the target power state */ 2898 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2899 return false; 2900 2901 if (device_can_wakeup(&dev->dev)) 2902 return true; 2903 2904 while (bus->parent) { 2905 struct pci_dev *bridge = bus->self; 2906 2907 if (device_can_wakeup(&bridge->dev)) 2908 return true; 2909 2910 bus = bus->parent; 2911 } 2912 2913 /* We have reached the root bus. */ 2914 if (bus->bridge) 2915 return device_can_wakeup(bus->bridge); 2916 2917 return false; 2918 } 2919 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2920 2921 /** 2922 * pci_dev_need_resume - Check if it is necessary to resume the device. 2923 * @pci_dev: Device to check. 2924 * 2925 * Return 'true' if the device is not runtime-suspended or it has to be 2926 * reconfigured due to wakeup settings difference between system and runtime 2927 * suspend, or the current power state of it is not suitable for the upcoming 2928 * (system-wide) transition. 2929 */ 2930 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2931 { 2932 struct device *dev = &pci_dev->dev; 2933 pci_power_t target_state; 2934 2935 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2936 return true; 2937 2938 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2939 2940 /* 2941 * If the earlier platform check has not triggered, D3cold is just power 2942 * removal on top of D3hot, so no need to resume the device in that 2943 * case. 2944 */ 2945 return target_state != pci_dev->current_state && 2946 target_state != PCI_D3cold && 2947 pci_dev->current_state != PCI_D3hot; 2948 } 2949 2950 /** 2951 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2952 * @pci_dev: Device to check. 2953 * 2954 * If the device is suspended and it is not configured for system wakeup, 2955 * disable PME for it to prevent it from waking up the system unnecessarily. 2956 * 2957 * Note that if the device's power state is D3cold and the platform check in 2958 * pci_dev_need_resume() has not triggered, the device's configuration need not 2959 * be changed. 2960 */ 2961 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2962 { 2963 struct device *dev = &pci_dev->dev; 2964 2965 spin_lock_irq(&dev->power.lock); 2966 2967 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2968 pci_dev->current_state < PCI_D3cold) 2969 __pci_pme_active(pci_dev, false); 2970 2971 spin_unlock_irq(&dev->power.lock); 2972 } 2973 2974 /** 2975 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2976 * @pci_dev: Device to handle. 2977 * 2978 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2979 * it might have been disabled during the prepare phase of system suspend if 2980 * the device was not configured for system wakeup. 2981 */ 2982 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2983 { 2984 struct device *dev = &pci_dev->dev; 2985 2986 if (!pci_dev_run_wake(pci_dev)) 2987 return; 2988 2989 spin_lock_irq(&dev->power.lock); 2990 2991 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2992 __pci_pme_active(pci_dev, true); 2993 2994 spin_unlock_irq(&dev->power.lock); 2995 } 2996 2997 /** 2998 * pci_choose_state - Choose the power state of a PCI device. 2999 * @dev: Target PCI device. 3000 * @state: Target state for the whole system. 3001 * 3002 * Returns PCI power state suitable for @dev and @state. 3003 */ 3004 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 3005 { 3006 if (state.event == PM_EVENT_ON) 3007 return PCI_D0; 3008 3009 return pci_target_state(dev, false); 3010 } 3011 EXPORT_SYMBOL(pci_choose_state); 3012 3013 void pci_config_pm_runtime_get(struct pci_dev *pdev) 3014 { 3015 struct device *dev = &pdev->dev; 3016 struct device *parent = dev->parent; 3017 3018 if (parent) 3019 pm_runtime_get_sync(parent); 3020 pm_runtime_get_noresume(dev); 3021 /* 3022 * pdev->current_state is set to PCI_D3cold during suspending, 3023 * so wait until suspending completes 3024 */ 3025 pm_runtime_barrier(dev); 3026 /* 3027 * Only need to resume devices in D3cold, because config 3028 * registers are still accessible for devices suspended but 3029 * not in D3cold. 3030 */ 3031 if (pdev->current_state == PCI_D3cold) 3032 pm_runtime_resume(dev); 3033 } 3034 3035 void pci_config_pm_runtime_put(struct pci_dev *pdev) 3036 { 3037 struct device *dev = &pdev->dev; 3038 struct device *parent = dev->parent; 3039 3040 pm_runtime_put(dev); 3041 if (parent) 3042 pm_runtime_put_sync(parent); 3043 } 3044 3045 static const struct dmi_system_id bridge_d3_blacklist[] = { 3046 #ifdef CONFIG_X86 3047 { 3048 /* 3049 * Gigabyte X299 root port is not marked as hotplug capable 3050 * which allows Linux to power manage it. However, this 3051 * confuses the BIOS SMI handler so don't power manage root 3052 * ports on that system. 3053 */ 3054 .ident = "X299 DESIGNARE EX-CF", 3055 .matches = { 3056 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 3057 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 3058 }, 3059 }, 3060 { 3061 /* 3062 * Downstream device is not accessible after putting a root port 3063 * into D3cold and back into D0 on Elo Continental Z2 board 3064 */ 3065 .ident = "Elo Continental Z2", 3066 .matches = { 3067 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 3068 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 3069 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 3070 }, 3071 }, 3072 #endif 3073 { } 3074 }; 3075 3076 /** 3077 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 3078 * @bridge: Bridge to check 3079 * 3080 * This function checks if it is possible to move the bridge to D3. 3081 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 3082 */ 3083 bool pci_bridge_d3_possible(struct pci_dev *bridge) 3084 { 3085 if (!pci_is_pcie(bridge)) 3086 return false; 3087 3088 switch (pci_pcie_type(bridge)) { 3089 case PCI_EXP_TYPE_ROOT_PORT: 3090 case PCI_EXP_TYPE_UPSTREAM: 3091 case PCI_EXP_TYPE_DOWNSTREAM: 3092 if (pci_bridge_d3_disable) 3093 return false; 3094 3095 /* 3096 * Hotplug ports handled by firmware in System Management Mode 3097 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3098 */ 3099 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3100 return false; 3101 3102 if (pci_bridge_d3_force) 3103 return true; 3104 3105 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3106 if (bridge->is_thunderbolt) 3107 return true; 3108 3109 /* Platform might know better if the bridge supports D3 */ 3110 if (platform_pci_bridge_d3(bridge)) 3111 return true; 3112 3113 /* 3114 * Hotplug ports handled natively by the OS were not validated 3115 * by vendors for runtime D3 at least until 2018 because there 3116 * was no OS support. 3117 */ 3118 if (bridge->is_hotplug_bridge) 3119 return false; 3120 3121 if (dmi_check_system(bridge_d3_blacklist)) 3122 return false; 3123 3124 /* 3125 * It should be safe to put PCIe ports from 2015 or newer 3126 * to D3. 3127 */ 3128 if (dmi_get_bios_year() >= 2015) 3129 return true; 3130 break; 3131 } 3132 3133 return false; 3134 } 3135 3136 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3137 { 3138 bool *d3cold_ok = data; 3139 3140 if (/* The device needs to be allowed to go D3cold ... */ 3141 dev->no_d3cold || !dev->d3cold_allowed || 3142 3143 /* ... and if it is wakeup capable to do so from D3cold. */ 3144 (device_may_wakeup(&dev->dev) && 3145 !pci_pme_capable(dev, PCI_D3cold)) || 3146 3147 /* If it is a bridge it must be allowed to go to D3. */ 3148 !pci_power_manageable(dev)) 3149 3150 *d3cold_ok = false; 3151 3152 return !*d3cold_ok; 3153 } 3154 3155 /* 3156 * pci_bridge_d3_update - Update bridge D3 capabilities 3157 * @dev: PCI device which is changed 3158 * 3159 * Update upstream bridge PM capabilities accordingly depending on if the 3160 * device PM configuration was changed or the device is being removed. The 3161 * change is also propagated upstream. 3162 */ 3163 void pci_bridge_d3_update(struct pci_dev *dev) 3164 { 3165 bool remove = !device_is_registered(&dev->dev); 3166 struct pci_dev *bridge; 3167 bool d3cold_ok = true; 3168 3169 bridge = pci_upstream_bridge(dev); 3170 if (!bridge || !pci_bridge_d3_possible(bridge)) 3171 return; 3172 3173 /* 3174 * If D3 is currently allowed for the bridge, removing one of its 3175 * children won't change that. 3176 */ 3177 if (remove && bridge->bridge_d3) 3178 return; 3179 3180 /* 3181 * If D3 is currently allowed for the bridge and a child is added or 3182 * changed, disallowance of D3 can only be caused by that child, so 3183 * we only need to check that single device, not any of its siblings. 3184 * 3185 * If D3 is currently not allowed for the bridge, checking the device 3186 * first may allow us to skip checking its siblings. 3187 */ 3188 if (!remove) 3189 pci_dev_check_d3cold(dev, &d3cold_ok); 3190 3191 /* 3192 * If D3 is currently not allowed for the bridge, this may be caused 3193 * either by the device being changed/removed or any of its siblings, 3194 * so we need to go through all children to find out if one of them 3195 * continues to block D3. 3196 */ 3197 if (d3cold_ok && !bridge->bridge_d3) 3198 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3199 &d3cold_ok); 3200 3201 if (bridge->bridge_d3 != d3cold_ok) { 3202 bridge->bridge_d3 = d3cold_ok; 3203 /* Propagate change to upstream bridges */ 3204 pci_bridge_d3_update(bridge); 3205 } 3206 } 3207 3208 /** 3209 * pci_d3cold_enable - Enable D3cold for device 3210 * @dev: PCI device to handle 3211 * 3212 * This function can be used in drivers to enable D3cold from the device 3213 * they handle. It also updates upstream PCI bridge PM capabilities 3214 * accordingly. 3215 */ 3216 void pci_d3cold_enable(struct pci_dev *dev) 3217 { 3218 if (dev->no_d3cold) { 3219 dev->no_d3cold = false; 3220 pci_bridge_d3_update(dev); 3221 } 3222 } 3223 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3224 3225 /** 3226 * pci_d3cold_disable - Disable D3cold for device 3227 * @dev: PCI device to handle 3228 * 3229 * This function can be used in drivers to disable D3cold from the device 3230 * they handle. It also updates upstream PCI bridge PM capabilities 3231 * accordingly. 3232 */ 3233 void pci_d3cold_disable(struct pci_dev *dev) 3234 { 3235 if (!dev->no_d3cold) { 3236 dev->no_d3cold = true; 3237 pci_bridge_d3_update(dev); 3238 } 3239 } 3240 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3241 3242 /** 3243 * pci_pm_init - Initialize PM functions of given PCI device 3244 * @dev: PCI device to handle. 3245 */ 3246 void pci_pm_init(struct pci_dev *dev) 3247 { 3248 int pm; 3249 u16 status; 3250 u16 pmc; 3251 3252 pm_runtime_forbid(&dev->dev); 3253 pm_runtime_set_active(&dev->dev); 3254 pm_runtime_enable(&dev->dev); 3255 device_enable_async_suspend(&dev->dev); 3256 dev->wakeup_prepared = false; 3257 3258 dev->pm_cap = 0; 3259 dev->pme_support = 0; 3260 3261 /* find PCI PM capability in list */ 3262 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3263 if (!pm) 3264 return; 3265 /* Check device's ability to generate PME# */ 3266 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3267 3268 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3269 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3270 pmc & PCI_PM_CAP_VER_MASK); 3271 return; 3272 } 3273 3274 dev->pm_cap = pm; 3275 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3276 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3277 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3278 dev->d3cold_allowed = true; 3279 3280 dev->d1_support = false; 3281 dev->d2_support = false; 3282 if (!pci_no_d1d2(dev)) { 3283 if (pmc & PCI_PM_CAP_D1) 3284 dev->d1_support = true; 3285 if (pmc & PCI_PM_CAP_D2) 3286 dev->d2_support = true; 3287 3288 if (dev->d1_support || dev->d2_support) 3289 pci_info(dev, "supports%s%s\n", 3290 dev->d1_support ? " D1" : "", 3291 dev->d2_support ? " D2" : ""); 3292 } 3293 3294 pmc &= PCI_PM_CAP_PME_MASK; 3295 if (pmc) { 3296 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3297 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3298 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3299 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3300 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3301 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3302 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc); 3303 dev->pme_poll = true; 3304 /* 3305 * Make device's PM flags reflect the wake-up capability, but 3306 * let the user space enable it to wake up the system as needed. 3307 */ 3308 device_set_wakeup_capable(&dev->dev, true); 3309 /* Disable the PME# generation functionality */ 3310 pci_pme_active(dev, false); 3311 } 3312 3313 pci_read_config_word(dev, PCI_STATUS, &status); 3314 if (status & PCI_STATUS_IMM_READY) 3315 dev->imm_ready = 1; 3316 } 3317 3318 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3319 { 3320 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3321 3322 switch (prop) { 3323 case PCI_EA_P_MEM: 3324 case PCI_EA_P_VF_MEM: 3325 flags |= IORESOURCE_MEM; 3326 break; 3327 case PCI_EA_P_MEM_PREFETCH: 3328 case PCI_EA_P_VF_MEM_PREFETCH: 3329 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3330 break; 3331 case PCI_EA_P_IO: 3332 flags |= IORESOURCE_IO; 3333 break; 3334 default: 3335 return 0; 3336 } 3337 3338 return flags; 3339 } 3340 3341 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3342 u8 prop) 3343 { 3344 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3345 return &dev->resource[bei]; 3346 #ifdef CONFIG_PCI_IOV 3347 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3348 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3349 return &dev->resource[PCI_IOV_RESOURCES + 3350 bei - PCI_EA_BEI_VF_BAR0]; 3351 #endif 3352 else if (bei == PCI_EA_BEI_ROM) 3353 return &dev->resource[PCI_ROM_RESOURCE]; 3354 else 3355 return NULL; 3356 } 3357 3358 /* Read an Enhanced Allocation (EA) entry */ 3359 static int pci_ea_read(struct pci_dev *dev, int offset) 3360 { 3361 struct resource *res; 3362 const char *res_name; 3363 int ent_size, ent_offset = offset; 3364 resource_size_t start, end; 3365 unsigned long flags; 3366 u32 dw0, bei, base, max_offset; 3367 u8 prop; 3368 bool support_64 = (sizeof(resource_size_t) >= 8); 3369 3370 pci_read_config_dword(dev, ent_offset, &dw0); 3371 ent_offset += 4; 3372 3373 /* Entry size field indicates DWORDs after 1st */ 3374 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2; 3375 3376 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3377 goto out; 3378 3379 bei = FIELD_GET(PCI_EA_BEI, dw0); 3380 prop = FIELD_GET(PCI_EA_PP, dw0); 3381 3382 /* 3383 * If the Property is in the reserved range, try the Secondary 3384 * Property instead. 3385 */ 3386 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3387 prop = FIELD_GET(PCI_EA_SP, dw0); 3388 if (prop > PCI_EA_P_BRIDGE_IO) 3389 goto out; 3390 3391 res = pci_ea_get_resource(dev, bei, prop); 3392 res_name = pci_resource_name(dev, bei); 3393 if (!res) { 3394 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3395 goto out; 3396 } 3397 3398 flags = pci_ea_flags(dev, prop); 3399 if (!flags) { 3400 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3401 goto out; 3402 } 3403 3404 /* Read Base */ 3405 pci_read_config_dword(dev, ent_offset, &base); 3406 start = (base & PCI_EA_FIELD_MASK); 3407 ent_offset += 4; 3408 3409 /* Read MaxOffset */ 3410 pci_read_config_dword(dev, ent_offset, &max_offset); 3411 ent_offset += 4; 3412 3413 /* Read Base MSBs (if 64-bit entry) */ 3414 if (base & PCI_EA_IS_64) { 3415 u32 base_upper; 3416 3417 pci_read_config_dword(dev, ent_offset, &base_upper); 3418 ent_offset += 4; 3419 3420 flags |= IORESOURCE_MEM_64; 3421 3422 /* entry starts above 32-bit boundary, can't use */ 3423 if (!support_64 && base_upper) 3424 goto out; 3425 3426 if (support_64) 3427 start |= ((u64)base_upper << 32); 3428 } 3429 3430 end = start + (max_offset | 0x03); 3431 3432 /* Read MaxOffset MSBs (if 64-bit entry) */ 3433 if (max_offset & PCI_EA_IS_64) { 3434 u32 max_offset_upper; 3435 3436 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3437 ent_offset += 4; 3438 3439 flags |= IORESOURCE_MEM_64; 3440 3441 /* entry too big, can't use */ 3442 if (!support_64 && max_offset_upper) 3443 goto out; 3444 3445 if (support_64) 3446 end += ((u64)max_offset_upper << 32); 3447 } 3448 3449 if (end < start) { 3450 pci_err(dev, "EA Entry crosses address boundary\n"); 3451 goto out; 3452 } 3453 3454 if (ent_size != ent_offset - offset) { 3455 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3456 ent_size, ent_offset - offset); 3457 goto out; 3458 } 3459 3460 res->name = pci_name(dev); 3461 res->start = start; 3462 res->end = end; 3463 res->flags = flags; 3464 3465 if (bei <= PCI_EA_BEI_BAR5) 3466 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3467 res_name, res, prop); 3468 else if (bei == PCI_EA_BEI_ROM) 3469 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3470 res_name, res, prop); 3471 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3472 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3473 res_name, res, prop); 3474 else 3475 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n", 3476 bei, res, prop); 3477 3478 out: 3479 return offset + ent_size; 3480 } 3481 3482 /* Enhanced Allocation Initialization */ 3483 void pci_ea_init(struct pci_dev *dev) 3484 { 3485 int ea; 3486 u8 num_ent; 3487 int offset; 3488 int i; 3489 3490 /* find PCI EA capability in list */ 3491 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3492 if (!ea) 3493 return; 3494 3495 /* determine the number of entries */ 3496 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3497 &num_ent); 3498 num_ent &= PCI_EA_NUM_ENT_MASK; 3499 3500 offset = ea + PCI_EA_FIRST_ENT; 3501 3502 /* Skip DWORD 2 for type 1 functions */ 3503 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3504 offset += 4; 3505 3506 /* parse each EA entry */ 3507 for (i = 0; i < num_ent; ++i) 3508 offset = pci_ea_read(dev, offset); 3509 } 3510 3511 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3512 struct pci_cap_saved_state *new_cap) 3513 { 3514 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3515 } 3516 3517 /** 3518 * _pci_add_cap_save_buffer - allocate buffer for saving given 3519 * capability registers 3520 * @dev: the PCI device 3521 * @cap: the capability to allocate the buffer for 3522 * @extended: Standard or Extended capability ID 3523 * @size: requested size of the buffer 3524 */ 3525 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3526 bool extended, unsigned int size) 3527 { 3528 int pos; 3529 struct pci_cap_saved_state *save_state; 3530 3531 if (extended) 3532 pos = pci_find_ext_capability(dev, cap); 3533 else 3534 pos = pci_find_capability(dev, cap); 3535 3536 if (!pos) 3537 return 0; 3538 3539 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3540 if (!save_state) 3541 return -ENOMEM; 3542 3543 save_state->cap.cap_nr = cap; 3544 save_state->cap.cap_extended = extended; 3545 save_state->cap.size = size; 3546 pci_add_saved_cap(dev, save_state); 3547 3548 return 0; 3549 } 3550 3551 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3552 { 3553 return _pci_add_cap_save_buffer(dev, cap, false, size); 3554 } 3555 3556 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3557 { 3558 return _pci_add_cap_save_buffer(dev, cap, true, size); 3559 } 3560 3561 /** 3562 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3563 * @dev: the PCI device 3564 */ 3565 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3566 { 3567 int error; 3568 3569 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3570 PCI_EXP_SAVE_REGS * sizeof(u16)); 3571 if (error) 3572 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3573 3574 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3575 if (error) 3576 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3577 3578 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3579 2 * sizeof(u16)); 3580 if (error) 3581 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3582 3583 pci_allocate_vc_save_buffers(dev); 3584 } 3585 3586 void pci_free_cap_save_buffers(struct pci_dev *dev) 3587 { 3588 struct pci_cap_saved_state *tmp; 3589 struct hlist_node *n; 3590 3591 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3592 kfree(tmp); 3593 } 3594 3595 /** 3596 * pci_configure_ari - enable or disable ARI forwarding 3597 * @dev: the PCI device 3598 * 3599 * If @dev and its upstream bridge both support ARI, enable ARI in the 3600 * bridge. Otherwise, disable ARI in the bridge. 3601 */ 3602 void pci_configure_ari(struct pci_dev *dev) 3603 { 3604 u32 cap; 3605 struct pci_dev *bridge; 3606 3607 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3608 return; 3609 3610 bridge = dev->bus->self; 3611 if (!bridge) 3612 return; 3613 3614 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3615 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3616 return; 3617 3618 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3619 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3620 PCI_EXP_DEVCTL2_ARI); 3621 bridge->ari_enabled = 1; 3622 } else { 3623 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3624 PCI_EXP_DEVCTL2_ARI); 3625 bridge->ari_enabled = 0; 3626 } 3627 } 3628 3629 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3630 { 3631 int pos; 3632 u16 cap, ctrl; 3633 3634 pos = pdev->acs_cap; 3635 if (!pos) 3636 return false; 3637 3638 /* 3639 * Except for egress control, capabilities are either required 3640 * or only required if controllable. Features missing from the 3641 * capability field can therefore be assumed as hard-wired enabled. 3642 */ 3643 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3644 acs_flags &= (cap | PCI_ACS_EC); 3645 3646 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3647 return (ctrl & acs_flags) == acs_flags; 3648 } 3649 3650 /** 3651 * pci_acs_enabled - test ACS against required flags for a given device 3652 * @pdev: device to test 3653 * @acs_flags: required PCI ACS flags 3654 * 3655 * Return true if the device supports the provided flags. Automatically 3656 * filters out flags that are not implemented on multifunction devices. 3657 * 3658 * Note that this interface checks the effective ACS capabilities of the 3659 * device rather than the actual capabilities. For instance, most single 3660 * function endpoints are not required to support ACS because they have no 3661 * opportunity for peer-to-peer access. We therefore return 'true' 3662 * regardless of whether the device exposes an ACS capability. This makes 3663 * it much easier for callers of this function to ignore the actual type 3664 * or topology of the device when testing ACS support. 3665 */ 3666 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3667 { 3668 int ret; 3669 3670 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3671 if (ret >= 0) 3672 return ret > 0; 3673 3674 /* 3675 * Conventional PCI and PCI-X devices never support ACS, either 3676 * effectively or actually. The shared bus topology implies that 3677 * any device on the bus can receive or snoop DMA. 3678 */ 3679 if (!pci_is_pcie(pdev)) 3680 return false; 3681 3682 switch (pci_pcie_type(pdev)) { 3683 /* 3684 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3685 * but since their primary interface is PCI/X, we conservatively 3686 * handle them as we would a non-PCIe device. 3687 */ 3688 case PCI_EXP_TYPE_PCIE_BRIDGE: 3689 /* 3690 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3691 * applicable... must never implement an ACS Extended Capability...". 3692 * This seems arbitrary, but we take a conservative interpretation 3693 * of this statement. 3694 */ 3695 case PCI_EXP_TYPE_PCI_BRIDGE: 3696 case PCI_EXP_TYPE_RC_EC: 3697 return false; 3698 /* 3699 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3700 * implement ACS in order to indicate their peer-to-peer capabilities, 3701 * regardless of whether they are single- or multi-function devices. 3702 */ 3703 case PCI_EXP_TYPE_DOWNSTREAM: 3704 case PCI_EXP_TYPE_ROOT_PORT: 3705 return pci_acs_flags_enabled(pdev, acs_flags); 3706 /* 3707 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3708 * implemented by the remaining PCIe types to indicate peer-to-peer 3709 * capabilities, but only when they are part of a multifunction 3710 * device. The footnote for section 6.12 indicates the specific 3711 * PCIe types included here. 3712 */ 3713 case PCI_EXP_TYPE_ENDPOINT: 3714 case PCI_EXP_TYPE_UPSTREAM: 3715 case PCI_EXP_TYPE_LEG_END: 3716 case PCI_EXP_TYPE_RC_END: 3717 if (!pdev->multifunction) 3718 break; 3719 3720 return pci_acs_flags_enabled(pdev, acs_flags); 3721 } 3722 3723 /* 3724 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3725 * to single function devices with the exception of downstream ports. 3726 */ 3727 return true; 3728 } 3729 3730 /** 3731 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3732 * @start: starting downstream device 3733 * @end: ending upstream device or NULL to search to the root bus 3734 * @acs_flags: required flags 3735 * 3736 * Walk up a device tree from start to end testing PCI ACS support. If 3737 * any step along the way does not support the required flags, return false. 3738 */ 3739 bool pci_acs_path_enabled(struct pci_dev *start, 3740 struct pci_dev *end, u16 acs_flags) 3741 { 3742 struct pci_dev *pdev, *parent = start; 3743 3744 do { 3745 pdev = parent; 3746 3747 if (!pci_acs_enabled(pdev, acs_flags)) 3748 return false; 3749 3750 if (pci_is_root_bus(pdev->bus)) 3751 return (end == NULL); 3752 3753 parent = pdev->bus->self; 3754 } while (pdev != end); 3755 3756 return true; 3757 } 3758 3759 /** 3760 * pci_acs_init - Initialize ACS if hardware supports it 3761 * @dev: the PCI device 3762 */ 3763 void pci_acs_init(struct pci_dev *dev) 3764 { 3765 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3766 3767 /* 3768 * Attempt to enable ACS regardless of capability because some Root 3769 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3770 * the standard ACS capability but still support ACS via those 3771 * quirks. 3772 */ 3773 pci_enable_acs(dev); 3774 } 3775 3776 /** 3777 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3778 * @pdev: PCI device 3779 * @bar: BAR to find 3780 * 3781 * Helper to find the position of the ctrl register for a BAR. 3782 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3783 * Returns -ENOENT if no ctrl register for the BAR could be found. 3784 */ 3785 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3786 { 3787 unsigned int pos, nbars, i; 3788 u32 ctrl; 3789 3790 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3791 if (!pos) 3792 return -ENOTSUPP; 3793 3794 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3795 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 3796 3797 for (i = 0; i < nbars; i++, pos += 8) { 3798 int bar_idx; 3799 3800 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3801 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl); 3802 if (bar_idx == bar) 3803 return pos; 3804 } 3805 3806 return -ENOENT; 3807 } 3808 3809 /** 3810 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3811 * @pdev: PCI device 3812 * @bar: BAR to query 3813 * 3814 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3815 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3816 */ 3817 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3818 { 3819 int pos; 3820 u32 cap; 3821 3822 pos = pci_rebar_find_pos(pdev, bar); 3823 if (pos < 0) 3824 return 0; 3825 3826 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3827 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3828 3829 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3830 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3831 bar == 0 && cap == 0x700) 3832 return 0x3f00; 3833 3834 return cap; 3835 } 3836 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3837 3838 /** 3839 * pci_rebar_get_current_size - get the current size of a BAR 3840 * @pdev: PCI device 3841 * @bar: BAR to set size to 3842 * 3843 * Read the size of a BAR from the resizable BAR config. 3844 * Returns size if found or negative error code. 3845 */ 3846 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3847 { 3848 int pos; 3849 u32 ctrl; 3850 3851 pos = pci_rebar_find_pos(pdev, bar); 3852 if (pos < 0) 3853 return pos; 3854 3855 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3856 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl); 3857 } 3858 3859 /** 3860 * pci_rebar_set_size - set a new size for a BAR 3861 * @pdev: PCI device 3862 * @bar: BAR to set size to 3863 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3864 * 3865 * Set the new size of a BAR as defined in the spec. 3866 * Returns zero if resizing was successful, error code otherwise. 3867 */ 3868 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3869 { 3870 int pos; 3871 u32 ctrl; 3872 3873 pos = pci_rebar_find_pos(pdev, bar); 3874 if (pos < 0) 3875 return pos; 3876 3877 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3878 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3879 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 3880 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3881 return 0; 3882 } 3883 3884 /** 3885 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3886 * @dev: the PCI device 3887 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3888 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3889 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3890 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3891 * 3892 * Return 0 if all upstream bridges support AtomicOp routing, egress 3893 * blocking is disabled on all upstream ports, and the root port supports 3894 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3895 * AtomicOp completion), or negative otherwise. 3896 */ 3897 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3898 { 3899 struct pci_bus *bus = dev->bus; 3900 struct pci_dev *bridge; 3901 u32 cap, ctl2; 3902 3903 /* 3904 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3905 * in Device Control 2 is reserved in VFs and the PF value applies 3906 * to all associated VFs. 3907 */ 3908 if (dev->is_virtfn) 3909 return -EINVAL; 3910 3911 if (!pci_is_pcie(dev)) 3912 return -EINVAL; 3913 3914 /* 3915 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3916 * AtomicOp requesters. For now, we only support endpoints as 3917 * requesters and root ports as completers. No endpoints as 3918 * completers, and no peer-to-peer. 3919 */ 3920 3921 switch (pci_pcie_type(dev)) { 3922 case PCI_EXP_TYPE_ENDPOINT: 3923 case PCI_EXP_TYPE_LEG_END: 3924 case PCI_EXP_TYPE_RC_END: 3925 break; 3926 default: 3927 return -EINVAL; 3928 } 3929 3930 while (bus->parent) { 3931 bridge = bus->self; 3932 3933 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3934 3935 switch (pci_pcie_type(bridge)) { 3936 /* Ensure switch ports support AtomicOp routing */ 3937 case PCI_EXP_TYPE_UPSTREAM: 3938 case PCI_EXP_TYPE_DOWNSTREAM: 3939 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3940 return -EINVAL; 3941 break; 3942 3943 /* Ensure root port supports all the sizes we care about */ 3944 case PCI_EXP_TYPE_ROOT_PORT: 3945 if ((cap & cap_mask) != cap_mask) 3946 return -EINVAL; 3947 break; 3948 } 3949 3950 /* Ensure upstream ports don't block AtomicOps on egress */ 3951 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3952 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3953 &ctl2); 3954 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3955 return -EINVAL; 3956 } 3957 3958 bus = bus->parent; 3959 } 3960 3961 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3962 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3963 return 0; 3964 } 3965 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3966 3967 /** 3968 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3969 * @dev: the PCI device 3970 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3971 * 3972 * Perform INTx swizzling for a device behind one level of bridge. This is 3973 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3974 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3975 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3976 * the PCI Express Base Specification, Revision 2.1) 3977 */ 3978 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3979 { 3980 int slot; 3981 3982 if (pci_ari_enabled(dev->bus)) 3983 slot = 0; 3984 else 3985 slot = PCI_SLOT(dev->devfn); 3986 3987 return (((pin - 1) + slot) % 4) + 1; 3988 } 3989 3990 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3991 { 3992 u8 pin; 3993 3994 pin = dev->pin; 3995 if (!pin) 3996 return -1; 3997 3998 while (!pci_is_root_bus(dev->bus)) { 3999 pin = pci_swizzle_interrupt_pin(dev, pin); 4000 dev = dev->bus->self; 4001 } 4002 *bridge = dev; 4003 return pin; 4004 } 4005 4006 /** 4007 * pci_common_swizzle - swizzle INTx all the way to root bridge 4008 * @dev: the PCI device 4009 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 4010 * 4011 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 4012 * bridges all the way up to a PCI root bus. 4013 */ 4014 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 4015 { 4016 u8 pin = *pinp; 4017 4018 while (!pci_is_root_bus(dev->bus)) { 4019 pin = pci_swizzle_interrupt_pin(dev, pin); 4020 dev = dev->bus->self; 4021 } 4022 *pinp = pin; 4023 return PCI_SLOT(dev->devfn); 4024 } 4025 EXPORT_SYMBOL_GPL(pci_common_swizzle); 4026 4027 /** 4028 * pci_release_region - Release a PCI bar 4029 * @pdev: PCI device whose resources were previously reserved by 4030 * pci_request_region() 4031 * @bar: BAR to release 4032 * 4033 * Releases the PCI I/O and memory resources previously reserved by a 4034 * successful call to pci_request_region(). Call this function only 4035 * after all use of the PCI regions has ceased. 4036 */ 4037 void pci_release_region(struct pci_dev *pdev, int bar) 4038 { 4039 struct pci_devres *dr; 4040 4041 if (pci_resource_len(pdev, bar) == 0) 4042 return; 4043 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 4044 release_region(pci_resource_start(pdev, bar), 4045 pci_resource_len(pdev, bar)); 4046 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 4047 release_mem_region(pci_resource_start(pdev, bar), 4048 pci_resource_len(pdev, bar)); 4049 4050 dr = find_pci_dr(pdev); 4051 if (dr) 4052 dr->region_mask &= ~(1 << bar); 4053 } 4054 EXPORT_SYMBOL(pci_release_region); 4055 4056 /** 4057 * __pci_request_region - Reserved PCI I/O and memory resource 4058 * @pdev: PCI device whose resources are to be reserved 4059 * @bar: BAR to be reserved 4060 * @res_name: Name to be associated with resource. 4061 * @exclusive: whether the region access is exclusive or not 4062 * 4063 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4064 * being reserved by owner @res_name. Do not access any 4065 * address inside the PCI regions unless this call returns 4066 * successfully. 4067 * 4068 * If @exclusive is set, then the region is marked so that userspace 4069 * is explicitly not allowed to map the resource via /dev/mem or 4070 * sysfs MMIO access. 4071 * 4072 * Returns 0 on success, or %EBUSY on error. A warning 4073 * message is also printed on failure. 4074 */ 4075 static int __pci_request_region(struct pci_dev *pdev, int bar, 4076 const char *res_name, int exclusive) 4077 { 4078 struct pci_devres *dr; 4079 4080 if (pci_resource_len(pdev, bar) == 0) 4081 return 0; 4082 4083 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 4084 if (!request_region(pci_resource_start(pdev, bar), 4085 pci_resource_len(pdev, bar), res_name)) 4086 goto err_out; 4087 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 4088 if (!__request_mem_region(pci_resource_start(pdev, bar), 4089 pci_resource_len(pdev, bar), res_name, 4090 exclusive)) 4091 goto err_out; 4092 } 4093 4094 dr = find_pci_dr(pdev); 4095 if (dr) 4096 dr->region_mask |= 1 << bar; 4097 4098 return 0; 4099 4100 err_out: 4101 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 4102 &pdev->resource[bar]); 4103 return -EBUSY; 4104 } 4105 4106 /** 4107 * pci_request_region - Reserve PCI I/O and memory resource 4108 * @pdev: PCI device whose resources are to be reserved 4109 * @bar: BAR to be reserved 4110 * @res_name: Name to be associated with resource 4111 * 4112 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4113 * being reserved by owner @res_name. Do not access any 4114 * address inside the PCI regions unless this call returns 4115 * successfully. 4116 * 4117 * Returns 0 on success, or %EBUSY on error. A warning 4118 * message is also printed on failure. 4119 */ 4120 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4121 { 4122 return __pci_request_region(pdev, bar, res_name, 0); 4123 } 4124 EXPORT_SYMBOL(pci_request_region); 4125 4126 /** 4127 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4128 * @pdev: PCI device whose resources were previously reserved 4129 * @bars: Bitmask of BARs to be released 4130 * 4131 * Release selected PCI I/O and memory resources previously reserved. 4132 * Call this function only after all use of the PCI regions has ceased. 4133 */ 4134 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4135 { 4136 int i; 4137 4138 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4139 if (bars & (1 << i)) 4140 pci_release_region(pdev, i); 4141 } 4142 EXPORT_SYMBOL(pci_release_selected_regions); 4143 4144 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4145 const char *res_name, int excl) 4146 { 4147 int i; 4148 4149 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4150 if (bars & (1 << i)) 4151 if (__pci_request_region(pdev, i, res_name, excl)) 4152 goto err_out; 4153 return 0; 4154 4155 err_out: 4156 while (--i >= 0) 4157 if (bars & (1 << i)) 4158 pci_release_region(pdev, i); 4159 4160 return -EBUSY; 4161 } 4162 4163 4164 /** 4165 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4166 * @pdev: PCI device whose resources are to be reserved 4167 * @bars: Bitmask of BARs to be requested 4168 * @res_name: Name to be associated with resource 4169 */ 4170 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4171 const char *res_name) 4172 { 4173 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4174 } 4175 EXPORT_SYMBOL(pci_request_selected_regions); 4176 4177 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4178 const char *res_name) 4179 { 4180 return __pci_request_selected_regions(pdev, bars, res_name, 4181 IORESOURCE_EXCLUSIVE); 4182 } 4183 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4184 4185 /** 4186 * pci_release_regions - Release reserved PCI I/O and memory resources 4187 * @pdev: PCI device whose resources were previously reserved by 4188 * pci_request_regions() 4189 * 4190 * Releases all PCI I/O and memory resources previously reserved by a 4191 * successful call to pci_request_regions(). Call this function only 4192 * after all use of the PCI regions has ceased. 4193 */ 4194 4195 void pci_release_regions(struct pci_dev *pdev) 4196 { 4197 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4198 } 4199 EXPORT_SYMBOL(pci_release_regions); 4200 4201 /** 4202 * pci_request_regions - Reserve PCI I/O and memory resources 4203 * @pdev: PCI device whose resources are to be reserved 4204 * @res_name: Name to be associated with resource. 4205 * 4206 * Mark all PCI regions associated with PCI device @pdev as 4207 * being reserved by owner @res_name. Do not access any 4208 * address inside the PCI regions unless this call returns 4209 * successfully. 4210 * 4211 * Returns 0 on success, or %EBUSY on error. A warning 4212 * message is also printed on failure. 4213 */ 4214 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4215 { 4216 return pci_request_selected_regions(pdev, 4217 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4218 } 4219 EXPORT_SYMBOL(pci_request_regions); 4220 4221 /** 4222 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4223 * @pdev: PCI device whose resources are to be reserved 4224 * @res_name: Name to be associated with resource. 4225 * 4226 * Mark all PCI regions associated with PCI device @pdev as being reserved 4227 * by owner @res_name. Do not access any address inside the PCI regions 4228 * unless this call returns successfully. 4229 * 4230 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4231 * and the sysfs MMIO access will not be allowed. 4232 * 4233 * Returns 0 on success, or %EBUSY on error. A warning message is also 4234 * printed on failure. 4235 */ 4236 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4237 { 4238 return pci_request_selected_regions_exclusive(pdev, 4239 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4240 } 4241 EXPORT_SYMBOL(pci_request_regions_exclusive); 4242 4243 /* 4244 * Record the PCI IO range (expressed as CPU physical address + size). 4245 * Return a negative value if an error has occurred, zero otherwise 4246 */ 4247 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4248 resource_size_t size) 4249 { 4250 int ret = 0; 4251 #ifdef PCI_IOBASE 4252 struct logic_pio_hwaddr *range; 4253 4254 if (!size || addr + size < addr) 4255 return -EINVAL; 4256 4257 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4258 if (!range) 4259 return -ENOMEM; 4260 4261 range->fwnode = fwnode; 4262 range->size = size; 4263 range->hw_start = addr; 4264 range->flags = LOGIC_PIO_CPU_MMIO; 4265 4266 ret = logic_pio_register_range(range); 4267 if (ret) 4268 kfree(range); 4269 4270 /* Ignore duplicates due to deferred probing */ 4271 if (ret == -EEXIST) 4272 ret = 0; 4273 #endif 4274 4275 return ret; 4276 } 4277 4278 phys_addr_t pci_pio_to_address(unsigned long pio) 4279 { 4280 #ifdef PCI_IOBASE 4281 if (pio < MMIO_UPPER_LIMIT) 4282 return logic_pio_to_hwaddr(pio); 4283 #endif 4284 4285 return (phys_addr_t) OF_BAD_ADDR; 4286 } 4287 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4288 4289 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4290 { 4291 #ifdef PCI_IOBASE 4292 return logic_pio_trans_cpuaddr(address); 4293 #else 4294 if (address > IO_SPACE_LIMIT) 4295 return (unsigned long)-1; 4296 4297 return (unsigned long) address; 4298 #endif 4299 } 4300 4301 /** 4302 * pci_remap_iospace - Remap the memory mapped I/O space 4303 * @res: Resource describing the I/O space 4304 * @phys_addr: physical address of range to be mapped 4305 * 4306 * Remap the memory mapped I/O space described by the @res and the CPU 4307 * physical address @phys_addr into virtual address space. Only 4308 * architectures that have memory mapped IO functions defined (and the 4309 * PCI_IOBASE value defined) should call this function. 4310 */ 4311 #ifndef pci_remap_iospace 4312 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4313 { 4314 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4315 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4316 4317 if (!(res->flags & IORESOURCE_IO)) 4318 return -EINVAL; 4319 4320 if (res->end > IO_SPACE_LIMIT) 4321 return -EINVAL; 4322 4323 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4324 pgprot_device(PAGE_KERNEL)); 4325 #else 4326 /* 4327 * This architecture does not have memory mapped I/O space, 4328 * so this function should never be called 4329 */ 4330 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4331 return -ENODEV; 4332 #endif 4333 } 4334 EXPORT_SYMBOL(pci_remap_iospace); 4335 #endif 4336 4337 /** 4338 * pci_unmap_iospace - Unmap the memory mapped I/O space 4339 * @res: resource to be unmapped 4340 * 4341 * Unmap the CPU virtual address @res from virtual address space. Only 4342 * architectures that have memory mapped IO functions defined (and the 4343 * PCI_IOBASE value defined) should call this function. 4344 */ 4345 void pci_unmap_iospace(struct resource *res) 4346 { 4347 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4348 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4349 4350 vunmap_range(vaddr, vaddr + resource_size(res)); 4351 #endif 4352 } 4353 EXPORT_SYMBOL(pci_unmap_iospace); 4354 4355 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4356 { 4357 struct resource **res = ptr; 4358 4359 pci_unmap_iospace(*res); 4360 } 4361 4362 /** 4363 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4364 * @dev: Generic device to remap IO address for 4365 * @res: Resource describing the I/O space 4366 * @phys_addr: physical address of range to be mapped 4367 * 4368 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4369 * detach. 4370 */ 4371 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4372 phys_addr_t phys_addr) 4373 { 4374 const struct resource **ptr; 4375 int error; 4376 4377 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4378 if (!ptr) 4379 return -ENOMEM; 4380 4381 error = pci_remap_iospace(res, phys_addr); 4382 if (error) { 4383 devres_free(ptr); 4384 } else { 4385 *ptr = res; 4386 devres_add(dev, ptr); 4387 } 4388 4389 return error; 4390 } 4391 EXPORT_SYMBOL(devm_pci_remap_iospace); 4392 4393 /** 4394 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4395 * @dev: Generic device to remap IO address for 4396 * @offset: Resource address to map 4397 * @size: Size of map 4398 * 4399 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4400 * detach. 4401 */ 4402 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4403 resource_size_t offset, 4404 resource_size_t size) 4405 { 4406 void __iomem **ptr, *addr; 4407 4408 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4409 if (!ptr) 4410 return NULL; 4411 4412 addr = pci_remap_cfgspace(offset, size); 4413 if (addr) { 4414 *ptr = addr; 4415 devres_add(dev, ptr); 4416 } else 4417 devres_free(ptr); 4418 4419 return addr; 4420 } 4421 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4422 4423 /** 4424 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4425 * @dev: generic device to handle the resource for 4426 * @res: configuration space resource to be handled 4427 * 4428 * Checks that a resource is a valid memory region, requests the memory 4429 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4430 * proper PCI configuration space memory attributes are guaranteed. 4431 * 4432 * All operations are managed and will be undone on driver detach. 4433 * 4434 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4435 * on failure. Usage example:: 4436 * 4437 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4438 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4439 * if (IS_ERR(base)) 4440 * return PTR_ERR(base); 4441 */ 4442 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4443 struct resource *res) 4444 { 4445 resource_size_t size; 4446 const char *name; 4447 void __iomem *dest_ptr; 4448 4449 BUG_ON(!dev); 4450 4451 if (!res || resource_type(res) != IORESOURCE_MEM) { 4452 dev_err(dev, "invalid resource\n"); 4453 return IOMEM_ERR_PTR(-EINVAL); 4454 } 4455 4456 size = resource_size(res); 4457 4458 if (res->name) 4459 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4460 res->name); 4461 else 4462 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4463 if (!name) 4464 return IOMEM_ERR_PTR(-ENOMEM); 4465 4466 if (!devm_request_mem_region(dev, res->start, size, name)) { 4467 dev_err(dev, "can't request region for resource %pR\n", res); 4468 return IOMEM_ERR_PTR(-EBUSY); 4469 } 4470 4471 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4472 if (!dest_ptr) { 4473 dev_err(dev, "ioremap failed for resource %pR\n", res); 4474 devm_release_mem_region(dev, res->start, size); 4475 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4476 } 4477 4478 return dest_ptr; 4479 } 4480 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4481 4482 static void __pci_set_master(struct pci_dev *dev, bool enable) 4483 { 4484 u16 old_cmd, cmd; 4485 4486 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4487 if (enable) 4488 cmd = old_cmd | PCI_COMMAND_MASTER; 4489 else 4490 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4491 if (cmd != old_cmd) { 4492 pci_dbg(dev, "%s bus mastering\n", 4493 enable ? "enabling" : "disabling"); 4494 pci_write_config_word(dev, PCI_COMMAND, cmd); 4495 } 4496 dev->is_busmaster = enable; 4497 } 4498 4499 /** 4500 * pcibios_setup - process "pci=" kernel boot arguments 4501 * @str: string used to pass in "pci=" kernel boot arguments 4502 * 4503 * Process kernel boot arguments. This is the default implementation. 4504 * Architecture specific implementations can override this as necessary. 4505 */ 4506 char * __weak __init pcibios_setup(char *str) 4507 { 4508 return str; 4509 } 4510 4511 /** 4512 * pcibios_set_master - enable PCI bus-mastering for device dev 4513 * @dev: the PCI device to enable 4514 * 4515 * Enables PCI bus-mastering for the device. This is the default 4516 * implementation. Architecture specific implementations can override 4517 * this if necessary. 4518 */ 4519 void __weak pcibios_set_master(struct pci_dev *dev) 4520 { 4521 u8 lat; 4522 4523 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4524 if (pci_is_pcie(dev)) 4525 return; 4526 4527 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4528 if (lat < 16) 4529 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4530 else if (lat > pcibios_max_latency) 4531 lat = pcibios_max_latency; 4532 else 4533 return; 4534 4535 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4536 } 4537 4538 /** 4539 * pci_set_master - enables bus-mastering for device dev 4540 * @dev: the PCI device to enable 4541 * 4542 * Enables bus-mastering on the device and calls pcibios_set_master() 4543 * to do the needed arch specific settings. 4544 */ 4545 void pci_set_master(struct pci_dev *dev) 4546 { 4547 __pci_set_master(dev, true); 4548 pcibios_set_master(dev); 4549 } 4550 EXPORT_SYMBOL(pci_set_master); 4551 4552 /** 4553 * pci_clear_master - disables bus-mastering for device dev 4554 * @dev: the PCI device to disable 4555 */ 4556 void pci_clear_master(struct pci_dev *dev) 4557 { 4558 __pci_set_master(dev, false); 4559 } 4560 EXPORT_SYMBOL(pci_clear_master); 4561 4562 /** 4563 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4564 * @dev: the PCI device for which MWI is to be enabled 4565 * 4566 * Helper function for pci_set_mwi. 4567 * Originally copied from drivers/net/acenic.c. 4568 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4569 * 4570 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4571 */ 4572 int pci_set_cacheline_size(struct pci_dev *dev) 4573 { 4574 u8 cacheline_size; 4575 4576 if (!pci_cache_line_size) 4577 return -EINVAL; 4578 4579 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4580 equal to or multiple of the right value. */ 4581 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4582 if (cacheline_size >= pci_cache_line_size && 4583 (cacheline_size % pci_cache_line_size) == 0) 4584 return 0; 4585 4586 /* Write the correct value. */ 4587 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4588 /* Read it back. */ 4589 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4590 if (cacheline_size == pci_cache_line_size) 4591 return 0; 4592 4593 pci_dbg(dev, "cache line size of %d is not supported\n", 4594 pci_cache_line_size << 2); 4595 4596 return -EINVAL; 4597 } 4598 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4599 4600 /** 4601 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4602 * @dev: the PCI device for which MWI is enabled 4603 * 4604 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4605 * 4606 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4607 */ 4608 int pci_set_mwi(struct pci_dev *dev) 4609 { 4610 #ifdef PCI_DISABLE_MWI 4611 return 0; 4612 #else 4613 int rc; 4614 u16 cmd; 4615 4616 rc = pci_set_cacheline_size(dev); 4617 if (rc) 4618 return rc; 4619 4620 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4621 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4622 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4623 cmd |= PCI_COMMAND_INVALIDATE; 4624 pci_write_config_word(dev, PCI_COMMAND, cmd); 4625 } 4626 return 0; 4627 #endif 4628 } 4629 EXPORT_SYMBOL(pci_set_mwi); 4630 4631 /** 4632 * pcim_set_mwi - a device-managed pci_set_mwi() 4633 * @dev: the PCI device for which MWI is enabled 4634 * 4635 * Managed pci_set_mwi(). 4636 * 4637 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4638 */ 4639 int pcim_set_mwi(struct pci_dev *dev) 4640 { 4641 struct pci_devres *dr; 4642 4643 dr = find_pci_dr(dev); 4644 if (!dr) 4645 return -ENOMEM; 4646 4647 dr->mwi = 1; 4648 return pci_set_mwi(dev); 4649 } 4650 EXPORT_SYMBOL(pcim_set_mwi); 4651 4652 /** 4653 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4654 * @dev: the PCI device for which MWI is enabled 4655 * 4656 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4657 * Callers are not required to check the return value. 4658 * 4659 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4660 */ 4661 int pci_try_set_mwi(struct pci_dev *dev) 4662 { 4663 #ifdef PCI_DISABLE_MWI 4664 return 0; 4665 #else 4666 return pci_set_mwi(dev); 4667 #endif 4668 } 4669 EXPORT_SYMBOL(pci_try_set_mwi); 4670 4671 /** 4672 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4673 * @dev: the PCI device to disable 4674 * 4675 * Disables PCI Memory-Write-Invalidate transaction on the device 4676 */ 4677 void pci_clear_mwi(struct pci_dev *dev) 4678 { 4679 #ifndef PCI_DISABLE_MWI 4680 u16 cmd; 4681 4682 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4683 if (cmd & PCI_COMMAND_INVALIDATE) { 4684 cmd &= ~PCI_COMMAND_INVALIDATE; 4685 pci_write_config_word(dev, PCI_COMMAND, cmd); 4686 } 4687 #endif 4688 } 4689 EXPORT_SYMBOL(pci_clear_mwi); 4690 4691 /** 4692 * pci_disable_parity - disable parity checking for device 4693 * @dev: the PCI device to operate on 4694 * 4695 * Disable parity checking for device @dev 4696 */ 4697 void pci_disable_parity(struct pci_dev *dev) 4698 { 4699 u16 cmd; 4700 4701 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4702 if (cmd & PCI_COMMAND_PARITY) { 4703 cmd &= ~PCI_COMMAND_PARITY; 4704 pci_write_config_word(dev, PCI_COMMAND, cmd); 4705 } 4706 } 4707 4708 /** 4709 * pci_intx - enables/disables PCI INTx for device dev 4710 * @pdev: the PCI device to operate on 4711 * @enable: boolean: whether to enable or disable PCI INTx 4712 * 4713 * Enables/disables PCI INTx for device @pdev 4714 */ 4715 void pci_intx(struct pci_dev *pdev, int enable) 4716 { 4717 u16 pci_command, new; 4718 4719 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4720 4721 if (enable) 4722 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4723 else 4724 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4725 4726 if (new != pci_command) { 4727 struct pci_devres *dr; 4728 4729 pci_write_config_word(pdev, PCI_COMMAND, new); 4730 4731 dr = find_pci_dr(pdev); 4732 if (dr && !dr->restore_intx) { 4733 dr->restore_intx = 1; 4734 dr->orig_intx = !enable; 4735 } 4736 } 4737 } 4738 EXPORT_SYMBOL_GPL(pci_intx); 4739 4740 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4741 { 4742 struct pci_bus *bus = dev->bus; 4743 bool mask_updated = true; 4744 u32 cmd_status_dword; 4745 u16 origcmd, newcmd; 4746 unsigned long flags; 4747 bool irq_pending; 4748 4749 /* 4750 * We do a single dword read to retrieve both command and status. 4751 * Document assumptions that make this possible. 4752 */ 4753 BUILD_BUG_ON(PCI_COMMAND % 4); 4754 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4755 4756 raw_spin_lock_irqsave(&pci_lock, flags); 4757 4758 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4759 4760 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4761 4762 /* 4763 * Check interrupt status register to see whether our device 4764 * triggered the interrupt (when masking) or the next IRQ is 4765 * already pending (when unmasking). 4766 */ 4767 if (mask != irq_pending) { 4768 mask_updated = false; 4769 goto done; 4770 } 4771 4772 origcmd = cmd_status_dword; 4773 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4774 if (mask) 4775 newcmd |= PCI_COMMAND_INTX_DISABLE; 4776 if (newcmd != origcmd) 4777 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4778 4779 done: 4780 raw_spin_unlock_irqrestore(&pci_lock, flags); 4781 4782 return mask_updated; 4783 } 4784 4785 /** 4786 * pci_check_and_mask_intx - mask INTx on pending interrupt 4787 * @dev: the PCI device to operate on 4788 * 4789 * Check if the device dev has its INTx line asserted, mask it and return 4790 * true in that case. False is returned if no interrupt was pending. 4791 */ 4792 bool pci_check_and_mask_intx(struct pci_dev *dev) 4793 { 4794 return pci_check_and_set_intx_mask(dev, true); 4795 } 4796 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4797 4798 /** 4799 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4800 * @dev: the PCI device to operate on 4801 * 4802 * Check if the device dev has its INTx line asserted, unmask it if not and 4803 * return true. False is returned and the mask remains active if there was 4804 * still an interrupt pending. 4805 */ 4806 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4807 { 4808 return pci_check_and_set_intx_mask(dev, false); 4809 } 4810 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4811 4812 /** 4813 * pci_wait_for_pending_transaction - wait for pending transaction 4814 * @dev: the PCI device to operate on 4815 * 4816 * Return 0 if transaction is pending 1 otherwise. 4817 */ 4818 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4819 { 4820 if (!pci_is_pcie(dev)) 4821 return 1; 4822 4823 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4824 PCI_EXP_DEVSTA_TRPND); 4825 } 4826 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4827 4828 /** 4829 * pcie_flr - initiate a PCIe function level reset 4830 * @dev: device to reset 4831 * 4832 * Initiate a function level reset unconditionally on @dev without 4833 * checking any flags and DEVCAP 4834 */ 4835 int pcie_flr(struct pci_dev *dev) 4836 { 4837 if (!pci_wait_for_pending_transaction(dev)) 4838 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4839 4840 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4841 4842 if (dev->imm_ready) 4843 return 0; 4844 4845 /* 4846 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4847 * 100ms, but may silently discard requests while the FLR is in 4848 * progress. Wait 100ms before trying to access the device. 4849 */ 4850 msleep(100); 4851 4852 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4853 } 4854 EXPORT_SYMBOL_GPL(pcie_flr); 4855 4856 /** 4857 * pcie_reset_flr - initiate a PCIe function level reset 4858 * @dev: device to reset 4859 * @probe: if true, return 0 if device can be reset this way 4860 * 4861 * Initiate a function level reset on @dev. 4862 */ 4863 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4864 { 4865 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4866 return -ENOTTY; 4867 4868 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4869 return -ENOTTY; 4870 4871 if (probe) 4872 return 0; 4873 4874 return pcie_flr(dev); 4875 } 4876 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4877 4878 static int pci_af_flr(struct pci_dev *dev, bool probe) 4879 { 4880 int pos; 4881 u8 cap; 4882 4883 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4884 if (!pos) 4885 return -ENOTTY; 4886 4887 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4888 return -ENOTTY; 4889 4890 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4891 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4892 return -ENOTTY; 4893 4894 if (probe) 4895 return 0; 4896 4897 /* 4898 * Wait for Transaction Pending bit to clear. A word-aligned test 4899 * is used, so we use the control offset rather than status and shift 4900 * the test bit to match. 4901 */ 4902 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4903 PCI_AF_STATUS_TP << 8)) 4904 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4905 4906 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4907 4908 if (dev->imm_ready) 4909 return 0; 4910 4911 /* 4912 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4913 * updated 27 July 2006; a device must complete an FLR within 4914 * 100ms, but may silently discard requests while the FLR is in 4915 * progress. Wait 100ms before trying to access the device. 4916 */ 4917 msleep(100); 4918 4919 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4920 } 4921 4922 /** 4923 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4924 * @dev: Device to reset. 4925 * @probe: if true, return 0 if the device can be reset this way. 4926 * 4927 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4928 * unset, it will be reinitialized internally when going from PCI_D3hot to 4929 * PCI_D0. If that's the case and the device is not in a low-power state 4930 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4931 * 4932 * NOTE: This causes the caller to sleep for twice the device power transition 4933 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4934 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4935 * Moreover, only devices in D0 can be reset by this function. 4936 */ 4937 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4938 { 4939 u16 csr; 4940 4941 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4942 return -ENOTTY; 4943 4944 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4945 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4946 return -ENOTTY; 4947 4948 if (probe) 4949 return 0; 4950 4951 if (dev->current_state != PCI_D0) 4952 return -EINVAL; 4953 4954 csr &= ~PCI_PM_CTRL_STATE_MASK; 4955 csr |= PCI_D3hot; 4956 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4957 pci_dev_d3_sleep(dev); 4958 4959 csr &= ~PCI_PM_CTRL_STATE_MASK; 4960 csr |= PCI_D0; 4961 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4962 pci_dev_d3_sleep(dev); 4963 4964 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4965 } 4966 4967 /** 4968 * pcie_wait_for_link_status - Wait for link status change 4969 * @pdev: Device whose link to wait for. 4970 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4971 * @active: Waiting for active or inactive? 4972 * 4973 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4974 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4975 */ 4976 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4977 bool use_lt, bool active) 4978 { 4979 u16 lnksta_mask, lnksta_match; 4980 unsigned long end_jiffies; 4981 u16 lnksta; 4982 4983 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4984 lnksta_match = active ? lnksta_mask : 0; 4985 4986 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4987 do { 4988 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4989 if ((lnksta & lnksta_mask) == lnksta_match) 4990 return 0; 4991 msleep(1); 4992 } while (time_before(jiffies, end_jiffies)); 4993 4994 return -ETIMEDOUT; 4995 } 4996 4997 /** 4998 * pcie_retrain_link - Request a link retrain and wait for it to complete 4999 * @pdev: Device whose link to retrain. 5000 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 5001 * 5002 * Retrain completion status is retrieved from the Link Status Register 5003 * according to @use_lt. It is not verified whether the use of the DLLLA 5004 * bit is valid. 5005 * 5006 * Return 0 if successful, or -ETIMEDOUT if training has not completed 5007 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 5008 */ 5009 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 5010 { 5011 int rc; 5012 5013 /* 5014 * Ensure the updated LNKCTL parameters are used during link 5015 * training by checking that there is no ongoing link training to 5016 * avoid LTSSM race as recommended in Implementation Note at the 5017 * end of PCIe r6.0.1 sec 7.5.3.7. 5018 */ 5019 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt); 5020 if (rc) 5021 return rc; 5022 5023 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 5024 if (pdev->clear_retrain_link) { 5025 /* 5026 * Due to an erratum in some devices the Retrain Link bit 5027 * needs to be cleared again manually to allow the link 5028 * training to succeed. 5029 */ 5030 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 5031 } 5032 5033 return pcie_wait_for_link_status(pdev, use_lt, !use_lt); 5034 } 5035 5036 /** 5037 * pcie_wait_for_link_delay - Wait until link is active or inactive 5038 * @pdev: Bridge device 5039 * @active: waiting for active or inactive? 5040 * @delay: Delay to wait after link has become active (in ms) 5041 * 5042 * Use this to wait till link becomes active or inactive. 5043 */ 5044 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 5045 int delay) 5046 { 5047 int rc; 5048 5049 /* 5050 * Some controllers might not implement link active reporting. In this 5051 * case, we wait for 1000 ms + any delay requested by the caller. 5052 */ 5053 if (!pdev->link_active_reporting) { 5054 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 5055 return true; 5056 } 5057 5058 /* 5059 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 5060 * after which we should expect an link active if the reset was 5061 * successful. If so, software must wait a minimum 100ms before sending 5062 * configuration requests to devices downstream this port. 5063 * 5064 * If the link fails to activate, either the device was physically 5065 * removed or the link is permanently failed. 5066 */ 5067 if (active) 5068 msleep(20); 5069 rc = pcie_wait_for_link_status(pdev, false, active); 5070 if (active) { 5071 if (rc) 5072 rc = pcie_failed_link_retrain(pdev); 5073 if (rc) 5074 return false; 5075 5076 msleep(delay); 5077 return true; 5078 } 5079 5080 if (rc) 5081 return false; 5082 5083 return true; 5084 } 5085 5086 /** 5087 * pcie_wait_for_link - Wait until link is active or inactive 5088 * @pdev: Bridge device 5089 * @active: waiting for active or inactive? 5090 * 5091 * Use this to wait till link becomes active or inactive. 5092 */ 5093 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 5094 { 5095 return pcie_wait_for_link_delay(pdev, active, 100); 5096 } 5097 5098 /* 5099 * Find maximum D3cold delay required by all the devices on the bus. The 5100 * spec says 100 ms, but firmware can lower it and we allow drivers to 5101 * increase it as well. 5102 * 5103 * Called with @pci_bus_sem locked for reading. 5104 */ 5105 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 5106 { 5107 const struct pci_dev *pdev; 5108 int min_delay = 100; 5109 int max_delay = 0; 5110 5111 list_for_each_entry(pdev, &bus->devices, bus_list) { 5112 if (pdev->d3cold_delay < min_delay) 5113 min_delay = pdev->d3cold_delay; 5114 if (pdev->d3cold_delay > max_delay) 5115 max_delay = pdev->d3cold_delay; 5116 } 5117 5118 return max(min_delay, max_delay); 5119 } 5120 5121 /** 5122 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 5123 * @dev: PCI bridge 5124 * @reset_type: reset type in human-readable form 5125 * 5126 * Handle necessary delays before access to the devices on the secondary 5127 * side of the bridge are permitted after D3cold to D0 transition 5128 * or Conventional Reset. 5129 * 5130 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 5131 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 5132 * 4.3.2. 5133 * 5134 * Return 0 on success or -ENOTTY if the first device on the secondary bus 5135 * failed to become accessible. 5136 */ 5137 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 5138 { 5139 struct pci_dev *child; 5140 int delay; 5141 5142 if (pci_dev_is_disconnected(dev)) 5143 return 0; 5144 5145 if (!pci_is_bridge(dev)) 5146 return 0; 5147 5148 down_read(&pci_bus_sem); 5149 5150 /* 5151 * We only deal with devices that are present currently on the bus. 5152 * For any hot-added devices the access delay is handled in pciehp 5153 * board_added(). In case of ACPI hotplug the firmware is expected 5154 * to configure the devices before OS is notified. 5155 */ 5156 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 5157 up_read(&pci_bus_sem); 5158 return 0; 5159 } 5160 5161 /* Take d3cold_delay requirements into account */ 5162 delay = pci_bus_max_d3cold_delay(dev->subordinate); 5163 if (!delay) { 5164 up_read(&pci_bus_sem); 5165 return 0; 5166 } 5167 5168 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 5169 bus_list); 5170 up_read(&pci_bus_sem); 5171 5172 /* 5173 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 5174 * accessing the device after reset (that is 1000 ms + 100 ms). 5175 */ 5176 if (!pci_is_pcie(dev)) { 5177 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 5178 msleep(1000 + delay); 5179 return 0; 5180 } 5181 5182 /* 5183 * For PCIe downstream and root ports that do not support speeds 5184 * greater than 5 GT/s need to wait minimum 100 ms. For higher 5185 * speeds (gen3) we need to wait first for the data link layer to 5186 * become active. 5187 * 5188 * However, 100 ms is the minimum and the PCIe spec says the 5189 * software must allow at least 1s before it can determine that the 5190 * device that did not respond is a broken device. Also device can 5191 * take longer than that to respond if it indicates so through Request 5192 * Retry Status completions. 5193 * 5194 * Therefore we wait for 100 ms and check for the device presence 5195 * until the timeout expires. 5196 */ 5197 if (!pcie_downstream_port(dev)) 5198 return 0; 5199 5200 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 5201 u16 status; 5202 5203 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 5204 msleep(delay); 5205 5206 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 5207 return 0; 5208 5209 /* 5210 * If the port supports active link reporting we now check 5211 * whether the link is active and if not bail out early with 5212 * the assumption that the device is not present anymore. 5213 */ 5214 if (!dev->link_active_reporting) 5215 return -ENOTTY; 5216 5217 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 5218 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 5219 return -ENOTTY; 5220 5221 return pci_dev_wait(child, reset_type, 5222 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 5223 } 5224 5225 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 5226 delay); 5227 if (!pcie_wait_for_link_delay(dev, true, delay)) { 5228 /* Did not train, no need to wait any further */ 5229 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 5230 return -ENOTTY; 5231 } 5232 5233 return pci_dev_wait(child, reset_type, 5234 PCIE_RESET_READY_POLL_MS - delay); 5235 } 5236 5237 void pci_reset_secondary_bus(struct pci_dev *dev) 5238 { 5239 u16 ctrl; 5240 5241 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5242 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5243 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5244 5245 /* 5246 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5247 * this to 2ms to ensure that we meet the minimum requirement. 5248 */ 5249 msleep(2); 5250 5251 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5252 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5253 } 5254 5255 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5256 { 5257 pci_reset_secondary_bus(dev); 5258 } 5259 5260 /** 5261 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5262 * @dev: Bridge device 5263 * 5264 * Use the bridge control register to assert reset on the secondary bus. 5265 * Devices on the secondary bus are left in power-on state. 5266 */ 5267 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5268 { 5269 pcibios_reset_secondary_bus(dev); 5270 5271 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5272 } 5273 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5274 5275 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5276 { 5277 struct pci_dev *pdev; 5278 5279 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5280 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5281 return -ENOTTY; 5282 5283 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5284 if (pdev != dev) 5285 return -ENOTTY; 5286 5287 if (probe) 5288 return 0; 5289 5290 return pci_bridge_secondary_bus_reset(dev->bus->self); 5291 } 5292 5293 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5294 { 5295 int rc = -ENOTTY; 5296 5297 if (!hotplug || !try_module_get(hotplug->owner)) 5298 return rc; 5299 5300 if (hotplug->ops->reset_slot) 5301 rc = hotplug->ops->reset_slot(hotplug, probe); 5302 5303 module_put(hotplug->owner); 5304 5305 return rc; 5306 } 5307 5308 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5309 { 5310 if (dev->multifunction || dev->subordinate || !dev->slot || 5311 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5312 return -ENOTTY; 5313 5314 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5315 } 5316 5317 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5318 { 5319 int rc; 5320 5321 rc = pci_dev_reset_slot_function(dev, probe); 5322 if (rc != -ENOTTY) 5323 return rc; 5324 return pci_parent_bus_reset(dev, probe); 5325 } 5326 5327 void pci_dev_lock(struct pci_dev *dev) 5328 { 5329 /* block PM suspend, driver probe, etc. */ 5330 device_lock(&dev->dev); 5331 pci_cfg_access_lock(dev); 5332 } 5333 EXPORT_SYMBOL_GPL(pci_dev_lock); 5334 5335 /* Return 1 on successful lock, 0 on contention */ 5336 int pci_dev_trylock(struct pci_dev *dev) 5337 { 5338 if (device_trylock(&dev->dev)) { 5339 if (pci_cfg_access_trylock(dev)) 5340 return 1; 5341 device_unlock(&dev->dev); 5342 } 5343 5344 return 0; 5345 } 5346 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5347 5348 void pci_dev_unlock(struct pci_dev *dev) 5349 { 5350 pci_cfg_access_unlock(dev); 5351 device_unlock(&dev->dev); 5352 } 5353 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5354 5355 static void pci_dev_save_and_disable(struct pci_dev *dev) 5356 { 5357 const struct pci_error_handlers *err_handler = 5358 dev->driver ? dev->driver->err_handler : NULL; 5359 5360 /* 5361 * dev->driver->err_handler->reset_prepare() is protected against 5362 * races with ->remove() by the device lock, which must be held by 5363 * the caller. 5364 */ 5365 if (err_handler && err_handler->reset_prepare) 5366 err_handler->reset_prepare(dev); 5367 5368 /* 5369 * Wake-up device prior to save. PM registers default to D0 after 5370 * reset and a simple register restore doesn't reliably return 5371 * to a non-D0 state anyway. 5372 */ 5373 pci_set_power_state(dev, PCI_D0); 5374 5375 pci_save_state(dev); 5376 /* 5377 * Disable the device by clearing the Command register, except for 5378 * INTx-disable which is set. This not only disables MMIO and I/O port 5379 * BARs, but also prevents the device from being Bus Master, preventing 5380 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5381 * compliant devices, INTx-disable prevents legacy interrupts. 5382 */ 5383 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5384 } 5385 5386 static void pci_dev_restore(struct pci_dev *dev) 5387 { 5388 const struct pci_error_handlers *err_handler = 5389 dev->driver ? dev->driver->err_handler : NULL; 5390 5391 pci_restore_state(dev); 5392 5393 /* 5394 * dev->driver->err_handler->reset_done() is protected against 5395 * races with ->remove() by the device lock, which must be held by 5396 * the caller. 5397 */ 5398 if (err_handler && err_handler->reset_done) 5399 err_handler->reset_done(dev); 5400 } 5401 5402 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5403 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5404 { }, 5405 { pci_dev_specific_reset, .name = "device_specific" }, 5406 { pci_dev_acpi_reset, .name = "acpi" }, 5407 { pcie_reset_flr, .name = "flr" }, 5408 { pci_af_flr, .name = "af_flr" }, 5409 { pci_pm_reset, .name = "pm" }, 5410 { pci_reset_bus_function, .name = "bus" }, 5411 }; 5412 5413 static ssize_t reset_method_show(struct device *dev, 5414 struct device_attribute *attr, char *buf) 5415 { 5416 struct pci_dev *pdev = to_pci_dev(dev); 5417 ssize_t len = 0; 5418 int i, m; 5419 5420 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5421 m = pdev->reset_methods[i]; 5422 if (!m) 5423 break; 5424 5425 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5426 pci_reset_fn_methods[m].name); 5427 } 5428 5429 if (len) 5430 len += sysfs_emit_at(buf, len, "\n"); 5431 5432 return len; 5433 } 5434 5435 static int reset_method_lookup(const char *name) 5436 { 5437 int m; 5438 5439 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5440 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5441 return m; 5442 } 5443 5444 return 0; /* not found */ 5445 } 5446 5447 static ssize_t reset_method_store(struct device *dev, 5448 struct device_attribute *attr, 5449 const char *buf, size_t count) 5450 { 5451 struct pci_dev *pdev = to_pci_dev(dev); 5452 char *options, *name; 5453 int m, n; 5454 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5455 5456 if (sysfs_streq(buf, "")) { 5457 pdev->reset_methods[0] = 0; 5458 pci_warn(pdev, "All device reset methods disabled by user"); 5459 return count; 5460 } 5461 5462 if (sysfs_streq(buf, "default")) { 5463 pci_init_reset_methods(pdev); 5464 return count; 5465 } 5466 5467 options = kstrndup(buf, count, GFP_KERNEL); 5468 if (!options) 5469 return -ENOMEM; 5470 5471 n = 0; 5472 while ((name = strsep(&options, " ")) != NULL) { 5473 if (sysfs_streq(name, "")) 5474 continue; 5475 5476 name = strim(name); 5477 5478 m = reset_method_lookup(name); 5479 if (!m) { 5480 pci_err(pdev, "Invalid reset method '%s'", name); 5481 goto error; 5482 } 5483 5484 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5485 pci_err(pdev, "Unsupported reset method '%s'", name); 5486 goto error; 5487 } 5488 5489 if (n == PCI_NUM_RESET_METHODS - 1) { 5490 pci_err(pdev, "Too many reset methods\n"); 5491 goto error; 5492 } 5493 5494 reset_methods[n++] = m; 5495 } 5496 5497 reset_methods[n] = 0; 5498 5499 /* Warn if dev-specific supported but not highest priority */ 5500 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5501 reset_methods[0] != 1) 5502 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5503 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5504 kfree(options); 5505 return count; 5506 5507 error: 5508 /* Leave previous methods unchanged */ 5509 kfree(options); 5510 return -EINVAL; 5511 } 5512 static DEVICE_ATTR_RW(reset_method); 5513 5514 static struct attribute *pci_dev_reset_method_attrs[] = { 5515 &dev_attr_reset_method.attr, 5516 NULL, 5517 }; 5518 5519 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5520 struct attribute *a, int n) 5521 { 5522 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5523 5524 if (!pci_reset_supported(pdev)) 5525 return 0; 5526 5527 return a->mode; 5528 } 5529 5530 const struct attribute_group pci_dev_reset_method_attr_group = { 5531 .attrs = pci_dev_reset_method_attrs, 5532 .is_visible = pci_dev_reset_method_attr_is_visible, 5533 }; 5534 5535 /** 5536 * __pci_reset_function_locked - reset a PCI device function while holding 5537 * the @dev mutex lock. 5538 * @dev: PCI device to reset 5539 * 5540 * Some devices allow an individual function to be reset without affecting 5541 * other functions in the same device. The PCI device must be responsive 5542 * to PCI config space in order to use this function. 5543 * 5544 * The device function is presumed to be unused and the caller is holding 5545 * the device mutex lock when this function is called. 5546 * 5547 * Resetting the device will make the contents of PCI configuration space 5548 * random, so any caller of this must be prepared to reinitialise the 5549 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5550 * etc. 5551 * 5552 * Returns 0 if the device function was successfully reset or negative if the 5553 * device doesn't support resetting a single function. 5554 */ 5555 int __pci_reset_function_locked(struct pci_dev *dev) 5556 { 5557 int i, m, rc; 5558 5559 might_sleep(); 5560 5561 /* 5562 * A reset method returns -ENOTTY if it doesn't support this device and 5563 * we should try the next method. 5564 * 5565 * If it returns 0 (success), we're finished. If it returns any other 5566 * error, we're also finished: this indicates that further reset 5567 * mechanisms might be broken on the device. 5568 */ 5569 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5570 m = dev->reset_methods[i]; 5571 if (!m) 5572 return -ENOTTY; 5573 5574 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5575 if (!rc) 5576 return 0; 5577 if (rc != -ENOTTY) 5578 return rc; 5579 } 5580 5581 return -ENOTTY; 5582 } 5583 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5584 5585 /** 5586 * pci_init_reset_methods - check whether device can be safely reset 5587 * and store supported reset mechanisms. 5588 * @dev: PCI device to check for reset mechanisms 5589 * 5590 * Some devices allow an individual function to be reset without affecting 5591 * other functions in the same device. The PCI device must be in D0-D3hot 5592 * state. 5593 * 5594 * Stores reset mechanisms supported by device in reset_methods byte array 5595 * which is a member of struct pci_dev. 5596 */ 5597 void pci_init_reset_methods(struct pci_dev *dev) 5598 { 5599 int m, i, rc; 5600 5601 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5602 5603 might_sleep(); 5604 5605 i = 0; 5606 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5607 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5608 if (!rc) 5609 dev->reset_methods[i++] = m; 5610 else if (rc != -ENOTTY) 5611 break; 5612 } 5613 5614 dev->reset_methods[i] = 0; 5615 } 5616 5617 /** 5618 * pci_reset_function - quiesce and reset a PCI device function 5619 * @dev: PCI device to reset 5620 * 5621 * Some devices allow an individual function to be reset without affecting 5622 * other functions in the same device. The PCI device must be responsive 5623 * to PCI config space in order to use this function. 5624 * 5625 * This function does not just reset the PCI portion of a device, but 5626 * clears all the state associated with the device. This function differs 5627 * from __pci_reset_function_locked() in that it saves and restores device state 5628 * over the reset and takes the PCI device lock. 5629 * 5630 * Returns 0 if the device function was successfully reset or negative if the 5631 * device doesn't support resetting a single function. 5632 */ 5633 int pci_reset_function(struct pci_dev *dev) 5634 { 5635 int rc; 5636 5637 if (!pci_reset_supported(dev)) 5638 return -ENOTTY; 5639 5640 pci_dev_lock(dev); 5641 pci_dev_save_and_disable(dev); 5642 5643 rc = __pci_reset_function_locked(dev); 5644 5645 pci_dev_restore(dev); 5646 pci_dev_unlock(dev); 5647 5648 return rc; 5649 } 5650 EXPORT_SYMBOL_GPL(pci_reset_function); 5651 5652 /** 5653 * pci_reset_function_locked - quiesce and reset a PCI device function 5654 * @dev: PCI device to reset 5655 * 5656 * Some devices allow an individual function to be reset without affecting 5657 * other functions in the same device. The PCI device must be responsive 5658 * to PCI config space in order to use this function. 5659 * 5660 * This function does not just reset the PCI portion of a device, but 5661 * clears all the state associated with the device. This function differs 5662 * from __pci_reset_function_locked() in that it saves and restores device state 5663 * over the reset. It also differs from pci_reset_function() in that it 5664 * requires the PCI device lock to be held. 5665 * 5666 * Returns 0 if the device function was successfully reset or negative if the 5667 * device doesn't support resetting a single function. 5668 */ 5669 int pci_reset_function_locked(struct pci_dev *dev) 5670 { 5671 int rc; 5672 5673 if (!pci_reset_supported(dev)) 5674 return -ENOTTY; 5675 5676 pci_dev_save_and_disable(dev); 5677 5678 rc = __pci_reset_function_locked(dev); 5679 5680 pci_dev_restore(dev); 5681 5682 return rc; 5683 } 5684 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5685 5686 /** 5687 * pci_try_reset_function - quiesce and reset a PCI device function 5688 * @dev: PCI device to reset 5689 * 5690 * Same as above, except return -EAGAIN if unable to lock device. 5691 */ 5692 int pci_try_reset_function(struct pci_dev *dev) 5693 { 5694 int rc; 5695 5696 if (!pci_reset_supported(dev)) 5697 return -ENOTTY; 5698 5699 if (!pci_dev_trylock(dev)) 5700 return -EAGAIN; 5701 5702 pci_dev_save_and_disable(dev); 5703 rc = __pci_reset_function_locked(dev); 5704 pci_dev_restore(dev); 5705 pci_dev_unlock(dev); 5706 5707 return rc; 5708 } 5709 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5710 5711 /* Do any devices on or below this bus prevent a bus reset? */ 5712 static bool pci_bus_resettable(struct pci_bus *bus) 5713 { 5714 struct pci_dev *dev; 5715 5716 5717 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5718 return false; 5719 5720 list_for_each_entry(dev, &bus->devices, bus_list) { 5721 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5722 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5723 return false; 5724 } 5725 5726 return true; 5727 } 5728 5729 /* Lock devices from the top of the tree down */ 5730 static void pci_bus_lock(struct pci_bus *bus) 5731 { 5732 struct pci_dev *dev; 5733 5734 list_for_each_entry(dev, &bus->devices, bus_list) { 5735 pci_dev_lock(dev); 5736 if (dev->subordinate) 5737 pci_bus_lock(dev->subordinate); 5738 } 5739 } 5740 5741 /* Unlock devices from the bottom of the tree up */ 5742 static void pci_bus_unlock(struct pci_bus *bus) 5743 { 5744 struct pci_dev *dev; 5745 5746 list_for_each_entry(dev, &bus->devices, bus_list) { 5747 if (dev->subordinate) 5748 pci_bus_unlock(dev->subordinate); 5749 pci_dev_unlock(dev); 5750 } 5751 } 5752 5753 /* Return 1 on successful lock, 0 on contention */ 5754 static int pci_bus_trylock(struct pci_bus *bus) 5755 { 5756 struct pci_dev *dev; 5757 5758 list_for_each_entry(dev, &bus->devices, bus_list) { 5759 if (!pci_dev_trylock(dev)) 5760 goto unlock; 5761 if (dev->subordinate) { 5762 if (!pci_bus_trylock(dev->subordinate)) { 5763 pci_dev_unlock(dev); 5764 goto unlock; 5765 } 5766 } 5767 } 5768 return 1; 5769 5770 unlock: 5771 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5772 if (dev->subordinate) 5773 pci_bus_unlock(dev->subordinate); 5774 pci_dev_unlock(dev); 5775 } 5776 return 0; 5777 } 5778 5779 /* Do any devices on or below this slot prevent a bus reset? */ 5780 static bool pci_slot_resettable(struct pci_slot *slot) 5781 { 5782 struct pci_dev *dev; 5783 5784 if (slot->bus->self && 5785 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5786 return false; 5787 5788 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5789 if (!dev->slot || dev->slot != slot) 5790 continue; 5791 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5792 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5793 return false; 5794 } 5795 5796 return true; 5797 } 5798 5799 /* Lock devices from the top of the tree down */ 5800 static void pci_slot_lock(struct pci_slot *slot) 5801 { 5802 struct pci_dev *dev; 5803 5804 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5805 if (!dev->slot || dev->slot != slot) 5806 continue; 5807 pci_dev_lock(dev); 5808 if (dev->subordinate) 5809 pci_bus_lock(dev->subordinate); 5810 } 5811 } 5812 5813 /* Unlock devices from the bottom of the tree up */ 5814 static void pci_slot_unlock(struct pci_slot *slot) 5815 { 5816 struct pci_dev *dev; 5817 5818 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5819 if (!dev->slot || dev->slot != slot) 5820 continue; 5821 if (dev->subordinate) 5822 pci_bus_unlock(dev->subordinate); 5823 pci_dev_unlock(dev); 5824 } 5825 } 5826 5827 /* Return 1 on successful lock, 0 on contention */ 5828 static int pci_slot_trylock(struct pci_slot *slot) 5829 { 5830 struct pci_dev *dev; 5831 5832 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5833 if (!dev->slot || dev->slot != slot) 5834 continue; 5835 if (!pci_dev_trylock(dev)) 5836 goto unlock; 5837 if (dev->subordinate) { 5838 if (!pci_bus_trylock(dev->subordinate)) { 5839 pci_dev_unlock(dev); 5840 goto unlock; 5841 } 5842 } 5843 } 5844 return 1; 5845 5846 unlock: 5847 list_for_each_entry_continue_reverse(dev, 5848 &slot->bus->devices, bus_list) { 5849 if (!dev->slot || dev->slot != slot) 5850 continue; 5851 if (dev->subordinate) 5852 pci_bus_unlock(dev->subordinate); 5853 pci_dev_unlock(dev); 5854 } 5855 return 0; 5856 } 5857 5858 /* 5859 * Save and disable devices from the top of the tree down while holding 5860 * the @dev mutex lock for the entire tree. 5861 */ 5862 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5863 { 5864 struct pci_dev *dev; 5865 5866 list_for_each_entry(dev, &bus->devices, bus_list) { 5867 pci_dev_save_and_disable(dev); 5868 if (dev->subordinate) 5869 pci_bus_save_and_disable_locked(dev->subordinate); 5870 } 5871 } 5872 5873 /* 5874 * Restore devices from top of the tree down while holding @dev mutex lock 5875 * for the entire tree. Parent bridges need to be restored before we can 5876 * get to subordinate devices. 5877 */ 5878 static void pci_bus_restore_locked(struct pci_bus *bus) 5879 { 5880 struct pci_dev *dev; 5881 5882 list_for_each_entry(dev, &bus->devices, bus_list) { 5883 pci_dev_restore(dev); 5884 if (dev->subordinate) 5885 pci_bus_restore_locked(dev->subordinate); 5886 } 5887 } 5888 5889 /* 5890 * Save and disable devices from the top of the tree down while holding 5891 * the @dev mutex lock for the entire tree. 5892 */ 5893 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5894 { 5895 struct pci_dev *dev; 5896 5897 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5898 if (!dev->slot || dev->slot != slot) 5899 continue; 5900 pci_dev_save_and_disable(dev); 5901 if (dev->subordinate) 5902 pci_bus_save_and_disable_locked(dev->subordinate); 5903 } 5904 } 5905 5906 /* 5907 * Restore devices from top of the tree down while holding @dev mutex lock 5908 * for the entire tree. Parent bridges need to be restored before we can 5909 * get to subordinate devices. 5910 */ 5911 static void pci_slot_restore_locked(struct pci_slot *slot) 5912 { 5913 struct pci_dev *dev; 5914 5915 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5916 if (!dev->slot || dev->slot != slot) 5917 continue; 5918 pci_dev_restore(dev); 5919 if (dev->subordinate) 5920 pci_bus_restore_locked(dev->subordinate); 5921 } 5922 } 5923 5924 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5925 { 5926 int rc; 5927 5928 if (!slot || !pci_slot_resettable(slot)) 5929 return -ENOTTY; 5930 5931 if (!probe) 5932 pci_slot_lock(slot); 5933 5934 might_sleep(); 5935 5936 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5937 5938 if (!probe) 5939 pci_slot_unlock(slot); 5940 5941 return rc; 5942 } 5943 5944 /** 5945 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5946 * @slot: PCI slot to probe 5947 * 5948 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5949 */ 5950 int pci_probe_reset_slot(struct pci_slot *slot) 5951 { 5952 return pci_slot_reset(slot, PCI_RESET_PROBE); 5953 } 5954 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5955 5956 /** 5957 * __pci_reset_slot - Try to reset a PCI slot 5958 * @slot: PCI slot to reset 5959 * 5960 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5961 * independent of other slots. For instance, some slots may support slot power 5962 * control. In the case of a 1:1 bus to slot architecture, this function may 5963 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5964 * Generally a slot reset should be attempted before a bus reset. All of the 5965 * function of the slot and any subordinate buses behind the slot are reset 5966 * through this function. PCI config space of all devices in the slot and 5967 * behind the slot is saved before and restored after reset. 5968 * 5969 * Same as above except return -EAGAIN if the slot cannot be locked 5970 */ 5971 static int __pci_reset_slot(struct pci_slot *slot) 5972 { 5973 int rc; 5974 5975 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5976 if (rc) 5977 return rc; 5978 5979 if (pci_slot_trylock(slot)) { 5980 pci_slot_save_and_disable_locked(slot); 5981 might_sleep(); 5982 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5983 pci_slot_restore_locked(slot); 5984 pci_slot_unlock(slot); 5985 } else 5986 rc = -EAGAIN; 5987 5988 return rc; 5989 } 5990 5991 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5992 { 5993 int ret; 5994 5995 if (!bus->self || !pci_bus_resettable(bus)) 5996 return -ENOTTY; 5997 5998 if (probe) 5999 return 0; 6000 6001 pci_bus_lock(bus); 6002 6003 might_sleep(); 6004 6005 ret = pci_bridge_secondary_bus_reset(bus->self); 6006 6007 pci_bus_unlock(bus); 6008 6009 return ret; 6010 } 6011 6012 /** 6013 * pci_bus_error_reset - reset the bridge's subordinate bus 6014 * @bridge: The parent device that connects to the bus to reset 6015 * 6016 * This function will first try to reset the slots on this bus if the method is 6017 * available. If slot reset fails or is not available, this will fall back to a 6018 * secondary bus reset. 6019 */ 6020 int pci_bus_error_reset(struct pci_dev *bridge) 6021 { 6022 struct pci_bus *bus = bridge->subordinate; 6023 struct pci_slot *slot; 6024 6025 if (!bus) 6026 return -ENOTTY; 6027 6028 mutex_lock(&pci_slot_mutex); 6029 if (list_empty(&bus->slots)) 6030 goto bus_reset; 6031 6032 list_for_each_entry(slot, &bus->slots, list) 6033 if (pci_probe_reset_slot(slot)) 6034 goto bus_reset; 6035 6036 list_for_each_entry(slot, &bus->slots, list) 6037 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 6038 goto bus_reset; 6039 6040 mutex_unlock(&pci_slot_mutex); 6041 return 0; 6042 bus_reset: 6043 mutex_unlock(&pci_slot_mutex); 6044 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 6045 } 6046 6047 /** 6048 * pci_probe_reset_bus - probe whether a PCI bus can be reset 6049 * @bus: PCI bus to probe 6050 * 6051 * Return 0 if bus can be reset, negative if a bus reset is not supported. 6052 */ 6053 int pci_probe_reset_bus(struct pci_bus *bus) 6054 { 6055 return pci_bus_reset(bus, PCI_RESET_PROBE); 6056 } 6057 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 6058 6059 /** 6060 * __pci_reset_bus - Try to reset a PCI bus 6061 * @bus: top level PCI bus to reset 6062 * 6063 * Same as above except return -EAGAIN if the bus cannot be locked 6064 */ 6065 static int __pci_reset_bus(struct pci_bus *bus) 6066 { 6067 int rc; 6068 6069 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 6070 if (rc) 6071 return rc; 6072 6073 if (pci_bus_trylock(bus)) { 6074 pci_bus_save_and_disable_locked(bus); 6075 might_sleep(); 6076 rc = pci_bridge_secondary_bus_reset(bus->self); 6077 pci_bus_restore_locked(bus); 6078 pci_bus_unlock(bus); 6079 } else 6080 rc = -EAGAIN; 6081 6082 return rc; 6083 } 6084 6085 /** 6086 * pci_reset_bus - Try to reset a PCI bus 6087 * @pdev: top level PCI device to reset via slot/bus 6088 * 6089 * Same as above except return -EAGAIN if the bus cannot be locked 6090 */ 6091 int pci_reset_bus(struct pci_dev *pdev) 6092 { 6093 return (!pci_probe_reset_slot(pdev->slot)) ? 6094 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 6095 } 6096 EXPORT_SYMBOL_GPL(pci_reset_bus); 6097 6098 /** 6099 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 6100 * @dev: PCI device to query 6101 * 6102 * Returns mmrbc: maximum designed memory read count in bytes or 6103 * appropriate error value. 6104 */ 6105 int pcix_get_max_mmrbc(struct pci_dev *dev) 6106 { 6107 int cap; 6108 u32 stat; 6109 6110 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6111 if (!cap) 6112 return -EINVAL; 6113 6114 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6115 return -EINVAL; 6116 6117 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat); 6118 } 6119 EXPORT_SYMBOL(pcix_get_max_mmrbc); 6120 6121 /** 6122 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 6123 * @dev: PCI device to query 6124 * 6125 * Returns mmrbc: maximum memory read count in bytes or appropriate error 6126 * value. 6127 */ 6128 int pcix_get_mmrbc(struct pci_dev *dev) 6129 { 6130 int cap; 6131 u16 cmd; 6132 6133 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6134 if (!cap) 6135 return -EINVAL; 6136 6137 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6138 return -EINVAL; 6139 6140 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 6141 } 6142 EXPORT_SYMBOL(pcix_get_mmrbc); 6143 6144 /** 6145 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 6146 * @dev: PCI device to query 6147 * @mmrbc: maximum memory read count in bytes 6148 * valid values are 512, 1024, 2048, 4096 6149 * 6150 * If possible sets maximum memory read byte count, some bridges have errata 6151 * that prevent this. 6152 */ 6153 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 6154 { 6155 int cap; 6156 u32 stat, v, o; 6157 u16 cmd; 6158 6159 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 6160 return -EINVAL; 6161 6162 v = ffs(mmrbc) - 10; 6163 6164 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6165 if (!cap) 6166 return -EINVAL; 6167 6168 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6169 return -EINVAL; 6170 6171 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat)) 6172 return -E2BIG; 6173 6174 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6175 return -EINVAL; 6176 6177 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 6178 if (o != v) { 6179 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 6180 return -EIO; 6181 6182 cmd &= ~PCI_X_CMD_MAX_READ; 6183 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v); 6184 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 6185 return -EIO; 6186 } 6187 return 0; 6188 } 6189 EXPORT_SYMBOL(pcix_set_mmrbc); 6190 6191 /** 6192 * pcie_get_readrq - get PCI Express read request size 6193 * @dev: PCI device to query 6194 * 6195 * Returns maximum memory read request in bytes or appropriate error value. 6196 */ 6197 int pcie_get_readrq(struct pci_dev *dev) 6198 { 6199 u16 ctl; 6200 6201 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6202 6203 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl); 6204 } 6205 EXPORT_SYMBOL(pcie_get_readrq); 6206 6207 /** 6208 * pcie_set_readrq - set PCI Express maximum memory read request 6209 * @dev: PCI device to query 6210 * @rq: maximum memory read count in bytes 6211 * valid values are 128, 256, 512, 1024, 2048, 4096 6212 * 6213 * If possible sets maximum memory read request in bytes 6214 */ 6215 int pcie_set_readrq(struct pci_dev *dev, int rq) 6216 { 6217 u16 v; 6218 int ret; 6219 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 6220 6221 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6222 return -EINVAL; 6223 6224 /* 6225 * If using the "performance" PCIe config, we clamp the read rq 6226 * size to the max packet size to keep the host bridge from 6227 * generating requests larger than we can cope with. 6228 */ 6229 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6230 int mps = pcie_get_mps(dev); 6231 6232 if (mps < rq) 6233 rq = mps; 6234 } 6235 6236 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8); 6237 6238 if (bridge->no_inc_mrrs) { 6239 int max_mrrs = pcie_get_readrq(dev); 6240 6241 if (rq > max_mrrs) { 6242 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 6243 return -EINVAL; 6244 } 6245 } 6246 6247 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6248 PCI_EXP_DEVCTL_READRQ, v); 6249 6250 return pcibios_err_to_errno(ret); 6251 } 6252 EXPORT_SYMBOL(pcie_set_readrq); 6253 6254 /** 6255 * pcie_get_mps - get PCI Express maximum payload size 6256 * @dev: PCI device to query 6257 * 6258 * Returns maximum payload size in bytes 6259 */ 6260 int pcie_get_mps(struct pci_dev *dev) 6261 { 6262 u16 ctl; 6263 6264 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6265 6266 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl); 6267 } 6268 EXPORT_SYMBOL(pcie_get_mps); 6269 6270 /** 6271 * pcie_set_mps - set PCI Express maximum payload size 6272 * @dev: PCI device to query 6273 * @mps: maximum payload size in bytes 6274 * valid values are 128, 256, 512, 1024, 2048, 4096 6275 * 6276 * If possible sets maximum payload size 6277 */ 6278 int pcie_set_mps(struct pci_dev *dev, int mps) 6279 { 6280 u16 v; 6281 int ret; 6282 6283 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6284 return -EINVAL; 6285 6286 v = ffs(mps) - 8; 6287 if (v > dev->pcie_mpss) 6288 return -EINVAL; 6289 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v); 6290 6291 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6292 PCI_EXP_DEVCTL_PAYLOAD, v); 6293 6294 return pcibios_err_to_errno(ret); 6295 } 6296 EXPORT_SYMBOL(pcie_set_mps); 6297 6298 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta) 6299 { 6300 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)]; 6301 } 6302 6303 int pcie_link_speed_mbps(struct pci_dev *pdev) 6304 { 6305 u16 lnksta; 6306 int err; 6307 6308 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 6309 if (err) 6310 return err; 6311 6312 switch (to_pcie_link_speed(lnksta)) { 6313 case PCIE_SPEED_2_5GT: 6314 return 2500; 6315 case PCIE_SPEED_5_0GT: 6316 return 5000; 6317 case PCIE_SPEED_8_0GT: 6318 return 8000; 6319 case PCIE_SPEED_16_0GT: 6320 return 16000; 6321 case PCIE_SPEED_32_0GT: 6322 return 32000; 6323 case PCIE_SPEED_64_0GT: 6324 return 64000; 6325 default: 6326 break; 6327 } 6328 6329 return -EINVAL; 6330 } 6331 EXPORT_SYMBOL(pcie_link_speed_mbps); 6332 6333 /** 6334 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6335 * device and its bandwidth limitation 6336 * @dev: PCI device to query 6337 * @limiting_dev: storage for device causing the bandwidth limitation 6338 * @speed: storage for speed of limiting device 6339 * @width: storage for width of limiting device 6340 * 6341 * Walk up the PCI device chain and find the point where the minimum 6342 * bandwidth is available. Return the bandwidth available there and (if 6343 * limiting_dev, speed, and width pointers are supplied) information about 6344 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6345 * raw bandwidth. 6346 */ 6347 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6348 enum pci_bus_speed *speed, 6349 enum pcie_link_width *width) 6350 { 6351 u16 lnksta; 6352 enum pci_bus_speed next_speed; 6353 enum pcie_link_width next_width; 6354 u32 bw, next_bw; 6355 6356 if (speed) 6357 *speed = PCI_SPEED_UNKNOWN; 6358 if (width) 6359 *width = PCIE_LNK_WIDTH_UNKNOWN; 6360 6361 bw = 0; 6362 6363 while (dev) { 6364 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6365 6366 next_speed = to_pcie_link_speed(lnksta); 6367 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6368 6369 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6370 6371 /* Check if current device limits the total bandwidth */ 6372 if (!bw || next_bw <= bw) { 6373 bw = next_bw; 6374 6375 if (limiting_dev) 6376 *limiting_dev = dev; 6377 if (speed) 6378 *speed = next_speed; 6379 if (width) 6380 *width = next_width; 6381 } 6382 6383 dev = pci_upstream_bridge(dev); 6384 } 6385 6386 return bw; 6387 } 6388 EXPORT_SYMBOL(pcie_bandwidth_available); 6389 6390 /** 6391 * pcie_get_speed_cap - query for the PCI device's link speed capability 6392 * @dev: PCI device to query 6393 * 6394 * Query the PCI device speed capability. Return the maximum link speed 6395 * supported by the device. 6396 */ 6397 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6398 { 6399 u32 lnkcap2, lnkcap; 6400 6401 /* 6402 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6403 * implementation note there recommends using the Supported Link 6404 * Speeds Vector in Link Capabilities 2 when supported. 6405 * 6406 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6407 * should use the Supported Link Speeds field in Link Capabilities, 6408 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6409 */ 6410 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6411 6412 /* PCIe r3.0-compliant */ 6413 if (lnkcap2) 6414 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6415 6416 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6417 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6418 return PCIE_SPEED_5_0GT; 6419 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6420 return PCIE_SPEED_2_5GT; 6421 6422 return PCI_SPEED_UNKNOWN; 6423 } 6424 EXPORT_SYMBOL(pcie_get_speed_cap); 6425 6426 /** 6427 * pcie_get_width_cap - query for the PCI device's link width capability 6428 * @dev: PCI device to query 6429 * 6430 * Query the PCI device width capability. Return the maximum link width 6431 * supported by the device. 6432 */ 6433 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6434 { 6435 u32 lnkcap; 6436 6437 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6438 if (lnkcap) 6439 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6440 6441 return PCIE_LNK_WIDTH_UNKNOWN; 6442 } 6443 EXPORT_SYMBOL(pcie_get_width_cap); 6444 6445 /** 6446 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6447 * @dev: PCI device 6448 * @speed: storage for link speed 6449 * @width: storage for link width 6450 * 6451 * Calculate a PCI device's link bandwidth by querying for its link speed 6452 * and width, multiplying them, and applying encoding overhead. The result 6453 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6454 */ 6455 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6456 enum pcie_link_width *width) 6457 { 6458 *speed = pcie_get_speed_cap(dev); 6459 *width = pcie_get_width_cap(dev); 6460 6461 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6462 return 0; 6463 6464 return *width * PCIE_SPEED2MBS_ENC(*speed); 6465 } 6466 6467 /** 6468 * __pcie_print_link_status - Report the PCI device's link speed and width 6469 * @dev: PCI device to query 6470 * @verbose: Print info even when enough bandwidth is available 6471 * 6472 * If the available bandwidth at the device is less than the device is 6473 * capable of, report the device's maximum possible bandwidth and the 6474 * upstream link that limits its performance. If @verbose, always print 6475 * the available bandwidth, even if the device isn't constrained. 6476 */ 6477 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6478 { 6479 enum pcie_link_width width, width_cap; 6480 enum pci_bus_speed speed, speed_cap; 6481 struct pci_dev *limiting_dev = NULL; 6482 u32 bw_avail, bw_cap; 6483 6484 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6485 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6486 6487 if (bw_avail >= bw_cap && verbose) 6488 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6489 bw_cap / 1000, bw_cap % 1000, 6490 pci_speed_string(speed_cap), width_cap); 6491 else if (bw_avail < bw_cap) 6492 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6493 bw_avail / 1000, bw_avail % 1000, 6494 pci_speed_string(speed), width, 6495 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6496 bw_cap / 1000, bw_cap % 1000, 6497 pci_speed_string(speed_cap), width_cap); 6498 } 6499 6500 /** 6501 * pcie_print_link_status - Report the PCI device's link speed and width 6502 * @dev: PCI device to query 6503 * 6504 * Report the available bandwidth at the device. 6505 */ 6506 void pcie_print_link_status(struct pci_dev *dev) 6507 { 6508 __pcie_print_link_status(dev, true); 6509 } 6510 EXPORT_SYMBOL(pcie_print_link_status); 6511 6512 /** 6513 * pci_select_bars - Make BAR mask from the type of resource 6514 * @dev: the PCI device for which BAR mask is made 6515 * @flags: resource type mask to be selected 6516 * 6517 * This helper routine makes bar mask from the type of resource. 6518 */ 6519 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6520 { 6521 int i, bars = 0; 6522 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6523 if (pci_resource_flags(dev, i) & flags) 6524 bars |= (1 << i); 6525 return bars; 6526 } 6527 EXPORT_SYMBOL(pci_select_bars); 6528 6529 /* Some architectures require additional programming to enable VGA */ 6530 static arch_set_vga_state_t arch_set_vga_state; 6531 6532 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6533 { 6534 arch_set_vga_state = func; /* NULL disables */ 6535 } 6536 6537 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6538 unsigned int command_bits, u32 flags) 6539 { 6540 if (arch_set_vga_state) 6541 return arch_set_vga_state(dev, decode, command_bits, 6542 flags); 6543 return 0; 6544 } 6545 6546 /** 6547 * pci_set_vga_state - set VGA decode state on device and parents if requested 6548 * @dev: the PCI device 6549 * @decode: true = enable decoding, false = disable decoding 6550 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6551 * @flags: traverse ancestors and change bridges 6552 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6553 */ 6554 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6555 unsigned int command_bits, u32 flags) 6556 { 6557 struct pci_bus *bus; 6558 struct pci_dev *bridge; 6559 u16 cmd; 6560 int rc; 6561 6562 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6563 6564 /* ARCH specific VGA enables */ 6565 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6566 if (rc) 6567 return rc; 6568 6569 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6570 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6571 if (decode) 6572 cmd |= command_bits; 6573 else 6574 cmd &= ~command_bits; 6575 pci_write_config_word(dev, PCI_COMMAND, cmd); 6576 } 6577 6578 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6579 return 0; 6580 6581 bus = dev->bus; 6582 while (bus) { 6583 bridge = bus->self; 6584 if (bridge) { 6585 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6586 &cmd); 6587 if (decode) 6588 cmd |= PCI_BRIDGE_CTL_VGA; 6589 else 6590 cmd &= ~PCI_BRIDGE_CTL_VGA; 6591 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6592 cmd); 6593 } 6594 bus = bus->parent; 6595 } 6596 return 0; 6597 } 6598 6599 #ifdef CONFIG_ACPI 6600 bool pci_pr3_present(struct pci_dev *pdev) 6601 { 6602 struct acpi_device *adev; 6603 6604 if (acpi_disabled) 6605 return false; 6606 6607 adev = ACPI_COMPANION(&pdev->dev); 6608 if (!adev) 6609 return false; 6610 6611 return adev->power.flags.power_resources && 6612 acpi_has_method(adev->handle, "_PR3"); 6613 } 6614 EXPORT_SYMBOL_GPL(pci_pr3_present); 6615 #endif 6616 6617 /** 6618 * pci_add_dma_alias - Add a DMA devfn alias for a device 6619 * @dev: the PCI device for which alias is added 6620 * @devfn_from: alias slot and function 6621 * @nr_devfns: number of subsequent devfns to alias 6622 * 6623 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6624 * which is used to program permissible bus-devfn source addresses for DMA 6625 * requests in an IOMMU. These aliases factor into IOMMU group creation 6626 * and are useful for devices generating DMA requests beyond or different 6627 * from their logical bus-devfn. Examples include device quirks where the 6628 * device simply uses the wrong devfn, as well as non-transparent bridges 6629 * where the alias may be a proxy for devices in another domain. 6630 * 6631 * IOMMU group creation is performed during device discovery or addition, 6632 * prior to any potential DMA mapping and therefore prior to driver probing 6633 * (especially for userspace assigned devices where IOMMU group definition 6634 * cannot be left as a userspace activity). DMA aliases should therefore 6635 * be configured via quirks, such as the PCI fixup header quirk. 6636 */ 6637 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6638 unsigned int nr_devfns) 6639 { 6640 int devfn_to; 6641 6642 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6643 devfn_to = devfn_from + nr_devfns - 1; 6644 6645 if (!dev->dma_alias_mask) 6646 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6647 if (!dev->dma_alias_mask) { 6648 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6649 return; 6650 } 6651 6652 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6653 6654 if (nr_devfns == 1) 6655 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6656 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6657 else if (nr_devfns > 1) 6658 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6659 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6660 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6661 } 6662 6663 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6664 { 6665 return (dev1->dma_alias_mask && 6666 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6667 (dev2->dma_alias_mask && 6668 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6669 pci_real_dma_dev(dev1) == dev2 || 6670 pci_real_dma_dev(dev2) == dev1; 6671 } 6672 6673 bool pci_device_is_present(struct pci_dev *pdev) 6674 { 6675 u32 v; 6676 6677 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6678 pdev = pci_physfn(pdev); 6679 if (pci_dev_is_disconnected(pdev)) 6680 return false; 6681 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6682 } 6683 EXPORT_SYMBOL_GPL(pci_device_is_present); 6684 6685 void pci_ignore_hotplug(struct pci_dev *dev) 6686 { 6687 struct pci_dev *bridge = dev->bus->self; 6688 6689 dev->ignore_hotplug = 1; 6690 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6691 if (bridge) 6692 bridge->ignore_hotplug = 1; 6693 } 6694 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6695 6696 /** 6697 * pci_real_dma_dev - Get PCI DMA device for PCI device 6698 * @dev: the PCI device that may have a PCI DMA alias 6699 * 6700 * Permits the platform to provide architecture-specific functionality to 6701 * devices needing to alias DMA to another PCI device on another PCI bus. If 6702 * the PCI device is on the same bus, it is recommended to use 6703 * pci_add_dma_alias(). This is the default implementation. Architecture 6704 * implementations can override this. 6705 */ 6706 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6707 { 6708 return dev; 6709 } 6710 6711 resource_size_t __weak pcibios_default_alignment(void) 6712 { 6713 return 0; 6714 } 6715 6716 /* 6717 * Arches that don't want to expose struct resource to userland as-is in 6718 * sysfs and /proc can implement their own pci_resource_to_user(). 6719 */ 6720 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6721 const struct resource *rsrc, 6722 resource_size_t *start, resource_size_t *end) 6723 { 6724 *start = rsrc->start; 6725 *end = rsrc->end; 6726 } 6727 6728 static char *resource_alignment_param; 6729 static DEFINE_SPINLOCK(resource_alignment_lock); 6730 6731 /** 6732 * pci_specified_resource_alignment - get resource alignment specified by user. 6733 * @dev: the PCI device to get 6734 * @resize: whether or not to change resources' size when reassigning alignment 6735 * 6736 * RETURNS: Resource alignment if it is specified. 6737 * Zero if it is not specified. 6738 */ 6739 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6740 bool *resize) 6741 { 6742 int align_order, count; 6743 resource_size_t align = pcibios_default_alignment(); 6744 const char *p; 6745 int ret; 6746 6747 spin_lock(&resource_alignment_lock); 6748 p = resource_alignment_param; 6749 if (!p || !*p) 6750 goto out; 6751 if (pci_has_flag(PCI_PROBE_ONLY)) { 6752 align = 0; 6753 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6754 goto out; 6755 } 6756 6757 while (*p) { 6758 count = 0; 6759 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6760 p[count] == '@') { 6761 p += count + 1; 6762 if (align_order > 63) { 6763 pr_err("PCI: Invalid requested alignment (order %d)\n", 6764 align_order); 6765 align_order = PAGE_SHIFT; 6766 } 6767 } else { 6768 align_order = PAGE_SHIFT; 6769 } 6770 6771 ret = pci_dev_str_match(dev, p, &p); 6772 if (ret == 1) { 6773 *resize = true; 6774 align = 1ULL << align_order; 6775 break; 6776 } else if (ret < 0) { 6777 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6778 p); 6779 break; 6780 } 6781 6782 if (*p != ';' && *p != ',') { 6783 /* End of param or invalid format */ 6784 break; 6785 } 6786 p++; 6787 } 6788 out: 6789 spin_unlock(&resource_alignment_lock); 6790 return align; 6791 } 6792 6793 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6794 resource_size_t align, bool resize) 6795 { 6796 struct resource *r = &dev->resource[bar]; 6797 const char *r_name = pci_resource_name(dev, bar); 6798 resource_size_t size; 6799 6800 if (!(r->flags & IORESOURCE_MEM)) 6801 return; 6802 6803 if (r->flags & IORESOURCE_PCI_FIXED) { 6804 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n", 6805 r_name, r, (unsigned long long)align); 6806 return; 6807 } 6808 6809 size = resource_size(r); 6810 if (size >= align) 6811 return; 6812 6813 /* 6814 * Increase the alignment of the resource. There are two ways we 6815 * can do this: 6816 * 6817 * 1) Increase the size of the resource. BARs are aligned on their 6818 * size, so when we reallocate space for this resource, we'll 6819 * allocate it with the larger alignment. This also prevents 6820 * assignment of any other BARs inside the alignment region, so 6821 * if we're requesting page alignment, this means no other BARs 6822 * will share the page. 6823 * 6824 * The disadvantage is that this makes the resource larger than 6825 * the hardware BAR, which may break drivers that compute things 6826 * based on the resource size, e.g., to find registers at a 6827 * fixed offset before the end of the BAR. 6828 * 6829 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6830 * set r->start to the desired alignment. By itself this 6831 * doesn't prevent other BARs being put inside the alignment 6832 * region, but if we realign *every* resource of every device in 6833 * the system, none of them will share an alignment region. 6834 * 6835 * When the user has requested alignment for only some devices via 6836 * the "pci=resource_alignment" argument, "resize" is true and we 6837 * use the first method. Otherwise we assume we're aligning all 6838 * devices and we use the second. 6839 */ 6840 6841 pci_info(dev, "%s %pR: requesting alignment to %#llx\n", 6842 r_name, r, (unsigned long long)align); 6843 6844 if (resize) { 6845 r->start = 0; 6846 r->end = align - 1; 6847 } else { 6848 r->flags &= ~IORESOURCE_SIZEALIGN; 6849 r->flags |= IORESOURCE_STARTALIGN; 6850 r->start = align; 6851 r->end = r->start + size - 1; 6852 } 6853 r->flags |= IORESOURCE_UNSET; 6854 } 6855 6856 /* 6857 * This function disables memory decoding and releases memory resources 6858 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6859 * It also rounds up size to specified alignment. 6860 * Later on, the kernel will assign page-aligned memory resource back 6861 * to the device. 6862 */ 6863 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6864 { 6865 int i; 6866 struct resource *r; 6867 resource_size_t align; 6868 u16 command; 6869 bool resize = false; 6870 6871 /* 6872 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6873 * 3.4.1.11. Their resources are allocated from the space 6874 * described by the VF BARx register in the PF's SR-IOV capability. 6875 * We can't influence their alignment here. 6876 */ 6877 if (dev->is_virtfn) 6878 return; 6879 6880 /* check if specified PCI is target device to reassign */ 6881 align = pci_specified_resource_alignment(dev, &resize); 6882 if (!align) 6883 return; 6884 6885 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6886 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6887 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6888 return; 6889 } 6890 6891 pci_read_config_word(dev, PCI_COMMAND, &command); 6892 command &= ~PCI_COMMAND_MEMORY; 6893 pci_write_config_word(dev, PCI_COMMAND, command); 6894 6895 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6896 pci_request_resource_alignment(dev, i, align, resize); 6897 6898 /* 6899 * Need to disable bridge's resource window, 6900 * to enable the kernel to reassign new resource 6901 * window later on. 6902 */ 6903 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6904 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6905 r = &dev->resource[i]; 6906 if (!(r->flags & IORESOURCE_MEM)) 6907 continue; 6908 r->flags |= IORESOURCE_UNSET; 6909 r->end = resource_size(r) - 1; 6910 r->start = 0; 6911 } 6912 pci_disable_bridge_window(dev); 6913 } 6914 } 6915 6916 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6917 { 6918 size_t count = 0; 6919 6920 spin_lock(&resource_alignment_lock); 6921 if (resource_alignment_param) 6922 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6923 spin_unlock(&resource_alignment_lock); 6924 6925 return count; 6926 } 6927 6928 static ssize_t resource_alignment_store(const struct bus_type *bus, 6929 const char *buf, size_t count) 6930 { 6931 char *param, *old, *end; 6932 6933 if (count >= (PAGE_SIZE - 1)) 6934 return -EINVAL; 6935 6936 param = kstrndup(buf, count, GFP_KERNEL); 6937 if (!param) 6938 return -ENOMEM; 6939 6940 end = strchr(param, '\n'); 6941 if (end) 6942 *end = '\0'; 6943 6944 spin_lock(&resource_alignment_lock); 6945 old = resource_alignment_param; 6946 if (strlen(param)) { 6947 resource_alignment_param = param; 6948 } else { 6949 kfree(param); 6950 resource_alignment_param = NULL; 6951 } 6952 spin_unlock(&resource_alignment_lock); 6953 6954 kfree(old); 6955 6956 return count; 6957 } 6958 6959 static BUS_ATTR_RW(resource_alignment); 6960 6961 static int __init pci_resource_alignment_sysfs_init(void) 6962 { 6963 return bus_create_file(&pci_bus_type, 6964 &bus_attr_resource_alignment); 6965 } 6966 late_initcall(pci_resource_alignment_sysfs_init); 6967 6968 static void pci_no_domains(void) 6969 { 6970 #ifdef CONFIG_PCI_DOMAINS 6971 pci_domains_supported = 0; 6972 #endif 6973 } 6974 6975 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6976 static DEFINE_IDA(pci_domain_nr_static_ida); 6977 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6978 6979 static void of_pci_reserve_static_domain_nr(void) 6980 { 6981 struct device_node *np; 6982 int domain_nr; 6983 6984 for_each_node_by_type(np, "pci") { 6985 domain_nr = of_get_pci_domain_nr(np); 6986 if (domain_nr < 0) 6987 continue; 6988 /* 6989 * Permanently allocate domain_nr in dynamic_ida 6990 * to prevent it from dynamic allocation. 6991 */ 6992 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6993 domain_nr, domain_nr, GFP_KERNEL); 6994 } 6995 } 6996 6997 static int of_pci_bus_find_domain_nr(struct device *parent) 6998 { 6999 static bool static_domains_reserved = false; 7000 int domain_nr; 7001 7002 /* On the first call scan device tree for static allocations. */ 7003 if (!static_domains_reserved) { 7004 of_pci_reserve_static_domain_nr(); 7005 static_domains_reserved = true; 7006 } 7007 7008 if (parent) { 7009 /* 7010 * If domain is in DT, allocate it in static IDA. This 7011 * prevents duplicate static allocations in case of errors 7012 * in DT. 7013 */ 7014 domain_nr = of_get_pci_domain_nr(parent->of_node); 7015 if (domain_nr >= 0) 7016 return ida_alloc_range(&pci_domain_nr_static_ida, 7017 domain_nr, domain_nr, 7018 GFP_KERNEL); 7019 } 7020 7021 /* 7022 * If domain was not specified in DT, choose a free ID from dynamic 7023 * allocations. All domain numbers from DT are permanently in 7024 * dynamic allocations to prevent assigning them to other DT nodes 7025 * without static domain. 7026 */ 7027 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 7028 } 7029 7030 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 7031 { 7032 if (bus->domain_nr < 0) 7033 return; 7034 7035 /* Release domain from IDA where it was allocated. */ 7036 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr) 7037 ida_free(&pci_domain_nr_static_ida, bus->domain_nr); 7038 else 7039 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr); 7040 } 7041 7042 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 7043 { 7044 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 7045 acpi_pci_bus_find_domain_nr(bus); 7046 } 7047 7048 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 7049 { 7050 if (!acpi_disabled) 7051 return; 7052 of_pci_bus_release_domain_nr(bus, parent); 7053 } 7054 #endif 7055 7056 /** 7057 * pci_ext_cfg_avail - can we access extended PCI config space? 7058 * 7059 * Returns 1 if we can access PCI extended config space (offsets 7060 * greater than 0xff). This is the default implementation. Architecture 7061 * implementations can override this. 7062 */ 7063 int __weak pci_ext_cfg_avail(void) 7064 { 7065 return 1; 7066 } 7067 7068 void __weak pci_fixup_cardbus(struct pci_bus *bus) 7069 { 7070 } 7071 EXPORT_SYMBOL(pci_fixup_cardbus); 7072 7073 static int __init pci_setup(char *str) 7074 { 7075 while (str) { 7076 char *k = strchr(str, ','); 7077 if (k) 7078 *k++ = 0; 7079 if (*str && (str = pcibios_setup(str)) && *str) { 7080 if (!strcmp(str, "nomsi")) { 7081 pci_no_msi(); 7082 } else if (!strncmp(str, "noats", 5)) { 7083 pr_info("PCIe: ATS is disabled\n"); 7084 pcie_ats_disabled = true; 7085 } else if (!strcmp(str, "noaer")) { 7086 pci_no_aer(); 7087 } else if (!strcmp(str, "earlydump")) { 7088 pci_early_dump = true; 7089 } else if (!strncmp(str, "realloc=", 8)) { 7090 pci_realloc_get_opt(str + 8); 7091 } else if (!strncmp(str, "realloc", 7)) { 7092 pci_realloc_get_opt("on"); 7093 } else if (!strcmp(str, "nodomains")) { 7094 pci_no_domains(); 7095 } else if (!strncmp(str, "noari", 5)) { 7096 pcie_ari_disabled = true; 7097 } else if (!strncmp(str, "cbiosize=", 9)) { 7098 pci_cardbus_io_size = memparse(str + 9, &str); 7099 } else if (!strncmp(str, "cbmemsize=", 10)) { 7100 pci_cardbus_mem_size = memparse(str + 10, &str); 7101 } else if (!strncmp(str, "resource_alignment=", 19)) { 7102 resource_alignment_param = str + 19; 7103 } else if (!strncmp(str, "ecrc=", 5)) { 7104 pcie_ecrc_get_policy(str + 5); 7105 } else if (!strncmp(str, "hpiosize=", 9)) { 7106 pci_hotplug_io_size = memparse(str + 9, &str); 7107 } else if (!strncmp(str, "hpmmiosize=", 11)) { 7108 pci_hotplug_mmio_size = memparse(str + 11, &str); 7109 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 7110 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 7111 } else if (!strncmp(str, "hpmemsize=", 10)) { 7112 pci_hotplug_mmio_size = memparse(str + 10, &str); 7113 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 7114 } else if (!strncmp(str, "hpbussize=", 10)) { 7115 pci_hotplug_bus_size = 7116 simple_strtoul(str + 10, &str, 0); 7117 if (pci_hotplug_bus_size > 0xff) 7118 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 7119 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 7120 pcie_bus_config = PCIE_BUS_TUNE_OFF; 7121 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 7122 pcie_bus_config = PCIE_BUS_SAFE; 7123 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 7124 pcie_bus_config = PCIE_BUS_PERFORMANCE; 7125 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 7126 pcie_bus_config = PCIE_BUS_PEER2PEER; 7127 } else if (!strncmp(str, "pcie_scan_all", 13)) { 7128 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 7129 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 7130 disable_acs_redir_param = str + 18; 7131 } else { 7132 pr_err("PCI: Unknown option `%s'\n", str); 7133 } 7134 } 7135 str = k; 7136 } 7137 return 0; 7138 } 7139 early_param("pci", pci_setup); 7140 7141 /* 7142 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 7143 * in pci_setup(), above, to point to data in the __initdata section which 7144 * will be freed after the init sequence is complete. We can't allocate memory 7145 * in pci_setup() because some architectures do not have any memory allocation 7146 * service available during an early_param() call. So we allocate memory and 7147 * copy the variable here before the init section is freed. 7148 * 7149 */ 7150 static int __init pci_realloc_setup_params(void) 7151 { 7152 resource_alignment_param = kstrdup(resource_alignment_param, 7153 GFP_KERNEL); 7154 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 7155 7156 return 0; 7157 } 7158 pure_initcall(pci_realloc_setup_params); 7159