1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/pci_hotplug.h> 30 #include <linux/vmalloc.h> 31 #include <asm/dma.h> 32 #include <linux/aer.h> 33 #include <linux/bitfield.h> 34 #include "pci.h" 35 36 DEFINE_MUTEX(pci_slot_mutex); 37 38 const char *pci_power_names[] = { 39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 40 }; 41 EXPORT_SYMBOL_GPL(pci_power_names); 42 43 #ifdef CONFIG_X86_32 44 int isa_dma_bridge_buggy; 45 EXPORT_SYMBOL(isa_dma_bridge_buggy); 46 #endif 47 48 int pci_pci_problems; 49 EXPORT_SYMBOL(pci_pci_problems); 50 51 unsigned int pci_pm_d3hot_delay; 52 53 static void pci_pme_list_scan(struct work_struct *work); 54 55 static LIST_HEAD(pci_pme_list); 56 static DEFINE_MUTEX(pci_pme_list_mutex); 57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 58 59 struct pci_pme_device { 60 struct list_head list; 61 struct pci_dev *dev; 62 }; 63 64 #define PME_TIMEOUT 1000 /* How long between PME checks */ 65 66 /* 67 * Following exit from Conventional Reset, devices must be ready within 1 sec 68 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 69 * Reset (PCIe r6.0 sec 5.8). 70 */ 71 #define PCI_RESET_WAIT 1000 /* msec */ 72 73 /* 74 * Devices may extend the 1 sec period through Request Retry Status 75 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 76 * limit, but 60 sec ought to be enough for any device to become 77 * responsive. 78 */ 79 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 80 81 static void pci_dev_d3_sleep(struct pci_dev *dev) 82 { 83 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 84 unsigned int upper; 85 86 if (delay_ms) { 87 /* Use a 20% upper bound, 1ms minimum */ 88 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 89 usleep_range(delay_ms * USEC_PER_MSEC, 90 (delay_ms + upper) * USEC_PER_MSEC); 91 } 92 } 93 94 bool pci_reset_supported(struct pci_dev *dev) 95 { 96 return dev->reset_methods[0] != 0; 97 } 98 99 #ifdef CONFIG_PCI_DOMAINS 100 int pci_domains_supported = 1; 101 #endif 102 103 #define DEFAULT_CARDBUS_IO_SIZE (256) 104 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 105 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 106 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 107 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 108 109 #define DEFAULT_HOTPLUG_IO_SIZE (256) 110 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 111 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 112 /* hpiosize=nn can override this */ 113 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 114 /* 115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 117 * pci=hpmemsize=nnM overrides both 118 */ 119 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 120 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 121 122 #define DEFAULT_HOTPLUG_BUS_SIZE 1 123 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 124 125 126 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 127 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 129 #elif defined CONFIG_PCIE_BUS_SAFE 130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 131 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 132 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 133 #elif defined CONFIG_PCIE_BUS_PEER2PEER 134 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 135 #else 136 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 137 #endif 138 139 /* 140 * The default CLS is used if arch didn't set CLS explicitly and not 141 * all pci devices agree on the same value. Arch can override either 142 * the dfl or actual value as it sees fit. Don't forget this is 143 * measured in 32-bit words, not bytes. 144 */ 145 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2; 146 u8 pci_cache_line_size __ro_after_init ; 147 148 /* 149 * If we set up a device for bus mastering, we need to check the latency 150 * timer as certain BIOSes forget to set it properly. 151 */ 152 unsigned int pcibios_max_latency = 255; 153 154 /* If set, the PCIe ARI capability will not be used. */ 155 static bool pcie_ari_disabled; 156 157 /* If set, the PCIe ATS capability will not be used. */ 158 static bool pcie_ats_disabled; 159 160 /* If set, the PCI config space of each device is printed during boot. */ 161 bool pci_early_dump; 162 163 bool pci_ats_disabled(void) 164 { 165 return pcie_ats_disabled; 166 } 167 EXPORT_SYMBOL_GPL(pci_ats_disabled); 168 169 /* Disable bridge_d3 for all PCIe ports */ 170 static bool pci_bridge_d3_disable; 171 /* Force bridge_d3 for all PCIe ports */ 172 static bool pci_bridge_d3_force; 173 174 static int __init pcie_port_pm_setup(char *str) 175 { 176 if (!strcmp(str, "off")) 177 pci_bridge_d3_disable = true; 178 else if (!strcmp(str, "force")) 179 pci_bridge_d3_force = true; 180 return 1; 181 } 182 __setup("pcie_port_pm=", pcie_port_pm_setup); 183 184 /** 185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 186 * @bus: pointer to PCI bus structure to search 187 * 188 * Given a PCI bus, returns the highest PCI bus number present in the set 189 * including the given PCI bus and its list of child PCI buses. 190 */ 191 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 192 { 193 struct pci_bus *tmp; 194 unsigned char max, n; 195 196 max = bus->busn_res.end; 197 list_for_each_entry(tmp, &bus->children, node) { 198 n = pci_bus_max_busnr(tmp); 199 if (n > max) 200 max = n; 201 } 202 return max; 203 } 204 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 205 206 /** 207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 208 * @pdev: the PCI device 209 * 210 * Returns error bits set in PCI_STATUS and clears them. 211 */ 212 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 213 { 214 u16 status; 215 int ret; 216 217 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 218 if (ret != PCIBIOS_SUCCESSFUL) 219 return -EIO; 220 221 status &= PCI_STATUS_ERROR_BITS; 222 if (status) 223 pci_write_config_word(pdev, PCI_STATUS, status); 224 225 return status; 226 } 227 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 228 229 #ifdef CONFIG_HAS_IOMEM 230 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 231 bool write_combine) 232 { 233 struct resource *res = &pdev->resource[bar]; 234 resource_size_t start = res->start; 235 resource_size_t size = resource_size(res); 236 237 /* 238 * Make sure the BAR is actually a memory resource, not an IO resource 239 */ 240 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 241 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 242 return NULL; 243 } 244 245 if (write_combine) 246 return ioremap_wc(start, size); 247 248 return ioremap(start, size); 249 } 250 251 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 252 { 253 return __pci_ioremap_resource(pdev, bar, false); 254 } 255 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 256 257 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 258 { 259 return __pci_ioremap_resource(pdev, bar, true); 260 } 261 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 262 #endif 263 264 /** 265 * pci_dev_str_match_path - test if a path string matches a device 266 * @dev: the PCI device to test 267 * @path: string to match the device against 268 * @endptr: pointer to the string after the match 269 * 270 * Test if a string (typically from a kernel parameter) formatted as a 271 * path of device/function addresses matches a PCI device. The string must 272 * be of the form: 273 * 274 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 275 * 276 * A path for a device can be obtained using 'lspci -t'. Using a path 277 * is more robust against bus renumbering than using only a single bus, 278 * device and function address. 279 * 280 * Returns 1 if the string matches the device, 0 if it does not and 281 * a negative error code if it fails to parse the string. 282 */ 283 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 284 const char **endptr) 285 { 286 int ret; 287 unsigned int seg, bus, slot, func; 288 char *wpath, *p; 289 char end; 290 291 *endptr = strchrnul(path, ';'); 292 293 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 294 if (!wpath) 295 return -ENOMEM; 296 297 while (1) { 298 p = strrchr(wpath, '/'); 299 if (!p) 300 break; 301 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 302 if (ret != 2) { 303 ret = -EINVAL; 304 goto free_and_exit; 305 } 306 307 if (dev->devfn != PCI_DEVFN(slot, func)) { 308 ret = 0; 309 goto free_and_exit; 310 } 311 312 /* 313 * Note: we don't need to get a reference to the upstream 314 * bridge because we hold a reference to the top level 315 * device which should hold a reference to the bridge, 316 * and so on. 317 */ 318 dev = pci_upstream_bridge(dev); 319 if (!dev) { 320 ret = 0; 321 goto free_and_exit; 322 } 323 324 *p = 0; 325 } 326 327 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 328 &func, &end); 329 if (ret != 4) { 330 seg = 0; 331 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 332 if (ret != 3) { 333 ret = -EINVAL; 334 goto free_and_exit; 335 } 336 } 337 338 ret = (seg == pci_domain_nr(dev->bus) && 339 bus == dev->bus->number && 340 dev->devfn == PCI_DEVFN(slot, func)); 341 342 free_and_exit: 343 kfree(wpath); 344 return ret; 345 } 346 347 /** 348 * pci_dev_str_match - test if a string matches a device 349 * @dev: the PCI device to test 350 * @p: string to match the device against 351 * @endptr: pointer to the string after the match 352 * 353 * Test if a string (typically from a kernel parameter) matches a specified 354 * PCI device. The string may be of one of the following formats: 355 * 356 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 357 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 358 * 359 * The first format specifies a PCI bus/device/function address which 360 * may change if new hardware is inserted, if motherboard firmware changes, 361 * or due to changes caused in kernel parameters. If the domain is 362 * left unspecified, it is taken to be 0. In order to be robust against 363 * bus renumbering issues, a path of PCI device/function numbers may be used 364 * to address the specific device. The path for a device can be determined 365 * through the use of 'lspci -t'. 366 * 367 * The second format matches devices using IDs in the configuration 368 * space which may match multiple devices in the system. A value of 0 369 * for any field will match all devices. (Note: this differs from 370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 371 * legacy reasons and convenience so users don't have to specify 372 * FFFFFFFFs on the command line.) 373 * 374 * Returns 1 if the string matches the device, 0 if it does not and 375 * a negative error code if the string cannot be parsed. 376 */ 377 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 378 const char **endptr) 379 { 380 int ret; 381 int count; 382 unsigned short vendor, device, subsystem_vendor, subsystem_device; 383 384 if (strncmp(p, "pci:", 4) == 0) { 385 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 386 p += 4; 387 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 388 &subsystem_vendor, &subsystem_device, &count); 389 if (ret != 4) { 390 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 391 if (ret != 2) 392 return -EINVAL; 393 394 subsystem_vendor = 0; 395 subsystem_device = 0; 396 } 397 398 p += count; 399 400 if ((!vendor || vendor == dev->vendor) && 401 (!device || device == dev->device) && 402 (!subsystem_vendor || 403 subsystem_vendor == dev->subsystem_vendor) && 404 (!subsystem_device || 405 subsystem_device == dev->subsystem_device)) 406 goto found; 407 } else { 408 /* 409 * PCI Bus, Device, Function IDs are specified 410 * (optionally, may include a path of devfns following it) 411 */ 412 ret = pci_dev_str_match_path(dev, p, &p); 413 if (ret < 0) 414 return ret; 415 else if (ret) 416 goto found; 417 } 418 419 *endptr = p; 420 return 0; 421 422 found: 423 *endptr = p; 424 return 1; 425 } 426 427 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 428 u8 pos, int cap, int *ttl) 429 { 430 u8 id; 431 u16 ent; 432 433 pci_bus_read_config_byte(bus, devfn, pos, &pos); 434 435 while ((*ttl)--) { 436 if (pos < 0x40) 437 break; 438 pos &= ~3; 439 pci_bus_read_config_word(bus, devfn, pos, &ent); 440 441 id = ent & 0xff; 442 if (id == 0xff) 443 break; 444 if (id == cap) 445 return pos; 446 pos = (ent >> 8); 447 } 448 return 0; 449 } 450 451 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 452 u8 pos, int cap) 453 { 454 int ttl = PCI_FIND_CAP_TTL; 455 456 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 457 } 458 459 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 460 { 461 return __pci_find_next_cap(dev->bus, dev->devfn, 462 pos + PCI_CAP_LIST_NEXT, cap); 463 } 464 EXPORT_SYMBOL_GPL(pci_find_next_capability); 465 466 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 467 unsigned int devfn, u8 hdr_type) 468 { 469 u16 status; 470 471 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 472 if (!(status & PCI_STATUS_CAP_LIST)) 473 return 0; 474 475 switch (hdr_type) { 476 case PCI_HEADER_TYPE_NORMAL: 477 case PCI_HEADER_TYPE_BRIDGE: 478 return PCI_CAPABILITY_LIST; 479 case PCI_HEADER_TYPE_CARDBUS: 480 return PCI_CB_CAPABILITY_LIST; 481 } 482 483 return 0; 484 } 485 486 /** 487 * pci_find_capability - query for devices' capabilities 488 * @dev: PCI device to query 489 * @cap: capability code 490 * 491 * Tell if a device supports a given PCI capability. 492 * Returns the address of the requested capability structure within the 493 * device's PCI configuration space or 0 in case the device does not 494 * support it. Possible values for @cap include: 495 * 496 * %PCI_CAP_ID_PM Power Management 497 * %PCI_CAP_ID_AGP Accelerated Graphics Port 498 * %PCI_CAP_ID_VPD Vital Product Data 499 * %PCI_CAP_ID_SLOTID Slot Identification 500 * %PCI_CAP_ID_MSI Message Signalled Interrupts 501 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 502 * %PCI_CAP_ID_PCIX PCI-X 503 * %PCI_CAP_ID_EXP PCI Express 504 */ 505 u8 pci_find_capability(struct pci_dev *dev, int cap) 506 { 507 u8 pos; 508 509 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 510 if (pos) 511 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 512 513 return pos; 514 } 515 EXPORT_SYMBOL(pci_find_capability); 516 517 /** 518 * pci_bus_find_capability - query for devices' capabilities 519 * @bus: the PCI bus to query 520 * @devfn: PCI device to query 521 * @cap: capability code 522 * 523 * Like pci_find_capability() but works for PCI devices that do not have a 524 * pci_dev structure set up yet. 525 * 526 * Returns the address of the requested capability structure within the 527 * device's PCI configuration space or 0 in case the device does not 528 * support it. 529 */ 530 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 531 { 532 u8 hdr_type, pos; 533 534 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 535 536 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK); 537 if (pos) 538 pos = __pci_find_next_cap(bus, devfn, pos, cap); 539 540 return pos; 541 } 542 EXPORT_SYMBOL(pci_bus_find_capability); 543 544 /** 545 * pci_find_next_ext_capability - Find an extended capability 546 * @dev: PCI device to query 547 * @start: address at which to start looking (0 to start at beginning of list) 548 * @cap: capability code 549 * 550 * Returns the address of the next matching extended capability structure 551 * within the device's PCI configuration space or 0 if the device does 552 * not support it. Some capabilities can occur several times, e.g., the 553 * vendor-specific capability, and this provides a way to find them all. 554 */ 555 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 556 { 557 u32 header; 558 int ttl; 559 u16 pos = PCI_CFG_SPACE_SIZE; 560 561 /* minimum 8 bytes per capability */ 562 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 563 564 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 565 return 0; 566 567 if (start) 568 pos = start; 569 570 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 571 return 0; 572 573 /* 574 * If we have no capabilities, this is indicated by cap ID, 575 * cap version and next pointer all being 0. 576 */ 577 if (header == 0) 578 return 0; 579 580 while (ttl-- > 0) { 581 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 582 return pos; 583 584 pos = PCI_EXT_CAP_NEXT(header); 585 if (pos < PCI_CFG_SPACE_SIZE) 586 break; 587 588 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 589 break; 590 } 591 592 return 0; 593 } 594 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 595 596 /** 597 * pci_find_ext_capability - Find an extended capability 598 * @dev: PCI device to query 599 * @cap: capability code 600 * 601 * Returns the address of the requested extended capability structure 602 * within the device's PCI configuration space or 0 if the device does 603 * not support it. Possible values for @cap include: 604 * 605 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 606 * %PCI_EXT_CAP_ID_VC Virtual Channel 607 * %PCI_EXT_CAP_ID_DSN Device Serial Number 608 * %PCI_EXT_CAP_ID_PWR Power Budgeting 609 */ 610 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 611 { 612 return pci_find_next_ext_capability(dev, 0, cap); 613 } 614 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 615 616 /** 617 * pci_get_dsn - Read and return the 8-byte Device Serial Number 618 * @dev: PCI device to query 619 * 620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 621 * Number. 622 * 623 * Returns the DSN, or zero if the capability does not exist. 624 */ 625 u64 pci_get_dsn(struct pci_dev *dev) 626 { 627 u32 dword; 628 u64 dsn; 629 int pos; 630 631 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 632 if (!pos) 633 return 0; 634 635 /* 636 * The Device Serial Number is two dwords offset 4 bytes from the 637 * capability position. The specification says that the first dword is 638 * the lower half, and the second dword is the upper half. 639 */ 640 pos += 4; 641 pci_read_config_dword(dev, pos, &dword); 642 dsn = (u64)dword; 643 pci_read_config_dword(dev, pos + 4, &dword); 644 dsn |= ((u64)dword) << 32; 645 646 return dsn; 647 } 648 EXPORT_SYMBOL_GPL(pci_get_dsn); 649 650 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 651 { 652 int rc, ttl = PCI_FIND_CAP_TTL; 653 u8 cap, mask; 654 655 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 656 mask = HT_3BIT_CAP_MASK; 657 else 658 mask = HT_5BIT_CAP_MASK; 659 660 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 661 PCI_CAP_ID_HT, &ttl); 662 while (pos) { 663 rc = pci_read_config_byte(dev, pos + 3, &cap); 664 if (rc != PCIBIOS_SUCCESSFUL) 665 return 0; 666 667 if ((cap & mask) == ht_cap) 668 return pos; 669 670 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 671 pos + PCI_CAP_LIST_NEXT, 672 PCI_CAP_ID_HT, &ttl); 673 } 674 675 return 0; 676 } 677 678 /** 679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 680 * @dev: PCI device to query 681 * @pos: Position from which to continue searching 682 * @ht_cap: HyperTransport capability code 683 * 684 * To be used in conjunction with pci_find_ht_capability() to search for 685 * all capabilities matching @ht_cap. @pos should always be a value returned 686 * from pci_find_ht_capability(). 687 * 688 * NB. To be 100% safe against broken PCI devices, the caller should take 689 * steps to avoid an infinite loop. 690 */ 691 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 692 { 693 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 694 } 695 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 696 697 /** 698 * pci_find_ht_capability - query a device's HyperTransport capabilities 699 * @dev: PCI device to query 700 * @ht_cap: HyperTransport capability code 701 * 702 * Tell if a device supports a given HyperTransport capability. 703 * Returns an address within the device's PCI configuration space 704 * or 0 in case the device does not support the request capability. 705 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 706 * which has a HyperTransport capability matching @ht_cap. 707 */ 708 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 709 { 710 u8 pos; 711 712 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 713 if (pos) 714 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 715 716 return pos; 717 } 718 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 719 720 /** 721 * pci_find_vsec_capability - Find a vendor-specific extended capability 722 * @dev: PCI device to query 723 * @vendor: Vendor ID for which capability is defined 724 * @cap: Vendor-specific capability ID 725 * 726 * If @dev has Vendor ID @vendor, search for a VSEC capability with 727 * VSEC ID @cap. If found, return the capability offset in 728 * config space; otherwise return 0. 729 */ 730 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 731 { 732 u16 vsec = 0; 733 u32 header; 734 int ret; 735 736 if (vendor != dev->vendor) 737 return 0; 738 739 while ((vsec = pci_find_next_ext_capability(dev, vsec, 740 PCI_EXT_CAP_ID_VNDR))) { 741 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 742 if (ret != PCIBIOS_SUCCESSFUL) 743 continue; 744 745 if (PCI_VNDR_HEADER_ID(header) == cap) 746 return vsec; 747 } 748 749 return 0; 750 } 751 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 752 753 /** 754 * pci_find_dvsec_capability - Find DVSEC for vendor 755 * @dev: PCI device to query 756 * @vendor: Vendor ID to match for the DVSEC 757 * @dvsec: Designated Vendor-specific capability ID 758 * 759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 760 * offset in config space; otherwise return 0. 761 */ 762 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 763 { 764 int pos; 765 766 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 767 if (!pos) 768 return 0; 769 770 while (pos) { 771 u16 v, id; 772 773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 775 if (vendor == v && dvsec == id) 776 return pos; 777 778 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 779 } 780 781 return 0; 782 } 783 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 784 785 /** 786 * pci_find_parent_resource - return resource region of parent bus of given 787 * region 788 * @dev: PCI device structure contains resources to be searched 789 * @res: child resource record for which parent is sought 790 * 791 * For given resource region of given device, return the resource region of 792 * parent bus the given region is contained in. 793 */ 794 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 795 struct resource *res) 796 { 797 const struct pci_bus *bus = dev->bus; 798 struct resource *r; 799 800 pci_bus_for_each_resource(bus, r) { 801 if (!r) 802 continue; 803 if (resource_contains(r, res)) { 804 805 /* 806 * If the window is prefetchable but the BAR is 807 * not, the allocator made a mistake. 808 */ 809 if (r->flags & IORESOURCE_PREFETCH && 810 !(res->flags & IORESOURCE_PREFETCH)) 811 return NULL; 812 813 /* 814 * If we're below a transparent bridge, there may 815 * be both a positively-decoded aperture and a 816 * subtractively-decoded region that contain the BAR. 817 * We want the positively-decoded one, so this depends 818 * on pci_bus_for_each_resource() giving us those 819 * first. 820 */ 821 return r; 822 } 823 } 824 return NULL; 825 } 826 EXPORT_SYMBOL(pci_find_parent_resource); 827 828 /** 829 * pci_find_resource - Return matching PCI device resource 830 * @dev: PCI device to query 831 * @res: Resource to look for 832 * 833 * Goes over standard PCI resources (BARs) and checks if the given resource 834 * is partially or fully contained in any of them. In that case the 835 * matching resource is returned, %NULL otherwise. 836 */ 837 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 838 { 839 int i; 840 841 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 842 struct resource *r = &dev->resource[i]; 843 844 if (r->start && resource_contains(r, res)) 845 return r; 846 } 847 848 return NULL; 849 } 850 EXPORT_SYMBOL(pci_find_resource); 851 852 /** 853 * pci_resource_name - Return the name of the PCI resource 854 * @dev: PCI device to query 855 * @i: index of the resource 856 * 857 * Return the standard PCI resource (BAR) name according to their index. 858 */ 859 const char *pci_resource_name(struct pci_dev *dev, unsigned int i) 860 { 861 static const char * const bar_name[] = { 862 "BAR 0", 863 "BAR 1", 864 "BAR 2", 865 "BAR 3", 866 "BAR 4", 867 "BAR 5", 868 "ROM", 869 #ifdef CONFIG_PCI_IOV 870 "VF BAR 0", 871 "VF BAR 1", 872 "VF BAR 2", 873 "VF BAR 3", 874 "VF BAR 4", 875 "VF BAR 5", 876 #endif 877 "bridge window", /* "io" included in %pR */ 878 "bridge window", /* "mem" included in %pR */ 879 "bridge window", /* "mem pref" included in %pR */ 880 }; 881 static const char * const cardbus_name[] = { 882 "BAR 1", 883 "unknown", 884 "unknown", 885 "unknown", 886 "unknown", 887 "unknown", 888 #ifdef CONFIG_PCI_IOV 889 "unknown", 890 "unknown", 891 "unknown", 892 "unknown", 893 "unknown", 894 "unknown", 895 #endif 896 "CardBus bridge window 0", /* I/O */ 897 "CardBus bridge window 1", /* I/O */ 898 "CardBus bridge window 0", /* mem */ 899 "CardBus bridge window 1", /* mem */ 900 }; 901 902 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS && 903 i < ARRAY_SIZE(cardbus_name)) 904 return cardbus_name[i]; 905 906 if (i < ARRAY_SIZE(bar_name)) 907 return bar_name[i]; 908 909 return "unknown"; 910 } 911 912 /** 913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 914 * @dev: the PCI device to operate on 915 * @pos: config space offset of status word 916 * @mask: mask of bit(s) to care about in status word 917 * 918 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 919 */ 920 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 921 { 922 int i; 923 924 /* Wait for Transaction Pending bit clean */ 925 for (i = 0; i < 4; i++) { 926 u16 status; 927 if (i) 928 msleep((1 << (i - 1)) * 100); 929 930 pci_read_config_word(dev, pos, &status); 931 if (!(status & mask)) 932 return 1; 933 } 934 935 return 0; 936 } 937 938 static int pci_acs_enable; 939 940 /** 941 * pci_request_acs - ask for ACS to be enabled if supported 942 */ 943 void pci_request_acs(void) 944 { 945 pci_acs_enable = 1; 946 } 947 948 static const char *disable_acs_redir_param; 949 static const char *config_acs_param; 950 951 struct pci_acs { 952 u16 cap; 953 u16 ctrl; 954 u16 fw_ctrl; 955 }; 956 957 static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps, 958 const char *p, u16 mask, u16 flags) 959 { 960 char *delimit; 961 int ret = 0; 962 963 if (!p) 964 return; 965 966 while (*p) { 967 if (!mask) { 968 /* Check for ACS flags */ 969 delimit = strstr(p, "@"); 970 if (delimit) { 971 int end; 972 u32 shift = 0; 973 974 end = delimit - p - 1; 975 976 while (end > -1) { 977 if (*(p + end) == '0') { 978 mask |= 1 << shift; 979 shift++; 980 end--; 981 } else if (*(p + end) == '1') { 982 mask |= 1 << shift; 983 flags |= 1 << shift; 984 shift++; 985 end--; 986 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) { 987 shift++; 988 end--; 989 } else { 990 pci_err(dev, "Invalid ACS flags... Ignoring\n"); 991 return; 992 } 993 } 994 p = delimit + 1; 995 } else { 996 pci_err(dev, "ACS Flags missing\n"); 997 return; 998 } 999 } 1000 1001 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR | 1002 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) { 1003 pci_err(dev, "Invalid ACS flags specified\n"); 1004 return; 1005 } 1006 1007 ret = pci_dev_str_match(dev, p, &p); 1008 if (ret < 0) { 1009 pr_info_once("PCI: Can't parse ACS command line parameter\n"); 1010 break; 1011 } else if (ret == 1) { 1012 /* Found a match */ 1013 break; 1014 } 1015 1016 if (*p != ';' && *p != ',') { 1017 /* End of param or invalid format */ 1018 break; 1019 } 1020 p++; 1021 } 1022 1023 if (ret != 1) 1024 return; 1025 1026 if (!pci_dev_specific_disable_acs_redir(dev)) 1027 return; 1028 1029 pci_dbg(dev, "ACS mask = %#06x\n", mask); 1030 pci_dbg(dev, "ACS flags = %#06x\n", flags); 1031 1032 /* If mask is 0 then we copy the bit from the firmware setting. */ 1033 caps->ctrl = (caps->ctrl & ~mask) | (caps->fw_ctrl & mask); 1034 caps->ctrl |= flags; 1035 1036 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl); 1037 } 1038 1039 /** 1040 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 1041 * @dev: the PCI device 1042 * @caps: default ACS controls 1043 */ 1044 static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps) 1045 { 1046 /* Source Validation */ 1047 caps->ctrl |= (caps->cap & PCI_ACS_SV); 1048 1049 /* P2P Request Redirect */ 1050 caps->ctrl |= (caps->cap & PCI_ACS_RR); 1051 1052 /* P2P Completion Redirect */ 1053 caps->ctrl |= (caps->cap & PCI_ACS_CR); 1054 1055 /* Upstream Forwarding */ 1056 caps->ctrl |= (caps->cap & PCI_ACS_UF); 1057 1058 /* Enable Translation Blocking for external devices and noats */ 1059 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 1060 caps->ctrl |= (caps->cap & PCI_ACS_TB); 1061 } 1062 1063 /** 1064 * pci_enable_acs - enable ACS if hardware support it 1065 * @dev: the PCI device 1066 */ 1067 static void pci_enable_acs(struct pci_dev *dev) 1068 { 1069 struct pci_acs caps; 1070 int pos; 1071 1072 pos = dev->acs_cap; 1073 if (!pos) 1074 return; 1075 1076 pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap); 1077 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl); 1078 caps.fw_ctrl = caps.ctrl; 1079 1080 /* If an iommu is present we start with kernel default caps */ 1081 if (pci_acs_enable) { 1082 if (pci_dev_specific_enable_acs(dev)) 1083 pci_std_enable_acs(dev, &caps); 1084 } 1085 1086 /* 1087 * Always apply caps from the command line, even if there is no iommu. 1088 * Trust that the admin has a reason to change the ACS settings. 1089 */ 1090 __pci_config_acs(dev, &caps, disable_acs_redir_param, 1091 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC, 1092 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)); 1093 __pci_config_acs(dev, &caps, config_acs_param, 0, 0); 1094 1095 pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl); 1096 } 1097 1098 /** 1099 * pcie_read_tlp_log - read TLP Header Log 1100 * @dev: PCIe device 1101 * @where: PCI Config offset of TLP Header Log 1102 * @tlp_log: TLP Log structure to fill 1103 * 1104 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC. 1105 * 1106 * Return: 0 on success and filled TLP Log structure, <0 on error. 1107 */ 1108 int pcie_read_tlp_log(struct pci_dev *dev, int where, 1109 struct pcie_tlp_log *tlp_log) 1110 { 1111 int i, ret; 1112 1113 memset(tlp_log, 0, sizeof(*tlp_log)); 1114 1115 for (i = 0; i < 4; i++) { 1116 ret = pci_read_config_dword(dev, where + i * 4, 1117 &tlp_log->dw[i]); 1118 if (ret) 1119 return pcibios_err_to_errno(ret); 1120 } 1121 1122 return 0; 1123 } 1124 EXPORT_SYMBOL_GPL(pcie_read_tlp_log); 1125 1126 /** 1127 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1128 * @dev: PCI device to have its BARs restored 1129 * 1130 * Restore the BAR values for a given device, so as to make it 1131 * accessible by its driver. 1132 */ 1133 static void pci_restore_bars(struct pci_dev *dev) 1134 { 1135 int i; 1136 1137 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1138 pci_update_resource(dev, i); 1139 } 1140 1141 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1142 { 1143 if (pci_use_mid_pm()) 1144 return true; 1145 1146 return acpi_pci_power_manageable(dev); 1147 } 1148 1149 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1150 pci_power_t t) 1151 { 1152 if (pci_use_mid_pm()) 1153 return mid_pci_set_power_state(dev, t); 1154 1155 return acpi_pci_set_power_state(dev, t); 1156 } 1157 1158 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1159 { 1160 if (pci_use_mid_pm()) 1161 return mid_pci_get_power_state(dev); 1162 1163 return acpi_pci_get_power_state(dev); 1164 } 1165 1166 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1167 { 1168 if (!pci_use_mid_pm()) 1169 acpi_pci_refresh_power_state(dev); 1170 } 1171 1172 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1173 { 1174 if (pci_use_mid_pm()) 1175 return PCI_POWER_ERROR; 1176 1177 return acpi_pci_choose_state(dev); 1178 } 1179 1180 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1181 { 1182 if (pci_use_mid_pm()) 1183 return PCI_POWER_ERROR; 1184 1185 return acpi_pci_wakeup(dev, enable); 1186 } 1187 1188 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1189 { 1190 if (pci_use_mid_pm()) 1191 return false; 1192 1193 return acpi_pci_need_resume(dev); 1194 } 1195 1196 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1197 { 1198 if (pci_use_mid_pm()) 1199 return false; 1200 1201 return acpi_pci_bridge_d3(dev); 1202 } 1203 1204 /** 1205 * pci_update_current_state - Read power state of given device and cache it 1206 * @dev: PCI device to handle. 1207 * @state: State to cache in case the device doesn't have the PM capability 1208 * 1209 * The power state is read from the PMCSR register, which however is 1210 * inaccessible in D3cold. The platform firmware is therefore queried first 1211 * to detect accessibility of the register. In case the platform firmware 1212 * reports an incorrect state or the device isn't power manageable by the 1213 * platform at all, we try to detect D3cold by testing accessibility of the 1214 * vendor ID in config space. 1215 */ 1216 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1217 { 1218 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1219 dev->current_state = PCI_D3cold; 1220 } else if (dev->pm_cap) { 1221 u16 pmcsr; 1222 1223 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1224 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1225 dev->current_state = PCI_D3cold; 1226 return; 1227 } 1228 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1229 } else { 1230 dev->current_state = state; 1231 } 1232 } 1233 1234 /** 1235 * pci_refresh_power_state - Refresh the given device's power state data 1236 * @dev: Target PCI device. 1237 * 1238 * Ask the platform to refresh the devices power state information and invoke 1239 * pci_update_current_state() to update its current PCI power state. 1240 */ 1241 void pci_refresh_power_state(struct pci_dev *dev) 1242 { 1243 platform_pci_refresh_power_state(dev); 1244 pci_update_current_state(dev, dev->current_state); 1245 } 1246 1247 /** 1248 * pci_platform_power_transition - Use platform to change device power state 1249 * @dev: PCI device to handle. 1250 * @state: State to put the device into. 1251 */ 1252 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1253 { 1254 int error; 1255 1256 error = platform_pci_set_power_state(dev, state); 1257 if (!error) 1258 pci_update_current_state(dev, state); 1259 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1260 dev->current_state = PCI_D0; 1261 1262 return error; 1263 } 1264 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1265 1266 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1267 { 1268 pm_request_resume(&pci_dev->dev); 1269 return 0; 1270 } 1271 1272 /** 1273 * pci_resume_bus - Walk given bus and runtime resume devices on it 1274 * @bus: Top bus of the subtree to walk. 1275 */ 1276 void pci_resume_bus(struct pci_bus *bus) 1277 { 1278 if (bus) 1279 pci_walk_bus(bus, pci_resume_one, NULL); 1280 } 1281 1282 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1283 { 1284 int delay = 1; 1285 bool retrain = false; 1286 struct pci_dev *bridge; 1287 1288 if (pci_is_pcie(dev)) { 1289 bridge = pci_upstream_bridge(dev); 1290 if (bridge) 1291 retrain = true; 1292 } 1293 1294 /* 1295 * After reset, the device should not silently discard config 1296 * requests, but it may still indicate that it needs more time by 1297 * responding to them with CRS completions. The Root Port will 1298 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1299 * the read (except when CRS SV is enabled and the read was for the 1300 * Vendor ID; in that case it synthesizes 0x0001 data). 1301 * 1302 * Wait for the device to return a non-CRS completion. Read the 1303 * Command register instead of Vendor ID so we don't have to 1304 * contend with the CRS SV value. 1305 */ 1306 for (;;) { 1307 u32 id; 1308 1309 if (pci_dev_is_disconnected(dev)) { 1310 pci_dbg(dev, "disconnected; not waiting\n"); 1311 return -ENOTTY; 1312 } 1313 1314 pci_read_config_dword(dev, PCI_COMMAND, &id); 1315 if (!PCI_POSSIBLE_ERROR(id)) 1316 break; 1317 1318 if (delay > timeout) { 1319 pci_warn(dev, "not ready %dms after %s; giving up\n", 1320 delay - 1, reset_type); 1321 return -ENOTTY; 1322 } 1323 1324 if (delay > PCI_RESET_WAIT) { 1325 if (retrain) { 1326 retrain = false; 1327 if (pcie_failed_link_retrain(bridge)) { 1328 delay = 1; 1329 continue; 1330 } 1331 } 1332 pci_info(dev, "not ready %dms after %s; waiting\n", 1333 delay - 1, reset_type); 1334 } 1335 1336 msleep(delay); 1337 delay *= 2; 1338 } 1339 1340 if (delay > PCI_RESET_WAIT) 1341 pci_info(dev, "ready %dms after %s\n", delay - 1, 1342 reset_type); 1343 else 1344 pci_dbg(dev, "ready %dms after %s\n", delay - 1, 1345 reset_type); 1346 1347 return 0; 1348 } 1349 1350 /** 1351 * pci_power_up - Put the given device into D0 1352 * @dev: PCI device to power up 1353 * 1354 * On success, return 0 or 1, depending on whether or not it is necessary to 1355 * restore the device's BARs subsequently (1 is returned in that case). 1356 * 1357 * On failure, return a negative error code. Always return failure if @dev 1358 * lacks a Power Management Capability, even if the platform was able to 1359 * put the device in D0 via non-PCI means. 1360 */ 1361 int pci_power_up(struct pci_dev *dev) 1362 { 1363 bool need_restore; 1364 pci_power_t state; 1365 u16 pmcsr; 1366 1367 platform_pci_set_power_state(dev, PCI_D0); 1368 1369 if (!dev->pm_cap) { 1370 state = platform_pci_get_power_state(dev); 1371 if (state == PCI_UNKNOWN) 1372 dev->current_state = PCI_D0; 1373 else 1374 dev->current_state = state; 1375 1376 return -EIO; 1377 } 1378 1379 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1380 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1381 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1382 pci_power_name(dev->current_state)); 1383 dev->current_state = PCI_D3cold; 1384 return -EIO; 1385 } 1386 1387 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1388 1389 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1390 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1391 1392 if (state == PCI_D0) 1393 goto end; 1394 1395 /* 1396 * Force the entire word to 0. This doesn't affect PME_Status, disables 1397 * PME_En, and sets PowerState to 0. 1398 */ 1399 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1400 1401 /* Mandatory transition delays; see PCI PM 1.2. */ 1402 if (state == PCI_D3hot) 1403 pci_dev_d3_sleep(dev); 1404 else if (state == PCI_D2) 1405 udelay(PCI_PM_D2_DELAY); 1406 1407 end: 1408 dev->current_state = PCI_D0; 1409 if (need_restore) 1410 return 1; 1411 1412 return 0; 1413 } 1414 1415 /** 1416 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1417 * @dev: PCI device to power up 1418 * @locked: whether pci_bus_sem is held 1419 * 1420 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1421 * to confirm the state change, restore its BARs if they might be lost and 1422 * reconfigure ASPM in accordance with the new power state. 1423 * 1424 * If pci_restore_state() is going to be called right after a power state change 1425 * to D0, it is more efficient to use pci_power_up() directly instead of this 1426 * function. 1427 */ 1428 static int pci_set_full_power_state(struct pci_dev *dev, bool locked) 1429 { 1430 u16 pmcsr; 1431 int ret; 1432 1433 ret = pci_power_up(dev); 1434 if (ret < 0) { 1435 if (dev->current_state == PCI_D0) 1436 return 0; 1437 1438 return ret; 1439 } 1440 1441 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1442 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1443 if (dev->current_state != PCI_D0) { 1444 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1445 pci_power_name(dev->current_state)); 1446 } else if (ret > 0) { 1447 /* 1448 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1449 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1450 * from D3hot to D0 _may_ perform an internal reset, thereby 1451 * going to "D0 Uninitialized" rather than "D0 Initialized". 1452 * For example, at least some versions of the 3c905B and the 1453 * 3c556B exhibit this behaviour. 1454 * 1455 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1456 * devices in a D3hot state at boot. Consequently, we need to 1457 * restore at least the BARs so that the device will be 1458 * accessible to its driver. 1459 */ 1460 pci_restore_bars(dev); 1461 } 1462 1463 if (dev->bus->self) 1464 pcie_aspm_pm_state_change(dev->bus->self, locked); 1465 1466 return 0; 1467 } 1468 1469 /** 1470 * __pci_dev_set_current_state - Set current state of a PCI device 1471 * @dev: Device to handle 1472 * @data: pointer to state to be set 1473 */ 1474 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1475 { 1476 pci_power_t state = *(pci_power_t *)data; 1477 1478 dev->current_state = state; 1479 return 0; 1480 } 1481 1482 /** 1483 * pci_bus_set_current_state - Walk given bus and set current state of devices 1484 * @bus: Top bus of the subtree to walk. 1485 * @state: state to be set 1486 */ 1487 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1488 { 1489 if (bus) 1490 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1491 } 1492 1493 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked) 1494 { 1495 if (!bus) 1496 return; 1497 1498 if (locked) 1499 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state); 1500 else 1501 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1502 } 1503 1504 /** 1505 * pci_set_low_power_state - Put a PCI device into a low-power state. 1506 * @dev: PCI device to handle. 1507 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1508 * @locked: whether pci_bus_sem is held 1509 * 1510 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1511 * 1512 * RETURN VALUE: 1513 * -EINVAL if the requested state is invalid. 1514 * -EIO if device does not support PCI PM or its PM capabilities register has a 1515 * wrong version, or device doesn't support the requested state. 1516 * 0 if device already is in the requested state. 1517 * 0 if device's power state has been successfully changed. 1518 */ 1519 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1520 { 1521 u16 pmcsr; 1522 1523 if (!dev->pm_cap) 1524 return -EIO; 1525 1526 /* 1527 * Validate transition: We can enter D0 from any state, but if 1528 * we're already in a low-power state, we can only go deeper. E.g., 1529 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1530 * we'd have to go from D3 to D0, then to D1. 1531 */ 1532 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1533 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1534 pci_power_name(dev->current_state), 1535 pci_power_name(state)); 1536 return -EINVAL; 1537 } 1538 1539 /* Check if this device supports the desired state */ 1540 if ((state == PCI_D1 && !dev->d1_support) 1541 || (state == PCI_D2 && !dev->d2_support)) 1542 return -EIO; 1543 1544 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1545 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1546 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1547 pci_power_name(dev->current_state), 1548 pci_power_name(state)); 1549 dev->current_state = PCI_D3cold; 1550 return -EIO; 1551 } 1552 1553 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1554 pmcsr |= state; 1555 1556 /* Enter specified state */ 1557 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1558 1559 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1560 if (state == PCI_D3hot) 1561 pci_dev_d3_sleep(dev); 1562 else if (state == PCI_D2) 1563 udelay(PCI_PM_D2_DELAY); 1564 1565 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1566 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1567 if (dev->current_state != state) 1568 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1569 pci_power_name(dev->current_state), 1570 pci_power_name(state)); 1571 1572 if (dev->bus->self) 1573 pcie_aspm_pm_state_change(dev->bus->self, locked); 1574 1575 return 0; 1576 } 1577 1578 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1579 { 1580 int error; 1581 1582 /* Bound the state we're entering */ 1583 if (state > PCI_D3cold) 1584 state = PCI_D3cold; 1585 else if (state < PCI_D0) 1586 state = PCI_D0; 1587 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1588 1589 /* 1590 * If the device or the parent bridge do not support PCI 1591 * PM, ignore the request if we're doing anything other 1592 * than putting it into D0 (which would only happen on 1593 * boot). 1594 */ 1595 return 0; 1596 1597 /* Check if we're already there */ 1598 if (dev->current_state == state) 1599 return 0; 1600 1601 if (state == PCI_D0) 1602 return pci_set_full_power_state(dev, locked); 1603 1604 /* 1605 * This device is quirked not to be put into D3, so don't put it in 1606 * D3 1607 */ 1608 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1609 return 0; 1610 1611 if (state == PCI_D3cold) { 1612 /* 1613 * To put the device in D3cold, put it into D3hot in the native 1614 * way, then put it into D3cold using platform ops. 1615 */ 1616 error = pci_set_low_power_state(dev, PCI_D3hot, locked); 1617 1618 if (pci_platform_power_transition(dev, PCI_D3cold)) 1619 return error; 1620 1621 /* Powering off a bridge may power off the whole hierarchy */ 1622 if (dev->current_state == PCI_D3cold) 1623 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked); 1624 } else { 1625 error = pci_set_low_power_state(dev, state, locked); 1626 1627 if (pci_platform_power_transition(dev, state)) 1628 return error; 1629 } 1630 1631 return 0; 1632 } 1633 1634 /** 1635 * pci_set_power_state - Set the power state of a PCI device 1636 * @dev: PCI device to handle. 1637 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1638 * 1639 * Transition a device to a new power state, using the platform firmware and/or 1640 * the device's PCI PM registers. 1641 * 1642 * RETURN VALUE: 1643 * -EINVAL if the requested state is invalid. 1644 * -EIO if device does not support PCI PM or its PM capabilities register has a 1645 * wrong version, or device doesn't support the requested state. 1646 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1647 * 0 if device already is in the requested state. 1648 * 0 if the transition is to D3 but D3 is not supported. 1649 * 0 if device's power state has been successfully changed. 1650 */ 1651 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1652 { 1653 return __pci_set_power_state(dev, state, false); 1654 } 1655 EXPORT_SYMBOL(pci_set_power_state); 1656 1657 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state) 1658 { 1659 lockdep_assert_held(&pci_bus_sem); 1660 1661 return __pci_set_power_state(dev, state, true); 1662 } 1663 EXPORT_SYMBOL(pci_set_power_state_locked); 1664 1665 #define PCI_EXP_SAVE_REGS 7 1666 1667 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1668 u16 cap, bool extended) 1669 { 1670 struct pci_cap_saved_state *tmp; 1671 1672 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1673 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1674 return tmp; 1675 } 1676 return NULL; 1677 } 1678 1679 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1680 { 1681 return _pci_find_saved_cap(dev, cap, false); 1682 } 1683 1684 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1685 { 1686 return _pci_find_saved_cap(dev, cap, true); 1687 } 1688 1689 static int pci_save_pcie_state(struct pci_dev *dev) 1690 { 1691 int i = 0; 1692 struct pci_cap_saved_state *save_state; 1693 u16 *cap; 1694 1695 if (!pci_is_pcie(dev)) 1696 return 0; 1697 1698 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1699 if (!save_state) { 1700 pci_err(dev, "buffer not found in %s\n", __func__); 1701 return -ENOMEM; 1702 } 1703 1704 cap = (u16 *)&save_state->cap.data[0]; 1705 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1706 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1707 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1708 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1709 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1710 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1711 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1712 1713 pci_save_aspm_l1ss_state(dev); 1714 pci_save_ltr_state(dev); 1715 1716 return 0; 1717 } 1718 1719 static void pci_restore_pcie_state(struct pci_dev *dev) 1720 { 1721 int i = 0; 1722 struct pci_cap_saved_state *save_state; 1723 u16 *cap; 1724 1725 /* 1726 * Restore max latencies (in the LTR capability) before enabling 1727 * LTR itself in PCI_EXP_DEVCTL2. 1728 */ 1729 pci_restore_ltr_state(dev); 1730 pci_restore_aspm_l1ss_state(dev); 1731 1732 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1733 if (!save_state) 1734 return; 1735 1736 /* 1737 * Downstream ports reset the LTR enable bit when link goes down. 1738 * Check and re-configure the bit here before restoring device. 1739 * PCIe r5.0, sec 7.5.3.16. 1740 */ 1741 pci_bridge_reconfigure_ltr(dev); 1742 1743 cap = (u16 *)&save_state->cap.data[0]; 1744 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1745 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1746 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1747 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1748 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1749 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1750 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1751 } 1752 1753 static int pci_save_pcix_state(struct pci_dev *dev) 1754 { 1755 int pos; 1756 struct pci_cap_saved_state *save_state; 1757 1758 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1759 if (!pos) 1760 return 0; 1761 1762 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1763 if (!save_state) { 1764 pci_err(dev, "buffer not found in %s\n", __func__); 1765 return -ENOMEM; 1766 } 1767 1768 pci_read_config_word(dev, pos + PCI_X_CMD, 1769 (u16 *)save_state->cap.data); 1770 1771 return 0; 1772 } 1773 1774 static void pci_restore_pcix_state(struct pci_dev *dev) 1775 { 1776 int i = 0, pos; 1777 struct pci_cap_saved_state *save_state; 1778 u16 *cap; 1779 1780 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1781 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1782 if (!save_state || !pos) 1783 return; 1784 cap = (u16 *)&save_state->cap.data[0]; 1785 1786 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1787 } 1788 1789 /** 1790 * pci_save_state - save the PCI configuration space of a device before 1791 * suspending 1792 * @dev: PCI device that we're dealing with 1793 */ 1794 int pci_save_state(struct pci_dev *dev) 1795 { 1796 int i; 1797 /* XXX: 100% dword access ok here? */ 1798 for (i = 0; i < 16; i++) { 1799 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1800 pci_dbg(dev, "save config %#04x: %#010x\n", 1801 i * 4, dev->saved_config_space[i]); 1802 } 1803 dev->state_saved = true; 1804 1805 i = pci_save_pcie_state(dev); 1806 if (i != 0) 1807 return i; 1808 1809 i = pci_save_pcix_state(dev); 1810 if (i != 0) 1811 return i; 1812 1813 pci_save_dpc_state(dev); 1814 pci_save_aer_state(dev); 1815 pci_save_ptm_state(dev); 1816 return pci_save_vc_state(dev); 1817 } 1818 EXPORT_SYMBOL(pci_save_state); 1819 1820 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1821 u32 saved_val, int retry, bool force) 1822 { 1823 u32 val; 1824 1825 pci_read_config_dword(pdev, offset, &val); 1826 if (!force && val == saved_val) 1827 return; 1828 1829 for (;;) { 1830 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1831 offset, val, saved_val); 1832 pci_write_config_dword(pdev, offset, saved_val); 1833 if (retry-- <= 0) 1834 return; 1835 1836 pci_read_config_dword(pdev, offset, &val); 1837 if (val == saved_val) 1838 return; 1839 1840 mdelay(1); 1841 } 1842 } 1843 1844 static void pci_restore_config_space_range(struct pci_dev *pdev, 1845 int start, int end, int retry, 1846 bool force) 1847 { 1848 int index; 1849 1850 for (index = end; index >= start; index--) 1851 pci_restore_config_dword(pdev, 4 * index, 1852 pdev->saved_config_space[index], 1853 retry, force); 1854 } 1855 1856 static void pci_restore_config_space(struct pci_dev *pdev) 1857 { 1858 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1859 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1860 /* Restore BARs before the command register. */ 1861 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1862 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1863 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1864 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1865 1866 /* 1867 * Force rewriting of prefetch registers to avoid S3 resume 1868 * issues on Intel PCI bridges that occur when these 1869 * registers are not explicitly written. 1870 */ 1871 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1872 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1873 } else { 1874 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1875 } 1876 } 1877 1878 static void pci_restore_rebar_state(struct pci_dev *pdev) 1879 { 1880 unsigned int pos, nbars, i; 1881 u32 ctrl; 1882 1883 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1884 if (!pos) 1885 return; 1886 1887 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1888 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 1889 1890 for (i = 0; i < nbars; i++, pos += 8) { 1891 struct resource *res; 1892 int bar_idx, size; 1893 1894 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1895 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1896 res = pdev->resource + bar_idx; 1897 size = pci_rebar_bytes_to_size(resource_size(res)); 1898 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1899 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 1900 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1901 } 1902 } 1903 1904 /** 1905 * pci_restore_state - Restore the saved state of a PCI device 1906 * @dev: PCI device that we're dealing with 1907 */ 1908 void pci_restore_state(struct pci_dev *dev) 1909 { 1910 if (!dev->state_saved) 1911 return; 1912 1913 pci_restore_pcie_state(dev); 1914 pci_restore_pasid_state(dev); 1915 pci_restore_pri_state(dev); 1916 pci_restore_ats_state(dev); 1917 pci_restore_vc_state(dev); 1918 pci_restore_rebar_state(dev); 1919 pci_restore_dpc_state(dev); 1920 pci_restore_ptm_state(dev); 1921 1922 pci_aer_clear_status(dev); 1923 pci_restore_aer_state(dev); 1924 1925 pci_restore_config_space(dev); 1926 1927 pci_restore_pcix_state(dev); 1928 pci_restore_msi_state(dev); 1929 1930 /* Restore ACS and IOV configuration state */ 1931 pci_enable_acs(dev); 1932 pci_restore_iov_state(dev); 1933 1934 dev->state_saved = false; 1935 } 1936 EXPORT_SYMBOL(pci_restore_state); 1937 1938 struct pci_saved_state { 1939 u32 config_space[16]; 1940 struct pci_cap_saved_data cap[]; 1941 }; 1942 1943 /** 1944 * pci_store_saved_state - Allocate and return an opaque struct containing 1945 * the device saved state. 1946 * @dev: PCI device that we're dealing with 1947 * 1948 * Return NULL if no state or error. 1949 */ 1950 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1951 { 1952 struct pci_saved_state *state; 1953 struct pci_cap_saved_state *tmp; 1954 struct pci_cap_saved_data *cap; 1955 size_t size; 1956 1957 if (!dev->state_saved) 1958 return NULL; 1959 1960 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1961 1962 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1963 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1964 1965 state = kzalloc(size, GFP_KERNEL); 1966 if (!state) 1967 return NULL; 1968 1969 memcpy(state->config_space, dev->saved_config_space, 1970 sizeof(state->config_space)); 1971 1972 cap = state->cap; 1973 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1974 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1975 memcpy(cap, &tmp->cap, len); 1976 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1977 } 1978 /* Empty cap_save terminates list */ 1979 1980 return state; 1981 } 1982 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1983 1984 /** 1985 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1986 * @dev: PCI device that we're dealing with 1987 * @state: Saved state returned from pci_store_saved_state() 1988 */ 1989 int pci_load_saved_state(struct pci_dev *dev, 1990 struct pci_saved_state *state) 1991 { 1992 struct pci_cap_saved_data *cap; 1993 1994 dev->state_saved = false; 1995 1996 if (!state) 1997 return 0; 1998 1999 memcpy(dev->saved_config_space, state->config_space, 2000 sizeof(state->config_space)); 2001 2002 cap = state->cap; 2003 while (cap->size) { 2004 struct pci_cap_saved_state *tmp; 2005 2006 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 2007 if (!tmp || tmp->cap.size != cap->size) 2008 return -EINVAL; 2009 2010 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 2011 cap = (struct pci_cap_saved_data *)((u8 *)cap + 2012 sizeof(struct pci_cap_saved_data) + cap->size); 2013 } 2014 2015 dev->state_saved = true; 2016 return 0; 2017 } 2018 EXPORT_SYMBOL_GPL(pci_load_saved_state); 2019 2020 /** 2021 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 2022 * and free the memory allocated for it. 2023 * @dev: PCI device that we're dealing with 2024 * @state: Pointer to saved state returned from pci_store_saved_state() 2025 */ 2026 int pci_load_and_free_saved_state(struct pci_dev *dev, 2027 struct pci_saved_state **state) 2028 { 2029 int ret = pci_load_saved_state(dev, *state); 2030 kfree(*state); 2031 *state = NULL; 2032 return ret; 2033 } 2034 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 2035 2036 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 2037 { 2038 return pci_enable_resources(dev, bars); 2039 } 2040 2041 static int do_pci_enable_device(struct pci_dev *dev, int bars) 2042 { 2043 int err; 2044 struct pci_dev *bridge; 2045 u16 cmd; 2046 u8 pin; 2047 2048 err = pci_set_power_state(dev, PCI_D0); 2049 if (err < 0 && err != -EIO) 2050 return err; 2051 2052 bridge = pci_upstream_bridge(dev); 2053 if (bridge) 2054 pcie_aspm_powersave_config_link(bridge); 2055 2056 err = pcibios_enable_device(dev, bars); 2057 if (err < 0) 2058 return err; 2059 pci_fixup_device(pci_fixup_enable, dev); 2060 2061 if (dev->msi_enabled || dev->msix_enabled) 2062 return 0; 2063 2064 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 2065 if (pin) { 2066 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2067 if (cmd & PCI_COMMAND_INTX_DISABLE) 2068 pci_write_config_word(dev, PCI_COMMAND, 2069 cmd & ~PCI_COMMAND_INTX_DISABLE); 2070 } 2071 2072 return 0; 2073 } 2074 2075 /** 2076 * pci_reenable_device - Resume abandoned device 2077 * @dev: PCI device to be resumed 2078 * 2079 * NOTE: This function is a backend of pci_default_resume() and is not supposed 2080 * to be called by normal code, write proper resume handler and use it instead. 2081 */ 2082 int pci_reenable_device(struct pci_dev *dev) 2083 { 2084 if (pci_is_enabled(dev)) 2085 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 2086 return 0; 2087 } 2088 EXPORT_SYMBOL(pci_reenable_device); 2089 2090 static void pci_enable_bridge(struct pci_dev *dev) 2091 { 2092 struct pci_dev *bridge; 2093 int retval; 2094 2095 bridge = pci_upstream_bridge(dev); 2096 if (bridge) 2097 pci_enable_bridge(bridge); 2098 2099 if (pci_is_enabled(dev)) { 2100 if (!dev->is_busmaster) 2101 pci_set_master(dev); 2102 return; 2103 } 2104 2105 retval = pci_enable_device(dev); 2106 if (retval) 2107 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2108 retval); 2109 pci_set_master(dev); 2110 } 2111 2112 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2113 { 2114 struct pci_dev *bridge; 2115 int err; 2116 int i, bars = 0; 2117 2118 /* 2119 * Power state could be unknown at this point, either due to a fresh 2120 * boot or a device removal call. So get the current power state 2121 * so that things like MSI message writing will behave as expected 2122 * (e.g. if the device really is in D0 at enable time). 2123 */ 2124 pci_update_current_state(dev, dev->current_state); 2125 2126 if (atomic_inc_return(&dev->enable_cnt) > 1) 2127 return 0; /* already enabled */ 2128 2129 bridge = pci_upstream_bridge(dev); 2130 if (bridge) 2131 pci_enable_bridge(bridge); 2132 2133 /* only skip sriov related */ 2134 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2135 if (dev->resource[i].flags & flags) 2136 bars |= (1 << i); 2137 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2138 if (dev->resource[i].flags & flags) 2139 bars |= (1 << i); 2140 2141 err = do_pci_enable_device(dev, bars); 2142 if (err < 0) 2143 atomic_dec(&dev->enable_cnt); 2144 return err; 2145 } 2146 2147 /** 2148 * pci_enable_device_mem - Initialize a device for use with Memory space 2149 * @dev: PCI device to be initialized 2150 * 2151 * Initialize device before it's used by a driver. Ask low-level code 2152 * to enable Memory resources. Wake up the device if it was suspended. 2153 * Beware, this function can fail. 2154 */ 2155 int pci_enable_device_mem(struct pci_dev *dev) 2156 { 2157 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2158 } 2159 EXPORT_SYMBOL(pci_enable_device_mem); 2160 2161 /** 2162 * pci_enable_device - Initialize device before it's used by a driver. 2163 * @dev: PCI device to be initialized 2164 * 2165 * Initialize device before it's used by a driver. Ask low-level code 2166 * to enable I/O and memory. Wake up the device if it was suspended. 2167 * Beware, this function can fail. 2168 * 2169 * Note we don't actually enable the device many times if we call 2170 * this function repeatedly (we just increment the count). 2171 */ 2172 int pci_enable_device(struct pci_dev *dev) 2173 { 2174 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2175 } 2176 EXPORT_SYMBOL(pci_enable_device); 2177 2178 /* 2179 * pcibios_device_add - provide arch specific hooks when adding device dev 2180 * @dev: the PCI device being added 2181 * 2182 * Permits the platform to provide architecture specific functionality when 2183 * devices are added. This is the default implementation. Architecture 2184 * implementations can override this. 2185 */ 2186 int __weak pcibios_device_add(struct pci_dev *dev) 2187 { 2188 return 0; 2189 } 2190 2191 /** 2192 * pcibios_release_device - provide arch specific hooks when releasing 2193 * device dev 2194 * @dev: the PCI device being released 2195 * 2196 * Permits the platform to provide architecture specific functionality when 2197 * devices are released. This is the default implementation. Architecture 2198 * implementations can override this. 2199 */ 2200 void __weak pcibios_release_device(struct pci_dev *dev) {} 2201 2202 /** 2203 * pcibios_disable_device - disable arch specific PCI resources for device dev 2204 * @dev: the PCI device to disable 2205 * 2206 * Disables architecture specific PCI resources for the device. This 2207 * is the default implementation. Architecture implementations can 2208 * override this. 2209 */ 2210 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2211 2212 static void do_pci_disable_device(struct pci_dev *dev) 2213 { 2214 u16 pci_command; 2215 2216 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2217 if (pci_command & PCI_COMMAND_MASTER) { 2218 pci_command &= ~PCI_COMMAND_MASTER; 2219 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2220 } 2221 2222 pcibios_disable_device(dev); 2223 } 2224 2225 /** 2226 * pci_disable_enabled_device - Disable device without updating enable_cnt 2227 * @dev: PCI device to disable 2228 * 2229 * NOTE: This function is a backend of PCI power management routines and is 2230 * not supposed to be called drivers. 2231 */ 2232 void pci_disable_enabled_device(struct pci_dev *dev) 2233 { 2234 if (pci_is_enabled(dev)) 2235 do_pci_disable_device(dev); 2236 } 2237 2238 /** 2239 * pci_disable_device - Disable PCI device after use 2240 * @dev: PCI device to be disabled 2241 * 2242 * Signal to the system that the PCI device is not in use by the system 2243 * anymore. This only involves disabling PCI bus-mastering, if active. 2244 * 2245 * Note we don't actually disable the device until all callers of 2246 * pci_enable_device() have called pci_disable_device(). 2247 */ 2248 void pci_disable_device(struct pci_dev *dev) 2249 { 2250 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2251 "disabling already-disabled device"); 2252 2253 if (atomic_dec_return(&dev->enable_cnt) != 0) 2254 return; 2255 2256 do_pci_disable_device(dev); 2257 2258 dev->is_busmaster = 0; 2259 } 2260 EXPORT_SYMBOL(pci_disable_device); 2261 2262 /** 2263 * pcibios_set_pcie_reset_state - set reset state for device dev 2264 * @dev: the PCIe device reset 2265 * @state: Reset state to enter into 2266 * 2267 * Set the PCIe reset state for the device. This is the default 2268 * implementation. Architecture implementations can override this. 2269 */ 2270 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2271 enum pcie_reset_state state) 2272 { 2273 return -EINVAL; 2274 } 2275 2276 /** 2277 * pci_set_pcie_reset_state - set reset state for device dev 2278 * @dev: the PCIe device reset 2279 * @state: Reset state to enter into 2280 * 2281 * Sets the PCI reset state for the device. 2282 */ 2283 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2284 { 2285 return pcibios_set_pcie_reset_state(dev, state); 2286 } 2287 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2288 2289 #ifdef CONFIG_PCIEAER 2290 void pcie_clear_device_status(struct pci_dev *dev) 2291 { 2292 u16 sta; 2293 2294 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2295 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2296 } 2297 #endif 2298 2299 /** 2300 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2301 * @dev: PCIe root port or event collector. 2302 */ 2303 void pcie_clear_root_pme_status(struct pci_dev *dev) 2304 { 2305 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2306 } 2307 2308 /** 2309 * pci_check_pme_status - Check if given device has generated PME. 2310 * @dev: Device to check. 2311 * 2312 * Check the PME status of the device and if set, clear it and clear PME enable 2313 * (if set). Return 'true' if PME status and PME enable were both set or 2314 * 'false' otherwise. 2315 */ 2316 bool pci_check_pme_status(struct pci_dev *dev) 2317 { 2318 int pmcsr_pos; 2319 u16 pmcsr; 2320 bool ret = false; 2321 2322 if (!dev->pm_cap) 2323 return false; 2324 2325 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2326 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2327 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2328 return false; 2329 2330 /* Clear PME status. */ 2331 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2332 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2333 /* Disable PME to avoid interrupt flood. */ 2334 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2335 ret = true; 2336 } 2337 2338 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2339 2340 return ret; 2341 } 2342 2343 /** 2344 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2345 * @dev: Device to handle. 2346 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2347 * 2348 * Check if @dev has generated PME and queue a resume request for it in that 2349 * case. 2350 */ 2351 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2352 { 2353 if (pme_poll_reset && dev->pme_poll) 2354 dev->pme_poll = false; 2355 2356 if (pci_check_pme_status(dev)) { 2357 pci_wakeup_event(dev); 2358 pm_request_resume(&dev->dev); 2359 } 2360 return 0; 2361 } 2362 2363 /** 2364 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2365 * @bus: Top bus of the subtree to walk. 2366 */ 2367 void pci_pme_wakeup_bus(struct pci_bus *bus) 2368 { 2369 if (bus) 2370 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2371 } 2372 2373 2374 /** 2375 * pci_pme_capable - check the capability of PCI device to generate PME# 2376 * @dev: PCI device to handle. 2377 * @state: PCI state from which device will issue PME#. 2378 */ 2379 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2380 { 2381 if (!dev->pm_cap) 2382 return false; 2383 2384 return !!(dev->pme_support & (1 << state)); 2385 } 2386 EXPORT_SYMBOL(pci_pme_capable); 2387 2388 static void pci_pme_list_scan(struct work_struct *work) 2389 { 2390 struct pci_pme_device *pme_dev, *n; 2391 2392 mutex_lock(&pci_pme_list_mutex); 2393 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2394 struct pci_dev *pdev = pme_dev->dev; 2395 2396 if (pdev->pme_poll) { 2397 struct pci_dev *bridge = pdev->bus->self; 2398 struct device *dev = &pdev->dev; 2399 struct device *bdev = bridge ? &bridge->dev : NULL; 2400 int bref = 0; 2401 2402 /* 2403 * If we have a bridge, it should be in an active/D0 2404 * state or the configuration space of subordinate 2405 * devices may not be accessible or stable over the 2406 * course of the call. 2407 */ 2408 if (bdev) { 2409 bref = pm_runtime_get_if_active(bdev); 2410 if (!bref) 2411 continue; 2412 2413 if (bridge->current_state != PCI_D0) 2414 goto put_bridge; 2415 } 2416 2417 /* 2418 * The device itself should be suspended but config 2419 * space must be accessible, therefore it cannot be in 2420 * D3cold. 2421 */ 2422 if (pm_runtime_suspended(dev) && 2423 pdev->current_state != PCI_D3cold) 2424 pci_pme_wakeup(pdev, NULL); 2425 2426 put_bridge: 2427 if (bref > 0) 2428 pm_runtime_put(bdev); 2429 } else { 2430 list_del(&pme_dev->list); 2431 kfree(pme_dev); 2432 } 2433 } 2434 if (!list_empty(&pci_pme_list)) 2435 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2436 msecs_to_jiffies(PME_TIMEOUT)); 2437 mutex_unlock(&pci_pme_list_mutex); 2438 } 2439 2440 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2441 { 2442 u16 pmcsr; 2443 2444 if (!dev->pme_support) 2445 return; 2446 2447 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2448 /* Clear PME_Status by writing 1 to it and enable PME# */ 2449 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2450 if (!enable) 2451 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2452 2453 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2454 } 2455 2456 /** 2457 * pci_pme_restore - Restore PME configuration after config space restore. 2458 * @dev: PCI device to update. 2459 */ 2460 void pci_pme_restore(struct pci_dev *dev) 2461 { 2462 u16 pmcsr; 2463 2464 if (!dev->pme_support) 2465 return; 2466 2467 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2468 if (dev->wakeup_prepared) { 2469 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2470 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2471 } else { 2472 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2473 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2474 } 2475 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2476 } 2477 2478 /** 2479 * pci_pme_active - enable or disable PCI device's PME# function 2480 * @dev: PCI device to handle. 2481 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2482 * 2483 * The caller must verify that the device is capable of generating PME# before 2484 * calling this function with @enable equal to 'true'. 2485 */ 2486 void pci_pme_active(struct pci_dev *dev, bool enable) 2487 { 2488 __pci_pme_active(dev, enable); 2489 2490 /* 2491 * PCI (as opposed to PCIe) PME requires that the device have 2492 * its PME# line hooked up correctly. Not all hardware vendors 2493 * do this, so the PME never gets delivered and the device 2494 * remains asleep. The easiest way around this is to 2495 * periodically walk the list of suspended devices and check 2496 * whether any have their PME flag set. The assumption is that 2497 * we'll wake up often enough anyway that this won't be a huge 2498 * hit, and the power savings from the devices will still be a 2499 * win. 2500 * 2501 * Although PCIe uses in-band PME message instead of PME# line 2502 * to report PME, PME does not work for some PCIe devices in 2503 * reality. For example, there are devices that set their PME 2504 * status bits, but don't really bother to send a PME message; 2505 * there are PCI Express Root Ports that don't bother to 2506 * trigger interrupts when they receive PME messages from the 2507 * devices below. So PME poll is used for PCIe devices too. 2508 */ 2509 2510 if (dev->pme_poll) { 2511 struct pci_pme_device *pme_dev; 2512 if (enable) { 2513 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2514 GFP_KERNEL); 2515 if (!pme_dev) { 2516 pci_warn(dev, "can't enable PME#\n"); 2517 return; 2518 } 2519 pme_dev->dev = dev; 2520 mutex_lock(&pci_pme_list_mutex); 2521 list_add(&pme_dev->list, &pci_pme_list); 2522 if (list_is_singular(&pci_pme_list)) 2523 queue_delayed_work(system_freezable_wq, 2524 &pci_pme_work, 2525 msecs_to_jiffies(PME_TIMEOUT)); 2526 mutex_unlock(&pci_pme_list_mutex); 2527 } else { 2528 mutex_lock(&pci_pme_list_mutex); 2529 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2530 if (pme_dev->dev == dev) { 2531 list_del(&pme_dev->list); 2532 kfree(pme_dev); 2533 break; 2534 } 2535 } 2536 mutex_unlock(&pci_pme_list_mutex); 2537 } 2538 } 2539 2540 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2541 } 2542 EXPORT_SYMBOL(pci_pme_active); 2543 2544 /** 2545 * __pci_enable_wake - enable PCI device as wakeup event source 2546 * @dev: PCI device affected 2547 * @state: PCI state from which device will issue wakeup events 2548 * @enable: True to enable event generation; false to disable 2549 * 2550 * This enables the device as a wakeup event source, or disables it. 2551 * When such events involves platform-specific hooks, those hooks are 2552 * called automatically by this routine. 2553 * 2554 * Devices with legacy power management (no standard PCI PM capabilities) 2555 * always require such platform hooks. 2556 * 2557 * RETURN VALUE: 2558 * 0 is returned on success 2559 * -EINVAL is returned if device is not supposed to wake up the system 2560 * Error code depending on the platform is returned if both the platform and 2561 * the native mechanism fail to enable the generation of wake-up events 2562 */ 2563 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2564 { 2565 int ret = 0; 2566 2567 /* 2568 * Bridges that are not power-manageable directly only signal 2569 * wakeup on behalf of subordinate devices which is set up 2570 * elsewhere, so skip them. However, bridges that are 2571 * power-manageable may signal wakeup for themselves (for example, 2572 * on a hotplug event) and they need to be covered here. 2573 */ 2574 if (!pci_power_manageable(dev)) 2575 return 0; 2576 2577 /* Don't do the same thing twice in a row for one device. */ 2578 if (!!enable == !!dev->wakeup_prepared) 2579 return 0; 2580 2581 /* 2582 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2583 * Anderson we should be doing PME# wake enable followed by ACPI wake 2584 * enable. To disable wake-up we call the platform first, for symmetry. 2585 */ 2586 2587 if (enable) { 2588 int error; 2589 2590 /* 2591 * Enable PME signaling if the device can signal PME from 2592 * D3cold regardless of whether or not it can signal PME from 2593 * the current target state, because that will allow it to 2594 * signal PME when the hierarchy above it goes into D3cold and 2595 * the device itself ends up in D3cold as a result of that. 2596 */ 2597 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2598 pci_pme_active(dev, true); 2599 else 2600 ret = 1; 2601 error = platform_pci_set_wakeup(dev, true); 2602 if (ret) 2603 ret = error; 2604 if (!ret) 2605 dev->wakeup_prepared = true; 2606 } else { 2607 platform_pci_set_wakeup(dev, false); 2608 pci_pme_active(dev, false); 2609 dev->wakeup_prepared = false; 2610 } 2611 2612 return ret; 2613 } 2614 2615 /** 2616 * pci_enable_wake - change wakeup settings for a PCI device 2617 * @pci_dev: Target device 2618 * @state: PCI state from which device will issue wakeup events 2619 * @enable: Whether or not to enable event generation 2620 * 2621 * If @enable is set, check device_may_wakeup() for the device before calling 2622 * __pci_enable_wake() for it. 2623 */ 2624 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2625 { 2626 if (enable && !device_may_wakeup(&pci_dev->dev)) 2627 return -EINVAL; 2628 2629 return __pci_enable_wake(pci_dev, state, enable); 2630 } 2631 EXPORT_SYMBOL(pci_enable_wake); 2632 2633 /** 2634 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2635 * @dev: PCI device to prepare 2636 * @enable: True to enable wake-up event generation; false to disable 2637 * 2638 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2639 * and this function allows them to set that up cleanly - pci_enable_wake() 2640 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2641 * ordering constraints. 2642 * 2643 * This function only returns error code if the device is not allowed to wake 2644 * up the system from sleep or it is not capable of generating PME# from both 2645 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2646 */ 2647 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2648 { 2649 return pci_pme_capable(dev, PCI_D3cold) ? 2650 pci_enable_wake(dev, PCI_D3cold, enable) : 2651 pci_enable_wake(dev, PCI_D3hot, enable); 2652 } 2653 EXPORT_SYMBOL(pci_wake_from_d3); 2654 2655 /** 2656 * pci_target_state - find an appropriate low power state for a given PCI dev 2657 * @dev: PCI device 2658 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2659 * 2660 * Use underlying platform code to find a supported low power state for @dev. 2661 * If the platform can't manage @dev, return the deepest state from which it 2662 * can generate wake events, based on any available PME info. 2663 */ 2664 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2665 { 2666 if (platform_pci_power_manageable(dev)) { 2667 /* 2668 * Call the platform to find the target state for the device. 2669 */ 2670 pci_power_t state = platform_pci_choose_state(dev); 2671 2672 switch (state) { 2673 case PCI_POWER_ERROR: 2674 case PCI_UNKNOWN: 2675 return PCI_D3hot; 2676 2677 case PCI_D1: 2678 case PCI_D2: 2679 if (pci_no_d1d2(dev)) 2680 return PCI_D3hot; 2681 } 2682 2683 return state; 2684 } 2685 2686 /* 2687 * If the device is in D3cold even though it's not power-manageable by 2688 * the platform, it may have been powered down by non-standard means. 2689 * Best to let it slumber. 2690 */ 2691 if (dev->current_state == PCI_D3cold) 2692 return PCI_D3cold; 2693 else if (!dev->pm_cap) 2694 return PCI_D0; 2695 2696 if (wakeup && dev->pme_support) { 2697 pci_power_t state = PCI_D3hot; 2698 2699 /* 2700 * Find the deepest state from which the device can generate 2701 * PME#. 2702 */ 2703 while (state && !(dev->pme_support & (1 << state))) 2704 state--; 2705 2706 if (state) 2707 return state; 2708 else if (dev->pme_support & 1) 2709 return PCI_D0; 2710 } 2711 2712 return PCI_D3hot; 2713 } 2714 2715 /** 2716 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2717 * into a sleep state 2718 * @dev: Device to handle. 2719 * 2720 * Choose the power state appropriate for the device depending on whether 2721 * it can wake up the system and/or is power manageable by the platform 2722 * (PCI_D3hot is the default) and put the device into that state. 2723 */ 2724 int pci_prepare_to_sleep(struct pci_dev *dev) 2725 { 2726 bool wakeup = device_may_wakeup(&dev->dev); 2727 pci_power_t target_state = pci_target_state(dev, wakeup); 2728 int error; 2729 2730 if (target_state == PCI_POWER_ERROR) 2731 return -EIO; 2732 2733 pci_enable_wake(dev, target_state, wakeup); 2734 2735 error = pci_set_power_state(dev, target_state); 2736 2737 if (error) 2738 pci_enable_wake(dev, target_state, false); 2739 2740 return error; 2741 } 2742 EXPORT_SYMBOL(pci_prepare_to_sleep); 2743 2744 /** 2745 * pci_back_from_sleep - turn PCI device on during system-wide transition 2746 * into working state 2747 * @dev: Device to handle. 2748 * 2749 * Disable device's system wake-up capability and put it into D0. 2750 */ 2751 int pci_back_from_sleep(struct pci_dev *dev) 2752 { 2753 int ret = pci_set_power_state(dev, PCI_D0); 2754 2755 if (ret) 2756 return ret; 2757 2758 pci_enable_wake(dev, PCI_D0, false); 2759 return 0; 2760 } 2761 EXPORT_SYMBOL(pci_back_from_sleep); 2762 2763 /** 2764 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2765 * @dev: PCI device being suspended. 2766 * 2767 * Prepare @dev to generate wake-up events at run time and put it into a low 2768 * power state. 2769 */ 2770 int pci_finish_runtime_suspend(struct pci_dev *dev) 2771 { 2772 pci_power_t target_state; 2773 int error; 2774 2775 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2776 if (target_state == PCI_POWER_ERROR) 2777 return -EIO; 2778 2779 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2780 2781 error = pci_set_power_state(dev, target_state); 2782 2783 if (error) 2784 pci_enable_wake(dev, target_state, false); 2785 2786 return error; 2787 } 2788 2789 /** 2790 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2791 * @dev: Device to check. 2792 * 2793 * Return true if the device itself is capable of generating wake-up events 2794 * (through the platform or using the native PCIe PME) or if the device supports 2795 * PME and one of its upstream bridges can generate wake-up events. 2796 */ 2797 bool pci_dev_run_wake(struct pci_dev *dev) 2798 { 2799 struct pci_bus *bus = dev->bus; 2800 2801 if (!dev->pme_support) 2802 return false; 2803 2804 /* PME-capable in principle, but not from the target power state */ 2805 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2806 return false; 2807 2808 if (device_can_wakeup(&dev->dev)) 2809 return true; 2810 2811 while (bus->parent) { 2812 struct pci_dev *bridge = bus->self; 2813 2814 if (device_can_wakeup(&bridge->dev)) 2815 return true; 2816 2817 bus = bus->parent; 2818 } 2819 2820 /* We have reached the root bus. */ 2821 if (bus->bridge) 2822 return device_can_wakeup(bus->bridge); 2823 2824 return false; 2825 } 2826 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2827 2828 /** 2829 * pci_dev_need_resume - Check if it is necessary to resume the device. 2830 * @pci_dev: Device to check. 2831 * 2832 * Return 'true' if the device is not runtime-suspended or it has to be 2833 * reconfigured due to wakeup settings difference between system and runtime 2834 * suspend, or the current power state of it is not suitable for the upcoming 2835 * (system-wide) transition. 2836 */ 2837 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2838 { 2839 struct device *dev = &pci_dev->dev; 2840 pci_power_t target_state; 2841 2842 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2843 return true; 2844 2845 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2846 2847 /* 2848 * If the earlier platform check has not triggered, D3cold is just power 2849 * removal on top of D3hot, so no need to resume the device in that 2850 * case. 2851 */ 2852 return target_state != pci_dev->current_state && 2853 target_state != PCI_D3cold && 2854 pci_dev->current_state != PCI_D3hot; 2855 } 2856 2857 /** 2858 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2859 * @pci_dev: Device to check. 2860 * 2861 * If the device is suspended and it is not configured for system wakeup, 2862 * disable PME for it to prevent it from waking up the system unnecessarily. 2863 * 2864 * Note that if the device's power state is D3cold and the platform check in 2865 * pci_dev_need_resume() has not triggered, the device's configuration need not 2866 * be changed. 2867 */ 2868 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2869 { 2870 struct device *dev = &pci_dev->dev; 2871 2872 spin_lock_irq(&dev->power.lock); 2873 2874 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2875 pci_dev->current_state < PCI_D3cold) 2876 __pci_pme_active(pci_dev, false); 2877 2878 spin_unlock_irq(&dev->power.lock); 2879 } 2880 2881 /** 2882 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2883 * @pci_dev: Device to handle. 2884 * 2885 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2886 * it might have been disabled during the prepare phase of system suspend if 2887 * the device was not configured for system wakeup. 2888 */ 2889 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2890 { 2891 struct device *dev = &pci_dev->dev; 2892 2893 if (!pci_dev_run_wake(pci_dev)) 2894 return; 2895 2896 spin_lock_irq(&dev->power.lock); 2897 2898 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2899 __pci_pme_active(pci_dev, true); 2900 2901 spin_unlock_irq(&dev->power.lock); 2902 } 2903 2904 /** 2905 * pci_choose_state - Choose the power state of a PCI device. 2906 * @dev: Target PCI device. 2907 * @state: Target state for the whole system. 2908 * 2909 * Returns PCI power state suitable for @dev and @state. 2910 */ 2911 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2912 { 2913 if (state.event == PM_EVENT_ON) 2914 return PCI_D0; 2915 2916 return pci_target_state(dev, false); 2917 } 2918 EXPORT_SYMBOL(pci_choose_state); 2919 2920 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2921 { 2922 struct device *dev = &pdev->dev; 2923 struct device *parent = dev->parent; 2924 2925 if (parent) 2926 pm_runtime_get_sync(parent); 2927 pm_runtime_get_noresume(dev); 2928 /* 2929 * pdev->current_state is set to PCI_D3cold during suspending, 2930 * so wait until suspending completes 2931 */ 2932 pm_runtime_barrier(dev); 2933 /* 2934 * Only need to resume devices in D3cold, because config 2935 * registers are still accessible for devices suspended but 2936 * not in D3cold. 2937 */ 2938 if (pdev->current_state == PCI_D3cold) 2939 pm_runtime_resume(dev); 2940 } 2941 2942 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2943 { 2944 struct device *dev = &pdev->dev; 2945 struct device *parent = dev->parent; 2946 2947 pm_runtime_put(dev); 2948 if (parent) 2949 pm_runtime_put_sync(parent); 2950 } 2951 2952 static const struct dmi_system_id bridge_d3_blacklist[] = { 2953 #ifdef CONFIG_X86 2954 { 2955 /* 2956 * Gigabyte X299 root port is not marked as hotplug capable 2957 * which allows Linux to power manage it. However, this 2958 * confuses the BIOS SMI handler so don't power manage root 2959 * ports on that system. 2960 */ 2961 .ident = "X299 DESIGNARE EX-CF", 2962 .matches = { 2963 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2964 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2965 }, 2966 }, 2967 { 2968 /* 2969 * Downstream device is not accessible after putting a root port 2970 * into D3cold and back into D0 on Elo Continental Z2 board 2971 */ 2972 .ident = "Elo Continental Z2", 2973 .matches = { 2974 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 2975 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 2976 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 2977 }, 2978 }, 2979 { 2980 /* 2981 * Changing power state of root port dGPU is connected fails 2982 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229 2983 */ 2984 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972", 2985 .matches = { 2986 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"), 2987 DMI_MATCH(DMI_BOARD_NAME, "1972"), 2988 DMI_MATCH(DMI_BOARD_VERSION, "95.33"), 2989 }, 2990 }, 2991 #endif 2992 { } 2993 }; 2994 2995 /** 2996 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2997 * @bridge: Bridge to check 2998 * 2999 * This function checks if it is possible to move the bridge to D3. 3000 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 3001 */ 3002 bool pci_bridge_d3_possible(struct pci_dev *bridge) 3003 { 3004 if (!pci_is_pcie(bridge)) 3005 return false; 3006 3007 switch (pci_pcie_type(bridge)) { 3008 case PCI_EXP_TYPE_ROOT_PORT: 3009 case PCI_EXP_TYPE_UPSTREAM: 3010 case PCI_EXP_TYPE_DOWNSTREAM: 3011 if (pci_bridge_d3_disable) 3012 return false; 3013 3014 /* 3015 * Hotplug ports handled by firmware in System Management Mode 3016 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3017 */ 3018 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3019 return false; 3020 3021 if (pci_bridge_d3_force) 3022 return true; 3023 3024 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3025 if (bridge->is_thunderbolt) 3026 return true; 3027 3028 /* Platform might know better if the bridge supports D3 */ 3029 if (platform_pci_bridge_d3(bridge)) 3030 return true; 3031 3032 /* 3033 * Hotplug ports handled natively by the OS were not validated 3034 * by vendors for runtime D3 at least until 2018 because there 3035 * was no OS support. 3036 */ 3037 if (bridge->is_hotplug_bridge) 3038 return false; 3039 3040 if (dmi_check_system(bridge_d3_blacklist)) 3041 return false; 3042 3043 /* 3044 * It should be safe to put PCIe ports from 2015 or newer 3045 * to D3. 3046 */ 3047 if (dmi_get_bios_year() >= 2015) 3048 return true; 3049 break; 3050 } 3051 3052 return false; 3053 } 3054 3055 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3056 { 3057 bool *d3cold_ok = data; 3058 3059 if (/* The device needs to be allowed to go D3cold ... */ 3060 dev->no_d3cold || !dev->d3cold_allowed || 3061 3062 /* ... and if it is wakeup capable to do so from D3cold. */ 3063 (device_may_wakeup(&dev->dev) && 3064 !pci_pme_capable(dev, PCI_D3cold)) || 3065 3066 /* If it is a bridge it must be allowed to go to D3. */ 3067 !pci_power_manageable(dev)) 3068 3069 *d3cold_ok = false; 3070 3071 return !*d3cold_ok; 3072 } 3073 3074 /* 3075 * pci_bridge_d3_update - Update bridge D3 capabilities 3076 * @dev: PCI device which is changed 3077 * 3078 * Update upstream bridge PM capabilities accordingly depending on if the 3079 * device PM configuration was changed or the device is being removed. The 3080 * change is also propagated upstream. 3081 */ 3082 void pci_bridge_d3_update(struct pci_dev *dev) 3083 { 3084 bool remove = !device_is_registered(&dev->dev); 3085 struct pci_dev *bridge; 3086 bool d3cold_ok = true; 3087 3088 bridge = pci_upstream_bridge(dev); 3089 if (!bridge || !pci_bridge_d3_possible(bridge)) 3090 return; 3091 3092 /* 3093 * If D3 is currently allowed for the bridge, removing one of its 3094 * children won't change that. 3095 */ 3096 if (remove && bridge->bridge_d3) 3097 return; 3098 3099 /* 3100 * If D3 is currently allowed for the bridge and a child is added or 3101 * changed, disallowance of D3 can only be caused by that child, so 3102 * we only need to check that single device, not any of its siblings. 3103 * 3104 * If D3 is currently not allowed for the bridge, checking the device 3105 * first may allow us to skip checking its siblings. 3106 */ 3107 if (!remove) 3108 pci_dev_check_d3cold(dev, &d3cold_ok); 3109 3110 /* 3111 * If D3 is currently not allowed for the bridge, this may be caused 3112 * either by the device being changed/removed or any of its siblings, 3113 * so we need to go through all children to find out if one of them 3114 * continues to block D3. 3115 */ 3116 if (d3cold_ok && !bridge->bridge_d3) 3117 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3118 &d3cold_ok); 3119 3120 if (bridge->bridge_d3 != d3cold_ok) { 3121 bridge->bridge_d3 = d3cold_ok; 3122 /* Propagate change to upstream bridges */ 3123 pci_bridge_d3_update(bridge); 3124 } 3125 } 3126 3127 /** 3128 * pci_d3cold_enable - Enable D3cold for device 3129 * @dev: PCI device to handle 3130 * 3131 * This function can be used in drivers to enable D3cold from the device 3132 * they handle. It also updates upstream PCI bridge PM capabilities 3133 * accordingly. 3134 */ 3135 void pci_d3cold_enable(struct pci_dev *dev) 3136 { 3137 if (dev->no_d3cold) { 3138 dev->no_d3cold = false; 3139 pci_bridge_d3_update(dev); 3140 } 3141 } 3142 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3143 3144 /** 3145 * pci_d3cold_disable - Disable D3cold for device 3146 * @dev: PCI device to handle 3147 * 3148 * This function can be used in drivers to disable D3cold from the device 3149 * they handle. It also updates upstream PCI bridge PM capabilities 3150 * accordingly. 3151 */ 3152 void pci_d3cold_disable(struct pci_dev *dev) 3153 { 3154 if (!dev->no_d3cold) { 3155 dev->no_d3cold = true; 3156 pci_bridge_d3_update(dev); 3157 } 3158 } 3159 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3160 3161 /** 3162 * pci_pm_init - Initialize PM functions of given PCI device 3163 * @dev: PCI device to handle. 3164 */ 3165 void pci_pm_init(struct pci_dev *dev) 3166 { 3167 int pm; 3168 u16 status; 3169 u16 pmc; 3170 3171 pm_runtime_forbid(&dev->dev); 3172 pm_runtime_set_active(&dev->dev); 3173 pm_runtime_enable(&dev->dev); 3174 device_enable_async_suspend(&dev->dev); 3175 dev->wakeup_prepared = false; 3176 3177 dev->pm_cap = 0; 3178 dev->pme_support = 0; 3179 3180 /* find PCI PM capability in list */ 3181 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3182 if (!pm) 3183 return; 3184 /* Check device's ability to generate PME# */ 3185 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3186 3187 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3188 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3189 pmc & PCI_PM_CAP_VER_MASK); 3190 return; 3191 } 3192 3193 dev->pm_cap = pm; 3194 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3195 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3196 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3197 dev->d3cold_allowed = true; 3198 3199 dev->d1_support = false; 3200 dev->d2_support = false; 3201 if (!pci_no_d1d2(dev)) { 3202 if (pmc & PCI_PM_CAP_D1) 3203 dev->d1_support = true; 3204 if (pmc & PCI_PM_CAP_D2) 3205 dev->d2_support = true; 3206 3207 if (dev->d1_support || dev->d2_support) 3208 pci_info(dev, "supports%s%s\n", 3209 dev->d1_support ? " D1" : "", 3210 dev->d2_support ? " D2" : ""); 3211 } 3212 3213 pmc &= PCI_PM_CAP_PME_MASK; 3214 if (pmc) { 3215 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3216 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3217 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3218 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3219 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3220 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3221 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc); 3222 dev->pme_poll = true; 3223 /* 3224 * Make device's PM flags reflect the wake-up capability, but 3225 * let the user space enable it to wake up the system as needed. 3226 */ 3227 device_set_wakeup_capable(&dev->dev, true); 3228 /* Disable the PME# generation functionality */ 3229 pci_pme_active(dev, false); 3230 } 3231 3232 pci_read_config_word(dev, PCI_STATUS, &status); 3233 if (status & PCI_STATUS_IMM_READY) 3234 dev->imm_ready = 1; 3235 } 3236 3237 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3238 { 3239 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3240 3241 switch (prop) { 3242 case PCI_EA_P_MEM: 3243 case PCI_EA_P_VF_MEM: 3244 flags |= IORESOURCE_MEM; 3245 break; 3246 case PCI_EA_P_MEM_PREFETCH: 3247 case PCI_EA_P_VF_MEM_PREFETCH: 3248 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3249 break; 3250 case PCI_EA_P_IO: 3251 flags |= IORESOURCE_IO; 3252 break; 3253 default: 3254 return 0; 3255 } 3256 3257 return flags; 3258 } 3259 3260 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3261 u8 prop) 3262 { 3263 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3264 return &dev->resource[bei]; 3265 #ifdef CONFIG_PCI_IOV 3266 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3267 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3268 return &dev->resource[PCI_IOV_RESOURCES + 3269 bei - PCI_EA_BEI_VF_BAR0]; 3270 #endif 3271 else if (bei == PCI_EA_BEI_ROM) 3272 return &dev->resource[PCI_ROM_RESOURCE]; 3273 else 3274 return NULL; 3275 } 3276 3277 /* Read an Enhanced Allocation (EA) entry */ 3278 static int pci_ea_read(struct pci_dev *dev, int offset) 3279 { 3280 struct resource *res; 3281 const char *res_name; 3282 int ent_size, ent_offset = offset; 3283 resource_size_t start, end; 3284 unsigned long flags; 3285 u32 dw0, bei, base, max_offset; 3286 u8 prop; 3287 bool support_64 = (sizeof(resource_size_t) >= 8); 3288 3289 pci_read_config_dword(dev, ent_offset, &dw0); 3290 ent_offset += 4; 3291 3292 /* Entry size field indicates DWORDs after 1st */ 3293 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2; 3294 3295 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3296 goto out; 3297 3298 bei = FIELD_GET(PCI_EA_BEI, dw0); 3299 prop = FIELD_GET(PCI_EA_PP, dw0); 3300 3301 /* 3302 * If the Property is in the reserved range, try the Secondary 3303 * Property instead. 3304 */ 3305 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3306 prop = FIELD_GET(PCI_EA_SP, dw0); 3307 if (prop > PCI_EA_P_BRIDGE_IO) 3308 goto out; 3309 3310 res = pci_ea_get_resource(dev, bei, prop); 3311 res_name = pci_resource_name(dev, bei); 3312 if (!res) { 3313 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3314 goto out; 3315 } 3316 3317 flags = pci_ea_flags(dev, prop); 3318 if (!flags) { 3319 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3320 goto out; 3321 } 3322 3323 /* Read Base */ 3324 pci_read_config_dword(dev, ent_offset, &base); 3325 start = (base & PCI_EA_FIELD_MASK); 3326 ent_offset += 4; 3327 3328 /* Read MaxOffset */ 3329 pci_read_config_dword(dev, ent_offset, &max_offset); 3330 ent_offset += 4; 3331 3332 /* Read Base MSBs (if 64-bit entry) */ 3333 if (base & PCI_EA_IS_64) { 3334 u32 base_upper; 3335 3336 pci_read_config_dword(dev, ent_offset, &base_upper); 3337 ent_offset += 4; 3338 3339 flags |= IORESOURCE_MEM_64; 3340 3341 /* entry starts above 32-bit boundary, can't use */ 3342 if (!support_64 && base_upper) 3343 goto out; 3344 3345 if (support_64) 3346 start |= ((u64)base_upper << 32); 3347 } 3348 3349 end = start + (max_offset | 0x03); 3350 3351 /* Read MaxOffset MSBs (if 64-bit entry) */ 3352 if (max_offset & PCI_EA_IS_64) { 3353 u32 max_offset_upper; 3354 3355 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3356 ent_offset += 4; 3357 3358 flags |= IORESOURCE_MEM_64; 3359 3360 /* entry too big, can't use */ 3361 if (!support_64 && max_offset_upper) 3362 goto out; 3363 3364 if (support_64) 3365 end += ((u64)max_offset_upper << 32); 3366 } 3367 3368 if (end < start) { 3369 pci_err(dev, "EA Entry crosses address boundary\n"); 3370 goto out; 3371 } 3372 3373 if (ent_size != ent_offset - offset) { 3374 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3375 ent_size, ent_offset - offset); 3376 goto out; 3377 } 3378 3379 res->name = pci_name(dev); 3380 res->start = start; 3381 res->end = end; 3382 res->flags = flags; 3383 3384 if (bei <= PCI_EA_BEI_BAR5) 3385 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3386 res_name, res, prop); 3387 else if (bei == PCI_EA_BEI_ROM) 3388 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3389 res_name, res, prop); 3390 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3391 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3392 res_name, res, prop); 3393 else 3394 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n", 3395 bei, res, prop); 3396 3397 out: 3398 return offset + ent_size; 3399 } 3400 3401 /* Enhanced Allocation Initialization */ 3402 void pci_ea_init(struct pci_dev *dev) 3403 { 3404 int ea; 3405 u8 num_ent; 3406 int offset; 3407 int i; 3408 3409 /* find PCI EA capability in list */ 3410 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3411 if (!ea) 3412 return; 3413 3414 /* determine the number of entries */ 3415 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3416 &num_ent); 3417 num_ent &= PCI_EA_NUM_ENT_MASK; 3418 3419 offset = ea + PCI_EA_FIRST_ENT; 3420 3421 /* Skip DWORD 2 for type 1 functions */ 3422 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3423 offset += 4; 3424 3425 /* parse each EA entry */ 3426 for (i = 0; i < num_ent; ++i) 3427 offset = pci_ea_read(dev, offset); 3428 } 3429 3430 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3431 struct pci_cap_saved_state *new_cap) 3432 { 3433 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3434 } 3435 3436 /** 3437 * _pci_add_cap_save_buffer - allocate buffer for saving given 3438 * capability registers 3439 * @dev: the PCI device 3440 * @cap: the capability to allocate the buffer for 3441 * @extended: Standard or Extended capability ID 3442 * @size: requested size of the buffer 3443 */ 3444 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3445 bool extended, unsigned int size) 3446 { 3447 int pos; 3448 struct pci_cap_saved_state *save_state; 3449 3450 if (extended) 3451 pos = pci_find_ext_capability(dev, cap); 3452 else 3453 pos = pci_find_capability(dev, cap); 3454 3455 if (!pos) 3456 return 0; 3457 3458 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3459 if (!save_state) 3460 return -ENOMEM; 3461 3462 save_state->cap.cap_nr = cap; 3463 save_state->cap.cap_extended = extended; 3464 save_state->cap.size = size; 3465 pci_add_saved_cap(dev, save_state); 3466 3467 return 0; 3468 } 3469 3470 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3471 { 3472 return _pci_add_cap_save_buffer(dev, cap, false, size); 3473 } 3474 3475 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3476 { 3477 return _pci_add_cap_save_buffer(dev, cap, true, size); 3478 } 3479 3480 /** 3481 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3482 * @dev: the PCI device 3483 */ 3484 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3485 { 3486 int error; 3487 3488 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3489 PCI_EXP_SAVE_REGS * sizeof(u16)); 3490 if (error) 3491 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3492 3493 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3494 if (error) 3495 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3496 3497 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3498 2 * sizeof(u16)); 3499 if (error) 3500 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3501 3502 pci_allocate_vc_save_buffers(dev); 3503 } 3504 3505 void pci_free_cap_save_buffers(struct pci_dev *dev) 3506 { 3507 struct pci_cap_saved_state *tmp; 3508 struct hlist_node *n; 3509 3510 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3511 kfree(tmp); 3512 } 3513 3514 /** 3515 * pci_configure_ari - enable or disable ARI forwarding 3516 * @dev: the PCI device 3517 * 3518 * If @dev and its upstream bridge both support ARI, enable ARI in the 3519 * bridge. Otherwise, disable ARI in the bridge. 3520 */ 3521 void pci_configure_ari(struct pci_dev *dev) 3522 { 3523 u32 cap; 3524 struct pci_dev *bridge; 3525 3526 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3527 return; 3528 3529 bridge = dev->bus->self; 3530 if (!bridge) 3531 return; 3532 3533 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3534 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3535 return; 3536 3537 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3538 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3539 PCI_EXP_DEVCTL2_ARI); 3540 bridge->ari_enabled = 1; 3541 } else { 3542 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3543 PCI_EXP_DEVCTL2_ARI); 3544 bridge->ari_enabled = 0; 3545 } 3546 } 3547 3548 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3549 { 3550 int pos; 3551 u16 cap, ctrl; 3552 3553 pos = pdev->acs_cap; 3554 if (!pos) 3555 return false; 3556 3557 /* 3558 * Except for egress control, capabilities are either required 3559 * or only required if controllable. Features missing from the 3560 * capability field can therefore be assumed as hard-wired enabled. 3561 */ 3562 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3563 acs_flags &= (cap | PCI_ACS_EC); 3564 3565 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3566 return (ctrl & acs_flags) == acs_flags; 3567 } 3568 3569 /** 3570 * pci_acs_enabled - test ACS against required flags for a given device 3571 * @pdev: device to test 3572 * @acs_flags: required PCI ACS flags 3573 * 3574 * Return true if the device supports the provided flags. Automatically 3575 * filters out flags that are not implemented on multifunction devices. 3576 * 3577 * Note that this interface checks the effective ACS capabilities of the 3578 * device rather than the actual capabilities. For instance, most single 3579 * function endpoints are not required to support ACS because they have no 3580 * opportunity for peer-to-peer access. We therefore return 'true' 3581 * regardless of whether the device exposes an ACS capability. This makes 3582 * it much easier for callers of this function to ignore the actual type 3583 * or topology of the device when testing ACS support. 3584 */ 3585 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3586 { 3587 int ret; 3588 3589 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3590 if (ret >= 0) 3591 return ret > 0; 3592 3593 /* 3594 * Conventional PCI and PCI-X devices never support ACS, either 3595 * effectively or actually. The shared bus topology implies that 3596 * any device on the bus can receive or snoop DMA. 3597 */ 3598 if (!pci_is_pcie(pdev)) 3599 return false; 3600 3601 switch (pci_pcie_type(pdev)) { 3602 /* 3603 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3604 * but since their primary interface is PCI/X, we conservatively 3605 * handle them as we would a non-PCIe device. 3606 */ 3607 case PCI_EXP_TYPE_PCIE_BRIDGE: 3608 /* 3609 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3610 * applicable... must never implement an ACS Extended Capability...". 3611 * This seems arbitrary, but we take a conservative interpretation 3612 * of this statement. 3613 */ 3614 case PCI_EXP_TYPE_PCI_BRIDGE: 3615 case PCI_EXP_TYPE_RC_EC: 3616 return false; 3617 /* 3618 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3619 * implement ACS in order to indicate their peer-to-peer capabilities, 3620 * regardless of whether they are single- or multi-function devices. 3621 */ 3622 case PCI_EXP_TYPE_DOWNSTREAM: 3623 case PCI_EXP_TYPE_ROOT_PORT: 3624 return pci_acs_flags_enabled(pdev, acs_flags); 3625 /* 3626 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3627 * implemented by the remaining PCIe types to indicate peer-to-peer 3628 * capabilities, but only when they are part of a multifunction 3629 * device. The footnote for section 6.12 indicates the specific 3630 * PCIe types included here. 3631 */ 3632 case PCI_EXP_TYPE_ENDPOINT: 3633 case PCI_EXP_TYPE_UPSTREAM: 3634 case PCI_EXP_TYPE_LEG_END: 3635 case PCI_EXP_TYPE_RC_END: 3636 if (!pdev->multifunction) 3637 break; 3638 3639 return pci_acs_flags_enabled(pdev, acs_flags); 3640 } 3641 3642 /* 3643 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3644 * to single function devices with the exception of downstream ports. 3645 */ 3646 return true; 3647 } 3648 3649 /** 3650 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3651 * @start: starting downstream device 3652 * @end: ending upstream device or NULL to search to the root bus 3653 * @acs_flags: required flags 3654 * 3655 * Walk up a device tree from start to end testing PCI ACS support. If 3656 * any step along the way does not support the required flags, return false. 3657 */ 3658 bool pci_acs_path_enabled(struct pci_dev *start, 3659 struct pci_dev *end, u16 acs_flags) 3660 { 3661 struct pci_dev *pdev, *parent = start; 3662 3663 do { 3664 pdev = parent; 3665 3666 if (!pci_acs_enabled(pdev, acs_flags)) 3667 return false; 3668 3669 if (pci_is_root_bus(pdev->bus)) 3670 return (end == NULL); 3671 3672 parent = pdev->bus->self; 3673 } while (pdev != end); 3674 3675 return true; 3676 } 3677 3678 /** 3679 * pci_acs_init - Initialize ACS if hardware supports it 3680 * @dev: the PCI device 3681 */ 3682 void pci_acs_init(struct pci_dev *dev) 3683 { 3684 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3685 3686 /* 3687 * Attempt to enable ACS regardless of capability because some Root 3688 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3689 * the standard ACS capability but still support ACS via those 3690 * quirks. 3691 */ 3692 pci_enable_acs(dev); 3693 } 3694 3695 /** 3696 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3697 * @pdev: PCI device 3698 * @bar: BAR to find 3699 * 3700 * Helper to find the position of the ctrl register for a BAR. 3701 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3702 * Returns -ENOENT if no ctrl register for the BAR could be found. 3703 */ 3704 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3705 { 3706 unsigned int pos, nbars, i; 3707 u32 ctrl; 3708 3709 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3710 if (!pos) 3711 return -ENOTSUPP; 3712 3713 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3714 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 3715 3716 for (i = 0; i < nbars; i++, pos += 8) { 3717 int bar_idx; 3718 3719 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3720 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl); 3721 if (bar_idx == bar) 3722 return pos; 3723 } 3724 3725 return -ENOENT; 3726 } 3727 3728 /** 3729 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3730 * @pdev: PCI device 3731 * @bar: BAR to query 3732 * 3733 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3734 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3735 */ 3736 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3737 { 3738 int pos; 3739 u32 cap; 3740 3741 pos = pci_rebar_find_pos(pdev, bar); 3742 if (pos < 0) 3743 return 0; 3744 3745 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3746 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3747 3748 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3749 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3750 bar == 0 && cap == 0x700) 3751 return 0x3f00; 3752 3753 return cap; 3754 } 3755 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3756 3757 /** 3758 * pci_rebar_get_current_size - get the current size of a BAR 3759 * @pdev: PCI device 3760 * @bar: BAR to set size to 3761 * 3762 * Read the size of a BAR from the resizable BAR config. 3763 * Returns size if found or negative error code. 3764 */ 3765 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3766 { 3767 int pos; 3768 u32 ctrl; 3769 3770 pos = pci_rebar_find_pos(pdev, bar); 3771 if (pos < 0) 3772 return pos; 3773 3774 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3775 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl); 3776 } 3777 3778 /** 3779 * pci_rebar_set_size - set a new size for a BAR 3780 * @pdev: PCI device 3781 * @bar: BAR to set size to 3782 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3783 * 3784 * Set the new size of a BAR as defined in the spec. 3785 * Returns zero if resizing was successful, error code otherwise. 3786 */ 3787 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3788 { 3789 int pos; 3790 u32 ctrl; 3791 3792 pos = pci_rebar_find_pos(pdev, bar); 3793 if (pos < 0) 3794 return pos; 3795 3796 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3797 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3798 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 3799 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3800 return 0; 3801 } 3802 3803 /** 3804 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3805 * @dev: the PCI device 3806 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3807 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3808 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3809 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3810 * 3811 * Return 0 if all upstream bridges support AtomicOp routing, egress 3812 * blocking is disabled on all upstream ports, and the root port supports 3813 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3814 * AtomicOp completion), or negative otherwise. 3815 */ 3816 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3817 { 3818 struct pci_bus *bus = dev->bus; 3819 struct pci_dev *bridge; 3820 u32 cap, ctl2; 3821 3822 /* 3823 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3824 * in Device Control 2 is reserved in VFs and the PF value applies 3825 * to all associated VFs. 3826 */ 3827 if (dev->is_virtfn) 3828 return -EINVAL; 3829 3830 if (!pci_is_pcie(dev)) 3831 return -EINVAL; 3832 3833 /* 3834 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3835 * AtomicOp requesters. For now, we only support endpoints as 3836 * requesters and root ports as completers. No endpoints as 3837 * completers, and no peer-to-peer. 3838 */ 3839 3840 switch (pci_pcie_type(dev)) { 3841 case PCI_EXP_TYPE_ENDPOINT: 3842 case PCI_EXP_TYPE_LEG_END: 3843 case PCI_EXP_TYPE_RC_END: 3844 break; 3845 default: 3846 return -EINVAL; 3847 } 3848 3849 while (bus->parent) { 3850 bridge = bus->self; 3851 3852 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3853 3854 switch (pci_pcie_type(bridge)) { 3855 /* Ensure switch ports support AtomicOp routing */ 3856 case PCI_EXP_TYPE_UPSTREAM: 3857 case PCI_EXP_TYPE_DOWNSTREAM: 3858 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3859 return -EINVAL; 3860 break; 3861 3862 /* Ensure root port supports all the sizes we care about */ 3863 case PCI_EXP_TYPE_ROOT_PORT: 3864 if ((cap & cap_mask) != cap_mask) 3865 return -EINVAL; 3866 break; 3867 } 3868 3869 /* Ensure upstream ports don't block AtomicOps on egress */ 3870 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3871 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3872 &ctl2); 3873 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3874 return -EINVAL; 3875 } 3876 3877 bus = bus->parent; 3878 } 3879 3880 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3881 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3882 return 0; 3883 } 3884 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3885 3886 /** 3887 * pci_release_region - Release a PCI bar 3888 * @pdev: PCI device whose resources were previously reserved by 3889 * pci_request_region() 3890 * @bar: BAR to release 3891 * 3892 * Releases the PCI I/O and memory resources previously reserved by a 3893 * successful call to pci_request_region(). Call this function only 3894 * after all use of the PCI regions has ceased. 3895 */ 3896 void pci_release_region(struct pci_dev *pdev, int bar) 3897 { 3898 /* 3899 * This is done for backwards compatibility, because the old PCI devres 3900 * API had a mode in which the function became managed if it had been 3901 * enabled with pcim_enable_device() instead of pci_enable_device(). 3902 */ 3903 if (pci_is_managed(pdev)) { 3904 pcim_release_region(pdev, bar); 3905 return; 3906 } 3907 3908 if (pci_resource_len(pdev, bar) == 0) 3909 return; 3910 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3911 release_region(pci_resource_start(pdev, bar), 3912 pci_resource_len(pdev, bar)); 3913 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3914 release_mem_region(pci_resource_start(pdev, bar), 3915 pci_resource_len(pdev, bar)); 3916 } 3917 EXPORT_SYMBOL(pci_release_region); 3918 3919 /** 3920 * __pci_request_region - Reserved PCI I/O and memory resource 3921 * @pdev: PCI device whose resources are to be reserved 3922 * @bar: BAR to be reserved 3923 * @res_name: Name to be associated with resource. 3924 * @exclusive: whether the region access is exclusive or not 3925 * 3926 * Returns: 0 on success, negative error code on failure. 3927 * 3928 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3929 * being reserved by owner @res_name. Do not access any 3930 * address inside the PCI regions unless this call returns 3931 * successfully. 3932 * 3933 * If @exclusive is set, then the region is marked so that userspace 3934 * is explicitly not allowed to map the resource via /dev/mem or 3935 * sysfs MMIO access. 3936 * 3937 * Returns 0 on success, or %EBUSY on error. A warning 3938 * message is also printed on failure. 3939 */ 3940 static int __pci_request_region(struct pci_dev *pdev, int bar, 3941 const char *res_name, int exclusive) 3942 { 3943 if (pci_is_managed(pdev)) { 3944 if (exclusive == IORESOURCE_EXCLUSIVE) 3945 return pcim_request_region_exclusive(pdev, bar, res_name); 3946 3947 return pcim_request_region(pdev, bar, res_name); 3948 } 3949 3950 if (pci_resource_len(pdev, bar) == 0) 3951 return 0; 3952 3953 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3954 if (!request_region(pci_resource_start(pdev, bar), 3955 pci_resource_len(pdev, bar), res_name)) 3956 goto err_out; 3957 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3958 if (!__request_mem_region(pci_resource_start(pdev, bar), 3959 pci_resource_len(pdev, bar), res_name, 3960 exclusive)) 3961 goto err_out; 3962 } 3963 3964 return 0; 3965 3966 err_out: 3967 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3968 &pdev->resource[bar]); 3969 return -EBUSY; 3970 } 3971 3972 /** 3973 * pci_request_region - Reserve PCI I/O and memory resource 3974 * @pdev: PCI device whose resources are to be reserved 3975 * @bar: BAR to be reserved 3976 * @res_name: Name to be associated with resource 3977 * 3978 * Returns: 0 on success, negative error code on failure. 3979 * 3980 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3981 * being reserved by owner @res_name. Do not access any 3982 * address inside the PCI regions unless this call returns 3983 * successfully. 3984 * 3985 * Returns 0 on success, or %EBUSY on error. A warning 3986 * message is also printed on failure. 3987 * 3988 * NOTE: 3989 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 3990 * when pcim_enable_device() has been called in advance. This hybrid feature is 3991 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 3992 */ 3993 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3994 { 3995 return __pci_request_region(pdev, bar, res_name, 0); 3996 } 3997 EXPORT_SYMBOL(pci_request_region); 3998 3999 /** 4000 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4001 * @pdev: PCI device whose resources were previously reserved 4002 * @bars: Bitmask of BARs to be released 4003 * 4004 * Release selected PCI I/O and memory resources previously reserved. 4005 * Call this function only after all use of the PCI regions has ceased. 4006 */ 4007 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4008 { 4009 int i; 4010 4011 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4012 if (bars & (1 << i)) 4013 pci_release_region(pdev, i); 4014 } 4015 EXPORT_SYMBOL(pci_release_selected_regions); 4016 4017 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4018 const char *res_name, int excl) 4019 { 4020 int i; 4021 4022 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4023 if (bars & (1 << i)) 4024 if (__pci_request_region(pdev, i, res_name, excl)) 4025 goto err_out; 4026 return 0; 4027 4028 err_out: 4029 while (--i >= 0) 4030 if (bars & (1 << i)) 4031 pci_release_region(pdev, i); 4032 4033 return -EBUSY; 4034 } 4035 4036 4037 /** 4038 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4039 * @pdev: PCI device whose resources are to be reserved 4040 * @bars: Bitmask of BARs to be requested 4041 * @res_name: Name to be associated with resource 4042 * 4043 * Returns: 0 on success, negative error code on failure. 4044 * 4045 * NOTE: 4046 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4047 * when pcim_enable_device() has been called in advance. This hybrid feature is 4048 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4049 */ 4050 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4051 const char *res_name) 4052 { 4053 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4054 } 4055 EXPORT_SYMBOL(pci_request_selected_regions); 4056 4057 /** 4058 * pci_request_selected_regions_exclusive - Request regions exclusively 4059 * @pdev: PCI device to request regions from 4060 * @bars: bit mask of BARs to request 4061 * @res_name: name to be associated with the requests 4062 * 4063 * Returns: 0 on success, negative error code on failure. 4064 * 4065 * NOTE: 4066 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4067 * when pcim_enable_device() has been called in advance. This hybrid feature is 4068 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4069 */ 4070 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4071 const char *res_name) 4072 { 4073 return __pci_request_selected_regions(pdev, bars, res_name, 4074 IORESOURCE_EXCLUSIVE); 4075 } 4076 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4077 4078 /** 4079 * pci_release_regions - Release reserved PCI I/O and memory resources 4080 * @pdev: PCI device whose resources were previously reserved by 4081 * pci_request_regions() 4082 * 4083 * Releases all PCI I/O and memory resources previously reserved by a 4084 * successful call to pci_request_regions(). Call this function only 4085 * after all use of the PCI regions has ceased. 4086 */ 4087 void pci_release_regions(struct pci_dev *pdev) 4088 { 4089 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4090 } 4091 EXPORT_SYMBOL(pci_release_regions); 4092 4093 /** 4094 * pci_request_regions - Reserve PCI I/O and memory resources 4095 * @pdev: PCI device whose resources are to be reserved 4096 * @res_name: Name to be associated with resource. 4097 * 4098 * Mark all PCI regions associated with PCI device @pdev as 4099 * being reserved by owner @res_name. Do not access any 4100 * address inside the PCI regions unless this call returns 4101 * successfully. 4102 * 4103 * Returns 0 on success, or %EBUSY on error. A warning 4104 * message is also printed on failure. 4105 * 4106 * NOTE: 4107 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4108 * when pcim_enable_device() has been called in advance. This hybrid feature is 4109 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4110 */ 4111 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4112 { 4113 return pci_request_selected_regions(pdev, 4114 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4115 } 4116 EXPORT_SYMBOL(pci_request_regions); 4117 4118 /** 4119 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4120 * @pdev: PCI device whose resources are to be reserved 4121 * @res_name: Name to be associated with resource. 4122 * 4123 * Returns: 0 on success, negative error code on failure. 4124 * 4125 * Mark all PCI regions associated with PCI device @pdev as being reserved 4126 * by owner @res_name. Do not access any address inside the PCI regions 4127 * unless this call returns successfully. 4128 * 4129 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4130 * and the sysfs MMIO access will not be allowed. 4131 * 4132 * Returns 0 on success, or %EBUSY on error. A warning message is also 4133 * printed on failure. 4134 * 4135 * NOTE: 4136 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4137 * when pcim_enable_device() has been called in advance. This hybrid feature is 4138 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4139 */ 4140 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4141 { 4142 return pci_request_selected_regions_exclusive(pdev, 4143 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4144 } 4145 EXPORT_SYMBOL(pci_request_regions_exclusive); 4146 4147 /* 4148 * Record the PCI IO range (expressed as CPU physical address + size). 4149 * Return a negative value if an error has occurred, zero otherwise 4150 */ 4151 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4152 resource_size_t size) 4153 { 4154 int ret = 0; 4155 #ifdef PCI_IOBASE 4156 struct logic_pio_hwaddr *range; 4157 4158 if (!size || addr + size < addr) 4159 return -EINVAL; 4160 4161 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4162 if (!range) 4163 return -ENOMEM; 4164 4165 range->fwnode = fwnode; 4166 range->size = size; 4167 range->hw_start = addr; 4168 range->flags = LOGIC_PIO_CPU_MMIO; 4169 4170 ret = logic_pio_register_range(range); 4171 if (ret) 4172 kfree(range); 4173 4174 /* Ignore duplicates due to deferred probing */ 4175 if (ret == -EEXIST) 4176 ret = 0; 4177 #endif 4178 4179 return ret; 4180 } 4181 4182 phys_addr_t pci_pio_to_address(unsigned long pio) 4183 { 4184 #ifdef PCI_IOBASE 4185 if (pio < MMIO_UPPER_LIMIT) 4186 return logic_pio_to_hwaddr(pio); 4187 #endif 4188 4189 return (phys_addr_t) OF_BAD_ADDR; 4190 } 4191 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4192 4193 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4194 { 4195 #ifdef PCI_IOBASE 4196 return logic_pio_trans_cpuaddr(address); 4197 #else 4198 if (address > IO_SPACE_LIMIT) 4199 return (unsigned long)-1; 4200 4201 return (unsigned long) address; 4202 #endif 4203 } 4204 4205 /** 4206 * pci_remap_iospace - Remap the memory mapped I/O space 4207 * @res: Resource describing the I/O space 4208 * @phys_addr: physical address of range to be mapped 4209 * 4210 * Remap the memory mapped I/O space described by the @res and the CPU 4211 * physical address @phys_addr into virtual address space. Only 4212 * architectures that have memory mapped IO functions defined (and the 4213 * PCI_IOBASE value defined) should call this function. 4214 */ 4215 #ifndef pci_remap_iospace 4216 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4217 { 4218 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4219 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4220 4221 if (!(res->flags & IORESOURCE_IO)) 4222 return -EINVAL; 4223 4224 if (res->end > IO_SPACE_LIMIT) 4225 return -EINVAL; 4226 4227 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4228 pgprot_device(PAGE_KERNEL)); 4229 #else 4230 /* 4231 * This architecture does not have memory mapped I/O space, 4232 * so this function should never be called 4233 */ 4234 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4235 return -ENODEV; 4236 #endif 4237 } 4238 EXPORT_SYMBOL(pci_remap_iospace); 4239 #endif 4240 4241 /** 4242 * pci_unmap_iospace - Unmap the memory mapped I/O space 4243 * @res: resource to be unmapped 4244 * 4245 * Unmap the CPU virtual address @res from virtual address space. Only 4246 * architectures that have memory mapped IO functions defined (and the 4247 * PCI_IOBASE value defined) should call this function. 4248 */ 4249 void pci_unmap_iospace(struct resource *res) 4250 { 4251 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4252 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4253 4254 vunmap_range(vaddr, vaddr + resource_size(res)); 4255 #endif 4256 } 4257 EXPORT_SYMBOL(pci_unmap_iospace); 4258 4259 static void __pci_set_master(struct pci_dev *dev, bool enable) 4260 { 4261 u16 old_cmd, cmd; 4262 4263 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4264 if (enable) 4265 cmd = old_cmd | PCI_COMMAND_MASTER; 4266 else 4267 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4268 if (cmd != old_cmd) { 4269 pci_dbg(dev, "%s bus mastering\n", 4270 enable ? "enabling" : "disabling"); 4271 pci_write_config_word(dev, PCI_COMMAND, cmd); 4272 } 4273 dev->is_busmaster = enable; 4274 } 4275 4276 /** 4277 * pcibios_setup - process "pci=" kernel boot arguments 4278 * @str: string used to pass in "pci=" kernel boot arguments 4279 * 4280 * Process kernel boot arguments. This is the default implementation. 4281 * Architecture specific implementations can override this as necessary. 4282 */ 4283 char * __weak __init pcibios_setup(char *str) 4284 { 4285 return str; 4286 } 4287 4288 /** 4289 * pcibios_set_master - enable PCI bus-mastering for device dev 4290 * @dev: the PCI device to enable 4291 * 4292 * Enables PCI bus-mastering for the device. This is the default 4293 * implementation. Architecture specific implementations can override 4294 * this if necessary. 4295 */ 4296 void __weak pcibios_set_master(struct pci_dev *dev) 4297 { 4298 u8 lat; 4299 4300 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4301 if (pci_is_pcie(dev)) 4302 return; 4303 4304 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4305 if (lat < 16) 4306 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4307 else if (lat > pcibios_max_latency) 4308 lat = pcibios_max_latency; 4309 else 4310 return; 4311 4312 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4313 } 4314 4315 /** 4316 * pci_set_master - enables bus-mastering for device dev 4317 * @dev: the PCI device to enable 4318 * 4319 * Enables bus-mastering on the device and calls pcibios_set_master() 4320 * to do the needed arch specific settings. 4321 */ 4322 void pci_set_master(struct pci_dev *dev) 4323 { 4324 __pci_set_master(dev, true); 4325 pcibios_set_master(dev); 4326 } 4327 EXPORT_SYMBOL(pci_set_master); 4328 4329 /** 4330 * pci_clear_master - disables bus-mastering for device dev 4331 * @dev: the PCI device to disable 4332 */ 4333 void pci_clear_master(struct pci_dev *dev) 4334 { 4335 __pci_set_master(dev, false); 4336 } 4337 EXPORT_SYMBOL(pci_clear_master); 4338 4339 /** 4340 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4341 * @dev: the PCI device for which MWI is to be enabled 4342 * 4343 * Helper function for pci_set_mwi. 4344 * Originally copied from drivers/net/acenic.c. 4345 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4346 * 4347 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4348 */ 4349 int pci_set_cacheline_size(struct pci_dev *dev) 4350 { 4351 u8 cacheline_size; 4352 4353 if (!pci_cache_line_size) 4354 return -EINVAL; 4355 4356 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4357 equal to or multiple of the right value. */ 4358 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4359 if (cacheline_size >= pci_cache_line_size && 4360 (cacheline_size % pci_cache_line_size) == 0) 4361 return 0; 4362 4363 /* Write the correct value. */ 4364 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4365 /* Read it back. */ 4366 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4367 if (cacheline_size == pci_cache_line_size) 4368 return 0; 4369 4370 pci_dbg(dev, "cache line size of %d is not supported\n", 4371 pci_cache_line_size << 2); 4372 4373 return -EINVAL; 4374 } 4375 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4376 4377 /** 4378 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4379 * @dev: the PCI device for which MWI is enabled 4380 * 4381 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4382 * 4383 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4384 */ 4385 int pci_set_mwi(struct pci_dev *dev) 4386 { 4387 #ifdef PCI_DISABLE_MWI 4388 return 0; 4389 #else 4390 int rc; 4391 u16 cmd; 4392 4393 rc = pci_set_cacheline_size(dev); 4394 if (rc) 4395 return rc; 4396 4397 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4398 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4399 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4400 cmd |= PCI_COMMAND_INVALIDATE; 4401 pci_write_config_word(dev, PCI_COMMAND, cmd); 4402 } 4403 return 0; 4404 #endif 4405 } 4406 EXPORT_SYMBOL(pci_set_mwi); 4407 4408 /** 4409 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4410 * @dev: the PCI device for which MWI is enabled 4411 * 4412 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4413 * Callers are not required to check the return value. 4414 * 4415 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4416 */ 4417 int pci_try_set_mwi(struct pci_dev *dev) 4418 { 4419 #ifdef PCI_DISABLE_MWI 4420 return 0; 4421 #else 4422 return pci_set_mwi(dev); 4423 #endif 4424 } 4425 EXPORT_SYMBOL(pci_try_set_mwi); 4426 4427 /** 4428 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4429 * @dev: the PCI device to disable 4430 * 4431 * Disables PCI Memory-Write-Invalidate transaction on the device 4432 */ 4433 void pci_clear_mwi(struct pci_dev *dev) 4434 { 4435 #ifndef PCI_DISABLE_MWI 4436 u16 cmd; 4437 4438 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4439 if (cmd & PCI_COMMAND_INVALIDATE) { 4440 cmd &= ~PCI_COMMAND_INVALIDATE; 4441 pci_write_config_word(dev, PCI_COMMAND, cmd); 4442 } 4443 #endif 4444 } 4445 EXPORT_SYMBOL(pci_clear_mwi); 4446 4447 /** 4448 * pci_disable_parity - disable parity checking for device 4449 * @dev: the PCI device to operate on 4450 * 4451 * Disable parity checking for device @dev 4452 */ 4453 void pci_disable_parity(struct pci_dev *dev) 4454 { 4455 u16 cmd; 4456 4457 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4458 if (cmd & PCI_COMMAND_PARITY) { 4459 cmd &= ~PCI_COMMAND_PARITY; 4460 pci_write_config_word(dev, PCI_COMMAND, cmd); 4461 } 4462 } 4463 4464 /** 4465 * pci_intx - enables/disables PCI INTx for device dev 4466 * @pdev: the PCI device to operate on 4467 * @enable: boolean: whether to enable or disable PCI INTx 4468 * 4469 * Enables/disables PCI INTx for device @pdev 4470 * 4471 * NOTE: 4472 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4473 * when pcim_enable_device() has been called in advance. This hybrid feature is 4474 * DEPRECATED! If you want managed cleanup, use pcim_intx() instead. 4475 */ 4476 void pci_intx(struct pci_dev *pdev, int enable) 4477 { 4478 u16 pci_command, new; 4479 4480 /* Preserve the "hybrid" behavior for backwards compatibility */ 4481 if (pci_is_managed(pdev)) { 4482 WARN_ON_ONCE(pcim_intx(pdev, enable) != 0); 4483 return; 4484 } 4485 4486 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4487 4488 if (enable) 4489 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4490 else 4491 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4492 4493 if (new != pci_command) 4494 pci_write_config_word(pdev, PCI_COMMAND, new); 4495 } 4496 EXPORT_SYMBOL_GPL(pci_intx); 4497 4498 /** 4499 * pci_wait_for_pending_transaction - wait for pending transaction 4500 * @dev: the PCI device to operate on 4501 * 4502 * Return 0 if transaction is pending 1 otherwise. 4503 */ 4504 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4505 { 4506 if (!pci_is_pcie(dev)) 4507 return 1; 4508 4509 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4510 PCI_EXP_DEVSTA_TRPND); 4511 } 4512 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4513 4514 /** 4515 * pcie_flr - initiate a PCIe function level reset 4516 * @dev: device to reset 4517 * 4518 * Initiate a function level reset unconditionally on @dev without 4519 * checking any flags and DEVCAP 4520 */ 4521 int pcie_flr(struct pci_dev *dev) 4522 { 4523 if (!pci_wait_for_pending_transaction(dev)) 4524 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4525 4526 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4527 4528 if (dev->imm_ready) 4529 return 0; 4530 4531 /* 4532 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4533 * 100ms, but may silently discard requests while the FLR is in 4534 * progress. Wait 100ms before trying to access the device. 4535 */ 4536 msleep(100); 4537 4538 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4539 } 4540 EXPORT_SYMBOL_GPL(pcie_flr); 4541 4542 /** 4543 * pcie_reset_flr - initiate a PCIe function level reset 4544 * @dev: device to reset 4545 * @probe: if true, return 0 if device can be reset this way 4546 * 4547 * Initiate a function level reset on @dev. 4548 */ 4549 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4550 { 4551 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4552 return -ENOTTY; 4553 4554 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4555 return -ENOTTY; 4556 4557 if (probe) 4558 return 0; 4559 4560 return pcie_flr(dev); 4561 } 4562 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4563 4564 static int pci_af_flr(struct pci_dev *dev, bool probe) 4565 { 4566 int pos; 4567 u8 cap; 4568 4569 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4570 if (!pos) 4571 return -ENOTTY; 4572 4573 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4574 return -ENOTTY; 4575 4576 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4577 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4578 return -ENOTTY; 4579 4580 if (probe) 4581 return 0; 4582 4583 /* 4584 * Wait for Transaction Pending bit to clear. A word-aligned test 4585 * is used, so we use the control offset rather than status and shift 4586 * the test bit to match. 4587 */ 4588 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4589 PCI_AF_STATUS_TP << 8)) 4590 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4591 4592 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4593 4594 if (dev->imm_ready) 4595 return 0; 4596 4597 /* 4598 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4599 * updated 27 July 2006; a device must complete an FLR within 4600 * 100ms, but may silently discard requests while the FLR is in 4601 * progress. Wait 100ms before trying to access the device. 4602 */ 4603 msleep(100); 4604 4605 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4606 } 4607 4608 /** 4609 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4610 * @dev: Device to reset. 4611 * @probe: if true, return 0 if the device can be reset this way. 4612 * 4613 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4614 * unset, it will be reinitialized internally when going from PCI_D3hot to 4615 * PCI_D0. If that's the case and the device is not in a low-power state 4616 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4617 * 4618 * NOTE: This causes the caller to sleep for twice the device power transition 4619 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4620 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4621 * Moreover, only devices in D0 can be reset by this function. 4622 */ 4623 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4624 { 4625 u16 csr; 4626 4627 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4628 return -ENOTTY; 4629 4630 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4631 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4632 return -ENOTTY; 4633 4634 if (probe) 4635 return 0; 4636 4637 if (dev->current_state != PCI_D0) 4638 return -EINVAL; 4639 4640 csr &= ~PCI_PM_CTRL_STATE_MASK; 4641 csr |= PCI_D3hot; 4642 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4643 pci_dev_d3_sleep(dev); 4644 4645 csr &= ~PCI_PM_CTRL_STATE_MASK; 4646 csr |= PCI_D0; 4647 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4648 pci_dev_d3_sleep(dev); 4649 4650 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4651 } 4652 4653 /** 4654 * pcie_wait_for_link_status - Wait for link status change 4655 * @pdev: Device whose link to wait for. 4656 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4657 * @active: Waiting for active or inactive? 4658 * 4659 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4660 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4661 */ 4662 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4663 bool use_lt, bool active) 4664 { 4665 u16 lnksta_mask, lnksta_match; 4666 unsigned long end_jiffies; 4667 u16 lnksta; 4668 4669 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4670 lnksta_match = active ? lnksta_mask : 0; 4671 4672 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4673 do { 4674 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4675 if ((lnksta & lnksta_mask) == lnksta_match) 4676 return 0; 4677 msleep(1); 4678 } while (time_before(jiffies, end_jiffies)); 4679 4680 return -ETIMEDOUT; 4681 } 4682 4683 /** 4684 * pcie_retrain_link - Request a link retrain and wait for it to complete 4685 * @pdev: Device whose link to retrain. 4686 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 4687 * 4688 * Retrain completion status is retrieved from the Link Status Register 4689 * according to @use_lt. It is not verified whether the use of the DLLLA 4690 * bit is valid. 4691 * 4692 * Return 0 if successful, or -ETIMEDOUT if training has not completed 4693 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4694 */ 4695 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 4696 { 4697 int rc; 4698 4699 /* 4700 * Ensure the updated LNKCTL parameters are used during link 4701 * training by checking that there is no ongoing link training that 4702 * may have started before link parameters were changed, so as to 4703 * avoid LTSSM race as recommended in Implementation Note at the end 4704 * of PCIe r6.1 sec 7.5.3.7. 4705 */ 4706 rc = pcie_wait_for_link_status(pdev, true, false); 4707 if (rc) 4708 return rc; 4709 4710 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4711 if (pdev->clear_retrain_link) { 4712 /* 4713 * Due to an erratum in some devices the Retrain Link bit 4714 * needs to be cleared again manually to allow the link 4715 * training to succeed. 4716 */ 4717 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4718 } 4719 4720 return pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4721 } 4722 4723 /** 4724 * pcie_wait_for_link_delay - Wait until link is active or inactive 4725 * @pdev: Bridge device 4726 * @active: waiting for active or inactive? 4727 * @delay: Delay to wait after link has become active (in ms) 4728 * 4729 * Use this to wait till link becomes active or inactive. 4730 */ 4731 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4732 int delay) 4733 { 4734 int rc; 4735 4736 /* 4737 * Some controllers might not implement link active reporting. In this 4738 * case, we wait for 1000 ms + any delay requested by the caller. 4739 */ 4740 if (!pdev->link_active_reporting) { 4741 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 4742 return true; 4743 } 4744 4745 /* 4746 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4747 * after which we should expect an link active if the reset was 4748 * successful. If so, software must wait a minimum 100ms before sending 4749 * configuration requests to devices downstream this port. 4750 * 4751 * If the link fails to activate, either the device was physically 4752 * removed or the link is permanently failed. 4753 */ 4754 if (active) 4755 msleep(20); 4756 rc = pcie_wait_for_link_status(pdev, false, active); 4757 if (active) { 4758 if (rc) 4759 rc = pcie_failed_link_retrain(pdev); 4760 if (rc) 4761 return false; 4762 4763 msleep(delay); 4764 return true; 4765 } 4766 4767 if (rc) 4768 return false; 4769 4770 return true; 4771 } 4772 4773 /** 4774 * pcie_wait_for_link - Wait until link is active or inactive 4775 * @pdev: Bridge device 4776 * @active: waiting for active or inactive? 4777 * 4778 * Use this to wait till link becomes active or inactive. 4779 */ 4780 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4781 { 4782 return pcie_wait_for_link_delay(pdev, active, 100); 4783 } 4784 4785 /* 4786 * Find maximum D3cold delay required by all the devices on the bus. The 4787 * spec says 100 ms, but firmware can lower it and we allow drivers to 4788 * increase it as well. 4789 * 4790 * Called with @pci_bus_sem locked for reading. 4791 */ 4792 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4793 { 4794 const struct pci_dev *pdev; 4795 int min_delay = 100; 4796 int max_delay = 0; 4797 4798 list_for_each_entry(pdev, &bus->devices, bus_list) { 4799 if (pdev->d3cold_delay < min_delay) 4800 min_delay = pdev->d3cold_delay; 4801 if (pdev->d3cold_delay > max_delay) 4802 max_delay = pdev->d3cold_delay; 4803 } 4804 4805 return max(min_delay, max_delay); 4806 } 4807 4808 /** 4809 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4810 * @dev: PCI bridge 4811 * @reset_type: reset type in human-readable form 4812 * 4813 * Handle necessary delays before access to the devices on the secondary 4814 * side of the bridge are permitted after D3cold to D0 transition 4815 * or Conventional Reset. 4816 * 4817 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4818 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4819 * 4.3.2. 4820 * 4821 * Return 0 on success or -ENOTTY if the first device on the secondary bus 4822 * failed to become accessible. 4823 */ 4824 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 4825 { 4826 struct pci_dev *child __free(pci_dev_put) = NULL; 4827 int delay; 4828 4829 if (pci_dev_is_disconnected(dev)) 4830 return 0; 4831 4832 if (!pci_is_bridge(dev)) 4833 return 0; 4834 4835 down_read(&pci_bus_sem); 4836 4837 /* 4838 * We only deal with devices that are present currently on the bus. 4839 * For any hot-added devices the access delay is handled in pciehp 4840 * board_added(). In case of ACPI hotplug the firmware is expected 4841 * to configure the devices before OS is notified. 4842 */ 4843 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4844 up_read(&pci_bus_sem); 4845 return 0; 4846 } 4847 4848 /* Take d3cold_delay requirements into account */ 4849 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4850 if (!delay) { 4851 up_read(&pci_bus_sem); 4852 return 0; 4853 } 4854 4855 child = pci_dev_get(list_first_entry(&dev->subordinate->devices, 4856 struct pci_dev, bus_list)); 4857 up_read(&pci_bus_sem); 4858 4859 /* 4860 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4861 * accessing the device after reset (that is 1000 ms + 100 ms). 4862 */ 4863 if (!pci_is_pcie(dev)) { 4864 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4865 msleep(1000 + delay); 4866 return 0; 4867 } 4868 4869 /* 4870 * For PCIe downstream and root ports that do not support speeds 4871 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4872 * speeds (gen3) we need to wait first for the data link layer to 4873 * become active. 4874 * 4875 * However, 100 ms is the minimum and the PCIe spec says the 4876 * software must allow at least 1s before it can determine that the 4877 * device that did not respond is a broken device. Also device can 4878 * take longer than that to respond if it indicates so through Request 4879 * Retry Status completions. 4880 * 4881 * Therefore we wait for 100 ms and check for the device presence 4882 * until the timeout expires. 4883 */ 4884 if (!pcie_downstream_port(dev)) 4885 return 0; 4886 4887 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4888 u16 status; 4889 4890 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4891 msleep(delay); 4892 4893 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 4894 return 0; 4895 4896 /* 4897 * If the port supports active link reporting we now check 4898 * whether the link is active and if not bail out early with 4899 * the assumption that the device is not present anymore. 4900 */ 4901 if (!dev->link_active_reporting) 4902 return -ENOTTY; 4903 4904 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 4905 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 4906 return -ENOTTY; 4907 4908 return pci_dev_wait(child, reset_type, 4909 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 4910 } 4911 4912 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4913 delay); 4914 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4915 /* Did not train, no need to wait any further */ 4916 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 4917 return -ENOTTY; 4918 } 4919 4920 return pci_dev_wait(child, reset_type, 4921 PCIE_RESET_READY_POLL_MS - delay); 4922 } 4923 4924 void pci_reset_secondary_bus(struct pci_dev *dev) 4925 { 4926 u16 ctrl; 4927 4928 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4929 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4930 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4931 4932 /* 4933 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4934 * this to 2ms to ensure that we meet the minimum requirement. 4935 */ 4936 msleep(2); 4937 4938 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4939 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4940 } 4941 4942 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4943 { 4944 pci_reset_secondary_bus(dev); 4945 } 4946 4947 /** 4948 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4949 * @dev: Bridge device 4950 * 4951 * Use the bridge control register to assert reset on the secondary bus. 4952 * Devices on the secondary bus are left in power-on state. 4953 */ 4954 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4955 { 4956 if (!dev->block_cfg_access) 4957 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n", 4958 __builtin_return_address(0)); 4959 pcibios_reset_secondary_bus(dev); 4960 4961 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 4962 } 4963 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4964 4965 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 4966 { 4967 struct pci_dev *pdev; 4968 4969 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4970 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4971 return -ENOTTY; 4972 4973 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4974 if (pdev != dev) 4975 return -ENOTTY; 4976 4977 if (probe) 4978 return 0; 4979 4980 return pci_bridge_secondary_bus_reset(dev->bus->self); 4981 } 4982 4983 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 4984 { 4985 int rc = -ENOTTY; 4986 4987 if (!hotplug || !try_module_get(hotplug->owner)) 4988 return rc; 4989 4990 if (hotplug->ops->reset_slot) 4991 rc = hotplug->ops->reset_slot(hotplug, probe); 4992 4993 module_put(hotplug->owner); 4994 4995 return rc; 4996 } 4997 4998 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 4999 { 5000 if (dev->multifunction || dev->subordinate || !dev->slot || 5001 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5002 return -ENOTTY; 5003 5004 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5005 } 5006 5007 static u16 cxl_port_dvsec(struct pci_dev *dev) 5008 { 5009 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL, 5010 PCI_DVSEC_CXL_PORT); 5011 } 5012 5013 static bool cxl_sbr_masked(struct pci_dev *dev) 5014 { 5015 u16 dvsec, reg; 5016 int rc; 5017 5018 dvsec = cxl_port_dvsec(dev); 5019 if (!dvsec) 5020 return false; 5021 5022 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®); 5023 if (rc || PCI_POSSIBLE_ERROR(reg)) 5024 return false; 5025 5026 /* 5027 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR 5028 * bit in Bridge Control has no effect. When 1, the Port generates 5029 * hot reset when the SBR bit is set to 1. 5030 */ 5031 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) 5032 return false; 5033 5034 return true; 5035 } 5036 5037 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5038 { 5039 struct pci_dev *bridge = pci_upstream_bridge(dev); 5040 int rc; 5041 5042 /* 5043 * If "dev" is below a CXL port that has SBR control masked, SBR 5044 * won't do anything, so return error. 5045 */ 5046 if (bridge && cxl_sbr_masked(bridge)) { 5047 if (probe) 5048 return 0; 5049 5050 return -ENOTTY; 5051 } 5052 5053 rc = pci_dev_reset_slot_function(dev, probe); 5054 if (rc != -ENOTTY) 5055 return rc; 5056 return pci_parent_bus_reset(dev, probe); 5057 } 5058 5059 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe) 5060 { 5061 struct pci_dev *bridge; 5062 u16 dvsec, reg, val; 5063 int rc; 5064 5065 bridge = pci_upstream_bridge(dev); 5066 if (!bridge) 5067 return -ENOTTY; 5068 5069 dvsec = cxl_port_dvsec(bridge); 5070 if (!dvsec) 5071 return -ENOTTY; 5072 5073 if (probe) 5074 return 0; 5075 5076 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®); 5077 if (rc) 5078 return -ENOTTY; 5079 5080 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) { 5081 val = reg; 5082 } else { 5083 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR; 5084 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, 5085 val); 5086 } 5087 5088 rc = pci_reset_bus_function(dev, probe); 5089 5090 if (reg != val) 5091 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, 5092 reg); 5093 5094 return rc; 5095 } 5096 5097 void pci_dev_lock(struct pci_dev *dev) 5098 { 5099 /* block PM suspend, driver probe, etc. */ 5100 device_lock(&dev->dev); 5101 pci_cfg_access_lock(dev); 5102 } 5103 EXPORT_SYMBOL_GPL(pci_dev_lock); 5104 5105 /* Return 1 on successful lock, 0 on contention */ 5106 int pci_dev_trylock(struct pci_dev *dev) 5107 { 5108 if (device_trylock(&dev->dev)) { 5109 if (pci_cfg_access_trylock(dev)) 5110 return 1; 5111 device_unlock(&dev->dev); 5112 } 5113 5114 return 0; 5115 } 5116 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5117 5118 void pci_dev_unlock(struct pci_dev *dev) 5119 { 5120 pci_cfg_access_unlock(dev); 5121 device_unlock(&dev->dev); 5122 } 5123 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5124 5125 static void pci_dev_save_and_disable(struct pci_dev *dev) 5126 { 5127 const struct pci_error_handlers *err_handler = 5128 dev->driver ? dev->driver->err_handler : NULL; 5129 5130 /* 5131 * dev->driver->err_handler->reset_prepare() is protected against 5132 * races with ->remove() by the device lock, which must be held by 5133 * the caller. 5134 */ 5135 if (err_handler && err_handler->reset_prepare) 5136 err_handler->reset_prepare(dev); 5137 5138 /* 5139 * Wake-up device prior to save. PM registers default to D0 after 5140 * reset and a simple register restore doesn't reliably return 5141 * to a non-D0 state anyway. 5142 */ 5143 pci_set_power_state(dev, PCI_D0); 5144 5145 pci_save_state(dev); 5146 /* 5147 * Disable the device by clearing the Command register, except for 5148 * INTx-disable which is set. This not only disables MMIO and I/O port 5149 * BARs, but also prevents the device from being Bus Master, preventing 5150 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5151 * compliant devices, INTx-disable prevents legacy interrupts. 5152 */ 5153 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5154 } 5155 5156 static void pci_dev_restore(struct pci_dev *dev) 5157 { 5158 const struct pci_error_handlers *err_handler = 5159 dev->driver ? dev->driver->err_handler : NULL; 5160 5161 pci_restore_state(dev); 5162 5163 /* 5164 * dev->driver->err_handler->reset_done() is protected against 5165 * races with ->remove() by the device lock, which must be held by 5166 * the caller. 5167 */ 5168 if (err_handler && err_handler->reset_done) 5169 err_handler->reset_done(dev); 5170 } 5171 5172 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5173 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5174 { }, 5175 { pci_dev_specific_reset, .name = "device_specific" }, 5176 { pci_dev_acpi_reset, .name = "acpi" }, 5177 { pcie_reset_flr, .name = "flr" }, 5178 { pci_af_flr, .name = "af_flr" }, 5179 { pci_pm_reset, .name = "pm" }, 5180 { pci_reset_bus_function, .name = "bus" }, 5181 { cxl_reset_bus_function, .name = "cxl_bus" }, 5182 }; 5183 5184 static ssize_t reset_method_show(struct device *dev, 5185 struct device_attribute *attr, char *buf) 5186 { 5187 struct pci_dev *pdev = to_pci_dev(dev); 5188 ssize_t len = 0; 5189 int i, m; 5190 5191 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5192 m = pdev->reset_methods[i]; 5193 if (!m) 5194 break; 5195 5196 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5197 pci_reset_fn_methods[m].name); 5198 } 5199 5200 if (len) 5201 len += sysfs_emit_at(buf, len, "\n"); 5202 5203 return len; 5204 } 5205 5206 static int reset_method_lookup(const char *name) 5207 { 5208 int m; 5209 5210 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5211 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5212 return m; 5213 } 5214 5215 return 0; /* not found */ 5216 } 5217 5218 static ssize_t reset_method_store(struct device *dev, 5219 struct device_attribute *attr, 5220 const char *buf, size_t count) 5221 { 5222 struct pci_dev *pdev = to_pci_dev(dev); 5223 char *options, *name; 5224 int m, n; 5225 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5226 5227 if (sysfs_streq(buf, "")) { 5228 pdev->reset_methods[0] = 0; 5229 pci_warn(pdev, "All device reset methods disabled by user"); 5230 return count; 5231 } 5232 5233 if (sysfs_streq(buf, "default")) { 5234 pci_init_reset_methods(pdev); 5235 return count; 5236 } 5237 5238 options = kstrndup(buf, count, GFP_KERNEL); 5239 if (!options) 5240 return -ENOMEM; 5241 5242 n = 0; 5243 while ((name = strsep(&options, " ")) != NULL) { 5244 if (sysfs_streq(name, "")) 5245 continue; 5246 5247 name = strim(name); 5248 5249 m = reset_method_lookup(name); 5250 if (!m) { 5251 pci_err(pdev, "Invalid reset method '%s'", name); 5252 goto error; 5253 } 5254 5255 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5256 pci_err(pdev, "Unsupported reset method '%s'", name); 5257 goto error; 5258 } 5259 5260 if (n == PCI_NUM_RESET_METHODS - 1) { 5261 pci_err(pdev, "Too many reset methods\n"); 5262 goto error; 5263 } 5264 5265 reset_methods[n++] = m; 5266 } 5267 5268 reset_methods[n] = 0; 5269 5270 /* Warn if dev-specific supported but not highest priority */ 5271 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5272 reset_methods[0] != 1) 5273 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5274 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5275 kfree(options); 5276 return count; 5277 5278 error: 5279 /* Leave previous methods unchanged */ 5280 kfree(options); 5281 return -EINVAL; 5282 } 5283 static DEVICE_ATTR_RW(reset_method); 5284 5285 static struct attribute *pci_dev_reset_method_attrs[] = { 5286 &dev_attr_reset_method.attr, 5287 NULL, 5288 }; 5289 5290 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5291 struct attribute *a, int n) 5292 { 5293 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5294 5295 if (!pci_reset_supported(pdev)) 5296 return 0; 5297 5298 return a->mode; 5299 } 5300 5301 const struct attribute_group pci_dev_reset_method_attr_group = { 5302 .attrs = pci_dev_reset_method_attrs, 5303 .is_visible = pci_dev_reset_method_attr_is_visible, 5304 }; 5305 5306 /** 5307 * __pci_reset_function_locked - reset a PCI device function while holding 5308 * the @dev mutex lock. 5309 * @dev: PCI device to reset 5310 * 5311 * Some devices allow an individual function to be reset without affecting 5312 * other functions in the same device. The PCI device must be responsive 5313 * to PCI config space in order to use this function. 5314 * 5315 * The device function is presumed to be unused and the caller is holding 5316 * the device mutex lock when this function is called. 5317 * 5318 * Resetting the device will make the contents of PCI configuration space 5319 * random, so any caller of this must be prepared to reinitialise the 5320 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5321 * etc. 5322 * 5323 * Returns 0 if the device function was successfully reset or negative if the 5324 * device doesn't support resetting a single function. 5325 */ 5326 int __pci_reset_function_locked(struct pci_dev *dev) 5327 { 5328 int i, m, rc; 5329 5330 might_sleep(); 5331 5332 /* 5333 * A reset method returns -ENOTTY if it doesn't support this device and 5334 * we should try the next method. 5335 * 5336 * If it returns 0 (success), we're finished. If it returns any other 5337 * error, we're also finished: this indicates that further reset 5338 * mechanisms might be broken on the device. 5339 */ 5340 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5341 m = dev->reset_methods[i]; 5342 if (!m) 5343 return -ENOTTY; 5344 5345 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5346 if (!rc) 5347 return 0; 5348 if (rc != -ENOTTY) 5349 return rc; 5350 } 5351 5352 return -ENOTTY; 5353 } 5354 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5355 5356 /** 5357 * pci_init_reset_methods - check whether device can be safely reset 5358 * and store supported reset mechanisms. 5359 * @dev: PCI device to check for reset mechanisms 5360 * 5361 * Some devices allow an individual function to be reset without affecting 5362 * other functions in the same device. The PCI device must be in D0-D3hot 5363 * state. 5364 * 5365 * Stores reset mechanisms supported by device in reset_methods byte array 5366 * which is a member of struct pci_dev. 5367 */ 5368 void pci_init_reset_methods(struct pci_dev *dev) 5369 { 5370 int m, i, rc; 5371 5372 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5373 5374 might_sleep(); 5375 5376 i = 0; 5377 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5378 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5379 if (!rc) 5380 dev->reset_methods[i++] = m; 5381 else if (rc != -ENOTTY) 5382 break; 5383 } 5384 5385 dev->reset_methods[i] = 0; 5386 } 5387 5388 /** 5389 * pci_reset_function - quiesce and reset a PCI device function 5390 * @dev: PCI device to reset 5391 * 5392 * Some devices allow an individual function to be reset without affecting 5393 * other functions in the same device. The PCI device must be responsive 5394 * to PCI config space in order to use this function. 5395 * 5396 * This function does not just reset the PCI portion of a device, but 5397 * clears all the state associated with the device. This function differs 5398 * from __pci_reset_function_locked() in that it saves and restores device state 5399 * over the reset and takes the PCI device lock. 5400 * 5401 * Returns 0 if the device function was successfully reset or negative if the 5402 * device doesn't support resetting a single function. 5403 */ 5404 int pci_reset_function(struct pci_dev *dev) 5405 { 5406 struct pci_dev *bridge; 5407 int rc; 5408 5409 if (!pci_reset_supported(dev)) 5410 return -ENOTTY; 5411 5412 /* 5413 * If there's no upstream bridge, no locking is needed since there is 5414 * no upstream bridge configuration to hold consistent. 5415 */ 5416 bridge = pci_upstream_bridge(dev); 5417 if (bridge) 5418 pci_dev_lock(bridge); 5419 5420 pci_dev_lock(dev); 5421 pci_dev_save_and_disable(dev); 5422 5423 rc = __pci_reset_function_locked(dev); 5424 5425 pci_dev_restore(dev); 5426 pci_dev_unlock(dev); 5427 5428 if (bridge) 5429 pci_dev_unlock(bridge); 5430 5431 return rc; 5432 } 5433 EXPORT_SYMBOL_GPL(pci_reset_function); 5434 5435 /** 5436 * pci_reset_function_locked - quiesce and reset a PCI device function 5437 * @dev: PCI device to reset 5438 * 5439 * Some devices allow an individual function to be reset without affecting 5440 * other functions in the same device. The PCI device must be responsive 5441 * to PCI config space in order to use this function. 5442 * 5443 * This function does not just reset the PCI portion of a device, but 5444 * clears all the state associated with the device. This function differs 5445 * from __pci_reset_function_locked() in that it saves and restores device state 5446 * over the reset. It also differs from pci_reset_function() in that it 5447 * requires the PCI device lock to be held. 5448 * 5449 * Returns 0 if the device function was successfully reset or negative if the 5450 * device doesn't support resetting a single function. 5451 */ 5452 int pci_reset_function_locked(struct pci_dev *dev) 5453 { 5454 int rc; 5455 5456 if (!pci_reset_supported(dev)) 5457 return -ENOTTY; 5458 5459 pci_dev_save_and_disable(dev); 5460 5461 rc = __pci_reset_function_locked(dev); 5462 5463 pci_dev_restore(dev); 5464 5465 return rc; 5466 } 5467 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5468 5469 /** 5470 * pci_try_reset_function - quiesce and reset a PCI device function 5471 * @dev: PCI device to reset 5472 * 5473 * Same as above, except return -EAGAIN if unable to lock device. 5474 */ 5475 int pci_try_reset_function(struct pci_dev *dev) 5476 { 5477 int rc; 5478 5479 if (!pci_reset_supported(dev)) 5480 return -ENOTTY; 5481 5482 if (!pci_dev_trylock(dev)) 5483 return -EAGAIN; 5484 5485 pci_dev_save_and_disable(dev); 5486 rc = __pci_reset_function_locked(dev); 5487 pci_dev_restore(dev); 5488 pci_dev_unlock(dev); 5489 5490 return rc; 5491 } 5492 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5493 5494 /* Do any devices on or below this bus prevent a bus reset? */ 5495 static bool pci_bus_resettable(struct pci_bus *bus) 5496 { 5497 struct pci_dev *dev; 5498 5499 5500 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5501 return false; 5502 5503 list_for_each_entry(dev, &bus->devices, bus_list) { 5504 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5505 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5506 return false; 5507 } 5508 5509 return true; 5510 } 5511 5512 /* Lock devices from the top of the tree down */ 5513 static void pci_bus_lock(struct pci_bus *bus) 5514 { 5515 struct pci_dev *dev; 5516 5517 pci_dev_lock(bus->self); 5518 list_for_each_entry(dev, &bus->devices, bus_list) { 5519 if (dev->subordinate) 5520 pci_bus_lock(dev->subordinate); 5521 else 5522 pci_dev_lock(dev); 5523 } 5524 } 5525 5526 /* Unlock devices from the bottom of the tree up */ 5527 static void pci_bus_unlock(struct pci_bus *bus) 5528 { 5529 struct pci_dev *dev; 5530 5531 list_for_each_entry(dev, &bus->devices, bus_list) { 5532 if (dev->subordinate) 5533 pci_bus_unlock(dev->subordinate); 5534 else 5535 pci_dev_unlock(dev); 5536 } 5537 pci_dev_unlock(bus->self); 5538 } 5539 5540 /* Return 1 on successful lock, 0 on contention */ 5541 static int pci_bus_trylock(struct pci_bus *bus) 5542 { 5543 struct pci_dev *dev; 5544 5545 if (!pci_dev_trylock(bus->self)) 5546 return 0; 5547 5548 list_for_each_entry(dev, &bus->devices, bus_list) { 5549 if (dev->subordinate) { 5550 if (!pci_bus_trylock(dev->subordinate)) 5551 goto unlock; 5552 } else if (!pci_dev_trylock(dev)) 5553 goto unlock; 5554 } 5555 return 1; 5556 5557 unlock: 5558 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5559 if (dev->subordinate) 5560 pci_bus_unlock(dev->subordinate); 5561 else 5562 pci_dev_unlock(dev); 5563 } 5564 pci_dev_unlock(bus->self); 5565 return 0; 5566 } 5567 5568 /* Do any devices on or below this slot prevent a bus reset? */ 5569 static bool pci_slot_resettable(struct pci_slot *slot) 5570 { 5571 struct pci_dev *dev; 5572 5573 if (slot->bus->self && 5574 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5575 return false; 5576 5577 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5578 if (!dev->slot || dev->slot != slot) 5579 continue; 5580 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5581 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5582 return false; 5583 } 5584 5585 return true; 5586 } 5587 5588 /* Lock devices from the top of the tree down */ 5589 static void pci_slot_lock(struct pci_slot *slot) 5590 { 5591 struct pci_dev *dev; 5592 5593 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5594 if (!dev->slot || dev->slot != slot) 5595 continue; 5596 if (dev->subordinate) 5597 pci_bus_lock(dev->subordinate); 5598 else 5599 pci_dev_lock(dev); 5600 } 5601 } 5602 5603 /* Unlock devices from the bottom of the tree up */ 5604 static void pci_slot_unlock(struct pci_slot *slot) 5605 { 5606 struct pci_dev *dev; 5607 5608 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5609 if (!dev->slot || dev->slot != slot) 5610 continue; 5611 if (dev->subordinate) 5612 pci_bus_unlock(dev->subordinate); 5613 pci_dev_unlock(dev); 5614 } 5615 } 5616 5617 /* Return 1 on successful lock, 0 on contention */ 5618 static int pci_slot_trylock(struct pci_slot *slot) 5619 { 5620 struct pci_dev *dev; 5621 5622 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5623 if (!dev->slot || dev->slot != slot) 5624 continue; 5625 if (dev->subordinate) { 5626 if (!pci_bus_trylock(dev->subordinate)) { 5627 pci_dev_unlock(dev); 5628 goto unlock; 5629 } 5630 } else if (!pci_dev_trylock(dev)) 5631 goto unlock; 5632 } 5633 return 1; 5634 5635 unlock: 5636 list_for_each_entry_continue_reverse(dev, 5637 &slot->bus->devices, bus_list) { 5638 if (!dev->slot || dev->slot != slot) 5639 continue; 5640 if (dev->subordinate) 5641 pci_bus_unlock(dev->subordinate); 5642 else 5643 pci_dev_unlock(dev); 5644 } 5645 return 0; 5646 } 5647 5648 /* 5649 * Save and disable devices from the top of the tree down while holding 5650 * the @dev mutex lock for the entire tree. 5651 */ 5652 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5653 { 5654 struct pci_dev *dev; 5655 5656 list_for_each_entry(dev, &bus->devices, bus_list) { 5657 pci_dev_save_and_disable(dev); 5658 if (dev->subordinate) 5659 pci_bus_save_and_disable_locked(dev->subordinate); 5660 } 5661 } 5662 5663 /* 5664 * Restore devices from top of the tree down while holding @dev mutex lock 5665 * for the entire tree. Parent bridges need to be restored before we can 5666 * get to subordinate devices. 5667 */ 5668 static void pci_bus_restore_locked(struct pci_bus *bus) 5669 { 5670 struct pci_dev *dev; 5671 5672 list_for_each_entry(dev, &bus->devices, bus_list) { 5673 pci_dev_restore(dev); 5674 if (dev->subordinate) 5675 pci_bus_restore_locked(dev->subordinate); 5676 } 5677 } 5678 5679 /* 5680 * Save and disable devices from the top of the tree down while holding 5681 * the @dev mutex lock for the entire tree. 5682 */ 5683 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5684 { 5685 struct pci_dev *dev; 5686 5687 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5688 if (!dev->slot || dev->slot != slot) 5689 continue; 5690 pci_dev_save_and_disable(dev); 5691 if (dev->subordinate) 5692 pci_bus_save_and_disable_locked(dev->subordinate); 5693 } 5694 } 5695 5696 /* 5697 * Restore devices from top of the tree down while holding @dev mutex lock 5698 * for the entire tree. Parent bridges need to be restored before we can 5699 * get to subordinate devices. 5700 */ 5701 static void pci_slot_restore_locked(struct pci_slot *slot) 5702 { 5703 struct pci_dev *dev; 5704 5705 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5706 if (!dev->slot || dev->slot != slot) 5707 continue; 5708 pci_dev_restore(dev); 5709 if (dev->subordinate) 5710 pci_bus_restore_locked(dev->subordinate); 5711 } 5712 } 5713 5714 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5715 { 5716 int rc; 5717 5718 if (!slot || !pci_slot_resettable(slot)) 5719 return -ENOTTY; 5720 5721 if (!probe) 5722 pci_slot_lock(slot); 5723 5724 might_sleep(); 5725 5726 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5727 5728 if (!probe) 5729 pci_slot_unlock(slot); 5730 5731 return rc; 5732 } 5733 5734 /** 5735 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5736 * @slot: PCI slot to probe 5737 * 5738 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5739 */ 5740 int pci_probe_reset_slot(struct pci_slot *slot) 5741 { 5742 return pci_slot_reset(slot, PCI_RESET_PROBE); 5743 } 5744 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5745 5746 /** 5747 * __pci_reset_slot - Try to reset a PCI slot 5748 * @slot: PCI slot to reset 5749 * 5750 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5751 * independent of other slots. For instance, some slots may support slot power 5752 * control. In the case of a 1:1 bus to slot architecture, this function may 5753 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5754 * Generally a slot reset should be attempted before a bus reset. All of the 5755 * function of the slot and any subordinate buses behind the slot are reset 5756 * through this function. PCI config space of all devices in the slot and 5757 * behind the slot is saved before and restored after reset. 5758 * 5759 * Same as above except return -EAGAIN if the slot cannot be locked 5760 */ 5761 static int __pci_reset_slot(struct pci_slot *slot) 5762 { 5763 int rc; 5764 5765 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5766 if (rc) 5767 return rc; 5768 5769 if (pci_slot_trylock(slot)) { 5770 pci_slot_save_and_disable_locked(slot); 5771 might_sleep(); 5772 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5773 pci_slot_restore_locked(slot); 5774 pci_slot_unlock(slot); 5775 } else 5776 rc = -EAGAIN; 5777 5778 return rc; 5779 } 5780 5781 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5782 { 5783 int ret; 5784 5785 if (!bus->self || !pci_bus_resettable(bus)) 5786 return -ENOTTY; 5787 5788 if (probe) 5789 return 0; 5790 5791 pci_bus_lock(bus); 5792 5793 might_sleep(); 5794 5795 ret = pci_bridge_secondary_bus_reset(bus->self); 5796 5797 pci_bus_unlock(bus); 5798 5799 return ret; 5800 } 5801 5802 /** 5803 * pci_bus_error_reset - reset the bridge's subordinate bus 5804 * @bridge: The parent device that connects to the bus to reset 5805 * 5806 * This function will first try to reset the slots on this bus if the method is 5807 * available. If slot reset fails or is not available, this will fall back to a 5808 * secondary bus reset. 5809 */ 5810 int pci_bus_error_reset(struct pci_dev *bridge) 5811 { 5812 struct pci_bus *bus = bridge->subordinate; 5813 struct pci_slot *slot; 5814 5815 if (!bus) 5816 return -ENOTTY; 5817 5818 mutex_lock(&pci_slot_mutex); 5819 if (list_empty(&bus->slots)) 5820 goto bus_reset; 5821 5822 list_for_each_entry(slot, &bus->slots, list) 5823 if (pci_probe_reset_slot(slot)) 5824 goto bus_reset; 5825 5826 list_for_each_entry(slot, &bus->slots, list) 5827 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5828 goto bus_reset; 5829 5830 mutex_unlock(&pci_slot_mutex); 5831 return 0; 5832 bus_reset: 5833 mutex_unlock(&pci_slot_mutex); 5834 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5835 } 5836 5837 /** 5838 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5839 * @bus: PCI bus to probe 5840 * 5841 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5842 */ 5843 int pci_probe_reset_bus(struct pci_bus *bus) 5844 { 5845 return pci_bus_reset(bus, PCI_RESET_PROBE); 5846 } 5847 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5848 5849 /** 5850 * __pci_reset_bus - Try to reset a PCI bus 5851 * @bus: top level PCI bus to reset 5852 * 5853 * Same as above except return -EAGAIN if the bus cannot be locked 5854 */ 5855 static int __pci_reset_bus(struct pci_bus *bus) 5856 { 5857 int rc; 5858 5859 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5860 if (rc) 5861 return rc; 5862 5863 if (pci_bus_trylock(bus)) { 5864 pci_bus_save_and_disable_locked(bus); 5865 might_sleep(); 5866 rc = pci_bridge_secondary_bus_reset(bus->self); 5867 pci_bus_restore_locked(bus); 5868 pci_bus_unlock(bus); 5869 } else 5870 rc = -EAGAIN; 5871 5872 return rc; 5873 } 5874 5875 /** 5876 * pci_reset_bus - Try to reset a PCI bus 5877 * @pdev: top level PCI device to reset via slot/bus 5878 * 5879 * Same as above except return -EAGAIN if the bus cannot be locked 5880 */ 5881 int pci_reset_bus(struct pci_dev *pdev) 5882 { 5883 return (!pci_probe_reset_slot(pdev->slot)) ? 5884 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5885 } 5886 EXPORT_SYMBOL_GPL(pci_reset_bus); 5887 5888 /** 5889 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5890 * @dev: PCI device to query 5891 * 5892 * Returns mmrbc: maximum designed memory read count in bytes or 5893 * appropriate error value. 5894 */ 5895 int pcix_get_max_mmrbc(struct pci_dev *dev) 5896 { 5897 int cap; 5898 u32 stat; 5899 5900 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5901 if (!cap) 5902 return -EINVAL; 5903 5904 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5905 return -EINVAL; 5906 5907 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat); 5908 } 5909 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5910 5911 /** 5912 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5913 * @dev: PCI device to query 5914 * 5915 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5916 * value. 5917 */ 5918 int pcix_get_mmrbc(struct pci_dev *dev) 5919 { 5920 int cap; 5921 u16 cmd; 5922 5923 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5924 if (!cap) 5925 return -EINVAL; 5926 5927 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5928 return -EINVAL; 5929 5930 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 5931 } 5932 EXPORT_SYMBOL(pcix_get_mmrbc); 5933 5934 /** 5935 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5936 * @dev: PCI device to query 5937 * @mmrbc: maximum memory read count in bytes 5938 * valid values are 512, 1024, 2048, 4096 5939 * 5940 * If possible sets maximum memory read byte count, some bridges have errata 5941 * that prevent this. 5942 */ 5943 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5944 { 5945 int cap; 5946 u32 stat, v, o; 5947 u16 cmd; 5948 5949 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5950 return -EINVAL; 5951 5952 v = ffs(mmrbc) - 10; 5953 5954 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5955 if (!cap) 5956 return -EINVAL; 5957 5958 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5959 return -EINVAL; 5960 5961 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat)) 5962 return -E2BIG; 5963 5964 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5965 return -EINVAL; 5966 5967 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 5968 if (o != v) { 5969 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5970 return -EIO; 5971 5972 cmd &= ~PCI_X_CMD_MAX_READ; 5973 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v); 5974 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5975 return -EIO; 5976 } 5977 return 0; 5978 } 5979 EXPORT_SYMBOL(pcix_set_mmrbc); 5980 5981 /** 5982 * pcie_get_readrq - get PCI Express read request size 5983 * @dev: PCI device to query 5984 * 5985 * Returns maximum memory read request in bytes or appropriate error value. 5986 */ 5987 int pcie_get_readrq(struct pci_dev *dev) 5988 { 5989 u16 ctl; 5990 5991 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5992 5993 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl); 5994 } 5995 EXPORT_SYMBOL(pcie_get_readrq); 5996 5997 /** 5998 * pcie_set_readrq - set PCI Express maximum memory read request 5999 * @dev: PCI device to query 6000 * @rq: maximum memory read count in bytes 6001 * valid values are 128, 256, 512, 1024, 2048, 4096 6002 * 6003 * If possible sets maximum memory read request in bytes 6004 */ 6005 int pcie_set_readrq(struct pci_dev *dev, int rq) 6006 { 6007 u16 v; 6008 int ret; 6009 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 6010 6011 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6012 return -EINVAL; 6013 6014 /* 6015 * If using the "performance" PCIe config, we clamp the read rq 6016 * size to the max packet size to keep the host bridge from 6017 * generating requests larger than we can cope with. 6018 */ 6019 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6020 int mps = pcie_get_mps(dev); 6021 6022 if (mps < rq) 6023 rq = mps; 6024 } 6025 6026 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8); 6027 6028 if (bridge->no_inc_mrrs) { 6029 int max_mrrs = pcie_get_readrq(dev); 6030 6031 if (rq > max_mrrs) { 6032 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 6033 return -EINVAL; 6034 } 6035 } 6036 6037 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6038 PCI_EXP_DEVCTL_READRQ, v); 6039 6040 return pcibios_err_to_errno(ret); 6041 } 6042 EXPORT_SYMBOL(pcie_set_readrq); 6043 6044 /** 6045 * pcie_get_mps - get PCI Express maximum payload size 6046 * @dev: PCI device to query 6047 * 6048 * Returns maximum payload size in bytes 6049 */ 6050 int pcie_get_mps(struct pci_dev *dev) 6051 { 6052 u16 ctl; 6053 6054 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6055 6056 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl); 6057 } 6058 EXPORT_SYMBOL(pcie_get_mps); 6059 6060 /** 6061 * pcie_set_mps - set PCI Express maximum payload size 6062 * @dev: PCI device to query 6063 * @mps: maximum payload size in bytes 6064 * valid values are 128, 256, 512, 1024, 2048, 4096 6065 * 6066 * If possible sets maximum payload size 6067 */ 6068 int pcie_set_mps(struct pci_dev *dev, int mps) 6069 { 6070 u16 v; 6071 int ret; 6072 6073 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6074 return -EINVAL; 6075 6076 v = ffs(mps) - 8; 6077 if (v > dev->pcie_mpss) 6078 return -EINVAL; 6079 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v); 6080 6081 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6082 PCI_EXP_DEVCTL_PAYLOAD, v); 6083 6084 return pcibios_err_to_errno(ret); 6085 } 6086 EXPORT_SYMBOL(pcie_set_mps); 6087 6088 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta) 6089 { 6090 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)]; 6091 } 6092 6093 int pcie_link_speed_mbps(struct pci_dev *pdev) 6094 { 6095 u16 lnksta; 6096 int err; 6097 6098 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 6099 if (err) 6100 return err; 6101 6102 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta)); 6103 } 6104 EXPORT_SYMBOL(pcie_link_speed_mbps); 6105 6106 /** 6107 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6108 * device and its bandwidth limitation 6109 * @dev: PCI device to query 6110 * @limiting_dev: storage for device causing the bandwidth limitation 6111 * @speed: storage for speed of limiting device 6112 * @width: storage for width of limiting device 6113 * 6114 * Walk up the PCI device chain and find the point where the minimum 6115 * bandwidth is available. Return the bandwidth available there and (if 6116 * limiting_dev, speed, and width pointers are supplied) information about 6117 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6118 * raw bandwidth. 6119 */ 6120 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6121 enum pci_bus_speed *speed, 6122 enum pcie_link_width *width) 6123 { 6124 u16 lnksta; 6125 enum pci_bus_speed next_speed; 6126 enum pcie_link_width next_width; 6127 u32 bw, next_bw; 6128 6129 if (speed) 6130 *speed = PCI_SPEED_UNKNOWN; 6131 if (width) 6132 *width = PCIE_LNK_WIDTH_UNKNOWN; 6133 6134 bw = 0; 6135 6136 while (dev) { 6137 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6138 6139 next_speed = to_pcie_link_speed(lnksta); 6140 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6141 6142 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6143 6144 /* Check if current device limits the total bandwidth */ 6145 if (!bw || next_bw <= bw) { 6146 bw = next_bw; 6147 6148 if (limiting_dev) 6149 *limiting_dev = dev; 6150 if (speed) 6151 *speed = next_speed; 6152 if (width) 6153 *width = next_width; 6154 } 6155 6156 dev = pci_upstream_bridge(dev); 6157 } 6158 6159 return bw; 6160 } 6161 EXPORT_SYMBOL(pcie_bandwidth_available); 6162 6163 /** 6164 * pcie_get_speed_cap - query for the PCI device's link speed capability 6165 * @dev: PCI device to query 6166 * 6167 * Query the PCI device speed capability. Return the maximum link speed 6168 * supported by the device. 6169 */ 6170 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6171 { 6172 u32 lnkcap2, lnkcap; 6173 6174 /* 6175 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6176 * implementation note there recommends using the Supported Link 6177 * Speeds Vector in Link Capabilities 2 when supported. 6178 * 6179 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6180 * should use the Supported Link Speeds field in Link Capabilities, 6181 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6182 */ 6183 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6184 6185 /* PCIe r3.0-compliant */ 6186 if (lnkcap2) 6187 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6188 6189 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6190 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6191 return PCIE_SPEED_5_0GT; 6192 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6193 return PCIE_SPEED_2_5GT; 6194 6195 return PCI_SPEED_UNKNOWN; 6196 } 6197 EXPORT_SYMBOL(pcie_get_speed_cap); 6198 6199 /** 6200 * pcie_get_width_cap - query for the PCI device's link width capability 6201 * @dev: PCI device to query 6202 * 6203 * Query the PCI device width capability. Return the maximum link width 6204 * supported by the device. 6205 */ 6206 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6207 { 6208 u32 lnkcap; 6209 6210 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6211 if (lnkcap) 6212 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6213 6214 return PCIE_LNK_WIDTH_UNKNOWN; 6215 } 6216 EXPORT_SYMBOL(pcie_get_width_cap); 6217 6218 /** 6219 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6220 * @dev: PCI device 6221 * @speed: storage for link speed 6222 * @width: storage for link width 6223 * 6224 * Calculate a PCI device's link bandwidth by querying for its link speed 6225 * and width, multiplying them, and applying encoding overhead. The result 6226 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6227 */ 6228 static u32 pcie_bandwidth_capable(struct pci_dev *dev, 6229 enum pci_bus_speed *speed, 6230 enum pcie_link_width *width) 6231 { 6232 *speed = pcie_get_speed_cap(dev); 6233 *width = pcie_get_width_cap(dev); 6234 6235 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6236 return 0; 6237 6238 return *width * PCIE_SPEED2MBS_ENC(*speed); 6239 } 6240 6241 /** 6242 * __pcie_print_link_status - Report the PCI device's link speed and width 6243 * @dev: PCI device to query 6244 * @verbose: Print info even when enough bandwidth is available 6245 * 6246 * If the available bandwidth at the device is less than the device is 6247 * capable of, report the device's maximum possible bandwidth and the 6248 * upstream link that limits its performance. If @verbose, always print 6249 * the available bandwidth, even if the device isn't constrained. 6250 */ 6251 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6252 { 6253 enum pcie_link_width width, width_cap; 6254 enum pci_bus_speed speed, speed_cap; 6255 struct pci_dev *limiting_dev = NULL; 6256 u32 bw_avail, bw_cap; 6257 6258 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6259 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6260 6261 if (bw_avail >= bw_cap && verbose) 6262 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6263 bw_cap / 1000, bw_cap % 1000, 6264 pci_speed_string(speed_cap), width_cap); 6265 else if (bw_avail < bw_cap) 6266 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6267 bw_avail / 1000, bw_avail % 1000, 6268 pci_speed_string(speed), width, 6269 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6270 bw_cap / 1000, bw_cap % 1000, 6271 pci_speed_string(speed_cap), width_cap); 6272 } 6273 6274 /** 6275 * pcie_print_link_status - Report the PCI device's link speed and width 6276 * @dev: PCI device to query 6277 * 6278 * Report the available bandwidth at the device. 6279 */ 6280 void pcie_print_link_status(struct pci_dev *dev) 6281 { 6282 __pcie_print_link_status(dev, true); 6283 } 6284 EXPORT_SYMBOL(pcie_print_link_status); 6285 6286 /** 6287 * pci_select_bars - Make BAR mask from the type of resource 6288 * @dev: the PCI device for which BAR mask is made 6289 * @flags: resource type mask to be selected 6290 * 6291 * This helper routine makes bar mask from the type of resource. 6292 */ 6293 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6294 { 6295 int i, bars = 0; 6296 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6297 if (pci_resource_flags(dev, i) & flags) 6298 bars |= (1 << i); 6299 return bars; 6300 } 6301 EXPORT_SYMBOL(pci_select_bars); 6302 6303 /* Some architectures require additional programming to enable VGA */ 6304 static arch_set_vga_state_t arch_set_vga_state; 6305 6306 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6307 { 6308 arch_set_vga_state = func; /* NULL disables */ 6309 } 6310 6311 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6312 unsigned int command_bits, u32 flags) 6313 { 6314 if (arch_set_vga_state) 6315 return arch_set_vga_state(dev, decode, command_bits, 6316 flags); 6317 return 0; 6318 } 6319 6320 /** 6321 * pci_set_vga_state - set VGA decode state on device and parents if requested 6322 * @dev: the PCI device 6323 * @decode: true = enable decoding, false = disable decoding 6324 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6325 * @flags: traverse ancestors and change bridges 6326 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6327 */ 6328 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6329 unsigned int command_bits, u32 flags) 6330 { 6331 struct pci_bus *bus; 6332 struct pci_dev *bridge; 6333 u16 cmd; 6334 int rc; 6335 6336 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6337 6338 /* ARCH specific VGA enables */ 6339 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6340 if (rc) 6341 return rc; 6342 6343 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6344 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6345 if (decode) 6346 cmd |= command_bits; 6347 else 6348 cmd &= ~command_bits; 6349 pci_write_config_word(dev, PCI_COMMAND, cmd); 6350 } 6351 6352 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6353 return 0; 6354 6355 bus = dev->bus; 6356 while (bus) { 6357 bridge = bus->self; 6358 if (bridge) { 6359 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6360 &cmd); 6361 if (decode) 6362 cmd |= PCI_BRIDGE_CTL_VGA; 6363 else 6364 cmd &= ~PCI_BRIDGE_CTL_VGA; 6365 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6366 cmd); 6367 } 6368 bus = bus->parent; 6369 } 6370 return 0; 6371 } 6372 6373 #ifdef CONFIG_ACPI 6374 bool pci_pr3_present(struct pci_dev *pdev) 6375 { 6376 struct acpi_device *adev; 6377 6378 if (acpi_disabled) 6379 return false; 6380 6381 adev = ACPI_COMPANION(&pdev->dev); 6382 if (!adev) 6383 return false; 6384 6385 return adev->power.flags.power_resources && 6386 acpi_has_method(adev->handle, "_PR3"); 6387 } 6388 EXPORT_SYMBOL_GPL(pci_pr3_present); 6389 #endif 6390 6391 /** 6392 * pci_add_dma_alias - Add a DMA devfn alias for a device 6393 * @dev: the PCI device for which alias is added 6394 * @devfn_from: alias slot and function 6395 * @nr_devfns: number of subsequent devfns to alias 6396 * 6397 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6398 * which is used to program permissible bus-devfn source addresses for DMA 6399 * requests in an IOMMU. These aliases factor into IOMMU group creation 6400 * and are useful for devices generating DMA requests beyond or different 6401 * from their logical bus-devfn. Examples include device quirks where the 6402 * device simply uses the wrong devfn, as well as non-transparent bridges 6403 * where the alias may be a proxy for devices in another domain. 6404 * 6405 * IOMMU group creation is performed during device discovery or addition, 6406 * prior to any potential DMA mapping and therefore prior to driver probing 6407 * (especially for userspace assigned devices where IOMMU group definition 6408 * cannot be left as a userspace activity). DMA aliases should therefore 6409 * be configured via quirks, such as the PCI fixup header quirk. 6410 */ 6411 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6412 unsigned int nr_devfns) 6413 { 6414 int devfn_to; 6415 6416 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6417 devfn_to = devfn_from + nr_devfns - 1; 6418 6419 if (!dev->dma_alias_mask) 6420 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6421 if (!dev->dma_alias_mask) { 6422 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6423 return; 6424 } 6425 6426 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6427 6428 if (nr_devfns == 1) 6429 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6430 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6431 else if (nr_devfns > 1) 6432 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6433 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6434 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6435 } 6436 6437 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6438 { 6439 return (dev1->dma_alias_mask && 6440 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6441 (dev2->dma_alias_mask && 6442 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6443 pci_real_dma_dev(dev1) == dev2 || 6444 pci_real_dma_dev(dev2) == dev1; 6445 } 6446 6447 bool pci_device_is_present(struct pci_dev *pdev) 6448 { 6449 u32 v; 6450 6451 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6452 pdev = pci_physfn(pdev); 6453 if (pci_dev_is_disconnected(pdev)) 6454 return false; 6455 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6456 } 6457 EXPORT_SYMBOL_GPL(pci_device_is_present); 6458 6459 void pci_ignore_hotplug(struct pci_dev *dev) 6460 { 6461 struct pci_dev *bridge = dev->bus->self; 6462 6463 dev->ignore_hotplug = 1; 6464 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6465 if (bridge) 6466 bridge->ignore_hotplug = 1; 6467 } 6468 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6469 6470 /** 6471 * pci_real_dma_dev - Get PCI DMA device for PCI device 6472 * @dev: the PCI device that may have a PCI DMA alias 6473 * 6474 * Permits the platform to provide architecture-specific functionality to 6475 * devices needing to alias DMA to another PCI device on another PCI bus. If 6476 * the PCI device is on the same bus, it is recommended to use 6477 * pci_add_dma_alias(). This is the default implementation. Architecture 6478 * implementations can override this. 6479 */ 6480 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6481 { 6482 return dev; 6483 } 6484 6485 resource_size_t __weak pcibios_default_alignment(void) 6486 { 6487 return 0; 6488 } 6489 6490 /* 6491 * Arches that don't want to expose struct resource to userland as-is in 6492 * sysfs and /proc can implement their own pci_resource_to_user(). 6493 */ 6494 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6495 const struct resource *rsrc, 6496 resource_size_t *start, resource_size_t *end) 6497 { 6498 *start = rsrc->start; 6499 *end = rsrc->end; 6500 } 6501 6502 static char *resource_alignment_param; 6503 static DEFINE_SPINLOCK(resource_alignment_lock); 6504 6505 /** 6506 * pci_specified_resource_alignment - get resource alignment specified by user. 6507 * @dev: the PCI device to get 6508 * @resize: whether or not to change resources' size when reassigning alignment 6509 * 6510 * RETURNS: Resource alignment if it is specified. 6511 * Zero if it is not specified. 6512 */ 6513 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6514 bool *resize) 6515 { 6516 int align_order, count; 6517 resource_size_t align = pcibios_default_alignment(); 6518 const char *p; 6519 int ret; 6520 6521 spin_lock(&resource_alignment_lock); 6522 p = resource_alignment_param; 6523 if (!p || !*p) 6524 goto out; 6525 if (pci_has_flag(PCI_PROBE_ONLY)) { 6526 align = 0; 6527 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6528 goto out; 6529 } 6530 6531 while (*p) { 6532 count = 0; 6533 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6534 p[count] == '@') { 6535 p += count + 1; 6536 if (align_order > 63) { 6537 pr_err("PCI: Invalid requested alignment (order %d)\n", 6538 align_order); 6539 align_order = PAGE_SHIFT; 6540 } 6541 } else { 6542 align_order = PAGE_SHIFT; 6543 } 6544 6545 ret = pci_dev_str_match(dev, p, &p); 6546 if (ret == 1) { 6547 *resize = true; 6548 align = 1ULL << align_order; 6549 break; 6550 } else if (ret < 0) { 6551 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6552 p); 6553 break; 6554 } 6555 6556 if (*p != ';' && *p != ',') { 6557 /* End of param or invalid format */ 6558 break; 6559 } 6560 p++; 6561 } 6562 out: 6563 spin_unlock(&resource_alignment_lock); 6564 return align; 6565 } 6566 6567 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6568 resource_size_t align, bool resize) 6569 { 6570 struct resource *r = &dev->resource[bar]; 6571 const char *r_name = pci_resource_name(dev, bar); 6572 resource_size_t size; 6573 6574 if (!(r->flags & IORESOURCE_MEM)) 6575 return; 6576 6577 if (r->flags & IORESOURCE_PCI_FIXED) { 6578 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n", 6579 r_name, r, (unsigned long long)align); 6580 return; 6581 } 6582 6583 size = resource_size(r); 6584 if (size >= align) 6585 return; 6586 6587 /* 6588 * Increase the alignment of the resource. There are two ways we 6589 * can do this: 6590 * 6591 * 1) Increase the size of the resource. BARs are aligned on their 6592 * size, so when we reallocate space for this resource, we'll 6593 * allocate it with the larger alignment. This also prevents 6594 * assignment of any other BARs inside the alignment region, so 6595 * if we're requesting page alignment, this means no other BARs 6596 * will share the page. 6597 * 6598 * The disadvantage is that this makes the resource larger than 6599 * the hardware BAR, which may break drivers that compute things 6600 * based on the resource size, e.g., to find registers at a 6601 * fixed offset before the end of the BAR. 6602 * 6603 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6604 * set r->start to the desired alignment. By itself this 6605 * doesn't prevent other BARs being put inside the alignment 6606 * region, but if we realign *every* resource of every device in 6607 * the system, none of them will share an alignment region. 6608 * 6609 * When the user has requested alignment for only some devices via 6610 * the "pci=resource_alignment" argument, "resize" is true and we 6611 * use the first method. Otherwise we assume we're aligning all 6612 * devices and we use the second. 6613 */ 6614 6615 pci_info(dev, "%s %pR: requesting alignment to %#llx\n", 6616 r_name, r, (unsigned long long)align); 6617 6618 if (resize) { 6619 r->start = 0; 6620 r->end = align - 1; 6621 } else { 6622 r->flags &= ~IORESOURCE_SIZEALIGN; 6623 r->flags |= IORESOURCE_STARTALIGN; 6624 r->start = align; 6625 r->end = r->start + size - 1; 6626 } 6627 r->flags |= IORESOURCE_UNSET; 6628 } 6629 6630 /* 6631 * This function disables memory decoding and releases memory resources 6632 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6633 * It also rounds up size to specified alignment. 6634 * Later on, the kernel will assign page-aligned memory resource back 6635 * to the device. 6636 */ 6637 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6638 { 6639 int i; 6640 struct resource *r; 6641 resource_size_t align; 6642 u16 command; 6643 bool resize = false; 6644 6645 /* 6646 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6647 * 3.4.1.11. Their resources are allocated from the space 6648 * described by the VF BARx register in the PF's SR-IOV capability. 6649 * We can't influence their alignment here. 6650 */ 6651 if (dev->is_virtfn) 6652 return; 6653 6654 /* check if specified PCI is target device to reassign */ 6655 align = pci_specified_resource_alignment(dev, &resize); 6656 if (!align) 6657 return; 6658 6659 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6660 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6661 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6662 return; 6663 } 6664 6665 pci_read_config_word(dev, PCI_COMMAND, &command); 6666 command &= ~PCI_COMMAND_MEMORY; 6667 pci_write_config_word(dev, PCI_COMMAND, command); 6668 6669 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6670 pci_request_resource_alignment(dev, i, align, resize); 6671 6672 /* 6673 * Need to disable bridge's resource window, 6674 * to enable the kernel to reassign new resource 6675 * window later on. 6676 */ 6677 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6678 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6679 r = &dev->resource[i]; 6680 if (!(r->flags & IORESOURCE_MEM)) 6681 continue; 6682 r->flags |= IORESOURCE_UNSET; 6683 r->end = resource_size(r) - 1; 6684 r->start = 0; 6685 } 6686 pci_disable_bridge_window(dev); 6687 } 6688 } 6689 6690 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6691 { 6692 size_t count = 0; 6693 6694 spin_lock(&resource_alignment_lock); 6695 if (resource_alignment_param) 6696 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6697 spin_unlock(&resource_alignment_lock); 6698 6699 return count; 6700 } 6701 6702 static ssize_t resource_alignment_store(const struct bus_type *bus, 6703 const char *buf, size_t count) 6704 { 6705 char *param, *old, *end; 6706 6707 if (count >= (PAGE_SIZE - 1)) 6708 return -EINVAL; 6709 6710 param = kstrndup(buf, count, GFP_KERNEL); 6711 if (!param) 6712 return -ENOMEM; 6713 6714 end = strchr(param, '\n'); 6715 if (end) 6716 *end = '\0'; 6717 6718 spin_lock(&resource_alignment_lock); 6719 old = resource_alignment_param; 6720 if (strlen(param)) { 6721 resource_alignment_param = param; 6722 } else { 6723 kfree(param); 6724 resource_alignment_param = NULL; 6725 } 6726 spin_unlock(&resource_alignment_lock); 6727 6728 kfree(old); 6729 6730 return count; 6731 } 6732 6733 static BUS_ATTR_RW(resource_alignment); 6734 6735 static int __init pci_resource_alignment_sysfs_init(void) 6736 { 6737 return bus_create_file(&pci_bus_type, 6738 &bus_attr_resource_alignment); 6739 } 6740 late_initcall(pci_resource_alignment_sysfs_init); 6741 6742 static void pci_no_domains(void) 6743 { 6744 #ifdef CONFIG_PCI_DOMAINS 6745 pci_domains_supported = 0; 6746 #endif 6747 } 6748 6749 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6750 static DEFINE_IDA(pci_domain_nr_static_ida); 6751 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6752 6753 static void of_pci_reserve_static_domain_nr(void) 6754 { 6755 struct device_node *np; 6756 int domain_nr; 6757 6758 for_each_node_by_type(np, "pci") { 6759 domain_nr = of_get_pci_domain_nr(np); 6760 if (domain_nr < 0) 6761 continue; 6762 /* 6763 * Permanently allocate domain_nr in dynamic_ida 6764 * to prevent it from dynamic allocation. 6765 */ 6766 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6767 domain_nr, domain_nr, GFP_KERNEL); 6768 } 6769 } 6770 6771 static int of_pci_bus_find_domain_nr(struct device *parent) 6772 { 6773 static bool static_domains_reserved = false; 6774 int domain_nr; 6775 6776 /* On the first call scan device tree for static allocations. */ 6777 if (!static_domains_reserved) { 6778 of_pci_reserve_static_domain_nr(); 6779 static_domains_reserved = true; 6780 } 6781 6782 if (parent) { 6783 /* 6784 * If domain is in DT, allocate it in static IDA. This 6785 * prevents duplicate static allocations in case of errors 6786 * in DT. 6787 */ 6788 domain_nr = of_get_pci_domain_nr(parent->of_node); 6789 if (domain_nr >= 0) 6790 return ida_alloc_range(&pci_domain_nr_static_ida, 6791 domain_nr, domain_nr, 6792 GFP_KERNEL); 6793 } 6794 6795 /* 6796 * If domain was not specified in DT, choose a free ID from dynamic 6797 * allocations. All domain numbers from DT are permanently in 6798 * dynamic allocations to prevent assigning them to other DT nodes 6799 * without static domain. 6800 */ 6801 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6802 } 6803 6804 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6805 { 6806 if (bus->domain_nr < 0) 6807 return; 6808 6809 /* Release domain from IDA where it was allocated. */ 6810 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr) 6811 ida_free(&pci_domain_nr_static_ida, bus->domain_nr); 6812 else 6813 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr); 6814 } 6815 6816 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6817 { 6818 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6819 acpi_pci_bus_find_domain_nr(bus); 6820 } 6821 6822 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6823 { 6824 if (!acpi_disabled) 6825 return; 6826 of_pci_bus_release_domain_nr(bus, parent); 6827 } 6828 #endif 6829 6830 /** 6831 * pci_ext_cfg_avail - can we access extended PCI config space? 6832 * 6833 * Returns 1 if we can access PCI extended config space (offsets 6834 * greater than 0xff). This is the default implementation. Architecture 6835 * implementations can override this. 6836 */ 6837 int __weak pci_ext_cfg_avail(void) 6838 { 6839 return 1; 6840 } 6841 6842 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6843 { 6844 } 6845 EXPORT_SYMBOL(pci_fixup_cardbus); 6846 6847 static int __init pci_setup(char *str) 6848 { 6849 while (str) { 6850 char *k = strchr(str, ','); 6851 if (k) 6852 *k++ = 0; 6853 if (*str && (str = pcibios_setup(str)) && *str) { 6854 if (!strcmp(str, "nomsi")) { 6855 pci_no_msi(); 6856 } else if (!strncmp(str, "noats", 5)) { 6857 pr_info("PCIe: ATS is disabled\n"); 6858 pcie_ats_disabled = true; 6859 } else if (!strcmp(str, "noaer")) { 6860 pci_no_aer(); 6861 } else if (!strcmp(str, "earlydump")) { 6862 pci_early_dump = true; 6863 } else if (!strncmp(str, "realloc=", 8)) { 6864 pci_realloc_get_opt(str + 8); 6865 } else if (!strncmp(str, "realloc", 7)) { 6866 pci_realloc_get_opt("on"); 6867 } else if (!strcmp(str, "nodomains")) { 6868 pci_no_domains(); 6869 } else if (!strncmp(str, "noari", 5)) { 6870 pcie_ari_disabled = true; 6871 } else if (!strncmp(str, "cbiosize=", 9)) { 6872 pci_cardbus_io_size = memparse(str + 9, &str); 6873 } else if (!strncmp(str, "cbmemsize=", 10)) { 6874 pci_cardbus_mem_size = memparse(str + 10, &str); 6875 } else if (!strncmp(str, "resource_alignment=", 19)) { 6876 resource_alignment_param = str + 19; 6877 } else if (!strncmp(str, "ecrc=", 5)) { 6878 pcie_ecrc_get_policy(str + 5); 6879 } else if (!strncmp(str, "hpiosize=", 9)) { 6880 pci_hotplug_io_size = memparse(str + 9, &str); 6881 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6882 pci_hotplug_mmio_size = memparse(str + 11, &str); 6883 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6884 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6885 } else if (!strncmp(str, "hpmemsize=", 10)) { 6886 pci_hotplug_mmio_size = memparse(str + 10, &str); 6887 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6888 } else if (!strncmp(str, "hpbussize=", 10)) { 6889 pci_hotplug_bus_size = 6890 simple_strtoul(str + 10, &str, 0); 6891 if (pci_hotplug_bus_size > 0xff) 6892 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6893 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6894 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6895 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6896 pcie_bus_config = PCIE_BUS_SAFE; 6897 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6898 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6899 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6900 pcie_bus_config = PCIE_BUS_PEER2PEER; 6901 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6902 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6903 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6904 disable_acs_redir_param = str + 18; 6905 } else if (!strncmp(str, "config_acs=", 11)) { 6906 config_acs_param = str + 11; 6907 } else { 6908 pr_err("PCI: Unknown option `%s'\n", str); 6909 } 6910 } 6911 str = k; 6912 } 6913 return 0; 6914 } 6915 early_param("pci", pci_setup); 6916 6917 /* 6918 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6919 * in pci_setup(), above, to point to data in the __initdata section which 6920 * will be freed after the init sequence is complete. We can't allocate memory 6921 * in pci_setup() because some architectures do not have any memory allocation 6922 * service available during an early_param() call. So we allocate memory and 6923 * copy the variable here before the init section is freed. 6924 * 6925 */ 6926 static int __init pci_realloc_setup_params(void) 6927 { 6928 resource_alignment_param = kstrdup(resource_alignment_param, 6929 GFP_KERNEL); 6930 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6931 config_acs_param = kstrdup(config_acs_param, GFP_KERNEL); 6932 6933 return 0; 6934 } 6935 pure_initcall(pci_realloc_setup_params); 6936