1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/pci_hotplug.h> 30 #include <linux/vmalloc.h> 31 #include <asm/dma.h> 32 #include <linux/aer.h> 33 #include <linux/bitfield.h> 34 #include "pci.h" 35 36 DEFINE_MUTEX(pci_slot_mutex); 37 38 const char *pci_power_names[] = { 39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 40 }; 41 EXPORT_SYMBOL_GPL(pci_power_names); 42 43 #ifdef CONFIG_X86_32 44 int isa_dma_bridge_buggy; 45 EXPORT_SYMBOL(isa_dma_bridge_buggy); 46 #endif 47 48 int pci_pci_problems; 49 EXPORT_SYMBOL(pci_pci_problems); 50 51 unsigned int pci_pm_d3hot_delay; 52 53 static void pci_pme_list_scan(struct work_struct *work); 54 55 static LIST_HEAD(pci_pme_list); 56 static DEFINE_MUTEX(pci_pme_list_mutex); 57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 58 59 struct pci_pme_device { 60 struct list_head list; 61 struct pci_dev *dev; 62 }; 63 64 #define PME_TIMEOUT 1000 /* How long between PME checks */ 65 66 /* 67 * Following exit from Conventional Reset, devices must be ready within 1 sec 68 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 69 * Reset (PCIe r6.0 sec 5.8). 70 */ 71 #define PCI_RESET_WAIT 1000 /* msec */ 72 73 /* 74 * Devices may extend the 1 sec period through Request Retry Status 75 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 76 * limit, but 60 sec ought to be enough for any device to become 77 * responsive. 78 */ 79 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 80 81 static void pci_dev_d3_sleep(struct pci_dev *dev) 82 { 83 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 84 unsigned int upper; 85 86 if (delay_ms) { 87 /* Use a 20% upper bound, 1ms minimum */ 88 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 89 usleep_range(delay_ms * USEC_PER_MSEC, 90 (delay_ms + upper) * USEC_PER_MSEC); 91 } 92 } 93 94 bool pci_reset_supported(struct pci_dev *dev) 95 { 96 return dev->reset_methods[0] != 0; 97 } 98 99 #ifdef CONFIG_PCI_DOMAINS 100 int pci_domains_supported = 1; 101 #endif 102 103 #define DEFAULT_CARDBUS_IO_SIZE (256) 104 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 105 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 106 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 107 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 108 109 #define DEFAULT_HOTPLUG_IO_SIZE (256) 110 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 111 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 112 /* hpiosize=nn can override this */ 113 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 114 /* 115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 117 * pci=hpmemsize=nnM overrides both 118 */ 119 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 120 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 121 122 #define DEFAULT_HOTPLUG_BUS_SIZE 1 123 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 124 125 126 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 127 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 129 #elif defined CONFIG_PCIE_BUS_SAFE 130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 131 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 132 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 133 #elif defined CONFIG_PCIE_BUS_PEER2PEER 134 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 135 #else 136 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 137 #endif 138 139 /* 140 * The default CLS is used if arch didn't set CLS explicitly and not 141 * all pci devices agree on the same value. Arch can override either 142 * the dfl or actual value as it sees fit. Don't forget this is 143 * measured in 32-bit words, not bytes. 144 */ 145 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2; 146 u8 pci_cache_line_size __ro_after_init ; 147 148 /* 149 * If we set up a device for bus mastering, we need to check the latency 150 * timer as certain BIOSes forget to set it properly. 151 */ 152 unsigned int pcibios_max_latency = 255; 153 154 /* If set, the PCIe ARI capability will not be used. */ 155 static bool pcie_ari_disabled; 156 157 /* If set, the PCIe ATS capability will not be used. */ 158 static bool pcie_ats_disabled; 159 160 /* If set, the PCI config space of each device is printed during boot. */ 161 bool pci_early_dump; 162 163 bool pci_ats_disabled(void) 164 { 165 return pcie_ats_disabled; 166 } 167 EXPORT_SYMBOL_GPL(pci_ats_disabled); 168 169 /* Disable bridge_d3 for all PCIe ports */ 170 static bool pci_bridge_d3_disable; 171 /* Force bridge_d3 for all PCIe ports */ 172 static bool pci_bridge_d3_force; 173 174 static int __init pcie_port_pm_setup(char *str) 175 { 176 if (!strcmp(str, "off")) 177 pci_bridge_d3_disable = true; 178 else if (!strcmp(str, "force")) 179 pci_bridge_d3_force = true; 180 return 1; 181 } 182 __setup("pcie_port_pm=", pcie_port_pm_setup); 183 184 /** 185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 186 * @bus: pointer to PCI bus structure to search 187 * 188 * Given a PCI bus, returns the highest PCI bus number present in the set 189 * including the given PCI bus and its list of child PCI buses. 190 */ 191 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 192 { 193 struct pci_bus *tmp; 194 unsigned char max, n; 195 196 max = bus->busn_res.end; 197 list_for_each_entry(tmp, &bus->children, node) { 198 n = pci_bus_max_busnr(tmp); 199 if (n > max) 200 max = n; 201 } 202 return max; 203 } 204 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 205 206 /** 207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 208 * @pdev: the PCI device 209 * 210 * Returns error bits set in PCI_STATUS and clears them. 211 */ 212 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 213 { 214 u16 status; 215 int ret; 216 217 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 218 if (ret != PCIBIOS_SUCCESSFUL) 219 return -EIO; 220 221 status &= PCI_STATUS_ERROR_BITS; 222 if (status) 223 pci_write_config_word(pdev, PCI_STATUS, status); 224 225 return status; 226 } 227 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 228 229 #ifdef CONFIG_HAS_IOMEM 230 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 231 bool write_combine) 232 { 233 struct resource *res = &pdev->resource[bar]; 234 resource_size_t start = res->start; 235 resource_size_t size = resource_size(res); 236 237 /* 238 * Make sure the BAR is actually a memory resource, not an IO resource 239 */ 240 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 241 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 242 return NULL; 243 } 244 245 if (write_combine) 246 return ioremap_wc(start, size); 247 248 return ioremap(start, size); 249 } 250 251 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 252 { 253 return __pci_ioremap_resource(pdev, bar, false); 254 } 255 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 256 257 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 258 { 259 return __pci_ioremap_resource(pdev, bar, true); 260 } 261 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 262 #endif 263 264 /** 265 * pci_dev_str_match_path - test if a path string matches a device 266 * @dev: the PCI device to test 267 * @path: string to match the device against 268 * @endptr: pointer to the string after the match 269 * 270 * Test if a string (typically from a kernel parameter) formatted as a 271 * path of device/function addresses matches a PCI device. The string must 272 * be of the form: 273 * 274 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 275 * 276 * A path for a device can be obtained using 'lspci -t'. Using a path 277 * is more robust against bus renumbering than using only a single bus, 278 * device and function address. 279 * 280 * Returns 1 if the string matches the device, 0 if it does not and 281 * a negative error code if it fails to parse the string. 282 */ 283 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 284 const char **endptr) 285 { 286 int ret; 287 unsigned int seg, bus, slot, func; 288 char *wpath, *p; 289 char end; 290 291 *endptr = strchrnul(path, ';'); 292 293 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 294 if (!wpath) 295 return -ENOMEM; 296 297 while (1) { 298 p = strrchr(wpath, '/'); 299 if (!p) 300 break; 301 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 302 if (ret != 2) { 303 ret = -EINVAL; 304 goto free_and_exit; 305 } 306 307 if (dev->devfn != PCI_DEVFN(slot, func)) { 308 ret = 0; 309 goto free_and_exit; 310 } 311 312 /* 313 * Note: we don't need to get a reference to the upstream 314 * bridge because we hold a reference to the top level 315 * device which should hold a reference to the bridge, 316 * and so on. 317 */ 318 dev = pci_upstream_bridge(dev); 319 if (!dev) { 320 ret = 0; 321 goto free_and_exit; 322 } 323 324 *p = 0; 325 } 326 327 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 328 &func, &end); 329 if (ret != 4) { 330 seg = 0; 331 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 332 if (ret != 3) { 333 ret = -EINVAL; 334 goto free_and_exit; 335 } 336 } 337 338 ret = (seg == pci_domain_nr(dev->bus) && 339 bus == dev->bus->number && 340 dev->devfn == PCI_DEVFN(slot, func)); 341 342 free_and_exit: 343 kfree(wpath); 344 return ret; 345 } 346 347 /** 348 * pci_dev_str_match - test if a string matches a device 349 * @dev: the PCI device to test 350 * @p: string to match the device against 351 * @endptr: pointer to the string after the match 352 * 353 * Test if a string (typically from a kernel parameter) matches a specified 354 * PCI device. The string may be of one of the following formats: 355 * 356 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 357 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 358 * 359 * The first format specifies a PCI bus/device/function address which 360 * may change if new hardware is inserted, if motherboard firmware changes, 361 * or due to changes caused in kernel parameters. If the domain is 362 * left unspecified, it is taken to be 0. In order to be robust against 363 * bus renumbering issues, a path of PCI device/function numbers may be used 364 * to address the specific device. The path for a device can be determined 365 * through the use of 'lspci -t'. 366 * 367 * The second format matches devices using IDs in the configuration 368 * space which may match multiple devices in the system. A value of 0 369 * for any field will match all devices. (Note: this differs from 370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 371 * legacy reasons and convenience so users don't have to specify 372 * FFFFFFFFs on the command line.) 373 * 374 * Returns 1 if the string matches the device, 0 if it does not and 375 * a negative error code if the string cannot be parsed. 376 */ 377 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 378 const char **endptr) 379 { 380 int ret; 381 int count; 382 unsigned short vendor, device, subsystem_vendor, subsystem_device; 383 384 if (strncmp(p, "pci:", 4) == 0) { 385 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 386 p += 4; 387 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 388 &subsystem_vendor, &subsystem_device, &count); 389 if (ret != 4) { 390 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 391 if (ret != 2) 392 return -EINVAL; 393 394 subsystem_vendor = 0; 395 subsystem_device = 0; 396 } 397 398 p += count; 399 400 if ((!vendor || vendor == dev->vendor) && 401 (!device || device == dev->device) && 402 (!subsystem_vendor || 403 subsystem_vendor == dev->subsystem_vendor) && 404 (!subsystem_device || 405 subsystem_device == dev->subsystem_device)) 406 goto found; 407 } else { 408 /* 409 * PCI Bus, Device, Function IDs are specified 410 * (optionally, may include a path of devfns following it) 411 */ 412 ret = pci_dev_str_match_path(dev, p, &p); 413 if (ret < 0) 414 return ret; 415 else if (ret) 416 goto found; 417 } 418 419 *endptr = p; 420 return 0; 421 422 found: 423 *endptr = p; 424 return 1; 425 } 426 427 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 428 u8 pos, int cap, int *ttl) 429 { 430 u8 id; 431 u16 ent; 432 433 pci_bus_read_config_byte(bus, devfn, pos, &pos); 434 435 while ((*ttl)--) { 436 if (pos < 0x40) 437 break; 438 pos &= ~3; 439 pci_bus_read_config_word(bus, devfn, pos, &ent); 440 441 id = ent & 0xff; 442 if (id == 0xff) 443 break; 444 if (id == cap) 445 return pos; 446 pos = (ent >> 8); 447 } 448 return 0; 449 } 450 451 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 452 u8 pos, int cap) 453 { 454 int ttl = PCI_FIND_CAP_TTL; 455 456 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 457 } 458 459 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 460 { 461 return __pci_find_next_cap(dev->bus, dev->devfn, 462 pos + PCI_CAP_LIST_NEXT, cap); 463 } 464 EXPORT_SYMBOL_GPL(pci_find_next_capability); 465 466 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 467 unsigned int devfn, u8 hdr_type) 468 { 469 u16 status; 470 471 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 472 if (!(status & PCI_STATUS_CAP_LIST)) 473 return 0; 474 475 switch (hdr_type) { 476 case PCI_HEADER_TYPE_NORMAL: 477 case PCI_HEADER_TYPE_BRIDGE: 478 return PCI_CAPABILITY_LIST; 479 case PCI_HEADER_TYPE_CARDBUS: 480 return PCI_CB_CAPABILITY_LIST; 481 } 482 483 return 0; 484 } 485 486 /** 487 * pci_find_capability - query for devices' capabilities 488 * @dev: PCI device to query 489 * @cap: capability code 490 * 491 * Tell if a device supports a given PCI capability. 492 * Returns the address of the requested capability structure within the 493 * device's PCI configuration space or 0 in case the device does not 494 * support it. Possible values for @cap include: 495 * 496 * %PCI_CAP_ID_PM Power Management 497 * %PCI_CAP_ID_AGP Accelerated Graphics Port 498 * %PCI_CAP_ID_VPD Vital Product Data 499 * %PCI_CAP_ID_SLOTID Slot Identification 500 * %PCI_CAP_ID_MSI Message Signalled Interrupts 501 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 502 * %PCI_CAP_ID_PCIX PCI-X 503 * %PCI_CAP_ID_EXP PCI Express 504 */ 505 u8 pci_find_capability(struct pci_dev *dev, int cap) 506 { 507 u8 pos; 508 509 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 510 if (pos) 511 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 512 513 return pos; 514 } 515 EXPORT_SYMBOL(pci_find_capability); 516 517 /** 518 * pci_bus_find_capability - query for devices' capabilities 519 * @bus: the PCI bus to query 520 * @devfn: PCI device to query 521 * @cap: capability code 522 * 523 * Like pci_find_capability() but works for PCI devices that do not have a 524 * pci_dev structure set up yet. 525 * 526 * Returns the address of the requested capability structure within the 527 * device's PCI configuration space or 0 in case the device does not 528 * support it. 529 */ 530 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 531 { 532 u8 hdr_type, pos; 533 534 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 535 536 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK); 537 if (pos) 538 pos = __pci_find_next_cap(bus, devfn, pos, cap); 539 540 return pos; 541 } 542 EXPORT_SYMBOL(pci_bus_find_capability); 543 544 /** 545 * pci_find_next_ext_capability - Find an extended capability 546 * @dev: PCI device to query 547 * @start: address at which to start looking (0 to start at beginning of list) 548 * @cap: capability code 549 * 550 * Returns the address of the next matching extended capability structure 551 * within the device's PCI configuration space or 0 if the device does 552 * not support it. Some capabilities can occur several times, e.g., the 553 * vendor-specific capability, and this provides a way to find them all. 554 */ 555 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 556 { 557 u32 header; 558 int ttl; 559 u16 pos = PCI_CFG_SPACE_SIZE; 560 561 /* minimum 8 bytes per capability */ 562 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 563 564 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 565 return 0; 566 567 if (start) 568 pos = start; 569 570 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 571 return 0; 572 573 /* 574 * If we have no capabilities, this is indicated by cap ID, 575 * cap version and next pointer all being 0. 576 */ 577 if (header == 0) 578 return 0; 579 580 while (ttl-- > 0) { 581 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 582 return pos; 583 584 pos = PCI_EXT_CAP_NEXT(header); 585 if (pos < PCI_CFG_SPACE_SIZE) 586 break; 587 588 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 589 break; 590 } 591 592 return 0; 593 } 594 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 595 596 /** 597 * pci_find_ext_capability - Find an extended capability 598 * @dev: PCI device to query 599 * @cap: capability code 600 * 601 * Returns the address of the requested extended capability structure 602 * within the device's PCI configuration space or 0 if the device does 603 * not support it. Possible values for @cap include: 604 * 605 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 606 * %PCI_EXT_CAP_ID_VC Virtual Channel 607 * %PCI_EXT_CAP_ID_DSN Device Serial Number 608 * %PCI_EXT_CAP_ID_PWR Power Budgeting 609 */ 610 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 611 { 612 return pci_find_next_ext_capability(dev, 0, cap); 613 } 614 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 615 616 /** 617 * pci_get_dsn - Read and return the 8-byte Device Serial Number 618 * @dev: PCI device to query 619 * 620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 621 * Number. 622 * 623 * Returns the DSN, or zero if the capability does not exist. 624 */ 625 u64 pci_get_dsn(struct pci_dev *dev) 626 { 627 u32 dword; 628 u64 dsn; 629 int pos; 630 631 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 632 if (!pos) 633 return 0; 634 635 /* 636 * The Device Serial Number is two dwords offset 4 bytes from the 637 * capability position. The specification says that the first dword is 638 * the lower half, and the second dword is the upper half. 639 */ 640 pos += 4; 641 pci_read_config_dword(dev, pos, &dword); 642 dsn = (u64)dword; 643 pci_read_config_dword(dev, pos + 4, &dword); 644 dsn |= ((u64)dword) << 32; 645 646 return dsn; 647 } 648 EXPORT_SYMBOL_GPL(pci_get_dsn); 649 650 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 651 { 652 int rc, ttl = PCI_FIND_CAP_TTL; 653 u8 cap, mask; 654 655 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 656 mask = HT_3BIT_CAP_MASK; 657 else 658 mask = HT_5BIT_CAP_MASK; 659 660 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 661 PCI_CAP_ID_HT, &ttl); 662 while (pos) { 663 rc = pci_read_config_byte(dev, pos + 3, &cap); 664 if (rc != PCIBIOS_SUCCESSFUL) 665 return 0; 666 667 if ((cap & mask) == ht_cap) 668 return pos; 669 670 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 671 pos + PCI_CAP_LIST_NEXT, 672 PCI_CAP_ID_HT, &ttl); 673 } 674 675 return 0; 676 } 677 678 /** 679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 680 * @dev: PCI device to query 681 * @pos: Position from which to continue searching 682 * @ht_cap: HyperTransport capability code 683 * 684 * To be used in conjunction with pci_find_ht_capability() to search for 685 * all capabilities matching @ht_cap. @pos should always be a value returned 686 * from pci_find_ht_capability(). 687 * 688 * NB. To be 100% safe against broken PCI devices, the caller should take 689 * steps to avoid an infinite loop. 690 */ 691 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 692 { 693 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 694 } 695 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 696 697 /** 698 * pci_find_ht_capability - query a device's HyperTransport capabilities 699 * @dev: PCI device to query 700 * @ht_cap: HyperTransport capability code 701 * 702 * Tell if a device supports a given HyperTransport capability. 703 * Returns an address within the device's PCI configuration space 704 * or 0 in case the device does not support the request capability. 705 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 706 * which has a HyperTransport capability matching @ht_cap. 707 */ 708 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 709 { 710 u8 pos; 711 712 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 713 if (pos) 714 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 715 716 return pos; 717 } 718 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 719 720 /** 721 * pci_find_vsec_capability - Find a vendor-specific extended capability 722 * @dev: PCI device to query 723 * @vendor: Vendor ID for which capability is defined 724 * @cap: Vendor-specific capability ID 725 * 726 * If @dev has Vendor ID @vendor, search for a VSEC capability with 727 * VSEC ID @cap. If found, return the capability offset in 728 * config space; otherwise return 0. 729 */ 730 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 731 { 732 u16 vsec = 0; 733 u32 header; 734 int ret; 735 736 if (vendor != dev->vendor) 737 return 0; 738 739 while ((vsec = pci_find_next_ext_capability(dev, vsec, 740 PCI_EXT_CAP_ID_VNDR))) { 741 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 742 if (ret != PCIBIOS_SUCCESSFUL) 743 continue; 744 745 if (PCI_VNDR_HEADER_ID(header) == cap) 746 return vsec; 747 } 748 749 return 0; 750 } 751 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 752 753 /** 754 * pci_find_dvsec_capability - Find DVSEC for vendor 755 * @dev: PCI device to query 756 * @vendor: Vendor ID to match for the DVSEC 757 * @dvsec: Designated Vendor-specific capability ID 758 * 759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 760 * offset in config space; otherwise return 0. 761 */ 762 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 763 { 764 int pos; 765 766 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 767 if (!pos) 768 return 0; 769 770 while (pos) { 771 u16 v, id; 772 773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 775 if (vendor == v && dvsec == id) 776 return pos; 777 778 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 779 } 780 781 return 0; 782 } 783 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 784 785 /** 786 * pci_find_parent_resource - return resource region of parent bus of given 787 * region 788 * @dev: PCI device structure contains resources to be searched 789 * @res: child resource record for which parent is sought 790 * 791 * For given resource region of given device, return the resource region of 792 * parent bus the given region is contained in. 793 */ 794 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 795 struct resource *res) 796 { 797 const struct pci_bus *bus = dev->bus; 798 struct resource *r; 799 800 pci_bus_for_each_resource(bus, r) { 801 if (!r) 802 continue; 803 if (resource_contains(r, res)) { 804 805 /* 806 * If the window is prefetchable but the BAR is 807 * not, the allocator made a mistake. 808 */ 809 if (r->flags & IORESOURCE_PREFETCH && 810 !(res->flags & IORESOURCE_PREFETCH)) 811 return NULL; 812 813 /* 814 * If we're below a transparent bridge, there may 815 * be both a positively-decoded aperture and a 816 * subtractively-decoded region that contain the BAR. 817 * We want the positively-decoded one, so this depends 818 * on pci_bus_for_each_resource() giving us those 819 * first. 820 */ 821 return r; 822 } 823 } 824 return NULL; 825 } 826 EXPORT_SYMBOL(pci_find_parent_resource); 827 828 /** 829 * pci_find_resource - Return matching PCI device resource 830 * @dev: PCI device to query 831 * @res: Resource to look for 832 * 833 * Goes over standard PCI resources (BARs) and checks if the given resource 834 * is partially or fully contained in any of them. In that case the 835 * matching resource is returned, %NULL otherwise. 836 */ 837 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 838 { 839 int i; 840 841 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 842 struct resource *r = &dev->resource[i]; 843 844 if (r->start && resource_contains(r, res)) 845 return r; 846 } 847 848 return NULL; 849 } 850 EXPORT_SYMBOL(pci_find_resource); 851 852 /** 853 * pci_resource_name - Return the name of the PCI resource 854 * @dev: PCI device to query 855 * @i: index of the resource 856 * 857 * Return the standard PCI resource (BAR) name according to their index. 858 */ 859 const char *pci_resource_name(struct pci_dev *dev, unsigned int i) 860 { 861 static const char * const bar_name[] = { 862 "BAR 0", 863 "BAR 1", 864 "BAR 2", 865 "BAR 3", 866 "BAR 4", 867 "BAR 5", 868 "ROM", 869 #ifdef CONFIG_PCI_IOV 870 "VF BAR 0", 871 "VF BAR 1", 872 "VF BAR 2", 873 "VF BAR 3", 874 "VF BAR 4", 875 "VF BAR 5", 876 #endif 877 "bridge window", /* "io" included in %pR */ 878 "bridge window", /* "mem" included in %pR */ 879 "bridge window", /* "mem pref" included in %pR */ 880 }; 881 static const char * const cardbus_name[] = { 882 "BAR 1", 883 "unknown", 884 "unknown", 885 "unknown", 886 "unknown", 887 "unknown", 888 #ifdef CONFIG_PCI_IOV 889 "unknown", 890 "unknown", 891 "unknown", 892 "unknown", 893 "unknown", 894 "unknown", 895 #endif 896 "CardBus bridge window 0", /* I/O */ 897 "CardBus bridge window 1", /* I/O */ 898 "CardBus bridge window 0", /* mem */ 899 "CardBus bridge window 1", /* mem */ 900 }; 901 902 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS && 903 i < ARRAY_SIZE(cardbus_name)) 904 return cardbus_name[i]; 905 906 if (i < ARRAY_SIZE(bar_name)) 907 return bar_name[i]; 908 909 return "unknown"; 910 } 911 912 /** 913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 914 * @dev: the PCI device to operate on 915 * @pos: config space offset of status word 916 * @mask: mask of bit(s) to care about in status word 917 * 918 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 919 */ 920 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 921 { 922 int i; 923 924 /* Wait for Transaction Pending bit clean */ 925 for (i = 0; i < 4; i++) { 926 u16 status; 927 if (i) 928 msleep((1 << (i - 1)) * 100); 929 930 pci_read_config_word(dev, pos, &status); 931 if (!(status & mask)) 932 return 1; 933 } 934 935 return 0; 936 } 937 938 static int pci_acs_enable; 939 940 /** 941 * pci_request_acs - ask for ACS to be enabled if supported 942 */ 943 void pci_request_acs(void) 944 { 945 pci_acs_enable = 1; 946 } 947 948 static const char *disable_acs_redir_param; 949 950 /** 951 * pci_disable_acs_redir - disable ACS redirect capabilities 952 * @dev: the PCI device 953 * 954 * For only devices specified in the disable_acs_redir parameter. 955 */ 956 static void pci_disable_acs_redir(struct pci_dev *dev) 957 { 958 int ret = 0; 959 const char *p; 960 int pos; 961 u16 ctrl; 962 963 if (!disable_acs_redir_param) 964 return; 965 966 p = disable_acs_redir_param; 967 while (*p) { 968 ret = pci_dev_str_match(dev, p, &p); 969 if (ret < 0) { 970 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 971 disable_acs_redir_param); 972 973 break; 974 } else if (ret == 1) { 975 /* Found a match */ 976 break; 977 } 978 979 if (*p != ';' && *p != ',') { 980 /* End of param or invalid format */ 981 break; 982 } 983 p++; 984 } 985 986 if (ret != 1) 987 return; 988 989 if (!pci_dev_specific_disable_acs_redir(dev)) 990 return; 991 992 pos = dev->acs_cap; 993 if (!pos) { 994 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 995 return; 996 } 997 998 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 999 1000 /* P2P Request & Completion Redirect */ 1001 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 1002 1003 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 1004 1005 pci_info(dev, "disabled ACS redirect\n"); 1006 } 1007 1008 /** 1009 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 1010 * @dev: the PCI device 1011 */ 1012 static void pci_std_enable_acs(struct pci_dev *dev) 1013 { 1014 int pos; 1015 u16 cap; 1016 u16 ctrl; 1017 1018 pos = dev->acs_cap; 1019 if (!pos) 1020 return; 1021 1022 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 1023 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 1024 1025 /* Source Validation */ 1026 ctrl |= (cap & PCI_ACS_SV); 1027 1028 /* P2P Request Redirect */ 1029 ctrl |= (cap & PCI_ACS_RR); 1030 1031 /* P2P Completion Redirect */ 1032 ctrl |= (cap & PCI_ACS_CR); 1033 1034 /* Upstream Forwarding */ 1035 ctrl |= (cap & PCI_ACS_UF); 1036 1037 /* Enable Translation Blocking for external devices and noats */ 1038 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 1039 ctrl |= (cap & PCI_ACS_TB); 1040 1041 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 1042 } 1043 1044 /** 1045 * pci_enable_acs - enable ACS if hardware support it 1046 * @dev: the PCI device 1047 */ 1048 static void pci_enable_acs(struct pci_dev *dev) 1049 { 1050 if (!pci_acs_enable) 1051 goto disable_acs_redir; 1052 1053 if (!pci_dev_specific_enable_acs(dev)) 1054 goto disable_acs_redir; 1055 1056 pci_std_enable_acs(dev); 1057 1058 disable_acs_redir: 1059 /* 1060 * Note: pci_disable_acs_redir() must be called even if ACS was not 1061 * enabled by the kernel because it may have been enabled by 1062 * platform firmware. So if we are told to disable it, we should 1063 * always disable it after setting the kernel's default 1064 * preferences. 1065 */ 1066 pci_disable_acs_redir(dev); 1067 } 1068 1069 /** 1070 * pcie_read_tlp_log - read TLP Header Log 1071 * @dev: PCIe device 1072 * @where: PCI Config offset of TLP Header Log 1073 * @tlp_log: TLP Log structure to fill 1074 * 1075 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC. 1076 * 1077 * Return: 0 on success and filled TLP Log structure, <0 on error. 1078 */ 1079 int pcie_read_tlp_log(struct pci_dev *dev, int where, 1080 struct pcie_tlp_log *tlp_log) 1081 { 1082 int i, ret; 1083 1084 memset(tlp_log, 0, sizeof(*tlp_log)); 1085 1086 for (i = 0; i < 4; i++) { 1087 ret = pci_read_config_dword(dev, where + i * 4, 1088 &tlp_log->dw[i]); 1089 if (ret) 1090 return pcibios_err_to_errno(ret); 1091 } 1092 1093 return 0; 1094 } 1095 EXPORT_SYMBOL_GPL(pcie_read_tlp_log); 1096 1097 /** 1098 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1099 * @dev: PCI device to have its BARs restored 1100 * 1101 * Restore the BAR values for a given device, so as to make it 1102 * accessible by its driver. 1103 */ 1104 static void pci_restore_bars(struct pci_dev *dev) 1105 { 1106 int i; 1107 1108 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1109 pci_update_resource(dev, i); 1110 } 1111 1112 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1113 { 1114 if (pci_use_mid_pm()) 1115 return true; 1116 1117 return acpi_pci_power_manageable(dev); 1118 } 1119 1120 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1121 pci_power_t t) 1122 { 1123 if (pci_use_mid_pm()) 1124 return mid_pci_set_power_state(dev, t); 1125 1126 return acpi_pci_set_power_state(dev, t); 1127 } 1128 1129 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1130 { 1131 if (pci_use_mid_pm()) 1132 return mid_pci_get_power_state(dev); 1133 1134 return acpi_pci_get_power_state(dev); 1135 } 1136 1137 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1138 { 1139 if (!pci_use_mid_pm()) 1140 acpi_pci_refresh_power_state(dev); 1141 } 1142 1143 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1144 { 1145 if (pci_use_mid_pm()) 1146 return PCI_POWER_ERROR; 1147 1148 return acpi_pci_choose_state(dev); 1149 } 1150 1151 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1152 { 1153 if (pci_use_mid_pm()) 1154 return PCI_POWER_ERROR; 1155 1156 return acpi_pci_wakeup(dev, enable); 1157 } 1158 1159 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1160 { 1161 if (pci_use_mid_pm()) 1162 return false; 1163 1164 return acpi_pci_need_resume(dev); 1165 } 1166 1167 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1168 { 1169 if (pci_use_mid_pm()) 1170 return false; 1171 1172 return acpi_pci_bridge_d3(dev); 1173 } 1174 1175 /** 1176 * pci_update_current_state - Read power state of given device and cache it 1177 * @dev: PCI device to handle. 1178 * @state: State to cache in case the device doesn't have the PM capability 1179 * 1180 * The power state is read from the PMCSR register, which however is 1181 * inaccessible in D3cold. The platform firmware is therefore queried first 1182 * to detect accessibility of the register. In case the platform firmware 1183 * reports an incorrect state or the device isn't power manageable by the 1184 * platform at all, we try to detect D3cold by testing accessibility of the 1185 * vendor ID in config space. 1186 */ 1187 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1188 { 1189 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1190 dev->current_state = PCI_D3cold; 1191 } else if (dev->pm_cap) { 1192 u16 pmcsr; 1193 1194 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1195 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1196 dev->current_state = PCI_D3cold; 1197 return; 1198 } 1199 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1200 } else { 1201 dev->current_state = state; 1202 } 1203 } 1204 1205 /** 1206 * pci_refresh_power_state - Refresh the given device's power state data 1207 * @dev: Target PCI device. 1208 * 1209 * Ask the platform to refresh the devices power state information and invoke 1210 * pci_update_current_state() to update its current PCI power state. 1211 */ 1212 void pci_refresh_power_state(struct pci_dev *dev) 1213 { 1214 platform_pci_refresh_power_state(dev); 1215 pci_update_current_state(dev, dev->current_state); 1216 } 1217 1218 /** 1219 * pci_platform_power_transition - Use platform to change device power state 1220 * @dev: PCI device to handle. 1221 * @state: State to put the device into. 1222 */ 1223 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1224 { 1225 int error; 1226 1227 error = platform_pci_set_power_state(dev, state); 1228 if (!error) 1229 pci_update_current_state(dev, state); 1230 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1231 dev->current_state = PCI_D0; 1232 1233 return error; 1234 } 1235 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1236 1237 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1238 { 1239 pm_request_resume(&pci_dev->dev); 1240 return 0; 1241 } 1242 1243 /** 1244 * pci_resume_bus - Walk given bus and runtime resume devices on it 1245 * @bus: Top bus of the subtree to walk. 1246 */ 1247 void pci_resume_bus(struct pci_bus *bus) 1248 { 1249 if (bus) 1250 pci_walk_bus(bus, pci_resume_one, NULL); 1251 } 1252 1253 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1254 { 1255 int delay = 1; 1256 bool retrain = false; 1257 struct pci_dev *bridge; 1258 1259 if (pci_is_pcie(dev)) { 1260 bridge = pci_upstream_bridge(dev); 1261 if (bridge) 1262 retrain = true; 1263 } 1264 1265 /* 1266 * After reset, the device should not silently discard config 1267 * requests, but it may still indicate that it needs more time by 1268 * responding to them with CRS completions. The Root Port will 1269 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1270 * the read (except when CRS SV is enabled and the read was for the 1271 * Vendor ID; in that case it synthesizes 0x0001 data). 1272 * 1273 * Wait for the device to return a non-CRS completion. Read the 1274 * Command register instead of Vendor ID so we don't have to 1275 * contend with the CRS SV value. 1276 */ 1277 for (;;) { 1278 u32 id; 1279 1280 if (pci_dev_is_disconnected(dev)) { 1281 pci_dbg(dev, "disconnected; not waiting\n"); 1282 return -ENOTTY; 1283 } 1284 1285 pci_read_config_dword(dev, PCI_COMMAND, &id); 1286 if (!PCI_POSSIBLE_ERROR(id)) 1287 break; 1288 1289 if (delay > timeout) { 1290 pci_warn(dev, "not ready %dms after %s; giving up\n", 1291 delay - 1, reset_type); 1292 return -ENOTTY; 1293 } 1294 1295 if (delay > PCI_RESET_WAIT) { 1296 if (retrain) { 1297 retrain = false; 1298 if (pcie_failed_link_retrain(bridge)) { 1299 delay = 1; 1300 continue; 1301 } 1302 } 1303 pci_info(dev, "not ready %dms after %s; waiting\n", 1304 delay - 1, reset_type); 1305 } 1306 1307 msleep(delay); 1308 delay *= 2; 1309 } 1310 1311 if (delay > PCI_RESET_WAIT) 1312 pci_info(dev, "ready %dms after %s\n", delay - 1, 1313 reset_type); 1314 else 1315 pci_dbg(dev, "ready %dms after %s\n", delay - 1, 1316 reset_type); 1317 1318 return 0; 1319 } 1320 1321 /** 1322 * pci_power_up - Put the given device into D0 1323 * @dev: PCI device to power up 1324 * 1325 * On success, return 0 or 1, depending on whether or not it is necessary to 1326 * restore the device's BARs subsequently (1 is returned in that case). 1327 * 1328 * On failure, return a negative error code. Always return failure if @dev 1329 * lacks a Power Management Capability, even if the platform was able to 1330 * put the device in D0 via non-PCI means. 1331 */ 1332 int pci_power_up(struct pci_dev *dev) 1333 { 1334 bool need_restore; 1335 pci_power_t state; 1336 u16 pmcsr; 1337 1338 platform_pci_set_power_state(dev, PCI_D0); 1339 1340 if (!dev->pm_cap) { 1341 state = platform_pci_get_power_state(dev); 1342 if (state == PCI_UNKNOWN) 1343 dev->current_state = PCI_D0; 1344 else 1345 dev->current_state = state; 1346 1347 return -EIO; 1348 } 1349 1350 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1351 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1352 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1353 pci_power_name(dev->current_state)); 1354 dev->current_state = PCI_D3cold; 1355 return -EIO; 1356 } 1357 1358 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1359 1360 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1361 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1362 1363 if (state == PCI_D0) 1364 goto end; 1365 1366 /* 1367 * Force the entire word to 0. This doesn't affect PME_Status, disables 1368 * PME_En, and sets PowerState to 0. 1369 */ 1370 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1371 1372 /* Mandatory transition delays; see PCI PM 1.2. */ 1373 if (state == PCI_D3hot) 1374 pci_dev_d3_sleep(dev); 1375 else if (state == PCI_D2) 1376 udelay(PCI_PM_D2_DELAY); 1377 1378 end: 1379 dev->current_state = PCI_D0; 1380 if (need_restore) 1381 return 1; 1382 1383 return 0; 1384 } 1385 1386 /** 1387 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1388 * @dev: PCI device to power up 1389 * @locked: whether pci_bus_sem is held 1390 * 1391 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1392 * to confirm the state change, restore its BARs if they might be lost and 1393 * reconfigure ASPM in accordance with the new power state. 1394 * 1395 * If pci_restore_state() is going to be called right after a power state change 1396 * to D0, it is more efficient to use pci_power_up() directly instead of this 1397 * function. 1398 */ 1399 static int pci_set_full_power_state(struct pci_dev *dev, bool locked) 1400 { 1401 u16 pmcsr; 1402 int ret; 1403 1404 ret = pci_power_up(dev); 1405 if (ret < 0) { 1406 if (dev->current_state == PCI_D0) 1407 return 0; 1408 1409 return ret; 1410 } 1411 1412 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1413 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1414 if (dev->current_state != PCI_D0) { 1415 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1416 pci_power_name(dev->current_state)); 1417 } else if (ret > 0) { 1418 /* 1419 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1420 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1421 * from D3hot to D0 _may_ perform an internal reset, thereby 1422 * going to "D0 Uninitialized" rather than "D0 Initialized". 1423 * For example, at least some versions of the 3c905B and the 1424 * 3c556B exhibit this behaviour. 1425 * 1426 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1427 * devices in a D3hot state at boot. Consequently, we need to 1428 * restore at least the BARs so that the device will be 1429 * accessible to its driver. 1430 */ 1431 pci_restore_bars(dev); 1432 } 1433 1434 if (dev->bus->self) 1435 pcie_aspm_pm_state_change(dev->bus->self, locked); 1436 1437 return 0; 1438 } 1439 1440 /** 1441 * __pci_dev_set_current_state - Set current state of a PCI device 1442 * @dev: Device to handle 1443 * @data: pointer to state to be set 1444 */ 1445 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1446 { 1447 pci_power_t state = *(pci_power_t *)data; 1448 1449 dev->current_state = state; 1450 return 0; 1451 } 1452 1453 /** 1454 * pci_bus_set_current_state - Walk given bus and set current state of devices 1455 * @bus: Top bus of the subtree to walk. 1456 * @state: state to be set 1457 */ 1458 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1459 { 1460 if (bus) 1461 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1462 } 1463 1464 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked) 1465 { 1466 if (!bus) 1467 return; 1468 1469 if (locked) 1470 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state); 1471 else 1472 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1473 } 1474 1475 /** 1476 * pci_set_low_power_state - Put a PCI device into a low-power state. 1477 * @dev: PCI device to handle. 1478 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1479 * @locked: whether pci_bus_sem is held 1480 * 1481 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1482 * 1483 * RETURN VALUE: 1484 * -EINVAL if the requested state is invalid. 1485 * -EIO if device does not support PCI PM or its PM capabilities register has a 1486 * wrong version, or device doesn't support the requested state. 1487 * 0 if device already is in the requested state. 1488 * 0 if device's power state has been successfully changed. 1489 */ 1490 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1491 { 1492 u16 pmcsr; 1493 1494 if (!dev->pm_cap) 1495 return -EIO; 1496 1497 /* 1498 * Validate transition: We can enter D0 from any state, but if 1499 * we're already in a low-power state, we can only go deeper. E.g., 1500 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1501 * we'd have to go from D3 to D0, then to D1. 1502 */ 1503 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1504 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1505 pci_power_name(dev->current_state), 1506 pci_power_name(state)); 1507 return -EINVAL; 1508 } 1509 1510 /* Check if this device supports the desired state */ 1511 if ((state == PCI_D1 && !dev->d1_support) 1512 || (state == PCI_D2 && !dev->d2_support)) 1513 return -EIO; 1514 1515 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1516 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1517 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1518 pci_power_name(dev->current_state), 1519 pci_power_name(state)); 1520 dev->current_state = PCI_D3cold; 1521 return -EIO; 1522 } 1523 1524 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1525 pmcsr |= state; 1526 1527 /* Enter specified state */ 1528 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1529 1530 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1531 if (state == PCI_D3hot) 1532 pci_dev_d3_sleep(dev); 1533 else if (state == PCI_D2) 1534 udelay(PCI_PM_D2_DELAY); 1535 1536 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1537 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1538 if (dev->current_state != state) 1539 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1540 pci_power_name(dev->current_state), 1541 pci_power_name(state)); 1542 1543 if (dev->bus->self) 1544 pcie_aspm_pm_state_change(dev->bus->self, locked); 1545 1546 return 0; 1547 } 1548 1549 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1550 { 1551 int error; 1552 1553 /* Bound the state we're entering */ 1554 if (state > PCI_D3cold) 1555 state = PCI_D3cold; 1556 else if (state < PCI_D0) 1557 state = PCI_D0; 1558 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1559 1560 /* 1561 * If the device or the parent bridge do not support PCI 1562 * PM, ignore the request if we're doing anything other 1563 * than putting it into D0 (which would only happen on 1564 * boot). 1565 */ 1566 return 0; 1567 1568 /* Check if we're already there */ 1569 if (dev->current_state == state) 1570 return 0; 1571 1572 if (state == PCI_D0) 1573 return pci_set_full_power_state(dev, locked); 1574 1575 /* 1576 * This device is quirked not to be put into D3, so don't put it in 1577 * D3 1578 */ 1579 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1580 return 0; 1581 1582 if (state == PCI_D3cold) { 1583 /* 1584 * To put the device in D3cold, put it into D3hot in the native 1585 * way, then put it into D3cold using platform ops. 1586 */ 1587 error = pci_set_low_power_state(dev, PCI_D3hot, locked); 1588 1589 if (pci_platform_power_transition(dev, PCI_D3cold)) 1590 return error; 1591 1592 /* Powering off a bridge may power off the whole hierarchy */ 1593 if (dev->current_state == PCI_D3cold) 1594 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked); 1595 } else { 1596 error = pci_set_low_power_state(dev, state, locked); 1597 1598 if (pci_platform_power_transition(dev, state)) 1599 return error; 1600 } 1601 1602 return 0; 1603 } 1604 1605 /** 1606 * pci_set_power_state - Set the power state of a PCI device 1607 * @dev: PCI device to handle. 1608 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1609 * 1610 * Transition a device to a new power state, using the platform firmware and/or 1611 * the device's PCI PM registers. 1612 * 1613 * RETURN VALUE: 1614 * -EINVAL if the requested state is invalid. 1615 * -EIO if device does not support PCI PM or its PM capabilities register has a 1616 * wrong version, or device doesn't support the requested state. 1617 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1618 * 0 if device already is in the requested state. 1619 * 0 if the transition is to D3 but D3 is not supported. 1620 * 0 if device's power state has been successfully changed. 1621 */ 1622 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1623 { 1624 return __pci_set_power_state(dev, state, false); 1625 } 1626 EXPORT_SYMBOL(pci_set_power_state); 1627 1628 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state) 1629 { 1630 lockdep_assert_held(&pci_bus_sem); 1631 1632 return __pci_set_power_state(dev, state, true); 1633 } 1634 EXPORT_SYMBOL(pci_set_power_state_locked); 1635 1636 #define PCI_EXP_SAVE_REGS 7 1637 1638 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1639 u16 cap, bool extended) 1640 { 1641 struct pci_cap_saved_state *tmp; 1642 1643 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1644 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1645 return tmp; 1646 } 1647 return NULL; 1648 } 1649 1650 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1651 { 1652 return _pci_find_saved_cap(dev, cap, false); 1653 } 1654 1655 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1656 { 1657 return _pci_find_saved_cap(dev, cap, true); 1658 } 1659 1660 static int pci_save_pcie_state(struct pci_dev *dev) 1661 { 1662 int i = 0; 1663 struct pci_cap_saved_state *save_state; 1664 u16 *cap; 1665 1666 if (!pci_is_pcie(dev)) 1667 return 0; 1668 1669 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1670 if (!save_state) { 1671 pci_err(dev, "buffer not found in %s\n", __func__); 1672 return -ENOMEM; 1673 } 1674 1675 cap = (u16 *)&save_state->cap.data[0]; 1676 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1677 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1678 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1679 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1680 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1681 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1682 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1683 1684 pci_save_aspm_l1ss_state(dev); 1685 pci_save_ltr_state(dev); 1686 1687 return 0; 1688 } 1689 1690 static void pci_restore_pcie_state(struct pci_dev *dev) 1691 { 1692 int i = 0; 1693 struct pci_cap_saved_state *save_state; 1694 u16 *cap; 1695 1696 /* 1697 * Restore max latencies (in the LTR capability) before enabling 1698 * LTR itself in PCI_EXP_DEVCTL2. 1699 */ 1700 pci_restore_ltr_state(dev); 1701 pci_restore_aspm_l1ss_state(dev); 1702 1703 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1704 if (!save_state) 1705 return; 1706 1707 /* 1708 * Downstream ports reset the LTR enable bit when link goes down. 1709 * Check and re-configure the bit here before restoring device. 1710 * PCIe r5.0, sec 7.5.3.16. 1711 */ 1712 pci_bridge_reconfigure_ltr(dev); 1713 1714 cap = (u16 *)&save_state->cap.data[0]; 1715 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1716 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1717 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1718 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1719 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1720 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1721 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1722 } 1723 1724 static int pci_save_pcix_state(struct pci_dev *dev) 1725 { 1726 int pos; 1727 struct pci_cap_saved_state *save_state; 1728 1729 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1730 if (!pos) 1731 return 0; 1732 1733 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1734 if (!save_state) { 1735 pci_err(dev, "buffer not found in %s\n", __func__); 1736 return -ENOMEM; 1737 } 1738 1739 pci_read_config_word(dev, pos + PCI_X_CMD, 1740 (u16 *)save_state->cap.data); 1741 1742 return 0; 1743 } 1744 1745 static void pci_restore_pcix_state(struct pci_dev *dev) 1746 { 1747 int i = 0, pos; 1748 struct pci_cap_saved_state *save_state; 1749 u16 *cap; 1750 1751 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1752 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1753 if (!save_state || !pos) 1754 return; 1755 cap = (u16 *)&save_state->cap.data[0]; 1756 1757 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1758 } 1759 1760 /** 1761 * pci_save_state - save the PCI configuration space of a device before 1762 * suspending 1763 * @dev: PCI device that we're dealing with 1764 */ 1765 int pci_save_state(struct pci_dev *dev) 1766 { 1767 int i; 1768 /* XXX: 100% dword access ok here? */ 1769 for (i = 0; i < 16; i++) { 1770 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1771 pci_dbg(dev, "save config %#04x: %#010x\n", 1772 i * 4, dev->saved_config_space[i]); 1773 } 1774 dev->state_saved = true; 1775 1776 i = pci_save_pcie_state(dev); 1777 if (i != 0) 1778 return i; 1779 1780 i = pci_save_pcix_state(dev); 1781 if (i != 0) 1782 return i; 1783 1784 pci_save_dpc_state(dev); 1785 pci_save_aer_state(dev); 1786 pci_save_ptm_state(dev); 1787 return pci_save_vc_state(dev); 1788 } 1789 EXPORT_SYMBOL(pci_save_state); 1790 1791 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1792 u32 saved_val, int retry, bool force) 1793 { 1794 u32 val; 1795 1796 pci_read_config_dword(pdev, offset, &val); 1797 if (!force && val == saved_val) 1798 return; 1799 1800 for (;;) { 1801 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1802 offset, val, saved_val); 1803 pci_write_config_dword(pdev, offset, saved_val); 1804 if (retry-- <= 0) 1805 return; 1806 1807 pci_read_config_dword(pdev, offset, &val); 1808 if (val == saved_val) 1809 return; 1810 1811 mdelay(1); 1812 } 1813 } 1814 1815 static void pci_restore_config_space_range(struct pci_dev *pdev, 1816 int start, int end, int retry, 1817 bool force) 1818 { 1819 int index; 1820 1821 for (index = end; index >= start; index--) 1822 pci_restore_config_dword(pdev, 4 * index, 1823 pdev->saved_config_space[index], 1824 retry, force); 1825 } 1826 1827 static void pci_restore_config_space(struct pci_dev *pdev) 1828 { 1829 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1830 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1831 /* Restore BARs before the command register. */ 1832 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1833 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1834 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1835 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1836 1837 /* 1838 * Force rewriting of prefetch registers to avoid S3 resume 1839 * issues on Intel PCI bridges that occur when these 1840 * registers are not explicitly written. 1841 */ 1842 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1843 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1844 } else { 1845 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1846 } 1847 } 1848 1849 static void pci_restore_rebar_state(struct pci_dev *pdev) 1850 { 1851 unsigned int pos, nbars, i; 1852 u32 ctrl; 1853 1854 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1855 if (!pos) 1856 return; 1857 1858 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1859 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 1860 1861 for (i = 0; i < nbars; i++, pos += 8) { 1862 struct resource *res; 1863 int bar_idx, size; 1864 1865 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1866 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1867 res = pdev->resource + bar_idx; 1868 size = pci_rebar_bytes_to_size(resource_size(res)); 1869 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1870 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 1871 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1872 } 1873 } 1874 1875 /** 1876 * pci_restore_state - Restore the saved state of a PCI device 1877 * @dev: PCI device that we're dealing with 1878 */ 1879 void pci_restore_state(struct pci_dev *dev) 1880 { 1881 if (!dev->state_saved) 1882 return; 1883 1884 pci_restore_pcie_state(dev); 1885 pci_restore_pasid_state(dev); 1886 pci_restore_pri_state(dev); 1887 pci_restore_ats_state(dev); 1888 pci_restore_vc_state(dev); 1889 pci_restore_rebar_state(dev); 1890 pci_restore_dpc_state(dev); 1891 pci_restore_ptm_state(dev); 1892 1893 pci_aer_clear_status(dev); 1894 pci_restore_aer_state(dev); 1895 1896 pci_restore_config_space(dev); 1897 1898 pci_restore_pcix_state(dev); 1899 pci_restore_msi_state(dev); 1900 1901 /* Restore ACS and IOV configuration state */ 1902 pci_enable_acs(dev); 1903 pci_restore_iov_state(dev); 1904 1905 dev->state_saved = false; 1906 } 1907 EXPORT_SYMBOL(pci_restore_state); 1908 1909 struct pci_saved_state { 1910 u32 config_space[16]; 1911 struct pci_cap_saved_data cap[]; 1912 }; 1913 1914 /** 1915 * pci_store_saved_state - Allocate and return an opaque struct containing 1916 * the device saved state. 1917 * @dev: PCI device that we're dealing with 1918 * 1919 * Return NULL if no state or error. 1920 */ 1921 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1922 { 1923 struct pci_saved_state *state; 1924 struct pci_cap_saved_state *tmp; 1925 struct pci_cap_saved_data *cap; 1926 size_t size; 1927 1928 if (!dev->state_saved) 1929 return NULL; 1930 1931 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1932 1933 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1934 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1935 1936 state = kzalloc(size, GFP_KERNEL); 1937 if (!state) 1938 return NULL; 1939 1940 memcpy(state->config_space, dev->saved_config_space, 1941 sizeof(state->config_space)); 1942 1943 cap = state->cap; 1944 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1945 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1946 memcpy(cap, &tmp->cap, len); 1947 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1948 } 1949 /* Empty cap_save terminates list */ 1950 1951 return state; 1952 } 1953 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1954 1955 /** 1956 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1957 * @dev: PCI device that we're dealing with 1958 * @state: Saved state returned from pci_store_saved_state() 1959 */ 1960 int pci_load_saved_state(struct pci_dev *dev, 1961 struct pci_saved_state *state) 1962 { 1963 struct pci_cap_saved_data *cap; 1964 1965 dev->state_saved = false; 1966 1967 if (!state) 1968 return 0; 1969 1970 memcpy(dev->saved_config_space, state->config_space, 1971 sizeof(state->config_space)); 1972 1973 cap = state->cap; 1974 while (cap->size) { 1975 struct pci_cap_saved_state *tmp; 1976 1977 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1978 if (!tmp || tmp->cap.size != cap->size) 1979 return -EINVAL; 1980 1981 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1982 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1983 sizeof(struct pci_cap_saved_data) + cap->size); 1984 } 1985 1986 dev->state_saved = true; 1987 return 0; 1988 } 1989 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1990 1991 /** 1992 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1993 * and free the memory allocated for it. 1994 * @dev: PCI device that we're dealing with 1995 * @state: Pointer to saved state returned from pci_store_saved_state() 1996 */ 1997 int pci_load_and_free_saved_state(struct pci_dev *dev, 1998 struct pci_saved_state **state) 1999 { 2000 int ret = pci_load_saved_state(dev, *state); 2001 kfree(*state); 2002 *state = NULL; 2003 return ret; 2004 } 2005 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 2006 2007 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 2008 { 2009 return pci_enable_resources(dev, bars); 2010 } 2011 2012 static int do_pci_enable_device(struct pci_dev *dev, int bars) 2013 { 2014 int err; 2015 struct pci_dev *bridge; 2016 u16 cmd; 2017 u8 pin; 2018 2019 err = pci_set_power_state(dev, PCI_D0); 2020 if (err < 0 && err != -EIO) 2021 return err; 2022 2023 bridge = pci_upstream_bridge(dev); 2024 if (bridge) 2025 pcie_aspm_powersave_config_link(bridge); 2026 2027 err = pcibios_enable_device(dev, bars); 2028 if (err < 0) 2029 return err; 2030 pci_fixup_device(pci_fixup_enable, dev); 2031 2032 if (dev->msi_enabled || dev->msix_enabled) 2033 return 0; 2034 2035 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 2036 if (pin) { 2037 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2038 if (cmd & PCI_COMMAND_INTX_DISABLE) 2039 pci_write_config_word(dev, PCI_COMMAND, 2040 cmd & ~PCI_COMMAND_INTX_DISABLE); 2041 } 2042 2043 return 0; 2044 } 2045 2046 /** 2047 * pci_reenable_device - Resume abandoned device 2048 * @dev: PCI device to be resumed 2049 * 2050 * NOTE: This function is a backend of pci_default_resume() and is not supposed 2051 * to be called by normal code, write proper resume handler and use it instead. 2052 */ 2053 int pci_reenable_device(struct pci_dev *dev) 2054 { 2055 if (pci_is_enabled(dev)) 2056 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 2057 return 0; 2058 } 2059 EXPORT_SYMBOL(pci_reenable_device); 2060 2061 static void pci_enable_bridge(struct pci_dev *dev) 2062 { 2063 struct pci_dev *bridge; 2064 int retval; 2065 2066 bridge = pci_upstream_bridge(dev); 2067 if (bridge) 2068 pci_enable_bridge(bridge); 2069 2070 if (pci_is_enabled(dev)) { 2071 if (!dev->is_busmaster) 2072 pci_set_master(dev); 2073 return; 2074 } 2075 2076 retval = pci_enable_device(dev); 2077 if (retval) 2078 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2079 retval); 2080 pci_set_master(dev); 2081 } 2082 2083 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2084 { 2085 struct pci_dev *bridge; 2086 int err; 2087 int i, bars = 0; 2088 2089 /* 2090 * Power state could be unknown at this point, either due to a fresh 2091 * boot or a device removal call. So get the current power state 2092 * so that things like MSI message writing will behave as expected 2093 * (e.g. if the device really is in D0 at enable time). 2094 */ 2095 pci_update_current_state(dev, dev->current_state); 2096 2097 if (atomic_inc_return(&dev->enable_cnt) > 1) 2098 return 0; /* already enabled */ 2099 2100 bridge = pci_upstream_bridge(dev); 2101 if (bridge) 2102 pci_enable_bridge(bridge); 2103 2104 /* only skip sriov related */ 2105 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2106 if (dev->resource[i].flags & flags) 2107 bars |= (1 << i); 2108 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2109 if (dev->resource[i].flags & flags) 2110 bars |= (1 << i); 2111 2112 err = do_pci_enable_device(dev, bars); 2113 if (err < 0) 2114 atomic_dec(&dev->enable_cnt); 2115 return err; 2116 } 2117 2118 /** 2119 * pci_enable_device_mem - Initialize a device for use with Memory space 2120 * @dev: PCI device to be initialized 2121 * 2122 * Initialize device before it's used by a driver. Ask low-level code 2123 * to enable Memory resources. Wake up the device if it was suspended. 2124 * Beware, this function can fail. 2125 */ 2126 int pci_enable_device_mem(struct pci_dev *dev) 2127 { 2128 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2129 } 2130 EXPORT_SYMBOL(pci_enable_device_mem); 2131 2132 /** 2133 * pci_enable_device - Initialize device before it's used by a driver. 2134 * @dev: PCI device to be initialized 2135 * 2136 * Initialize device before it's used by a driver. Ask low-level code 2137 * to enable I/O and memory. Wake up the device if it was suspended. 2138 * Beware, this function can fail. 2139 * 2140 * Note we don't actually enable the device many times if we call 2141 * this function repeatedly (we just increment the count). 2142 */ 2143 int pci_enable_device(struct pci_dev *dev) 2144 { 2145 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2146 } 2147 EXPORT_SYMBOL(pci_enable_device); 2148 2149 /* 2150 * pcibios_device_add - provide arch specific hooks when adding device dev 2151 * @dev: the PCI device being added 2152 * 2153 * Permits the platform to provide architecture specific functionality when 2154 * devices are added. This is the default implementation. Architecture 2155 * implementations can override this. 2156 */ 2157 int __weak pcibios_device_add(struct pci_dev *dev) 2158 { 2159 return 0; 2160 } 2161 2162 /** 2163 * pcibios_release_device - provide arch specific hooks when releasing 2164 * device dev 2165 * @dev: the PCI device being released 2166 * 2167 * Permits the platform to provide architecture specific functionality when 2168 * devices are released. This is the default implementation. Architecture 2169 * implementations can override this. 2170 */ 2171 void __weak pcibios_release_device(struct pci_dev *dev) {} 2172 2173 /** 2174 * pcibios_disable_device - disable arch specific PCI resources for device dev 2175 * @dev: the PCI device to disable 2176 * 2177 * Disables architecture specific PCI resources for the device. This 2178 * is the default implementation. Architecture implementations can 2179 * override this. 2180 */ 2181 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2182 2183 static void do_pci_disable_device(struct pci_dev *dev) 2184 { 2185 u16 pci_command; 2186 2187 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2188 if (pci_command & PCI_COMMAND_MASTER) { 2189 pci_command &= ~PCI_COMMAND_MASTER; 2190 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2191 } 2192 2193 pcibios_disable_device(dev); 2194 } 2195 2196 /** 2197 * pci_disable_enabled_device - Disable device without updating enable_cnt 2198 * @dev: PCI device to disable 2199 * 2200 * NOTE: This function is a backend of PCI power management routines and is 2201 * not supposed to be called drivers. 2202 */ 2203 void pci_disable_enabled_device(struct pci_dev *dev) 2204 { 2205 if (pci_is_enabled(dev)) 2206 do_pci_disable_device(dev); 2207 } 2208 2209 /** 2210 * pci_disable_device - Disable PCI device after use 2211 * @dev: PCI device to be disabled 2212 * 2213 * Signal to the system that the PCI device is not in use by the system 2214 * anymore. This only involves disabling PCI bus-mastering, if active. 2215 * 2216 * Note we don't actually disable the device until all callers of 2217 * pci_enable_device() have called pci_disable_device(). 2218 */ 2219 void pci_disable_device(struct pci_dev *dev) 2220 { 2221 struct pci_devres *dr; 2222 2223 dr = find_pci_dr(dev); 2224 if (dr) 2225 dr->enabled = 0; 2226 2227 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2228 "disabling already-disabled device"); 2229 2230 if (atomic_dec_return(&dev->enable_cnt) != 0) 2231 return; 2232 2233 do_pci_disable_device(dev); 2234 2235 dev->is_busmaster = 0; 2236 } 2237 EXPORT_SYMBOL(pci_disable_device); 2238 2239 /** 2240 * pcibios_set_pcie_reset_state - set reset state for device dev 2241 * @dev: the PCIe device reset 2242 * @state: Reset state to enter into 2243 * 2244 * Set the PCIe reset state for the device. This is the default 2245 * implementation. Architecture implementations can override this. 2246 */ 2247 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2248 enum pcie_reset_state state) 2249 { 2250 return -EINVAL; 2251 } 2252 2253 /** 2254 * pci_set_pcie_reset_state - set reset state for device dev 2255 * @dev: the PCIe device reset 2256 * @state: Reset state to enter into 2257 * 2258 * Sets the PCI reset state for the device. 2259 */ 2260 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2261 { 2262 return pcibios_set_pcie_reset_state(dev, state); 2263 } 2264 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2265 2266 #ifdef CONFIG_PCIEAER 2267 void pcie_clear_device_status(struct pci_dev *dev) 2268 { 2269 u16 sta; 2270 2271 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2272 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2273 } 2274 #endif 2275 2276 /** 2277 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2278 * @dev: PCIe root port or event collector. 2279 */ 2280 void pcie_clear_root_pme_status(struct pci_dev *dev) 2281 { 2282 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2283 } 2284 2285 /** 2286 * pci_check_pme_status - Check if given device has generated PME. 2287 * @dev: Device to check. 2288 * 2289 * Check the PME status of the device and if set, clear it and clear PME enable 2290 * (if set). Return 'true' if PME status and PME enable were both set or 2291 * 'false' otherwise. 2292 */ 2293 bool pci_check_pme_status(struct pci_dev *dev) 2294 { 2295 int pmcsr_pos; 2296 u16 pmcsr; 2297 bool ret = false; 2298 2299 if (!dev->pm_cap) 2300 return false; 2301 2302 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2303 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2304 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2305 return false; 2306 2307 /* Clear PME status. */ 2308 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2309 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2310 /* Disable PME to avoid interrupt flood. */ 2311 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2312 ret = true; 2313 } 2314 2315 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2316 2317 return ret; 2318 } 2319 2320 /** 2321 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2322 * @dev: Device to handle. 2323 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2324 * 2325 * Check if @dev has generated PME and queue a resume request for it in that 2326 * case. 2327 */ 2328 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2329 { 2330 if (pme_poll_reset && dev->pme_poll) 2331 dev->pme_poll = false; 2332 2333 if (pci_check_pme_status(dev)) { 2334 pci_wakeup_event(dev); 2335 pm_request_resume(&dev->dev); 2336 } 2337 return 0; 2338 } 2339 2340 /** 2341 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2342 * @bus: Top bus of the subtree to walk. 2343 */ 2344 void pci_pme_wakeup_bus(struct pci_bus *bus) 2345 { 2346 if (bus) 2347 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2348 } 2349 2350 2351 /** 2352 * pci_pme_capable - check the capability of PCI device to generate PME# 2353 * @dev: PCI device to handle. 2354 * @state: PCI state from which device will issue PME#. 2355 */ 2356 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2357 { 2358 if (!dev->pm_cap) 2359 return false; 2360 2361 return !!(dev->pme_support & (1 << state)); 2362 } 2363 EXPORT_SYMBOL(pci_pme_capable); 2364 2365 static void pci_pme_list_scan(struct work_struct *work) 2366 { 2367 struct pci_pme_device *pme_dev, *n; 2368 2369 mutex_lock(&pci_pme_list_mutex); 2370 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2371 struct pci_dev *pdev = pme_dev->dev; 2372 2373 if (pdev->pme_poll) { 2374 struct pci_dev *bridge = pdev->bus->self; 2375 struct device *dev = &pdev->dev; 2376 struct device *bdev = bridge ? &bridge->dev : NULL; 2377 int bref = 0; 2378 2379 /* 2380 * If we have a bridge, it should be in an active/D0 2381 * state or the configuration space of subordinate 2382 * devices may not be accessible or stable over the 2383 * course of the call. 2384 */ 2385 if (bdev) { 2386 bref = pm_runtime_get_if_active(bdev); 2387 if (!bref) 2388 continue; 2389 2390 if (bridge->current_state != PCI_D0) 2391 goto put_bridge; 2392 } 2393 2394 /* 2395 * The device itself should be suspended but config 2396 * space must be accessible, therefore it cannot be in 2397 * D3cold. 2398 */ 2399 if (pm_runtime_suspended(dev) && 2400 pdev->current_state != PCI_D3cold) 2401 pci_pme_wakeup(pdev, NULL); 2402 2403 put_bridge: 2404 if (bref > 0) 2405 pm_runtime_put(bdev); 2406 } else { 2407 list_del(&pme_dev->list); 2408 kfree(pme_dev); 2409 } 2410 } 2411 if (!list_empty(&pci_pme_list)) 2412 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2413 msecs_to_jiffies(PME_TIMEOUT)); 2414 mutex_unlock(&pci_pme_list_mutex); 2415 } 2416 2417 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2418 { 2419 u16 pmcsr; 2420 2421 if (!dev->pme_support) 2422 return; 2423 2424 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2425 /* Clear PME_Status by writing 1 to it and enable PME# */ 2426 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2427 if (!enable) 2428 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2429 2430 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2431 } 2432 2433 /** 2434 * pci_pme_restore - Restore PME configuration after config space restore. 2435 * @dev: PCI device to update. 2436 */ 2437 void pci_pme_restore(struct pci_dev *dev) 2438 { 2439 u16 pmcsr; 2440 2441 if (!dev->pme_support) 2442 return; 2443 2444 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2445 if (dev->wakeup_prepared) { 2446 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2447 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2448 } else { 2449 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2450 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2451 } 2452 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2453 } 2454 2455 /** 2456 * pci_pme_active - enable or disable PCI device's PME# function 2457 * @dev: PCI device to handle. 2458 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2459 * 2460 * The caller must verify that the device is capable of generating PME# before 2461 * calling this function with @enable equal to 'true'. 2462 */ 2463 void pci_pme_active(struct pci_dev *dev, bool enable) 2464 { 2465 __pci_pme_active(dev, enable); 2466 2467 /* 2468 * PCI (as opposed to PCIe) PME requires that the device have 2469 * its PME# line hooked up correctly. Not all hardware vendors 2470 * do this, so the PME never gets delivered and the device 2471 * remains asleep. The easiest way around this is to 2472 * periodically walk the list of suspended devices and check 2473 * whether any have their PME flag set. The assumption is that 2474 * we'll wake up often enough anyway that this won't be a huge 2475 * hit, and the power savings from the devices will still be a 2476 * win. 2477 * 2478 * Although PCIe uses in-band PME message instead of PME# line 2479 * to report PME, PME does not work for some PCIe devices in 2480 * reality. For example, there are devices that set their PME 2481 * status bits, but don't really bother to send a PME message; 2482 * there are PCI Express Root Ports that don't bother to 2483 * trigger interrupts when they receive PME messages from the 2484 * devices below. So PME poll is used for PCIe devices too. 2485 */ 2486 2487 if (dev->pme_poll) { 2488 struct pci_pme_device *pme_dev; 2489 if (enable) { 2490 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2491 GFP_KERNEL); 2492 if (!pme_dev) { 2493 pci_warn(dev, "can't enable PME#\n"); 2494 return; 2495 } 2496 pme_dev->dev = dev; 2497 mutex_lock(&pci_pme_list_mutex); 2498 list_add(&pme_dev->list, &pci_pme_list); 2499 if (list_is_singular(&pci_pme_list)) 2500 queue_delayed_work(system_freezable_wq, 2501 &pci_pme_work, 2502 msecs_to_jiffies(PME_TIMEOUT)); 2503 mutex_unlock(&pci_pme_list_mutex); 2504 } else { 2505 mutex_lock(&pci_pme_list_mutex); 2506 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2507 if (pme_dev->dev == dev) { 2508 list_del(&pme_dev->list); 2509 kfree(pme_dev); 2510 break; 2511 } 2512 } 2513 mutex_unlock(&pci_pme_list_mutex); 2514 } 2515 } 2516 2517 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2518 } 2519 EXPORT_SYMBOL(pci_pme_active); 2520 2521 /** 2522 * __pci_enable_wake - enable PCI device as wakeup event source 2523 * @dev: PCI device affected 2524 * @state: PCI state from which device will issue wakeup events 2525 * @enable: True to enable event generation; false to disable 2526 * 2527 * This enables the device as a wakeup event source, or disables it. 2528 * When such events involves platform-specific hooks, those hooks are 2529 * called automatically by this routine. 2530 * 2531 * Devices with legacy power management (no standard PCI PM capabilities) 2532 * always require such platform hooks. 2533 * 2534 * RETURN VALUE: 2535 * 0 is returned on success 2536 * -EINVAL is returned if device is not supposed to wake up the system 2537 * Error code depending on the platform is returned if both the platform and 2538 * the native mechanism fail to enable the generation of wake-up events 2539 */ 2540 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2541 { 2542 int ret = 0; 2543 2544 /* 2545 * Bridges that are not power-manageable directly only signal 2546 * wakeup on behalf of subordinate devices which is set up 2547 * elsewhere, so skip them. However, bridges that are 2548 * power-manageable may signal wakeup for themselves (for example, 2549 * on a hotplug event) and they need to be covered here. 2550 */ 2551 if (!pci_power_manageable(dev)) 2552 return 0; 2553 2554 /* Don't do the same thing twice in a row for one device. */ 2555 if (!!enable == !!dev->wakeup_prepared) 2556 return 0; 2557 2558 /* 2559 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2560 * Anderson we should be doing PME# wake enable followed by ACPI wake 2561 * enable. To disable wake-up we call the platform first, for symmetry. 2562 */ 2563 2564 if (enable) { 2565 int error; 2566 2567 /* 2568 * Enable PME signaling if the device can signal PME from 2569 * D3cold regardless of whether or not it can signal PME from 2570 * the current target state, because that will allow it to 2571 * signal PME when the hierarchy above it goes into D3cold and 2572 * the device itself ends up in D3cold as a result of that. 2573 */ 2574 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2575 pci_pme_active(dev, true); 2576 else 2577 ret = 1; 2578 error = platform_pci_set_wakeup(dev, true); 2579 if (ret) 2580 ret = error; 2581 if (!ret) 2582 dev->wakeup_prepared = true; 2583 } else { 2584 platform_pci_set_wakeup(dev, false); 2585 pci_pme_active(dev, false); 2586 dev->wakeup_prepared = false; 2587 } 2588 2589 return ret; 2590 } 2591 2592 /** 2593 * pci_enable_wake - change wakeup settings for a PCI device 2594 * @pci_dev: Target device 2595 * @state: PCI state from which device will issue wakeup events 2596 * @enable: Whether or not to enable event generation 2597 * 2598 * If @enable is set, check device_may_wakeup() for the device before calling 2599 * __pci_enable_wake() for it. 2600 */ 2601 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2602 { 2603 if (enable && !device_may_wakeup(&pci_dev->dev)) 2604 return -EINVAL; 2605 2606 return __pci_enable_wake(pci_dev, state, enable); 2607 } 2608 EXPORT_SYMBOL(pci_enable_wake); 2609 2610 /** 2611 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2612 * @dev: PCI device to prepare 2613 * @enable: True to enable wake-up event generation; false to disable 2614 * 2615 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2616 * and this function allows them to set that up cleanly - pci_enable_wake() 2617 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2618 * ordering constraints. 2619 * 2620 * This function only returns error code if the device is not allowed to wake 2621 * up the system from sleep or it is not capable of generating PME# from both 2622 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2623 */ 2624 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2625 { 2626 return pci_pme_capable(dev, PCI_D3cold) ? 2627 pci_enable_wake(dev, PCI_D3cold, enable) : 2628 pci_enable_wake(dev, PCI_D3hot, enable); 2629 } 2630 EXPORT_SYMBOL(pci_wake_from_d3); 2631 2632 /** 2633 * pci_target_state - find an appropriate low power state for a given PCI dev 2634 * @dev: PCI device 2635 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2636 * 2637 * Use underlying platform code to find a supported low power state for @dev. 2638 * If the platform can't manage @dev, return the deepest state from which it 2639 * can generate wake events, based on any available PME info. 2640 */ 2641 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2642 { 2643 if (platform_pci_power_manageable(dev)) { 2644 /* 2645 * Call the platform to find the target state for the device. 2646 */ 2647 pci_power_t state = platform_pci_choose_state(dev); 2648 2649 switch (state) { 2650 case PCI_POWER_ERROR: 2651 case PCI_UNKNOWN: 2652 return PCI_D3hot; 2653 2654 case PCI_D1: 2655 case PCI_D2: 2656 if (pci_no_d1d2(dev)) 2657 return PCI_D3hot; 2658 } 2659 2660 return state; 2661 } 2662 2663 /* 2664 * If the device is in D3cold even though it's not power-manageable by 2665 * the platform, it may have been powered down by non-standard means. 2666 * Best to let it slumber. 2667 */ 2668 if (dev->current_state == PCI_D3cold) 2669 return PCI_D3cold; 2670 else if (!dev->pm_cap) 2671 return PCI_D0; 2672 2673 if (wakeup && dev->pme_support) { 2674 pci_power_t state = PCI_D3hot; 2675 2676 /* 2677 * Find the deepest state from which the device can generate 2678 * PME#. 2679 */ 2680 while (state && !(dev->pme_support & (1 << state))) 2681 state--; 2682 2683 if (state) 2684 return state; 2685 else if (dev->pme_support & 1) 2686 return PCI_D0; 2687 } 2688 2689 return PCI_D3hot; 2690 } 2691 2692 /** 2693 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2694 * into a sleep state 2695 * @dev: Device to handle. 2696 * 2697 * Choose the power state appropriate for the device depending on whether 2698 * it can wake up the system and/or is power manageable by the platform 2699 * (PCI_D3hot is the default) and put the device into that state. 2700 */ 2701 int pci_prepare_to_sleep(struct pci_dev *dev) 2702 { 2703 bool wakeup = device_may_wakeup(&dev->dev); 2704 pci_power_t target_state = pci_target_state(dev, wakeup); 2705 int error; 2706 2707 if (target_state == PCI_POWER_ERROR) 2708 return -EIO; 2709 2710 pci_enable_wake(dev, target_state, wakeup); 2711 2712 error = pci_set_power_state(dev, target_state); 2713 2714 if (error) 2715 pci_enable_wake(dev, target_state, false); 2716 2717 return error; 2718 } 2719 EXPORT_SYMBOL(pci_prepare_to_sleep); 2720 2721 /** 2722 * pci_back_from_sleep - turn PCI device on during system-wide transition 2723 * into working state 2724 * @dev: Device to handle. 2725 * 2726 * Disable device's system wake-up capability and put it into D0. 2727 */ 2728 int pci_back_from_sleep(struct pci_dev *dev) 2729 { 2730 int ret = pci_set_power_state(dev, PCI_D0); 2731 2732 if (ret) 2733 return ret; 2734 2735 pci_enable_wake(dev, PCI_D0, false); 2736 return 0; 2737 } 2738 EXPORT_SYMBOL(pci_back_from_sleep); 2739 2740 /** 2741 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2742 * @dev: PCI device being suspended. 2743 * 2744 * Prepare @dev to generate wake-up events at run time and put it into a low 2745 * power state. 2746 */ 2747 int pci_finish_runtime_suspend(struct pci_dev *dev) 2748 { 2749 pci_power_t target_state; 2750 int error; 2751 2752 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2753 if (target_state == PCI_POWER_ERROR) 2754 return -EIO; 2755 2756 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2757 2758 error = pci_set_power_state(dev, target_state); 2759 2760 if (error) 2761 pci_enable_wake(dev, target_state, false); 2762 2763 return error; 2764 } 2765 2766 /** 2767 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2768 * @dev: Device to check. 2769 * 2770 * Return true if the device itself is capable of generating wake-up events 2771 * (through the platform or using the native PCIe PME) or if the device supports 2772 * PME and one of its upstream bridges can generate wake-up events. 2773 */ 2774 bool pci_dev_run_wake(struct pci_dev *dev) 2775 { 2776 struct pci_bus *bus = dev->bus; 2777 2778 if (!dev->pme_support) 2779 return false; 2780 2781 /* PME-capable in principle, but not from the target power state */ 2782 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2783 return false; 2784 2785 if (device_can_wakeup(&dev->dev)) 2786 return true; 2787 2788 while (bus->parent) { 2789 struct pci_dev *bridge = bus->self; 2790 2791 if (device_can_wakeup(&bridge->dev)) 2792 return true; 2793 2794 bus = bus->parent; 2795 } 2796 2797 /* We have reached the root bus. */ 2798 if (bus->bridge) 2799 return device_can_wakeup(bus->bridge); 2800 2801 return false; 2802 } 2803 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2804 2805 /** 2806 * pci_dev_need_resume - Check if it is necessary to resume the device. 2807 * @pci_dev: Device to check. 2808 * 2809 * Return 'true' if the device is not runtime-suspended or it has to be 2810 * reconfigured due to wakeup settings difference between system and runtime 2811 * suspend, or the current power state of it is not suitable for the upcoming 2812 * (system-wide) transition. 2813 */ 2814 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2815 { 2816 struct device *dev = &pci_dev->dev; 2817 pci_power_t target_state; 2818 2819 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2820 return true; 2821 2822 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2823 2824 /* 2825 * If the earlier platform check has not triggered, D3cold is just power 2826 * removal on top of D3hot, so no need to resume the device in that 2827 * case. 2828 */ 2829 return target_state != pci_dev->current_state && 2830 target_state != PCI_D3cold && 2831 pci_dev->current_state != PCI_D3hot; 2832 } 2833 2834 /** 2835 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2836 * @pci_dev: Device to check. 2837 * 2838 * If the device is suspended and it is not configured for system wakeup, 2839 * disable PME for it to prevent it from waking up the system unnecessarily. 2840 * 2841 * Note that if the device's power state is D3cold and the platform check in 2842 * pci_dev_need_resume() has not triggered, the device's configuration need not 2843 * be changed. 2844 */ 2845 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2846 { 2847 struct device *dev = &pci_dev->dev; 2848 2849 spin_lock_irq(&dev->power.lock); 2850 2851 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2852 pci_dev->current_state < PCI_D3cold) 2853 __pci_pme_active(pci_dev, false); 2854 2855 spin_unlock_irq(&dev->power.lock); 2856 } 2857 2858 /** 2859 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2860 * @pci_dev: Device to handle. 2861 * 2862 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2863 * it might have been disabled during the prepare phase of system suspend if 2864 * the device was not configured for system wakeup. 2865 */ 2866 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2867 { 2868 struct device *dev = &pci_dev->dev; 2869 2870 if (!pci_dev_run_wake(pci_dev)) 2871 return; 2872 2873 spin_lock_irq(&dev->power.lock); 2874 2875 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2876 __pci_pme_active(pci_dev, true); 2877 2878 spin_unlock_irq(&dev->power.lock); 2879 } 2880 2881 /** 2882 * pci_choose_state - Choose the power state of a PCI device. 2883 * @dev: Target PCI device. 2884 * @state: Target state for the whole system. 2885 * 2886 * Returns PCI power state suitable for @dev and @state. 2887 */ 2888 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2889 { 2890 if (state.event == PM_EVENT_ON) 2891 return PCI_D0; 2892 2893 return pci_target_state(dev, false); 2894 } 2895 EXPORT_SYMBOL(pci_choose_state); 2896 2897 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2898 { 2899 struct device *dev = &pdev->dev; 2900 struct device *parent = dev->parent; 2901 2902 if (parent) 2903 pm_runtime_get_sync(parent); 2904 pm_runtime_get_noresume(dev); 2905 /* 2906 * pdev->current_state is set to PCI_D3cold during suspending, 2907 * so wait until suspending completes 2908 */ 2909 pm_runtime_barrier(dev); 2910 /* 2911 * Only need to resume devices in D3cold, because config 2912 * registers are still accessible for devices suspended but 2913 * not in D3cold. 2914 */ 2915 if (pdev->current_state == PCI_D3cold) 2916 pm_runtime_resume(dev); 2917 } 2918 2919 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2920 { 2921 struct device *dev = &pdev->dev; 2922 struct device *parent = dev->parent; 2923 2924 pm_runtime_put(dev); 2925 if (parent) 2926 pm_runtime_put_sync(parent); 2927 } 2928 2929 static const struct dmi_system_id bridge_d3_blacklist[] = { 2930 #ifdef CONFIG_X86 2931 { 2932 /* 2933 * Gigabyte X299 root port is not marked as hotplug capable 2934 * which allows Linux to power manage it. However, this 2935 * confuses the BIOS SMI handler so don't power manage root 2936 * ports on that system. 2937 */ 2938 .ident = "X299 DESIGNARE EX-CF", 2939 .matches = { 2940 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2941 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2942 }, 2943 }, 2944 { 2945 /* 2946 * Downstream device is not accessible after putting a root port 2947 * into D3cold and back into D0 on Elo Continental Z2 board 2948 */ 2949 .ident = "Elo Continental Z2", 2950 .matches = { 2951 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 2952 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 2953 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 2954 }, 2955 }, 2956 { 2957 /* 2958 * Changing power state of root port dGPU is connected fails 2959 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229 2960 */ 2961 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972", 2962 .matches = { 2963 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"), 2964 DMI_MATCH(DMI_BOARD_NAME, "1972"), 2965 DMI_MATCH(DMI_BOARD_VERSION, "95.33"), 2966 }, 2967 }, 2968 #endif 2969 { } 2970 }; 2971 2972 /** 2973 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2974 * @bridge: Bridge to check 2975 * 2976 * This function checks if it is possible to move the bridge to D3. 2977 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2978 */ 2979 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2980 { 2981 if (!pci_is_pcie(bridge)) 2982 return false; 2983 2984 switch (pci_pcie_type(bridge)) { 2985 case PCI_EXP_TYPE_ROOT_PORT: 2986 case PCI_EXP_TYPE_UPSTREAM: 2987 case PCI_EXP_TYPE_DOWNSTREAM: 2988 if (pci_bridge_d3_disable) 2989 return false; 2990 2991 /* 2992 * Hotplug ports handled by firmware in System Management Mode 2993 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2994 */ 2995 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2996 return false; 2997 2998 if (pci_bridge_d3_force) 2999 return true; 3000 3001 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3002 if (bridge->is_thunderbolt) 3003 return true; 3004 3005 /* Platform might know better if the bridge supports D3 */ 3006 if (platform_pci_bridge_d3(bridge)) 3007 return true; 3008 3009 /* 3010 * Hotplug ports handled natively by the OS were not validated 3011 * by vendors for runtime D3 at least until 2018 because there 3012 * was no OS support. 3013 */ 3014 if (bridge->is_hotplug_bridge) 3015 return false; 3016 3017 if (dmi_check_system(bridge_d3_blacklist)) 3018 return false; 3019 3020 /* 3021 * It should be safe to put PCIe ports from 2015 or newer 3022 * to D3. 3023 */ 3024 if (dmi_get_bios_year() >= 2015) 3025 return true; 3026 break; 3027 } 3028 3029 return false; 3030 } 3031 3032 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3033 { 3034 bool *d3cold_ok = data; 3035 3036 if (/* The device needs to be allowed to go D3cold ... */ 3037 dev->no_d3cold || !dev->d3cold_allowed || 3038 3039 /* ... and if it is wakeup capable to do so from D3cold. */ 3040 (device_may_wakeup(&dev->dev) && 3041 !pci_pme_capable(dev, PCI_D3cold)) || 3042 3043 /* If it is a bridge it must be allowed to go to D3. */ 3044 !pci_power_manageable(dev)) 3045 3046 *d3cold_ok = false; 3047 3048 return !*d3cold_ok; 3049 } 3050 3051 /* 3052 * pci_bridge_d3_update - Update bridge D3 capabilities 3053 * @dev: PCI device which is changed 3054 * 3055 * Update upstream bridge PM capabilities accordingly depending on if the 3056 * device PM configuration was changed or the device is being removed. The 3057 * change is also propagated upstream. 3058 */ 3059 void pci_bridge_d3_update(struct pci_dev *dev) 3060 { 3061 bool remove = !device_is_registered(&dev->dev); 3062 struct pci_dev *bridge; 3063 bool d3cold_ok = true; 3064 3065 bridge = pci_upstream_bridge(dev); 3066 if (!bridge || !pci_bridge_d3_possible(bridge)) 3067 return; 3068 3069 /* 3070 * If D3 is currently allowed for the bridge, removing one of its 3071 * children won't change that. 3072 */ 3073 if (remove && bridge->bridge_d3) 3074 return; 3075 3076 /* 3077 * If D3 is currently allowed for the bridge and a child is added or 3078 * changed, disallowance of D3 can only be caused by that child, so 3079 * we only need to check that single device, not any of its siblings. 3080 * 3081 * If D3 is currently not allowed for the bridge, checking the device 3082 * first may allow us to skip checking its siblings. 3083 */ 3084 if (!remove) 3085 pci_dev_check_d3cold(dev, &d3cold_ok); 3086 3087 /* 3088 * If D3 is currently not allowed for the bridge, this may be caused 3089 * either by the device being changed/removed or any of its siblings, 3090 * so we need to go through all children to find out if one of them 3091 * continues to block D3. 3092 */ 3093 if (d3cold_ok && !bridge->bridge_d3) 3094 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3095 &d3cold_ok); 3096 3097 if (bridge->bridge_d3 != d3cold_ok) { 3098 bridge->bridge_d3 = d3cold_ok; 3099 /* Propagate change to upstream bridges */ 3100 pci_bridge_d3_update(bridge); 3101 } 3102 } 3103 3104 /** 3105 * pci_d3cold_enable - Enable D3cold for device 3106 * @dev: PCI device to handle 3107 * 3108 * This function can be used in drivers to enable D3cold from the device 3109 * they handle. It also updates upstream PCI bridge PM capabilities 3110 * accordingly. 3111 */ 3112 void pci_d3cold_enable(struct pci_dev *dev) 3113 { 3114 if (dev->no_d3cold) { 3115 dev->no_d3cold = false; 3116 pci_bridge_d3_update(dev); 3117 } 3118 } 3119 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3120 3121 /** 3122 * pci_d3cold_disable - Disable D3cold for device 3123 * @dev: PCI device to handle 3124 * 3125 * This function can be used in drivers to disable D3cold from the device 3126 * they handle. It also updates upstream PCI bridge PM capabilities 3127 * accordingly. 3128 */ 3129 void pci_d3cold_disable(struct pci_dev *dev) 3130 { 3131 if (!dev->no_d3cold) { 3132 dev->no_d3cold = true; 3133 pci_bridge_d3_update(dev); 3134 } 3135 } 3136 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3137 3138 /** 3139 * pci_pm_init - Initialize PM functions of given PCI device 3140 * @dev: PCI device to handle. 3141 */ 3142 void pci_pm_init(struct pci_dev *dev) 3143 { 3144 int pm; 3145 u16 status; 3146 u16 pmc; 3147 3148 pm_runtime_forbid(&dev->dev); 3149 pm_runtime_set_active(&dev->dev); 3150 pm_runtime_enable(&dev->dev); 3151 device_enable_async_suspend(&dev->dev); 3152 dev->wakeup_prepared = false; 3153 3154 dev->pm_cap = 0; 3155 dev->pme_support = 0; 3156 3157 /* find PCI PM capability in list */ 3158 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3159 if (!pm) 3160 return; 3161 /* Check device's ability to generate PME# */ 3162 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3163 3164 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3165 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3166 pmc & PCI_PM_CAP_VER_MASK); 3167 return; 3168 } 3169 3170 dev->pm_cap = pm; 3171 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3172 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3173 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3174 dev->d3cold_allowed = true; 3175 3176 dev->d1_support = false; 3177 dev->d2_support = false; 3178 if (!pci_no_d1d2(dev)) { 3179 if (pmc & PCI_PM_CAP_D1) 3180 dev->d1_support = true; 3181 if (pmc & PCI_PM_CAP_D2) 3182 dev->d2_support = true; 3183 3184 if (dev->d1_support || dev->d2_support) 3185 pci_info(dev, "supports%s%s\n", 3186 dev->d1_support ? " D1" : "", 3187 dev->d2_support ? " D2" : ""); 3188 } 3189 3190 pmc &= PCI_PM_CAP_PME_MASK; 3191 if (pmc) { 3192 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3193 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3194 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3195 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3196 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3197 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3198 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc); 3199 dev->pme_poll = true; 3200 /* 3201 * Make device's PM flags reflect the wake-up capability, but 3202 * let the user space enable it to wake up the system as needed. 3203 */ 3204 device_set_wakeup_capable(&dev->dev, true); 3205 /* Disable the PME# generation functionality */ 3206 pci_pme_active(dev, false); 3207 } 3208 3209 pci_read_config_word(dev, PCI_STATUS, &status); 3210 if (status & PCI_STATUS_IMM_READY) 3211 dev->imm_ready = 1; 3212 } 3213 3214 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3215 { 3216 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3217 3218 switch (prop) { 3219 case PCI_EA_P_MEM: 3220 case PCI_EA_P_VF_MEM: 3221 flags |= IORESOURCE_MEM; 3222 break; 3223 case PCI_EA_P_MEM_PREFETCH: 3224 case PCI_EA_P_VF_MEM_PREFETCH: 3225 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3226 break; 3227 case PCI_EA_P_IO: 3228 flags |= IORESOURCE_IO; 3229 break; 3230 default: 3231 return 0; 3232 } 3233 3234 return flags; 3235 } 3236 3237 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3238 u8 prop) 3239 { 3240 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3241 return &dev->resource[bei]; 3242 #ifdef CONFIG_PCI_IOV 3243 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3244 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3245 return &dev->resource[PCI_IOV_RESOURCES + 3246 bei - PCI_EA_BEI_VF_BAR0]; 3247 #endif 3248 else if (bei == PCI_EA_BEI_ROM) 3249 return &dev->resource[PCI_ROM_RESOURCE]; 3250 else 3251 return NULL; 3252 } 3253 3254 /* Read an Enhanced Allocation (EA) entry */ 3255 static int pci_ea_read(struct pci_dev *dev, int offset) 3256 { 3257 struct resource *res; 3258 const char *res_name; 3259 int ent_size, ent_offset = offset; 3260 resource_size_t start, end; 3261 unsigned long flags; 3262 u32 dw0, bei, base, max_offset; 3263 u8 prop; 3264 bool support_64 = (sizeof(resource_size_t) >= 8); 3265 3266 pci_read_config_dword(dev, ent_offset, &dw0); 3267 ent_offset += 4; 3268 3269 /* Entry size field indicates DWORDs after 1st */ 3270 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2; 3271 3272 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3273 goto out; 3274 3275 bei = FIELD_GET(PCI_EA_BEI, dw0); 3276 prop = FIELD_GET(PCI_EA_PP, dw0); 3277 3278 /* 3279 * If the Property is in the reserved range, try the Secondary 3280 * Property instead. 3281 */ 3282 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3283 prop = FIELD_GET(PCI_EA_SP, dw0); 3284 if (prop > PCI_EA_P_BRIDGE_IO) 3285 goto out; 3286 3287 res = pci_ea_get_resource(dev, bei, prop); 3288 res_name = pci_resource_name(dev, bei); 3289 if (!res) { 3290 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3291 goto out; 3292 } 3293 3294 flags = pci_ea_flags(dev, prop); 3295 if (!flags) { 3296 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3297 goto out; 3298 } 3299 3300 /* Read Base */ 3301 pci_read_config_dword(dev, ent_offset, &base); 3302 start = (base & PCI_EA_FIELD_MASK); 3303 ent_offset += 4; 3304 3305 /* Read MaxOffset */ 3306 pci_read_config_dword(dev, ent_offset, &max_offset); 3307 ent_offset += 4; 3308 3309 /* Read Base MSBs (if 64-bit entry) */ 3310 if (base & PCI_EA_IS_64) { 3311 u32 base_upper; 3312 3313 pci_read_config_dword(dev, ent_offset, &base_upper); 3314 ent_offset += 4; 3315 3316 flags |= IORESOURCE_MEM_64; 3317 3318 /* entry starts above 32-bit boundary, can't use */ 3319 if (!support_64 && base_upper) 3320 goto out; 3321 3322 if (support_64) 3323 start |= ((u64)base_upper << 32); 3324 } 3325 3326 end = start + (max_offset | 0x03); 3327 3328 /* Read MaxOffset MSBs (if 64-bit entry) */ 3329 if (max_offset & PCI_EA_IS_64) { 3330 u32 max_offset_upper; 3331 3332 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3333 ent_offset += 4; 3334 3335 flags |= IORESOURCE_MEM_64; 3336 3337 /* entry too big, can't use */ 3338 if (!support_64 && max_offset_upper) 3339 goto out; 3340 3341 if (support_64) 3342 end += ((u64)max_offset_upper << 32); 3343 } 3344 3345 if (end < start) { 3346 pci_err(dev, "EA Entry crosses address boundary\n"); 3347 goto out; 3348 } 3349 3350 if (ent_size != ent_offset - offset) { 3351 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3352 ent_size, ent_offset - offset); 3353 goto out; 3354 } 3355 3356 res->name = pci_name(dev); 3357 res->start = start; 3358 res->end = end; 3359 res->flags = flags; 3360 3361 if (bei <= PCI_EA_BEI_BAR5) 3362 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3363 res_name, res, prop); 3364 else if (bei == PCI_EA_BEI_ROM) 3365 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3366 res_name, res, prop); 3367 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3368 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3369 res_name, res, prop); 3370 else 3371 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n", 3372 bei, res, prop); 3373 3374 out: 3375 return offset + ent_size; 3376 } 3377 3378 /* Enhanced Allocation Initialization */ 3379 void pci_ea_init(struct pci_dev *dev) 3380 { 3381 int ea; 3382 u8 num_ent; 3383 int offset; 3384 int i; 3385 3386 /* find PCI EA capability in list */ 3387 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3388 if (!ea) 3389 return; 3390 3391 /* determine the number of entries */ 3392 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3393 &num_ent); 3394 num_ent &= PCI_EA_NUM_ENT_MASK; 3395 3396 offset = ea + PCI_EA_FIRST_ENT; 3397 3398 /* Skip DWORD 2 for type 1 functions */ 3399 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3400 offset += 4; 3401 3402 /* parse each EA entry */ 3403 for (i = 0; i < num_ent; ++i) 3404 offset = pci_ea_read(dev, offset); 3405 } 3406 3407 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3408 struct pci_cap_saved_state *new_cap) 3409 { 3410 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3411 } 3412 3413 /** 3414 * _pci_add_cap_save_buffer - allocate buffer for saving given 3415 * capability registers 3416 * @dev: the PCI device 3417 * @cap: the capability to allocate the buffer for 3418 * @extended: Standard or Extended capability ID 3419 * @size: requested size of the buffer 3420 */ 3421 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3422 bool extended, unsigned int size) 3423 { 3424 int pos; 3425 struct pci_cap_saved_state *save_state; 3426 3427 if (extended) 3428 pos = pci_find_ext_capability(dev, cap); 3429 else 3430 pos = pci_find_capability(dev, cap); 3431 3432 if (!pos) 3433 return 0; 3434 3435 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3436 if (!save_state) 3437 return -ENOMEM; 3438 3439 save_state->cap.cap_nr = cap; 3440 save_state->cap.cap_extended = extended; 3441 save_state->cap.size = size; 3442 pci_add_saved_cap(dev, save_state); 3443 3444 return 0; 3445 } 3446 3447 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3448 { 3449 return _pci_add_cap_save_buffer(dev, cap, false, size); 3450 } 3451 3452 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3453 { 3454 return _pci_add_cap_save_buffer(dev, cap, true, size); 3455 } 3456 3457 /** 3458 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3459 * @dev: the PCI device 3460 */ 3461 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3462 { 3463 int error; 3464 3465 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3466 PCI_EXP_SAVE_REGS * sizeof(u16)); 3467 if (error) 3468 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3469 3470 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3471 if (error) 3472 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3473 3474 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3475 2 * sizeof(u16)); 3476 if (error) 3477 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3478 3479 pci_allocate_vc_save_buffers(dev); 3480 } 3481 3482 void pci_free_cap_save_buffers(struct pci_dev *dev) 3483 { 3484 struct pci_cap_saved_state *tmp; 3485 struct hlist_node *n; 3486 3487 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3488 kfree(tmp); 3489 } 3490 3491 /** 3492 * pci_configure_ari - enable or disable ARI forwarding 3493 * @dev: the PCI device 3494 * 3495 * If @dev and its upstream bridge both support ARI, enable ARI in the 3496 * bridge. Otherwise, disable ARI in the bridge. 3497 */ 3498 void pci_configure_ari(struct pci_dev *dev) 3499 { 3500 u32 cap; 3501 struct pci_dev *bridge; 3502 3503 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3504 return; 3505 3506 bridge = dev->bus->self; 3507 if (!bridge) 3508 return; 3509 3510 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3511 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3512 return; 3513 3514 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3515 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3516 PCI_EXP_DEVCTL2_ARI); 3517 bridge->ari_enabled = 1; 3518 } else { 3519 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3520 PCI_EXP_DEVCTL2_ARI); 3521 bridge->ari_enabled = 0; 3522 } 3523 } 3524 3525 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3526 { 3527 int pos; 3528 u16 cap, ctrl; 3529 3530 pos = pdev->acs_cap; 3531 if (!pos) 3532 return false; 3533 3534 /* 3535 * Except for egress control, capabilities are either required 3536 * or only required if controllable. Features missing from the 3537 * capability field can therefore be assumed as hard-wired enabled. 3538 */ 3539 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3540 acs_flags &= (cap | PCI_ACS_EC); 3541 3542 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3543 return (ctrl & acs_flags) == acs_flags; 3544 } 3545 3546 /** 3547 * pci_acs_enabled - test ACS against required flags for a given device 3548 * @pdev: device to test 3549 * @acs_flags: required PCI ACS flags 3550 * 3551 * Return true if the device supports the provided flags. Automatically 3552 * filters out flags that are not implemented on multifunction devices. 3553 * 3554 * Note that this interface checks the effective ACS capabilities of the 3555 * device rather than the actual capabilities. For instance, most single 3556 * function endpoints are not required to support ACS because they have no 3557 * opportunity for peer-to-peer access. We therefore return 'true' 3558 * regardless of whether the device exposes an ACS capability. This makes 3559 * it much easier for callers of this function to ignore the actual type 3560 * or topology of the device when testing ACS support. 3561 */ 3562 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3563 { 3564 int ret; 3565 3566 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3567 if (ret >= 0) 3568 return ret > 0; 3569 3570 /* 3571 * Conventional PCI and PCI-X devices never support ACS, either 3572 * effectively or actually. The shared bus topology implies that 3573 * any device on the bus can receive or snoop DMA. 3574 */ 3575 if (!pci_is_pcie(pdev)) 3576 return false; 3577 3578 switch (pci_pcie_type(pdev)) { 3579 /* 3580 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3581 * but since their primary interface is PCI/X, we conservatively 3582 * handle them as we would a non-PCIe device. 3583 */ 3584 case PCI_EXP_TYPE_PCIE_BRIDGE: 3585 /* 3586 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3587 * applicable... must never implement an ACS Extended Capability...". 3588 * This seems arbitrary, but we take a conservative interpretation 3589 * of this statement. 3590 */ 3591 case PCI_EXP_TYPE_PCI_BRIDGE: 3592 case PCI_EXP_TYPE_RC_EC: 3593 return false; 3594 /* 3595 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3596 * implement ACS in order to indicate their peer-to-peer capabilities, 3597 * regardless of whether they are single- or multi-function devices. 3598 */ 3599 case PCI_EXP_TYPE_DOWNSTREAM: 3600 case PCI_EXP_TYPE_ROOT_PORT: 3601 return pci_acs_flags_enabled(pdev, acs_flags); 3602 /* 3603 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3604 * implemented by the remaining PCIe types to indicate peer-to-peer 3605 * capabilities, but only when they are part of a multifunction 3606 * device. The footnote for section 6.12 indicates the specific 3607 * PCIe types included here. 3608 */ 3609 case PCI_EXP_TYPE_ENDPOINT: 3610 case PCI_EXP_TYPE_UPSTREAM: 3611 case PCI_EXP_TYPE_LEG_END: 3612 case PCI_EXP_TYPE_RC_END: 3613 if (!pdev->multifunction) 3614 break; 3615 3616 return pci_acs_flags_enabled(pdev, acs_flags); 3617 } 3618 3619 /* 3620 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3621 * to single function devices with the exception of downstream ports. 3622 */ 3623 return true; 3624 } 3625 3626 /** 3627 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3628 * @start: starting downstream device 3629 * @end: ending upstream device or NULL to search to the root bus 3630 * @acs_flags: required flags 3631 * 3632 * Walk up a device tree from start to end testing PCI ACS support. If 3633 * any step along the way does not support the required flags, return false. 3634 */ 3635 bool pci_acs_path_enabled(struct pci_dev *start, 3636 struct pci_dev *end, u16 acs_flags) 3637 { 3638 struct pci_dev *pdev, *parent = start; 3639 3640 do { 3641 pdev = parent; 3642 3643 if (!pci_acs_enabled(pdev, acs_flags)) 3644 return false; 3645 3646 if (pci_is_root_bus(pdev->bus)) 3647 return (end == NULL); 3648 3649 parent = pdev->bus->self; 3650 } while (pdev != end); 3651 3652 return true; 3653 } 3654 3655 /** 3656 * pci_acs_init - Initialize ACS if hardware supports it 3657 * @dev: the PCI device 3658 */ 3659 void pci_acs_init(struct pci_dev *dev) 3660 { 3661 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3662 3663 /* 3664 * Attempt to enable ACS regardless of capability because some Root 3665 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3666 * the standard ACS capability but still support ACS via those 3667 * quirks. 3668 */ 3669 pci_enable_acs(dev); 3670 } 3671 3672 /** 3673 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3674 * @pdev: PCI device 3675 * @bar: BAR to find 3676 * 3677 * Helper to find the position of the ctrl register for a BAR. 3678 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3679 * Returns -ENOENT if no ctrl register for the BAR could be found. 3680 */ 3681 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3682 { 3683 unsigned int pos, nbars, i; 3684 u32 ctrl; 3685 3686 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3687 if (!pos) 3688 return -ENOTSUPP; 3689 3690 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3691 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 3692 3693 for (i = 0; i < nbars; i++, pos += 8) { 3694 int bar_idx; 3695 3696 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3697 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl); 3698 if (bar_idx == bar) 3699 return pos; 3700 } 3701 3702 return -ENOENT; 3703 } 3704 3705 /** 3706 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3707 * @pdev: PCI device 3708 * @bar: BAR to query 3709 * 3710 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3711 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3712 */ 3713 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3714 { 3715 int pos; 3716 u32 cap; 3717 3718 pos = pci_rebar_find_pos(pdev, bar); 3719 if (pos < 0) 3720 return 0; 3721 3722 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3723 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3724 3725 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3726 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3727 bar == 0 && cap == 0x700) 3728 return 0x3f00; 3729 3730 return cap; 3731 } 3732 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3733 3734 /** 3735 * pci_rebar_get_current_size - get the current size of a BAR 3736 * @pdev: PCI device 3737 * @bar: BAR to set size to 3738 * 3739 * Read the size of a BAR from the resizable BAR config. 3740 * Returns size if found or negative error code. 3741 */ 3742 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3743 { 3744 int pos; 3745 u32 ctrl; 3746 3747 pos = pci_rebar_find_pos(pdev, bar); 3748 if (pos < 0) 3749 return pos; 3750 3751 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3752 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl); 3753 } 3754 3755 /** 3756 * pci_rebar_set_size - set a new size for a BAR 3757 * @pdev: PCI device 3758 * @bar: BAR to set size to 3759 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3760 * 3761 * Set the new size of a BAR as defined in the spec. 3762 * Returns zero if resizing was successful, error code otherwise. 3763 */ 3764 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3765 { 3766 int pos; 3767 u32 ctrl; 3768 3769 pos = pci_rebar_find_pos(pdev, bar); 3770 if (pos < 0) 3771 return pos; 3772 3773 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3774 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3775 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 3776 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3777 return 0; 3778 } 3779 3780 /** 3781 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3782 * @dev: the PCI device 3783 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3784 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3785 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3786 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3787 * 3788 * Return 0 if all upstream bridges support AtomicOp routing, egress 3789 * blocking is disabled on all upstream ports, and the root port supports 3790 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3791 * AtomicOp completion), or negative otherwise. 3792 */ 3793 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3794 { 3795 struct pci_bus *bus = dev->bus; 3796 struct pci_dev *bridge; 3797 u32 cap, ctl2; 3798 3799 /* 3800 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3801 * in Device Control 2 is reserved in VFs and the PF value applies 3802 * to all associated VFs. 3803 */ 3804 if (dev->is_virtfn) 3805 return -EINVAL; 3806 3807 if (!pci_is_pcie(dev)) 3808 return -EINVAL; 3809 3810 /* 3811 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3812 * AtomicOp requesters. For now, we only support endpoints as 3813 * requesters and root ports as completers. No endpoints as 3814 * completers, and no peer-to-peer. 3815 */ 3816 3817 switch (pci_pcie_type(dev)) { 3818 case PCI_EXP_TYPE_ENDPOINT: 3819 case PCI_EXP_TYPE_LEG_END: 3820 case PCI_EXP_TYPE_RC_END: 3821 break; 3822 default: 3823 return -EINVAL; 3824 } 3825 3826 while (bus->parent) { 3827 bridge = bus->self; 3828 3829 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3830 3831 switch (pci_pcie_type(bridge)) { 3832 /* Ensure switch ports support AtomicOp routing */ 3833 case PCI_EXP_TYPE_UPSTREAM: 3834 case PCI_EXP_TYPE_DOWNSTREAM: 3835 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3836 return -EINVAL; 3837 break; 3838 3839 /* Ensure root port supports all the sizes we care about */ 3840 case PCI_EXP_TYPE_ROOT_PORT: 3841 if ((cap & cap_mask) != cap_mask) 3842 return -EINVAL; 3843 break; 3844 } 3845 3846 /* Ensure upstream ports don't block AtomicOps on egress */ 3847 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3848 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3849 &ctl2); 3850 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3851 return -EINVAL; 3852 } 3853 3854 bus = bus->parent; 3855 } 3856 3857 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3858 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3859 return 0; 3860 } 3861 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3862 3863 /** 3864 * pci_release_region - Release a PCI bar 3865 * @pdev: PCI device whose resources were previously reserved by 3866 * pci_request_region() 3867 * @bar: BAR to release 3868 * 3869 * Releases the PCI I/O and memory resources previously reserved by a 3870 * successful call to pci_request_region(). Call this function only 3871 * after all use of the PCI regions has ceased. 3872 */ 3873 void pci_release_region(struct pci_dev *pdev, int bar) 3874 { 3875 struct pci_devres *dr; 3876 3877 if (pci_resource_len(pdev, bar) == 0) 3878 return; 3879 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3880 release_region(pci_resource_start(pdev, bar), 3881 pci_resource_len(pdev, bar)); 3882 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3883 release_mem_region(pci_resource_start(pdev, bar), 3884 pci_resource_len(pdev, bar)); 3885 3886 dr = find_pci_dr(pdev); 3887 if (dr) 3888 dr->region_mask &= ~(1 << bar); 3889 } 3890 EXPORT_SYMBOL(pci_release_region); 3891 3892 /** 3893 * __pci_request_region - Reserved PCI I/O and memory resource 3894 * @pdev: PCI device whose resources are to be reserved 3895 * @bar: BAR to be reserved 3896 * @res_name: Name to be associated with resource. 3897 * @exclusive: whether the region access is exclusive or not 3898 * 3899 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3900 * being reserved by owner @res_name. Do not access any 3901 * address inside the PCI regions unless this call returns 3902 * successfully. 3903 * 3904 * If @exclusive is set, then the region is marked so that userspace 3905 * is explicitly not allowed to map the resource via /dev/mem or 3906 * sysfs MMIO access. 3907 * 3908 * Returns 0 on success, or %EBUSY on error. A warning 3909 * message is also printed on failure. 3910 */ 3911 static int __pci_request_region(struct pci_dev *pdev, int bar, 3912 const char *res_name, int exclusive) 3913 { 3914 struct pci_devres *dr; 3915 3916 if (pci_resource_len(pdev, bar) == 0) 3917 return 0; 3918 3919 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3920 if (!request_region(pci_resource_start(pdev, bar), 3921 pci_resource_len(pdev, bar), res_name)) 3922 goto err_out; 3923 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3924 if (!__request_mem_region(pci_resource_start(pdev, bar), 3925 pci_resource_len(pdev, bar), res_name, 3926 exclusive)) 3927 goto err_out; 3928 } 3929 3930 dr = find_pci_dr(pdev); 3931 if (dr) 3932 dr->region_mask |= 1 << bar; 3933 3934 return 0; 3935 3936 err_out: 3937 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3938 &pdev->resource[bar]); 3939 return -EBUSY; 3940 } 3941 3942 /** 3943 * pci_request_region - Reserve PCI I/O and memory resource 3944 * @pdev: PCI device whose resources are to be reserved 3945 * @bar: BAR to be reserved 3946 * @res_name: Name to be associated with resource 3947 * 3948 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3949 * being reserved by owner @res_name. Do not access any 3950 * address inside the PCI regions unless this call returns 3951 * successfully. 3952 * 3953 * Returns 0 on success, or %EBUSY on error. A warning 3954 * message is also printed on failure. 3955 */ 3956 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3957 { 3958 return __pci_request_region(pdev, bar, res_name, 0); 3959 } 3960 EXPORT_SYMBOL(pci_request_region); 3961 3962 /** 3963 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3964 * @pdev: PCI device whose resources were previously reserved 3965 * @bars: Bitmask of BARs to be released 3966 * 3967 * Release selected PCI I/O and memory resources previously reserved. 3968 * Call this function only after all use of the PCI regions has ceased. 3969 */ 3970 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3971 { 3972 int i; 3973 3974 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3975 if (bars & (1 << i)) 3976 pci_release_region(pdev, i); 3977 } 3978 EXPORT_SYMBOL(pci_release_selected_regions); 3979 3980 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3981 const char *res_name, int excl) 3982 { 3983 int i; 3984 3985 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3986 if (bars & (1 << i)) 3987 if (__pci_request_region(pdev, i, res_name, excl)) 3988 goto err_out; 3989 return 0; 3990 3991 err_out: 3992 while (--i >= 0) 3993 if (bars & (1 << i)) 3994 pci_release_region(pdev, i); 3995 3996 return -EBUSY; 3997 } 3998 3999 4000 /** 4001 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4002 * @pdev: PCI device whose resources are to be reserved 4003 * @bars: Bitmask of BARs to be requested 4004 * @res_name: Name to be associated with resource 4005 */ 4006 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4007 const char *res_name) 4008 { 4009 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4010 } 4011 EXPORT_SYMBOL(pci_request_selected_regions); 4012 4013 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4014 const char *res_name) 4015 { 4016 return __pci_request_selected_regions(pdev, bars, res_name, 4017 IORESOURCE_EXCLUSIVE); 4018 } 4019 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4020 4021 /** 4022 * pci_release_regions - Release reserved PCI I/O and memory resources 4023 * @pdev: PCI device whose resources were previously reserved by 4024 * pci_request_regions() 4025 * 4026 * Releases all PCI I/O and memory resources previously reserved by a 4027 * successful call to pci_request_regions(). Call this function only 4028 * after all use of the PCI regions has ceased. 4029 */ 4030 4031 void pci_release_regions(struct pci_dev *pdev) 4032 { 4033 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4034 } 4035 EXPORT_SYMBOL(pci_release_regions); 4036 4037 /** 4038 * pci_request_regions - Reserve PCI I/O and memory resources 4039 * @pdev: PCI device whose resources are to be reserved 4040 * @res_name: Name to be associated with resource. 4041 * 4042 * Mark all PCI regions associated with PCI device @pdev as 4043 * being reserved by owner @res_name. Do not access any 4044 * address inside the PCI regions unless this call returns 4045 * successfully. 4046 * 4047 * Returns 0 on success, or %EBUSY on error. A warning 4048 * message is also printed on failure. 4049 */ 4050 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4051 { 4052 return pci_request_selected_regions(pdev, 4053 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4054 } 4055 EXPORT_SYMBOL(pci_request_regions); 4056 4057 /** 4058 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4059 * @pdev: PCI device whose resources are to be reserved 4060 * @res_name: Name to be associated with resource. 4061 * 4062 * Mark all PCI regions associated with PCI device @pdev as being reserved 4063 * by owner @res_name. Do not access any address inside the PCI regions 4064 * unless this call returns successfully. 4065 * 4066 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4067 * and the sysfs MMIO access will not be allowed. 4068 * 4069 * Returns 0 on success, or %EBUSY on error. A warning message is also 4070 * printed on failure. 4071 */ 4072 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4073 { 4074 return pci_request_selected_regions_exclusive(pdev, 4075 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4076 } 4077 EXPORT_SYMBOL(pci_request_regions_exclusive); 4078 4079 /* 4080 * Record the PCI IO range (expressed as CPU physical address + size). 4081 * Return a negative value if an error has occurred, zero otherwise 4082 */ 4083 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4084 resource_size_t size) 4085 { 4086 int ret = 0; 4087 #ifdef PCI_IOBASE 4088 struct logic_pio_hwaddr *range; 4089 4090 if (!size || addr + size < addr) 4091 return -EINVAL; 4092 4093 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4094 if (!range) 4095 return -ENOMEM; 4096 4097 range->fwnode = fwnode; 4098 range->size = size; 4099 range->hw_start = addr; 4100 range->flags = LOGIC_PIO_CPU_MMIO; 4101 4102 ret = logic_pio_register_range(range); 4103 if (ret) 4104 kfree(range); 4105 4106 /* Ignore duplicates due to deferred probing */ 4107 if (ret == -EEXIST) 4108 ret = 0; 4109 #endif 4110 4111 return ret; 4112 } 4113 4114 phys_addr_t pci_pio_to_address(unsigned long pio) 4115 { 4116 #ifdef PCI_IOBASE 4117 if (pio < MMIO_UPPER_LIMIT) 4118 return logic_pio_to_hwaddr(pio); 4119 #endif 4120 4121 return (phys_addr_t) OF_BAD_ADDR; 4122 } 4123 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4124 4125 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4126 { 4127 #ifdef PCI_IOBASE 4128 return logic_pio_trans_cpuaddr(address); 4129 #else 4130 if (address > IO_SPACE_LIMIT) 4131 return (unsigned long)-1; 4132 4133 return (unsigned long) address; 4134 #endif 4135 } 4136 4137 /** 4138 * pci_remap_iospace - Remap the memory mapped I/O space 4139 * @res: Resource describing the I/O space 4140 * @phys_addr: physical address of range to be mapped 4141 * 4142 * Remap the memory mapped I/O space described by the @res and the CPU 4143 * physical address @phys_addr into virtual address space. Only 4144 * architectures that have memory mapped IO functions defined (and the 4145 * PCI_IOBASE value defined) should call this function. 4146 */ 4147 #ifndef pci_remap_iospace 4148 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4149 { 4150 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4151 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4152 4153 if (!(res->flags & IORESOURCE_IO)) 4154 return -EINVAL; 4155 4156 if (res->end > IO_SPACE_LIMIT) 4157 return -EINVAL; 4158 4159 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4160 pgprot_device(PAGE_KERNEL)); 4161 #else 4162 /* 4163 * This architecture does not have memory mapped I/O space, 4164 * so this function should never be called 4165 */ 4166 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4167 return -ENODEV; 4168 #endif 4169 } 4170 EXPORT_SYMBOL(pci_remap_iospace); 4171 #endif 4172 4173 /** 4174 * pci_unmap_iospace - Unmap the memory mapped I/O space 4175 * @res: resource to be unmapped 4176 * 4177 * Unmap the CPU virtual address @res from virtual address space. Only 4178 * architectures that have memory mapped IO functions defined (and the 4179 * PCI_IOBASE value defined) should call this function. 4180 */ 4181 void pci_unmap_iospace(struct resource *res) 4182 { 4183 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4184 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4185 4186 vunmap_range(vaddr, vaddr + resource_size(res)); 4187 #endif 4188 } 4189 EXPORT_SYMBOL(pci_unmap_iospace); 4190 4191 static void __pci_set_master(struct pci_dev *dev, bool enable) 4192 { 4193 u16 old_cmd, cmd; 4194 4195 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4196 if (enable) 4197 cmd = old_cmd | PCI_COMMAND_MASTER; 4198 else 4199 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4200 if (cmd != old_cmd) { 4201 pci_dbg(dev, "%s bus mastering\n", 4202 enable ? "enabling" : "disabling"); 4203 pci_write_config_word(dev, PCI_COMMAND, cmd); 4204 } 4205 dev->is_busmaster = enable; 4206 } 4207 4208 /** 4209 * pcibios_setup - process "pci=" kernel boot arguments 4210 * @str: string used to pass in "pci=" kernel boot arguments 4211 * 4212 * Process kernel boot arguments. This is the default implementation. 4213 * Architecture specific implementations can override this as necessary. 4214 */ 4215 char * __weak __init pcibios_setup(char *str) 4216 { 4217 return str; 4218 } 4219 4220 /** 4221 * pcibios_set_master - enable PCI bus-mastering for device dev 4222 * @dev: the PCI device to enable 4223 * 4224 * Enables PCI bus-mastering for the device. This is the default 4225 * implementation. Architecture specific implementations can override 4226 * this if necessary. 4227 */ 4228 void __weak pcibios_set_master(struct pci_dev *dev) 4229 { 4230 u8 lat; 4231 4232 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4233 if (pci_is_pcie(dev)) 4234 return; 4235 4236 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4237 if (lat < 16) 4238 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4239 else if (lat > pcibios_max_latency) 4240 lat = pcibios_max_latency; 4241 else 4242 return; 4243 4244 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4245 } 4246 4247 /** 4248 * pci_set_master - enables bus-mastering for device dev 4249 * @dev: the PCI device to enable 4250 * 4251 * Enables bus-mastering on the device and calls pcibios_set_master() 4252 * to do the needed arch specific settings. 4253 */ 4254 void pci_set_master(struct pci_dev *dev) 4255 { 4256 __pci_set_master(dev, true); 4257 pcibios_set_master(dev); 4258 } 4259 EXPORT_SYMBOL(pci_set_master); 4260 4261 /** 4262 * pci_clear_master - disables bus-mastering for device dev 4263 * @dev: the PCI device to disable 4264 */ 4265 void pci_clear_master(struct pci_dev *dev) 4266 { 4267 __pci_set_master(dev, false); 4268 } 4269 EXPORT_SYMBOL(pci_clear_master); 4270 4271 /** 4272 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4273 * @dev: the PCI device for which MWI is to be enabled 4274 * 4275 * Helper function for pci_set_mwi. 4276 * Originally copied from drivers/net/acenic.c. 4277 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4278 * 4279 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4280 */ 4281 int pci_set_cacheline_size(struct pci_dev *dev) 4282 { 4283 u8 cacheline_size; 4284 4285 if (!pci_cache_line_size) 4286 return -EINVAL; 4287 4288 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4289 equal to or multiple of the right value. */ 4290 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4291 if (cacheline_size >= pci_cache_line_size && 4292 (cacheline_size % pci_cache_line_size) == 0) 4293 return 0; 4294 4295 /* Write the correct value. */ 4296 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4297 /* Read it back. */ 4298 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4299 if (cacheline_size == pci_cache_line_size) 4300 return 0; 4301 4302 pci_dbg(dev, "cache line size of %d is not supported\n", 4303 pci_cache_line_size << 2); 4304 4305 return -EINVAL; 4306 } 4307 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4308 4309 /** 4310 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4311 * @dev: the PCI device for which MWI is enabled 4312 * 4313 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4314 * 4315 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4316 */ 4317 int pci_set_mwi(struct pci_dev *dev) 4318 { 4319 #ifdef PCI_DISABLE_MWI 4320 return 0; 4321 #else 4322 int rc; 4323 u16 cmd; 4324 4325 rc = pci_set_cacheline_size(dev); 4326 if (rc) 4327 return rc; 4328 4329 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4330 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4331 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4332 cmd |= PCI_COMMAND_INVALIDATE; 4333 pci_write_config_word(dev, PCI_COMMAND, cmd); 4334 } 4335 return 0; 4336 #endif 4337 } 4338 EXPORT_SYMBOL(pci_set_mwi); 4339 4340 /** 4341 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4342 * @dev: the PCI device for which MWI is enabled 4343 * 4344 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4345 * Callers are not required to check the return value. 4346 * 4347 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4348 */ 4349 int pci_try_set_mwi(struct pci_dev *dev) 4350 { 4351 #ifdef PCI_DISABLE_MWI 4352 return 0; 4353 #else 4354 return pci_set_mwi(dev); 4355 #endif 4356 } 4357 EXPORT_SYMBOL(pci_try_set_mwi); 4358 4359 /** 4360 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4361 * @dev: the PCI device to disable 4362 * 4363 * Disables PCI Memory-Write-Invalidate transaction on the device 4364 */ 4365 void pci_clear_mwi(struct pci_dev *dev) 4366 { 4367 #ifndef PCI_DISABLE_MWI 4368 u16 cmd; 4369 4370 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4371 if (cmd & PCI_COMMAND_INVALIDATE) { 4372 cmd &= ~PCI_COMMAND_INVALIDATE; 4373 pci_write_config_word(dev, PCI_COMMAND, cmd); 4374 } 4375 #endif 4376 } 4377 EXPORT_SYMBOL(pci_clear_mwi); 4378 4379 /** 4380 * pci_disable_parity - disable parity checking for device 4381 * @dev: the PCI device to operate on 4382 * 4383 * Disable parity checking for device @dev 4384 */ 4385 void pci_disable_parity(struct pci_dev *dev) 4386 { 4387 u16 cmd; 4388 4389 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4390 if (cmd & PCI_COMMAND_PARITY) { 4391 cmd &= ~PCI_COMMAND_PARITY; 4392 pci_write_config_word(dev, PCI_COMMAND, cmd); 4393 } 4394 } 4395 4396 /** 4397 * pci_intx - enables/disables PCI INTx for device dev 4398 * @pdev: the PCI device to operate on 4399 * @enable: boolean: whether to enable or disable PCI INTx 4400 * 4401 * Enables/disables PCI INTx for device @pdev 4402 */ 4403 void pci_intx(struct pci_dev *pdev, int enable) 4404 { 4405 u16 pci_command, new; 4406 4407 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4408 4409 if (enable) 4410 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4411 else 4412 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4413 4414 if (new != pci_command) { 4415 struct pci_devres *dr; 4416 4417 pci_write_config_word(pdev, PCI_COMMAND, new); 4418 4419 dr = find_pci_dr(pdev); 4420 if (dr && !dr->restore_intx) { 4421 dr->restore_intx = 1; 4422 dr->orig_intx = !enable; 4423 } 4424 } 4425 } 4426 EXPORT_SYMBOL_GPL(pci_intx); 4427 4428 /** 4429 * pci_wait_for_pending_transaction - wait for pending transaction 4430 * @dev: the PCI device to operate on 4431 * 4432 * Return 0 if transaction is pending 1 otherwise. 4433 */ 4434 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4435 { 4436 if (!pci_is_pcie(dev)) 4437 return 1; 4438 4439 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4440 PCI_EXP_DEVSTA_TRPND); 4441 } 4442 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4443 4444 /** 4445 * pcie_flr - initiate a PCIe function level reset 4446 * @dev: device to reset 4447 * 4448 * Initiate a function level reset unconditionally on @dev without 4449 * checking any flags and DEVCAP 4450 */ 4451 int pcie_flr(struct pci_dev *dev) 4452 { 4453 if (!pci_wait_for_pending_transaction(dev)) 4454 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4455 4456 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4457 4458 if (dev->imm_ready) 4459 return 0; 4460 4461 /* 4462 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4463 * 100ms, but may silently discard requests while the FLR is in 4464 * progress. Wait 100ms before trying to access the device. 4465 */ 4466 msleep(100); 4467 4468 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4469 } 4470 EXPORT_SYMBOL_GPL(pcie_flr); 4471 4472 /** 4473 * pcie_reset_flr - initiate a PCIe function level reset 4474 * @dev: device to reset 4475 * @probe: if true, return 0 if device can be reset this way 4476 * 4477 * Initiate a function level reset on @dev. 4478 */ 4479 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4480 { 4481 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4482 return -ENOTTY; 4483 4484 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4485 return -ENOTTY; 4486 4487 if (probe) 4488 return 0; 4489 4490 return pcie_flr(dev); 4491 } 4492 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4493 4494 static int pci_af_flr(struct pci_dev *dev, bool probe) 4495 { 4496 int pos; 4497 u8 cap; 4498 4499 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4500 if (!pos) 4501 return -ENOTTY; 4502 4503 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4504 return -ENOTTY; 4505 4506 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4507 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4508 return -ENOTTY; 4509 4510 if (probe) 4511 return 0; 4512 4513 /* 4514 * Wait for Transaction Pending bit to clear. A word-aligned test 4515 * is used, so we use the control offset rather than status and shift 4516 * the test bit to match. 4517 */ 4518 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4519 PCI_AF_STATUS_TP << 8)) 4520 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4521 4522 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4523 4524 if (dev->imm_ready) 4525 return 0; 4526 4527 /* 4528 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4529 * updated 27 July 2006; a device must complete an FLR within 4530 * 100ms, but may silently discard requests while the FLR is in 4531 * progress. Wait 100ms before trying to access the device. 4532 */ 4533 msleep(100); 4534 4535 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4536 } 4537 4538 /** 4539 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4540 * @dev: Device to reset. 4541 * @probe: if true, return 0 if the device can be reset this way. 4542 * 4543 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4544 * unset, it will be reinitialized internally when going from PCI_D3hot to 4545 * PCI_D0. If that's the case and the device is not in a low-power state 4546 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4547 * 4548 * NOTE: This causes the caller to sleep for twice the device power transition 4549 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4550 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4551 * Moreover, only devices in D0 can be reset by this function. 4552 */ 4553 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4554 { 4555 u16 csr; 4556 4557 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4558 return -ENOTTY; 4559 4560 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4561 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4562 return -ENOTTY; 4563 4564 if (probe) 4565 return 0; 4566 4567 if (dev->current_state != PCI_D0) 4568 return -EINVAL; 4569 4570 csr &= ~PCI_PM_CTRL_STATE_MASK; 4571 csr |= PCI_D3hot; 4572 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4573 pci_dev_d3_sleep(dev); 4574 4575 csr &= ~PCI_PM_CTRL_STATE_MASK; 4576 csr |= PCI_D0; 4577 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4578 pci_dev_d3_sleep(dev); 4579 4580 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4581 } 4582 4583 /** 4584 * pcie_wait_for_link_status - Wait for link status change 4585 * @pdev: Device whose link to wait for. 4586 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4587 * @active: Waiting for active or inactive? 4588 * 4589 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4590 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4591 */ 4592 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4593 bool use_lt, bool active) 4594 { 4595 u16 lnksta_mask, lnksta_match; 4596 unsigned long end_jiffies; 4597 u16 lnksta; 4598 4599 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4600 lnksta_match = active ? lnksta_mask : 0; 4601 4602 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4603 do { 4604 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4605 if ((lnksta & lnksta_mask) == lnksta_match) 4606 return 0; 4607 msleep(1); 4608 } while (time_before(jiffies, end_jiffies)); 4609 4610 return -ETIMEDOUT; 4611 } 4612 4613 /** 4614 * pcie_retrain_link - Request a link retrain and wait for it to complete 4615 * @pdev: Device whose link to retrain. 4616 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 4617 * 4618 * Retrain completion status is retrieved from the Link Status Register 4619 * according to @use_lt. It is not verified whether the use of the DLLLA 4620 * bit is valid. 4621 * 4622 * Return 0 if successful, or -ETIMEDOUT if training has not completed 4623 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4624 */ 4625 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 4626 { 4627 int rc; 4628 4629 /* 4630 * Ensure the updated LNKCTL parameters are used during link 4631 * training by checking that there is no ongoing link training that 4632 * may have started before link parameters were changed, so as to 4633 * avoid LTSSM race as recommended in Implementation Note at the end 4634 * of PCIe r6.1 sec 7.5.3.7. 4635 */ 4636 rc = pcie_wait_for_link_status(pdev, true, false); 4637 if (rc) 4638 return rc; 4639 4640 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4641 if (pdev->clear_retrain_link) { 4642 /* 4643 * Due to an erratum in some devices the Retrain Link bit 4644 * needs to be cleared again manually to allow the link 4645 * training to succeed. 4646 */ 4647 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4648 } 4649 4650 return pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4651 } 4652 4653 /** 4654 * pcie_wait_for_link_delay - Wait until link is active or inactive 4655 * @pdev: Bridge device 4656 * @active: waiting for active or inactive? 4657 * @delay: Delay to wait after link has become active (in ms) 4658 * 4659 * Use this to wait till link becomes active or inactive. 4660 */ 4661 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4662 int delay) 4663 { 4664 int rc; 4665 4666 /* 4667 * Some controllers might not implement link active reporting. In this 4668 * case, we wait for 1000 ms + any delay requested by the caller. 4669 */ 4670 if (!pdev->link_active_reporting) { 4671 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 4672 return true; 4673 } 4674 4675 /* 4676 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4677 * after which we should expect an link active if the reset was 4678 * successful. If so, software must wait a minimum 100ms before sending 4679 * configuration requests to devices downstream this port. 4680 * 4681 * If the link fails to activate, either the device was physically 4682 * removed or the link is permanently failed. 4683 */ 4684 if (active) 4685 msleep(20); 4686 rc = pcie_wait_for_link_status(pdev, false, active); 4687 if (active) { 4688 if (rc) 4689 rc = pcie_failed_link_retrain(pdev); 4690 if (rc) 4691 return false; 4692 4693 msleep(delay); 4694 return true; 4695 } 4696 4697 if (rc) 4698 return false; 4699 4700 return true; 4701 } 4702 4703 /** 4704 * pcie_wait_for_link - Wait until link is active or inactive 4705 * @pdev: Bridge device 4706 * @active: waiting for active or inactive? 4707 * 4708 * Use this to wait till link becomes active or inactive. 4709 */ 4710 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4711 { 4712 return pcie_wait_for_link_delay(pdev, active, 100); 4713 } 4714 4715 /* 4716 * Find maximum D3cold delay required by all the devices on the bus. The 4717 * spec says 100 ms, but firmware can lower it and we allow drivers to 4718 * increase it as well. 4719 * 4720 * Called with @pci_bus_sem locked for reading. 4721 */ 4722 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4723 { 4724 const struct pci_dev *pdev; 4725 int min_delay = 100; 4726 int max_delay = 0; 4727 4728 list_for_each_entry(pdev, &bus->devices, bus_list) { 4729 if (pdev->d3cold_delay < min_delay) 4730 min_delay = pdev->d3cold_delay; 4731 if (pdev->d3cold_delay > max_delay) 4732 max_delay = pdev->d3cold_delay; 4733 } 4734 4735 return max(min_delay, max_delay); 4736 } 4737 4738 /** 4739 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4740 * @dev: PCI bridge 4741 * @reset_type: reset type in human-readable form 4742 * 4743 * Handle necessary delays before access to the devices on the secondary 4744 * side of the bridge are permitted after D3cold to D0 transition 4745 * or Conventional Reset. 4746 * 4747 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4748 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4749 * 4.3.2. 4750 * 4751 * Return 0 on success or -ENOTTY if the first device on the secondary bus 4752 * failed to become accessible. 4753 */ 4754 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 4755 { 4756 struct pci_dev *child; 4757 int delay; 4758 4759 if (pci_dev_is_disconnected(dev)) 4760 return 0; 4761 4762 if (!pci_is_bridge(dev)) 4763 return 0; 4764 4765 down_read(&pci_bus_sem); 4766 4767 /* 4768 * We only deal with devices that are present currently on the bus. 4769 * For any hot-added devices the access delay is handled in pciehp 4770 * board_added(). In case of ACPI hotplug the firmware is expected 4771 * to configure the devices before OS is notified. 4772 */ 4773 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4774 up_read(&pci_bus_sem); 4775 return 0; 4776 } 4777 4778 /* Take d3cold_delay requirements into account */ 4779 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4780 if (!delay) { 4781 up_read(&pci_bus_sem); 4782 return 0; 4783 } 4784 4785 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4786 bus_list); 4787 up_read(&pci_bus_sem); 4788 4789 /* 4790 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4791 * accessing the device after reset (that is 1000 ms + 100 ms). 4792 */ 4793 if (!pci_is_pcie(dev)) { 4794 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4795 msleep(1000 + delay); 4796 return 0; 4797 } 4798 4799 /* 4800 * For PCIe downstream and root ports that do not support speeds 4801 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4802 * speeds (gen3) we need to wait first for the data link layer to 4803 * become active. 4804 * 4805 * However, 100 ms is the minimum and the PCIe spec says the 4806 * software must allow at least 1s before it can determine that the 4807 * device that did not respond is a broken device. Also device can 4808 * take longer than that to respond if it indicates so through Request 4809 * Retry Status completions. 4810 * 4811 * Therefore we wait for 100 ms and check for the device presence 4812 * until the timeout expires. 4813 */ 4814 if (!pcie_downstream_port(dev)) 4815 return 0; 4816 4817 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4818 u16 status; 4819 4820 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4821 msleep(delay); 4822 4823 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 4824 return 0; 4825 4826 /* 4827 * If the port supports active link reporting we now check 4828 * whether the link is active and if not bail out early with 4829 * the assumption that the device is not present anymore. 4830 */ 4831 if (!dev->link_active_reporting) 4832 return -ENOTTY; 4833 4834 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 4835 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 4836 return -ENOTTY; 4837 4838 return pci_dev_wait(child, reset_type, 4839 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 4840 } 4841 4842 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4843 delay); 4844 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4845 /* Did not train, no need to wait any further */ 4846 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 4847 return -ENOTTY; 4848 } 4849 4850 return pci_dev_wait(child, reset_type, 4851 PCIE_RESET_READY_POLL_MS - delay); 4852 } 4853 4854 void pci_reset_secondary_bus(struct pci_dev *dev) 4855 { 4856 u16 ctrl; 4857 4858 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4859 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4860 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4861 4862 /* 4863 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4864 * this to 2ms to ensure that we meet the minimum requirement. 4865 */ 4866 msleep(2); 4867 4868 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4869 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4870 } 4871 4872 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4873 { 4874 pci_reset_secondary_bus(dev); 4875 } 4876 4877 /** 4878 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4879 * @dev: Bridge device 4880 * 4881 * Use the bridge control register to assert reset on the secondary bus. 4882 * Devices on the secondary bus are left in power-on state. 4883 */ 4884 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4885 { 4886 lock_map_assert_held(&dev->cfg_access_lock); 4887 pcibios_reset_secondary_bus(dev); 4888 4889 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 4890 } 4891 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4892 4893 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 4894 { 4895 struct pci_dev *pdev; 4896 4897 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4898 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4899 return -ENOTTY; 4900 4901 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4902 if (pdev != dev) 4903 return -ENOTTY; 4904 4905 if (probe) 4906 return 0; 4907 4908 return pci_bridge_secondary_bus_reset(dev->bus->self); 4909 } 4910 4911 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 4912 { 4913 int rc = -ENOTTY; 4914 4915 if (!hotplug || !try_module_get(hotplug->owner)) 4916 return rc; 4917 4918 if (hotplug->ops->reset_slot) 4919 rc = hotplug->ops->reset_slot(hotplug, probe); 4920 4921 module_put(hotplug->owner); 4922 4923 return rc; 4924 } 4925 4926 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 4927 { 4928 if (dev->multifunction || dev->subordinate || !dev->slot || 4929 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4930 return -ENOTTY; 4931 4932 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4933 } 4934 4935 static u16 cxl_port_dvsec(struct pci_dev *dev) 4936 { 4937 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL, 4938 PCI_DVSEC_CXL_PORT); 4939 } 4940 4941 static bool cxl_sbr_masked(struct pci_dev *dev) 4942 { 4943 u16 dvsec, reg; 4944 int rc; 4945 4946 dvsec = cxl_port_dvsec(dev); 4947 if (!dvsec) 4948 return false; 4949 4950 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®); 4951 if (rc || PCI_POSSIBLE_ERROR(reg)) 4952 return false; 4953 4954 /* 4955 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR 4956 * bit in Bridge Control has no effect. When 1, the Port generates 4957 * hot reset when the SBR bit is set to 1. 4958 */ 4959 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) 4960 return false; 4961 4962 return true; 4963 } 4964 4965 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 4966 { 4967 struct pci_dev *bridge = pci_upstream_bridge(dev); 4968 int rc; 4969 4970 /* 4971 * If "dev" is below a CXL port that has SBR control masked, SBR 4972 * won't do anything, so return error. 4973 */ 4974 if (bridge && cxl_sbr_masked(bridge)) { 4975 if (probe) 4976 return 0; 4977 4978 return -ENOTTY; 4979 } 4980 4981 rc = pci_dev_reset_slot_function(dev, probe); 4982 if (rc != -ENOTTY) 4983 return rc; 4984 return pci_parent_bus_reset(dev, probe); 4985 } 4986 4987 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe) 4988 { 4989 struct pci_dev *bridge; 4990 u16 dvsec, reg, val; 4991 int rc; 4992 4993 bridge = pci_upstream_bridge(dev); 4994 if (!bridge) 4995 return -ENOTTY; 4996 4997 dvsec = cxl_port_dvsec(bridge); 4998 if (!dvsec) 4999 return -ENOTTY; 5000 5001 if (probe) 5002 return 0; 5003 5004 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®); 5005 if (rc) 5006 return -ENOTTY; 5007 5008 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) { 5009 val = reg; 5010 } else { 5011 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR; 5012 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, 5013 val); 5014 } 5015 5016 rc = pci_reset_bus_function(dev, probe); 5017 5018 if (reg != val) 5019 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, 5020 reg); 5021 5022 return rc; 5023 } 5024 5025 void pci_dev_lock(struct pci_dev *dev) 5026 { 5027 /* block PM suspend, driver probe, etc. */ 5028 device_lock(&dev->dev); 5029 pci_cfg_access_lock(dev); 5030 } 5031 EXPORT_SYMBOL_GPL(pci_dev_lock); 5032 5033 /* Return 1 on successful lock, 0 on contention */ 5034 int pci_dev_trylock(struct pci_dev *dev) 5035 { 5036 if (device_trylock(&dev->dev)) { 5037 if (pci_cfg_access_trylock(dev)) 5038 return 1; 5039 device_unlock(&dev->dev); 5040 } 5041 5042 return 0; 5043 } 5044 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5045 5046 void pci_dev_unlock(struct pci_dev *dev) 5047 { 5048 pci_cfg_access_unlock(dev); 5049 device_unlock(&dev->dev); 5050 } 5051 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5052 5053 static void pci_dev_save_and_disable(struct pci_dev *dev) 5054 { 5055 const struct pci_error_handlers *err_handler = 5056 dev->driver ? dev->driver->err_handler : NULL; 5057 5058 /* 5059 * dev->driver->err_handler->reset_prepare() is protected against 5060 * races with ->remove() by the device lock, which must be held by 5061 * the caller. 5062 */ 5063 if (err_handler && err_handler->reset_prepare) 5064 err_handler->reset_prepare(dev); 5065 5066 /* 5067 * Wake-up device prior to save. PM registers default to D0 after 5068 * reset and a simple register restore doesn't reliably return 5069 * to a non-D0 state anyway. 5070 */ 5071 pci_set_power_state(dev, PCI_D0); 5072 5073 pci_save_state(dev); 5074 /* 5075 * Disable the device by clearing the Command register, except for 5076 * INTx-disable which is set. This not only disables MMIO and I/O port 5077 * BARs, but also prevents the device from being Bus Master, preventing 5078 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5079 * compliant devices, INTx-disable prevents legacy interrupts. 5080 */ 5081 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5082 } 5083 5084 static void pci_dev_restore(struct pci_dev *dev) 5085 { 5086 const struct pci_error_handlers *err_handler = 5087 dev->driver ? dev->driver->err_handler : NULL; 5088 5089 pci_restore_state(dev); 5090 5091 /* 5092 * dev->driver->err_handler->reset_done() is protected against 5093 * races with ->remove() by the device lock, which must be held by 5094 * the caller. 5095 */ 5096 if (err_handler && err_handler->reset_done) 5097 err_handler->reset_done(dev); 5098 } 5099 5100 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5101 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5102 { }, 5103 { pci_dev_specific_reset, .name = "device_specific" }, 5104 { pci_dev_acpi_reset, .name = "acpi" }, 5105 { pcie_reset_flr, .name = "flr" }, 5106 { pci_af_flr, .name = "af_flr" }, 5107 { pci_pm_reset, .name = "pm" }, 5108 { pci_reset_bus_function, .name = "bus" }, 5109 { cxl_reset_bus_function, .name = "cxl_bus" }, 5110 }; 5111 5112 static ssize_t reset_method_show(struct device *dev, 5113 struct device_attribute *attr, char *buf) 5114 { 5115 struct pci_dev *pdev = to_pci_dev(dev); 5116 ssize_t len = 0; 5117 int i, m; 5118 5119 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5120 m = pdev->reset_methods[i]; 5121 if (!m) 5122 break; 5123 5124 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5125 pci_reset_fn_methods[m].name); 5126 } 5127 5128 if (len) 5129 len += sysfs_emit_at(buf, len, "\n"); 5130 5131 return len; 5132 } 5133 5134 static int reset_method_lookup(const char *name) 5135 { 5136 int m; 5137 5138 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5139 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5140 return m; 5141 } 5142 5143 return 0; /* not found */ 5144 } 5145 5146 static ssize_t reset_method_store(struct device *dev, 5147 struct device_attribute *attr, 5148 const char *buf, size_t count) 5149 { 5150 struct pci_dev *pdev = to_pci_dev(dev); 5151 char *options, *name; 5152 int m, n; 5153 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5154 5155 if (sysfs_streq(buf, "")) { 5156 pdev->reset_methods[0] = 0; 5157 pci_warn(pdev, "All device reset methods disabled by user"); 5158 return count; 5159 } 5160 5161 if (sysfs_streq(buf, "default")) { 5162 pci_init_reset_methods(pdev); 5163 return count; 5164 } 5165 5166 options = kstrndup(buf, count, GFP_KERNEL); 5167 if (!options) 5168 return -ENOMEM; 5169 5170 n = 0; 5171 while ((name = strsep(&options, " ")) != NULL) { 5172 if (sysfs_streq(name, "")) 5173 continue; 5174 5175 name = strim(name); 5176 5177 m = reset_method_lookup(name); 5178 if (!m) { 5179 pci_err(pdev, "Invalid reset method '%s'", name); 5180 goto error; 5181 } 5182 5183 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5184 pci_err(pdev, "Unsupported reset method '%s'", name); 5185 goto error; 5186 } 5187 5188 if (n == PCI_NUM_RESET_METHODS - 1) { 5189 pci_err(pdev, "Too many reset methods\n"); 5190 goto error; 5191 } 5192 5193 reset_methods[n++] = m; 5194 } 5195 5196 reset_methods[n] = 0; 5197 5198 /* Warn if dev-specific supported but not highest priority */ 5199 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5200 reset_methods[0] != 1) 5201 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5202 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5203 kfree(options); 5204 return count; 5205 5206 error: 5207 /* Leave previous methods unchanged */ 5208 kfree(options); 5209 return -EINVAL; 5210 } 5211 static DEVICE_ATTR_RW(reset_method); 5212 5213 static struct attribute *pci_dev_reset_method_attrs[] = { 5214 &dev_attr_reset_method.attr, 5215 NULL, 5216 }; 5217 5218 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5219 struct attribute *a, int n) 5220 { 5221 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5222 5223 if (!pci_reset_supported(pdev)) 5224 return 0; 5225 5226 return a->mode; 5227 } 5228 5229 const struct attribute_group pci_dev_reset_method_attr_group = { 5230 .attrs = pci_dev_reset_method_attrs, 5231 .is_visible = pci_dev_reset_method_attr_is_visible, 5232 }; 5233 5234 /** 5235 * __pci_reset_function_locked - reset a PCI device function while holding 5236 * the @dev mutex lock. 5237 * @dev: PCI device to reset 5238 * 5239 * Some devices allow an individual function to be reset without affecting 5240 * other functions in the same device. The PCI device must be responsive 5241 * to PCI config space in order to use this function. 5242 * 5243 * The device function is presumed to be unused and the caller is holding 5244 * the device mutex lock when this function is called. 5245 * 5246 * Resetting the device will make the contents of PCI configuration space 5247 * random, so any caller of this must be prepared to reinitialise the 5248 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5249 * etc. 5250 * 5251 * Returns 0 if the device function was successfully reset or negative if the 5252 * device doesn't support resetting a single function. 5253 */ 5254 int __pci_reset_function_locked(struct pci_dev *dev) 5255 { 5256 int i, m, rc; 5257 5258 might_sleep(); 5259 5260 /* 5261 * A reset method returns -ENOTTY if it doesn't support this device and 5262 * we should try the next method. 5263 * 5264 * If it returns 0 (success), we're finished. If it returns any other 5265 * error, we're also finished: this indicates that further reset 5266 * mechanisms might be broken on the device. 5267 */ 5268 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5269 m = dev->reset_methods[i]; 5270 if (!m) 5271 return -ENOTTY; 5272 5273 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5274 if (!rc) 5275 return 0; 5276 if (rc != -ENOTTY) 5277 return rc; 5278 } 5279 5280 return -ENOTTY; 5281 } 5282 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5283 5284 /** 5285 * pci_init_reset_methods - check whether device can be safely reset 5286 * and store supported reset mechanisms. 5287 * @dev: PCI device to check for reset mechanisms 5288 * 5289 * Some devices allow an individual function to be reset without affecting 5290 * other functions in the same device. The PCI device must be in D0-D3hot 5291 * state. 5292 * 5293 * Stores reset mechanisms supported by device in reset_methods byte array 5294 * which is a member of struct pci_dev. 5295 */ 5296 void pci_init_reset_methods(struct pci_dev *dev) 5297 { 5298 int m, i, rc; 5299 5300 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5301 5302 might_sleep(); 5303 5304 i = 0; 5305 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5306 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5307 if (!rc) 5308 dev->reset_methods[i++] = m; 5309 else if (rc != -ENOTTY) 5310 break; 5311 } 5312 5313 dev->reset_methods[i] = 0; 5314 } 5315 5316 /** 5317 * pci_reset_function - quiesce and reset a PCI device function 5318 * @dev: PCI device to reset 5319 * 5320 * Some devices allow an individual function to be reset without affecting 5321 * other functions in the same device. The PCI device must be responsive 5322 * to PCI config space in order to use this function. 5323 * 5324 * This function does not just reset the PCI portion of a device, but 5325 * clears all the state associated with the device. This function differs 5326 * from __pci_reset_function_locked() in that it saves and restores device state 5327 * over the reset and takes the PCI device lock. 5328 * 5329 * Returns 0 if the device function was successfully reset or negative if the 5330 * device doesn't support resetting a single function. 5331 */ 5332 int pci_reset_function(struct pci_dev *dev) 5333 { 5334 struct pci_dev *bridge; 5335 int rc; 5336 5337 if (!pci_reset_supported(dev)) 5338 return -ENOTTY; 5339 5340 /* 5341 * If there's no upstream bridge, no locking is needed since there is 5342 * no upstream bridge configuration to hold consistent. 5343 */ 5344 bridge = pci_upstream_bridge(dev); 5345 if (bridge) 5346 pci_dev_lock(bridge); 5347 5348 pci_dev_lock(dev); 5349 pci_dev_save_and_disable(dev); 5350 5351 rc = __pci_reset_function_locked(dev); 5352 5353 pci_dev_restore(dev); 5354 pci_dev_unlock(dev); 5355 5356 if (bridge) 5357 pci_dev_unlock(bridge); 5358 5359 return rc; 5360 } 5361 EXPORT_SYMBOL_GPL(pci_reset_function); 5362 5363 /** 5364 * pci_reset_function_locked - quiesce and reset a PCI device function 5365 * @dev: PCI device to reset 5366 * 5367 * Some devices allow an individual function to be reset without affecting 5368 * other functions in the same device. The PCI device must be responsive 5369 * to PCI config space in order to use this function. 5370 * 5371 * This function does not just reset the PCI portion of a device, but 5372 * clears all the state associated with the device. This function differs 5373 * from __pci_reset_function_locked() in that it saves and restores device state 5374 * over the reset. It also differs from pci_reset_function() in that it 5375 * requires the PCI device lock to be held. 5376 * 5377 * Returns 0 if the device function was successfully reset or negative if the 5378 * device doesn't support resetting a single function. 5379 */ 5380 int pci_reset_function_locked(struct pci_dev *dev) 5381 { 5382 int rc; 5383 5384 if (!pci_reset_supported(dev)) 5385 return -ENOTTY; 5386 5387 pci_dev_save_and_disable(dev); 5388 5389 rc = __pci_reset_function_locked(dev); 5390 5391 pci_dev_restore(dev); 5392 5393 return rc; 5394 } 5395 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5396 5397 /** 5398 * pci_try_reset_function - quiesce and reset a PCI device function 5399 * @dev: PCI device to reset 5400 * 5401 * Same as above, except return -EAGAIN if unable to lock device. 5402 */ 5403 int pci_try_reset_function(struct pci_dev *dev) 5404 { 5405 int rc; 5406 5407 if (!pci_reset_supported(dev)) 5408 return -ENOTTY; 5409 5410 if (!pci_dev_trylock(dev)) 5411 return -EAGAIN; 5412 5413 pci_dev_save_and_disable(dev); 5414 rc = __pci_reset_function_locked(dev); 5415 pci_dev_restore(dev); 5416 pci_dev_unlock(dev); 5417 5418 return rc; 5419 } 5420 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5421 5422 /* Do any devices on or below this bus prevent a bus reset? */ 5423 static bool pci_bus_resettable(struct pci_bus *bus) 5424 { 5425 struct pci_dev *dev; 5426 5427 5428 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5429 return false; 5430 5431 list_for_each_entry(dev, &bus->devices, bus_list) { 5432 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5433 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5434 return false; 5435 } 5436 5437 return true; 5438 } 5439 5440 /* Lock devices from the top of the tree down */ 5441 static void pci_bus_lock(struct pci_bus *bus) 5442 { 5443 struct pci_dev *dev; 5444 5445 list_for_each_entry(dev, &bus->devices, bus_list) { 5446 pci_dev_lock(dev); 5447 if (dev->subordinate) 5448 pci_bus_lock(dev->subordinate); 5449 } 5450 } 5451 5452 /* Unlock devices from the bottom of the tree up */ 5453 static void pci_bus_unlock(struct pci_bus *bus) 5454 { 5455 struct pci_dev *dev; 5456 5457 list_for_each_entry(dev, &bus->devices, bus_list) { 5458 if (dev->subordinate) 5459 pci_bus_unlock(dev->subordinate); 5460 pci_dev_unlock(dev); 5461 } 5462 } 5463 5464 /* Return 1 on successful lock, 0 on contention */ 5465 static int pci_bus_trylock(struct pci_bus *bus) 5466 { 5467 struct pci_dev *dev; 5468 5469 list_for_each_entry(dev, &bus->devices, bus_list) { 5470 if (!pci_dev_trylock(dev)) 5471 goto unlock; 5472 if (dev->subordinate) { 5473 if (!pci_bus_trylock(dev->subordinate)) { 5474 pci_dev_unlock(dev); 5475 goto unlock; 5476 } 5477 } 5478 } 5479 return 1; 5480 5481 unlock: 5482 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5483 if (dev->subordinate) 5484 pci_bus_unlock(dev->subordinate); 5485 pci_dev_unlock(dev); 5486 } 5487 return 0; 5488 } 5489 5490 /* Do any devices on or below this slot prevent a bus reset? */ 5491 static bool pci_slot_resettable(struct pci_slot *slot) 5492 { 5493 struct pci_dev *dev; 5494 5495 if (slot->bus->self && 5496 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5497 return false; 5498 5499 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5500 if (!dev->slot || dev->slot != slot) 5501 continue; 5502 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5503 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5504 return false; 5505 } 5506 5507 return true; 5508 } 5509 5510 /* Lock devices from the top of the tree down */ 5511 static void pci_slot_lock(struct pci_slot *slot) 5512 { 5513 struct pci_dev *dev; 5514 5515 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5516 if (!dev->slot || dev->slot != slot) 5517 continue; 5518 pci_dev_lock(dev); 5519 if (dev->subordinate) 5520 pci_bus_lock(dev->subordinate); 5521 } 5522 } 5523 5524 /* Unlock devices from the bottom of the tree up */ 5525 static void pci_slot_unlock(struct pci_slot *slot) 5526 { 5527 struct pci_dev *dev; 5528 5529 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5530 if (!dev->slot || dev->slot != slot) 5531 continue; 5532 if (dev->subordinate) 5533 pci_bus_unlock(dev->subordinate); 5534 pci_dev_unlock(dev); 5535 } 5536 } 5537 5538 /* Return 1 on successful lock, 0 on contention */ 5539 static int pci_slot_trylock(struct pci_slot *slot) 5540 { 5541 struct pci_dev *dev; 5542 5543 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5544 if (!dev->slot || dev->slot != slot) 5545 continue; 5546 if (!pci_dev_trylock(dev)) 5547 goto unlock; 5548 if (dev->subordinate) { 5549 if (!pci_bus_trylock(dev->subordinate)) { 5550 pci_dev_unlock(dev); 5551 goto unlock; 5552 } 5553 } 5554 } 5555 return 1; 5556 5557 unlock: 5558 list_for_each_entry_continue_reverse(dev, 5559 &slot->bus->devices, bus_list) { 5560 if (!dev->slot || dev->slot != slot) 5561 continue; 5562 if (dev->subordinate) 5563 pci_bus_unlock(dev->subordinate); 5564 pci_dev_unlock(dev); 5565 } 5566 return 0; 5567 } 5568 5569 /* 5570 * Save and disable devices from the top of the tree down while holding 5571 * the @dev mutex lock for the entire tree. 5572 */ 5573 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5574 { 5575 struct pci_dev *dev; 5576 5577 list_for_each_entry(dev, &bus->devices, bus_list) { 5578 pci_dev_save_and_disable(dev); 5579 if (dev->subordinate) 5580 pci_bus_save_and_disable_locked(dev->subordinate); 5581 } 5582 } 5583 5584 /* 5585 * Restore devices from top of the tree down while holding @dev mutex lock 5586 * for the entire tree. Parent bridges need to be restored before we can 5587 * get to subordinate devices. 5588 */ 5589 static void pci_bus_restore_locked(struct pci_bus *bus) 5590 { 5591 struct pci_dev *dev; 5592 5593 list_for_each_entry(dev, &bus->devices, bus_list) { 5594 pci_dev_restore(dev); 5595 if (dev->subordinate) 5596 pci_bus_restore_locked(dev->subordinate); 5597 } 5598 } 5599 5600 /* 5601 * Save and disable devices from the top of the tree down while holding 5602 * the @dev mutex lock for the entire tree. 5603 */ 5604 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5605 { 5606 struct pci_dev *dev; 5607 5608 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5609 if (!dev->slot || dev->slot != slot) 5610 continue; 5611 pci_dev_save_and_disable(dev); 5612 if (dev->subordinate) 5613 pci_bus_save_and_disable_locked(dev->subordinate); 5614 } 5615 } 5616 5617 /* 5618 * Restore devices from top of the tree down while holding @dev mutex lock 5619 * for the entire tree. Parent bridges need to be restored before we can 5620 * get to subordinate devices. 5621 */ 5622 static void pci_slot_restore_locked(struct pci_slot *slot) 5623 { 5624 struct pci_dev *dev; 5625 5626 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5627 if (!dev->slot || dev->slot != slot) 5628 continue; 5629 pci_dev_restore(dev); 5630 if (dev->subordinate) 5631 pci_bus_restore_locked(dev->subordinate); 5632 } 5633 } 5634 5635 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5636 { 5637 int rc; 5638 5639 if (!slot || !pci_slot_resettable(slot)) 5640 return -ENOTTY; 5641 5642 if (!probe) 5643 pci_slot_lock(slot); 5644 5645 might_sleep(); 5646 5647 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5648 5649 if (!probe) 5650 pci_slot_unlock(slot); 5651 5652 return rc; 5653 } 5654 5655 /** 5656 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5657 * @slot: PCI slot to probe 5658 * 5659 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5660 */ 5661 int pci_probe_reset_slot(struct pci_slot *slot) 5662 { 5663 return pci_slot_reset(slot, PCI_RESET_PROBE); 5664 } 5665 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5666 5667 /** 5668 * __pci_reset_slot - Try to reset a PCI slot 5669 * @slot: PCI slot to reset 5670 * 5671 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5672 * independent of other slots. For instance, some slots may support slot power 5673 * control. In the case of a 1:1 bus to slot architecture, this function may 5674 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5675 * Generally a slot reset should be attempted before a bus reset. All of the 5676 * function of the slot and any subordinate buses behind the slot are reset 5677 * through this function. PCI config space of all devices in the slot and 5678 * behind the slot is saved before and restored after reset. 5679 * 5680 * Same as above except return -EAGAIN if the slot cannot be locked 5681 */ 5682 static int __pci_reset_slot(struct pci_slot *slot) 5683 { 5684 int rc; 5685 5686 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5687 if (rc) 5688 return rc; 5689 5690 if (pci_slot_trylock(slot)) { 5691 pci_slot_save_and_disable_locked(slot); 5692 might_sleep(); 5693 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5694 pci_slot_restore_locked(slot); 5695 pci_slot_unlock(slot); 5696 } else 5697 rc = -EAGAIN; 5698 5699 return rc; 5700 } 5701 5702 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5703 { 5704 int ret; 5705 5706 if (!bus->self || !pci_bus_resettable(bus)) 5707 return -ENOTTY; 5708 5709 if (probe) 5710 return 0; 5711 5712 pci_bus_lock(bus); 5713 5714 might_sleep(); 5715 5716 ret = pci_bridge_secondary_bus_reset(bus->self); 5717 5718 pci_bus_unlock(bus); 5719 5720 return ret; 5721 } 5722 5723 /** 5724 * pci_bus_error_reset - reset the bridge's subordinate bus 5725 * @bridge: The parent device that connects to the bus to reset 5726 * 5727 * This function will first try to reset the slots on this bus if the method is 5728 * available. If slot reset fails or is not available, this will fall back to a 5729 * secondary bus reset. 5730 */ 5731 int pci_bus_error_reset(struct pci_dev *bridge) 5732 { 5733 struct pci_bus *bus = bridge->subordinate; 5734 struct pci_slot *slot; 5735 5736 if (!bus) 5737 return -ENOTTY; 5738 5739 mutex_lock(&pci_slot_mutex); 5740 if (list_empty(&bus->slots)) 5741 goto bus_reset; 5742 5743 list_for_each_entry(slot, &bus->slots, list) 5744 if (pci_probe_reset_slot(slot)) 5745 goto bus_reset; 5746 5747 list_for_each_entry(slot, &bus->slots, list) 5748 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5749 goto bus_reset; 5750 5751 mutex_unlock(&pci_slot_mutex); 5752 return 0; 5753 bus_reset: 5754 mutex_unlock(&pci_slot_mutex); 5755 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5756 } 5757 5758 /** 5759 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5760 * @bus: PCI bus to probe 5761 * 5762 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5763 */ 5764 int pci_probe_reset_bus(struct pci_bus *bus) 5765 { 5766 return pci_bus_reset(bus, PCI_RESET_PROBE); 5767 } 5768 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5769 5770 /** 5771 * __pci_reset_bus - Try to reset a PCI bus 5772 * @bus: top level PCI bus to reset 5773 * 5774 * Same as above except return -EAGAIN if the bus cannot be locked 5775 */ 5776 static int __pci_reset_bus(struct pci_bus *bus) 5777 { 5778 int rc; 5779 5780 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5781 if (rc) 5782 return rc; 5783 5784 if (pci_bus_trylock(bus)) { 5785 pci_bus_save_and_disable_locked(bus); 5786 might_sleep(); 5787 rc = pci_bridge_secondary_bus_reset(bus->self); 5788 pci_bus_restore_locked(bus); 5789 pci_bus_unlock(bus); 5790 } else 5791 rc = -EAGAIN; 5792 5793 return rc; 5794 } 5795 5796 /** 5797 * pci_reset_bus - Try to reset a PCI bus 5798 * @pdev: top level PCI device to reset via slot/bus 5799 * 5800 * Same as above except return -EAGAIN if the bus cannot be locked 5801 */ 5802 int pci_reset_bus(struct pci_dev *pdev) 5803 { 5804 return (!pci_probe_reset_slot(pdev->slot)) ? 5805 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5806 } 5807 EXPORT_SYMBOL_GPL(pci_reset_bus); 5808 5809 /** 5810 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5811 * @dev: PCI device to query 5812 * 5813 * Returns mmrbc: maximum designed memory read count in bytes or 5814 * appropriate error value. 5815 */ 5816 int pcix_get_max_mmrbc(struct pci_dev *dev) 5817 { 5818 int cap; 5819 u32 stat; 5820 5821 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5822 if (!cap) 5823 return -EINVAL; 5824 5825 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5826 return -EINVAL; 5827 5828 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat); 5829 } 5830 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5831 5832 /** 5833 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5834 * @dev: PCI device to query 5835 * 5836 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5837 * value. 5838 */ 5839 int pcix_get_mmrbc(struct pci_dev *dev) 5840 { 5841 int cap; 5842 u16 cmd; 5843 5844 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5845 if (!cap) 5846 return -EINVAL; 5847 5848 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5849 return -EINVAL; 5850 5851 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 5852 } 5853 EXPORT_SYMBOL(pcix_get_mmrbc); 5854 5855 /** 5856 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5857 * @dev: PCI device to query 5858 * @mmrbc: maximum memory read count in bytes 5859 * valid values are 512, 1024, 2048, 4096 5860 * 5861 * If possible sets maximum memory read byte count, some bridges have errata 5862 * that prevent this. 5863 */ 5864 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5865 { 5866 int cap; 5867 u32 stat, v, o; 5868 u16 cmd; 5869 5870 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5871 return -EINVAL; 5872 5873 v = ffs(mmrbc) - 10; 5874 5875 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5876 if (!cap) 5877 return -EINVAL; 5878 5879 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5880 return -EINVAL; 5881 5882 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat)) 5883 return -E2BIG; 5884 5885 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5886 return -EINVAL; 5887 5888 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 5889 if (o != v) { 5890 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5891 return -EIO; 5892 5893 cmd &= ~PCI_X_CMD_MAX_READ; 5894 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v); 5895 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5896 return -EIO; 5897 } 5898 return 0; 5899 } 5900 EXPORT_SYMBOL(pcix_set_mmrbc); 5901 5902 /** 5903 * pcie_get_readrq - get PCI Express read request size 5904 * @dev: PCI device to query 5905 * 5906 * Returns maximum memory read request in bytes or appropriate error value. 5907 */ 5908 int pcie_get_readrq(struct pci_dev *dev) 5909 { 5910 u16 ctl; 5911 5912 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5913 5914 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl); 5915 } 5916 EXPORT_SYMBOL(pcie_get_readrq); 5917 5918 /** 5919 * pcie_set_readrq - set PCI Express maximum memory read request 5920 * @dev: PCI device to query 5921 * @rq: maximum memory read count in bytes 5922 * valid values are 128, 256, 512, 1024, 2048, 4096 5923 * 5924 * If possible sets maximum memory read request in bytes 5925 */ 5926 int pcie_set_readrq(struct pci_dev *dev, int rq) 5927 { 5928 u16 v; 5929 int ret; 5930 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 5931 5932 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5933 return -EINVAL; 5934 5935 /* 5936 * If using the "performance" PCIe config, we clamp the read rq 5937 * size to the max packet size to keep the host bridge from 5938 * generating requests larger than we can cope with. 5939 */ 5940 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5941 int mps = pcie_get_mps(dev); 5942 5943 if (mps < rq) 5944 rq = mps; 5945 } 5946 5947 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8); 5948 5949 if (bridge->no_inc_mrrs) { 5950 int max_mrrs = pcie_get_readrq(dev); 5951 5952 if (rq > max_mrrs) { 5953 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 5954 return -EINVAL; 5955 } 5956 } 5957 5958 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5959 PCI_EXP_DEVCTL_READRQ, v); 5960 5961 return pcibios_err_to_errno(ret); 5962 } 5963 EXPORT_SYMBOL(pcie_set_readrq); 5964 5965 /** 5966 * pcie_get_mps - get PCI Express maximum payload size 5967 * @dev: PCI device to query 5968 * 5969 * Returns maximum payload size in bytes 5970 */ 5971 int pcie_get_mps(struct pci_dev *dev) 5972 { 5973 u16 ctl; 5974 5975 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5976 5977 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl); 5978 } 5979 EXPORT_SYMBOL(pcie_get_mps); 5980 5981 /** 5982 * pcie_set_mps - set PCI Express maximum payload size 5983 * @dev: PCI device to query 5984 * @mps: maximum payload size in bytes 5985 * valid values are 128, 256, 512, 1024, 2048, 4096 5986 * 5987 * If possible sets maximum payload size 5988 */ 5989 int pcie_set_mps(struct pci_dev *dev, int mps) 5990 { 5991 u16 v; 5992 int ret; 5993 5994 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5995 return -EINVAL; 5996 5997 v = ffs(mps) - 8; 5998 if (v > dev->pcie_mpss) 5999 return -EINVAL; 6000 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v); 6001 6002 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6003 PCI_EXP_DEVCTL_PAYLOAD, v); 6004 6005 return pcibios_err_to_errno(ret); 6006 } 6007 EXPORT_SYMBOL(pcie_set_mps); 6008 6009 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta) 6010 { 6011 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)]; 6012 } 6013 6014 int pcie_link_speed_mbps(struct pci_dev *pdev) 6015 { 6016 u16 lnksta; 6017 int err; 6018 6019 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 6020 if (err) 6021 return err; 6022 6023 switch (to_pcie_link_speed(lnksta)) { 6024 case PCIE_SPEED_2_5GT: 6025 return 2500; 6026 case PCIE_SPEED_5_0GT: 6027 return 5000; 6028 case PCIE_SPEED_8_0GT: 6029 return 8000; 6030 case PCIE_SPEED_16_0GT: 6031 return 16000; 6032 case PCIE_SPEED_32_0GT: 6033 return 32000; 6034 case PCIE_SPEED_64_0GT: 6035 return 64000; 6036 default: 6037 break; 6038 } 6039 6040 return -EINVAL; 6041 } 6042 EXPORT_SYMBOL(pcie_link_speed_mbps); 6043 6044 /** 6045 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6046 * device and its bandwidth limitation 6047 * @dev: PCI device to query 6048 * @limiting_dev: storage for device causing the bandwidth limitation 6049 * @speed: storage for speed of limiting device 6050 * @width: storage for width of limiting device 6051 * 6052 * Walk up the PCI device chain and find the point where the minimum 6053 * bandwidth is available. Return the bandwidth available there and (if 6054 * limiting_dev, speed, and width pointers are supplied) information about 6055 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6056 * raw bandwidth. 6057 */ 6058 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6059 enum pci_bus_speed *speed, 6060 enum pcie_link_width *width) 6061 { 6062 u16 lnksta; 6063 enum pci_bus_speed next_speed; 6064 enum pcie_link_width next_width; 6065 u32 bw, next_bw; 6066 6067 if (speed) 6068 *speed = PCI_SPEED_UNKNOWN; 6069 if (width) 6070 *width = PCIE_LNK_WIDTH_UNKNOWN; 6071 6072 bw = 0; 6073 6074 while (dev) { 6075 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6076 6077 next_speed = to_pcie_link_speed(lnksta); 6078 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6079 6080 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6081 6082 /* Check if current device limits the total bandwidth */ 6083 if (!bw || next_bw <= bw) { 6084 bw = next_bw; 6085 6086 if (limiting_dev) 6087 *limiting_dev = dev; 6088 if (speed) 6089 *speed = next_speed; 6090 if (width) 6091 *width = next_width; 6092 } 6093 6094 dev = pci_upstream_bridge(dev); 6095 } 6096 6097 return bw; 6098 } 6099 EXPORT_SYMBOL(pcie_bandwidth_available); 6100 6101 /** 6102 * pcie_get_speed_cap - query for the PCI device's link speed capability 6103 * @dev: PCI device to query 6104 * 6105 * Query the PCI device speed capability. Return the maximum link speed 6106 * supported by the device. 6107 */ 6108 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6109 { 6110 u32 lnkcap2, lnkcap; 6111 6112 /* 6113 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6114 * implementation note there recommends using the Supported Link 6115 * Speeds Vector in Link Capabilities 2 when supported. 6116 * 6117 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6118 * should use the Supported Link Speeds field in Link Capabilities, 6119 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6120 */ 6121 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6122 6123 /* PCIe r3.0-compliant */ 6124 if (lnkcap2) 6125 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6126 6127 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6128 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6129 return PCIE_SPEED_5_0GT; 6130 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6131 return PCIE_SPEED_2_5GT; 6132 6133 return PCI_SPEED_UNKNOWN; 6134 } 6135 EXPORT_SYMBOL(pcie_get_speed_cap); 6136 6137 /** 6138 * pcie_get_width_cap - query for the PCI device's link width capability 6139 * @dev: PCI device to query 6140 * 6141 * Query the PCI device width capability. Return the maximum link width 6142 * supported by the device. 6143 */ 6144 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6145 { 6146 u32 lnkcap; 6147 6148 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6149 if (lnkcap) 6150 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6151 6152 return PCIE_LNK_WIDTH_UNKNOWN; 6153 } 6154 EXPORT_SYMBOL(pcie_get_width_cap); 6155 6156 /** 6157 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6158 * @dev: PCI device 6159 * @speed: storage for link speed 6160 * @width: storage for link width 6161 * 6162 * Calculate a PCI device's link bandwidth by querying for its link speed 6163 * and width, multiplying them, and applying encoding overhead. The result 6164 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6165 */ 6166 static u32 pcie_bandwidth_capable(struct pci_dev *dev, 6167 enum pci_bus_speed *speed, 6168 enum pcie_link_width *width) 6169 { 6170 *speed = pcie_get_speed_cap(dev); 6171 *width = pcie_get_width_cap(dev); 6172 6173 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6174 return 0; 6175 6176 return *width * PCIE_SPEED2MBS_ENC(*speed); 6177 } 6178 6179 /** 6180 * __pcie_print_link_status - Report the PCI device's link speed and width 6181 * @dev: PCI device to query 6182 * @verbose: Print info even when enough bandwidth is available 6183 * 6184 * If the available bandwidth at the device is less than the device is 6185 * capable of, report the device's maximum possible bandwidth and the 6186 * upstream link that limits its performance. If @verbose, always print 6187 * the available bandwidth, even if the device isn't constrained. 6188 */ 6189 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6190 { 6191 enum pcie_link_width width, width_cap; 6192 enum pci_bus_speed speed, speed_cap; 6193 struct pci_dev *limiting_dev = NULL; 6194 u32 bw_avail, bw_cap; 6195 6196 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6197 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6198 6199 if (bw_avail >= bw_cap && verbose) 6200 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6201 bw_cap / 1000, bw_cap % 1000, 6202 pci_speed_string(speed_cap), width_cap); 6203 else if (bw_avail < bw_cap) 6204 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6205 bw_avail / 1000, bw_avail % 1000, 6206 pci_speed_string(speed), width, 6207 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6208 bw_cap / 1000, bw_cap % 1000, 6209 pci_speed_string(speed_cap), width_cap); 6210 } 6211 6212 /** 6213 * pcie_print_link_status - Report the PCI device's link speed and width 6214 * @dev: PCI device to query 6215 * 6216 * Report the available bandwidth at the device. 6217 */ 6218 void pcie_print_link_status(struct pci_dev *dev) 6219 { 6220 __pcie_print_link_status(dev, true); 6221 } 6222 EXPORT_SYMBOL(pcie_print_link_status); 6223 6224 /** 6225 * pci_select_bars - Make BAR mask from the type of resource 6226 * @dev: the PCI device for which BAR mask is made 6227 * @flags: resource type mask to be selected 6228 * 6229 * This helper routine makes bar mask from the type of resource. 6230 */ 6231 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6232 { 6233 int i, bars = 0; 6234 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6235 if (pci_resource_flags(dev, i) & flags) 6236 bars |= (1 << i); 6237 return bars; 6238 } 6239 EXPORT_SYMBOL(pci_select_bars); 6240 6241 /* Some architectures require additional programming to enable VGA */ 6242 static arch_set_vga_state_t arch_set_vga_state; 6243 6244 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6245 { 6246 arch_set_vga_state = func; /* NULL disables */ 6247 } 6248 6249 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6250 unsigned int command_bits, u32 flags) 6251 { 6252 if (arch_set_vga_state) 6253 return arch_set_vga_state(dev, decode, command_bits, 6254 flags); 6255 return 0; 6256 } 6257 6258 /** 6259 * pci_set_vga_state - set VGA decode state on device and parents if requested 6260 * @dev: the PCI device 6261 * @decode: true = enable decoding, false = disable decoding 6262 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6263 * @flags: traverse ancestors and change bridges 6264 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6265 */ 6266 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6267 unsigned int command_bits, u32 flags) 6268 { 6269 struct pci_bus *bus; 6270 struct pci_dev *bridge; 6271 u16 cmd; 6272 int rc; 6273 6274 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6275 6276 /* ARCH specific VGA enables */ 6277 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6278 if (rc) 6279 return rc; 6280 6281 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6282 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6283 if (decode) 6284 cmd |= command_bits; 6285 else 6286 cmd &= ~command_bits; 6287 pci_write_config_word(dev, PCI_COMMAND, cmd); 6288 } 6289 6290 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6291 return 0; 6292 6293 bus = dev->bus; 6294 while (bus) { 6295 bridge = bus->self; 6296 if (bridge) { 6297 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6298 &cmd); 6299 if (decode) 6300 cmd |= PCI_BRIDGE_CTL_VGA; 6301 else 6302 cmd &= ~PCI_BRIDGE_CTL_VGA; 6303 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6304 cmd); 6305 } 6306 bus = bus->parent; 6307 } 6308 return 0; 6309 } 6310 6311 #ifdef CONFIG_ACPI 6312 bool pci_pr3_present(struct pci_dev *pdev) 6313 { 6314 struct acpi_device *adev; 6315 6316 if (acpi_disabled) 6317 return false; 6318 6319 adev = ACPI_COMPANION(&pdev->dev); 6320 if (!adev) 6321 return false; 6322 6323 return adev->power.flags.power_resources && 6324 acpi_has_method(adev->handle, "_PR3"); 6325 } 6326 EXPORT_SYMBOL_GPL(pci_pr3_present); 6327 #endif 6328 6329 /** 6330 * pci_add_dma_alias - Add a DMA devfn alias for a device 6331 * @dev: the PCI device for which alias is added 6332 * @devfn_from: alias slot and function 6333 * @nr_devfns: number of subsequent devfns to alias 6334 * 6335 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6336 * which is used to program permissible bus-devfn source addresses for DMA 6337 * requests in an IOMMU. These aliases factor into IOMMU group creation 6338 * and are useful for devices generating DMA requests beyond or different 6339 * from their logical bus-devfn. Examples include device quirks where the 6340 * device simply uses the wrong devfn, as well as non-transparent bridges 6341 * where the alias may be a proxy for devices in another domain. 6342 * 6343 * IOMMU group creation is performed during device discovery or addition, 6344 * prior to any potential DMA mapping and therefore prior to driver probing 6345 * (especially for userspace assigned devices where IOMMU group definition 6346 * cannot be left as a userspace activity). DMA aliases should therefore 6347 * be configured via quirks, such as the PCI fixup header quirk. 6348 */ 6349 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6350 unsigned int nr_devfns) 6351 { 6352 int devfn_to; 6353 6354 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6355 devfn_to = devfn_from + nr_devfns - 1; 6356 6357 if (!dev->dma_alias_mask) 6358 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6359 if (!dev->dma_alias_mask) { 6360 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6361 return; 6362 } 6363 6364 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6365 6366 if (nr_devfns == 1) 6367 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6368 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6369 else if (nr_devfns > 1) 6370 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6371 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6372 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6373 } 6374 6375 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6376 { 6377 return (dev1->dma_alias_mask && 6378 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6379 (dev2->dma_alias_mask && 6380 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6381 pci_real_dma_dev(dev1) == dev2 || 6382 pci_real_dma_dev(dev2) == dev1; 6383 } 6384 6385 bool pci_device_is_present(struct pci_dev *pdev) 6386 { 6387 u32 v; 6388 6389 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6390 pdev = pci_physfn(pdev); 6391 if (pci_dev_is_disconnected(pdev)) 6392 return false; 6393 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6394 } 6395 EXPORT_SYMBOL_GPL(pci_device_is_present); 6396 6397 void pci_ignore_hotplug(struct pci_dev *dev) 6398 { 6399 struct pci_dev *bridge = dev->bus->self; 6400 6401 dev->ignore_hotplug = 1; 6402 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6403 if (bridge) 6404 bridge->ignore_hotplug = 1; 6405 } 6406 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6407 6408 /** 6409 * pci_real_dma_dev - Get PCI DMA device for PCI device 6410 * @dev: the PCI device that may have a PCI DMA alias 6411 * 6412 * Permits the platform to provide architecture-specific functionality to 6413 * devices needing to alias DMA to another PCI device on another PCI bus. If 6414 * the PCI device is on the same bus, it is recommended to use 6415 * pci_add_dma_alias(). This is the default implementation. Architecture 6416 * implementations can override this. 6417 */ 6418 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6419 { 6420 return dev; 6421 } 6422 6423 resource_size_t __weak pcibios_default_alignment(void) 6424 { 6425 return 0; 6426 } 6427 6428 /* 6429 * Arches that don't want to expose struct resource to userland as-is in 6430 * sysfs and /proc can implement their own pci_resource_to_user(). 6431 */ 6432 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6433 const struct resource *rsrc, 6434 resource_size_t *start, resource_size_t *end) 6435 { 6436 *start = rsrc->start; 6437 *end = rsrc->end; 6438 } 6439 6440 static char *resource_alignment_param; 6441 static DEFINE_SPINLOCK(resource_alignment_lock); 6442 6443 /** 6444 * pci_specified_resource_alignment - get resource alignment specified by user. 6445 * @dev: the PCI device to get 6446 * @resize: whether or not to change resources' size when reassigning alignment 6447 * 6448 * RETURNS: Resource alignment if it is specified. 6449 * Zero if it is not specified. 6450 */ 6451 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6452 bool *resize) 6453 { 6454 int align_order, count; 6455 resource_size_t align = pcibios_default_alignment(); 6456 const char *p; 6457 int ret; 6458 6459 spin_lock(&resource_alignment_lock); 6460 p = resource_alignment_param; 6461 if (!p || !*p) 6462 goto out; 6463 if (pci_has_flag(PCI_PROBE_ONLY)) { 6464 align = 0; 6465 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6466 goto out; 6467 } 6468 6469 while (*p) { 6470 count = 0; 6471 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6472 p[count] == '@') { 6473 p += count + 1; 6474 if (align_order > 63) { 6475 pr_err("PCI: Invalid requested alignment (order %d)\n", 6476 align_order); 6477 align_order = PAGE_SHIFT; 6478 } 6479 } else { 6480 align_order = PAGE_SHIFT; 6481 } 6482 6483 ret = pci_dev_str_match(dev, p, &p); 6484 if (ret == 1) { 6485 *resize = true; 6486 align = 1ULL << align_order; 6487 break; 6488 } else if (ret < 0) { 6489 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6490 p); 6491 break; 6492 } 6493 6494 if (*p != ';' && *p != ',') { 6495 /* End of param or invalid format */ 6496 break; 6497 } 6498 p++; 6499 } 6500 out: 6501 spin_unlock(&resource_alignment_lock); 6502 return align; 6503 } 6504 6505 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6506 resource_size_t align, bool resize) 6507 { 6508 struct resource *r = &dev->resource[bar]; 6509 const char *r_name = pci_resource_name(dev, bar); 6510 resource_size_t size; 6511 6512 if (!(r->flags & IORESOURCE_MEM)) 6513 return; 6514 6515 if (r->flags & IORESOURCE_PCI_FIXED) { 6516 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n", 6517 r_name, r, (unsigned long long)align); 6518 return; 6519 } 6520 6521 size = resource_size(r); 6522 if (size >= align) 6523 return; 6524 6525 /* 6526 * Increase the alignment of the resource. There are two ways we 6527 * can do this: 6528 * 6529 * 1) Increase the size of the resource. BARs are aligned on their 6530 * size, so when we reallocate space for this resource, we'll 6531 * allocate it with the larger alignment. This also prevents 6532 * assignment of any other BARs inside the alignment region, so 6533 * if we're requesting page alignment, this means no other BARs 6534 * will share the page. 6535 * 6536 * The disadvantage is that this makes the resource larger than 6537 * the hardware BAR, which may break drivers that compute things 6538 * based on the resource size, e.g., to find registers at a 6539 * fixed offset before the end of the BAR. 6540 * 6541 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6542 * set r->start to the desired alignment. By itself this 6543 * doesn't prevent other BARs being put inside the alignment 6544 * region, but if we realign *every* resource of every device in 6545 * the system, none of them will share an alignment region. 6546 * 6547 * When the user has requested alignment for only some devices via 6548 * the "pci=resource_alignment" argument, "resize" is true and we 6549 * use the first method. Otherwise we assume we're aligning all 6550 * devices and we use the second. 6551 */ 6552 6553 pci_info(dev, "%s %pR: requesting alignment to %#llx\n", 6554 r_name, r, (unsigned long long)align); 6555 6556 if (resize) { 6557 r->start = 0; 6558 r->end = align - 1; 6559 } else { 6560 r->flags &= ~IORESOURCE_SIZEALIGN; 6561 r->flags |= IORESOURCE_STARTALIGN; 6562 r->start = align; 6563 r->end = r->start + size - 1; 6564 } 6565 r->flags |= IORESOURCE_UNSET; 6566 } 6567 6568 /* 6569 * This function disables memory decoding and releases memory resources 6570 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6571 * It also rounds up size to specified alignment. 6572 * Later on, the kernel will assign page-aligned memory resource back 6573 * to the device. 6574 */ 6575 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6576 { 6577 int i; 6578 struct resource *r; 6579 resource_size_t align; 6580 u16 command; 6581 bool resize = false; 6582 6583 /* 6584 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6585 * 3.4.1.11. Their resources are allocated from the space 6586 * described by the VF BARx register in the PF's SR-IOV capability. 6587 * We can't influence their alignment here. 6588 */ 6589 if (dev->is_virtfn) 6590 return; 6591 6592 /* check if specified PCI is target device to reassign */ 6593 align = pci_specified_resource_alignment(dev, &resize); 6594 if (!align) 6595 return; 6596 6597 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6598 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6599 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6600 return; 6601 } 6602 6603 pci_read_config_word(dev, PCI_COMMAND, &command); 6604 command &= ~PCI_COMMAND_MEMORY; 6605 pci_write_config_word(dev, PCI_COMMAND, command); 6606 6607 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6608 pci_request_resource_alignment(dev, i, align, resize); 6609 6610 /* 6611 * Need to disable bridge's resource window, 6612 * to enable the kernel to reassign new resource 6613 * window later on. 6614 */ 6615 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6616 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6617 r = &dev->resource[i]; 6618 if (!(r->flags & IORESOURCE_MEM)) 6619 continue; 6620 r->flags |= IORESOURCE_UNSET; 6621 r->end = resource_size(r) - 1; 6622 r->start = 0; 6623 } 6624 pci_disable_bridge_window(dev); 6625 } 6626 } 6627 6628 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6629 { 6630 size_t count = 0; 6631 6632 spin_lock(&resource_alignment_lock); 6633 if (resource_alignment_param) 6634 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6635 spin_unlock(&resource_alignment_lock); 6636 6637 return count; 6638 } 6639 6640 static ssize_t resource_alignment_store(const struct bus_type *bus, 6641 const char *buf, size_t count) 6642 { 6643 char *param, *old, *end; 6644 6645 if (count >= (PAGE_SIZE - 1)) 6646 return -EINVAL; 6647 6648 param = kstrndup(buf, count, GFP_KERNEL); 6649 if (!param) 6650 return -ENOMEM; 6651 6652 end = strchr(param, '\n'); 6653 if (end) 6654 *end = '\0'; 6655 6656 spin_lock(&resource_alignment_lock); 6657 old = resource_alignment_param; 6658 if (strlen(param)) { 6659 resource_alignment_param = param; 6660 } else { 6661 kfree(param); 6662 resource_alignment_param = NULL; 6663 } 6664 spin_unlock(&resource_alignment_lock); 6665 6666 kfree(old); 6667 6668 return count; 6669 } 6670 6671 static BUS_ATTR_RW(resource_alignment); 6672 6673 static int __init pci_resource_alignment_sysfs_init(void) 6674 { 6675 return bus_create_file(&pci_bus_type, 6676 &bus_attr_resource_alignment); 6677 } 6678 late_initcall(pci_resource_alignment_sysfs_init); 6679 6680 static void pci_no_domains(void) 6681 { 6682 #ifdef CONFIG_PCI_DOMAINS 6683 pci_domains_supported = 0; 6684 #endif 6685 } 6686 6687 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6688 static DEFINE_IDA(pci_domain_nr_static_ida); 6689 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6690 6691 static void of_pci_reserve_static_domain_nr(void) 6692 { 6693 struct device_node *np; 6694 int domain_nr; 6695 6696 for_each_node_by_type(np, "pci") { 6697 domain_nr = of_get_pci_domain_nr(np); 6698 if (domain_nr < 0) 6699 continue; 6700 /* 6701 * Permanently allocate domain_nr in dynamic_ida 6702 * to prevent it from dynamic allocation. 6703 */ 6704 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6705 domain_nr, domain_nr, GFP_KERNEL); 6706 } 6707 } 6708 6709 static int of_pci_bus_find_domain_nr(struct device *parent) 6710 { 6711 static bool static_domains_reserved = false; 6712 int domain_nr; 6713 6714 /* On the first call scan device tree for static allocations. */ 6715 if (!static_domains_reserved) { 6716 of_pci_reserve_static_domain_nr(); 6717 static_domains_reserved = true; 6718 } 6719 6720 if (parent) { 6721 /* 6722 * If domain is in DT, allocate it in static IDA. This 6723 * prevents duplicate static allocations in case of errors 6724 * in DT. 6725 */ 6726 domain_nr = of_get_pci_domain_nr(parent->of_node); 6727 if (domain_nr >= 0) 6728 return ida_alloc_range(&pci_domain_nr_static_ida, 6729 domain_nr, domain_nr, 6730 GFP_KERNEL); 6731 } 6732 6733 /* 6734 * If domain was not specified in DT, choose a free ID from dynamic 6735 * allocations. All domain numbers from DT are permanently in 6736 * dynamic allocations to prevent assigning them to other DT nodes 6737 * without static domain. 6738 */ 6739 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6740 } 6741 6742 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6743 { 6744 if (bus->domain_nr < 0) 6745 return; 6746 6747 /* Release domain from IDA where it was allocated. */ 6748 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr) 6749 ida_free(&pci_domain_nr_static_ida, bus->domain_nr); 6750 else 6751 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr); 6752 } 6753 6754 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6755 { 6756 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6757 acpi_pci_bus_find_domain_nr(bus); 6758 } 6759 6760 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6761 { 6762 if (!acpi_disabled) 6763 return; 6764 of_pci_bus_release_domain_nr(bus, parent); 6765 } 6766 #endif 6767 6768 /** 6769 * pci_ext_cfg_avail - can we access extended PCI config space? 6770 * 6771 * Returns 1 if we can access PCI extended config space (offsets 6772 * greater than 0xff). This is the default implementation. Architecture 6773 * implementations can override this. 6774 */ 6775 int __weak pci_ext_cfg_avail(void) 6776 { 6777 return 1; 6778 } 6779 6780 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6781 { 6782 } 6783 EXPORT_SYMBOL(pci_fixup_cardbus); 6784 6785 static int __init pci_setup(char *str) 6786 { 6787 while (str) { 6788 char *k = strchr(str, ','); 6789 if (k) 6790 *k++ = 0; 6791 if (*str && (str = pcibios_setup(str)) && *str) { 6792 if (!strcmp(str, "nomsi")) { 6793 pci_no_msi(); 6794 } else if (!strncmp(str, "noats", 5)) { 6795 pr_info("PCIe: ATS is disabled\n"); 6796 pcie_ats_disabled = true; 6797 } else if (!strcmp(str, "noaer")) { 6798 pci_no_aer(); 6799 } else if (!strcmp(str, "earlydump")) { 6800 pci_early_dump = true; 6801 } else if (!strncmp(str, "realloc=", 8)) { 6802 pci_realloc_get_opt(str + 8); 6803 } else if (!strncmp(str, "realloc", 7)) { 6804 pci_realloc_get_opt("on"); 6805 } else if (!strcmp(str, "nodomains")) { 6806 pci_no_domains(); 6807 } else if (!strncmp(str, "noari", 5)) { 6808 pcie_ari_disabled = true; 6809 } else if (!strncmp(str, "cbiosize=", 9)) { 6810 pci_cardbus_io_size = memparse(str + 9, &str); 6811 } else if (!strncmp(str, "cbmemsize=", 10)) { 6812 pci_cardbus_mem_size = memparse(str + 10, &str); 6813 } else if (!strncmp(str, "resource_alignment=", 19)) { 6814 resource_alignment_param = str + 19; 6815 } else if (!strncmp(str, "ecrc=", 5)) { 6816 pcie_ecrc_get_policy(str + 5); 6817 } else if (!strncmp(str, "hpiosize=", 9)) { 6818 pci_hotplug_io_size = memparse(str + 9, &str); 6819 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6820 pci_hotplug_mmio_size = memparse(str + 11, &str); 6821 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6822 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6823 } else if (!strncmp(str, "hpmemsize=", 10)) { 6824 pci_hotplug_mmio_size = memparse(str + 10, &str); 6825 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6826 } else if (!strncmp(str, "hpbussize=", 10)) { 6827 pci_hotplug_bus_size = 6828 simple_strtoul(str + 10, &str, 0); 6829 if (pci_hotplug_bus_size > 0xff) 6830 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6831 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6832 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6833 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6834 pcie_bus_config = PCIE_BUS_SAFE; 6835 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6836 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6837 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6838 pcie_bus_config = PCIE_BUS_PEER2PEER; 6839 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6840 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6841 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6842 disable_acs_redir_param = str + 18; 6843 } else { 6844 pr_err("PCI: Unknown option `%s'\n", str); 6845 } 6846 } 6847 str = k; 6848 } 6849 return 0; 6850 } 6851 early_param("pci", pci_setup); 6852 6853 /* 6854 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6855 * in pci_setup(), above, to point to data in the __initdata section which 6856 * will be freed after the init sequence is complete. We can't allocate memory 6857 * in pci_setup() because some architectures do not have any memory allocation 6858 * service available during an early_param() call. So we allocate memory and 6859 * copy the variable here before the init section is freed. 6860 * 6861 */ 6862 static int __init pci_realloc_setup_params(void) 6863 { 6864 resource_alignment_param = kstrdup(resource_alignment_param, 6865 GFP_KERNEL); 6866 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6867 6868 return 0; 6869 } 6870 pure_initcall(pci_realloc_setup_params); 6871