1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/of.h> 14 #include <linux/of_pci.h> 15 #include <linux/pci.h> 16 #include <linux/pm.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/spinlock.h> 20 #include <linux/string.h> 21 #include <linux/log2.h> 22 #include <linux/pci-aspm.h> 23 #include <linux/pm_wakeup.h> 24 #include <linux/interrupt.h> 25 #include <linux/device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/pci_hotplug.h> 28 #include <asm-generic/pci-bridge.h> 29 #include <asm/setup.h> 30 #include <linux/aer.h> 31 #include "pci.h" 32 33 const char *pci_power_names[] = { 34 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 35 }; 36 EXPORT_SYMBOL_GPL(pci_power_names); 37 38 int isa_dma_bridge_buggy; 39 EXPORT_SYMBOL(isa_dma_bridge_buggy); 40 41 int pci_pci_problems; 42 EXPORT_SYMBOL(pci_pci_problems); 43 44 unsigned int pci_pm_d3_delay; 45 46 static void pci_pme_list_scan(struct work_struct *work); 47 48 static LIST_HEAD(pci_pme_list); 49 static DEFINE_MUTEX(pci_pme_list_mutex); 50 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 51 52 struct pci_pme_device { 53 struct list_head list; 54 struct pci_dev *dev; 55 }; 56 57 #define PME_TIMEOUT 1000 /* How long between PME checks */ 58 59 static void pci_dev_d3_sleep(struct pci_dev *dev) 60 { 61 unsigned int delay = dev->d3_delay; 62 63 if (delay < pci_pm_d3_delay) 64 delay = pci_pm_d3_delay; 65 66 msleep(delay); 67 } 68 69 #ifdef CONFIG_PCI_DOMAINS 70 int pci_domains_supported = 1; 71 #endif 72 73 #define DEFAULT_CARDBUS_IO_SIZE (256) 74 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 75 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 76 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 77 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 78 79 #define DEFAULT_HOTPLUG_IO_SIZE (256) 80 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 81 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 82 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 83 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 84 85 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 86 87 /* 88 * The default CLS is used if arch didn't set CLS explicitly and not 89 * all pci devices agree on the same value. Arch can override either 90 * the dfl or actual value as it sees fit. Don't forget this is 91 * measured in 32-bit words, not bytes. 92 */ 93 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 94 u8 pci_cache_line_size; 95 96 /* 97 * If we set up a device for bus mastering, we need to check the latency 98 * timer as certain BIOSes forget to set it properly. 99 */ 100 unsigned int pcibios_max_latency = 255; 101 102 /* If set, the PCIe ARI capability will not be used. */ 103 static bool pcie_ari_disabled; 104 105 /** 106 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 107 * @bus: pointer to PCI bus structure to search 108 * 109 * Given a PCI bus, returns the highest PCI bus number present in the set 110 * including the given PCI bus and its list of child PCI buses. 111 */ 112 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 113 { 114 struct pci_bus *tmp; 115 unsigned char max, n; 116 117 max = bus->busn_res.end; 118 list_for_each_entry(tmp, &bus->children, node) { 119 n = pci_bus_max_busnr(tmp); 120 if (n > max) 121 max = n; 122 } 123 return max; 124 } 125 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 126 127 #ifdef CONFIG_HAS_IOMEM 128 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 129 { 130 struct resource *res = &pdev->resource[bar]; 131 132 /* 133 * Make sure the BAR is actually a memory resource, not an IO resource 134 */ 135 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 136 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res); 137 return NULL; 138 } 139 return ioremap_nocache(res->start, resource_size(res)); 140 } 141 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 142 143 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 144 { 145 /* 146 * Make sure the BAR is actually a memory resource, not an IO resource 147 */ 148 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 149 WARN_ON(1); 150 return NULL; 151 } 152 return ioremap_wc(pci_resource_start(pdev, bar), 153 pci_resource_len(pdev, bar)); 154 } 155 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 156 #endif 157 158 159 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 160 u8 pos, int cap, int *ttl) 161 { 162 u8 id; 163 u16 ent; 164 165 pci_bus_read_config_byte(bus, devfn, pos, &pos); 166 167 while ((*ttl)--) { 168 if (pos < 0x40) 169 break; 170 pos &= ~3; 171 pci_bus_read_config_word(bus, devfn, pos, &ent); 172 173 id = ent & 0xff; 174 if (id == 0xff) 175 break; 176 if (id == cap) 177 return pos; 178 pos = (ent >> 8); 179 } 180 return 0; 181 } 182 183 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 184 u8 pos, int cap) 185 { 186 int ttl = PCI_FIND_CAP_TTL; 187 188 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 189 } 190 191 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 192 { 193 return __pci_find_next_cap(dev->bus, dev->devfn, 194 pos + PCI_CAP_LIST_NEXT, cap); 195 } 196 EXPORT_SYMBOL_GPL(pci_find_next_capability); 197 198 static int __pci_bus_find_cap_start(struct pci_bus *bus, 199 unsigned int devfn, u8 hdr_type) 200 { 201 u16 status; 202 203 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 204 if (!(status & PCI_STATUS_CAP_LIST)) 205 return 0; 206 207 switch (hdr_type) { 208 case PCI_HEADER_TYPE_NORMAL: 209 case PCI_HEADER_TYPE_BRIDGE: 210 return PCI_CAPABILITY_LIST; 211 case PCI_HEADER_TYPE_CARDBUS: 212 return PCI_CB_CAPABILITY_LIST; 213 } 214 215 return 0; 216 } 217 218 /** 219 * pci_find_capability - query for devices' capabilities 220 * @dev: PCI device to query 221 * @cap: capability code 222 * 223 * Tell if a device supports a given PCI capability. 224 * Returns the address of the requested capability structure within the 225 * device's PCI configuration space or 0 in case the device does not 226 * support it. Possible values for @cap: 227 * 228 * %PCI_CAP_ID_PM Power Management 229 * %PCI_CAP_ID_AGP Accelerated Graphics Port 230 * %PCI_CAP_ID_VPD Vital Product Data 231 * %PCI_CAP_ID_SLOTID Slot Identification 232 * %PCI_CAP_ID_MSI Message Signalled Interrupts 233 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 234 * %PCI_CAP_ID_PCIX PCI-X 235 * %PCI_CAP_ID_EXP PCI Express 236 */ 237 int pci_find_capability(struct pci_dev *dev, int cap) 238 { 239 int pos; 240 241 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 242 if (pos) 243 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 244 245 return pos; 246 } 247 EXPORT_SYMBOL(pci_find_capability); 248 249 /** 250 * pci_bus_find_capability - query for devices' capabilities 251 * @bus: the PCI bus to query 252 * @devfn: PCI device to query 253 * @cap: capability code 254 * 255 * Like pci_find_capability() but works for pci devices that do not have a 256 * pci_dev structure set up yet. 257 * 258 * Returns the address of the requested capability structure within the 259 * device's PCI configuration space or 0 in case the device does not 260 * support it. 261 */ 262 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 263 { 264 int pos; 265 u8 hdr_type; 266 267 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 268 269 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 270 if (pos) 271 pos = __pci_find_next_cap(bus, devfn, pos, cap); 272 273 return pos; 274 } 275 EXPORT_SYMBOL(pci_bus_find_capability); 276 277 /** 278 * pci_find_next_ext_capability - Find an extended capability 279 * @dev: PCI device to query 280 * @start: address at which to start looking (0 to start at beginning of list) 281 * @cap: capability code 282 * 283 * Returns the address of the next matching extended capability structure 284 * within the device's PCI configuration space or 0 if the device does 285 * not support it. Some capabilities can occur several times, e.g., the 286 * vendor-specific capability, and this provides a way to find them all. 287 */ 288 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 289 { 290 u32 header; 291 int ttl; 292 int pos = PCI_CFG_SPACE_SIZE; 293 294 /* minimum 8 bytes per capability */ 295 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 296 297 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 298 return 0; 299 300 if (start) 301 pos = start; 302 303 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 304 return 0; 305 306 /* 307 * If we have no capabilities, this is indicated by cap ID, 308 * cap version and next pointer all being 0. 309 */ 310 if (header == 0) 311 return 0; 312 313 while (ttl-- > 0) { 314 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 315 return pos; 316 317 pos = PCI_EXT_CAP_NEXT(header); 318 if (pos < PCI_CFG_SPACE_SIZE) 319 break; 320 321 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 322 break; 323 } 324 325 return 0; 326 } 327 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 328 329 /** 330 * pci_find_ext_capability - Find an extended capability 331 * @dev: PCI device to query 332 * @cap: capability code 333 * 334 * Returns the address of the requested extended capability structure 335 * within the device's PCI configuration space or 0 if the device does 336 * not support it. Possible values for @cap: 337 * 338 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 339 * %PCI_EXT_CAP_ID_VC Virtual Channel 340 * %PCI_EXT_CAP_ID_DSN Device Serial Number 341 * %PCI_EXT_CAP_ID_PWR Power Budgeting 342 */ 343 int pci_find_ext_capability(struct pci_dev *dev, int cap) 344 { 345 return pci_find_next_ext_capability(dev, 0, cap); 346 } 347 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 348 349 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 350 { 351 int rc, ttl = PCI_FIND_CAP_TTL; 352 u8 cap, mask; 353 354 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 355 mask = HT_3BIT_CAP_MASK; 356 else 357 mask = HT_5BIT_CAP_MASK; 358 359 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 360 PCI_CAP_ID_HT, &ttl); 361 while (pos) { 362 rc = pci_read_config_byte(dev, pos + 3, &cap); 363 if (rc != PCIBIOS_SUCCESSFUL) 364 return 0; 365 366 if ((cap & mask) == ht_cap) 367 return pos; 368 369 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 370 pos + PCI_CAP_LIST_NEXT, 371 PCI_CAP_ID_HT, &ttl); 372 } 373 374 return 0; 375 } 376 /** 377 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 378 * @dev: PCI device to query 379 * @pos: Position from which to continue searching 380 * @ht_cap: Hypertransport capability code 381 * 382 * To be used in conjunction with pci_find_ht_capability() to search for 383 * all capabilities matching @ht_cap. @pos should always be a value returned 384 * from pci_find_ht_capability(). 385 * 386 * NB. To be 100% safe against broken PCI devices, the caller should take 387 * steps to avoid an infinite loop. 388 */ 389 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 390 { 391 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 392 } 393 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 394 395 /** 396 * pci_find_ht_capability - query a device's Hypertransport capabilities 397 * @dev: PCI device to query 398 * @ht_cap: Hypertransport capability code 399 * 400 * Tell if a device supports a given Hypertransport capability. 401 * Returns an address within the device's PCI configuration space 402 * or 0 in case the device does not support the request capability. 403 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 404 * which has a Hypertransport capability matching @ht_cap. 405 */ 406 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 407 { 408 int pos; 409 410 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 411 if (pos) 412 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 413 414 return pos; 415 } 416 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 417 418 /** 419 * pci_find_parent_resource - return resource region of parent bus of given region 420 * @dev: PCI device structure contains resources to be searched 421 * @res: child resource record for which parent is sought 422 * 423 * For given resource region of given device, return the resource 424 * region of parent bus the given region is contained in. 425 */ 426 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 427 struct resource *res) 428 { 429 const struct pci_bus *bus = dev->bus; 430 struct resource *r; 431 int i; 432 433 pci_bus_for_each_resource(bus, r, i) { 434 if (!r) 435 continue; 436 if (res->start && resource_contains(r, res)) { 437 438 /* 439 * If the window is prefetchable but the BAR is 440 * not, the allocator made a mistake. 441 */ 442 if (r->flags & IORESOURCE_PREFETCH && 443 !(res->flags & IORESOURCE_PREFETCH)) 444 return NULL; 445 446 /* 447 * If we're below a transparent bridge, there may 448 * be both a positively-decoded aperture and a 449 * subtractively-decoded region that contain the BAR. 450 * We want the positively-decoded one, so this depends 451 * on pci_bus_for_each_resource() giving us those 452 * first. 453 */ 454 return r; 455 } 456 } 457 return NULL; 458 } 459 EXPORT_SYMBOL(pci_find_parent_resource); 460 461 /** 462 * pci_find_pcie_root_port - return PCIe Root Port 463 * @dev: PCI device to query 464 * 465 * Traverse up the parent chain and return the PCIe Root Port PCI Device 466 * for a given PCI Device. 467 */ 468 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 469 { 470 struct pci_dev *bridge, *highest_pcie_bridge = NULL; 471 472 bridge = pci_upstream_bridge(dev); 473 while (bridge && pci_is_pcie(bridge)) { 474 highest_pcie_bridge = bridge; 475 bridge = pci_upstream_bridge(bridge); 476 } 477 478 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 479 return NULL; 480 481 return highest_pcie_bridge; 482 } 483 EXPORT_SYMBOL(pci_find_pcie_root_port); 484 485 /** 486 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 487 * @dev: the PCI device to operate on 488 * @pos: config space offset of status word 489 * @mask: mask of bit(s) to care about in status word 490 * 491 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 492 */ 493 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 494 { 495 int i; 496 497 /* Wait for Transaction Pending bit clean */ 498 for (i = 0; i < 4; i++) { 499 u16 status; 500 if (i) 501 msleep((1 << (i - 1)) * 100); 502 503 pci_read_config_word(dev, pos, &status); 504 if (!(status & mask)) 505 return 1; 506 } 507 508 return 0; 509 } 510 511 /** 512 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 513 * @dev: PCI device to have its BARs restored 514 * 515 * Restore the BAR values for a given device, so as to make it 516 * accessible by its driver. 517 */ 518 static void pci_restore_bars(struct pci_dev *dev) 519 { 520 int i; 521 522 /* Per SR-IOV spec 3.4.1.11, VF BARs are RO zero */ 523 if (dev->is_virtfn) 524 return; 525 526 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 527 pci_update_resource(dev, i); 528 } 529 530 static struct pci_platform_pm_ops *pci_platform_pm; 531 532 int pci_set_platform_pm(struct pci_platform_pm_ops *ops) 533 { 534 if (!ops->is_manageable || !ops->set_state || !ops->choose_state 535 || !ops->sleep_wake) 536 return -EINVAL; 537 pci_platform_pm = ops; 538 return 0; 539 } 540 541 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 542 { 543 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 544 } 545 546 static inline int platform_pci_set_power_state(struct pci_dev *dev, 547 pci_power_t t) 548 { 549 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 550 } 551 552 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 553 { 554 return pci_platform_pm ? 555 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 556 } 557 558 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 559 { 560 return pci_platform_pm ? 561 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 562 } 563 564 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 565 { 566 return pci_platform_pm ? 567 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 568 } 569 570 static inline bool platform_pci_need_resume(struct pci_dev *dev) 571 { 572 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 573 } 574 575 /** 576 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 577 * given PCI device 578 * @dev: PCI device to handle. 579 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 580 * 581 * RETURN VALUE: 582 * -EINVAL if the requested state is invalid. 583 * -EIO if device does not support PCI PM or its PM capabilities register has a 584 * wrong version, or device doesn't support the requested state. 585 * 0 if device already is in the requested state. 586 * 0 if device's power state has been successfully changed. 587 */ 588 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 589 { 590 u16 pmcsr; 591 bool need_restore = false; 592 593 /* Check if we're already there */ 594 if (dev->current_state == state) 595 return 0; 596 597 if (!dev->pm_cap) 598 return -EIO; 599 600 if (state < PCI_D0 || state > PCI_D3hot) 601 return -EINVAL; 602 603 /* Validate current state: 604 * Can enter D0 from any state, but if we can only go deeper 605 * to sleep if we're already in a low power state 606 */ 607 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 608 && dev->current_state > state) { 609 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n", 610 dev->current_state, state); 611 return -EINVAL; 612 } 613 614 /* check if this device supports the desired state */ 615 if ((state == PCI_D1 && !dev->d1_support) 616 || (state == PCI_D2 && !dev->d2_support)) 617 return -EIO; 618 619 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 620 621 /* If we're (effectively) in D3, force entire word to 0. 622 * This doesn't affect PME_Status, disables PME_En, and 623 * sets PowerState to 0. 624 */ 625 switch (dev->current_state) { 626 case PCI_D0: 627 case PCI_D1: 628 case PCI_D2: 629 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 630 pmcsr |= state; 631 break; 632 case PCI_D3hot: 633 case PCI_D3cold: 634 case PCI_UNKNOWN: /* Boot-up */ 635 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 636 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 637 need_restore = true; 638 /* Fall-through: force to D0 */ 639 default: 640 pmcsr = 0; 641 break; 642 } 643 644 /* enter specified state */ 645 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 646 647 /* Mandatory power management transition delays */ 648 /* see PCI PM 1.1 5.6.1 table 18 */ 649 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 650 pci_dev_d3_sleep(dev); 651 else if (state == PCI_D2 || dev->current_state == PCI_D2) 652 udelay(PCI_PM_D2_DELAY); 653 654 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 655 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 656 if (dev->current_state != state && printk_ratelimit()) 657 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n", 658 dev->current_state); 659 660 /* 661 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 662 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 663 * from D3hot to D0 _may_ perform an internal reset, thereby 664 * going to "D0 Uninitialized" rather than "D0 Initialized". 665 * For example, at least some versions of the 3c905B and the 666 * 3c556B exhibit this behaviour. 667 * 668 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 669 * devices in a D3hot state at boot. Consequently, we need to 670 * restore at least the BARs so that the device will be 671 * accessible to its driver. 672 */ 673 if (need_restore) 674 pci_restore_bars(dev); 675 676 if (dev->bus->self) 677 pcie_aspm_pm_state_change(dev->bus->self); 678 679 return 0; 680 } 681 682 /** 683 * pci_update_current_state - Read PCI power state of given device from its 684 * PCI PM registers and cache it 685 * @dev: PCI device to handle. 686 * @state: State to cache in case the device doesn't have the PM capability 687 */ 688 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 689 { 690 if (dev->pm_cap) { 691 u16 pmcsr; 692 693 /* 694 * Configuration space is not accessible for device in 695 * D3cold, so just keep or set D3cold for safety 696 */ 697 if (dev->current_state == PCI_D3cold) 698 return; 699 if (state == PCI_D3cold) { 700 dev->current_state = PCI_D3cold; 701 return; 702 } 703 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 704 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 705 } else { 706 dev->current_state = state; 707 } 708 } 709 710 /** 711 * pci_power_up - Put the given device into D0 forcibly 712 * @dev: PCI device to power up 713 */ 714 void pci_power_up(struct pci_dev *dev) 715 { 716 if (platform_pci_power_manageable(dev)) 717 platform_pci_set_power_state(dev, PCI_D0); 718 719 pci_raw_set_power_state(dev, PCI_D0); 720 pci_update_current_state(dev, PCI_D0); 721 } 722 723 /** 724 * pci_platform_power_transition - Use platform to change device power state 725 * @dev: PCI device to handle. 726 * @state: State to put the device into. 727 */ 728 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 729 { 730 int error; 731 732 if (platform_pci_power_manageable(dev)) { 733 error = platform_pci_set_power_state(dev, state); 734 if (!error) 735 pci_update_current_state(dev, state); 736 } else 737 error = -ENODEV; 738 739 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 740 dev->current_state = PCI_D0; 741 742 return error; 743 } 744 745 /** 746 * pci_wakeup - Wake up a PCI device 747 * @pci_dev: Device to handle. 748 * @ign: ignored parameter 749 */ 750 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 751 { 752 pci_wakeup_event(pci_dev); 753 pm_request_resume(&pci_dev->dev); 754 return 0; 755 } 756 757 /** 758 * pci_wakeup_bus - Walk given bus and wake up devices on it 759 * @bus: Top bus of the subtree to walk. 760 */ 761 static void pci_wakeup_bus(struct pci_bus *bus) 762 { 763 if (bus) 764 pci_walk_bus(bus, pci_wakeup, NULL); 765 } 766 767 /** 768 * __pci_start_power_transition - Start power transition of a PCI device 769 * @dev: PCI device to handle. 770 * @state: State to put the device into. 771 */ 772 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 773 { 774 if (state == PCI_D0) { 775 pci_platform_power_transition(dev, PCI_D0); 776 /* 777 * Mandatory power management transition delays, see 778 * PCI Express Base Specification Revision 2.0 Section 779 * 6.6.1: Conventional Reset. Do not delay for 780 * devices powered on/off by corresponding bridge, 781 * because have already delayed for the bridge. 782 */ 783 if (dev->runtime_d3cold) { 784 msleep(dev->d3cold_delay); 785 /* 786 * When powering on a bridge from D3cold, the 787 * whole hierarchy may be powered on into 788 * D0uninitialized state, resume them to give 789 * them a chance to suspend again 790 */ 791 pci_wakeup_bus(dev->subordinate); 792 } 793 } 794 } 795 796 /** 797 * __pci_dev_set_current_state - Set current state of a PCI device 798 * @dev: Device to handle 799 * @data: pointer to state to be set 800 */ 801 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 802 { 803 pci_power_t state = *(pci_power_t *)data; 804 805 dev->current_state = state; 806 return 0; 807 } 808 809 /** 810 * __pci_bus_set_current_state - Walk given bus and set current state of devices 811 * @bus: Top bus of the subtree to walk. 812 * @state: state to be set 813 */ 814 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 815 { 816 if (bus) 817 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 818 } 819 820 /** 821 * __pci_complete_power_transition - Complete power transition of a PCI device 822 * @dev: PCI device to handle. 823 * @state: State to put the device into. 824 * 825 * This function should not be called directly by device drivers. 826 */ 827 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 828 { 829 int ret; 830 831 if (state <= PCI_D0) 832 return -EINVAL; 833 ret = pci_platform_power_transition(dev, state); 834 /* Power off the bridge may power off the whole hierarchy */ 835 if (!ret && state == PCI_D3cold) 836 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 837 return ret; 838 } 839 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 840 841 /** 842 * pci_set_power_state - Set the power state of a PCI device 843 * @dev: PCI device to handle. 844 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 845 * 846 * Transition a device to a new power state, using the platform firmware and/or 847 * the device's PCI PM registers. 848 * 849 * RETURN VALUE: 850 * -EINVAL if the requested state is invalid. 851 * -EIO if device does not support PCI PM or its PM capabilities register has a 852 * wrong version, or device doesn't support the requested state. 853 * 0 if device already is in the requested state. 854 * 0 if device's power state has been successfully changed. 855 */ 856 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 857 { 858 int error; 859 860 /* bound the state we're entering */ 861 if (state > PCI_D3cold) 862 state = PCI_D3cold; 863 else if (state < PCI_D0) 864 state = PCI_D0; 865 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 866 /* 867 * If the device or the parent bridge do not support PCI PM, 868 * ignore the request if we're doing anything other than putting 869 * it into D0 (which would only happen on boot). 870 */ 871 return 0; 872 873 /* Check if we're already there */ 874 if (dev->current_state == state) 875 return 0; 876 877 __pci_start_power_transition(dev, state); 878 879 /* This device is quirked not to be put into D3, so 880 don't put it in D3 */ 881 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 882 return 0; 883 884 /* 885 * To put device in D3cold, we put device into D3hot in native 886 * way, then put device into D3cold with platform ops 887 */ 888 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 889 PCI_D3hot : state); 890 891 if (!__pci_complete_power_transition(dev, state)) 892 error = 0; 893 894 return error; 895 } 896 EXPORT_SYMBOL(pci_set_power_state); 897 898 /** 899 * pci_choose_state - Choose the power state of a PCI device 900 * @dev: PCI device to be suspended 901 * @state: target sleep state for the whole system. This is the value 902 * that is passed to suspend() function. 903 * 904 * Returns PCI power state suitable for given device and given system 905 * message. 906 */ 907 908 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 909 { 910 pci_power_t ret; 911 912 if (!dev->pm_cap) 913 return PCI_D0; 914 915 ret = platform_pci_choose_state(dev); 916 if (ret != PCI_POWER_ERROR) 917 return ret; 918 919 switch (state.event) { 920 case PM_EVENT_ON: 921 return PCI_D0; 922 case PM_EVENT_FREEZE: 923 case PM_EVENT_PRETHAW: 924 /* REVISIT both freeze and pre-thaw "should" use D0 */ 925 case PM_EVENT_SUSPEND: 926 case PM_EVENT_HIBERNATE: 927 return PCI_D3hot; 928 default: 929 dev_info(&dev->dev, "unrecognized suspend event %d\n", 930 state.event); 931 BUG(); 932 } 933 return PCI_D0; 934 } 935 EXPORT_SYMBOL(pci_choose_state); 936 937 #define PCI_EXP_SAVE_REGS 7 938 939 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 940 u16 cap, bool extended) 941 { 942 struct pci_cap_saved_state *tmp; 943 944 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 945 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 946 return tmp; 947 } 948 return NULL; 949 } 950 951 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 952 { 953 return _pci_find_saved_cap(dev, cap, false); 954 } 955 956 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 957 { 958 return _pci_find_saved_cap(dev, cap, true); 959 } 960 961 static int pci_save_pcie_state(struct pci_dev *dev) 962 { 963 int i = 0; 964 struct pci_cap_saved_state *save_state; 965 u16 *cap; 966 967 if (!pci_is_pcie(dev)) 968 return 0; 969 970 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 971 if (!save_state) { 972 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 973 return -ENOMEM; 974 } 975 976 cap = (u16 *)&save_state->cap.data[0]; 977 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 978 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 979 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 980 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 981 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 982 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 983 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 984 985 return 0; 986 } 987 988 static void pci_restore_pcie_state(struct pci_dev *dev) 989 { 990 int i = 0; 991 struct pci_cap_saved_state *save_state; 992 u16 *cap; 993 994 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 995 if (!save_state) 996 return; 997 998 cap = (u16 *)&save_state->cap.data[0]; 999 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1000 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1001 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1002 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1003 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1004 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1005 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1006 } 1007 1008 1009 static int pci_save_pcix_state(struct pci_dev *dev) 1010 { 1011 int pos; 1012 struct pci_cap_saved_state *save_state; 1013 1014 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1015 if (!pos) 1016 return 0; 1017 1018 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1019 if (!save_state) { 1020 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 1021 return -ENOMEM; 1022 } 1023 1024 pci_read_config_word(dev, pos + PCI_X_CMD, 1025 (u16 *)save_state->cap.data); 1026 1027 return 0; 1028 } 1029 1030 static void pci_restore_pcix_state(struct pci_dev *dev) 1031 { 1032 int i = 0, pos; 1033 struct pci_cap_saved_state *save_state; 1034 u16 *cap; 1035 1036 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1037 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1038 if (!save_state || !pos) 1039 return; 1040 cap = (u16 *)&save_state->cap.data[0]; 1041 1042 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1043 } 1044 1045 1046 /** 1047 * pci_save_state - save the PCI configuration space of a device before suspending 1048 * @dev: - PCI device that we're dealing with 1049 */ 1050 int pci_save_state(struct pci_dev *dev) 1051 { 1052 int i; 1053 /* XXX: 100% dword access ok here? */ 1054 for (i = 0; i < 16; i++) 1055 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1056 dev->state_saved = true; 1057 1058 i = pci_save_pcie_state(dev); 1059 if (i != 0) 1060 return i; 1061 1062 i = pci_save_pcix_state(dev); 1063 if (i != 0) 1064 return i; 1065 1066 return pci_save_vc_state(dev); 1067 } 1068 EXPORT_SYMBOL(pci_save_state); 1069 1070 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1071 u32 saved_val, int retry) 1072 { 1073 u32 val; 1074 1075 pci_read_config_dword(pdev, offset, &val); 1076 if (val == saved_val) 1077 return; 1078 1079 for (;;) { 1080 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1081 offset, val, saved_val); 1082 pci_write_config_dword(pdev, offset, saved_val); 1083 if (retry-- <= 0) 1084 return; 1085 1086 pci_read_config_dword(pdev, offset, &val); 1087 if (val == saved_val) 1088 return; 1089 1090 mdelay(1); 1091 } 1092 } 1093 1094 static void pci_restore_config_space_range(struct pci_dev *pdev, 1095 int start, int end, int retry) 1096 { 1097 int index; 1098 1099 for (index = end; index >= start; index--) 1100 pci_restore_config_dword(pdev, 4 * index, 1101 pdev->saved_config_space[index], 1102 retry); 1103 } 1104 1105 static void pci_restore_config_space(struct pci_dev *pdev) 1106 { 1107 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1108 pci_restore_config_space_range(pdev, 10, 15, 0); 1109 /* Restore BARs before the command register. */ 1110 pci_restore_config_space_range(pdev, 4, 9, 10); 1111 pci_restore_config_space_range(pdev, 0, 3, 0); 1112 } else { 1113 pci_restore_config_space_range(pdev, 0, 15, 0); 1114 } 1115 } 1116 1117 /** 1118 * pci_restore_state - Restore the saved state of a PCI device 1119 * @dev: - PCI device that we're dealing with 1120 */ 1121 void pci_restore_state(struct pci_dev *dev) 1122 { 1123 if (!dev->state_saved) 1124 return; 1125 1126 /* PCI Express register must be restored first */ 1127 pci_restore_pcie_state(dev); 1128 pci_restore_ats_state(dev); 1129 pci_restore_vc_state(dev); 1130 1131 pci_cleanup_aer_error_status_regs(dev); 1132 1133 pci_restore_config_space(dev); 1134 1135 pci_restore_pcix_state(dev); 1136 pci_restore_msi_state(dev); 1137 1138 /* Restore ACS and IOV configuration state */ 1139 pci_enable_acs(dev); 1140 pci_restore_iov_state(dev); 1141 1142 dev->state_saved = false; 1143 } 1144 EXPORT_SYMBOL(pci_restore_state); 1145 1146 struct pci_saved_state { 1147 u32 config_space[16]; 1148 struct pci_cap_saved_data cap[0]; 1149 }; 1150 1151 /** 1152 * pci_store_saved_state - Allocate and return an opaque struct containing 1153 * the device saved state. 1154 * @dev: PCI device that we're dealing with 1155 * 1156 * Return NULL if no state or error. 1157 */ 1158 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1159 { 1160 struct pci_saved_state *state; 1161 struct pci_cap_saved_state *tmp; 1162 struct pci_cap_saved_data *cap; 1163 size_t size; 1164 1165 if (!dev->state_saved) 1166 return NULL; 1167 1168 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1169 1170 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1171 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1172 1173 state = kzalloc(size, GFP_KERNEL); 1174 if (!state) 1175 return NULL; 1176 1177 memcpy(state->config_space, dev->saved_config_space, 1178 sizeof(state->config_space)); 1179 1180 cap = state->cap; 1181 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1182 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1183 memcpy(cap, &tmp->cap, len); 1184 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1185 } 1186 /* Empty cap_save terminates list */ 1187 1188 return state; 1189 } 1190 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1191 1192 /** 1193 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1194 * @dev: PCI device that we're dealing with 1195 * @state: Saved state returned from pci_store_saved_state() 1196 */ 1197 int pci_load_saved_state(struct pci_dev *dev, 1198 struct pci_saved_state *state) 1199 { 1200 struct pci_cap_saved_data *cap; 1201 1202 dev->state_saved = false; 1203 1204 if (!state) 1205 return 0; 1206 1207 memcpy(dev->saved_config_space, state->config_space, 1208 sizeof(state->config_space)); 1209 1210 cap = state->cap; 1211 while (cap->size) { 1212 struct pci_cap_saved_state *tmp; 1213 1214 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1215 if (!tmp || tmp->cap.size != cap->size) 1216 return -EINVAL; 1217 1218 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1219 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1220 sizeof(struct pci_cap_saved_data) + cap->size); 1221 } 1222 1223 dev->state_saved = true; 1224 return 0; 1225 } 1226 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1227 1228 /** 1229 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1230 * and free the memory allocated for it. 1231 * @dev: PCI device that we're dealing with 1232 * @state: Pointer to saved state returned from pci_store_saved_state() 1233 */ 1234 int pci_load_and_free_saved_state(struct pci_dev *dev, 1235 struct pci_saved_state **state) 1236 { 1237 int ret = pci_load_saved_state(dev, *state); 1238 kfree(*state); 1239 *state = NULL; 1240 return ret; 1241 } 1242 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1243 1244 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1245 { 1246 return pci_enable_resources(dev, bars); 1247 } 1248 1249 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1250 { 1251 int err; 1252 struct pci_dev *bridge; 1253 u16 cmd; 1254 u8 pin; 1255 1256 err = pci_set_power_state(dev, PCI_D0); 1257 if (err < 0 && err != -EIO) 1258 return err; 1259 1260 bridge = pci_upstream_bridge(dev); 1261 if (bridge) 1262 pcie_aspm_powersave_config_link(bridge); 1263 1264 err = pcibios_enable_device(dev, bars); 1265 if (err < 0) 1266 return err; 1267 pci_fixup_device(pci_fixup_enable, dev); 1268 1269 if (dev->msi_enabled || dev->msix_enabled) 1270 return 0; 1271 1272 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1273 if (pin) { 1274 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1275 if (cmd & PCI_COMMAND_INTX_DISABLE) 1276 pci_write_config_word(dev, PCI_COMMAND, 1277 cmd & ~PCI_COMMAND_INTX_DISABLE); 1278 } 1279 1280 return 0; 1281 } 1282 1283 /** 1284 * pci_reenable_device - Resume abandoned device 1285 * @dev: PCI device to be resumed 1286 * 1287 * Note this function is a backend of pci_default_resume and is not supposed 1288 * to be called by normal code, write proper resume handler and use it instead. 1289 */ 1290 int pci_reenable_device(struct pci_dev *dev) 1291 { 1292 if (pci_is_enabled(dev)) 1293 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1294 return 0; 1295 } 1296 EXPORT_SYMBOL(pci_reenable_device); 1297 1298 static void pci_enable_bridge(struct pci_dev *dev) 1299 { 1300 struct pci_dev *bridge; 1301 int retval; 1302 1303 bridge = pci_upstream_bridge(dev); 1304 if (bridge) 1305 pci_enable_bridge(bridge); 1306 1307 if (pci_is_enabled(dev)) { 1308 if (!dev->is_busmaster) 1309 pci_set_master(dev); 1310 return; 1311 } 1312 1313 retval = pci_enable_device(dev); 1314 if (retval) 1315 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1316 retval); 1317 pci_set_master(dev); 1318 } 1319 1320 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1321 { 1322 struct pci_dev *bridge; 1323 int err; 1324 int i, bars = 0; 1325 1326 /* 1327 * Power state could be unknown at this point, either due to a fresh 1328 * boot or a device removal call. So get the current power state 1329 * so that things like MSI message writing will behave as expected 1330 * (e.g. if the device really is in D0 at enable time). 1331 */ 1332 if (dev->pm_cap) { 1333 u16 pmcsr; 1334 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1335 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1336 } 1337 1338 if (atomic_inc_return(&dev->enable_cnt) > 1) 1339 return 0; /* already enabled */ 1340 1341 bridge = pci_upstream_bridge(dev); 1342 if (bridge) 1343 pci_enable_bridge(bridge); 1344 1345 /* only skip sriov related */ 1346 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1347 if (dev->resource[i].flags & flags) 1348 bars |= (1 << i); 1349 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1350 if (dev->resource[i].flags & flags) 1351 bars |= (1 << i); 1352 1353 err = do_pci_enable_device(dev, bars); 1354 if (err < 0) 1355 atomic_dec(&dev->enable_cnt); 1356 return err; 1357 } 1358 1359 /** 1360 * pci_enable_device_io - Initialize a device for use with IO space 1361 * @dev: PCI device to be initialized 1362 * 1363 * Initialize device before it's used by a driver. Ask low-level code 1364 * to enable I/O resources. Wake up the device if it was suspended. 1365 * Beware, this function can fail. 1366 */ 1367 int pci_enable_device_io(struct pci_dev *dev) 1368 { 1369 return pci_enable_device_flags(dev, IORESOURCE_IO); 1370 } 1371 EXPORT_SYMBOL(pci_enable_device_io); 1372 1373 /** 1374 * pci_enable_device_mem - Initialize a device for use with Memory space 1375 * @dev: PCI device to be initialized 1376 * 1377 * Initialize device before it's used by a driver. Ask low-level code 1378 * to enable Memory resources. Wake up the device if it was suspended. 1379 * Beware, this function can fail. 1380 */ 1381 int pci_enable_device_mem(struct pci_dev *dev) 1382 { 1383 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1384 } 1385 EXPORT_SYMBOL(pci_enable_device_mem); 1386 1387 /** 1388 * pci_enable_device - Initialize device before it's used by a driver. 1389 * @dev: PCI device to be initialized 1390 * 1391 * Initialize device before it's used by a driver. Ask low-level code 1392 * to enable I/O and memory. Wake up the device if it was suspended. 1393 * Beware, this function can fail. 1394 * 1395 * Note we don't actually enable the device many times if we call 1396 * this function repeatedly (we just increment the count). 1397 */ 1398 int pci_enable_device(struct pci_dev *dev) 1399 { 1400 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1401 } 1402 EXPORT_SYMBOL(pci_enable_device); 1403 1404 /* 1405 * Managed PCI resources. This manages device on/off, intx/msi/msix 1406 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1407 * there's no need to track it separately. pci_devres is initialized 1408 * when a device is enabled using managed PCI device enable interface. 1409 */ 1410 struct pci_devres { 1411 unsigned int enabled:1; 1412 unsigned int pinned:1; 1413 unsigned int orig_intx:1; 1414 unsigned int restore_intx:1; 1415 u32 region_mask; 1416 }; 1417 1418 static void pcim_release(struct device *gendev, void *res) 1419 { 1420 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); 1421 struct pci_devres *this = res; 1422 int i; 1423 1424 if (dev->msi_enabled) 1425 pci_disable_msi(dev); 1426 if (dev->msix_enabled) 1427 pci_disable_msix(dev); 1428 1429 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1430 if (this->region_mask & (1 << i)) 1431 pci_release_region(dev, i); 1432 1433 if (this->restore_intx) 1434 pci_intx(dev, this->orig_intx); 1435 1436 if (this->enabled && !this->pinned) 1437 pci_disable_device(dev); 1438 } 1439 1440 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1441 { 1442 struct pci_devres *dr, *new_dr; 1443 1444 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1445 if (dr) 1446 return dr; 1447 1448 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1449 if (!new_dr) 1450 return NULL; 1451 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1452 } 1453 1454 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1455 { 1456 if (pci_is_managed(pdev)) 1457 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1458 return NULL; 1459 } 1460 1461 /** 1462 * pcim_enable_device - Managed pci_enable_device() 1463 * @pdev: PCI device to be initialized 1464 * 1465 * Managed pci_enable_device(). 1466 */ 1467 int pcim_enable_device(struct pci_dev *pdev) 1468 { 1469 struct pci_devres *dr; 1470 int rc; 1471 1472 dr = get_pci_dr(pdev); 1473 if (unlikely(!dr)) 1474 return -ENOMEM; 1475 if (dr->enabled) 1476 return 0; 1477 1478 rc = pci_enable_device(pdev); 1479 if (!rc) { 1480 pdev->is_managed = 1; 1481 dr->enabled = 1; 1482 } 1483 return rc; 1484 } 1485 EXPORT_SYMBOL(pcim_enable_device); 1486 1487 /** 1488 * pcim_pin_device - Pin managed PCI device 1489 * @pdev: PCI device to pin 1490 * 1491 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1492 * driver detach. @pdev must have been enabled with 1493 * pcim_enable_device(). 1494 */ 1495 void pcim_pin_device(struct pci_dev *pdev) 1496 { 1497 struct pci_devres *dr; 1498 1499 dr = find_pci_dr(pdev); 1500 WARN_ON(!dr || !dr->enabled); 1501 if (dr) 1502 dr->pinned = 1; 1503 } 1504 EXPORT_SYMBOL(pcim_pin_device); 1505 1506 /* 1507 * pcibios_add_device - provide arch specific hooks when adding device dev 1508 * @dev: the PCI device being added 1509 * 1510 * Permits the platform to provide architecture specific functionality when 1511 * devices are added. This is the default implementation. Architecture 1512 * implementations can override this. 1513 */ 1514 int __weak pcibios_add_device(struct pci_dev *dev) 1515 { 1516 return 0; 1517 } 1518 1519 /** 1520 * pcibios_release_device - provide arch specific hooks when releasing device dev 1521 * @dev: the PCI device being released 1522 * 1523 * Permits the platform to provide architecture specific functionality when 1524 * devices are released. This is the default implementation. Architecture 1525 * implementations can override this. 1526 */ 1527 void __weak pcibios_release_device(struct pci_dev *dev) {} 1528 1529 /** 1530 * pcibios_disable_device - disable arch specific PCI resources for device dev 1531 * @dev: the PCI device to disable 1532 * 1533 * Disables architecture specific PCI resources for the device. This 1534 * is the default implementation. Architecture implementations can 1535 * override this. 1536 */ 1537 void __weak pcibios_disable_device (struct pci_dev *dev) {} 1538 1539 /** 1540 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1541 * @irq: ISA IRQ to penalize 1542 * @active: IRQ active or not 1543 * 1544 * Permits the platform to provide architecture-specific functionality when 1545 * penalizing ISA IRQs. This is the default implementation. Architecture 1546 * implementations can override this. 1547 */ 1548 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1549 1550 static void do_pci_disable_device(struct pci_dev *dev) 1551 { 1552 u16 pci_command; 1553 1554 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1555 if (pci_command & PCI_COMMAND_MASTER) { 1556 pci_command &= ~PCI_COMMAND_MASTER; 1557 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1558 } 1559 1560 pcibios_disable_device(dev); 1561 } 1562 1563 /** 1564 * pci_disable_enabled_device - Disable device without updating enable_cnt 1565 * @dev: PCI device to disable 1566 * 1567 * NOTE: This function is a backend of PCI power management routines and is 1568 * not supposed to be called drivers. 1569 */ 1570 void pci_disable_enabled_device(struct pci_dev *dev) 1571 { 1572 if (pci_is_enabled(dev)) 1573 do_pci_disable_device(dev); 1574 } 1575 1576 /** 1577 * pci_disable_device - Disable PCI device after use 1578 * @dev: PCI device to be disabled 1579 * 1580 * Signal to the system that the PCI device is not in use by the system 1581 * anymore. This only involves disabling PCI bus-mastering, if active. 1582 * 1583 * Note we don't actually disable the device until all callers of 1584 * pci_enable_device() have called pci_disable_device(). 1585 */ 1586 void pci_disable_device(struct pci_dev *dev) 1587 { 1588 struct pci_devres *dr; 1589 1590 dr = find_pci_dr(dev); 1591 if (dr) 1592 dr->enabled = 0; 1593 1594 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1595 "disabling already-disabled device"); 1596 1597 if (atomic_dec_return(&dev->enable_cnt) != 0) 1598 return; 1599 1600 do_pci_disable_device(dev); 1601 1602 dev->is_busmaster = 0; 1603 } 1604 EXPORT_SYMBOL(pci_disable_device); 1605 1606 /** 1607 * pcibios_set_pcie_reset_state - set reset state for device dev 1608 * @dev: the PCIe device reset 1609 * @state: Reset state to enter into 1610 * 1611 * 1612 * Sets the PCIe reset state for the device. This is the default 1613 * implementation. Architecture implementations can override this. 1614 */ 1615 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1616 enum pcie_reset_state state) 1617 { 1618 return -EINVAL; 1619 } 1620 1621 /** 1622 * pci_set_pcie_reset_state - set reset state for device dev 1623 * @dev: the PCIe device reset 1624 * @state: Reset state to enter into 1625 * 1626 * 1627 * Sets the PCI reset state for the device. 1628 */ 1629 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1630 { 1631 return pcibios_set_pcie_reset_state(dev, state); 1632 } 1633 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1634 1635 /** 1636 * pci_check_pme_status - Check if given device has generated PME. 1637 * @dev: Device to check. 1638 * 1639 * Check the PME status of the device and if set, clear it and clear PME enable 1640 * (if set). Return 'true' if PME status and PME enable were both set or 1641 * 'false' otherwise. 1642 */ 1643 bool pci_check_pme_status(struct pci_dev *dev) 1644 { 1645 int pmcsr_pos; 1646 u16 pmcsr; 1647 bool ret = false; 1648 1649 if (!dev->pm_cap) 1650 return false; 1651 1652 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1653 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1654 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1655 return false; 1656 1657 /* Clear PME status. */ 1658 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1659 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1660 /* Disable PME to avoid interrupt flood. */ 1661 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1662 ret = true; 1663 } 1664 1665 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1666 1667 return ret; 1668 } 1669 1670 /** 1671 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1672 * @dev: Device to handle. 1673 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1674 * 1675 * Check if @dev has generated PME and queue a resume request for it in that 1676 * case. 1677 */ 1678 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1679 { 1680 if (pme_poll_reset && dev->pme_poll) 1681 dev->pme_poll = false; 1682 1683 if (pci_check_pme_status(dev)) { 1684 pci_wakeup_event(dev); 1685 pm_request_resume(&dev->dev); 1686 } 1687 return 0; 1688 } 1689 1690 /** 1691 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1692 * @bus: Top bus of the subtree to walk. 1693 */ 1694 void pci_pme_wakeup_bus(struct pci_bus *bus) 1695 { 1696 if (bus) 1697 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1698 } 1699 1700 1701 /** 1702 * pci_pme_capable - check the capability of PCI device to generate PME# 1703 * @dev: PCI device to handle. 1704 * @state: PCI state from which device will issue PME#. 1705 */ 1706 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1707 { 1708 if (!dev->pm_cap) 1709 return false; 1710 1711 return !!(dev->pme_support & (1 << state)); 1712 } 1713 EXPORT_SYMBOL(pci_pme_capable); 1714 1715 static void pci_pme_list_scan(struct work_struct *work) 1716 { 1717 struct pci_pme_device *pme_dev, *n; 1718 1719 mutex_lock(&pci_pme_list_mutex); 1720 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1721 if (pme_dev->dev->pme_poll) { 1722 struct pci_dev *bridge; 1723 1724 bridge = pme_dev->dev->bus->self; 1725 /* 1726 * If bridge is in low power state, the 1727 * configuration space of subordinate devices 1728 * may be not accessible 1729 */ 1730 if (bridge && bridge->current_state != PCI_D0) 1731 continue; 1732 pci_pme_wakeup(pme_dev->dev, NULL); 1733 } else { 1734 list_del(&pme_dev->list); 1735 kfree(pme_dev); 1736 } 1737 } 1738 if (!list_empty(&pci_pme_list)) 1739 schedule_delayed_work(&pci_pme_work, 1740 msecs_to_jiffies(PME_TIMEOUT)); 1741 mutex_unlock(&pci_pme_list_mutex); 1742 } 1743 1744 static void __pci_pme_active(struct pci_dev *dev, bool enable) 1745 { 1746 u16 pmcsr; 1747 1748 if (!dev->pme_support) 1749 return; 1750 1751 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1752 /* Clear PME_Status by writing 1 to it and enable PME# */ 1753 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1754 if (!enable) 1755 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1756 1757 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1758 } 1759 1760 /** 1761 * pci_pme_active - enable or disable PCI device's PME# function 1762 * @dev: PCI device to handle. 1763 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1764 * 1765 * The caller must verify that the device is capable of generating PME# before 1766 * calling this function with @enable equal to 'true'. 1767 */ 1768 void pci_pme_active(struct pci_dev *dev, bool enable) 1769 { 1770 __pci_pme_active(dev, enable); 1771 1772 /* 1773 * PCI (as opposed to PCIe) PME requires that the device have 1774 * its PME# line hooked up correctly. Not all hardware vendors 1775 * do this, so the PME never gets delivered and the device 1776 * remains asleep. The easiest way around this is to 1777 * periodically walk the list of suspended devices and check 1778 * whether any have their PME flag set. The assumption is that 1779 * we'll wake up often enough anyway that this won't be a huge 1780 * hit, and the power savings from the devices will still be a 1781 * win. 1782 * 1783 * Although PCIe uses in-band PME message instead of PME# line 1784 * to report PME, PME does not work for some PCIe devices in 1785 * reality. For example, there are devices that set their PME 1786 * status bits, but don't really bother to send a PME message; 1787 * there are PCI Express Root Ports that don't bother to 1788 * trigger interrupts when they receive PME messages from the 1789 * devices below. So PME poll is used for PCIe devices too. 1790 */ 1791 1792 if (dev->pme_poll) { 1793 struct pci_pme_device *pme_dev; 1794 if (enable) { 1795 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1796 GFP_KERNEL); 1797 if (!pme_dev) { 1798 dev_warn(&dev->dev, "can't enable PME#\n"); 1799 return; 1800 } 1801 pme_dev->dev = dev; 1802 mutex_lock(&pci_pme_list_mutex); 1803 list_add(&pme_dev->list, &pci_pme_list); 1804 if (list_is_singular(&pci_pme_list)) 1805 schedule_delayed_work(&pci_pme_work, 1806 msecs_to_jiffies(PME_TIMEOUT)); 1807 mutex_unlock(&pci_pme_list_mutex); 1808 } else { 1809 mutex_lock(&pci_pme_list_mutex); 1810 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1811 if (pme_dev->dev == dev) { 1812 list_del(&pme_dev->list); 1813 kfree(pme_dev); 1814 break; 1815 } 1816 } 1817 mutex_unlock(&pci_pme_list_mutex); 1818 } 1819 } 1820 1821 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1822 } 1823 EXPORT_SYMBOL(pci_pme_active); 1824 1825 /** 1826 * __pci_enable_wake - enable PCI device as wakeup event source 1827 * @dev: PCI device affected 1828 * @state: PCI state from which device will issue wakeup events 1829 * @runtime: True if the events are to be generated at run time 1830 * @enable: True to enable event generation; false to disable 1831 * 1832 * This enables the device as a wakeup event source, or disables it. 1833 * When such events involves platform-specific hooks, those hooks are 1834 * called automatically by this routine. 1835 * 1836 * Devices with legacy power management (no standard PCI PM capabilities) 1837 * always require such platform hooks. 1838 * 1839 * RETURN VALUE: 1840 * 0 is returned on success 1841 * -EINVAL is returned if device is not supposed to wake up the system 1842 * Error code depending on the platform is returned if both the platform and 1843 * the native mechanism fail to enable the generation of wake-up events 1844 */ 1845 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1846 bool runtime, bool enable) 1847 { 1848 int ret = 0; 1849 1850 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1851 return -EINVAL; 1852 1853 /* Don't do the same thing twice in a row for one device. */ 1854 if (!!enable == !!dev->wakeup_prepared) 1855 return 0; 1856 1857 /* 1858 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1859 * Anderson we should be doing PME# wake enable followed by ACPI wake 1860 * enable. To disable wake-up we call the platform first, for symmetry. 1861 */ 1862 1863 if (enable) { 1864 int error; 1865 1866 if (pci_pme_capable(dev, state)) 1867 pci_pme_active(dev, true); 1868 else 1869 ret = 1; 1870 error = runtime ? platform_pci_run_wake(dev, true) : 1871 platform_pci_sleep_wake(dev, true); 1872 if (ret) 1873 ret = error; 1874 if (!ret) 1875 dev->wakeup_prepared = true; 1876 } else { 1877 if (runtime) 1878 platform_pci_run_wake(dev, false); 1879 else 1880 platform_pci_sleep_wake(dev, false); 1881 pci_pme_active(dev, false); 1882 dev->wakeup_prepared = false; 1883 } 1884 1885 return ret; 1886 } 1887 EXPORT_SYMBOL(__pci_enable_wake); 1888 1889 /** 1890 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1891 * @dev: PCI device to prepare 1892 * @enable: True to enable wake-up event generation; false to disable 1893 * 1894 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1895 * and this function allows them to set that up cleanly - pci_enable_wake() 1896 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1897 * ordering constraints. 1898 * 1899 * This function only returns error code if the device is not capable of 1900 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1901 * enable wake-up power for it. 1902 */ 1903 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1904 { 1905 return pci_pme_capable(dev, PCI_D3cold) ? 1906 pci_enable_wake(dev, PCI_D3cold, enable) : 1907 pci_enable_wake(dev, PCI_D3hot, enable); 1908 } 1909 EXPORT_SYMBOL(pci_wake_from_d3); 1910 1911 /** 1912 * pci_target_state - find an appropriate low power state for a given PCI dev 1913 * @dev: PCI device 1914 * 1915 * Use underlying platform code to find a supported low power state for @dev. 1916 * If the platform can't manage @dev, return the deepest state from which it 1917 * can generate wake events, based on any available PME info. 1918 */ 1919 static pci_power_t pci_target_state(struct pci_dev *dev) 1920 { 1921 pci_power_t target_state = PCI_D3hot; 1922 1923 if (platform_pci_power_manageable(dev)) { 1924 /* 1925 * Call the platform to choose the target state of the device 1926 * and enable wake-up from this state if supported. 1927 */ 1928 pci_power_t state = platform_pci_choose_state(dev); 1929 1930 switch (state) { 1931 case PCI_POWER_ERROR: 1932 case PCI_UNKNOWN: 1933 break; 1934 case PCI_D1: 1935 case PCI_D2: 1936 if (pci_no_d1d2(dev)) 1937 break; 1938 default: 1939 target_state = state; 1940 } 1941 } else if (!dev->pm_cap) { 1942 target_state = PCI_D0; 1943 } else if (device_may_wakeup(&dev->dev)) { 1944 /* 1945 * Find the deepest state from which the device can generate 1946 * wake-up events, make it the target state and enable device 1947 * to generate PME#. 1948 */ 1949 if (dev->pme_support) { 1950 while (target_state 1951 && !(dev->pme_support & (1 << target_state))) 1952 target_state--; 1953 } 1954 } 1955 1956 return target_state; 1957 } 1958 1959 /** 1960 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 1961 * @dev: Device to handle. 1962 * 1963 * Choose the power state appropriate for the device depending on whether 1964 * it can wake up the system and/or is power manageable by the platform 1965 * (PCI_D3hot is the default) and put the device into that state. 1966 */ 1967 int pci_prepare_to_sleep(struct pci_dev *dev) 1968 { 1969 pci_power_t target_state = pci_target_state(dev); 1970 int error; 1971 1972 if (target_state == PCI_POWER_ERROR) 1973 return -EIO; 1974 1975 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 1976 1977 error = pci_set_power_state(dev, target_state); 1978 1979 if (error) 1980 pci_enable_wake(dev, target_state, false); 1981 1982 return error; 1983 } 1984 EXPORT_SYMBOL(pci_prepare_to_sleep); 1985 1986 /** 1987 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 1988 * @dev: Device to handle. 1989 * 1990 * Disable device's system wake-up capability and put it into D0. 1991 */ 1992 int pci_back_from_sleep(struct pci_dev *dev) 1993 { 1994 pci_enable_wake(dev, PCI_D0, false); 1995 return pci_set_power_state(dev, PCI_D0); 1996 } 1997 EXPORT_SYMBOL(pci_back_from_sleep); 1998 1999 /** 2000 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2001 * @dev: PCI device being suspended. 2002 * 2003 * Prepare @dev to generate wake-up events at run time and put it into a low 2004 * power state. 2005 */ 2006 int pci_finish_runtime_suspend(struct pci_dev *dev) 2007 { 2008 pci_power_t target_state = pci_target_state(dev); 2009 int error; 2010 2011 if (target_state == PCI_POWER_ERROR) 2012 return -EIO; 2013 2014 dev->runtime_d3cold = target_state == PCI_D3cold; 2015 2016 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 2017 2018 error = pci_set_power_state(dev, target_state); 2019 2020 if (error) { 2021 __pci_enable_wake(dev, target_state, true, false); 2022 dev->runtime_d3cold = false; 2023 } 2024 2025 return error; 2026 } 2027 2028 /** 2029 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2030 * @dev: Device to check. 2031 * 2032 * Return true if the device itself is capable of generating wake-up events 2033 * (through the platform or using the native PCIe PME) or if the device supports 2034 * PME and one of its upstream bridges can generate wake-up events. 2035 */ 2036 bool pci_dev_run_wake(struct pci_dev *dev) 2037 { 2038 struct pci_bus *bus = dev->bus; 2039 2040 if (device_run_wake(&dev->dev)) 2041 return true; 2042 2043 if (!dev->pme_support) 2044 return false; 2045 2046 while (bus->parent) { 2047 struct pci_dev *bridge = bus->self; 2048 2049 if (device_run_wake(&bridge->dev)) 2050 return true; 2051 2052 bus = bus->parent; 2053 } 2054 2055 /* We have reached the root bus. */ 2056 if (bus->bridge) 2057 return device_run_wake(bus->bridge); 2058 2059 return false; 2060 } 2061 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2062 2063 /** 2064 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2065 * @pci_dev: Device to check. 2066 * 2067 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2068 * reconfigured due to wakeup settings difference between system and runtime 2069 * suspend and the current power state of it is suitable for the upcoming 2070 * (system) transition. 2071 * 2072 * If the device is not configured for system wakeup, disable PME for it before 2073 * returning 'true' to prevent it from waking up the system unnecessarily. 2074 */ 2075 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2076 { 2077 struct device *dev = &pci_dev->dev; 2078 2079 if (!pm_runtime_suspended(dev) 2080 || pci_target_state(pci_dev) != pci_dev->current_state 2081 || platform_pci_need_resume(pci_dev)) 2082 return false; 2083 2084 /* 2085 * At this point the device is good to go unless it's been configured 2086 * to generate PME at the runtime suspend time, but it is not supposed 2087 * to wake up the system. In that case, simply disable PME for it 2088 * (it will have to be re-enabled on exit from system resume). 2089 * 2090 * If the device's power state is D3cold and the platform check above 2091 * hasn't triggered, the device's configuration is suitable and we don't 2092 * need to manipulate it at all. 2093 */ 2094 spin_lock_irq(&dev->power.lock); 2095 2096 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2097 !device_may_wakeup(dev)) 2098 __pci_pme_active(pci_dev, false); 2099 2100 spin_unlock_irq(&dev->power.lock); 2101 return true; 2102 } 2103 2104 /** 2105 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2106 * @pci_dev: Device to handle. 2107 * 2108 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2109 * it might have been disabled during the prepare phase of system suspend if 2110 * the device was not configured for system wakeup. 2111 */ 2112 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2113 { 2114 struct device *dev = &pci_dev->dev; 2115 2116 if (!pci_dev_run_wake(pci_dev)) 2117 return; 2118 2119 spin_lock_irq(&dev->power.lock); 2120 2121 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2122 __pci_pme_active(pci_dev, true); 2123 2124 spin_unlock_irq(&dev->power.lock); 2125 } 2126 2127 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2128 { 2129 struct device *dev = &pdev->dev; 2130 struct device *parent = dev->parent; 2131 2132 if (parent) 2133 pm_runtime_get_sync(parent); 2134 pm_runtime_get_noresume(dev); 2135 /* 2136 * pdev->current_state is set to PCI_D3cold during suspending, 2137 * so wait until suspending completes 2138 */ 2139 pm_runtime_barrier(dev); 2140 /* 2141 * Only need to resume devices in D3cold, because config 2142 * registers are still accessible for devices suspended but 2143 * not in D3cold. 2144 */ 2145 if (pdev->current_state == PCI_D3cold) 2146 pm_runtime_resume(dev); 2147 } 2148 2149 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2150 { 2151 struct device *dev = &pdev->dev; 2152 struct device *parent = dev->parent; 2153 2154 pm_runtime_put(dev); 2155 if (parent) 2156 pm_runtime_put_sync(parent); 2157 } 2158 2159 /** 2160 * pci_pm_init - Initialize PM functions of given PCI device 2161 * @dev: PCI device to handle. 2162 */ 2163 void pci_pm_init(struct pci_dev *dev) 2164 { 2165 int pm; 2166 u16 pmc; 2167 2168 pm_runtime_forbid(&dev->dev); 2169 pm_runtime_set_active(&dev->dev); 2170 pm_runtime_enable(&dev->dev); 2171 device_enable_async_suspend(&dev->dev); 2172 dev->wakeup_prepared = false; 2173 2174 dev->pm_cap = 0; 2175 dev->pme_support = 0; 2176 2177 /* find PCI PM capability in list */ 2178 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2179 if (!pm) 2180 return; 2181 /* Check device's ability to generate PME# */ 2182 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2183 2184 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2185 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 2186 pmc & PCI_PM_CAP_VER_MASK); 2187 return; 2188 } 2189 2190 dev->pm_cap = pm; 2191 dev->d3_delay = PCI_PM_D3_WAIT; 2192 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2193 dev->d3cold_allowed = true; 2194 2195 dev->d1_support = false; 2196 dev->d2_support = false; 2197 if (!pci_no_d1d2(dev)) { 2198 if (pmc & PCI_PM_CAP_D1) 2199 dev->d1_support = true; 2200 if (pmc & PCI_PM_CAP_D2) 2201 dev->d2_support = true; 2202 2203 if (dev->d1_support || dev->d2_support) 2204 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 2205 dev->d1_support ? " D1" : "", 2206 dev->d2_support ? " D2" : ""); 2207 } 2208 2209 pmc &= PCI_PM_CAP_PME_MASK; 2210 if (pmc) { 2211 dev_printk(KERN_DEBUG, &dev->dev, 2212 "PME# supported from%s%s%s%s%s\n", 2213 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2214 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2215 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2216 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2217 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2218 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2219 dev->pme_poll = true; 2220 /* 2221 * Make device's PM flags reflect the wake-up capability, but 2222 * let the user space enable it to wake up the system as needed. 2223 */ 2224 device_set_wakeup_capable(&dev->dev, true); 2225 /* Disable the PME# generation functionality */ 2226 pci_pme_active(dev, false); 2227 } 2228 } 2229 2230 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2231 { 2232 unsigned long flags = IORESOURCE_PCI_FIXED; 2233 2234 switch (prop) { 2235 case PCI_EA_P_MEM: 2236 case PCI_EA_P_VF_MEM: 2237 flags |= IORESOURCE_MEM; 2238 break; 2239 case PCI_EA_P_MEM_PREFETCH: 2240 case PCI_EA_P_VF_MEM_PREFETCH: 2241 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2242 break; 2243 case PCI_EA_P_IO: 2244 flags |= IORESOURCE_IO; 2245 break; 2246 default: 2247 return 0; 2248 } 2249 2250 return flags; 2251 } 2252 2253 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2254 u8 prop) 2255 { 2256 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2257 return &dev->resource[bei]; 2258 #ifdef CONFIG_PCI_IOV 2259 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2260 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2261 return &dev->resource[PCI_IOV_RESOURCES + 2262 bei - PCI_EA_BEI_VF_BAR0]; 2263 #endif 2264 else if (bei == PCI_EA_BEI_ROM) 2265 return &dev->resource[PCI_ROM_RESOURCE]; 2266 else 2267 return NULL; 2268 } 2269 2270 /* Read an Enhanced Allocation (EA) entry */ 2271 static int pci_ea_read(struct pci_dev *dev, int offset) 2272 { 2273 struct resource *res; 2274 int ent_size, ent_offset = offset; 2275 resource_size_t start, end; 2276 unsigned long flags; 2277 u32 dw0, bei, base, max_offset; 2278 u8 prop; 2279 bool support_64 = (sizeof(resource_size_t) >= 8); 2280 2281 pci_read_config_dword(dev, ent_offset, &dw0); 2282 ent_offset += 4; 2283 2284 /* Entry size field indicates DWORDs after 1st */ 2285 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2286 2287 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2288 goto out; 2289 2290 bei = (dw0 & PCI_EA_BEI) >> 4; 2291 prop = (dw0 & PCI_EA_PP) >> 8; 2292 2293 /* 2294 * If the Property is in the reserved range, try the Secondary 2295 * Property instead. 2296 */ 2297 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2298 prop = (dw0 & PCI_EA_SP) >> 16; 2299 if (prop > PCI_EA_P_BRIDGE_IO) 2300 goto out; 2301 2302 res = pci_ea_get_resource(dev, bei, prop); 2303 if (!res) { 2304 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei); 2305 goto out; 2306 } 2307 2308 flags = pci_ea_flags(dev, prop); 2309 if (!flags) { 2310 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop); 2311 goto out; 2312 } 2313 2314 /* Read Base */ 2315 pci_read_config_dword(dev, ent_offset, &base); 2316 start = (base & PCI_EA_FIELD_MASK); 2317 ent_offset += 4; 2318 2319 /* Read MaxOffset */ 2320 pci_read_config_dword(dev, ent_offset, &max_offset); 2321 ent_offset += 4; 2322 2323 /* Read Base MSBs (if 64-bit entry) */ 2324 if (base & PCI_EA_IS_64) { 2325 u32 base_upper; 2326 2327 pci_read_config_dword(dev, ent_offset, &base_upper); 2328 ent_offset += 4; 2329 2330 flags |= IORESOURCE_MEM_64; 2331 2332 /* entry starts above 32-bit boundary, can't use */ 2333 if (!support_64 && base_upper) 2334 goto out; 2335 2336 if (support_64) 2337 start |= ((u64)base_upper << 32); 2338 } 2339 2340 end = start + (max_offset | 0x03); 2341 2342 /* Read MaxOffset MSBs (if 64-bit entry) */ 2343 if (max_offset & PCI_EA_IS_64) { 2344 u32 max_offset_upper; 2345 2346 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2347 ent_offset += 4; 2348 2349 flags |= IORESOURCE_MEM_64; 2350 2351 /* entry too big, can't use */ 2352 if (!support_64 && max_offset_upper) 2353 goto out; 2354 2355 if (support_64) 2356 end += ((u64)max_offset_upper << 32); 2357 } 2358 2359 if (end < start) { 2360 dev_err(&dev->dev, "EA Entry crosses address boundary\n"); 2361 goto out; 2362 } 2363 2364 if (ent_size != ent_offset - offset) { 2365 dev_err(&dev->dev, 2366 "EA Entry Size (%d) does not match length read (%d)\n", 2367 ent_size, ent_offset - offset); 2368 goto out; 2369 } 2370 2371 res->name = pci_name(dev); 2372 res->start = start; 2373 res->end = end; 2374 res->flags = flags; 2375 2376 if (bei <= PCI_EA_BEI_BAR5) 2377 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2378 bei, res, prop); 2379 else if (bei == PCI_EA_BEI_ROM) 2380 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2381 res, prop); 2382 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2383 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2384 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2385 else 2386 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2387 bei, res, prop); 2388 2389 out: 2390 return offset + ent_size; 2391 } 2392 2393 /* Enhanced Allocation Initalization */ 2394 void pci_ea_init(struct pci_dev *dev) 2395 { 2396 int ea; 2397 u8 num_ent; 2398 int offset; 2399 int i; 2400 2401 /* find PCI EA capability in list */ 2402 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2403 if (!ea) 2404 return; 2405 2406 /* determine the number of entries */ 2407 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2408 &num_ent); 2409 num_ent &= PCI_EA_NUM_ENT_MASK; 2410 2411 offset = ea + PCI_EA_FIRST_ENT; 2412 2413 /* Skip DWORD 2 for type 1 functions */ 2414 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2415 offset += 4; 2416 2417 /* parse each EA entry */ 2418 for (i = 0; i < num_ent; ++i) 2419 offset = pci_ea_read(dev, offset); 2420 } 2421 2422 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2423 struct pci_cap_saved_state *new_cap) 2424 { 2425 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2426 } 2427 2428 /** 2429 * _pci_add_cap_save_buffer - allocate buffer for saving given 2430 * capability registers 2431 * @dev: the PCI device 2432 * @cap: the capability to allocate the buffer for 2433 * @extended: Standard or Extended capability ID 2434 * @size: requested size of the buffer 2435 */ 2436 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2437 bool extended, unsigned int size) 2438 { 2439 int pos; 2440 struct pci_cap_saved_state *save_state; 2441 2442 if (extended) 2443 pos = pci_find_ext_capability(dev, cap); 2444 else 2445 pos = pci_find_capability(dev, cap); 2446 2447 if (!pos) 2448 return 0; 2449 2450 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2451 if (!save_state) 2452 return -ENOMEM; 2453 2454 save_state->cap.cap_nr = cap; 2455 save_state->cap.cap_extended = extended; 2456 save_state->cap.size = size; 2457 pci_add_saved_cap(dev, save_state); 2458 2459 return 0; 2460 } 2461 2462 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2463 { 2464 return _pci_add_cap_save_buffer(dev, cap, false, size); 2465 } 2466 2467 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2468 { 2469 return _pci_add_cap_save_buffer(dev, cap, true, size); 2470 } 2471 2472 /** 2473 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2474 * @dev: the PCI device 2475 */ 2476 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2477 { 2478 int error; 2479 2480 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2481 PCI_EXP_SAVE_REGS * sizeof(u16)); 2482 if (error) 2483 dev_err(&dev->dev, 2484 "unable to preallocate PCI Express save buffer\n"); 2485 2486 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2487 if (error) 2488 dev_err(&dev->dev, 2489 "unable to preallocate PCI-X save buffer\n"); 2490 2491 pci_allocate_vc_save_buffers(dev); 2492 } 2493 2494 void pci_free_cap_save_buffers(struct pci_dev *dev) 2495 { 2496 struct pci_cap_saved_state *tmp; 2497 struct hlist_node *n; 2498 2499 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2500 kfree(tmp); 2501 } 2502 2503 /** 2504 * pci_configure_ari - enable or disable ARI forwarding 2505 * @dev: the PCI device 2506 * 2507 * If @dev and its upstream bridge both support ARI, enable ARI in the 2508 * bridge. Otherwise, disable ARI in the bridge. 2509 */ 2510 void pci_configure_ari(struct pci_dev *dev) 2511 { 2512 u32 cap; 2513 struct pci_dev *bridge; 2514 2515 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2516 return; 2517 2518 bridge = dev->bus->self; 2519 if (!bridge) 2520 return; 2521 2522 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2523 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2524 return; 2525 2526 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2527 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2528 PCI_EXP_DEVCTL2_ARI); 2529 bridge->ari_enabled = 1; 2530 } else { 2531 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2532 PCI_EXP_DEVCTL2_ARI); 2533 bridge->ari_enabled = 0; 2534 } 2535 } 2536 2537 static int pci_acs_enable; 2538 2539 /** 2540 * pci_request_acs - ask for ACS to be enabled if supported 2541 */ 2542 void pci_request_acs(void) 2543 { 2544 pci_acs_enable = 1; 2545 } 2546 2547 /** 2548 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2549 * @dev: the PCI device 2550 */ 2551 static int pci_std_enable_acs(struct pci_dev *dev) 2552 { 2553 int pos; 2554 u16 cap; 2555 u16 ctrl; 2556 2557 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2558 if (!pos) 2559 return -ENODEV; 2560 2561 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2562 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2563 2564 /* Source Validation */ 2565 ctrl |= (cap & PCI_ACS_SV); 2566 2567 /* P2P Request Redirect */ 2568 ctrl |= (cap & PCI_ACS_RR); 2569 2570 /* P2P Completion Redirect */ 2571 ctrl |= (cap & PCI_ACS_CR); 2572 2573 /* Upstream Forwarding */ 2574 ctrl |= (cap & PCI_ACS_UF); 2575 2576 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2577 2578 return 0; 2579 } 2580 2581 /** 2582 * pci_enable_acs - enable ACS if hardware support it 2583 * @dev: the PCI device 2584 */ 2585 void pci_enable_acs(struct pci_dev *dev) 2586 { 2587 if (!pci_acs_enable) 2588 return; 2589 2590 if (!pci_std_enable_acs(dev)) 2591 return; 2592 2593 pci_dev_specific_enable_acs(dev); 2594 } 2595 2596 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2597 { 2598 int pos; 2599 u16 cap, ctrl; 2600 2601 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2602 if (!pos) 2603 return false; 2604 2605 /* 2606 * Except for egress control, capabilities are either required 2607 * or only required if controllable. Features missing from the 2608 * capability field can therefore be assumed as hard-wired enabled. 2609 */ 2610 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2611 acs_flags &= (cap | PCI_ACS_EC); 2612 2613 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2614 return (ctrl & acs_flags) == acs_flags; 2615 } 2616 2617 /** 2618 * pci_acs_enabled - test ACS against required flags for a given device 2619 * @pdev: device to test 2620 * @acs_flags: required PCI ACS flags 2621 * 2622 * Return true if the device supports the provided flags. Automatically 2623 * filters out flags that are not implemented on multifunction devices. 2624 * 2625 * Note that this interface checks the effective ACS capabilities of the 2626 * device rather than the actual capabilities. For instance, most single 2627 * function endpoints are not required to support ACS because they have no 2628 * opportunity for peer-to-peer access. We therefore return 'true' 2629 * regardless of whether the device exposes an ACS capability. This makes 2630 * it much easier for callers of this function to ignore the actual type 2631 * or topology of the device when testing ACS support. 2632 */ 2633 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2634 { 2635 int ret; 2636 2637 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2638 if (ret >= 0) 2639 return ret > 0; 2640 2641 /* 2642 * Conventional PCI and PCI-X devices never support ACS, either 2643 * effectively or actually. The shared bus topology implies that 2644 * any device on the bus can receive or snoop DMA. 2645 */ 2646 if (!pci_is_pcie(pdev)) 2647 return false; 2648 2649 switch (pci_pcie_type(pdev)) { 2650 /* 2651 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2652 * but since their primary interface is PCI/X, we conservatively 2653 * handle them as we would a non-PCIe device. 2654 */ 2655 case PCI_EXP_TYPE_PCIE_BRIDGE: 2656 /* 2657 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2658 * applicable... must never implement an ACS Extended Capability...". 2659 * This seems arbitrary, but we take a conservative interpretation 2660 * of this statement. 2661 */ 2662 case PCI_EXP_TYPE_PCI_BRIDGE: 2663 case PCI_EXP_TYPE_RC_EC: 2664 return false; 2665 /* 2666 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2667 * implement ACS in order to indicate their peer-to-peer capabilities, 2668 * regardless of whether they are single- or multi-function devices. 2669 */ 2670 case PCI_EXP_TYPE_DOWNSTREAM: 2671 case PCI_EXP_TYPE_ROOT_PORT: 2672 return pci_acs_flags_enabled(pdev, acs_flags); 2673 /* 2674 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2675 * implemented by the remaining PCIe types to indicate peer-to-peer 2676 * capabilities, but only when they are part of a multifunction 2677 * device. The footnote for section 6.12 indicates the specific 2678 * PCIe types included here. 2679 */ 2680 case PCI_EXP_TYPE_ENDPOINT: 2681 case PCI_EXP_TYPE_UPSTREAM: 2682 case PCI_EXP_TYPE_LEG_END: 2683 case PCI_EXP_TYPE_RC_END: 2684 if (!pdev->multifunction) 2685 break; 2686 2687 return pci_acs_flags_enabled(pdev, acs_flags); 2688 } 2689 2690 /* 2691 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2692 * to single function devices with the exception of downstream ports. 2693 */ 2694 return true; 2695 } 2696 2697 /** 2698 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2699 * @start: starting downstream device 2700 * @end: ending upstream device or NULL to search to the root bus 2701 * @acs_flags: required flags 2702 * 2703 * Walk up a device tree from start to end testing PCI ACS support. If 2704 * any step along the way does not support the required flags, return false. 2705 */ 2706 bool pci_acs_path_enabled(struct pci_dev *start, 2707 struct pci_dev *end, u16 acs_flags) 2708 { 2709 struct pci_dev *pdev, *parent = start; 2710 2711 do { 2712 pdev = parent; 2713 2714 if (!pci_acs_enabled(pdev, acs_flags)) 2715 return false; 2716 2717 if (pci_is_root_bus(pdev->bus)) 2718 return (end == NULL); 2719 2720 parent = pdev->bus->self; 2721 } while (pdev != end); 2722 2723 return true; 2724 } 2725 2726 /** 2727 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2728 * @dev: the PCI device 2729 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 2730 * 2731 * Perform INTx swizzling for a device behind one level of bridge. This is 2732 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2733 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2734 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2735 * the PCI Express Base Specification, Revision 2.1) 2736 */ 2737 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2738 { 2739 int slot; 2740 2741 if (pci_ari_enabled(dev->bus)) 2742 slot = 0; 2743 else 2744 slot = PCI_SLOT(dev->devfn); 2745 2746 return (((pin - 1) + slot) % 4) + 1; 2747 } 2748 2749 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2750 { 2751 u8 pin; 2752 2753 pin = dev->pin; 2754 if (!pin) 2755 return -1; 2756 2757 while (!pci_is_root_bus(dev->bus)) { 2758 pin = pci_swizzle_interrupt_pin(dev, pin); 2759 dev = dev->bus->self; 2760 } 2761 *bridge = dev; 2762 return pin; 2763 } 2764 2765 /** 2766 * pci_common_swizzle - swizzle INTx all the way to root bridge 2767 * @dev: the PCI device 2768 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2769 * 2770 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 2771 * bridges all the way up to a PCI root bus. 2772 */ 2773 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 2774 { 2775 u8 pin = *pinp; 2776 2777 while (!pci_is_root_bus(dev->bus)) { 2778 pin = pci_swizzle_interrupt_pin(dev, pin); 2779 dev = dev->bus->self; 2780 } 2781 *pinp = pin; 2782 return PCI_SLOT(dev->devfn); 2783 } 2784 EXPORT_SYMBOL_GPL(pci_common_swizzle); 2785 2786 /** 2787 * pci_release_region - Release a PCI bar 2788 * @pdev: PCI device whose resources were previously reserved by pci_request_region 2789 * @bar: BAR to release 2790 * 2791 * Releases the PCI I/O and memory resources previously reserved by a 2792 * successful call to pci_request_region. Call this function only 2793 * after all use of the PCI regions has ceased. 2794 */ 2795 void pci_release_region(struct pci_dev *pdev, int bar) 2796 { 2797 struct pci_devres *dr; 2798 2799 if (pci_resource_len(pdev, bar) == 0) 2800 return; 2801 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 2802 release_region(pci_resource_start(pdev, bar), 2803 pci_resource_len(pdev, bar)); 2804 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 2805 release_mem_region(pci_resource_start(pdev, bar), 2806 pci_resource_len(pdev, bar)); 2807 2808 dr = find_pci_dr(pdev); 2809 if (dr) 2810 dr->region_mask &= ~(1 << bar); 2811 } 2812 EXPORT_SYMBOL(pci_release_region); 2813 2814 /** 2815 * __pci_request_region - Reserved PCI I/O and memory resource 2816 * @pdev: PCI device whose resources are to be reserved 2817 * @bar: BAR to be reserved 2818 * @res_name: Name to be associated with resource. 2819 * @exclusive: whether the region access is exclusive or not 2820 * 2821 * Mark the PCI region associated with PCI device @pdev BR @bar as 2822 * being reserved by owner @res_name. Do not access any 2823 * address inside the PCI regions unless this call returns 2824 * successfully. 2825 * 2826 * If @exclusive is set, then the region is marked so that userspace 2827 * is explicitly not allowed to map the resource via /dev/mem or 2828 * sysfs MMIO access. 2829 * 2830 * Returns 0 on success, or %EBUSY on error. A warning 2831 * message is also printed on failure. 2832 */ 2833 static int __pci_request_region(struct pci_dev *pdev, int bar, 2834 const char *res_name, int exclusive) 2835 { 2836 struct pci_devres *dr; 2837 2838 if (pci_resource_len(pdev, bar) == 0) 2839 return 0; 2840 2841 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 2842 if (!request_region(pci_resource_start(pdev, bar), 2843 pci_resource_len(pdev, bar), res_name)) 2844 goto err_out; 2845 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 2846 if (!__request_mem_region(pci_resource_start(pdev, bar), 2847 pci_resource_len(pdev, bar), res_name, 2848 exclusive)) 2849 goto err_out; 2850 } 2851 2852 dr = find_pci_dr(pdev); 2853 if (dr) 2854 dr->region_mask |= 1 << bar; 2855 2856 return 0; 2857 2858 err_out: 2859 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 2860 &pdev->resource[bar]); 2861 return -EBUSY; 2862 } 2863 2864 /** 2865 * pci_request_region - Reserve PCI I/O and memory resource 2866 * @pdev: PCI device whose resources are to be reserved 2867 * @bar: BAR to be reserved 2868 * @res_name: Name to be associated with resource 2869 * 2870 * Mark the PCI region associated with PCI device @pdev BAR @bar as 2871 * being reserved by owner @res_name. Do not access any 2872 * address inside the PCI regions unless this call returns 2873 * successfully. 2874 * 2875 * Returns 0 on success, or %EBUSY on error. A warning 2876 * message is also printed on failure. 2877 */ 2878 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 2879 { 2880 return __pci_request_region(pdev, bar, res_name, 0); 2881 } 2882 EXPORT_SYMBOL(pci_request_region); 2883 2884 /** 2885 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 2886 * @pdev: PCI device whose resources are to be reserved 2887 * @bar: BAR to be reserved 2888 * @res_name: Name to be associated with resource. 2889 * 2890 * Mark the PCI region associated with PCI device @pdev BR @bar as 2891 * being reserved by owner @res_name. Do not access any 2892 * address inside the PCI regions unless this call returns 2893 * successfully. 2894 * 2895 * Returns 0 on success, or %EBUSY on error. A warning 2896 * message is also printed on failure. 2897 * 2898 * The key difference that _exclusive makes it that userspace is 2899 * explicitly not allowed to map the resource via /dev/mem or 2900 * sysfs. 2901 */ 2902 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 2903 const char *res_name) 2904 { 2905 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 2906 } 2907 EXPORT_SYMBOL(pci_request_region_exclusive); 2908 2909 /** 2910 * pci_release_selected_regions - Release selected PCI I/O and memory resources 2911 * @pdev: PCI device whose resources were previously reserved 2912 * @bars: Bitmask of BARs to be released 2913 * 2914 * Release selected PCI I/O and memory resources previously reserved. 2915 * Call this function only after all use of the PCI regions has ceased. 2916 */ 2917 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 2918 { 2919 int i; 2920 2921 for (i = 0; i < 6; i++) 2922 if (bars & (1 << i)) 2923 pci_release_region(pdev, i); 2924 } 2925 EXPORT_SYMBOL(pci_release_selected_regions); 2926 2927 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 2928 const char *res_name, int excl) 2929 { 2930 int i; 2931 2932 for (i = 0; i < 6; i++) 2933 if (bars & (1 << i)) 2934 if (__pci_request_region(pdev, i, res_name, excl)) 2935 goto err_out; 2936 return 0; 2937 2938 err_out: 2939 while (--i >= 0) 2940 if (bars & (1 << i)) 2941 pci_release_region(pdev, i); 2942 2943 return -EBUSY; 2944 } 2945 2946 2947 /** 2948 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 2949 * @pdev: PCI device whose resources are to be reserved 2950 * @bars: Bitmask of BARs to be requested 2951 * @res_name: Name to be associated with resource 2952 */ 2953 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 2954 const char *res_name) 2955 { 2956 return __pci_request_selected_regions(pdev, bars, res_name, 0); 2957 } 2958 EXPORT_SYMBOL(pci_request_selected_regions); 2959 2960 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 2961 const char *res_name) 2962 { 2963 return __pci_request_selected_regions(pdev, bars, res_name, 2964 IORESOURCE_EXCLUSIVE); 2965 } 2966 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 2967 2968 /** 2969 * pci_release_regions - Release reserved PCI I/O and memory resources 2970 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 2971 * 2972 * Releases all PCI I/O and memory resources previously reserved by a 2973 * successful call to pci_request_regions. Call this function only 2974 * after all use of the PCI regions has ceased. 2975 */ 2976 2977 void pci_release_regions(struct pci_dev *pdev) 2978 { 2979 pci_release_selected_regions(pdev, (1 << 6) - 1); 2980 } 2981 EXPORT_SYMBOL(pci_release_regions); 2982 2983 /** 2984 * pci_request_regions - Reserved PCI I/O and memory resources 2985 * @pdev: PCI device whose resources are to be reserved 2986 * @res_name: Name to be associated with resource. 2987 * 2988 * Mark all PCI regions associated with PCI device @pdev as 2989 * being reserved by owner @res_name. Do not access any 2990 * address inside the PCI regions unless this call returns 2991 * successfully. 2992 * 2993 * Returns 0 on success, or %EBUSY on error. A warning 2994 * message is also printed on failure. 2995 */ 2996 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 2997 { 2998 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 2999 } 3000 EXPORT_SYMBOL(pci_request_regions); 3001 3002 /** 3003 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3004 * @pdev: PCI device whose resources are to be reserved 3005 * @res_name: Name to be associated with resource. 3006 * 3007 * Mark all PCI regions associated with PCI device @pdev as 3008 * being reserved by owner @res_name. Do not access any 3009 * address inside the PCI regions unless this call returns 3010 * successfully. 3011 * 3012 * pci_request_regions_exclusive() will mark the region so that 3013 * /dev/mem and the sysfs MMIO access will not be allowed. 3014 * 3015 * Returns 0 on success, or %EBUSY on error. A warning 3016 * message is also printed on failure. 3017 */ 3018 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3019 { 3020 return pci_request_selected_regions_exclusive(pdev, 3021 ((1 << 6) - 1), res_name); 3022 } 3023 EXPORT_SYMBOL(pci_request_regions_exclusive); 3024 3025 /** 3026 * pci_remap_iospace - Remap the memory mapped I/O space 3027 * @res: Resource describing the I/O space 3028 * @phys_addr: physical address of range to be mapped 3029 * 3030 * Remap the memory mapped I/O space described by the @res 3031 * and the CPU physical address @phys_addr into virtual address space. 3032 * Only architectures that have memory mapped IO functions defined 3033 * (and the PCI_IOBASE value defined) should call this function. 3034 */ 3035 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3036 { 3037 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3038 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3039 3040 if (!(res->flags & IORESOURCE_IO)) 3041 return -EINVAL; 3042 3043 if (res->end > IO_SPACE_LIMIT) 3044 return -EINVAL; 3045 3046 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3047 pgprot_device(PAGE_KERNEL)); 3048 #else 3049 /* this architecture does not have memory mapped I/O space, 3050 so this function should never be called */ 3051 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3052 return -ENODEV; 3053 #endif 3054 } 3055 3056 static void __pci_set_master(struct pci_dev *dev, bool enable) 3057 { 3058 u16 old_cmd, cmd; 3059 3060 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 3061 if (enable) 3062 cmd = old_cmd | PCI_COMMAND_MASTER; 3063 else 3064 cmd = old_cmd & ~PCI_COMMAND_MASTER; 3065 if (cmd != old_cmd) { 3066 dev_dbg(&dev->dev, "%s bus mastering\n", 3067 enable ? "enabling" : "disabling"); 3068 pci_write_config_word(dev, PCI_COMMAND, cmd); 3069 } 3070 dev->is_busmaster = enable; 3071 } 3072 3073 /** 3074 * pcibios_setup - process "pci=" kernel boot arguments 3075 * @str: string used to pass in "pci=" kernel boot arguments 3076 * 3077 * Process kernel boot arguments. This is the default implementation. 3078 * Architecture specific implementations can override this as necessary. 3079 */ 3080 char * __weak __init pcibios_setup(char *str) 3081 { 3082 return str; 3083 } 3084 3085 /** 3086 * pcibios_set_master - enable PCI bus-mastering for device dev 3087 * @dev: the PCI device to enable 3088 * 3089 * Enables PCI bus-mastering for the device. This is the default 3090 * implementation. Architecture specific implementations can override 3091 * this if necessary. 3092 */ 3093 void __weak pcibios_set_master(struct pci_dev *dev) 3094 { 3095 u8 lat; 3096 3097 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 3098 if (pci_is_pcie(dev)) 3099 return; 3100 3101 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 3102 if (lat < 16) 3103 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 3104 else if (lat > pcibios_max_latency) 3105 lat = pcibios_max_latency; 3106 else 3107 return; 3108 3109 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 3110 } 3111 3112 /** 3113 * pci_set_master - enables bus-mastering for device dev 3114 * @dev: the PCI device to enable 3115 * 3116 * Enables bus-mastering on the device and calls pcibios_set_master() 3117 * to do the needed arch specific settings. 3118 */ 3119 void pci_set_master(struct pci_dev *dev) 3120 { 3121 __pci_set_master(dev, true); 3122 pcibios_set_master(dev); 3123 } 3124 EXPORT_SYMBOL(pci_set_master); 3125 3126 /** 3127 * pci_clear_master - disables bus-mastering for device dev 3128 * @dev: the PCI device to disable 3129 */ 3130 void pci_clear_master(struct pci_dev *dev) 3131 { 3132 __pci_set_master(dev, false); 3133 } 3134 EXPORT_SYMBOL(pci_clear_master); 3135 3136 /** 3137 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 3138 * @dev: the PCI device for which MWI is to be enabled 3139 * 3140 * Helper function for pci_set_mwi. 3141 * Originally copied from drivers/net/acenic.c. 3142 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 3143 * 3144 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3145 */ 3146 int pci_set_cacheline_size(struct pci_dev *dev) 3147 { 3148 u8 cacheline_size; 3149 3150 if (!pci_cache_line_size) 3151 return -EINVAL; 3152 3153 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 3154 equal to or multiple of the right value. */ 3155 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3156 if (cacheline_size >= pci_cache_line_size && 3157 (cacheline_size % pci_cache_line_size) == 0) 3158 return 0; 3159 3160 /* Write the correct value. */ 3161 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 3162 /* Read it back. */ 3163 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3164 if (cacheline_size == pci_cache_line_size) 3165 return 0; 3166 3167 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n", 3168 pci_cache_line_size << 2); 3169 3170 return -EINVAL; 3171 } 3172 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 3173 3174 /** 3175 * pci_set_mwi - enables memory-write-invalidate PCI transaction 3176 * @dev: the PCI device for which MWI is enabled 3177 * 3178 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3179 * 3180 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3181 */ 3182 int pci_set_mwi(struct pci_dev *dev) 3183 { 3184 #ifdef PCI_DISABLE_MWI 3185 return 0; 3186 #else 3187 int rc; 3188 u16 cmd; 3189 3190 rc = pci_set_cacheline_size(dev); 3191 if (rc) 3192 return rc; 3193 3194 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3195 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 3196 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 3197 cmd |= PCI_COMMAND_INVALIDATE; 3198 pci_write_config_word(dev, PCI_COMMAND, cmd); 3199 } 3200 return 0; 3201 #endif 3202 } 3203 EXPORT_SYMBOL(pci_set_mwi); 3204 3205 /** 3206 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 3207 * @dev: the PCI device for which MWI is enabled 3208 * 3209 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3210 * Callers are not required to check the return value. 3211 * 3212 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3213 */ 3214 int pci_try_set_mwi(struct pci_dev *dev) 3215 { 3216 #ifdef PCI_DISABLE_MWI 3217 return 0; 3218 #else 3219 return pci_set_mwi(dev); 3220 #endif 3221 } 3222 EXPORT_SYMBOL(pci_try_set_mwi); 3223 3224 /** 3225 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 3226 * @dev: the PCI device to disable 3227 * 3228 * Disables PCI Memory-Write-Invalidate transaction on the device 3229 */ 3230 void pci_clear_mwi(struct pci_dev *dev) 3231 { 3232 #ifndef PCI_DISABLE_MWI 3233 u16 cmd; 3234 3235 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3236 if (cmd & PCI_COMMAND_INVALIDATE) { 3237 cmd &= ~PCI_COMMAND_INVALIDATE; 3238 pci_write_config_word(dev, PCI_COMMAND, cmd); 3239 } 3240 #endif 3241 } 3242 EXPORT_SYMBOL(pci_clear_mwi); 3243 3244 /** 3245 * pci_intx - enables/disables PCI INTx for device dev 3246 * @pdev: the PCI device to operate on 3247 * @enable: boolean: whether to enable or disable PCI INTx 3248 * 3249 * Enables/disables PCI INTx for device dev 3250 */ 3251 void pci_intx(struct pci_dev *pdev, int enable) 3252 { 3253 u16 pci_command, new; 3254 3255 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 3256 3257 if (enable) 3258 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 3259 else 3260 new = pci_command | PCI_COMMAND_INTX_DISABLE; 3261 3262 if (new != pci_command) { 3263 struct pci_devres *dr; 3264 3265 pci_write_config_word(pdev, PCI_COMMAND, new); 3266 3267 dr = find_pci_dr(pdev); 3268 if (dr && !dr->restore_intx) { 3269 dr->restore_intx = 1; 3270 dr->orig_intx = !enable; 3271 } 3272 } 3273 } 3274 EXPORT_SYMBOL_GPL(pci_intx); 3275 3276 /** 3277 * pci_intx_mask_supported - probe for INTx masking support 3278 * @dev: the PCI device to operate on 3279 * 3280 * Check if the device dev support INTx masking via the config space 3281 * command word. 3282 */ 3283 bool pci_intx_mask_supported(struct pci_dev *dev) 3284 { 3285 bool mask_supported = false; 3286 u16 orig, new; 3287 3288 if (dev->broken_intx_masking) 3289 return false; 3290 3291 pci_cfg_access_lock(dev); 3292 3293 pci_read_config_word(dev, PCI_COMMAND, &orig); 3294 pci_write_config_word(dev, PCI_COMMAND, 3295 orig ^ PCI_COMMAND_INTX_DISABLE); 3296 pci_read_config_word(dev, PCI_COMMAND, &new); 3297 3298 /* 3299 * There's no way to protect against hardware bugs or detect them 3300 * reliably, but as long as we know what the value should be, let's 3301 * go ahead and check it. 3302 */ 3303 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) { 3304 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n", 3305 orig, new); 3306 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) { 3307 mask_supported = true; 3308 pci_write_config_word(dev, PCI_COMMAND, orig); 3309 } 3310 3311 pci_cfg_access_unlock(dev); 3312 return mask_supported; 3313 } 3314 EXPORT_SYMBOL_GPL(pci_intx_mask_supported); 3315 3316 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3317 { 3318 struct pci_bus *bus = dev->bus; 3319 bool mask_updated = true; 3320 u32 cmd_status_dword; 3321 u16 origcmd, newcmd; 3322 unsigned long flags; 3323 bool irq_pending; 3324 3325 /* 3326 * We do a single dword read to retrieve both command and status. 3327 * Document assumptions that make this possible. 3328 */ 3329 BUILD_BUG_ON(PCI_COMMAND % 4); 3330 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3331 3332 raw_spin_lock_irqsave(&pci_lock, flags); 3333 3334 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3335 3336 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3337 3338 /* 3339 * Check interrupt status register to see whether our device 3340 * triggered the interrupt (when masking) or the next IRQ is 3341 * already pending (when unmasking). 3342 */ 3343 if (mask != irq_pending) { 3344 mask_updated = false; 3345 goto done; 3346 } 3347 3348 origcmd = cmd_status_dword; 3349 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3350 if (mask) 3351 newcmd |= PCI_COMMAND_INTX_DISABLE; 3352 if (newcmd != origcmd) 3353 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3354 3355 done: 3356 raw_spin_unlock_irqrestore(&pci_lock, flags); 3357 3358 return mask_updated; 3359 } 3360 3361 /** 3362 * pci_check_and_mask_intx - mask INTx on pending interrupt 3363 * @dev: the PCI device to operate on 3364 * 3365 * Check if the device dev has its INTx line asserted, mask it and 3366 * return true in that case. False is returned if not interrupt was 3367 * pending. 3368 */ 3369 bool pci_check_and_mask_intx(struct pci_dev *dev) 3370 { 3371 return pci_check_and_set_intx_mask(dev, true); 3372 } 3373 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3374 3375 /** 3376 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3377 * @dev: the PCI device to operate on 3378 * 3379 * Check if the device dev has its INTx line asserted, unmask it if not 3380 * and return true. False is returned and the mask remains active if 3381 * there was still an interrupt pending. 3382 */ 3383 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3384 { 3385 return pci_check_and_set_intx_mask(dev, false); 3386 } 3387 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3388 3389 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size) 3390 { 3391 return dma_set_max_seg_size(&dev->dev, size); 3392 } 3393 EXPORT_SYMBOL(pci_set_dma_max_seg_size); 3394 3395 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask) 3396 { 3397 return dma_set_seg_boundary(&dev->dev, mask); 3398 } 3399 EXPORT_SYMBOL(pci_set_dma_seg_boundary); 3400 3401 /** 3402 * pci_wait_for_pending_transaction - waits for pending transaction 3403 * @dev: the PCI device to operate on 3404 * 3405 * Return 0 if transaction is pending 1 otherwise. 3406 */ 3407 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3408 { 3409 if (!pci_is_pcie(dev)) 3410 return 1; 3411 3412 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 3413 PCI_EXP_DEVSTA_TRPND); 3414 } 3415 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3416 3417 static int pcie_flr(struct pci_dev *dev, int probe) 3418 { 3419 u32 cap; 3420 3421 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3422 if (!(cap & PCI_EXP_DEVCAP_FLR)) 3423 return -ENOTTY; 3424 3425 if (probe) 3426 return 0; 3427 3428 if (!pci_wait_for_pending_transaction(dev)) 3429 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 3430 3431 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 3432 msleep(100); 3433 return 0; 3434 } 3435 3436 static int pci_af_flr(struct pci_dev *dev, int probe) 3437 { 3438 int pos; 3439 u8 cap; 3440 3441 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3442 if (!pos) 3443 return -ENOTTY; 3444 3445 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3446 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3447 return -ENOTTY; 3448 3449 if (probe) 3450 return 0; 3451 3452 /* 3453 * Wait for Transaction Pending bit to clear. A word-aligned test 3454 * is used, so we use the conrol offset rather than status and shift 3455 * the test bit to match. 3456 */ 3457 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 3458 PCI_AF_STATUS_TP << 8)) 3459 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 3460 3461 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3462 msleep(100); 3463 return 0; 3464 } 3465 3466 /** 3467 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3468 * @dev: Device to reset. 3469 * @probe: If set, only check if the device can be reset this way. 3470 * 3471 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3472 * unset, it will be reinitialized internally when going from PCI_D3hot to 3473 * PCI_D0. If that's the case and the device is not in a low-power state 3474 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3475 * 3476 * NOTE: This causes the caller to sleep for twice the device power transition 3477 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3478 * by default (i.e. unless the @dev's d3_delay field has a different value). 3479 * Moreover, only devices in D0 can be reset by this function. 3480 */ 3481 static int pci_pm_reset(struct pci_dev *dev, int probe) 3482 { 3483 u16 csr; 3484 3485 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 3486 return -ENOTTY; 3487 3488 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3489 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3490 return -ENOTTY; 3491 3492 if (probe) 3493 return 0; 3494 3495 if (dev->current_state != PCI_D0) 3496 return -EINVAL; 3497 3498 csr &= ~PCI_PM_CTRL_STATE_MASK; 3499 csr |= PCI_D3hot; 3500 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3501 pci_dev_d3_sleep(dev); 3502 3503 csr &= ~PCI_PM_CTRL_STATE_MASK; 3504 csr |= PCI_D0; 3505 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3506 pci_dev_d3_sleep(dev); 3507 3508 return 0; 3509 } 3510 3511 void pci_reset_secondary_bus(struct pci_dev *dev) 3512 { 3513 u16 ctrl; 3514 3515 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 3516 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3517 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3518 /* 3519 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 3520 * this to 2ms to ensure that we meet the minimum requirement. 3521 */ 3522 msleep(2); 3523 3524 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3525 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3526 3527 /* 3528 * Trhfa for conventional PCI is 2^25 clock cycles. 3529 * Assuming a minimum 33MHz clock this results in a 1s 3530 * delay before we can consider subordinate devices to 3531 * be re-initialized. PCIe has some ways to shorten this, 3532 * but we don't make use of them yet. 3533 */ 3534 ssleep(1); 3535 } 3536 3537 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 3538 { 3539 pci_reset_secondary_bus(dev); 3540 } 3541 3542 /** 3543 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 3544 * @dev: Bridge device 3545 * 3546 * Use the bridge control register to assert reset on the secondary bus. 3547 * Devices on the secondary bus are left in power-on state. 3548 */ 3549 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 3550 { 3551 pcibios_reset_secondary_bus(dev); 3552 } 3553 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 3554 3555 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 3556 { 3557 struct pci_dev *pdev; 3558 3559 if (pci_is_root_bus(dev->bus) || dev->subordinate || 3560 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 3561 return -ENOTTY; 3562 3563 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3564 if (pdev != dev) 3565 return -ENOTTY; 3566 3567 if (probe) 3568 return 0; 3569 3570 pci_reset_bridge_secondary_bus(dev->bus->self); 3571 3572 return 0; 3573 } 3574 3575 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 3576 { 3577 int rc = -ENOTTY; 3578 3579 if (!hotplug || !try_module_get(hotplug->ops->owner)) 3580 return rc; 3581 3582 if (hotplug->ops->reset_slot) 3583 rc = hotplug->ops->reset_slot(hotplug, probe); 3584 3585 module_put(hotplug->ops->owner); 3586 3587 return rc; 3588 } 3589 3590 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 3591 { 3592 struct pci_dev *pdev; 3593 3594 if (dev->subordinate || !dev->slot || 3595 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 3596 return -ENOTTY; 3597 3598 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3599 if (pdev != dev && pdev->slot == dev->slot) 3600 return -ENOTTY; 3601 3602 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 3603 } 3604 3605 static int __pci_dev_reset(struct pci_dev *dev, int probe) 3606 { 3607 int rc; 3608 3609 might_sleep(); 3610 3611 rc = pci_dev_specific_reset(dev, probe); 3612 if (rc != -ENOTTY) 3613 goto done; 3614 3615 rc = pcie_flr(dev, probe); 3616 if (rc != -ENOTTY) 3617 goto done; 3618 3619 rc = pci_af_flr(dev, probe); 3620 if (rc != -ENOTTY) 3621 goto done; 3622 3623 rc = pci_pm_reset(dev, probe); 3624 if (rc != -ENOTTY) 3625 goto done; 3626 3627 rc = pci_dev_reset_slot_function(dev, probe); 3628 if (rc != -ENOTTY) 3629 goto done; 3630 3631 rc = pci_parent_bus_reset(dev, probe); 3632 done: 3633 return rc; 3634 } 3635 3636 static void pci_dev_lock(struct pci_dev *dev) 3637 { 3638 pci_cfg_access_lock(dev); 3639 /* block PM suspend, driver probe, etc. */ 3640 device_lock(&dev->dev); 3641 } 3642 3643 /* Return 1 on successful lock, 0 on contention */ 3644 static int pci_dev_trylock(struct pci_dev *dev) 3645 { 3646 if (pci_cfg_access_trylock(dev)) { 3647 if (device_trylock(&dev->dev)) 3648 return 1; 3649 pci_cfg_access_unlock(dev); 3650 } 3651 3652 return 0; 3653 } 3654 3655 static void pci_dev_unlock(struct pci_dev *dev) 3656 { 3657 device_unlock(&dev->dev); 3658 pci_cfg_access_unlock(dev); 3659 } 3660 3661 /** 3662 * pci_reset_notify - notify device driver of reset 3663 * @dev: device to be notified of reset 3664 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt 3665 * completed 3666 * 3667 * Must be called prior to device access being disabled and after device 3668 * access is restored. 3669 */ 3670 static void pci_reset_notify(struct pci_dev *dev, bool prepare) 3671 { 3672 const struct pci_error_handlers *err_handler = 3673 dev->driver ? dev->driver->err_handler : NULL; 3674 if (err_handler && err_handler->reset_notify) 3675 err_handler->reset_notify(dev, prepare); 3676 } 3677 3678 static void pci_dev_save_and_disable(struct pci_dev *dev) 3679 { 3680 pci_reset_notify(dev, true); 3681 3682 /* 3683 * Wake-up device prior to save. PM registers default to D0 after 3684 * reset and a simple register restore doesn't reliably return 3685 * to a non-D0 state anyway. 3686 */ 3687 pci_set_power_state(dev, PCI_D0); 3688 3689 pci_save_state(dev); 3690 /* 3691 * Disable the device by clearing the Command register, except for 3692 * INTx-disable which is set. This not only disables MMIO and I/O port 3693 * BARs, but also prevents the device from being Bus Master, preventing 3694 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 3695 * compliant devices, INTx-disable prevents legacy interrupts. 3696 */ 3697 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 3698 } 3699 3700 static void pci_dev_restore(struct pci_dev *dev) 3701 { 3702 pci_restore_state(dev); 3703 pci_reset_notify(dev, false); 3704 } 3705 3706 static int pci_dev_reset(struct pci_dev *dev, int probe) 3707 { 3708 int rc; 3709 3710 if (!probe) 3711 pci_dev_lock(dev); 3712 3713 rc = __pci_dev_reset(dev, probe); 3714 3715 if (!probe) 3716 pci_dev_unlock(dev); 3717 3718 return rc; 3719 } 3720 3721 /** 3722 * __pci_reset_function - reset a PCI device function 3723 * @dev: PCI device to reset 3724 * 3725 * Some devices allow an individual function to be reset without affecting 3726 * other functions in the same device. The PCI device must be responsive 3727 * to PCI config space in order to use this function. 3728 * 3729 * The device function is presumed to be unused when this function is called. 3730 * Resetting the device will make the contents of PCI configuration space 3731 * random, so any caller of this must be prepared to reinitialise the 3732 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3733 * etc. 3734 * 3735 * Returns 0 if the device function was successfully reset or negative if the 3736 * device doesn't support resetting a single function. 3737 */ 3738 int __pci_reset_function(struct pci_dev *dev) 3739 { 3740 return pci_dev_reset(dev, 0); 3741 } 3742 EXPORT_SYMBOL_GPL(__pci_reset_function); 3743 3744 /** 3745 * __pci_reset_function_locked - reset a PCI device function while holding 3746 * the @dev mutex lock. 3747 * @dev: PCI device to reset 3748 * 3749 * Some devices allow an individual function to be reset without affecting 3750 * other functions in the same device. The PCI device must be responsive 3751 * to PCI config space in order to use this function. 3752 * 3753 * The device function is presumed to be unused and the caller is holding 3754 * the device mutex lock when this function is called. 3755 * Resetting the device will make the contents of PCI configuration space 3756 * random, so any caller of this must be prepared to reinitialise the 3757 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3758 * etc. 3759 * 3760 * Returns 0 if the device function was successfully reset or negative if the 3761 * device doesn't support resetting a single function. 3762 */ 3763 int __pci_reset_function_locked(struct pci_dev *dev) 3764 { 3765 return __pci_dev_reset(dev, 0); 3766 } 3767 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 3768 3769 /** 3770 * pci_probe_reset_function - check whether the device can be safely reset 3771 * @dev: PCI device to reset 3772 * 3773 * Some devices allow an individual function to be reset without affecting 3774 * other functions in the same device. The PCI device must be responsive 3775 * to PCI config space in order to use this function. 3776 * 3777 * Returns 0 if the device function can be reset or negative if the 3778 * device doesn't support resetting a single function. 3779 */ 3780 int pci_probe_reset_function(struct pci_dev *dev) 3781 { 3782 return pci_dev_reset(dev, 1); 3783 } 3784 3785 /** 3786 * pci_reset_function - quiesce and reset a PCI device function 3787 * @dev: PCI device to reset 3788 * 3789 * Some devices allow an individual function to be reset without affecting 3790 * other functions in the same device. The PCI device must be responsive 3791 * to PCI config space in order to use this function. 3792 * 3793 * This function does not just reset the PCI portion of a device, but 3794 * clears all the state associated with the device. This function differs 3795 * from __pci_reset_function in that it saves and restores device state 3796 * over the reset. 3797 * 3798 * Returns 0 if the device function was successfully reset or negative if the 3799 * device doesn't support resetting a single function. 3800 */ 3801 int pci_reset_function(struct pci_dev *dev) 3802 { 3803 int rc; 3804 3805 rc = pci_dev_reset(dev, 1); 3806 if (rc) 3807 return rc; 3808 3809 pci_dev_save_and_disable(dev); 3810 3811 rc = pci_dev_reset(dev, 0); 3812 3813 pci_dev_restore(dev); 3814 3815 return rc; 3816 } 3817 EXPORT_SYMBOL_GPL(pci_reset_function); 3818 3819 /** 3820 * pci_try_reset_function - quiesce and reset a PCI device function 3821 * @dev: PCI device to reset 3822 * 3823 * Same as above, except return -EAGAIN if unable to lock device. 3824 */ 3825 int pci_try_reset_function(struct pci_dev *dev) 3826 { 3827 int rc; 3828 3829 rc = pci_dev_reset(dev, 1); 3830 if (rc) 3831 return rc; 3832 3833 pci_dev_save_and_disable(dev); 3834 3835 if (pci_dev_trylock(dev)) { 3836 rc = __pci_dev_reset(dev, 0); 3837 pci_dev_unlock(dev); 3838 } else 3839 rc = -EAGAIN; 3840 3841 pci_dev_restore(dev); 3842 3843 return rc; 3844 } 3845 EXPORT_SYMBOL_GPL(pci_try_reset_function); 3846 3847 /* Do any devices on or below this bus prevent a bus reset? */ 3848 static bool pci_bus_resetable(struct pci_bus *bus) 3849 { 3850 struct pci_dev *dev; 3851 3852 list_for_each_entry(dev, &bus->devices, bus_list) { 3853 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 3854 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 3855 return false; 3856 } 3857 3858 return true; 3859 } 3860 3861 /* Lock devices from the top of the tree down */ 3862 static void pci_bus_lock(struct pci_bus *bus) 3863 { 3864 struct pci_dev *dev; 3865 3866 list_for_each_entry(dev, &bus->devices, bus_list) { 3867 pci_dev_lock(dev); 3868 if (dev->subordinate) 3869 pci_bus_lock(dev->subordinate); 3870 } 3871 } 3872 3873 /* Unlock devices from the bottom of the tree up */ 3874 static void pci_bus_unlock(struct pci_bus *bus) 3875 { 3876 struct pci_dev *dev; 3877 3878 list_for_each_entry(dev, &bus->devices, bus_list) { 3879 if (dev->subordinate) 3880 pci_bus_unlock(dev->subordinate); 3881 pci_dev_unlock(dev); 3882 } 3883 } 3884 3885 /* Return 1 on successful lock, 0 on contention */ 3886 static int pci_bus_trylock(struct pci_bus *bus) 3887 { 3888 struct pci_dev *dev; 3889 3890 list_for_each_entry(dev, &bus->devices, bus_list) { 3891 if (!pci_dev_trylock(dev)) 3892 goto unlock; 3893 if (dev->subordinate) { 3894 if (!pci_bus_trylock(dev->subordinate)) { 3895 pci_dev_unlock(dev); 3896 goto unlock; 3897 } 3898 } 3899 } 3900 return 1; 3901 3902 unlock: 3903 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 3904 if (dev->subordinate) 3905 pci_bus_unlock(dev->subordinate); 3906 pci_dev_unlock(dev); 3907 } 3908 return 0; 3909 } 3910 3911 /* Do any devices on or below this slot prevent a bus reset? */ 3912 static bool pci_slot_resetable(struct pci_slot *slot) 3913 { 3914 struct pci_dev *dev; 3915 3916 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3917 if (!dev->slot || dev->slot != slot) 3918 continue; 3919 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 3920 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 3921 return false; 3922 } 3923 3924 return true; 3925 } 3926 3927 /* Lock devices from the top of the tree down */ 3928 static void pci_slot_lock(struct pci_slot *slot) 3929 { 3930 struct pci_dev *dev; 3931 3932 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3933 if (!dev->slot || dev->slot != slot) 3934 continue; 3935 pci_dev_lock(dev); 3936 if (dev->subordinate) 3937 pci_bus_lock(dev->subordinate); 3938 } 3939 } 3940 3941 /* Unlock devices from the bottom of the tree up */ 3942 static void pci_slot_unlock(struct pci_slot *slot) 3943 { 3944 struct pci_dev *dev; 3945 3946 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3947 if (!dev->slot || dev->slot != slot) 3948 continue; 3949 if (dev->subordinate) 3950 pci_bus_unlock(dev->subordinate); 3951 pci_dev_unlock(dev); 3952 } 3953 } 3954 3955 /* Return 1 on successful lock, 0 on contention */ 3956 static int pci_slot_trylock(struct pci_slot *slot) 3957 { 3958 struct pci_dev *dev; 3959 3960 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3961 if (!dev->slot || dev->slot != slot) 3962 continue; 3963 if (!pci_dev_trylock(dev)) 3964 goto unlock; 3965 if (dev->subordinate) { 3966 if (!pci_bus_trylock(dev->subordinate)) { 3967 pci_dev_unlock(dev); 3968 goto unlock; 3969 } 3970 } 3971 } 3972 return 1; 3973 3974 unlock: 3975 list_for_each_entry_continue_reverse(dev, 3976 &slot->bus->devices, bus_list) { 3977 if (!dev->slot || dev->slot != slot) 3978 continue; 3979 if (dev->subordinate) 3980 pci_bus_unlock(dev->subordinate); 3981 pci_dev_unlock(dev); 3982 } 3983 return 0; 3984 } 3985 3986 /* Save and disable devices from the top of the tree down */ 3987 static void pci_bus_save_and_disable(struct pci_bus *bus) 3988 { 3989 struct pci_dev *dev; 3990 3991 list_for_each_entry(dev, &bus->devices, bus_list) { 3992 pci_dev_save_and_disable(dev); 3993 if (dev->subordinate) 3994 pci_bus_save_and_disable(dev->subordinate); 3995 } 3996 } 3997 3998 /* 3999 * Restore devices from top of the tree down - parent bridges need to be 4000 * restored before we can get to subordinate devices. 4001 */ 4002 static void pci_bus_restore(struct pci_bus *bus) 4003 { 4004 struct pci_dev *dev; 4005 4006 list_for_each_entry(dev, &bus->devices, bus_list) { 4007 pci_dev_restore(dev); 4008 if (dev->subordinate) 4009 pci_bus_restore(dev->subordinate); 4010 } 4011 } 4012 4013 /* Save and disable devices from the top of the tree down */ 4014 static void pci_slot_save_and_disable(struct pci_slot *slot) 4015 { 4016 struct pci_dev *dev; 4017 4018 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4019 if (!dev->slot || dev->slot != slot) 4020 continue; 4021 pci_dev_save_and_disable(dev); 4022 if (dev->subordinate) 4023 pci_bus_save_and_disable(dev->subordinate); 4024 } 4025 } 4026 4027 /* 4028 * Restore devices from top of the tree down - parent bridges need to be 4029 * restored before we can get to subordinate devices. 4030 */ 4031 static void pci_slot_restore(struct pci_slot *slot) 4032 { 4033 struct pci_dev *dev; 4034 4035 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4036 if (!dev->slot || dev->slot != slot) 4037 continue; 4038 pci_dev_restore(dev); 4039 if (dev->subordinate) 4040 pci_bus_restore(dev->subordinate); 4041 } 4042 } 4043 4044 static int pci_slot_reset(struct pci_slot *slot, int probe) 4045 { 4046 int rc; 4047 4048 if (!slot || !pci_slot_resetable(slot)) 4049 return -ENOTTY; 4050 4051 if (!probe) 4052 pci_slot_lock(slot); 4053 4054 might_sleep(); 4055 4056 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 4057 4058 if (!probe) 4059 pci_slot_unlock(slot); 4060 4061 return rc; 4062 } 4063 4064 /** 4065 * pci_probe_reset_slot - probe whether a PCI slot can be reset 4066 * @slot: PCI slot to probe 4067 * 4068 * Return 0 if slot can be reset, negative if a slot reset is not supported. 4069 */ 4070 int pci_probe_reset_slot(struct pci_slot *slot) 4071 { 4072 return pci_slot_reset(slot, 1); 4073 } 4074 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 4075 4076 /** 4077 * pci_reset_slot - reset a PCI slot 4078 * @slot: PCI slot to reset 4079 * 4080 * A PCI bus may host multiple slots, each slot may support a reset mechanism 4081 * independent of other slots. For instance, some slots may support slot power 4082 * control. In the case of a 1:1 bus to slot architecture, this function may 4083 * wrap the bus reset to avoid spurious slot related events such as hotplug. 4084 * Generally a slot reset should be attempted before a bus reset. All of the 4085 * function of the slot and any subordinate buses behind the slot are reset 4086 * through this function. PCI config space of all devices in the slot and 4087 * behind the slot is saved before and restored after reset. 4088 * 4089 * Return 0 on success, non-zero on error. 4090 */ 4091 int pci_reset_slot(struct pci_slot *slot) 4092 { 4093 int rc; 4094 4095 rc = pci_slot_reset(slot, 1); 4096 if (rc) 4097 return rc; 4098 4099 pci_slot_save_and_disable(slot); 4100 4101 rc = pci_slot_reset(slot, 0); 4102 4103 pci_slot_restore(slot); 4104 4105 return rc; 4106 } 4107 EXPORT_SYMBOL_GPL(pci_reset_slot); 4108 4109 /** 4110 * pci_try_reset_slot - Try to reset a PCI slot 4111 * @slot: PCI slot to reset 4112 * 4113 * Same as above except return -EAGAIN if the slot cannot be locked 4114 */ 4115 int pci_try_reset_slot(struct pci_slot *slot) 4116 { 4117 int rc; 4118 4119 rc = pci_slot_reset(slot, 1); 4120 if (rc) 4121 return rc; 4122 4123 pci_slot_save_and_disable(slot); 4124 4125 if (pci_slot_trylock(slot)) { 4126 might_sleep(); 4127 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 4128 pci_slot_unlock(slot); 4129 } else 4130 rc = -EAGAIN; 4131 4132 pci_slot_restore(slot); 4133 4134 return rc; 4135 } 4136 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 4137 4138 static int pci_bus_reset(struct pci_bus *bus, int probe) 4139 { 4140 if (!bus->self || !pci_bus_resetable(bus)) 4141 return -ENOTTY; 4142 4143 if (probe) 4144 return 0; 4145 4146 pci_bus_lock(bus); 4147 4148 might_sleep(); 4149 4150 pci_reset_bridge_secondary_bus(bus->self); 4151 4152 pci_bus_unlock(bus); 4153 4154 return 0; 4155 } 4156 4157 /** 4158 * pci_probe_reset_bus - probe whether a PCI bus can be reset 4159 * @bus: PCI bus to probe 4160 * 4161 * Return 0 if bus can be reset, negative if a bus reset is not supported. 4162 */ 4163 int pci_probe_reset_bus(struct pci_bus *bus) 4164 { 4165 return pci_bus_reset(bus, 1); 4166 } 4167 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 4168 4169 /** 4170 * pci_reset_bus - reset a PCI bus 4171 * @bus: top level PCI bus to reset 4172 * 4173 * Do a bus reset on the given bus and any subordinate buses, saving 4174 * and restoring state of all devices. 4175 * 4176 * Return 0 on success, non-zero on error. 4177 */ 4178 int pci_reset_bus(struct pci_bus *bus) 4179 { 4180 int rc; 4181 4182 rc = pci_bus_reset(bus, 1); 4183 if (rc) 4184 return rc; 4185 4186 pci_bus_save_and_disable(bus); 4187 4188 rc = pci_bus_reset(bus, 0); 4189 4190 pci_bus_restore(bus); 4191 4192 return rc; 4193 } 4194 EXPORT_SYMBOL_GPL(pci_reset_bus); 4195 4196 /** 4197 * pci_try_reset_bus - Try to reset a PCI bus 4198 * @bus: top level PCI bus to reset 4199 * 4200 * Same as above except return -EAGAIN if the bus cannot be locked 4201 */ 4202 int pci_try_reset_bus(struct pci_bus *bus) 4203 { 4204 int rc; 4205 4206 rc = pci_bus_reset(bus, 1); 4207 if (rc) 4208 return rc; 4209 4210 pci_bus_save_and_disable(bus); 4211 4212 if (pci_bus_trylock(bus)) { 4213 might_sleep(); 4214 pci_reset_bridge_secondary_bus(bus->self); 4215 pci_bus_unlock(bus); 4216 } else 4217 rc = -EAGAIN; 4218 4219 pci_bus_restore(bus); 4220 4221 return rc; 4222 } 4223 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 4224 4225 /** 4226 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 4227 * @dev: PCI device to query 4228 * 4229 * Returns mmrbc: maximum designed memory read count in bytes 4230 * or appropriate error value. 4231 */ 4232 int pcix_get_max_mmrbc(struct pci_dev *dev) 4233 { 4234 int cap; 4235 u32 stat; 4236 4237 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4238 if (!cap) 4239 return -EINVAL; 4240 4241 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4242 return -EINVAL; 4243 4244 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 4245 } 4246 EXPORT_SYMBOL(pcix_get_max_mmrbc); 4247 4248 /** 4249 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 4250 * @dev: PCI device to query 4251 * 4252 * Returns mmrbc: maximum memory read count in bytes 4253 * or appropriate error value. 4254 */ 4255 int pcix_get_mmrbc(struct pci_dev *dev) 4256 { 4257 int cap; 4258 u16 cmd; 4259 4260 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4261 if (!cap) 4262 return -EINVAL; 4263 4264 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4265 return -EINVAL; 4266 4267 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 4268 } 4269 EXPORT_SYMBOL(pcix_get_mmrbc); 4270 4271 /** 4272 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 4273 * @dev: PCI device to query 4274 * @mmrbc: maximum memory read count in bytes 4275 * valid values are 512, 1024, 2048, 4096 4276 * 4277 * If possible sets maximum memory read byte count, some bridges have erratas 4278 * that prevent this. 4279 */ 4280 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 4281 { 4282 int cap; 4283 u32 stat, v, o; 4284 u16 cmd; 4285 4286 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 4287 return -EINVAL; 4288 4289 v = ffs(mmrbc) - 10; 4290 4291 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4292 if (!cap) 4293 return -EINVAL; 4294 4295 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4296 return -EINVAL; 4297 4298 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 4299 return -E2BIG; 4300 4301 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4302 return -EINVAL; 4303 4304 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 4305 if (o != v) { 4306 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 4307 return -EIO; 4308 4309 cmd &= ~PCI_X_CMD_MAX_READ; 4310 cmd |= v << 2; 4311 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 4312 return -EIO; 4313 } 4314 return 0; 4315 } 4316 EXPORT_SYMBOL(pcix_set_mmrbc); 4317 4318 /** 4319 * pcie_get_readrq - get PCI Express read request size 4320 * @dev: PCI device to query 4321 * 4322 * Returns maximum memory read request in bytes 4323 * or appropriate error value. 4324 */ 4325 int pcie_get_readrq(struct pci_dev *dev) 4326 { 4327 u16 ctl; 4328 4329 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4330 4331 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 4332 } 4333 EXPORT_SYMBOL(pcie_get_readrq); 4334 4335 /** 4336 * pcie_set_readrq - set PCI Express maximum memory read request 4337 * @dev: PCI device to query 4338 * @rq: maximum memory read count in bytes 4339 * valid values are 128, 256, 512, 1024, 2048, 4096 4340 * 4341 * If possible sets maximum memory read request in bytes 4342 */ 4343 int pcie_set_readrq(struct pci_dev *dev, int rq) 4344 { 4345 u16 v; 4346 4347 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 4348 return -EINVAL; 4349 4350 /* 4351 * If using the "performance" PCIe config, we clamp the 4352 * read rq size to the max packet size to prevent the 4353 * host bridge generating requests larger than we can 4354 * cope with 4355 */ 4356 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 4357 int mps = pcie_get_mps(dev); 4358 4359 if (mps < rq) 4360 rq = mps; 4361 } 4362 4363 v = (ffs(rq) - 8) << 12; 4364 4365 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4366 PCI_EXP_DEVCTL_READRQ, v); 4367 } 4368 EXPORT_SYMBOL(pcie_set_readrq); 4369 4370 /** 4371 * pcie_get_mps - get PCI Express maximum payload size 4372 * @dev: PCI device to query 4373 * 4374 * Returns maximum payload size in bytes 4375 */ 4376 int pcie_get_mps(struct pci_dev *dev) 4377 { 4378 u16 ctl; 4379 4380 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4381 4382 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 4383 } 4384 EXPORT_SYMBOL(pcie_get_mps); 4385 4386 /** 4387 * pcie_set_mps - set PCI Express maximum payload size 4388 * @dev: PCI device to query 4389 * @mps: maximum payload size in bytes 4390 * valid values are 128, 256, 512, 1024, 2048, 4096 4391 * 4392 * If possible sets maximum payload size 4393 */ 4394 int pcie_set_mps(struct pci_dev *dev, int mps) 4395 { 4396 u16 v; 4397 4398 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 4399 return -EINVAL; 4400 4401 v = ffs(mps) - 8; 4402 if (v > dev->pcie_mpss) 4403 return -EINVAL; 4404 v <<= 5; 4405 4406 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4407 PCI_EXP_DEVCTL_PAYLOAD, v); 4408 } 4409 EXPORT_SYMBOL(pcie_set_mps); 4410 4411 /** 4412 * pcie_get_minimum_link - determine minimum link settings of a PCI device 4413 * @dev: PCI device to query 4414 * @speed: storage for minimum speed 4415 * @width: storage for minimum width 4416 * 4417 * This function will walk up the PCI device chain and determine the minimum 4418 * link width and speed of the device. 4419 */ 4420 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 4421 enum pcie_link_width *width) 4422 { 4423 int ret; 4424 4425 *speed = PCI_SPEED_UNKNOWN; 4426 *width = PCIE_LNK_WIDTH_UNKNOWN; 4427 4428 while (dev) { 4429 u16 lnksta; 4430 enum pci_bus_speed next_speed; 4431 enum pcie_link_width next_width; 4432 4433 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 4434 if (ret) 4435 return ret; 4436 4437 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 4438 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 4439 PCI_EXP_LNKSTA_NLW_SHIFT; 4440 4441 if (next_speed < *speed) 4442 *speed = next_speed; 4443 4444 if (next_width < *width) 4445 *width = next_width; 4446 4447 dev = dev->bus->self; 4448 } 4449 4450 return 0; 4451 } 4452 EXPORT_SYMBOL(pcie_get_minimum_link); 4453 4454 /** 4455 * pci_select_bars - Make BAR mask from the type of resource 4456 * @dev: the PCI device for which BAR mask is made 4457 * @flags: resource type mask to be selected 4458 * 4459 * This helper routine makes bar mask from the type of resource. 4460 */ 4461 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 4462 { 4463 int i, bars = 0; 4464 for (i = 0; i < PCI_NUM_RESOURCES; i++) 4465 if (pci_resource_flags(dev, i) & flags) 4466 bars |= (1 << i); 4467 return bars; 4468 } 4469 EXPORT_SYMBOL(pci_select_bars); 4470 4471 /** 4472 * pci_resource_bar - get position of the BAR associated with a resource 4473 * @dev: the PCI device 4474 * @resno: the resource number 4475 * @type: the BAR type to be filled in 4476 * 4477 * Returns BAR position in config space, or 0 if the BAR is invalid. 4478 */ 4479 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 4480 { 4481 int reg; 4482 4483 if (resno < PCI_ROM_RESOURCE) { 4484 *type = pci_bar_unknown; 4485 return PCI_BASE_ADDRESS_0 + 4 * resno; 4486 } else if (resno == PCI_ROM_RESOURCE) { 4487 *type = pci_bar_mem32; 4488 return dev->rom_base_reg; 4489 } else if (resno < PCI_BRIDGE_RESOURCES) { 4490 /* device specific resource */ 4491 *type = pci_bar_unknown; 4492 reg = pci_iov_resource_bar(dev, resno); 4493 if (reg) 4494 return reg; 4495 } 4496 4497 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno); 4498 return 0; 4499 } 4500 4501 /* Some architectures require additional programming to enable VGA */ 4502 static arch_set_vga_state_t arch_set_vga_state; 4503 4504 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 4505 { 4506 arch_set_vga_state = func; /* NULL disables */ 4507 } 4508 4509 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 4510 unsigned int command_bits, u32 flags) 4511 { 4512 if (arch_set_vga_state) 4513 return arch_set_vga_state(dev, decode, command_bits, 4514 flags); 4515 return 0; 4516 } 4517 4518 /** 4519 * pci_set_vga_state - set VGA decode state on device and parents if requested 4520 * @dev: the PCI device 4521 * @decode: true = enable decoding, false = disable decoding 4522 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 4523 * @flags: traverse ancestors and change bridges 4524 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 4525 */ 4526 int pci_set_vga_state(struct pci_dev *dev, bool decode, 4527 unsigned int command_bits, u32 flags) 4528 { 4529 struct pci_bus *bus; 4530 struct pci_dev *bridge; 4531 u16 cmd; 4532 int rc; 4533 4534 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 4535 4536 /* ARCH specific VGA enables */ 4537 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 4538 if (rc) 4539 return rc; 4540 4541 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 4542 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4543 if (decode == true) 4544 cmd |= command_bits; 4545 else 4546 cmd &= ~command_bits; 4547 pci_write_config_word(dev, PCI_COMMAND, cmd); 4548 } 4549 4550 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 4551 return 0; 4552 4553 bus = dev->bus; 4554 while (bus) { 4555 bridge = bus->self; 4556 if (bridge) { 4557 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 4558 &cmd); 4559 if (decode == true) 4560 cmd |= PCI_BRIDGE_CTL_VGA; 4561 else 4562 cmd &= ~PCI_BRIDGE_CTL_VGA; 4563 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 4564 cmd); 4565 } 4566 bus = bus->parent; 4567 } 4568 return 0; 4569 } 4570 4571 bool pci_device_is_present(struct pci_dev *pdev) 4572 { 4573 u32 v; 4574 4575 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 4576 } 4577 EXPORT_SYMBOL_GPL(pci_device_is_present); 4578 4579 void pci_ignore_hotplug(struct pci_dev *dev) 4580 { 4581 struct pci_dev *bridge = dev->bus->self; 4582 4583 dev->ignore_hotplug = 1; 4584 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 4585 if (bridge) 4586 bridge->ignore_hotplug = 1; 4587 } 4588 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 4589 4590 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 4591 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 4592 static DEFINE_SPINLOCK(resource_alignment_lock); 4593 4594 /** 4595 * pci_specified_resource_alignment - get resource alignment specified by user. 4596 * @dev: the PCI device to get 4597 * 4598 * RETURNS: Resource alignment if it is specified. 4599 * Zero if it is not specified. 4600 */ 4601 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 4602 { 4603 int seg, bus, slot, func, align_order, count; 4604 resource_size_t align = 0; 4605 char *p; 4606 4607 spin_lock(&resource_alignment_lock); 4608 p = resource_alignment_param; 4609 while (*p) { 4610 count = 0; 4611 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 4612 p[count] == '@') { 4613 p += count + 1; 4614 } else { 4615 align_order = -1; 4616 } 4617 if (sscanf(p, "%x:%x:%x.%x%n", 4618 &seg, &bus, &slot, &func, &count) != 4) { 4619 seg = 0; 4620 if (sscanf(p, "%x:%x.%x%n", 4621 &bus, &slot, &func, &count) != 3) { 4622 /* Invalid format */ 4623 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 4624 p); 4625 break; 4626 } 4627 } 4628 p += count; 4629 if (seg == pci_domain_nr(dev->bus) && 4630 bus == dev->bus->number && 4631 slot == PCI_SLOT(dev->devfn) && 4632 func == PCI_FUNC(dev->devfn)) { 4633 if (align_order == -1) 4634 align = PAGE_SIZE; 4635 else 4636 align = 1 << align_order; 4637 /* Found */ 4638 break; 4639 } 4640 if (*p != ';' && *p != ',') { 4641 /* End of param or invalid format */ 4642 break; 4643 } 4644 p++; 4645 } 4646 spin_unlock(&resource_alignment_lock); 4647 return align; 4648 } 4649 4650 /* 4651 * This function disables memory decoding and releases memory resources 4652 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 4653 * It also rounds up size to specified alignment. 4654 * Later on, the kernel will assign page-aligned memory resource back 4655 * to the device. 4656 */ 4657 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 4658 { 4659 int i; 4660 struct resource *r; 4661 resource_size_t align, size; 4662 u16 command; 4663 4664 /* check if specified PCI is target device to reassign */ 4665 align = pci_specified_resource_alignment(dev); 4666 if (!align) 4667 return; 4668 4669 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 4670 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 4671 dev_warn(&dev->dev, 4672 "Can't reassign resources to host bridge.\n"); 4673 return; 4674 } 4675 4676 dev_info(&dev->dev, 4677 "Disabling memory decoding and releasing memory resources.\n"); 4678 pci_read_config_word(dev, PCI_COMMAND, &command); 4679 command &= ~PCI_COMMAND_MEMORY; 4680 pci_write_config_word(dev, PCI_COMMAND, command); 4681 4682 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { 4683 r = &dev->resource[i]; 4684 if (!(r->flags & IORESOURCE_MEM)) 4685 continue; 4686 size = resource_size(r); 4687 if (size < align) { 4688 size = align; 4689 dev_info(&dev->dev, 4690 "Rounding up size of resource #%d to %#llx.\n", 4691 i, (unsigned long long)size); 4692 } 4693 r->flags |= IORESOURCE_UNSET; 4694 r->end = size - 1; 4695 r->start = 0; 4696 } 4697 /* Need to disable bridge's resource window, 4698 * to enable the kernel to reassign new resource 4699 * window later on. 4700 */ 4701 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 4702 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 4703 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 4704 r = &dev->resource[i]; 4705 if (!(r->flags & IORESOURCE_MEM)) 4706 continue; 4707 r->flags |= IORESOURCE_UNSET; 4708 r->end = resource_size(r) - 1; 4709 r->start = 0; 4710 } 4711 pci_disable_bridge_window(dev); 4712 } 4713 } 4714 4715 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 4716 { 4717 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 4718 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 4719 spin_lock(&resource_alignment_lock); 4720 strncpy(resource_alignment_param, buf, count); 4721 resource_alignment_param[count] = '\0'; 4722 spin_unlock(&resource_alignment_lock); 4723 return count; 4724 } 4725 4726 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 4727 { 4728 size_t count; 4729 spin_lock(&resource_alignment_lock); 4730 count = snprintf(buf, size, "%s", resource_alignment_param); 4731 spin_unlock(&resource_alignment_lock); 4732 return count; 4733 } 4734 4735 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 4736 { 4737 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 4738 } 4739 4740 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 4741 const char *buf, size_t count) 4742 { 4743 return pci_set_resource_alignment_param(buf, count); 4744 } 4745 4746 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 4747 pci_resource_alignment_store); 4748 4749 static int __init pci_resource_alignment_sysfs_init(void) 4750 { 4751 return bus_create_file(&pci_bus_type, 4752 &bus_attr_resource_alignment); 4753 } 4754 late_initcall(pci_resource_alignment_sysfs_init); 4755 4756 static void pci_no_domains(void) 4757 { 4758 #ifdef CONFIG_PCI_DOMAINS 4759 pci_domains_supported = 0; 4760 #endif 4761 } 4762 4763 #ifdef CONFIG_PCI_DOMAINS 4764 static atomic_t __domain_nr = ATOMIC_INIT(-1); 4765 4766 int pci_get_new_domain_nr(void) 4767 { 4768 return atomic_inc_return(&__domain_nr); 4769 } 4770 4771 #ifdef CONFIG_PCI_DOMAINS_GENERIC 4772 void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent) 4773 { 4774 static int use_dt_domains = -1; 4775 int domain = of_get_pci_domain_nr(parent->of_node); 4776 4777 /* 4778 * Check DT domain and use_dt_domains values. 4779 * 4780 * If DT domain property is valid (domain >= 0) and 4781 * use_dt_domains != 0, the DT assignment is valid since this means 4782 * we have not previously allocated a domain number by using 4783 * pci_get_new_domain_nr(); we should also update use_dt_domains to 4784 * 1, to indicate that we have just assigned a domain number from 4785 * DT. 4786 * 4787 * If DT domain property value is not valid (ie domain < 0), and we 4788 * have not previously assigned a domain number from DT 4789 * (use_dt_domains != 1) we should assign a domain number by 4790 * using the: 4791 * 4792 * pci_get_new_domain_nr() 4793 * 4794 * API and update the use_dt_domains value to keep track of method we 4795 * are using to assign domain numbers (use_dt_domains = 0). 4796 * 4797 * All other combinations imply we have a platform that is trying 4798 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 4799 * which is a recipe for domain mishandling and it is prevented by 4800 * invalidating the domain value (domain = -1) and printing a 4801 * corresponding error. 4802 */ 4803 if (domain >= 0 && use_dt_domains) { 4804 use_dt_domains = 1; 4805 } else if (domain < 0 && use_dt_domains != 1) { 4806 use_dt_domains = 0; 4807 domain = pci_get_new_domain_nr(); 4808 } else { 4809 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n", 4810 parent->of_node->full_name); 4811 domain = -1; 4812 } 4813 4814 bus->domain_nr = domain; 4815 } 4816 #endif 4817 #endif 4818 4819 /** 4820 * pci_ext_cfg_avail - can we access extended PCI config space? 4821 * 4822 * Returns 1 if we can access PCI extended config space (offsets 4823 * greater than 0xff). This is the default implementation. Architecture 4824 * implementations can override this. 4825 */ 4826 int __weak pci_ext_cfg_avail(void) 4827 { 4828 return 1; 4829 } 4830 4831 void __weak pci_fixup_cardbus(struct pci_bus *bus) 4832 { 4833 } 4834 EXPORT_SYMBOL(pci_fixup_cardbus); 4835 4836 static int __init pci_setup(char *str) 4837 { 4838 while (str) { 4839 char *k = strchr(str, ','); 4840 if (k) 4841 *k++ = 0; 4842 if (*str && (str = pcibios_setup(str)) && *str) { 4843 if (!strcmp(str, "nomsi")) { 4844 pci_no_msi(); 4845 } else if (!strcmp(str, "noaer")) { 4846 pci_no_aer(); 4847 } else if (!strncmp(str, "realloc=", 8)) { 4848 pci_realloc_get_opt(str + 8); 4849 } else if (!strncmp(str, "realloc", 7)) { 4850 pci_realloc_get_opt("on"); 4851 } else if (!strcmp(str, "nodomains")) { 4852 pci_no_domains(); 4853 } else if (!strncmp(str, "noari", 5)) { 4854 pcie_ari_disabled = true; 4855 } else if (!strncmp(str, "cbiosize=", 9)) { 4856 pci_cardbus_io_size = memparse(str + 9, &str); 4857 } else if (!strncmp(str, "cbmemsize=", 10)) { 4858 pci_cardbus_mem_size = memparse(str + 10, &str); 4859 } else if (!strncmp(str, "resource_alignment=", 19)) { 4860 pci_set_resource_alignment_param(str + 19, 4861 strlen(str + 19)); 4862 } else if (!strncmp(str, "ecrc=", 5)) { 4863 pcie_ecrc_get_policy(str + 5); 4864 } else if (!strncmp(str, "hpiosize=", 9)) { 4865 pci_hotplug_io_size = memparse(str + 9, &str); 4866 } else if (!strncmp(str, "hpmemsize=", 10)) { 4867 pci_hotplug_mem_size = memparse(str + 10, &str); 4868 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 4869 pcie_bus_config = PCIE_BUS_TUNE_OFF; 4870 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 4871 pcie_bus_config = PCIE_BUS_SAFE; 4872 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 4873 pcie_bus_config = PCIE_BUS_PERFORMANCE; 4874 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 4875 pcie_bus_config = PCIE_BUS_PEER2PEER; 4876 } else if (!strncmp(str, "pcie_scan_all", 13)) { 4877 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 4878 } else { 4879 printk(KERN_ERR "PCI: Unknown option `%s'\n", 4880 str); 4881 } 4882 } 4883 str = k; 4884 } 4885 return 0; 4886 } 4887 early_param("pci", pci_setup); 4888