1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/pm.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/spinlock.h> 18 #include <linux/string.h> 19 #include <linux/log2.h> 20 #include <linux/pci-aspm.h> 21 #include <linux/pm_wakeup.h> 22 #include <linux/interrupt.h> 23 #include <linux/device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/pci_hotplug.h> 26 #include <asm-generic/pci-bridge.h> 27 #include <asm/setup.h> 28 #include "pci.h" 29 30 const char *pci_power_names[] = { 31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 32 }; 33 EXPORT_SYMBOL_GPL(pci_power_names); 34 35 int isa_dma_bridge_buggy; 36 EXPORT_SYMBOL(isa_dma_bridge_buggy); 37 38 int pci_pci_problems; 39 EXPORT_SYMBOL(pci_pci_problems); 40 41 unsigned int pci_pm_d3_delay; 42 43 static void pci_pme_list_scan(struct work_struct *work); 44 45 static LIST_HEAD(pci_pme_list); 46 static DEFINE_MUTEX(pci_pme_list_mutex); 47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 48 49 struct pci_pme_device { 50 struct list_head list; 51 struct pci_dev *dev; 52 }; 53 54 #define PME_TIMEOUT 1000 /* How long between PME checks */ 55 56 static void pci_dev_d3_sleep(struct pci_dev *dev) 57 { 58 unsigned int delay = dev->d3_delay; 59 60 if (delay < pci_pm_d3_delay) 61 delay = pci_pm_d3_delay; 62 63 msleep(delay); 64 } 65 66 #ifdef CONFIG_PCI_DOMAINS 67 int pci_domains_supported = 1; 68 #endif 69 70 #define DEFAULT_CARDBUS_IO_SIZE (256) 71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 75 76 #define DEFAULT_HOTPLUG_IO_SIZE (256) 77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 79 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 81 82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 83 84 /* 85 * The default CLS is used if arch didn't set CLS explicitly and not 86 * all pci devices agree on the same value. Arch can override either 87 * the dfl or actual value as it sees fit. Don't forget this is 88 * measured in 32-bit words, not bytes. 89 */ 90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 91 u8 pci_cache_line_size; 92 93 /* 94 * If we set up a device for bus mastering, we need to check the latency 95 * timer as certain BIOSes forget to set it properly. 96 */ 97 unsigned int pcibios_max_latency = 255; 98 99 /* If set, the PCIe ARI capability will not be used. */ 100 static bool pcie_ari_disabled; 101 102 /** 103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 104 * @bus: pointer to PCI bus structure to search 105 * 106 * Given a PCI bus, returns the highest PCI bus number present in the set 107 * including the given PCI bus and its list of child PCI buses. 108 */ 109 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 110 { 111 struct pci_bus *tmp; 112 unsigned char max, n; 113 114 max = bus->busn_res.end; 115 list_for_each_entry(tmp, &bus->children, node) { 116 n = pci_bus_max_busnr(tmp); 117 if (n > max) 118 max = n; 119 } 120 return max; 121 } 122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 123 124 #ifdef CONFIG_HAS_IOMEM 125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 126 { 127 /* 128 * Make sure the BAR is actually a memory resource, not an IO resource 129 */ 130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 131 WARN_ON(1); 132 return NULL; 133 } 134 return ioremap_nocache(pci_resource_start(pdev, bar), 135 pci_resource_len(pdev, bar)); 136 } 137 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 138 #endif 139 140 #define PCI_FIND_CAP_TTL 48 141 142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 143 u8 pos, int cap, int *ttl) 144 { 145 u8 id; 146 147 while ((*ttl)--) { 148 pci_bus_read_config_byte(bus, devfn, pos, &pos); 149 if (pos < 0x40) 150 break; 151 pos &= ~3; 152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID, 153 &id); 154 if (id == 0xff) 155 break; 156 if (id == cap) 157 return pos; 158 pos += PCI_CAP_LIST_NEXT; 159 } 160 return 0; 161 } 162 163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 164 u8 pos, int cap) 165 { 166 int ttl = PCI_FIND_CAP_TTL; 167 168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 169 } 170 171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 172 { 173 return __pci_find_next_cap(dev->bus, dev->devfn, 174 pos + PCI_CAP_LIST_NEXT, cap); 175 } 176 EXPORT_SYMBOL_GPL(pci_find_next_capability); 177 178 static int __pci_bus_find_cap_start(struct pci_bus *bus, 179 unsigned int devfn, u8 hdr_type) 180 { 181 u16 status; 182 183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 184 if (!(status & PCI_STATUS_CAP_LIST)) 185 return 0; 186 187 switch (hdr_type) { 188 case PCI_HEADER_TYPE_NORMAL: 189 case PCI_HEADER_TYPE_BRIDGE: 190 return PCI_CAPABILITY_LIST; 191 case PCI_HEADER_TYPE_CARDBUS: 192 return PCI_CB_CAPABILITY_LIST; 193 default: 194 return 0; 195 } 196 197 return 0; 198 } 199 200 /** 201 * pci_find_capability - query for devices' capabilities 202 * @dev: PCI device to query 203 * @cap: capability code 204 * 205 * Tell if a device supports a given PCI capability. 206 * Returns the address of the requested capability structure within the 207 * device's PCI configuration space or 0 in case the device does not 208 * support it. Possible values for @cap: 209 * 210 * %PCI_CAP_ID_PM Power Management 211 * %PCI_CAP_ID_AGP Accelerated Graphics Port 212 * %PCI_CAP_ID_VPD Vital Product Data 213 * %PCI_CAP_ID_SLOTID Slot Identification 214 * %PCI_CAP_ID_MSI Message Signalled Interrupts 215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 216 * %PCI_CAP_ID_PCIX PCI-X 217 * %PCI_CAP_ID_EXP PCI Express 218 */ 219 int pci_find_capability(struct pci_dev *dev, int cap) 220 { 221 int pos; 222 223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 224 if (pos) 225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 226 227 return pos; 228 } 229 EXPORT_SYMBOL(pci_find_capability); 230 231 /** 232 * pci_bus_find_capability - query for devices' capabilities 233 * @bus: the PCI bus to query 234 * @devfn: PCI device to query 235 * @cap: capability code 236 * 237 * Like pci_find_capability() but works for pci devices that do not have a 238 * pci_dev structure set up yet. 239 * 240 * Returns the address of the requested capability structure within the 241 * device's PCI configuration space or 0 in case the device does not 242 * support it. 243 */ 244 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 245 { 246 int pos; 247 u8 hdr_type; 248 249 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 250 251 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 252 if (pos) 253 pos = __pci_find_next_cap(bus, devfn, pos, cap); 254 255 return pos; 256 } 257 EXPORT_SYMBOL(pci_bus_find_capability); 258 259 /** 260 * pci_find_next_ext_capability - Find an extended capability 261 * @dev: PCI device to query 262 * @start: address at which to start looking (0 to start at beginning of list) 263 * @cap: capability code 264 * 265 * Returns the address of the next matching extended capability structure 266 * within the device's PCI configuration space or 0 if the device does 267 * not support it. Some capabilities can occur several times, e.g., the 268 * vendor-specific capability, and this provides a way to find them all. 269 */ 270 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 271 { 272 u32 header; 273 int ttl; 274 int pos = PCI_CFG_SPACE_SIZE; 275 276 /* minimum 8 bytes per capability */ 277 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 278 279 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 280 return 0; 281 282 if (start) 283 pos = start; 284 285 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 286 return 0; 287 288 /* 289 * If we have no capabilities, this is indicated by cap ID, 290 * cap version and next pointer all being 0. 291 */ 292 if (header == 0) 293 return 0; 294 295 while (ttl-- > 0) { 296 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 297 return pos; 298 299 pos = PCI_EXT_CAP_NEXT(header); 300 if (pos < PCI_CFG_SPACE_SIZE) 301 break; 302 303 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 304 break; 305 } 306 307 return 0; 308 } 309 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 310 311 /** 312 * pci_find_ext_capability - Find an extended capability 313 * @dev: PCI device to query 314 * @cap: capability code 315 * 316 * Returns the address of the requested extended capability structure 317 * within the device's PCI configuration space or 0 if the device does 318 * not support it. Possible values for @cap: 319 * 320 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 321 * %PCI_EXT_CAP_ID_VC Virtual Channel 322 * %PCI_EXT_CAP_ID_DSN Device Serial Number 323 * %PCI_EXT_CAP_ID_PWR Power Budgeting 324 */ 325 int pci_find_ext_capability(struct pci_dev *dev, int cap) 326 { 327 return pci_find_next_ext_capability(dev, 0, cap); 328 } 329 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 330 331 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 332 { 333 int rc, ttl = PCI_FIND_CAP_TTL; 334 u8 cap, mask; 335 336 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 337 mask = HT_3BIT_CAP_MASK; 338 else 339 mask = HT_5BIT_CAP_MASK; 340 341 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 342 PCI_CAP_ID_HT, &ttl); 343 while (pos) { 344 rc = pci_read_config_byte(dev, pos + 3, &cap); 345 if (rc != PCIBIOS_SUCCESSFUL) 346 return 0; 347 348 if ((cap & mask) == ht_cap) 349 return pos; 350 351 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 352 pos + PCI_CAP_LIST_NEXT, 353 PCI_CAP_ID_HT, &ttl); 354 } 355 356 return 0; 357 } 358 /** 359 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 360 * @dev: PCI device to query 361 * @pos: Position from which to continue searching 362 * @ht_cap: Hypertransport capability code 363 * 364 * To be used in conjunction with pci_find_ht_capability() to search for 365 * all capabilities matching @ht_cap. @pos should always be a value returned 366 * from pci_find_ht_capability(). 367 * 368 * NB. To be 100% safe against broken PCI devices, the caller should take 369 * steps to avoid an infinite loop. 370 */ 371 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 372 { 373 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 374 } 375 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 376 377 /** 378 * pci_find_ht_capability - query a device's Hypertransport capabilities 379 * @dev: PCI device to query 380 * @ht_cap: Hypertransport capability code 381 * 382 * Tell if a device supports a given Hypertransport capability. 383 * Returns an address within the device's PCI configuration space 384 * or 0 in case the device does not support the request capability. 385 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 386 * which has a Hypertransport capability matching @ht_cap. 387 */ 388 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 389 { 390 int pos; 391 392 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 393 if (pos) 394 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 395 396 return pos; 397 } 398 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 399 400 /** 401 * pci_find_parent_resource - return resource region of parent bus of given region 402 * @dev: PCI device structure contains resources to be searched 403 * @res: child resource record for which parent is sought 404 * 405 * For given resource region of given device, return the resource 406 * region of parent bus the given region is contained in. 407 */ 408 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 409 struct resource *res) 410 { 411 const struct pci_bus *bus = dev->bus; 412 struct resource *r; 413 int i; 414 415 pci_bus_for_each_resource(bus, r, i) { 416 if (!r) 417 continue; 418 if (res->start && resource_contains(r, res)) { 419 420 /* 421 * If the window is prefetchable but the BAR is 422 * not, the allocator made a mistake. 423 */ 424 if (r->flags & IORESOURCE_PREFETCH && 425 !(res->flags & IORESOURCE_PREFETCH)) 426 return NULL; 427 428 /* 429 * If we're below a transparent bridge, there may 430 * be both a positively-decoded aperture and a 431 * subtractively-decoded region that contain the BAR. 432 * We want the positively-decoded one, so this depends 433 * on pci_bus_for_each_resource() giving us those 434 * first. 435 */ 436 return r; 437 } 438 } 439 return NULL; 440 } 441 EXPORT_SYMBOL(pci_find_parent_resource); 442 443 /** 444 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 445 * @dev: the PCI device to operate on 446 * @pos: config space offset of status word 447 * @mask: mask of bit(s) to care about in status word 448 * 449 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 450 */ 451 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 452 { 453 int i; 454 455 /* Wait for Transaction Pending bit clean */ 456 for (i = 0; i < 4; i++) { 457 u16 status; 458 if (i) 459 msleep((1 << (i - 1)) * 100); 460 461 pci_read_config_word(dev, pos, &status); 462 if (!(status & mask)) 463 return 1; 464 } 465 466 return 0; 467 } 468 469 /** 470 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up) 471 * @dev: PCI device to have its BARs restored 472 * 473 * Restore the BAR values for a given device, so as to make it 474 * accessible by its driver. 475 */ 476 static void pci_restore_bars(struct pci_dev *dev) 477 { 478 int i; 479 480 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 481 pci_update_resource(dev, i); 482 } 483 484 static struct pci_platform_pm_ops *pci_platform_pm; 485 486 int pci_set_platform_pm(struct pci_platform_pm_ops *ops) 487 { 488 if (!ops->is_manageable || !ops->set_state || !ops->choose_state 489 || !ops->sleep_wake) 490 return -EINVAL; 491 pci_platform_pm = ops; 492 return 0; 493 } 494 495 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 496 { 497 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 498 } 499 500 static inline int platform_pci_set_power_state(struct pci_dev *dev, 501 pci_power_t t) 502 { 503 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 504 } 505 506 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 507 { 508 return pci_platform_pm ? 509 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 510 } 511 512 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 513 { 514 return pci_platform_pm ? 515 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 516 } 517 518 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 519 { 520 return pci_platform_pm ? 521 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 522 } 523 524 /** 525 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 526 * given PCI device 527 * @dev: PCI device to handle. 528 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 529 * 530 * RETURN VALUE: 531 * -EINVAL if the requested state is invalid. 532 * -EIO if device does not support PCI PM or its PM capabilities register has a 533 * wrong version, or device doesn't support the requested state. 534 * 0 if device already is in the requested state. 535 * 0 if device's power state has been successfully changed. 536 */ 537 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 538 { 539 u16 pmcsr; 540 bool need_restore = false; 541 542 /* Check if we're already there */ 543 if (dev->current_state == state) 544 return 0; 545 546 if (!dev->pm_cap) 547 return -EIO; 548 549 if (state < PCI_D0 || state > PCI_D3hot) 550 return -EINVAL; 551 552 /* Validate current state: 553 * Can enter D0 from any state, but if we can only go deeper 554 * to sleep if we're already in a low power state 555 */ 556 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 557 && dev->current_state > state) { 558 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n", 559 dev->current_state, state); 560 return -EINVAL; 561 } 562 563 /* check if this device supports the desired state */ 564 if ((state == PCI_D1 && !dev->d1_support) 565 || (state == PCI_D2 && !dev->d2_support)) 566 return -EIO; 567 568 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 569 570 /* If we're (effectively) in D3, force entire word to 0. 571 * This doesn't affect PME_Status, disables PME_En, and 572 * sets PowerState to 0. 573 */ 574 switch (dev->current_state) { 575 case PCI_D0: 576 case PCI_D1: 577 case PCI_D2: 578 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 579 pmcsr |= state; 580 break; 581 case PCI_D3hot: 582 case PCI_D3cold: 583 case PCI_UNKNOWN: /* Boot-up */ 584 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 585 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 586 need_restore = true; 587 /* Fall-through: force to D0 */ 588 default: 589 pmcsr = 0; 590 break; 591 } 592 593 /* enter specified state */ 594 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 595 596 /* Mandatory power management transition delays */ 597 /* see PCI PM 1.1 5.6.1 table 18 */ 598 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 599 pci_dev_d3_sleep(dev); 600 else if (state == PCI_D2 || dev->current_state == PCI_D2) 601 udelay(PCI_PM_D2_DELAY); 602 603 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 604 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 605 if (dev->current_state != state && printk_ratelimit()) 606 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n", 607 dev->current_state); 608 609 /* 610 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 611 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 612 * from D3hot to D0 _may_ perform an internal reset, thereby 613 * going to "D0 Uninitialized" rather than "D0 Initialized". 614 * For example, at least some versions of the 3c905B and the 615 * 3c556B exhibit this behaviour. 616 * 617 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 618 * devices in a D3hot state at boot. Consequently, we need to 619 * restore at least the BARs so that the device will be 620 * accessible to its driver. 621 */ 622 if (need_restore) 623 pci_restore_bars(dev); 624 625 if (dev->bus->self) 626 pcie_aspm_pm_state_change(dev->bus->self); 627 628 return 0; 629 } 630 631 /** 632 * pci_update_current_state - Read PCI power state of given device from its 633 * PCI PM registers and cache it 634 * @dev: PCI device to handle. 635 * @state: State to cache in case the device doesn't have the PM capability 636 */ 637 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 638 { 639 if (dev->pm_cap) { 640 u16 pmcsr; 641 642 /* 643 * Configuration space is not accessible for device in 644 * D3cold, so just keep or set D3cold for safety 645 */ 646 if (dev->current_state == PCI_D3cold) 647 return; 648 if (state == PCI_D3cold) { 649 dev->current_state = PCI_D3cold; 650 return; 651 } 652 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 653 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 654 } else { 655 dev->current_state = state; 656 } 657 } 658 659 /** 660 * pci_power_up - Put the given device into D0 forcibly 661 * @dev: PCI device to power up 662 */ 663 void pci_power_up(struct pci_dev *dev) 664 { 665 if (platform_pci_power_manageable(dev)) 666 platform_pci_set_power_state(dev, PCI_D0); 667 668 pci_raw_set_power_state(dev, PCI_D0); 669 pci_update_current_state(dev, PCI_D0); 670 } 671 672 /** 673 * pci_platform_power_transition - Use platform to change device power state 674 * @dev: PCI device to handle. 675 * @state: State to put the device into. 676 */ 677 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 678 { 679 int error; 680 681 if (platform_pci_power_manageable(dev)) { 682 error = platform_pci_set_power_state(dev, state); 683 if (!error) 684 pci_update_current_state(dev, state); 685 } else 686 error = -ENODEV; 687 688 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 689 dev->current_state = PCI_D0; 690 691 return error; 692 } 693 694 /** 695 * pci_wakeup - Wake up a PCI device 696 * @pci_dev: Device to handle. 697 * @ign: ignored parameter 698 */ 699 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 700 { 701 pci_wakeup_event(pci_dev); 702 pm_request_resume(&pci_dev->dev); 703 return 0; 704 } 705 706 /** 707 * pci_wakeup_bus - Walk given bus and wake up devices on it 708 * @bus: Top bus of the subtree to walk. 709 */ 710 static void pci_wakeup_bus(struct pci_bus *bus) 711 { 712 if (bus) 713 pci_walk_bus(bus, pci_wakeup, NULL); 714 } 715 716 /** 717 * __pci_start_power_transition - Start power transition of a PCI device 718 * @dev: PCI device to handle. 719 * @state: State to put the device into. 720 */ 721 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 722 { 723 if (state == PCI_D0) { 724 pci_platform_power_transition(dev, PCI_D0); 725 /* 726 * Mandatory power management transition delays, see 727 * PCI Express Base Specification Revision 2.0 Section 728 * 6.6.1: Conventional Reset. Do not delay for 729 * devices powered on/off by corresponding bridge, 730 * because have already delayed for the bridge. 731 */ 732 if (dev->runtime_d3cold) { 733 msleep(dev->d3cold_delay); 734 /* 735 * When powering on a bridge from D3cold, the 736 * whole hierarchy may be powered on into 737 * D0uninitialized state, resume them to give 738 * them a chance to suspend again 739 */ 740 pci_wakeup_bus(dev->subordinate); 741 } 742 } 743 } 744 745 /** 746 * __pci_dev_set_current_state - Set current state of a PCI device 747 * @dev: Device to handle 748 * @data: pointer to state to be set 749 */ 750 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 751 { 752 pci_power_t state = *(pci_power_t *)data; 753 754 dev->current_state = state; 755 return 0; 756 } 757 758 /** 759 * __pci_bus_set_current_state - Walk given bus and set current state of devices 760 * @bus: Top bus of the subtree to walk. 761 * @state: state to be set 762 */ 763 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 764 { 765 if (bus) 766 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 767 } 768 769 /** 770 * __pci_complete_power_transition - Complete power transition of a PCI device 771 * @dev: PCI device to handle. 772 * @state: State to put the device into. 773 * 774 * This function should not be called directly by device drivers. 775 */ 776 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 777 { 778 int ret; 779 780 if (state <= PCI_D0) 781 return -EINVAL; 782 ret = pci_platform_power_transition(dev, state); 783 /* Power off the bridge may power off the whole hierarchy */ 784 if (!ret && state == PCI_D3cold) 785 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 786 return ret; 787 } 788 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 789 790 /** 791 * pci_set_power_state - Set the power state of a PCI device 792 * @dev: PCI device to handle. 793 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 794 * 795 * Transition a device to a new power state, using the platform firmware and/or 796 * the device's PCI PM registers. 797 * 798 * RETURN VALUE: 799 * -EINVAL if the requested state is invalid. 800 * -EIO if device does not support PCI PM or its PM capabilities register has a 801 * wrong version, or device doesn't support the requested state. 802 * 0 if device already is in the requested state. 803 * 0 if device's power state has been successfully changed. 804 */ 805 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 806 { 807 int error; 808 809 /* bound the state we're entering */ 810 if (state > PCI_D3cold) 811 state = PCI_D3cold; 812 else if (state < PCI_D0) 813 state = PCI_D0; 814 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 815 /* 816 * If the device or the parent bridge do not support PCI PM, 817 * ignore the request if we're doing anything other than putting 818 * it into D0 (which would only happen on boot). 819 */ 820 return 0; 821 822 /* Check if we're already there */ 823 if (dev->current_state == state) 824 return 0; 825 826 __pci_start_power_transition(dev, state); 827 828 /* This device is quirked not to be put into D3, so 829 don't put it in D3 */ 830 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 831 return 0; 832 833 /* 834 * To put device in D3cold, we put device into D3hot in native 835 * way, then put device into D3cold with platform ops 836 */ 837 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 838 PCI_D3hot : state); 839 840 if (!__pci_complete_power_transition(dev, state)) 841 error = 0; 842 843 return error; 844 } 845 EXPORT_SYMBOL(pci_set_power_state); 846 847 /** 848 * pci_choose_state - Choose the power state of a PCI device 849 * @dev: PCI device to be suspended 850 * @state: target sleep state for the whole system. This is the value 851 * that is passed to suspend() function. 852 * 853 * Returns PCI power state suitable for given device and given system 854 * message. 855 */ 856 857 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 858 { 859 pci_power_t ret; 860 861 if (!dev->pm_cap) 862 return PCI_D0; 863 864 ret = platform_pci_choose_state(dev); 865 if (ret != PCI_POWER_ERROR) 866 return ret; 867 868 switch (state.event) { 869 case PM_EVENT_ON: 870 return PCI_D0; 871 case PM_EVENT_FREEZE: 872 case PM_EVENT_PRETHAW: 873 /* REVISIT both freeze and pre-thaw "should" use D0 */ 874 case PM_EVENT_SUSPEND: 875 case PM_EVENT_HIBERNATE: 876 return PCI_D3hot; 877 default: 878 dev_info(&dev->dev, "unrecognized suspend event %d\n", 879 state.event); 880 BUG(); 881 } 882 return PCI_D0; 883 } 884 EXPORT_SYMBOL(pci_choose_state); 885 886 #define PCI_EXP_SAVE_REGS 7 887 888 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 889 u16 cap, bool extended) 890 { 891 struct pci_cap_saved_state *tmp; 892 893 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 894 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 895 return tmp; 896 } 897 return NULL; 898 } 899 900 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 901 { 902 return _pci_find_saved_cap(dev, cap, false); 903 } 904 905 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 906 { 907 return _pci_find_saved_cap(dev, cap, true); 908 } 909 910 static int pci_save_pcie_state(struct pci_dev *dev) 911 { 912 int i = 0; 913 struct pci_cap_saved_state *save_state; 914 u16 *cap; 915 916 if (!pci_is_pcie(dev)) 917 return 0; 918 919 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 920 if (!save_state) { 921 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 922 return -ENOMEM; 923 } 924 925 cap = (u16 *)&save_state->cap.data[0]; 926 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 927 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 928 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 929 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 930 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 931 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 932 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 933 934 return 0; 935 } 936 937 static void pci_restore_pcie_state(struct pci_dev *dev) 938 { 939 int i = 0; 940 struct pci_cap_saved_state *save_state; 941 u16 *cap; 942 943 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 944 if (!save_state) 945 return; 946 947 cap = (u16 *)&save_state->cap.data[0]; 948 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 949 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 950 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 951 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 952 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 953 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 954 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 955 } 956 957 958 static int pci_save_pcix_state(struct pci_dev *dev) 959 { 960 int pos; 961 struct pci_cap_saved_state *save_state; 962 963 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 964 if (pos <= 0) 965 return 0; 966 967 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 968 if (!save_state) { 969 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 970 return -ENOMEM; 971 } 972 973 pci_read_config_word(dev, pos + PCI_X_CMD, 974 (u16 *)save_state->cap.data); 975 976 return 0; 977 } 978 979 static void pci_restore_pcix_state(struct pci_dev *dev) 980 { 981 int i = 0, pos; 982 struct pci_cap_saved_state *save_state; 983 u16 *cap; 984 985 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 986 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 987 if (!save_state || pos <= 0) 988 return; 989 cap = (u16 *)&save_state->cap.data[0]; 990 991 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 992 } 993 994 995 /** 996 * pci_save_state - save the PCI configuration space of a device before suspending 997 * @dev: - PCI device that we're dealing with 998 */ 999 int pci_save_state(struct pci_dev *dev) 1000 { 1001 int i; 1002 /* XXX: 100% dword access ok here? */ 1003 for (i = 0; i < 16; i++) 1004 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1005 dev->state_saved = true; 1006 1007 i = pci_save_pcie_state(dev); 1008 if (i != 0) 1009 return i; 1010 1011 i = pci_save_pcix_state(dev); 1012 if (i != 0) 1013 return i; 1014 1015 return pci_save_vc_state(dev); 1016 } 1017 EXPORT_SYMBOL(pci_save_state); 1018 1019 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1020 u32 saved_val, int retry) 1021 { 1022 u32 val; 1023 1024 pci_read_config_dword(pdev, offset, &val); 1025 if (val == saved_val) 1026 return; 1027 1028 for (;;) { 1029 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1030 offset, val, saved_val); 1031 pci_write_config_dword(pdev, offset, saved_val); 1032 if (retry-- <= 0) 1033 return; 1034 1035 pci_read_config_dword(pdev, offset, &val); 1036 if (val == saved_val) 1037 return; 1038 1039 mdelay(1); 1040 } 1041 } 1042 1043 static void pci_restore_config_space_range(struct pci_dev *pdev, 1044 int start, int end, int retry) 1045 { 1046 int index; 1047 1048 for (index = end; index >= start; index--) 1049 pci_restore_config_dword(pdev, 4 * index, 1050 pdev->saved_config_space[index], 1051 retry); 1052 } 1053 1054 static void pci_restore_config_space(struct pci_dev *pdev) 1055 { 1056 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1057 pci_restore_config_space_range(pdev, 10, 15, 0); 1058 /* Restore BARs before the command register. */ 1059 pci_restore_config_space_range(pdev, 4, 9, 10); 1060 pci_restore_config_space_range(pdev, 0, 3, 0); 1061 } else { 1062 pci_restore_config_space_range(pdev, 0, 15, 0); 1063 } 1064 } 1065 1066 /** 1067 * pci_restore_state - Restore the saved state of a PCI device 1068 * @dev: - PCI device that we're dealing with 1069 */ 1070 void pci_restore_state(struct pci_dev *dev) 1071 { 1072 if (!dev->state_saved) 1073 return; 1074 1075 /* PCI Express register must be restored first */ 1076 pci_restore_pcie_state(dev); 1077 pci_restore_ats_state(dev); 1078 pci_restore_vc_state(dev); 1079 1080 pci_restore_config_space(dev); 1081 1082 pci_restore_pcix_state(dev); 1083 pci_restore_msi_state(dev); 1084 pci_restore_iov_state(dev); 1085 1086 dev->state_saved = false; 1087 } 1088 EXPORT_SYMBOL(pci_restore_state); 1089 1090 struct pci_saved_state { 1091 u32 config_space[16]; 1092 struct pci_cap_saved_data cap[0]; 1093 }; 1094 1095 /** 1096 * pci_store_saved_state - Allocate and return an opaque struct containing 1097 * the device saved state. 1098 * @dev: PCI device that we're dealing with 1099 * 1100 * Return NULL if no state or error. 1101 */ 1102 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1103 { 1104 struct pci_saved_state *state; 1105 struct pci_cap_saved_state *tmp; 1106 struct pci_cap_saved_data *cap; 1107 size_t size; 1108 1109 if (!dev->state_saved) 1110 return NULL; 1111 1112 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1113 1114 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1115 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1116 1117 state = kzalloc(size, GFP_KERNEL); 1118 if (!state) 1119 return NULL; 1120 1121 memcpy(state->config_space, dev->saved_config_space, 1122 sizeof(state->config_space)); 1123 1124 cap = state->cap; 1125 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1126 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1127 memcpy(cap, &tmp->cap, len); 1128 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1129 } 1130 /* Empty cap_save terminates list */ 1131 1132 return state; 1133 } 1134 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1135 1136 /** 1137 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1138 * @dev: PCI device that we're dealing with 1139 * @state: Saved state returned from pci_store_saved_state() 1140 */ 1141 int pci_load_saved_state(struct pci_dev *dev, 1142 struct pci_saved_state *state) 1143 { 1144 struct pci_cap_saved_data *cap; 1145 1146 dev->state_saved = false; 1147 1148 if (!state) 1149 return 0; 1150 1151 memcpy(dev->saved_config_space, state->config_space, 1152 sizeof(state->config_space)); 1153 1154 cap = state->cap; 1155 while (cap->size) { 1156 struct pci_cap_saved_state *tmp; 1157 1158 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1159 if (!tmp || tmp->cap.size != cap->size) 1160 return -EINVAL; 1161 1162 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1163 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1164 sizeof(struct pci_cap_saved_data) + cap->size); 1165 } 1166 1167 dev->state_saved = true; 1168 return 0; 1169 } 1170 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1171 1172 /** 1173 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1174 * and free the memory allocated for it. 1175 * @dev: PCI device that we're dealing with 1176 * @state: Pointer to saved state returned from pci_store_saved_state() 1177 */ 1178 int pci_load_and_free_saved_state(struct pci_dev *dev, 1179 struct pci_saved_state **state) 1180 { 1181 int ret = pci_load_saved_state(dev, *state); 1182 kfree(*state); 1183 *state = NULL; 1184 return ret; 1185 } 1186 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1187 1188 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1189 { 1190 return pci_enable_resources(dev, bars); 1191 } 1192 1193 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1194 { 1195 int err; 1196 struct pci_dev *bridge; 1197 u16 cmd; 1198 u8 pin; 1199 1200 err = pci_set_power_state(dev, PCI_D0); 1201 if (err < 0 && err != -EIO) 1202 return err; 1203 1204 bridge = pci_upstream_bridge(dev); 1205 if (bridge) 1206 pcie_aspm_powersave_config_link(bridge); 1207 1208 err = pcibios_enable_device(dev, bars); 1209 if (err < 0) 1210 return err; 1211 pci_fixup_device(pci_fixup_enable, dev); 1212 1213 if (dev->msi_enabled || dev->msix_enabled) 1214 return 0; 1215 1216 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1217 if (pin) { 1218 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1219 if (cmd & PCI_COMMAND_INTX_DISABLE) 1220 pci_write_config_word(dev, PCI_COMMAND, 1221 cmd & ~PCI_COMMAND_INTX_DISABLE); 1222 } 1223 1224 return 0; 1225 } 1226 1227 /** 1228 * pci_reenable_device - Resume abandoned device 1229 * @dev: PCI device to be resumed 1230 * 1231 * Note this function is a backend of pci_default_resume and is not supposed 1232 * to be called by normal code, write proper resume handler and use it instead. 1233 */ 1234 int pci_reenable_device(struct pci_dev *dev) 1235 { 1236 if (pci_is_enabled(dev)) 1237 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1238 return 0; 1239 } 1240 EXPORT_SYMBOL(pci_reenable_device); 1241 1242 static void pci_enable_bridge(struct pci_dev *dev) 1243 { 1244 struct pci_dev *bridge; 1245 int retval; 1246 1247 bridge = pci_upstream_bridge(dev); 1248 if (bridge) 1249 pci_enable_bridge(bridge); 1250 1251 if (pci_is_enabled(dev)) { 1252 if (!dev->is_busmaster) 1253 pci_set_master(dev); 1254 return; 1255 } 1256 1257 retval = pci_enable_device(dev); 1258 if (retval) 1259 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1260 retval); 1261 pci_set_master(dev); 1262 } 1263 1264 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1265 { 1266 struct pci_dev *bridge; 1267 int err; 1268 int i, bars = 0; 1269 1270 /* 1271 * Power state could be unknown at this point, either due to a fresh 1272 * boot or a device removal call. So get the current power state 1273 * so that things like MSI message writing will behave as expected 1274 * (e.g. if the device really is in D0 at enable time). 1275 */ 1276 if (dev->pm_cap) { 1277 u16 pmcsr; 1278 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1279 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1280 } 1281 1282 if (atomic_inc_return(&dev->enable_cnt) > 1) 1283 return 0; /* already enabled */ 1284 1285 bridge = pci_upstream_bridge(dev); 1286 if (bridge) 1287 pci_enable_bridge(bridge); 1288 1289 /* only skip sriov related */ 1290 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1291 if (dev->resource[i].flags & flags) 1292 bars |= (1 << i); 1293 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1294 if (dev->resource[i].flags & flags) 1295 bars |= (1 << i); 1296 1297 err = do_pci_enable_device(dev, bars); 1298 if (err < 0) 1299 atomic_dec(&dev->enable_cnt); 1300 return err; 1301 } 1302 1303 /** 1304 * pci_enable_device_io - Initialize a device for use with IO space 1305 * @dev: PCI device to be initialized 1306 * 1307 * Initialize device before it's used by a driver. Ask low-level code 1308 * to enable I/O resources. Wake up the device if it was suspended. 1309 * Beware, this function can fail. 1310 */ 1311 int pci_enable_device_io(struct pci_dev *dev) 1312 { 1313 return pci_enable_device_flags(dev, IORESOURCE_IO); 1314 } 1315 EXPORT_SYMBOL(pci_enable_device_io); 1316 1317 /** 1318 * pci_enable_device_mem - Initialize a device for use with Memory space 1319 * @dev: PCI device to be initialized 1320 * 1321 * Initialize device before it's used by a driver. Ask low-level code 1322 * to enable Memory resources. Wake up the device if it was suspended. 1323 * Beware, this function can fail. 1324 */ 1325 int pci_enable_device_mem(struct pci_dev *dev) 1326 { 1327 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1328 } 1329 EXPORT_SYMBOL(pci_enable_device_mem); 1330 1331 /** 1332 * pci_enable_device - Initialize device before it's used by a driver. 1333 * @dev: PCI device to be initialized 1334 * 1335 * Initialize device before it's used by a driver. Ask low-level code 1336 * to enable I/O and memory. Wake up the device if it was suspended. 1337 * Beware, this function can fail. 1338 * 1339 * Note we don't actually enable the device many times if we call 1340 * this function repeatedly (we just increment the count). 1341 */ 1342 int pci_enable_device(struct pci_dev *dev) 1343 { 1344 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1345 } 1346 EXPORT_SYMBOL(pci_enable_device); 1347 1348 /* 1349 * Managed PCI resources. This manages device on/off, intx/msi/msix 1350 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1351 * there's no need to track it separately. pci_devres is initialized 1352 * when a device is enabled using managed PCI device enable interface. 1353 */ 1354 struct pci_devres { 1355 unsigned int enabled:1; 1356 unsigned int pinned:1; 1357 unsigned int orig_intx:1; 1358 unsigned int restore_intx:1; 1359 u32 region_mask; 1360 }; 1361 1362 static void pcim_release(struct device *gendev, void *res) 1363 { 1364 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); 1365 struct pci_devres *this = res; 1366 int i; 1367 1368 if (dev->msi_enabled) 1369 pci_disable_msi(dev); 1370 if (dev->msix_enabled) 1371 pci_disable_msix(dev); 1372 1373 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1374 if (this->region_mask & (1 << i)) 1375 pci_release_region(dev, i); 1376 1377 if (this->restore_intx) 1378 pci_intx(dev, this->orig_intx); 1379 1380 if (this->enabled && !this->pinned) 1381 pci_disable_device(dev); 1382 } 1383 1384 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1385 { 1386 struct pci_devres *dr, *new_dr; 1387 1388 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1389 if (dr) 1390 return dr; 1391 1392 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1393 if (!new_dr) 1394 return NULL; 1395 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1396 } 1397 1398 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1399 { 1400 if (pci_is_managed(pdev)) 1401 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1402 return NULL; 1403 } 1404 1405 /** 1406 * pcim_enable_device - Managed pci_enable_device() 1407 * @pdev: PCI device to be initialized 1408 * 1409 * Managed pci_enable_device(). 1410 */ 1411 int pcim_enable_device(struct pci_dev *pdev) 1412 { 1413 struct pci_devres *dr; 1414 int rc; 1415 1416 dr = get_pci_dr(pdev); 1417 if (unlikely(!dr)) 1418 return -ENOMEM; 1419 if (dr->enabled) 1420 return 0; 1421 1422 rc = pci_enable_device(pdev); 1423 if (!rc) { 1424 pdev->is_managed = 1; 1425 dr->enabled = 1; 1426 } 1427 return rc; 1428 } 1429 EXPORT_SYMBOL(pcim_enable_device); 1430 1431 /** 1432 * pcim_pin_device - Pin managed PCI device 1433 * @pdev: PCI device to pin 1434 * 1435 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1436 * driver detach. @pdev must have been enabled with 1437 * pcim_enable_device(). 1438 */ 1439 void pcim_pin_device(struct pci_dev *pdev) 1440 { 1441 struct pci_devres *dr; 1442 1443 dr = find_pci_dr(pdev); 1444 WARN_ON(!dr || !dr->enabled); 1445 if (dr) 1446 dr->pinned = 1; 1447 } 1448 EXPORT_SYMBOL(pcim_pin_device); 1449 1450 /* 1451 * pcibios_add_device - provide arch specific hooks when adding device dev 1452 * @dev: the PCI device being added 1453 * 1454 * Permits the platform to provide architecture specific functionality when 1455 * devices are added. This is the default implementation. Architecture 1456 * implementations can override this. 1457 */ 1458 int __weak pcibios_add_device(struct pci_dev *dev) 1459 { 1460 return 0; 1461 } 1462 1463 /** 1464 * pcibios_release_device - provide arch specific hooks when releasing device dev 1465 * @dev: the PCI device being released 1466 * 1467 * Permits the platform to provide architecture specific functionality when 1468 * devices are released. This is the default implementation. Architecture 1469 * implementations can override this. 1470 */ 1471 void __weak pcibios_release_device(struct pci_dev *dev) {} 1472 1473 /** 1474 * pcibios_disable_device - disable arch specific PCI resources for device dev 1475 * @dev: the PCI device to disable 1476 * 1477 * Disables architecture specific PCI resources for the device. This 1478 * is the default implementation. Architecture implementations can 1479 * override this. 1480 */ 1481 void __weak pcibios_disable_device (struct pci_dev *dev) {} 1482 1483 /** 1484 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1485 * @irq: ISA IRQ to penalize 1486 * @active: IRQ active or not 1487 * 1488 * Permits the platform to provide architecture-specific functionality when 1489 * penalizing ISA IRQs. This is the default implementation. Architecture 1490 * implementations can override this. 1491 */ 1492 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1493 1494 static void do_pci_disable_device(struct pci_dev *dev) 1495 { 1496 u16 pci_command; 1497 1498 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1499 if (pci_command & PCI_COMMAND_MASTER) { 1500 pci_command &= ~PCI_COMMAND_MASTER; 1501 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1502 } 1503 1504 pcibios_disable_device(dev); 1505 } 1506 1507 /** 1508 * pci_disable_enabled_device - Disable device without updating enable_cnt 1509 * @dev: PCI device to disable 1510 * 1511 * NOTE: This function is a backend of PCI power management routines and is 1512 * not supposed to be called drivers. 1513 */ 1514 void pci_disable_enabled_device(struct pci_dev *dev) 1515 { 1516 if (pci_is_enabled(dev)) 1517 do_pci_disable_device(dev); 1518 } 1519 1520 /** 1521 * pci_disable_device - Disable PCI device after use 1522 * @dev: PCI device to be disabled 1523 * 1524 * Signal to the system that the PCI device is not in use by the system 1525 * anymore. This only involves disabling PCI bus-mastering, if active. 1526 * 1527 * Note we don't actually disable the device until all callers of 1528 * pci_enable_device() have called pci_disable_device(). 1529 */ 1530 void pci_disable_device(struct pci_dev *dev) 1531 { 1532 struct pci_devres *dr; 1533 1534 dr = find_pci_dr(dev); 1535 if (dr) 1536 dr->enabled = 0; 1537 1538 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1539 "disabling already-disabled device"); 1540 1541 if (atomic_dec_return(&dev->enable_cnt) != 0) 1542 return; 1543 1544 do_pci_disable_device(dev); 1545 1546 dev->is_busmaster = 0; 1547 } 1548 EXPORT_SYMBOL(pci_disable_device); 1549 1550 /** 1551 * pcibios_set_pcie_reset_state - set reset state for device dev 1552 * @dev: the PCIe device reset 1553 * @state: Reset state to enter into 1554 * 1555 * 1556 * Sets the PCIe reset state for the device. This is the default 1557 * implementation. Architecture implementations can override this. 1558 */ 1559 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1560 enum pcie_reset_state state) 1561 { 1562 return -EINVAL; 1563 } 1564 1565 /** 1566 * pci_set_pcie_reset_state - set reset state for device dev 1567 * @dev: the PCIe device reset 1568 * @state: Reset state to enter into 1569 * 1570 * 1571 * Sets the PCI reset state for the device. 1572 */ 1573 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1574 { 1575 return pcibios_set_pcie_reset_state(dev, state); 1576 } 1577 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1578 1579 /** 1580 * pci_check_pme_status - Check if given device has generated PME. 1581 * @dev: Device to check. 1582 * 1583 * Check the PME status of the device and if set, clear it and clear PME enable 1584 * (if set). Return 'true' if PME status and PME enable were both set or 1585 * 'false' otherwise. 1586 */ 1587 bool pci_check_pme_status(struct pci_dev *dev) 1588 { 1589 int pmcsr_pos; 1590 u16 pmcsr; 1591 bool ret = false; 1592 1593 if (!dev->pm_cap) 1594 return false; 1595 1596 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1597 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1598 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1599 return false; 1600 1601 /* Clear PME status. */ 1602 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1603 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1604 /* Disable PME to avoid interrupt flood. */ 1605 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1606 ret = true; 1607 } 1608 1609 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1610 1611 return ret; 1612 } 1613 1614 /** 1615 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1616 * @dev: Device to handle. 1617 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1618 * 1619 * Check if @dev has generated PME and queue a resume request for it in that 1620 * case. 1621 */ 1622 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1623 { 1624 if (pme_poll_reset && dev->pme_poll) 1625 dev->pme_poll = false; 1626 1627 if (pci_check_pme_status(dev)) { 1628 pci_wakeup_event(dev); 1629 pm_request_resume(&dev->dev); 1630 } 1631 return 0; 1632 } 1633 1634 /** 1635 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1636 * @bus: Top bus of the subtree to walk. 1637 */ 1638 void pci_pme_wakeup_bus(struct pci_bus *bus) 1639 { 1640 if (bus) 1641 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1642 } 1643 1644 1645 /** 1646 * pci_pme_capable - check the capability of PCI device to generate PME# 1647 * @dev: PCI device to handle. 1648 * @state: PCI state from which device will issue PME#. 1649 */ 1650 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1651 { 1652 if (!dev->pm_cap) 1653 return false; 1654 1655 return !!(dev->pme_support & (1 << state)); 1656 } 1657 EXPORT_SYMBOL(pci_pme_capable); 1658 1659 static void pci_pme_list_scan(struct work_struct *work) 1660 { 1661 struct pci_pme_device *pme_dev, *n; 1662 1663 mutex_lock(&pci_pme_list_mutex); 1664 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1665 if (pme_dev->dev->pme_poll) { 1666 struct pci_dev *bridge; 1667 1668 bridge = pme_dev->dev->bus->self; 1669 /* 1670 * If bridge is in low power state, the 1671 * configuration space of subordinate devices 1672 * may be not accessible 1673 */ 1674 if (bridge && bridge->current_state != PCI_D0) 1675 continue; 1676 pci_pme_wakeup(pme_dev->dev, NULL); 1677 } else { 1678 list_del(&pme_dev->list); 1679 kfree(pme_dev); 1680 } 1681 } 1682 if (!list_empty(&pci_pme_list)) 1683 schedule_delayed_work(&pci_pme_work, 1684 msecs_to_jiffies(PME_TIMEOUT)); 1685 mutex_unlock(&pci_pme_list_mutex); 1686 } 1687 1688 /** 1689 * pci_pme_active - enable or disable PCI device's PME# function 1690 * @dev: PCI device to handle. 1691 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1692 * 1693 * The caller must verify that the device is capable of generating PME# before 1694 * calling this function with @enable equal to 'true'. 1695 */ 1696 void pci_pme_active(struct pci_dev *dev, bool enable) 1697 { 1698 u16 pmcsr; 1699 1700 if (!dev->pme_support) 1701 return; 1702 1703 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1704 /* Clear PME_Status by writing 1 to it and enable PME# */ 1705 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1706 if (!enable) 1707 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1708 1709 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1710 1711 /* 1712 * PCI (as opposed to PCIe) PME requires that the device have 1713 * its PME# line hooked up correctly. Not all hardware vendors 1714 * do this, so the PME never gets delivered and the device 1715 * remains asleep. The easiest way around this is to 1716 * periodically walk the list of suspended devices and check 1717 * whether any have their PME flag set. The assumption is that 1718 * we'll wake up often enough anyway that this won't be a huge 1719 * hit, and the power savings from the devices will still be a 1720 * win. 1721 * 1722 * Although PCIe uses in-band PME message instead of PME# line 1723 * to report PME, PME does not work for some PCIe devices in 1724 * reality. For example, there are devices that set their PME 1725 * status bits, but don't really bother to send a PME message; 1726 * there are PCI Express Root Ports that don't bother to 1727 * trigger interrupts when they receive PME messages from the 1728 * devices below. So PME poll is used for PCIe devices too. 1729 */ 1730 1731 if (dev->pme_poll) { 1732 struct pci_pme_device *pme_dev; 1733 if (enable) { 1734 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1735 GFP_KERNEL); 1736 if (!pme_dev) { 1737 dev_warn(&dev->dev, "can't enable PME#\n"); 1738 return; 1739 } 1740 pme_dev->dev = dev; 1741 mutex_lock(&pci_pme_list_mutex); 1742 list_add(&pme_dev->list, &pci_pme_list); 1743 if (list_is_singular(&pci_pme_list)) 1744 schedule_delayed_work(&pci_pme_work, 1745 msecs_to_jiffies(PME_TIMEOUT)); 1746 mutex_unlock(&pci_pme_list_mutex); 1747 } else { 1748 mutex_lock(&pci_pme_list_mutex); 1749 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1750 if (pme_dev->dev == dev) { 1751 list_del(&pme_dev->list); 1752 kfree(pme_dev); 1753 break; 1754 } 1755 } 1756 mutex_unlock(&pci_pme_list_mutex); 1757 } 1758 } 1759 1760 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1761 } 1762 EXPORT_SYMBOL(pci_pme_active); 1763 1764 /** 1765 * __pci_enable_wake - enable PCI device as wakeup event source 1766 * @dev: PCI device affected 1767 * @state: PCI state from which device will issue wakeup events 1768 * @runtime: True if the events are to be generated at run time 1769 * @enable: True to enable event generation; false to disable 1770 * 1771 * This enables the device as a wakeup event source, or disables it. 1772 * When such events involves platform-specific hooks, those hooks are 1773 * called automatically by this routine. 1774 * 1775 * Devices with legacy power management (no standard PCI PM capabilities) 1776 * always require such platform hooks. 1777 * 1778 * RETURN VALUE: 1779 * 0 is returned on success 1780 * -EINVAL is returned if device is not supposed to wake up the system 1781 * Error code depending on the platform is returned if both the platform and 1782 * the native mechanism fail to enable the generation of wake-up events 1783 */ 1784 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1785 bool runtime, bool enable) 1786 { 1787 int ret = 0; 1788 1789 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1790 return -EINVAL; 1791 1792 /* Don't do the same thing twice in a row for one device. */ 1793 if (!!enable == !!dev->wakeup_prepared) 1794 return 0; 1795 1796 /* 1797 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1798 * Anderson we should be doing PME# wake enable followed by ACPI wake 1799 * enable. To disable wake-up we call the platform first, for symmetry. 1800 */ 1801 1802 if (enable) { 1803 int error; 1804 1805 if (pci_pme_capable(dev, state)) 1806 pci_pme_active(dev, true); 1807 else 1808 ret = 1; 1809 error = runtime ? platform_pci_run_wake(dev, true) : 1810 platform_pci_sleep_wake(dev, true); 1811 if (ret) 1812 ret = error; 1813 if (!ret) 1814 dev->wakeup_prepared = true; 1815 } else { 1816 if (runtime) 1817 platform_pci_run_wake(dev, false); 1818 else 1819 platform_pci_sleep_wake(dev, false); 1820 pci_pme_active(dev, false); 1821 dev->wakeup_prepared = false; 1822 } 1823 1824 return ret; 1825 } 1826 EXPORT_SYMBOL(__pci_enable_wake); 1827 1828 /** 1829 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1830 * @dev: PCI device to prepare 1831 * @enable: True to enable wake-up event generation; false to disable 1832 * 1833 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1834 * and this function allows them to set that up cleanly - pci_enable_wake() 1835 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1836 * ordering constraints. 1837 * 1838 * This function only returns error code if the device is not capable of 1839 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1840 * enable wake-up power for it. 1841 */ 1842 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1843 { 1844 return pci_pme_capable(dev, PCI_D3cold) ? 1845 pci_enable_wake(dev, PCI_D3cold, enable) : 1846 pci_enable_wake(dev, PCI_D3hot, enable); 1847 } 1848 EXPORT_SYMBOL(pci_wake_from_d3); 1849 1850 /** 1851 * pci_target_state - find an appropriate low power state for a given PCI dev 1852 * @dev: PCI device 1853 * 1854 * Use underlying platform code to find a supported low power state for @dev. 1855 * If the platform can't manage @dev, return the deepest state from which it 1856 * can generate wake events, based on any available PME info. 1857 */ 1858 static pci_power_t pci_target_state(struct pci_dev *dev) 1859 { 1860 pci_power_t target_state = PCI_D3hot; 1861 1862 if (platform_pci_power_manageable(dev)) { 1863 /* 1864 * Call the platform to choose the target state of the device 1865 * and enable wake-up from this state if supported. 1866 */ 1867 pci_power_t state = platform_pci_choose_state(dev); 1868 1869 switch (state) { 1870 case PCI_POWER_ERROR: 1871 case PCI_UNKNOWN: 1872 break; 1873 case PCI_D1: 1874 case PCI_D2: 1875 if (pci_no_d1d2(dev)) 1876 break; 1877 default: 1878 target_state = state; 1879 } 1880 } else if (!dev->pm_cap) { 1881 target_state = PCI_D0; 1882 } else if (device_may_wakeup(&dev->dev)) { 1883 /* 1884 * Find the deepest state from which the device can generate 1885 * wake-up events, make it the target state and enable device 1886 * to generate PME#. 1887 */ 1888 if (dev->pme_support) { 1889 while (target_state 1890 && !(dev->pme_support & (1 << target_state))) 1891 target_state--; 1892 } 1893 } 1894 1895 return target_state; 1896 } 1897 1898 /** 1899 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 1900 * @dev: Device to handle. 1901 * 1902 * Choose the power state appropriate for the device depending on whether 1903 * it can wake up the system and/or is power manageable by the platform 1904 * (PCI_D3hot is the default) and put the device into that state. 1905 */ 1906 int pci_prepare_to_sleep(struct pci_dev *dev) 1907 { 1908 pci_power_t target_state = pci_target_state(dev); 1909 int error; 1910 1911 if (target_state == PCI_POWER_ERROR) 1912 return -EIO; 1913 1914 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 1915 1916 error = pci_set_power_state(dev, target_state); 1917 1918 if (error) 1919 pci_enable_wake(dev, target_state, false); 1920 1921 return error; 1922 } 1923 EXPORT_SYMBOL(pci_prepare_to_sleep); 1924 1925 /** 1926 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 1927 * @dev: Device to handle. 1928 * 1929 * Disable device's system wake-up capability and put it into D0. 1930 */ 1931 int pci_back_from_sleep(struct pci_dev *dev) 1932 { 1933 pci_enable_wake(dev, PCI_D0, false); 1934 return pci_set_power_state(dev, PCI_D0); 1935 } 1936 EXPORT_SYMBOL(pci_back_from_sleep); 1937 1938 /** 1939 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 1940 * @dev: PCI device being suspended. 1941 * 1942 * Prepare @dev to generate wake-up events at run time and put it into a low 1943 * power state. 1944 */ 1945 int pci_finish_runtime_suspend(struct pci_dev *dev) 1946 { 1947 pci_power_t target_state = pci_target_state(dev); 1948 int error; 1949 1950 if (target_state == PCI_POWER_ERROR) 1951 return -EIO; 1952 1953 dev->runtime_d3cold = target_state == PCI_D3cold; 1954 1955 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 1956 1957 error = pci_set_power_state(dev, target_state); 1958 1959 if (error) { 1960 __pci_enable_wake(dev, target_state, true, false); 1961 dev->runtime_d3cold = false; 1962 } 1963 1964 return error; 1965 } 1966 1967 /** 1968 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 1969 * @dev: Device to check. 1970 * 1971 * Return true if the device itself is capable of generating wake-up events 1972 * (through the platform or using the native PCIe PME) or if the device supports 1973 * PME and one of its upstream bridges can generate wake-up events. 1974 */ 1975 bool pci_dev_run_wake(struct pci_dev *dev) 1976 { 1977 struct pci_bus *bus = dev->bus; 1978 1979 if (device_run_wake(&dev->dev)) 1980 return true; 1981 1982 if (!dev->pme_support) 1983 return false; 1984 1985 while (bus->parent) { 1986 struct pci_dev *bridge = bus->self; 1987 1988 if (device_run_wake(&bridge->dev)) 1989 return true; 1990 1991 bus = bus->parent; 1992 } 1993 1994 /* We have reached the root bus. */ 1995 if (bus->bridge) 1996 return device_run_wake(bus->bridge); 1997 1998 return false; 1999 } 2000 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2001 2002 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2003 { 2004 struct device *dev = &pdev->dev; 2005 struct device *parent = dev->parent; 2006 2007 if (parent) 2008 pm_runtime_get_sync(parent); 2009 pm_runtime_get_noresume(dev); 2010 /* 2011 * pdev->current_state is set to PCI_D3cold during suspending, 2012 * so wait until suspending completes 2013 */ 2014 pm_runtime_barrier(dev); 2015 /* 2016 * Only need to resume devices in D3cold, because config 2017 * registers are still accessible for devices suspended but 2018 * not in D3cold. 2019 */ 2020 if (pdev->current_state == PCI_D3cold) 2021 pm_runtime_resume(dev); 2022 } 2023 2024 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2025 { 2026 struct device *dev = &pdev->dev; 2027 struct device *parent = dev->parent; 2028 2029 pm_runtime_put(dev); 2030 if (parent) 2031 pm_runtime_put_sync(parent); 2032 } 2033 2034 /** 2035 * pci_pm_init - Initialize PM functions of given PCI device 2036 * @dev: PCI device to handle. 2037 */ 2038 void pci_pm_init(struct pci_dev *dev) 2039 { 2040 int pm; 2041 u16 pmc; 2042 2043 pm_runtime_forbid(&dev->dev); 2044 pm_runtime_set_active(&dev->dev); 2045 pm_runtime_enable(&dev->dev); 2046 device_enable_async_suspend(&dev->dev); 2047 dev->wakeup_prepared = false; 2048 2049 dev->pm_cap = 0; 2050 dev->pme_support = 0; 2051 2052 /* find PCI PM capability in list */ 2053 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2054 if (!pm) 2055 return; 2056 /* Check device's ability to generate PME# */ 2057 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2058 2059 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2060 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 2061 pmc & PCI_PM_CAP_VER_MASK); 2062 return; 2063 } 2064 2065 dev->pm_cap = pm; 2066 dev->d3_delay = PCI_PM_D3_WAIT; 2067 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2068 dev->d3cold_allowed = true; 2069 2070 dev->d1_support = false; 2071 dev->d2_support = false; 2072 if (!pci_no_d1d2(dev)) { 2073 if (pmc & PCI_PM_CAP_D1) 2074 dev->d1_support = true; 2075 if (pmc & PCI_PM_CAP_D2) 2076 dev->d2_support = true; 2077 2078 if (dev->d1_support || dev->d2_support) 2079 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 2080 dev->d1_support ? " D1" : "", 2081 dev->d2_support ? " D2" : ""); 2082 } 2083 2084 pmc &= PCI_PM_CAP_PME_MASK; 2085 if (pmc) { 2086 dev_printk(KERN_DEBUG, &dev->dev, 2087 "PME# supported from%s%s%s%s%s\n", 2088 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2089 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2090 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2091 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2092 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2093 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2094 dev->pme_poll = true; 2095 /* 2096 * Make device's PM flags reflect the wake-up capability, but 2097 * let the user space enable it to wake up the system as needed. 2098 */ 2099 device_set_wakeup_capable(&dev->dev, true); 2100 /* Disable the PME# generation functionality */ 2101 pci_pme_active(dev, false); 2102 } 2103 } 2104 2105 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2106 struct pci_cap_saved_state *new_cap) 2107 { 2108 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2109 } 2110 2111 /** 2112 * _pci_add_cap_save_buffer - allocate buffer for saving given 2113 * capability registers 2114 * @dev: the PCI device 2115 * @cap: the capability to allocate the buffer for 2116 * @extended: Standard or Extended capability ID 2117 * @size: requested size of the buffer 2118 */ 2119 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2120 bool extended, unsigned int size) 2121 { 2122 int pos; 2123 struct pci_cap_saved_state *save_state; 2124 2125 if (extended) 2126 pos = pci_find_ext_capability(dev, cap); 2127 else 2128 pos = pci_find_capability(dev, cap); 2129 2130 if (pos <= 0) 2131 return 0; 2132 2133 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2134 if (!save_state) 2135 return -ENOMEM; 2136 2137 save_state->cap.cap_nr = cap; 2138 save_state->cap.cap_extended = extended; 2139 save_state->cap.size = size; 2140 pci_add_saved_cap(dev, save_state); 2141 2142 return 0; 2143 } 2144 2145 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2146 { 2147 return _pci_add_cap_save_buffer(dev, cap, false, size); 2148 } 2149 2150 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2151 { 2152 return _pci_add_cap_save_buffer(dev, cap, true, size); 2153 } 2154 2155 /** 2156 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2157 * @dev: the PCI device 2158 */ 2159 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2160 { 2161 int error; 2162 2163 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2164 PCI_EXP_SAVE_REGS * sizeof(u16)); 2165 if (error) 2166 dev_err(&dev->dev, 2167 "unable to preallocate PCI Express save buffer\n"); 2168 2169 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2170 if (error) 2171 dev_err(&dev->dev, 2172 "unable to preallocate PCI-X save buffer\n"); 2173 2174 pci_allocate_vc_save_buffers(dev); 2175 } 2176 2177 void pci_free_cap_save_buffers(struct pci_dev *dev) 2178 { 2179 struct pci_cap_saved_state *tmp; 2180 struct hlist_node *n; 2181 2182 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2183 kfree(tmp); 2184 } 2185 2186 /** 2187 * pci_configure_ari - enable or disable ARI forwarding 2188 * @dev: the PCI device 2189 * 2190 * If @dev and its upstream bridge both support ARI, enable ARI in the 2191 * bridge. Otherwise, disable ARI in the bridge. 2192 */ 2193 void pci_configure_ari(struct pci_dev *dev) 2194 { 2195 u32 cap; 2196 struct pci_dev *bridge; 2197 2198 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2199 return; 2200 2201 bridge = dev->bus->self; 2202 if (!bridge) 2203 return; 2204 2205 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2206 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2207 return; 2208 2209 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2210 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2211 PCI_EXP_DEVCTL2_ARI); 2212 bridge->ari_enabled = 1; 2213 } else { 2214 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2215 PCI_EXP_DEVCTL2_ARI); 2216 bridge->ari_enabled = 0; 2217 } 2218 } 2219 2220 static int pci_acs_enable; 2221 2222 /** 2223 * pci_request_acs - ask for ACS to be enabled if supported 2224 */ 2225 void pci_request_acs(void) 2226 { 2227 pci_acs_enable = 1; 2228 } 2229 2230 /** 2231 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2232 * @dev: the PCI device 2233 */ 2234 static int pci_std_enable_acs(struct pci_dev *dev) 2235 { 2236 int pos; 2237 u16 cap; 2238 u16 ctrl; 2239 2240 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2241 if (!pos) 2242 return -ENODEV; 2243 2244 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2245 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2246 2247 /* Source Validation */ 2248 ctrl |= (cap & PCI_ACS_SV); 2249 2250 /* P2P Request Redirect */ 2251 ctrl |= (cap & PCI_ACS_RR); 2252 2253 /* P2P Completion Redirect */ 2254 ctrl |= (cap & PCI_ACS_CR); 2255 2256 /* Upstream Forwarding */ 2257 ctrl |= (cap & PCI_ACS_UF); 2258 2259 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2260 2261 return 0; 2262 } 2263 2264 /** 2265 * pci_enable_acs - enable ACS if hardware support it 2266 * @dev: the PCI device 2267 */ 2268 void pci_enable_acs(struct pci_dev *dev) 2269 { 2270 if (!pci_acs_enable) 2271 return; 2272 2273 if (!pci_std_enable_acs(dev)) 2274 return; 2275 2276 pci_dev_specific_enable_acs(dev); 2277 } 2278 2279 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2280 { 2281 int pos; 2282 u16 cap, ctrl; 2283 2284 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2285 if (!pos) 2286 return false; 2287 2288 /* 2289 * Except for egress control, capabilities are either required 2290 * or only required if controllable. Features missing from the 2291 * capability field can therefore be assumed as hard-wired enabled. 2292 */ 2293 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2294 acs_flags &= (cap | PCI_ACS_EC); 2295 2296 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2297 return (ctrl & acs_flags) == acs_flags; 2298 } 2299 2300 /** 2301 * pci_acs_enabled - test ACS against required flags for a given device 2302 * @pdev: device to test 2303 * @acs_flags: required PCI ACS flags 2304 * 2305 * Return true if the device supports the provided flags. Automatically 2306 * filters out flags that are not implemented on multifunction devices. 2307 * 2308 * Note that this interface checks the effective ACS capabilities of the 2309 * device rather than the actual capabilities. For instance, most single 2310 * function endpoints are not required to support ACS because they have no 2311 * opportunity for peer-to-peer access. We therefore return 'true' 2312 * regardless of whether the device exposes an ACS capability. This makes 2313 * it much easier for callers of this function to ignore the actual type 2314 * or topology of the device when testing ACS support. 2315 */ 2316 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2317 { 2318 int ret; 2319 2320 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2321 if (ret >= 0) 2322 return ret > 0; 2323 2324 /* 2325 * Conventional PCI and PCI-X devices never support ACS, either 2326 * effectively or actually. The shared bus topology implies that 2327 * any device on the bus can receive or snoop DMA. 2328 */ 2329 if (!pci_is_pcie(pdev)) 2330 return false; 2331 2332 switch (pci_pcie_type(pdev)) { 2333 /* 2334 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2335 * but since their primary interface is PCI/X, we conservatively 2336 * handle them as we would a non-PCIe device. 2337 */ 2338 case PCI_EXP_TYPE_PCIE_BRIDGE: 2339 /* 2340 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2341 * applicable... must never implement an ACS Extended Capability...". 2342 * This seems arbitrary, but we take a conservative interpretation 2343 * of this statement. 2344 */ 2345 case PCI_EXP_TYPE_PCI_BRIDGE: 2346 case PCI_EXP_TYPE_RC_EC: 2347 return false; 2348 /* 2349 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2350 * implement ACS in order to indicate their peer-to-peer capabilities, 2351 * regardless of whether they are single- or multi-function devices. 2352 */ 2353 case PCI_EXP_TYPE_DOWNSTREAM: 2354 case PCI_EXP_TYPE_ROOT_PORT: 2355 return pci_acs_flags_enabled(pdev, acs_flags); 2356 /* 2357 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2358 * implemented by the remaining PCIe types to indicate peer-to-peer 2359 * capabilities, but only when they are part of a multifunction 2360 * device. The footnote for section 6.12 indicates the specific 2361 * PCIe types included here. 2362 */ 2363 case PCI_EXP_TYPE_ENDPOINT: 2364 case PCI_EXP_TYPE_UPSTREAM: 2365 case PCI_EXP_TYPE_LEG_END: 2366 case PCI_EXP_TYPE_RC_END: 2367 if (!pdev->multifunction) 2368 break; 2369 2370 return pci_acs_flags_enabled(pdev, acs_flags); 2371 } 2372 2373 /* 2374 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2375 * to single function devices with the exception of downstream ports. 2376 */ 2377 return true; 2378 } 2379 2380 /** 2381 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2382 * @start: starting downstream device 2383 * @end: ending upstream device or NULL to search to the root bus 2384 * @acs_flags: required flags 2385 * 2386 * Walk up a device tree from start to end testing PCI ACS support. If 2387 * any step along the way does not support the required flags, return false. 2388 */ 2389 bool pci_acs_path_enabled(struct pci_dev *start, 2390 struct pci_dev *end, u16 acs_flags) 2391 { 2392 struct pci_dev *pdev, *parent = start; 2393 2394 do { 2395 pdev = parent; 2396 2397 if (!pci_acs_enabled(pdev, acs_flags)) 2398 return false; 2399 2400 if (pci_is_root_bus(pdev->bus)) 2401 return (end == NULL); 2402 2403 parent = pdev->bus->self; 2404 } while (pdev != end); 2405 2406 return true; 2407 } 2408 2409 /** 2410 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2411 * @dev: the PCI device 2412 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 2413 * 2414 * Perform INTx swizzling for a device behind one level of bridge. This is 2415 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2416 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2417 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2418 * the PCI Express Base Specification, Revision 2.1) 2419 */ 2420 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2421 { 2422 int slot; 2423 2424 if (pci_ari_enabled(dev->bus)) 2425 slot = 0; 2426 else 2427 slot = PCI_SLOT(dev->devfn); 2428 2429 return (((pin - 1) + slot) % 4) + 1; 2430 } 2431 2432 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2433 { 2434 u8 pin; 2435 2436 pin = dev->pin; 2437 if (!pin) 2438 return -1; 2439 2440 while (!pci_is_root_bus(dev->bus)) { 2441 pin = pci_swizzle_interrupt_pin(dev, pin); 2442 dev = dev->bus->self; 2443 } 2444 *bridge = dev; 2445 return pin; 2446 } 2447 2448 /** 2449 * pci_common_swizzle - swizzle INTx all the way to root bridge 2450 * @dev: the PCI device 2451 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2452 * 2453 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 2454 * bridges all the way up to a PCI root bus. 2455 */ 2456 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 2457 { 2458 u8 pin = *pinp; 2459 2460 while (!pci_is_root_bus(dev->bus)) { 2461 pin = pci_swizzle_interrupt_pin(dev, pin); 2462 dev = dev->bus->self; 2463 } 2464 *pinp = pin; 2465 return PCI_SLOT(dev->devfn); 2466 } 2467 2468 /** 2469 * pci_release_region - Release a PCI bar 2470 * @pdev: PCI device whose resources were previously reserved by pci_request_region 2471 * @bar: BAR to release 2472 * 2473 * Releases the PCI I/O and memory resources previously reserved by a 2474 * successful call to pci_request_region. Call this function only 2475 * after all use of the PCI regions has ceased. 2476 */ 2477 void pci_release_region(struct pci_dev *pdev, int bar) 2478 { 2479 struct pci_devres *dr; 2480 2481 if (pci_resource_len(pdev, bar) == 0) 2482 return; 2483 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 2484 release_region(pci_resource_start(pdev, bar), 2485 pci_resource_len(pdev, bar)); 2486 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 2487 release_mem_region(pci_resource_start(pdev, bar), 2488 pci_resource_len(pdev, bar)); 2489 2490 dr = find_pci_dr(pdev); 2491 if (dr) 2492 dr->region_mask &= ~(1 << bar); 2493 } 2494 EXPORT_SYMBOL(pci_release_region); 2495 2496 /** 2497 * __pci_request_region - Reserved PCI I/O and memory resource 2498 * @pdev: PCI device whose resources are to be reserved 2499 * @bar: BAR to be reserved 2500 * @res_name: Name to be associated with resource. 2501 * @exclusive: whether the region access is exclusive or not 2502 * 2503 * Mark the PCI region associated with PCI device @pdev BR @bar as 2504 * being reserved by owner @res_name. Do not access any 2505 * address inside the PCI regions unless this call returns 2506 * successfully. 2507 * 2508 * If @exclusive is set, then the region is marked so that userspace 2509 * is explicitly not allowed to map the resource via /dev/mem or 2510 * sysfs MMIO access. 2511 * 2512 * Returns 0 on success, or %EBUSY on error. A warning 2513 * message is also printed on failure. 2514 */ 2515 static int __pci_request_region(struct pci_dev *pdev, int bar, 2516 const char *res_name, int exclusive) 2517 { 2518 struct pci_devres *dr; 2519 2520 if (pci_resource_len(pdev, bar) == 0) 2521 return 0; 2522 2523 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 2524 if (!request_region(pci_resource_start(pdev, bar), 2525 pci_resource_len(pdev, bar), res_name)) 2526 goto err_out; 2527 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 2528 if (!__request_mem_region(pci_resource_start(pdev, bar), 2529 pci_resource_len(pdev, bar), res_name, 2530 exclusive)) 2531 goto err_out; 2532 } 2533 2534 dr = find_pci_dr(pdev); 2535 if (dr) 2536 dr->region_mask |= 1 << bar; 2537 2538 return 0; 2539 2540 err_out: 2541 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 2542 &pdev->resource[bar]); 2543 return -EBUSY; 2544 } 2545 2546 /** 2547 * pci_request_region - Reserve PCI I/O and memory resource 2548 * @pdev: PCI device whose resources are to be reserved 2549 * @bar: BAR to be reserved 2550 * @res_name: Name to be associated with resource 2551 * 2552 * Mark the PCI region associated with PCI device @pdev BAR @bar as 2553 * being reserved by owner @res_name. Do not access any 2554 * address inside the PCI regions unless this call returns 2555 * successfully. 2556 * 2557 * Returns 0 on success, or %EBUSY on error. A warning 2558 * message is also printed on failure. 2559 */ 2560 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 2561 { 2562 return __pci_request_region(pdev, bar, res_name, 0); 2563 } 2564 EXPORT_SYMBOL(pci_request_region); 2565 2566 /** 2567 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 2568 * @pdev: PCI device whose resources are to be reserved 2569 * @bar: BAR to be reserved 2570 * @res_name: Name to be associated with resource. 2571 * 2572 * Mark the PCI region associated with PCI device @pdev BR @bar as 2573 * being reserved by owner @res_name. Do not access any 2574 * address inside the PCI regions unless this call returns 2575 * successfully. 2576 * 2577 * Returns 0 on success, or %EBUSY on error. A warning 2578 * message is also printed on failure. 2579 * 2580 * The key difference that _exclusive makes it that userspace is 2581 * explicitly not allowed to map the resource via /dev/mem or 2582 * sysfs. 2583 */ 2584 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 2585 const char *res_name) 2586 { 2587 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 2588 } 2589 EXPORT_SYMBOL(pci_request_region_exclusive); 2590 2591 /** 2592 * pci_release_selected_regions - Release selected PCI I/O and memory resources 2593 * @pdev: PCI device whose resources were previously reserved 2594 * @bars: Bitmask of BARs to be released 2595 * 2596 * Release selected PCI I/O and memory resources previously reserved. 2597 * Call this function only after all use of the PCI regions has ceased. 2598 */ 2599 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 2600 { 2601 int i; 2602 2603 for (i = 0; i < 6; i++) 2604 if (bars & (1 << i)) 2605 pci_release_region(pdev, i); 2606 } 2607 EXPORT_SYMBOL(pci_release_selected_regions); 2608 2609 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 2610 const char *res_name, int excl) 2611 { 2612 int i; 2613 2614 for (i = 0; i < 6; i++) 2615 if (bars & (1 << i)) 2616 if (__pci_request_region(pdev, i, res_name, excl)) 2617 goto err_out; 2618 return 0; 2619 2620 err_out: 2621 while (--i >= 0) 2622 if (bars & (1 << i)) 2623 pci_release_region(pdev, i); 2624 2625 return -EBUSY; 2626 } 2627 2628 2629 /** 2630 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 2631 * @pdev: PCI device whose resources are to be reserved 2632 * @bars: Bitmask of BARs to be requested 2633 * @res_name: Name to be associated with resource 2634 */ 2635 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 2636 const char *res_name) 2637 { 2638 return __pci_request_selected_regions(pdev, bars, res_name, 0); 2639 } 2640 EXPORT_SYMBOL(pci_request_selected_regions); 2641 2642 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 2643 const char *res_name) 2644 { 2645 return __pci_request_selected_regions(pdev, bars, res_name, 2646 IORESOURCE_EXCLUSIVE); 2647 } 2648 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 2649 2650 /** 2651 * pci_release_regions - Release reserved PCI I/O and memory resources 2652 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 2653 * 2654 * Releases all PCI I/O and memory resources previously reserved by a 2655 * successful call to pci_request_regions. Call this function only 2656 * after all use of the PCI regions has ceased. 2657 */ 2658 2659 void pci_release_regions(struct pci_dev *pdev) 2660 { 2661 pci_release_selected_regions(pdev, (1 << 6) - 1); 2662 } 2663 EXPORT_SYMBOL(pci_release_regions); 2664 2665 /** 2666 * pci_request_regions - Reserved PCI I/O and memory resources 2667 * @pdev: PCI device whose resources are to be reserved 2668 * @res_name: Name to be associated with resource. 2669 * 2670 * Mark all PCI regions associated with PCI device @pdev as 2671 * being reserved by owner @res_name. Do not access any 2672 * address inside the PCI regions unless this call returns 2673 * successfully. 2674 * 2675 * Returns 0 on success, or %EBUSY on error. A warning 2676 * message is also printed on failure. 2677 */ 2678 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 2679 { 2680 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 2681 } 2682 EXPORT_SYMBOL(pci_request_regions); 2683 2684 /** 2685 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 2686 * @pdev: PCI device whose resources are to be reserved 2687 * @res_name: Name to be associated with resource. 2688 * 2689 * Mark all PCI regions associated with PCI device @pdev as 2690 * being reserved by owner @res_name. Do not access any 2691 * address inside the PCI regions unless this call returns 2692 * successfully. 2693 * 2694 * pci_request_regions_exclusive() will mark the region so that 2695 * /dev/mem and the sysfs MMIO access will not be allowed. 2696 * 2697 * Returns 0 on success, or %EBUSY on error. A warning 2698 * message is also printed on failure. 2699 */ 2700 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 2701 { 2702 return pci_request_selected_regions_exclusive(pdev, 2703 ((1 << 6) - 1), res_name); 2704 } 2705 EXPORT_SYMBOL(pci_request_regions_exclusive); 2706 2707 /** 2708 * pci_remap_iospace - Remap the memory mapped I/O space 2709 * @res: Resource describing the I/O space 2710 * @phys_addr: physical address of range to be mapped 2711 * 2712 * Remap the memory mapped I/O space described by the @res 2713 * and the CPU physical address @phys_addr into virtual address space. 2714 * Only architectures that have memory mapped IO functions defined 2715 * (and the PCI_IOBASE value defined) should call this function. 2716 */ 2717 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 2718 { 2719 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 2720 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 2721 2722 if (!(res->flags & IORESOURCE_IO)) 2723 return -EINVAL; 2724 2725 if (res->end > IO_SPACE_LIMIT) 2726 return -EINVAL; 2727 2728 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 2729 pgprot_device(PAGE_KERNEL)); 2730 #else 2731 /* this architecture does not have memory mapped I/O space, 2732 so this function should never be called */ 2733 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 2734 return -ENODEV; 2735 #endif 2736 } 2737 2738 static void __pci_set_master(struct pci_dev *dev, bool enable) 2739 { 2740 u16 old_cmd, cmd; 2741 2742 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 2743 if (enable) 2744 cmd = old_cmd | PCI_COMMAND_MASTER; 2745 else 2746 cmd = old_cmd & ~PCI_COMMAND_MASTER; 2747 if (cmd != old_cmd) { 2748 dev_dbg(&dev->dev, "%s bus mastering\n", 2749 enable ? "enabling" : "disabling"); 2750 pci_write_config_word(dev, PCI_COMMAND, cmd); 2751 } 2752 dev->is_busmaster = enable; 2753 } 2754 2755 /** 2756 * pcibios_setup - process "pci=" kernel boot arguments 2757 * @str: string used to pass in "pci=" kernel boot arguments 2758 * 2759 * Process kernel boot arguments. This is the default implementation. 2760 * Architecture specific implementations can override this as necessary. 2761 */ 2762 char * __weak __init pcibios_setup(char *str) 2763 { 2764 return str; 2765 } 2766 2767 /** 2768 * pcibios_set_master - enable PCI bus-mastering for device dev 2769 * @dev: the PCI device to enable 2770 * 2771 * Enables PCI bus-mastering for the device. This is the default 2772 * implementation. Architecture specific implementations can override 2773 * this if necessary. 2774 */ 2775 void __weak pcibios_set_master(struct pci_dev *dev) 2776 { 2777 u8 lat; 2778 2779 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 2780 if (pci_is_pcie(dev)) 2781 return; 2782 2783 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 2784 if (lat < 16) 2785 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 2786 else if (lat > pcibios_max_latency) 2787 lat = pcibios_max_latency; 2788 else 2789 return; 2790 2791 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 2792 } 2793 2794 /** 2795 * pci_set_master - enables bus-mastering for device dev 2796 * @dev: the PCI device to enable 2797 * 2798 * Enables bus-mastering on the device and calls pcibios_set_master() 2799 * to do the needed arch specific settings. 2800 */ 2801 void pci_set_master(struct pci_dev *dev) 2802 { 2803 __pci_set_master(dev, true); 2804 pcibios_set_master(dev); 2805 } 2806 EXPORT_SYMBOL(pci_set_master); 2807 2808 /** 2809 * pci_clear_master - disables bus-mastering for device dev 2810 * @dev: the PCI device to disable 2811 */ 2812 void pci_clear_master(struct pci_dev *dev) 2813 { 2814 __pci_set_master(dev, false); 2815 } 2816 EXPORT_SYMBOL(pci_clear_master); 2817 2818 /** 2819 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 2820 * @dev: the PCI device for which MWI is to be enabled 2821 * 2822 * Helper function for pci_set_mwi. 2823 * Originally copied from drivers/net/acenic.c. 2824 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 2825 * 2826 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2827 */ 2828 int pci_set_cacheline_size(struct pci_dev *dev) 2829 { 2830 u8 cacheline_size; 2831 2832 if (!pci_cache_line_size) 2833 return -EINVAL; 2834 2835 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 2836 equal to or multiple of the right value. */ 2837 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2838 if (cacheline_size >= pci_cache_line_size && 2839 (cacheline_size % pci_cache_line_size) == 0) 2840 return 0; 2841 2842 /* Write the correct value. */ 2843 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 2844 /* Read it back. */ 2845 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2846 if (cacheline_size == pci_cache_line_size) 2847 return 0; 2848 2849 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n", 2850 pci_cache_line_size << 2); 2851 2852 return -EINVAL; 2853 } 2854 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 2855 2856 /** 2857 * pci_set_mwi - enables memory-write-invalidate PCI transaction 2858 * @dev: the PCI device for which MWI is enabled 2859 * 2860 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2861 * 2862 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2863 */ 2864 int pci_set_mwi(struct pci_dev *dev) 2865 { 2866 #ifdef PCI_DISABLE_MWI 2867 return 0; 2868 #else 2869 int rc; 2870 u16 cmd; 2871 2872 rc = pci_set_cacheline_size(dev); 2873 if (rc) 2874 return rc; 2875 2876 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2877 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 2878 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 2879 cmd |= PCI_COMMAND_INVALIDATE; 2880 pci_write_config_word(dev, PCI_COMMAND, cmd); 2881 } 2882 return 0; 2883 #endif 2884 } 2885 EXPORT_SYMBOL(pci_set_mwi); 2886 2887 /** 2888 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 2889 * @dev: the PCI device for which MWI is enabled 2890 * 2891 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2892 * Callers are not required to check the return value. 2893 * 2894 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2895 */ 2896 int pci_try_set_mwi(struct pci_dev *dev) 2897 { 2898 #ifdef PCI_DISABLE_MWI 2899 return 0; 2900 #else 2901 return pci_set_mwi(dev); 2902 #endif 2903 } 2904 EXPORT_SYMBOL(pci_try_set_mwi); 2905 2906 /** 2907 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 2908 * @dev: the PCI device to disable 2909 * 2910 * Disables PCI Memory-Write-Invalidate transaction on the device 2911 */ 2912 void pci_clear_mwi(struct pci_dev *dev) 2913 { 2914 #ifndef PCI_DISABLE_MWI 2915 u16 cmd; 2916 2917 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2918 if (cmd & PCI_COMMAND_INVALIDATE) { 2919 cmd &= ~PCI_COMMAND_INVALIDATE; 2920 pci_write_config_word(dev, PCI_COMMAND, cmd); 2921 } 2922 #endif 2923 } 2924 EXPORT_SYMBOL(pci_clear_mwi); 2925 2926 /** 2927 * pci_intx - enables/disables PCI INTx for device dev 2928 * @pdev: the PCI device to operate on 2929 * @enable: boolean: whether to enable or disable PCI INTx 2930 * 2931 * Enables/disables PCI INTx for device dev 2932 */ 2933 void pci_intx(struct pci_dev *pdev, int enable) 2934 { 2935 u16 pci_command, new; 2936 2937 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 2938 2939 if (enable) 2940 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 2941 else 2942 new = pci_command | PCI_COMMAND_INTX_DISABLE; 2943 2944 if (new != pci_command) { 2945 struct pci_devres *dr; 2946 2947 pci_write_config_word(pdev, PCI_COMMAND, new); 2948 2949 dr = find_pci_dr(pdev); 2950 if (dr && !dr->restore_intx) { 2951 dr->restore_intx = 1; 2952 dr->orig_intx = !enable; 2953 } 2954 } 2955 } 2956 EXPORT_SYMBOL_GPL(pci_intx); 2957 2958 /** 2959 * pci_intx_mask_supported - probe for INTx masking support 2960 * @dev: the PCI device to operate on 2961 * 2962 * Check if the device dev support INTx masking via the config space 2963 * command word. 2964 */ 2965 bool pci_intx_mask_supported(struct pci_dev *dev) 2966 { 2967 bool mask_supported = false; 2968 u16 orig, new; 2969 2970 if (dev->broken_intx_masking) 2971 return false; 2972 2973 pci_cfg_access_lock(dev); 2974 2975 pci_read_config_word(dev, PCI_COMMAND, &orig); 2976 pci_write_config_word(dev, PCI_COMMAND, 2977 orig ^ PCI_COMMAND_INTX_DISABLE); 2978 pci_read_config_word(dev, PCI_COMMAND, &new); 2979 2980 /* 2981 * There's no way to protect against hardware bugs or detect them 2982 * reliably, but as long as we know what the value should be, let's 2983 * go ahead and check it. 2984 */ 2985 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) { 2986 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n", 2987 orig, new); 2988 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) { 2989 mask_supported = true; 2990 pci_write_config_word(dev, PCI_COMMAND, orig); 2991 } 2992 2993 pci_cfg_access_unlock(dev); 2994 return mask_supported; 2995 } 2996 EXPORT_SYMBOL_GPL(pci_intx_mask_supported); 2997 2998 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 2999 { 3000 struct pci_bus *bus = dev->bus; 3001 bool mask_updated = true; 3002 u32 cmd_status_dword; 3003 u16 origcmd, newcmd; 3004 unsigned long flags; 3005 bool irq_pending; 3006 3007 /* 3008 * We do a single dword read to retrieve both command and status. 3009 * Document assumptions that make this possible. 3010 */ 3011 BUILD_BUG_ON(PCI_COMMAND % 4); 3012 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3013 3014 raw_spin_lock_irqsave(&pci_lock, flags); 3015 3016 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3017 3018 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3019 3020 /* 3021 * Check interrupt status register to see whether our device 3022 * triggered the interrupt (when masking) or the next IRQ is 3023 * already pending (when unmasking). 3024 */ 3025 if (mask != irq_pending) { 3026 mask_updated = false; 3027 goto done; 3028 } 3029 3030 origcmd = cmd_status_dword; 3031 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3032 if (mask) 3033 newcmd |= PCI_COMMAND_INTX_DISABLE; 3034 if (newcmd != origcmd) 3035 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3036 3037 done: 3038 raw_spin_unlock_irqrestore(&pci_lock, flags); 3039 3040 return mask_updated; 3041 } 3042 3043 /** 3044 * pci_check_and_mask_intx - mask INTx on pending interrupt 3045 * @dev: the PCI device to operate on 3046 * 3047 * Check if the device dev has its INTx line asserted, mask it and 3048 * return true in that case. False is returned if not interrupt was 3049 * pending. 3050 */ 3051 bool pci_check_and_mask_intx(struct pci_dev *dev) 3052 { 3053 return pci_check_and_set_intx_mask(dev, true); 3054 } 3055 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3056 3057 /** 3058 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3059 * @dev: the PCI device to operate on 3060 * 3061 * Check if the device dev has its INTx line asserted, unmask it if not 3062 * and return true. False is returned and the mask remains active if 3063 * there was still an interrupt pending. 3064 */ 3065 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3066 { 3067 return pci_check_and_set_intx_mask(dev, false); 3068 } 3069 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3070 3071 /** 3072 * pci_msi_off - disables any MSI or MSI-X capabilities 3073 * @dev: the PCI device to operate on 3074 * 3075 * If you want to use MSI, see pci_enable_msi() and friends. 3076 * This is a lower-level primitive that allows us to disable 3077 * MSI operation at the device level. 3078 */ 3079 void pci_msi_off(struct pci_dev *dev) 3080 { 3081 int pos; 3082 u16 control; 3083 3084 /* 3085 * This looks like it could go in msi.c, but we need it even when 3086 * CONFIG_PCI_MSI=n. For the same reason, we can't use 3087 * dev->msi_cap or dev->msix_cap here. 3088 */ 3089 pos = pci_find_capability(dev, PCI_CAP_ID_MSI); 3090 if (pos) { 3091 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control); 3092 control &= ~PCI_MSI_FLAGS_ENABLE; 3093 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control); 3094 } 3095 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); 3096 if (pos) { 3097 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control); 3098 control &= ~PCI_MSIX_FLAGS_ENABLE; 3099 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control); 3100 } 3101 } 3102 EXPORT_SYMBOL_GPL(pci_msi_off); 3103 3104 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size) 3105 { 3106 return dma_set_max_seg_size(&dev->dev, size); 3107 } 3108 EXPORT_SYMBOL(pci_set_dma_max_seg_size); 3109 3110 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask) 3111 { 3112 return dma_set_seg_boundary(&dev->dev, mask); 3113 } 3114 EXPORT_SYMBOL(pci_set_dma_seg_boundary); 3115 3116 /** 3117 * pci_wait_for_pending_transaction - waits for pending transaction 3118 * @dev: the PCI device to operate on 3119 * 3120 * Return 0 if transaction is pending 1 otherwise. 3121 */ 3122 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3123 { 3124 if (!pci_is_pcie(dev)) 3125 return 1; 3126 3127 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 3128 PCI_EXP_DEVSTA_TRPND); 3129 } 3130 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3131 3132 static int pcie_flr(struct pci_dev *dev, int probe) 3133 { 3134 u32 cap; 3135 3136 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3137 if (!(cap & PCI_EXP_DEVCAP_FLR)) 3138 return -ENOTTY; 3139 3140 if (probe) 3141 return 0; 3142 3143 if (!pci_wait_for_pending_transaction(dev)) 3144 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 3145 3146 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 3147 msleep(100); 3148 return 0; 3149 } 3150 3151 static int pci_af_flr(struct pci_dev *dev, int probe) 3152 { 3153 int pos; 3154 u8 cap; 3155 3156 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3157 if (!pos) 3158 return -ENOTTY; 3159 3160 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3161 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3162 return -ENOTTY; 3163 3164 if (probe) 3165 return 0; 3166 3167 /* 3168 * Wait for Transaction Pending bit to clear. A word-aligned test 3169 * is used, so we use the conrol offset rather than status and shift 3170 * the test bit to match. 3171 */ 3172 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 3173 PCI_AF_STATUS_TP << 8)) 3174 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 3175 3176 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3177 msleep(100); 3178 return 0; 3179 } 3180 3181 /** 3182 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3183 * @dev: Device to reset. 3184 * @probe: If set, only check if the device can be reset this way. 3185 * 3186 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3187 * unset, it will be reinitialized internally when going from PCI_D3hot to 3188 * PCI_D0. If that's the case and the device is not in a low-power state 3189 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3190 * 3191 * NOTE: This causes the caller to sleep for twice the device power transition 3192 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3193 * by default (i.e. unless the @dev's d3_delay field has a different value). 3194 * Moreover, only devices in D0 can be reset by this function. 3195 */ 3196 static int pci_pm_reset(struct pci_dev *dev, int probe) 3197 { 3198 u16 csr; 3199 3200 if (!dev->pm_cap) 3201 return -ENOTTY; 3202 3203 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3204 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3205 return -ENOTTY; 3206 3207 if (probe) 3208 return 0; 3209 3210 if (dev->current_state != PCI_D0) 3211 return -EINVAL; 3212 3213 csr &= ~PCI_PM_CTRL_STATE_MASK; 3214 csr |= PCI_D3hot; 3215 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3216 pci_dev_d3_sleep(dev); 3217 3218 csr &= ~PCI_PM_CTRL_STATE_MASK; 3219 csr |= PCI_D0; 3220 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3221 pci_dev_d3_sleep(dev); 3222 3223 return 0; 3224 } 3225 3226 void pci_reset_secondary_bus(struct pci_dev *dev) 3227 { 3228 u16 ctrl; 3229 3230 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 3231 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3232 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3233 /* 3234 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 3235 * this to 2ms to ensure that we meet the minimum requirement. 3236 */ 3237 msleep(2); 3238 3239 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3240 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3241 3242 /* 3243 * Trhfa for conventional PCI is 2^25 clock cycles. 3244 * Assuming a minimum 33MHz clock this results in a 1s 3245 * delay before we can consider subordinate devices to 3246 * be re-initialized. PCIe has some ways to shorten this, 3247 * but we don't make use of them yet. 3248 */ 3249 ssleep(1); 3250 } 3251 3252 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 3253 { 3254 pci_reset_secondary_bus(dev); 3255 } 3256 3257 /** 3258 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 3259 * @dev: Bridge device 3260 * 3261 * Use the bridge control register to assert reset on the secondary bus. 3262 * Devices on the secondary bus are left in power-on state. 3263 */ 3264 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 3265 { 3266 pcibios_reset_secondary_bus(dev); 3267 } 3268 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 3269 3270 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 3271 { 3272 struct pci_dev *pdev; 3273 3274 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self) 3275 return -ENOTTY; 3276 3277 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3278 if (pdev != dev) 3279 return -ENOTTY; 3280 3281 if (probe) 3282 return 0; 3283 3284 pci_reset_bridge_secondary_bus(dev->bus->self); 3285 3286 return 0; 3287 } 3288 3289 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 3290 { 3291 int rc = -ENOTTY; 3292 3293 if (!hotplug || !try_module_get(hotplug->ops->owner)) 3294 return rc; 3295 3296 if (hotplug->ops->reset_slot) 3297 rc = hotplug->ops->reset_slot(hotplug, probe); 3298 3299 module_put(hotplug->ops->owner); 3300 3301 return rc; 3302 } 3303 3304 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 3305 { 3306 struct pci_dev *pdev; 3307 3308 if (dev->subordinate || !dev->slot) 3309 return -ENOTTY; 3310 3311 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3312 if (pdev != dev && pdev->slot == dev->slot) 3313 return -ENOTTY; 3314 3315 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 3316 } 3317 3318 static int __pci_dev_reset(struct pci_dev *dev, int probe) 3319 { 3320 int rc; 3321 3322 might_sleep(); 3323 3324 rc = pci_dev_specific_reset(dev, probe); 3325 if (rc != -ENOTTY) 3326 goto done; 3327 3328 rc = pcie_flr(dev, probe); 3329 if (rc != -ENOTTY) 3330 goto done; 3331 3332 rc = pci_af_flr(dev, probe); 3333 if (rc != -ENOTTY) 3334 goto done; 3335 3336 rc = pci_pm_reset(dev, probe); 3337 if (rc != -ENOTTY) 3338 goto done; 3339 3340 rc = pci_dev_reset_slot_function(dev, probe); 3341 if (rc != -ENOTTY) 3342 goto done; 3343 3344 rc = pci_parent_bus_reset(dev, probe); 3345 done: 3346 return rc; 3347 } 3348 3349 static void pci_dev_lock(struct pci_dev *dev) 3350 { 3351 pci_cfg_access_lock(dev); 3352 /* block PM suspend, driver probe, etc. */ 3353 device_lock(&dev->dev); 3354 } 3355 3356 /* Return 1 on successful lock, 0 on contention */ 3357 static int pci_dev_trylock(struct pci_dev *dev) 3358 { 3359 if (pci_cfg_access_trylock(dev)) { 3360 if (device_trylock(&dev->dev)) 3361 return 1; 3362 pci_cfg_access_unlock(dev); 3363 } 3364 3365 return 0; 3366 } 3367 3368 static void pci_dev_unlock(struct pci_dev *dev) 3369 { 3370 device_unlock(&dev->dev); 3371 pci_cfg_access_unlock(dev); 3372 } 3373 3374 /** 3375 * pci_reset_notify - notify device driver of reset 3376 * @dev: device to be notified of reset 3377 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt 3378 * completed 3379 * 3380 * Must be called prior to device access being disabled and after device 3381 * access is restored. 3382 */ 3383 static void pci_reset_notify(struct pci_dev *dev, bool prepare) 3384 { 3385 const struct pci_error_handlers *err_handler = 3386 dev->driver ? dev->driver->err_handler : NULL; 3387 if (err_handler && err_handler->reset_notify) 3388 err_handler->reset_notify(dev, prepare); 3389 } 3390 3391 static void pci_dev_save_and_disable(struct pci_dev *dev) 3392 { 3393 pci_reset_notify(dev, true); 3394 3395 /* 3396 * Wake-up device prior to save. PM registers default to D0 after 3397 * reset and a simple register restore doesn't reliably return 3398 * to a non-D0 state anyway. 3399 */ 3400 pci_set_power_state(dev, PCI_D0); 3401 3402 pci_save_state(dev); 3403 /* 3404 * Disable the device by clearing the Command register, except for 3405 * INTx-disable which is set. This not only disables MMIO and I/O port 3406 * BARs, but also prevents the device from being Bus Master, preventing 3407 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 3408 * compliant devices, INTx-disable prevents legacy interrupts. 3409 */ 3410 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 3411 } 3412 3413 static void pci_dev_restore(struct pci_dev *dev) 3414 { 3415 pci_restore_state(dev); 3416 pci_reset_notify(dev, false); 3417 } 3418 3419 static int pci_dev_reset(struct pci_dev *dev, int probe) 3420 { 3421 int rc; 3422 3423 if (!probe) 3424 pci_dev_lock(dev); 3425 3426 rc = __pci_dev_reset(dev, probe); 3427 3428 if (!probe) 3429 pci_dev_unlock(dev); 3430 3431 return rc; 3432 } 3433 3434 /** 3435 * __pci_reset_function - reset a PCI device function 3436 * @dev: PCI device to reset 3437 * 3438 * Some devices allow an individual function to be reset without affecting 3439 * other functions in the same device. The PCI device must be responsive 3440 * to PCI config space in order to use this function. 3441 * 3442 * The device function is presumed to be unused when this function is called. 3443 * Resetting the device will make the contents of PCI configuration space 3444 * random, so any caller of this must be prepared to reinitialise the 3445 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3446 * etc. 3447 * 3448 * Returns 0 if the device function was successfully reset or negative if the 3449 * device doesn't support resetting a single function. 3450 */ 3451 int __pci_reset_function(struct pci_dev *dev) 3452 { 3453 return pci_dev_reset(dev, 0); 3454 } 3455 EXPORT_SYMBOL_GPL(__pci_reset_function); 3456 3457 /** 3458 * __pci_reset_function_locked - reset a PCI device function while holding 3459 * the @dev mutex lock. 3460 * @dev: PCI device to reset 3461 * 3462 * Some devices allow an individual function to be reset without affecting 3463 * other functions in the same device. The PCI device must be responsive 3464 * to PCI config space in order to use this function. 3465 * 3466 * The device function is presumed to be unused and the caller is holding 3467 * the device mutex lock when this function is called. 3468 * Resetting the device will make the contents of PCI configuration space 3469 * random, so any caller of this must be prepared to reinitialise the 3470 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3471 * etc. 3472 * 3473 * Returns 0 if the device function was successfully reset or negative if the 3474 * device doesn't support resetting a single function. 3475 */ 3476 int __pci_reset_function_locked(struct pci_dev *dev) 3477 { 3478 return __pci_dev_reset(dev, 0); 3479 } 3480 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 3481 3482 /** 3483 * pci_probe_reset_function - check whether the device can be safely reset 3484 * @dev: PCI device to reset 3485 * 3486 * Some devices allow an individual function to be reset without affecting 3487 * other functions in the same device. The PCI device must be responsive 3488 * to PCI config space in order to use this function. 3489 * 3490 * Returns 0 if the device function can be reset or negative if the 3491 * device doesn't support resetting a single function. 3492 */ 3493 int pci_probe_reset_function(struct pci_dev *dev) 3494 { 3495 return pci_dev_reset(dev, 1); 3496 } 3497 3498 /** 3499 * pci_reset_function - quiesce and reset a PCI device function 3500 * @dev: PCI device to reset 3501 * 3502 * Some devices allow an individual function to be reset without affecting 3503 * other functions in the same device. The PCI device must be responsive 3504 * to PCI config space in order to use this function. 3505 * 3506 * This function does not just reset the PCI portion of a device, but 3507 * clears all the state associated with the device. This function differs 3508 * from __pci_reset_function in that it saves and restores device state 3509 * over the reset. 3510 * 3511 * Returns 0 if the device function was successfully reset or negative if the 3512 * device doesn't support resetting a single function. 3513 */ 3514 int pci_reset_function(struct pci_dev *dev) 3515 { 3516 int rc; 3517 3518 rc = pci_dev_reset(dev, 1); 3519 if (rc) 3520 return rc; 3521 3522 pci_dev_save_and_disable(dev); 3523 3524 rc = pci_dev_reset(dev, 0); 3525 3526 pci_dev_restore(dev); 3527 3528 return rc; 3529 } 3530 EXPORT_SYMBOL_GPL(pci_reset_function); 3531 3532 /** 3533 * pci_try_reset_function - quiesce and reset a PCI device function 3534 * @dev: PCI device to reset 3535 * 3536 * Same as above, except return -EAGAIN if unable to lock device. 3537 */ 3538 int pci_try_reset_function(struct pci_dev *dev) 3539 { 3540 int rc; 3541 3542 rc = pci_dev_reset(dev, 1); 3543 if (rc) 3544 return rc; 3545 3546 pci_dev_save_and_disable(dev); 3547 3548 if (pci_dev_trylock(dev)) { 3549 rc = __pci_dev_reset(dev, 0); 3550 pci_dev_unlock(dev); 3551 } else 3552 rc = -EAGAIN; 3553 3554 pci_dev_restore(dev); 3555 3556 return rc; 3557 } 3558 EXPORT_SYMBOL_GPL(pci_try_reset_function); 3559 3560 /* Lock devices from the top of the tree down */ 3561 static void pci_bus_lock(struct pci_bus *bus) 3562 { 3563 struct pci_dev *dev; 3564 3565 list_for_each_entry(dev, &bus->devices, bus_list) { 3566 pci_dev_lock(dev); 3567 if (dev->subordinate) 3568 pci_bus_lock(dev->subordinate); 3569 } 3570 } 3571 3572 /* Unlock devices from the bottom of the tree up */ 3573 static void pci_bus_unlock(struct pci_bus *bus) 3574 { 3575 struct pci_dev *dev; 3576 3577 list_for_each_entry(dev, &bus->devices, bus_list) { 3578 if (dev->subordinate) 3579 pci_bus_unlock(dev->subordinate); 3580 pci_dev_unlock(dev); 3581 } 3582 } 3583 3584 /* Return 1 on successful lock, 0 on contention */ 3585 static int pci_bus_trylock(struct pci_bus *bus) 3586 { 3587 struct pci_dev *dev; 3588 3589 list_for_each_entry(dev, &bus->devices, bus_list) { 3590 if (!pci_dev_trylock(dev)) 3591 goto unlock; 3592 if (dev->subordinate) { 3593 if (!pci_bus_trylock(dev->subordinate)) { 3594 pci_dev_unlock(dev); 3595 goto unlock; 3596 } 3597 } 3598 } 3599 return 1; 3600 3601 unlock: 3602 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 3603 if (dev->subordinate) 3604 pci_bus_unlock(dev->subordinate); 3605 pci_dev_unlock(dev); 3606 } 3607 return 0; 3608 } 3609 3610 /* Lock devices from the top of the tree down */ 3611 static void pci_slot_lock(struct pci_slot *slot) 3612 { 3613 struct pci_dev *dev; 3614 3615 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3616 if (!dev->slot || dev->slot != slot) 3617 continue; 3618 pci_dev_lock(dev); 3619 if (dev->subordinate) 3620 pci_bus_lock(dev->subordinate); 3621 } 3622 } 3623 3624 /* Unlock devices from the bottom of the tree up */ 3625 static void pci_slot_unlock(struct pci_slot *slot) 3626 { 3627 struct pci_dev *dev; 3628 3629 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3630 if (!dev->slot || dev->slot != slot) 3631 continue; 3632 if (dev->subordinate) 3633 pci_bus_unlock(dev->subordinate); 3634 pci_dev_unlock(dev); 3635 } 3636 } 3637 3638 /* Return 1 on successful lock, 0 on contention */ 3639 static int pci_slot_trylock(struct pci_slot *slot) 3640 { 3641 struct pci_dev *dev; 3642 3643 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3644 if (!dev->slot || dev->slot != slot) 3645 continue; 3646 if (!pci_dev_trylock(dev)) 3647 goto unlock; 3648 if (dev->subordinate) { 3649 if (!pci_bus_trylock(dev->subordinate)) { 3650 pci_dev_unlock(dev); 3651 goto unlock; 3652 } 3653 } 3654 } 3655 return 1; 3656 3657 unlock: 3658 list_for_each_entry_continue_reverse(dev, 3659 &slot->bus->devices, bus_list) { 3660 if (!dev->slot || dev->slot != slot) 3661 continue; 3662 if (dev->subordinate) 3663 pci_bus_unlock(dev->subordinate); 3664 pci_dev_unlock(dev); 3665 } 3666 return 0; 3667 } 3668 3669 /* Save and disable devices from the top of the tree down */ 3670 static void pci_bus_save_and_disable(struct pci_bus *bus) 3671 { 3672 struct pci_dev *dev; 3673 3674 list_for_each_entry(dev, &bus->devices, bus_list) { 3675 pci_dev_save_and_disable(dev); 3676 if (dev->subordinate) 3677 pci_bus_save_and_disable(dev->subordinate); 3678 } 3679 } 3680 3681 /* 3682 * Restore devices from top of the tree down - parent bridges need to be 3683 * restored before we can get to subordinate devices. 3684 */ 3685 static void pci_bus_restore(struct pci_bus *bus) 3686 { 3687 struct pci_dev *dev; 3688 3689 list_for_each_entry(dev, &bus->devices, bus_list) { 3690 pci_dev_restore(dev); 3691 if (dev->subordinate) 3692 pci_bus_restore(dev->subordinate); 3693 } 3694 } 3695 3696 /* Save and disable devices from the top of the tree down */ 3697 static void pci_slot_save_and_disable(struct pci_slot *slot) 3698 { 3699 struct pci_dev *dev; 3700 3701 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3702 if (!dev->slot || dev->slot != slot) 3703 continue; 3704 pci_dev_save_and_disable(dev); 3705 if (dev->subordinate) 3706 pci_bus_save_and_disable(dev->subordinate); 3707 } 3708 } 3709 3710 /* 3711 * Restore devices from top of the tree down - parent bridges need to be 3712 * restored before we can get to subordinate devices. 3713 */ 3714 static void pci_slot_restore(struct pci_slot *slot) 3715 { 3716 struct pci_dev *dev; 3717 3718 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3719 if (!dev->slot || dev->slot != slot) 3720 continue; 3721 pci_dev_restore(dev); 3722 if (dev->subordinate) 3723 pci_bus_restore(dev->subordinate); 3724 } 3725 } 3726 3727 static int pci_slot_reset(struct pci_slot *slot, int probe) 3728 { 3729 int rc; 3730 3731 if (!slot) 3732 return -ENOTTY; 3733 3734 if (!probe) 3735 pci_slot_lock(slot); 3736 3737 might_sleep(); 3738 3739 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 3740 3741 if (!probe) 3742 pci_slot_unlock(slot); 3743 3744 return rc; 3745 } 3746 3747 /** 3748 * pci_probe_reset_slot - probe whether a PCI slot can be reset 3749 * @slot: PCI slot to probe 3750 * 3751 * Return 0 if slot can be reset, negative if a slot reset is not supported. 3752 */ 3753 int pci_probe_reset_slot(struct pci_slot *slot) 3754 { 3755 return pci_slot_reset(slot, 1); 3756 } 3757 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 3758 3759 /** 3760 * pci_reset_slot - reset a PCI slot 3761 * @slot: PCI slot to reset 3762 * 3763 * A PCI bus may host multiple slots, each slot may support a reset mechanism 3764 * independent of other slots. For instance, some slots may support slot power 3765 * control. In the case of a 1:1 bus to slot architecture, this function may 3766 * wrap the bus reset to avoid spurious slot related events such as hotplug. 3767 * Generally a slot reset should be attempted before a bus reset. All of the 3768 * function of the slot and any subordinate buses behind the slot are reset 3769 * through this function. PCI config space of all devices in the slot and 3770 * behind the slot is saved before and restored after reset. 3771 * 3772 * Return 0 on success, non-zero on error. 3773 */ 3774 int pci_reset_slot(struct pci_slot *slot) 3775 { 3776 int rc; 3777 3778 rc = pci_slot_reset(slot, 1); 3779 if (rc) 3780 return rc; 3781 3782 pci_slot_save_and_disable(slot); 3783 3784 rc = pci_slot_reset(slot, 0); 3785 3786 pci_slot_restore(slot); 3787 3788 return rc; 3789 } 3790 EXPORT_SYMBOL_GPL(pci_reset_slot); 3791 3792 /** 3793 * pci_try_reset_slot - Try to reset a PCI slot 3794 * @slot: PCI slot to reset 3795 * 3796 * Same as above except return -EAGAIN if the slot cannot be locked 3797 */ 3798 int pci_try_reset_slot(struct pci_slot *slot) 3799 { 3800 int rc; 3801 3802 rc = pci_slot_reset(slot, 1); 3803 if (rc) 3804 return rc; 3805 3806 pci_slot_save_and_disable(slot); 3807 3808 if (pci_slot_trylock(slot)) { 3809 might_sleep(); 3810 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 3811 pci_slot_unlock(slot); 3812 } else 3813 rc = -EAGAIN; 3814 3815 pci_slot_restore(slot); 3816 3817 return rc; 3818 } 3819 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 3820 3821 static int pci_bus_reset(struct pci_bus *bus, int probe) 3822 { 3823 if (!bus->self) 3824 return -ENOTTY; 3825 3826 if (probe) 3827 return 0; 3828 3829 pci_bus_lock(bus); 3830 3831 might_sleep(); 3832 3833 pci_reset_bridge_secondary_bus(bus->self); 3834 3835 pci_bus_unlock(bus); 3836 3837 return 0; 3838 } 3839 3840 /** 3841 * pci_probe_reset_bus - probe whether a PCI bus can be reset 3842 * @bus: PCI bus to probe 3843 * 3844 * Return 0 if bus can be reset, negative if a bus reset is not supported. 3845 */ 3846 int pci_probe_reset_bus(struct pci_bus *bus) 3847 { 3848 return pci_bus_reset(bus, 1); 3849 } 3850 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 3851 3852 /** 3853 * pci_reset_bus - reset a PCI bus 3854 * @bus: top level PCI bus to reset 3855 * 3856 * Do a bus reset on the given bus and any subordinate buses, saving 3857 * and restoring state of all devices. 3858 * 3859 * Return 0 on success, non-zero on error. 3860 */ 3861 int pci_reset_bus(struct pci_bus *bus) 3862 { 3863 int rc; 3864 3865 rc = pci_bus_reset(bus, 1); 3866 if (rc) 3867 return rc; 3868 3869 pci_bus_save_and_disable(bus); 3870 3871 rc = pci_bus_reset(bus, 0); 3872 3873 pci_bus_restore(bus); 3874 3875 return rc; 3876 } 3877 EXPORT_SYMBOL_GPL(pci_reset_bus); 3878 3879 /** 3880 * pci_try_reset_bus - Try to reset a PCI bus 3881 * @bus: top level PCI bus to reset 3882 * 3883 * Same as above except return -EAGAIN if the bus cannot be locked 3884 */ 3885 int pci_try_reset_bus(struct pci_bus *bus) 3886 { 3887 int rc; 3888 3889 rc = pci_bus_reset(bus, 1); 3890 if (rc) 3891 return rc; 3892 3893 pci_bus_save_and_disable(bus); 3894 3895 if (pci_bus_trylock(bus)) { 3896 might_sleep(); 3897 pci_reset_bridge_secondary_bus(bus->self); 3898 pci_bus_unlock(bus); 3899 } else 3900 rc = -EAGAIN; 3901 3902 pci_bus_restore(bus); 3903 3904 return rc; 3905 } 3906 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 3907 3908 /** 3909 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 3910 * @dev: PCI device to query 3911 * 3912 * Returns mmrbc: maximum designed memory read count in bytes 3913 * or appropriate error value. 3914 */ 3915 int pcix_get_max_mmrbc(struct pci_dev *dev) 3916 { 3917 int cap; 3918 u32 stat; 3919 3920 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3921 if (!cap) 3922 return -EINVAL; 3923 3924 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3925 return -EINVAL; 3926 3927 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 3928 } 3929 EXPORT_SYMBOL(pcix_get_max_mmrbc); 3930 3931 /** 3932 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 3933 * @dev: PCI device to query 3934 * 3935 * Returns mmrbc: maximum memory read count in bytes 3936 * or appropriate error value. 3937 */ 3938 int pcix_get_mmrbc(struct pci_dev *dev) 3939 { 3940 int cap; 3941 u16 cmd; 3942 3943 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3944 if (!cap) 3945 return -EINVAL; 3946 3947 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3948 return -EINVAL; 3949 3950 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 3951 } 3952 EXPORT_SYMBOL(pcix_get_mmrbc); 3953 3954 /** 3955 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 3956 * @dev: PCI device to query 3957 * @mmrbc: maximum memory read count in bytes 3958 * valid values are 512, 1024, 2048, 4096 3959 * 3960 * If possible sets maximum memory read byte count, some bridges have erratas 3961 * that prevent this. 3962 */ 3963 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 3964 { 3965 int cap; 3966 u32 stat, v, o; 3967 u16 cmd; 3968 3969 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 3970 return -EINVAL; 3971 3972 v = ffs(mmrbc) - 10; 3973 3974 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3975 if (!cap) 3976 return -EINVAL; 3977 3978 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3979 return -EINVAL; 3980 3981 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 3982 return -E2BIG; 3983 3984 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3985 return -EINVAL; 3986 3987 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 3988 if (o != v) { 3989 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 3990 return -EIO; 3991 3992 cmd &= ~PCI_X_CMD_MAX_READ; 3993 cmd |= v << 2; 3994 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 3995 return -EIO; 3996 } 3997 return 0; 3998 } 3999 EXPORT_SYMBOL(pcix_set_mmrbc); 4000 4001 /** 4002 * pcie_get_readrq - get PCI Express read request size 4003 * @dev: PCI device to query 4004 * 4005 * Returns maximum memory read request in bytes 4006 * or appropriate error value. 4007 */ 4008 int pcie_get_readrq(struct pci_dev *dev) 4009 { 4010 u16 ctl; 4011 4012 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4013 4014 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 4015 } 4016 EXPORT_SYMBOL(pcie_get_readrq); 4017 4018 /** 4019 * pcie_set_readrq - set PCI Express maximum memory read request 4020 * @dev: PCI device to query 4021 * @rq: maximum memory read count in bytes 4022 * valid values are 128, 256, 512, 1024, 2048, 4096 4023 * 4024 * If possible sets maximum memory read request in bytes 4025 */ 4026 int pcie_set_readrq(struct pci_dev *dev, int rq) 4027 { 4028 u16 v; 4029 4030 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 4031 return -EINVAL; 4032 4033 /* 4034 * If using the "performance" PCIe config, we clamp the 4035 * read rq size to the max packet size to prevent the 4036 * host bridge generating requests larger than we can 4037 * cope with 4038 */ 4039 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 4040 int mps = pcie_get_mps(dev); 4041 4042 if (mps < rq) 4043 rq = mps; 4044 } 4045 4046 v = (ffs(rq) - 8) << 12; 4047 4048 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4049 PCI_EXP_DEVCTL_READRQ, v); 4050 } 4051 EXPORT_SYMBOL(pcie_set_readrq); 4052 4053 /** 4054 * pcie_get_mps - get PCI Express maximum payload size 4055 * @dev: PCI device to query 4056 * 4057 * Returns maximum payload size in bytes 4058 */ 4059 int pcie_get_mps(struct pci_dev *dev) 4060 { 4061 u16 ctl; 4062 4063 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4064 4065 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 4066 } 4067 EXPORT_SYMBOL(pcie_get_mps); 4068 4069 /** 4070 * pcie_set_mps - set PCI Express maximum payload size 4071 * @dev: PCI device to query 4072 * @mps: maximum payload size in bytes 4073 * valid values are 128, 256, 512, 1024, 2048, 4096 4074 * 4075 * If possible sets maximum payload size 4076 */ 4077 int pcie_set_mps(struct pci_dev *dev, int mps) 4078 { 4079 u16 v; 4080 4081 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 4082 return -EINVAL; 4083 4084 v = ffs(mps) - 8; 4085 if (v > dev->pcie_mpss) 4086 return -EINVAL; 4087 v <<= 5; 4088 4089 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4090 PCI_EXP_DEVCTL_PAYLOAD, v); 4091 } 4092 EXPORT_SYMBOL(pcie_set_mps); 4093 4094 /** 4095 * pcie_get_minimum_link - determine minimum link settings of a PCI device 4096 * @dev: PCI device to query 4097 * @speed: storage for minimum speed 4098 * @width: storage for minimum width 4099 * 4100 * This function will walk up the PCI device chain and determine the minimum 4101 * link width and speed of the device. 4102 */ 4103 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 4104 enum pcie_link_width *width) 4105 { 4106 int ret; 4107 4108 *speed = PCI_SPEED_UNKNOWN; 4109 *width = PCIE_LNK_WIDTH_UNKNOWN; 4110 4111 while (dev) { 4112 u16 lnksta; 4113 enum pci_bus_speed next_speed; 4114 enum pcie_link_width next_width; 4115 4116 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 4117 if (ret) 4118 return ret; 4119 4120 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 4121 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 4122 PCI_EXP_LNKSTA_NLW_SHIFT; 4123 4124 if (next_speed < *speed) 4125 *speed = next_speed; 4126 4127 if (next_width < *width) 4128 *width = next_width; 4129 4130 dev = dev->bus->self; 4131 } 4132 4133 return 0; 4134 } 4135 EXPORT_SYMBOL(pcie_get_minimum_link); 4136 4137 /** 4138 * pci_select_bars - Make BAR mask from the type of resource 4139 * @dev: the PCI device for which BAR mask is made 4140 * @flags: resource type mask to be selected 4141 * 4142 * This helper routine makes bar mask from the type of resource. 4143 */ 4144 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 4145 { 4146 int i, bars = 0; 4147 for (i = 0; i < PCI_NUM_RESOURCES; i++) 4148 if (pci_resource_flags(dev, i) & flags) 4149 bars |= (1 << i); 4150 return bars; 4151 } 4152 EXPORT_SYMBOL(pci_select_bars); 4153 4154 /** 4155 * pci_resource_bar - get position of the BAR associated with a resource 4156 * @dev: the PCI device 4157 * @resno: the resource number 4158 * @type: the BAR type to be filled in 4159 * 4160 * Returns BAR position in config space, or 0 if the BAR is invalid. 4161 */ 4162 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 4163 { 4164 int reg; 4165 4166 if (resno < PCI_ROM_RESOURCE) { 4167 *type = pci_bar_unknown; 4168 return PCI_BASE_ADDRESS_0 + 4 * resno; 4169 } else if (resno == PCI_ROM_RESOURCE) { 4170 *type = pci_bar_mem32; 4171 return dev->rom_base_reg; 4172 } else if (resno < PCI_BRIDGE_RESOURCES) { 4173 /* device specific resource */ 4174 *type = pci_bar_unknown; 4175 reg = pci_iov_resource_bar(dev, resno); 4176 if (reg) 4177 return reg; 4178 } 4179 4180 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno); 4181 return 0; 4182 } 4183 4184 /* Some architectures require additional programming to enable VGA */ 4185 static arch_set_vga_state_t arch_set_vga_state; 4186 4187 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 4188 { 4189 arch_set_vga_state = func; /* NULL disables */ 4190 } 4191 4192 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 4193 unsigned int command_bits, u32 flags) 4194 { 4195 if (arch_set_vga_state) 4196 return arch_set_vga_state(dev, decode, command_bits, 4197 flags); 4198 return 0; 4199 } 4200 4201 /** 4202 * pci_set_vga_state - set VGA decode state on device and parents if requested 4203 * @dev: the PCI device 4204 * @decode: true = enable decoding, false = disable decoding 4205 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 4206 * @flags: traverse ancestors and change bridges 4207 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 4208 */ 4209 int pci_set_vga_state(struct pci_dev *dev, bool decode, 4210 unsigned int command_bits, u32 flags) 4211 { 4212 struct pci_bus *bus; 4213 struct pci_dev *bridge; 4214 u16 cmd; 4215 int rc; 4216 4217 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 4218 4219 /* ARCH specific VGA enables */ 4220 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 4221 if (rc) 4222 return rc; 4223 4224 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 4225 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4226 if (decode == true) 4227 cmd |= command_bits; 4228 else 4229 cmd &= ~command_bits; 4230 pci_write_config_word(dev, PCI_COMMAND, cmd); 4231 } 4232 4233 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 4234 return 0; 4235 4236 bus = dev->bus; 4237 while (bus) { 4238 bridge = bus->self; 4239 if (bridge) { 4240 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 4241 &cmd); 4242 if (decode == true) 4243 cmd |= PCI_BRIDGE_CTL_VGA; 4244 else 4245 cmd &= ~PCI_BRIDGE_CTL_VGA; 4246 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 4247 cmd); 4248 } 4249 bus = bus->parent; 4250 } 4251 return 0; 4252 } 4253 4254 bool pci_device_is_present(struct pci_dev *pdev) 4255 { 4256 u32 v; 4257 4258 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 4259 } 4260 EXPORT_SYMBOL_GPL(pci_device_is_present); 4261 4262 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 4263 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 4264 static DEFINE_SPINLOCK(resource_alignment_lock); 4265 4266 /** 4267 * pci_specified_resource_alignment - get resource alignment specified by user. 4268 * @dev: the PCI device to get 4269 * 4270 * RETURNS: Resource alignment if it is specified. 4271 * Zero if it is not specified. 4272 */ 4273 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 4274 { 4275 int seg, bus, slot, func, align_order, count; 4276 resource_size_t align = 0; 4277 char *p; 4278 4279 spin_lock(&resource_alignment_lock); 4280 p = resource_alignment_param; 4281 while (*p) { 4282 count = 0; 4283 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 4284 p[count] == '@') { 4285 p += count + 1; 4286 } else { 4287 align_order = -1; 4288 } 4289 if (sscanf(p, "%x:%x:%x.%x%n", 4290 &seg, &bus, &slot, &func, &count) != 4) { 4291 seg = 0; 4292 if (sscanf(p, "%x:%x.%x%n", 4293 &bus, &slot, &func, &count) != 3) { 4294 /* Invalid format */ 4295 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 4296 p); 4297 break; 4298 } 4299 } 4300 p += count; 4301 if (seg == pci_domain_nr(dev->bus) && 4302 bus == dev->bus->number && 4303 slot == PCI_SLOT(dev->devfn) && 4304 func == PCI_FUNC(dev->devfn)) { 4305 if (align_order == -1) 4306 align = PAGE_SIZE; 4307 else 4308 align = 1 << align_order; 4309 /* Found */ 4310 break; 4311 } 4312 if (*p != ';' && *p != ',') { 4313 /* End of param or invalid format */ 4314 break; 4315 } 4316 p++; 4317 } 4318 spin_unlock(&resource_alignment_lock); 4319 return align; 4320 } 4321 4322 /* 4323 * This function disables memory decoding and releases memory resources 4324 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 4325 * It also rounds up size to specified alignment. 4326 * Later on, the kernel will assign page-aligned memory resource back 4327 * to the device. 4328 */ 4329 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 4330 { 4331 int i; 4332 struct resource *r; 4333 resource_size_t align, size; 4334 u16 command; 4335 4336 /* check if specified PCI is target device to reassign */ 4337 align = pci_specified_resource_alignment(dev); 4338 if (!align) 4339 return; 4340 4341 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 4342 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 4343 dev_warn(&dev->dev, 4344 "Can't reassign resources to host bridge.\n"); 4345 return; 4346 } 4347 4348 dev_info(&dev->dev, 4349 "Disabling memory decoding and releasing memory resources.\n"); 4350 pci_read_config_word(dev, PCI_COMMAND, &command); 4351 command &= ~PCI_COMMAND_MEMORY; 4352 pci_write_config_word(dev, PCI_COMMAND, command); 4353 4354 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { 4355 r = &dev->resource[i]; 4356 if (!(r->flags & IORESOURCE_MEM)) 4357 continue; 4358 size = resource_size(r); 4359 if (size < align) { 4360 size = align; 4361 dev_info(&dev->dev, 4362 "Rounding up size of resource #%d to %#llx.\n", 4363 i, (unsigned long long)size); 4364 } 4365 r->flags |= IORESOURCE_UNSET; 4366 r->end = size - 1; 4367 r->start = 0; 4368 } 4369 /* Need to disable bridge's resource window, 4370 * to enable the kernel to reassign new resource 4371 * window later on. 4372 */ 4373 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 4374 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 4375 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 4376 r = &dev->resource[i]; 4377 if (!(r->flags & IORESOURCE_MEM)) 4378 continue; 4379 r->flags |= IORESOURCE_UNSET; 4380 r->end = resource_size(r) - 1; 4381 r->start = 0; 4382 } 4383 pci_disable_bridge_window(dev); 4384 } 4385 } 4386 4387 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 4388 { 4389 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 4390 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 4391 spin_lock(&resource_alignment_lock); 4392 strncpy(resource_alignment_param, buf, count); 4393 resource_alignment_param[count] = '\0'; 4394 spin_unlock(&resource_alignment_lock); 4395 return count; 4396 } 4397 4398 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 4399 { 4400 size_t count; 4401 spin_lock(&resource_alignment_lock); 4402 count = snprintf(buf, size, "%s", resource_alignment_param); 4403 spin_unlock(&resource_alignment_lock); 4404 return count; 4405 } 4406 4407 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 4408 { 4409 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 4410 } 4411 4412 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 4413 const char *buf, size_t count) 4414 { 4415 return pci_set_resource_alignment_param(buf, count); 4416 } 4417 4418 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 4419 pci_resource_alignment_store); 4420 4421 static int __init pci_resource_alignment_sysfs_init(void) 4422 { 4423 return bus_create_file(&pci_bus_type, 4424 &bus_attr_resource_alignment); 4425 } 4426 late_initcall(pci_resource_alignment_sysfs_init); 4427 4428 static void pci_no_domains(void) 4429 { 4430 #ifdef CONFIG_PCI_DOMAINS 4431 pci_domains_supported = 0; 4432 #endif 4433 } 4434 4435 #ifdef CONFIG_PCI_DOMAINS 4436 static atomic_t __domain_nr = ATOMIC_INIT(-1); 4437 4438 int pci_get_new_domain_nr(void) 4439 { 4440 return atomic_inc_return(&__domain_nr); 4441 } 4442 #endif 4443 4444 /** 4445 * pci_ext_cfg_avail - can we access extended PCI config space? 4446 * 4447 * Returns 1 if we can access PCI extended config space (offsets 4448 * greater than 0xff). This is the default implementation. Architecture 4449 * implementations can override this. 4450 */ 4451 int __weak pci_ext_cfg_avail(void) 4452 { 4453 return 1; 4454 } 4455 4456 void __weak pci_fixup_cardbus(struct pci_bus *bus) 4457 { 4458 } 4459 EXPORT_SYMBOL(pci_fixup_cardbus); 4460 4461 static int __init pci_setup(char *str) 4462 { 4463 while (str) { 4464 char *k = strchr(str, ','); 4465 if (k) 4466 *k++ = 0; 4467 if (*str && (str = pcibios_setup(str)) && *str) { 4468 if (!strcmp(str, "nomsi")) { 4469 pci_no_msi(); 4470 } else if (!strcmp(str, "noaer")) { 4471 pci_no_aer(); 4472 } else if (!strncmp(str, "realloc=", 8)) { 4473 pci_realloc_get_opt(str + 8); 4474 } else if (!strncmp(str, "realloc", 7)) { 4475 pci_realloc_get_opt("on"); 4476 } else if (!strcmp(str, "nodomains")) { 4477 pci_no_domains(); 4478 } else if (!strncmp(str, "noari", 5)) { 4479 pcie_ari_disabled = true; 4480 } else if (!strncmp(str, "cbiosize=", 9)) { 4481 pci_cardbus_io_size = memparse(str + 9, &str); 4482 } else if (!strncmp(str, "cbmemsize=", 10)) { 4483 pci_cardbus_mem_size = memparse(str + 10, &str); 4484 } else if (!strncmp(str, "resource_alignment=", 19)) { 4485 pci_set_resource_alignment_param(str + 19, 4486 strlen(str + 19)); 4487 } else if (!strncmp(str, "ecrc=", 5)) { 4488 pcie_ecrc_get_policy(str + 5); 4489 } else if (!strncmp(str, "hpiosize=", 9)) { 4490 pci_hotplug_io_size = memparse(str + 9, &str); 4491 } else if (!strncmp(str, "hpmemsize=", 10)) { 4492 pci_hotplug_mem_size = memparse(str + 10, &str); 4493 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 4494 pcie_bus_config = PCIE_BUS_TUNE_OFF; 4495 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 4496 pcie_bus_config = PCIE_BUS_SAFE; 4497 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 4498 pcie_bus_config = PCIE_BUS_PERFORMANCE; 4499 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 4500 pcie_bus_config = PCIE_BUS_PEER2PEER; 4501 } else if (!strncmp(str, "pcie_scan_all", 13)) { 4502 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 4503 } else { 4504 printk(KERN_ERR "PCI: Unknown option `%s'\n", 4505 str); 4506 } 4507 } 4508 str = k; 4509 } 4510 return 0; 4511 } 4512 early_param("pci", pci_setup); 4513