1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/pci_hotplug.h> 30 #include <linux/vmalloc.h> 31 #include <asm/dma.h> 32 #include <linux/aer.h> 33 #include <linux/bitfield.h> 34 #include "pci.h" 35 36 DEFINE_MUTEX(pci_slot_mutex); 37 38 const char *pci_power_names[] = { 39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 40 }; 41 EXPORT_SYMBOL_GPL(pci_power_names); 42 43 #ifdef CONFIG_X86_32 44 int isa_dma_bridge_buggy; 45 EXPORT_SYMBOL(isa_dma_bridge_buggy); 46 #endif 47 48 int pci_pci_problems; 49 EXPORT_SYMBOL(pci_pci_problems); 50 51 unsigned int pci_pm_d3hot_delay; 52 53 static void pci_pme_list_scan(struct work_struct *work); 54 55 static LIST_HEAD(pci_pme_list); 56 static DEFINE_MUTEX(pci_pme_list_mutex); 57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 58 59 struct pci_pme_device { 60 struct list_head list; 61 struct pci_dev *dev; 62 }; 63 64 #define PME_TIMEOUT 1000 /* How long between PME checks */ 65 66 /* 67 * Following exit from Conventional Reset, devices must be ready within 1 sec 68 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 69 * Reset (PCIe r6.0 sec 5.8). 70 */ 71 #define PCI_RESET_WAIT 1000 /* msec */ 72 73 /* 74 * Devices may extend the 1 sec period through Request Retry Status 75 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 76 * limit, but 60 sec ought to be enough for any device to become 77 * responsive. 78 */ 79 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 80 81 static void pci_dev_d3_sleep(struct pci_dev *dev) 82 { 83 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 84 unsigned int upper; 85 86 if (delay_ms) { 87 /* Use a 20% upper bound, 1ms minimum */ 88 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 89 usleep_range(delay_ms * USEC_PER_MSEC, 90 (delay_ms + upper) * USEC_PER_MSEC); 91 } 92 } 93 94 bool pci_reset_supported(struct pci_dev *dev) 95 { 96 return dev->reset_methods[0] != 0; 97 } 98 99 #ifdef CONFIG_PCI_DOMAINS 100 int pci_domains_supported = 1; 101 #endif 102 103 #define DEFAULT_CARDBUS_IO_SIZE (256) 104 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 105 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 106 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 107 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 108 109 #define DEFAULT_HOTPLUG_IO_SIZE (256) 110 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 111 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 112 /* hpiosize=nn can override this */ 113 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 114 /* 115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 117 * pci=hpmemsize=nnM overrides both 118 */ 119 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 120 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 121 122 #define DEFAULT_HOTPLUG_BUS_SIZE 1 123 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 124 125 126 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 127 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 129 #elif defined CONFIG_PCIE_BUS_SAFE 130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 131 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 132 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 133 #elif defined CONFIG_PCIE_BUS_PEER2PEER 134 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 135 #else 136 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 137 #endif 138 139 /* 140 * The default CLS is used if arch didn't set CLS explicitly and not 141 * all pci devices agree on the same value. Arch can override either 142 * the dfl or actual value as it sees fit. Don't forget this is 143 * measured in 32-bit words, not bytes. 144 */ 145 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2; 146 u8 pci_cache_line_size __ro_after_init ; 147 148 /* 149 * If we set up a device for bus mastering, we need to check the latency 150 * timer as certain BIOSes forget to set it properly. 151 */ 152 unsigned int pcibios_max_latency = 255; 153 154 /* If set, the PCIe ARI capability will not be used. */ 155 static bool pcie_ari_disabled; 156 157 /* If set, the PCIe ATS capability will not be used. */ 158 static bool pcie_ats_disabled; 159 160 /* If set, the PCI config space of each device is printed during boot. */ 161 bool pci_early_dump; 162 163 bool pci_ats_disabled(void) 164 { 165 return pcie_ats_disabled; 166 } 167 EXPORT_SYMBOL_GPL(pci_ats_disabled); 168 169 /* Disable bridge_d3 for all PCIe ports */ 170 static bool pci_bridge_d3_disable; 171 /* Force bridge_d3 for all PCIe ports */ 172 static bool pci_bridge_d3_force; 173 174 static int __init pcie_port_pm_setup(char *str) 175 { 176 if (!strcmp(str, "off")) 177 pci_bridge_d3_disable = true; 178 else if (!strcmp(str, "force")) 179 pci_bridge_d3_force = true; 180 return 1; 181 } 182 __setup("pcie_port_pm=", pcie_port_pm_setup); 183 184 /** 185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 186 * @bus: pointer to PCI bus structure to search 187 * 188 * Given a PCI bus, returns the highest PCI bus number present in the set 189 * including the given PCI bus and its list of child PCI buses. 190 */ 191 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 192 { 193 struct pci_bus *tmp; 194 unsigned char max, n; 195 196 max = bus->busn_res.end; 197 list_for_each_entry(tmp, &bus->children, node) { 198 n = pci_bus_max_busnr(tmp); 199 if (n > max) 200 max = n; 201 } 202 return max; 203 } 204 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 205 206 /** 207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 208 * @pdev: the PCI device 209 * 210 * Returns error bits set in PCI_STATUS and clears them. 211 */ 212 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 213 { 214 u16 status; 215 int ret; 216 217 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 218 if (ret != PCIBIOS_SUCCESSFUL) 219 return -EIO; 220 221 status &= PCI_STATUS_ERROR_BITS; 222 if (status) 223 pci_write_config_word(pdev, PCI_STATUS, status); 224 225 return status; 226 } 227 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 228 229 #ifdef CONFIG_HAS_IOMEM 230 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 231 bool write_combine) 232 { 233 struct resource *res = &pdev->resource[bar]; 234 resource_size_t start = res->start; 235 resource_size_t size = resource_size(res); 236 237 /* 238 * Make sure the BAR is actually a memory resource, not an IO resource 239 */ 240 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 241 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 242 return NULL; 243 } 244 245 if (write_combine) 246 return ioremap_wc(start, size); 247 248 return ioremap(start, size); 249 } 250 251 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 252 { 253 return __pci_ioremap_resource(pdev, bar, false); 254 } 255 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 256 257 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 258 { 259 return __pci_ioremap_resource(pdev, bar, true); 260 } 261 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 262 #endif 263 264 /** 265 * pci_dev_str_match_path - test if a path string matches a device 266 * @dev: the PCI device to test 267 * @path: string to match the device against 268 * @endptr: pointer to the string after the match 269 * 270 * Test if a string (typically from a kernel parameter) formatted as a 271 * path of device/function addresses matches a PCI device. The string must 272 * be of the form: 273 * 274 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 275 * 276 * A path for a device can be obtained using 'lspci -t'. Using a path 277 * is more robust against bus renumbering than using only a single bus, 278 * device and function address. 279 * 280 * Returns 1 if the string matches the device, 0 if it does not and 281 * a negative error code if it fails to parse the string. 282 */ 283 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 284 const char **endptr) 285 { 286 int ret; 287 unsigned int seg, bus, slot, func; 288 char *wpath, *p; 289 char end; 290 291 *endptr = strchrnul(path, ';'); 292 293 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 294 if (!wpath) 295 return -ENOMEM; 296 297 while (1) { 298 p = strrchr(wpath, '/'); 299 if (!p) 300 break; 301 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 302 if (ret != 2) { 303 ret = -EINVAL; 304 goto free_and_exit; 305 } 306 307 if (dev->devfn != PCI_DEVFN(slot, func)) { 308 ret = 0; 309 goto free_and_exit; 310 } 311 312 /* 313 * Note: we don't need to get a reference to the upstream 314 * bridge because we hold a reference to the top level 315 * device which should hold a reference to the bridge, 316 * and so on. 317 */ 318 dev = pci_upstream_bridge(dev); 319 if (!dev) { 320 ret = 0; 321 goto free_and_exit; 322 } 323 324 *p = 0; 325 } 326 327 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 328 &func, &end); 329 if (ret != 4) { 330 seg = 0; 331 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 332 if (ret != 3) { 333 ret = -EINVAL; 334 goto free_and_exit; 335 } 336 } 337 338 ret = (seg == pci_domain_nr(dev->bus) && 339 bus == dev->bus->number && 340 dev->devfn == PCI_DEVFN(slot, func)); 341 342 free_and_exit: 343 kfree(wpath); 344 return ret; 345 } 346 347 /** 348 * pci_dev_str_match - test if a string matches a device 349 * @dev: the PCI device to test 350 * @p: string to match the device against 351 * @endptr: pointer to the string after the match 352 * 353 * Test if a string (typically from a kernel parameter) matches a specified 354 * PCI device. The string may be of one of the following formats: 355 * 356 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 357 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 358 * 359 * The first format specifies a PCI bus/device/function address which 360 * may change if new hardware is inserted, if motherboard firmware changes, 361 * or due to changes caused in kernel parameters. If the domain is 362 * left unspecified, it is taken to be 0. In order to be robust against 363 * bus renumbering issues, a path of PCI device/function numbers may be used 364 * to address the specific device. The path for a device can be determined 365 * through the use of 'lspci -t'. 366 * 367 * The second format matches devices using IDs in the configuration 368 * space which may match multiple devices in the system. A value of 0 369 * for any field will match all devices. (Note: this differs from 370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 371 * legacy reasons and convenience so users don't have to specify 372 * FFFFFFFFs on the command line.) 373 * 374 * Returns 1 if the string matches the device, 0 if it does not and 375 * a negative error code if the string cannot be parsed. 376 */ 377 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 378 const char **endptr) 379 { 380 int ret; 381 int count; 382 unsigned short vendor, device, subsystem_vendor, subsystem_device; 383 384 if (strncmp(p, "pci:", 4) == 0) { 385 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 386 p += 4; 387 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 388 &subsystem_vendor, &subsystem_device, &count); 389 if (ret != 4) { 390 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 391 if (ret != 2) 392 return -EINVAL; 393 394 subsystem_vendor = 0; 395 subsystem_device = 0; 396 } 397 398 p += count; 399 400 if ((!vendor || vendor == dev->vendor) && 401 (!device || device == dev->device) && 402 (!subsystem_vendor || 403 subsystem_vendor == dev->subsystem_vendor) && 404 (!subsystem_device || 405 subsystem_device == dev->subsystem_device)) 406 goto found; 407 } else { 408 /* 409 * PCI Bus, Device, Function IDs are specified 410 * (optionally, may include a path of devfns following it) 411 */ 412 ret = pci_dev_str_match_path(dev, p, &p); 413 if (ret < 0) 414 return ret; 415 else if (ret) 416 goto found; 417 } 418 419 *endptr = p; 420 return 0; 421 422 found: 423 *endptr = p; 424 return 1; 425 } 426 427 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 428 u8 pos, int cap, int *ttl) 429 { 430 u8 id; 431 u16 ent; 432 433 pci_bus_read_config_byte(bus, devfn, pos, &pos); 434 435 while ((*ttl)--) { 436 if (pos < 0x40) 437 break; 438 pos &= ~3; 439 pci_bus_read_config_word(bus, devfn, pos, &ent); 440 441 id = ent & 0xff; 442 if (id == 0xff) 443 break; 444 if (id == cap) 445 return pos; 446 pos = (ent >> 8); 447 } 448 return 0; 449 } 450 451 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 452 u8 pos, int cap) 453 { 454 int ttl = PCI_FIND_CAP_TTL; 455 456 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 457 } 458 459 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 460 { 461 return __pci_find_next_cap(dev->bus, dev->devfn, 462 pos + PCI_CAP_LIST_NEXT, cap); 463 } 464 EXPORT_SYMBOL_GPL(pci_find_next_capability); 465 466 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 467 unsigned int devfn, u8 hdr_type) 468 { 469 u16 status; 470 471 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 472 if (!(status & PCI_STATUS_CAP_LIST)) 473 return 0; 474 475 switch (hdr_type) { 476 case PCI_HEADER_TYPE_NORMAL: 477 case PCI_HEADER_TYPE_BRIDGE: 478 return PCI_CAPABILITY_LIST; 479 case PCI_HEADER_TYPE_CARDBUS: 480 return PCI_CB_CAPABILITY_LIST; 481 } 482 483 return 0; 484 } 485 486 /** 487 * pci_find_capability - query for devices' capabilities 488 * @dev: PCI device to query 489 * @cap: capability code 490 * 491 * Tell if a device supports a given PCI capability. 492 * Returns the address of the requested capability structure within the 493 * device's PCI configuration space or 0 in case the device does not 494 * support it. Possible values for @cap include: 495 * 496 * %PCI_CAP_ID_PM Power Management 497 * %PCI_CAP_ID_AGP Accelerated Graphics Port 498 * %PCI_CAP_ID_VPD Vital Product Data 499 * %PCI_CAP_ID_SLOTID Slot Identification 500 * %PCI_CAP_ID_MSI Message Signalled Interrupts 501 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 502 * %PCI_CAP_ID_PCIX PCI-X 503 * %PCI_CAP_ID_EXP PCI Express 504 */ 505 u8 pci_find_capability(struct pci_dev *dev, int cap) 506 { 507 u8 pos; 508 509 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 510 if (pos) 511 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 512 513 return pos; 514 } 515 EXPORT_SYMBOL(pci_find_capability); 516 517 /** 518 * pci_bus_find_capability - query for devices' capabilities 519 * @bus: the PCI bus to query 520 * @devfn: PCI device to query 521 * @cap: capability code 522 * 523 * Like pci_find_capability() but works for PCI devices that do not have a 524 * pci_dev structure set up yet. 525 * 526 * Returns the address of the requested capability structure within the 527 * device's PCI configuration space or 0 in case the device does not 528 * support it. 529 */ 530 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 531 { 532 u8 hdr_type, pos; 533 534 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 535 536 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK); 537 if (pos) 538 pos = __pci_find_next_cap(bus, devfn, pos, cap); 539 540 return pos; 541 } 542 EXPORT_SYMBOL(pci_bus_find_capability); 543 544 /** 545 * pci_find_next_ext_capability - Find an extended capability 546 * @dev: PCI device to query 547 * @start: address at which to start looking (0 to start at beginning of list) 548 * @cap: capability code 549 * 550 * Returns the address of the next matching extended capability structure 551 * within the device's PCI configuration space or 0 if the device does 552 * not support it. Some capabilities can occur several times, e.g., the 553 * vendor-specific capability, and this provides a way to find them all. 554 */ 555 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 556 { 557 u32 header; 558 int ttl; 559 u16 pos = PCI_CFG_SPACE_SIZE; 560 561 /* minimum 8 bytes per capability */ 562 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 563 564 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 565 return 0; 566 567 if (start) 568 pos = start; 569 570 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 571 return 0; 572 573 /* 574 * If we have no capabilities, this is indicated by cap ID, 575 * cap version and next pointer all being 0. 576 */ 577 if (header == 0) 578 return 0; 579 580 while (ttl-- > 0) { 581 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 582 return pos; 583 584 pos = PCI_EXT_CAP_NEXT(header); 585 if (pos < PCI_CFG_SPACE_SIZE) 586 break; 587 588 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 589 break; 590 } 591 592 return 0; 593 } 594 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 595 596 /** 597 * pci_find_ext_capability - Find an extended capability 598 * @dev: PCI device to query 599 * @cap: capability code 600 * 601 * Returns the address of the requested extended capability structure 602 * within the device's PCI configuration space or 0 if the device does 603 * not support it. Possible values for @cap include: 604 * 605 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 606 * %PCI_EXT_CAP_ID_VC Virtual Channel 607 * %PCI_EXT_CAP_ID_DSN Device Serial Number 608 * %PCI_EXT_CAP_ID_PWR Power Budgeting 609 */ 610 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 611 { 612 return pci_find_next_ext_capability(dev, 0, cap); 613 } 614 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 615 616 /** 617 * pci_get_dsn - Read and return the 8-byte Device Serial Number 618 * @dev: PCI device to query 619 * 620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 621 * Number. 622 * 623 * Returns the DSN, or zero if the capability does not exist. 624 */ 625 u64 pci_get_dsn(struct pci_dev *dev) 626 { 627 u32 dword; 628 u64 dsn; 629 int pos; 630 631 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 632 if (!pos) 633 return 0; 634 635 /* 636 * The Device Serial Number is two dwords offset 4 bytes from the 637 * capability position. The specification says that the first dword is 638 * the lower half, and the second dword is the upper half. 639 */ 640 pos += 4; 641 pci_read_config_dword(dev, pos, &dword); 642 dsn = (u64)dword; 643 pci_read_config_dword(dev, pos + 4, &dword); 644 dsn |= ((u64)dword) << 32; 645 646 return dsn; 647 } 648 EXPORT_SYMBOL_GPL(pci_get_dsn); 649 650 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 651 { 652 int rc, ttl = PCI_FIND_CAP_TTL; 653 u8 cap, mask; 654 655 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 656 mask = HT_3BIT_CAP_MASK; 657 else 658 mask = HT_5BIT_CAP_MASK; 659 660 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 661 PCI_CAP_ID_HT, &ttl); 662 while (pos) { 663 rc = pci_read_config_byte(dev, pos + 3, &cap); 664 if (rc != PCIBIOS_SUCCESSFUL) 665 return 0; 666 667 if ((cap & mask) == ht_cap) 668 return pos; 669 670 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 671 pos + PCI_CAP_LIST_NEXT, 672 PCI_CAP_ID_HT, &ttl); 673 } 674 675 return 0; 676 } 677 678 /** 679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 680 * @dev: PCI device to query 681 * @pos: Position from which to continue searching 682 * @ht_cap: HyperTransport capability code 683 * 684 * To be used in conjunction with pci_find_ht_capability() to search for 685 * all capabilities matching @ht_cap. @pos should always be a value returned 686 * from pci_find_ht_capability(). 687 * 688 * NB. To be 100% safe against broken PCI devices, the caller should take 689 * steps to avoid an infinite loop. 690 */ 691 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 692 { 693 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 694 } 695 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 696 697 /** 698 * pci_find_ht_capability - query a device's HyperTransport capabilities 699 * @dev: PCI device to query 700 * @ht_cap: HyperTransport capability code 701 * 702 * Tell if a device supports a given HyperTransport capability. 703 * Returns an address within the device's PCI configuration space 704 * or 0 in case the device does not support the request capability. 705 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 706 * which has a HyperTransport capability matching @ht_cap. 707 */ 708 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 709 { 710 u8 pos; 711 712 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 713 if (pos) 714 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 715 716 return pos; 717 } 718 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 719 720 /** 721 * pci_find_vsec_capability - Find a vendor-specific extended capability 722 * @dev: PCI device to query 723 * @vendor: Vendor ID for which capability is defined 724 * @cap: Vendor-specific capability ID 725 * 726 * If @dev has Vendor ID @vendor, search for a VSEC capability with 727 * VSEC ID @cap. If found, return the capability offset in 728 * config space; otherwise return 0. 729 */ 730 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 731 { 732 u16 vsec = 0; 733 u32 header; 734 int ret; 735 736 if (vendor != dev->vendor) 737 return 0; 738 739 while ((vsec = pci_find_next_ext_capability(dev, vsec, 740 PCI_EXT_CAP_ID_VNDR))) { 741 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 742 if (ret != PCIBIOS_SUCCESSFUL) 743 continue; 744 745 if (PCI_VNDR_HEADER_ID(header) == cap) 746 return vsec; 747 } 748 749 return 0; 750 } 751 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 752 753 /** 754 * pci_find_dvsec_capability - Find DVSEC for vendor 755 * @dev: PCI device to query 756 * @vendor: Vendor ID to match for the DVSEC 757 * @dvsec: Designated Vendor-specific capability ID 758 * 759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 760 * offset in config space; otherwise return 0. 761 */ 762 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 763 { 764 int pos; 765 766 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 767 if (!pos) 768 return 0; 769 770 while (pos) { 771 u16 v, id; 772 773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 775 if (vendor == v && dvsec == id) 776 return pos; 777 778 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 779 } 780 781 return 0; 782 } 783 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 784 785 /** 786 * pci_find_parent_resource - return resource region of parent bus of given 787 * region 788 * @dev: PCI device structure contains resources to be searched 789 * @res: child resource record for which parent is sought 790 * 791 * For given resource region of given device, return the resource region of 792 * parent bus the given region is contained in. 793 */ 794 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 795 struct resource *res) 796 { 797 const struct pci_bus *bus = dev->bus; 798 struct resource *r; 799 800 pci_bus_for_each_resource(bus, r) { 801 if (!r) 802 continue; 803 if (resource_contains(r, res)) { 804 805 /* 806 * If the window is prefetchable but the BAR is 807 * not, the allocator made a mistake. 808 */ 809 if (r->flags & IORESOURCE_PREFETCH && 810 !(res->flags & IORESOURCE_PREFETCH)) 811 return NULL; 812 813 /* 814 * If we're below a transparent bridge, there may 815 * be both a positively-decoded aperture and a 816 * subtractively-decoded region that contain the BAR. 817 * We want the positively-decoded one, so this depends 818 * on pci_bus_for_each_resource() giving us those 819 * first. 820 */ 821 return r; 822 } 823 } 824 return NULL; 825 } 826 EXPORT_SYMBOL(pci_find_parent_resource); 827 828 /** 829 * pci_find_resource - Return matching PCI device resource 830 * @dev: PCI device to query 831 * @res: Resource to look for 832 * 833 * Goes over standard PCI resources (BARs) and checks if the given resource 834 * is partially or fully contained in any of them. In that case the 835 * matching resource is returned, %NULL otherwise. 836 */ 837 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 838 { 839 int i; 840 841 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 842 struct resource *r = &dev->resource[i]; 843 844 if (r->start && resource_contains(r, res)) 845 return r; 846 } 847 848 return NULL; 849 } 850 EXPORT_SYMBOL(pci_find_resource); 851 852 /** 853 * pci_resource_name - Return the name of the PCI resource 854 * @dev: PCI device to query 855 * @i: index of the resource 856 * 857 * Return the standard PCI resource (BAR) name according to their index. 858 */ 859 const char *pci_resource_name(struct pci_dev *dev, unsigned int i) 860 { 861 static const char * const bar_name[] = { 862 "BAR 0", 863 "BAR 1", 864 "BAR 2", 865 "BAR 3", 866 "BAR 4", 867 "BAR 5", 868 "ROM", 869 #ifdef CONFIG_PCI_IOV 870 "VF BAR 0", 871 "VF BAR 1", 872 "VF BAR 2", 873 "VF BAR 3", 874 "VF BAR 4", 875 "VF BAR 5", 876 #endif 877 "bridge window", /* "io" included in %pR */ 878 "bridge window", /* "mem" included in %pR */ 879 "bridge window", /* "mem pref" included in %pR */ 880 }; 881 static const char * const cardbus_name[] = { 882 "BAR 1", 883 "unknown", 884 "unknown", 885 "unknown", 886 "unknown", 887 "unknown", 888 #ifdef CONFIG_PCI_IOV 889 "unknown", 890 "unknown", 891 "unknown", 892 "unknown", 893 "unknown", 894 "unknown", 895 #endif 896 "CardBus bridge window 0", /* I/O */ 897 "CardBus bridge window 1", /* I/O */ 898 "CardBus bridge window 0", /* mem */ 899 "CardBus bridge window 1", /* mem */ 900 }; 901 902 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS && 903 i < ARRAY_SIZE(cardbus_name)) 904 return cardbus_name[i]; 905 906 if (i < ARRAY_SIZE(bar_name)) 907 return bar_name[i]; 908 909 return "unknown"; 910 } 911 912 /** 913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 914 * @dev: the PCI device to operate on 915 * @pos: config space offset of status word 916 * @mask: mask of bit(s) to care about in status word 917 * 918 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 919 */ 920 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 921 { 922 int i; 923 924 /* Wait for Transaction Pending bit clean */ 925 for (i = 0; i < 4; i++) { 926 u16 status; 927 if (i) 928 msleep((1 << (i - 1)) * 100); 929 930 pci_read_config_word(dev, pos, &status); 931 if (!(status & mask)) 932 return 1; 933 } 934 935 return 0; 936 } 937 938 static int pci_acs_enable; 939 940 /** 941 * pci_request_acs - ask for ACS to be enabled if supported 942 */ 943 void pci_request_acs(void) 944 { 945 pci_acs_enable = 1; 946 } 947 948 static const char *disable_acs_redir_param; 949 static const char *config_acs_param; 950 951 struct pci_acs { 952 u16 cap; 953 u16 ctrl; 954 u16 fw_ctrl; 955 }; 956 957 static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps, 958 const char *p, u16 mask, u16 flags) 959 { 960 char *delimit; 961 int ret = 0; 962 963 if (!p) 964 return; 965 966 while (*p) { 967 if (!mask) { 968 /* Check for ACS flags */ 969 delimit = strstr(p, "@"); 970 if (delimit) { 971 int end; 972 u32 shift = 0; 973 974 end = delimit - p - 1; 975 976 while (end > -1) { 977 if (*(p + end) == '0') { 978 mask |= 1 << shift; 979 shift++; 980 end--; 981 } else if (*(p + end) == '1') { 982 mask |= 1 << shift; 983 flags |= 1 << shift; 984 shift++; 985 end--; 986 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) { 987 shift++; 988 end--; 989 } else { 990 pci_err(dev, "Invalid ACS flags... Ignoring\n"); 991 return; 992 } 993 } 994 p = delimit + 1; 995 } else { 996 pci_err(dev, "ACS Flags missing\n"); 997 return; 998 } 999 } 1000 1001 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR | 1002 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) { 1003 pci_err(dev, "Invalid ACS flags specified\n"); 1004 return; 1005 } 1006 1007 ret = pci_dev_str_match(dev, p, &p); 1008 if (ret < 0) { 1009 pr_info_once("PCI: Can't parse ACS command line parameter\n"); 1010 break; 1011 } else if (ret == 1) { 1012 /* Found a match */ 1013 break; 1014 } 1015 1016 if (*p != ';' && *p != ',') { 1017 /* End of param or invalid format */ 1018 break; 1019 } 1020 p++; 1021 } 1022 1023 if (ret != 1) 1024 return; 1025 1026 if (!pci_dev_specific_disable_acs_redir(dev)) 1027 return; 1028 1029 pci_dbg(dev, "ACS mask = %#06x\n", mask); 1030 pci_dbg(dev, "ACS flags = %#06x\n", flags); 1031 1032 /* If mask is 0 then we copy the bit from the firmware setting. */ 1033 caps->ctrl = (caps->ctrl & ~mask) | (caps->fw_ctrl & mask); 1034 caps->ctrl |= flags; 1035 1036 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl); 1037 } 1038 1039 /** 1040 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 1041 * @dev: the PCI device 1042 * @caps: default ACS controls 1043 */ 1044 static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps) 1045 { 1046 /* Source Validation */ 1047 caps->ctrl |= (caps->cap & PCI_ACS_SV); 1048 1049 /* P2P Request Redirect */ 1050 caps->ctrl |= (caps->cap & PCI_ACS_RR); 1051 1052 /* P2P Completion Redirect */ 1053 caps->ctrl |= (caps->cap & PCI_ACS_CR); 1054 1055 /* Upstream Forwarding */ 1056 caps->ctrl |= (caps->cap & PCI_ACS_UF); 1057 1058 /* Enable Translation Blocking for external devices and noats */ 1059 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 1060 caps->ctrl |= (caps->cap & PCI_ACS_TB); 1061 } 1062 1063 /** 1064 * pci_enable_acs - enable ACS if hardware support it 1065 * @dev: the PCI device 1066 */ 1067 static void pci_enable_acs(struct pci_dev *dev) 1068 { 1069 struct pci_acs caps; 1070 bool enable_acs = false; 1071 int pos; 1072 1073 /* If an iommu is present we start with kernel default caps */ 1074 if (pci_acs_enable) { 1075 if (pci_dev_specific_enable_acs(dev)) 1076 enable_acs = true; 1077 } 1078 1079 pos = dev->acs_cap; 1080 if (!pos) 1081 return; 1082 1083 pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap); 1084 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl); 1085 caps.fw_ctrl = caps.ctrl; 1086 1087 if (enable_acs) 1088 pci_std_enable_acs(dev, &caps); 1089 1090 /* 1091 * Always apply caps from the command line, even if there is no iommu. 1092 * Trust that the admin has a reason to change the ACS settings. 1093 */ 1094 __pci_config_acs(dev, &caps, disable_acs_redir_param, 1095 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC, 1096 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)); 1097 __pci_config_acs(dev, &caps, config_acs_param, 0, 0); 1098 1099 pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl); 1100 } 1101 1102 /** 1103 * pcie_read_tlp_log - read TLP Header Log 1104 * @dev: PCIe device 1105 * @where: PCI Config offset of TLP Header Log 1106 * @tlp_log: TLP Log structure to fill 1107 * 1108 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC. 1109 * 1110 * Return: 0 on success and filled TLP Log structure, <0 on error. 1111 */ 1112 int pcie_read_tlp_log(struct pci_dev *dev, int where, 1113 struct pcie_tlp_log *tlp_log) 1114 { 1115 int i, ret; 1116 1117 memset(tlp_log, 0, sizeof(*tlp_log)); 1118 1119 for (i = 0; i < 4; i++) { 1120 ret = pci_read_config_dword(dev, where + i * 4, 1121 &tlp_log->dw[i]); 1122 if (ret) 1123 return pcibios_err_to_errno(ret); 1124 } 1125 1126 return 0; 1127 } 1128 EXPORT_SYMBOL_GPL(pcie_read_tlp_log); 1129 1130 /** 1131 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1132 * @dev: PCI device to have its BARs restored 1133 * 1134 * Restore the BAR values for a given device, so as to make it 1135 * accessible by its driver. 1136 */ 1137 static void pci_restore_bars(struct pci_dev *dev) 1138 { 1139 int i; 1140 1141 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1142 pci_update_resource(dev, i); 1143 } 1144 1145 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1146 { 1147 if (pci_use_mid_pm()) 1148 return true; 1149 1150 return acpi_pci_power_manageable(dev); 1151 } 1152 1153 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1154 pci_power_t t) 1155 { 1156 if (pci_use_mid_pm()) 1157 return mid_pci_set_power_state(dev, t); 1158 1159 return acpi_pci_set_power_state(dev, t); 1160 } 1161 1162 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1163 { 1164 if (pci_use_mid_pm()) 1165 return mid_pci_get_power_state(dev); 1166 1167 return acpi_pci_get_power_state(dev); 1168 } 1169 1170 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1171 { 1172 if (!pci_use_mid_pm()) 1173 acpi_pci_refresh_power_state(dev); 1174 } 1175 1176 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1177 { 1178 if (pci_use_mid_pm()) 1179 return PCI_POWER_ERROR; 1180 1181 return acpi_pci_choose_state(dev); 1182 } 1183 1184 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1185 { 1186 if (pci_use_mid_pm()) 1187 return PCI_POWER_ERROR; 1188 1189 return acpi_pci_wakeup(dev, enable); 1190 } 1191 1192 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1193 { 1194 if (pci_use_mid_pm()) 1195 return false; 1196 1197 return acpi_pci_need_resume(dev); 1198 } 1199 1200 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1201 { 1202 if (pci_use_mid_pm()) 1203 return false; 1204 1205 return acpi_pci_bridge_d3(dev); 1206 } 1207 1208 /** 1209 * pci_update_current_state - Read power state of given device and cache it 1210 * @dev: PCI device to handle. 1211 * @state: State to cache in case the device doesn't have the PM capability 1212 * 1213 * The power state is read from the PMCSR register, which however is 1214 * inaccessible in D3cold. The platform firmware is therefore queried first 1215 * to detect accessibility of the register. In case the platform firmware 1216 * reports an incorrect state or the device isn't power manageable by the 1217 * platform at all, we try to detect D3cold by testing accessibility of the 1218 * vendor ID in config space. 1219 */ 1220 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1221 { 1222 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1223 dev->current_state = PCI_D3cold; 1224 } else if (dev->pm_cap) { 1225 u16 pmcsr; 1226 1227 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1228 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1229 dev->current_state = PCI_D3cold; 1230 return; 1231 } 1232 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1233 } else { 1234 dev->current_state = state; 1235 } 1236 } 1237 1238 /** 1239 * pci_refresh_power_state - Refresh the given device's power state data 1240 * @dev: Target PCI device. 1241 * 1242 * Ask the platform to refresh the devices power state information and invoke 1243 * pci_update_current_state() to update its current PCI power state. 1244 */ 1245 void pci_refresh_power_state(struct pci_dev *dev) 1246 { 1247 platform_pci_refresh_power_state(dev); 1248 pci_update_current_state(dev, dev->current_state); 1249 } 1250 1251 /** 1252 * pci_platform_power_transition - Use platform to change device power state 1253 * @dev: PCI device to handle. 1254 * @state: State to put the device into. 1255 */ 1256 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1257 { 1258 int error; 1259 1260 error = platform_pci_set_power_state(dev, state); 1261 if (!error) 1262 pci_update_current_state(dev, state); 1263 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1264 dev->current_state = PCI_D0; 1265 1266 return error; 1267 } 1268 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1269 1270 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1271 { 1272 pm_request_resume(&pci_dev->dev); 1273 return 0; 1274 } 1275 1276 /** 1277 * pci_resume_bus - Walk given bus and runtime resume devices on it 1278 * @bus: Top bus of the subtree to walk. 1279 */ 1280 void pci_resume_bus(struct pci_bus *bus) 1281 { 1282 if (bus) 1283 pci_walk_bus(bus, pci_resume_one, NULL); 1284 } 1285 1286 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1287 { 1288 int delay = 1; 1289 bool retrain = false; 1290 struct pci_dev *root, *bridge; 1291 1292 root = pcie_find_root_port(dev); 1293 1294 if (pci_is_pcie(dev)) { 1295 bridge = pci_upstream_bridge(dev); 1296 if (bridge) 1297 retrain = true; 1298 } 1299 1300 /* 1301 * The caller has already waited long enough after a reset that the 1302 * device should respond to config requests, but it may respond 1303 * with Request Retry Status (RRS) if it needs more time to 1304 * initialize. 1305 * 1306 * If the device is below a Root Port with Configuration RRS 1307 * Software Visibility enabled, reading the Vendor ID returns a 1308 * special data value if the device responded with RRS. Read the 1309 * Vendor ID until we get non-RRS status. 1310 * 1311 * If there's no Root Port or Configuration RRS Software Visibility 1312 * is not enabled, the device may still respond with RRS, but 1313 * hardware may retry the config request. If no retries receive 1314 * Successful Completion, hardware generally synthesizes ~0 1315 * (PCI_ERROR_RESPONSE) data to complete the read. Reading Vendor 1316 * ID for VFs and non-existent devices also returns ~0, so read the 1317 * Command register until it returns something other than ~0. 1318 */ 1319 for (;;) { 1320 u32 id; 1321 1322 if (pci_dev_is_disconnected(dev)) { 1323 pci_dbg(dev, "disconnected; not waiting\n"); 1324 return -ENOTTY; 1325 } 1326 1327 if (root && root->config_rrs_sv) { 1328 pci_read_config_dword(dev, PCI_VENDOR_ID, &id); 1329 if (!pci_bus_rrs_vendor_id(id)) 1330 break; 1331 } else { 1332 pci_read_config_dword(dev, PCI_COMMAND, &id); 1333 if (!PCI_POSSIBLE_ERROR(id)) 1334 break; 1335 } 1336 1337 if (delay > timeout) { 1338 pci_warn(dev, "not ready %dms after %s; giving up\n", 1339 delay - 1, reset_type); 1340 return -ENOTTY; 1341 } 1342 1343 if (delay > PCI_RESET_WAIT) { 1344 if (retrain) { 1345 retrain = false; 1346 if (pcie_failed_link_retrain(bridge) == 0) { 1347 delay = 1; 1348 continue; 1349 } 1350 } 1351 pci_info(dev, "not ready %dms after %s; waiting\n", 1352 delay - 1, reset_type); 1353 } 1354 1355 msleep(delay); 1356 delay *= 2; 1357 } 1358 1359 if (delay > PCI_RESET_WAIT) 1360 pci_info(dev, "ready %dms after %s\n", delay - 1, 1361 reset_type); 1362 else 1363 pci_dbg(dev, "ready %dms after %s\n", delay - 1, 1364 reset_type); 1365 1366 return 0; 1367 } 1368 1369 /** 1370 * pci_power_up - Put the given device into D0 1371 * @dev: PCI device to power up 1372 * 1373 * On success, return 0 or 1, depending on whether or not it is necessary to 1374 * restore the device's BARs subsequently (1 is returned in that case). 1375 * 1376 * On failure, return a negative error code. Always return failure if @dev 1377 * lacks a Power Management Capability, even if the platform was able to 1378 * put the device in D0 via non-PCI means. 1379 */ 1380 int pci_power_up(struct pci_dev *dev) 1381 { 1382 bool need_restore; 1383 pci_power_t state; 1384 u16 pmcsr; 1385 1386 platform_pci_set_power_state(dev, PCI_D0); 1387 1388 if (!dev->pm_cap) { 1389 state = platform_pci_get_power_state(dev); 1390 if (state == PCI_UNKNOWN) 1391 dev->current_state = PCI_D0; 1392 else 1393 dev->current_state = state; 1394 1395 return -EIO; 1396 } 1397 1398 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1399 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1400 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1401 pci_power_name(dev->current_state)); 1402 dev->current_state = PCI_D3cold; 1403 return -EIO; 1404 } 1405 1406 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1407 1408 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1409 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1410 1411 if (state == PCI_D0) 1412 goto end; 1413 1414 /* 1415 * Force the entire word to 0. This doesn't affect PME_Status, disables 1416 * PME_En, and sets PowerState to 0. 1417 */ 1418 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1419 1420 /* Mandatory transition delays; see PCI PM 1.2. */ 1421 if (state == PCI_D3hot) 1422 pci_dev_d3_sleep(dev); 1423 else if (state == PCI_D2) 1424 udelay(PCI_PM_D2_DELAY); 1425 1426 end: 1427 dev->current_state = PCI_D0; 1428 if (need_restore) 1429 return 1; 1430 1431 return 0; 1432 } 1433 1434 /** 1435 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1436 * @dev: PCI device to power up 1437 * @locked: whether pci_bus_sem is held 1438 * 1439 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1440 * to confirm the state change, restore its BARs if they might be lost and 1441 * reconfigure ASPM in accordance with the new power state. 1442 * 1443 * If pci_restore_state() is going to be called right after a power state change 1444 * to D0, it is more efficient to use pci_power_up() directly instead of this 1445 * function. 1446 */ 1447 static int pci_set_full_power_state(struct pci_dev *dev, bool locked) 1448 { 1449 u16 pmcsr; 1450 int ret; 1451 1452 ret = pci_power_up(dev); 1453 if (ret < 0) { 1454 if (dev->current_state == PCI_D0) 1455 return 0; 1456 1457 return ret; 1458 } 1459 1460 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1461 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1462 if (dev->current_state != PCI_D0) { 1463 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1464 pci_power_name(dev->current_state)); 1465 } else if (ret > 0) { 1466 /* 1467 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1468 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1469 * from D3hot to D0 _may_ perform an internal reset, thereby 1470 * going to "D0 Uninitialized" rather than "D0 Initialized". 1471 * For example, at least some versions of the 3c905B and the 1472 * 3c556B exhibit this behaviour. 1473 * 1474 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1475 * devices in a D3hot state at boot. Consequently, we need to 1476 * restore at least the BARs so that the device will be 1477 * accessible to its driver. 1478 */ 1479 pci_restore_bars(dev); 1480 } 1481 1482 if (dev->bus->self) 1483 pcie_aspm_pm_state_change(dev->bus->self, locked); 1484 1485 return 0; 1486 } 1487 1488 /** 1489 * __pci_dev_set_current_state - Set current state of a PCI device 1490 * @dev: Device to handle 1491 * @data: pointer to state to be set 1492 */ 1493 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1494 { 1495 pci_power_t state = *(pci_power_t *)data; 1496 1497 dev->current_state = state; 1498 return 0; 1499 } 1500 1501 /** 1502 * pci_bus_set_current_state - Walk given bus and set current state of devices 1503 * @bus: Top bus of the subtree to walk. 1504 * @state: state to be set 1505 */ 1506 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1507 { 1508 if (bus) 1509 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1510 } 1511 1512 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked) 1513 { 1514 if (!bus) 1515 return; 1516 1517 if (locked) 1518 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state); 1519 else 1520 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1521 } 1522 1523 /** 1524 * pci_set_low_power_state - Put a PCI device into a low-power state. 1525 * @dev: PCI device to handle. 1526 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1527 * @locked: whether pci_bus_sem is held 1528 * 1529 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1530 * 1531 * RETURN VALUE: 1532 * -EINVAL if the requested state is invalid. 1533 * -EIO if device does not support PCI PM or its PM capabilities register has a 1534 * wrong version, or device doesn't support the requested state. 1535 * 0 if device already is in the requested state. 1536 * 0 if device's power state has been successfully changed. 1537 */ 1538 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1539 { 1540 u16 pmcsr; 1541 1542 if (!dev->pm_cap) 1543 return -EIO; 1544 1545 /* 1546 * Validate transition: We can enter D0 from any state, but if 1547 * we're already in a low-power state, we can only go deeper. E.g., 1548 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1549 * we'd have to go from D3 to D0, then to D1. 1550 */ 1551 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1552 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1553 pci_power_name(dev->current_state), 1554 pci_power_name(state)); 1555 return -EINVAL; 1556 } 1557 1558 /* Check if this device supports the desired state */ 1559 if ((state == PCI_D1 && !dev->d1_support) 1560 || (state == PCI_D2 && !dev->d2_support)) 1561 return -EIO; 1562 1563 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1564 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1565 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1566 pci_power_name(dev->current_state), 1567 pci_power_name(state)); 1568 dev->current_state = PCI_D3cold; 1569 return -EIO; 1570 } 1571 1572 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1573 pmcsr |= state; 1574 1575 /* Enter specified state */ 1576 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1577 1578 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1579 if (state == PCI_D3hot) 1580 pci_dev_d3_sleep(dev); 1581 else if (state == PCI_D2) 1582 udelay(PCI_PM_D2_DELAY); 1583 1584 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1585 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1586 if (dev->current_state != state) 1587 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1588 pci_power_name(dev->current_state), 1589 pci_power_name(state)); 1590 1591 if (dev->bus->self) 1592 pcie_aspm_pm_state_change(dev->bus->self, locked); 1593 1594 return 0; 1595 } 1596 1597 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1598 { 1599 int error; 1600 1601 /* Bound the state we're entering */ 1602 if (state > PCI_D3cold) 1603 state = PCI_D3cold; 1604 else if (state < PCI_D0) 1605 state = PCI_D0; 1606 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1607 1608 /* 1609 * If the device or the parent bridge do not support PCI 1610 * PM, ignore the request if we're doing anything other 1611 * than putting it into D0 (which would only happen on 1612 * boot). 1613 */ 1614 return 0; 1615 1616 /* Check if we're already there */ 1617 if (dev->current_state == state) 1618 return 0; 1619 1620 if (state == PCI_D0) 1621 return pci_set_full_power_state(dev, locked); 1622 1623 /* 1624 * This device is quirked not to be put into D3, so don't put it in 1625 * D3 1626 */ 1627 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1628 return 0; 1629 1630 if (state == PCI_D3cold) { 1631 /* 1632 * To put the device in D3cold, put it into D3hot in the native 1633 * way, then put it into D3cold using platform ops. 1634 */ 1635 error = pci_set_low_power_state(dev, PCI_D3hot, locked); 1636 1637 if (pci_platform_power_transition(dev, PCI_D3cold)) 1638 return error; 1639 1640 /* Powering off a bridge may power off the whole hierarchy */ 1641 if (dev->current_state == PCI_D3cold) 1642 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked); 1643 } else { 1644 error = pci_set_low_power_state(dev, state, locked); 1645 1646 if (pci_platform_power_transition(dev, state)) 1647 return error; 1648 } 1649 1650 return 0; 1651 } 1652 1653 /** 1654 * pci_set_power_state - Set the power state of a PCI device 1655 * @dev: PCI device to handle. 1656 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1657 * 1658 * Transition a device to a new power state, using the platform firmware and/or 1659 * the device's PCI PM registers. 1660 * 1661 * RETURN VALUE: 1662 * -EINVAL if the requested state is invalid. 1663 * -EIO if device does not support PCI PM or its PM capabilities register has a 1664 * wrong version, or device doesn't support the requested state. 1665 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1666 * 0 if device already is in the requested state. 1667 * 0 if the transition is to D3 but D3 is not supported. 1668 * 0 if device's power state has been successfully changed. 1669 */ 1670 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1671 { 1672 return __pci_set_power_state(dev, state, false); 1673 } 1674 EXPORT_SYMBOL(pci_set_power_state); 1675 1676 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state) 1677 { 1678 lockdep_assert_held(&pci_bus_sem); 1679 1680 return __pci_set_power_state(dev, state, true); 1681 } 1682 EXPORT_SYMBOL(pci_set_power_state_locked); 1683 1684 #define PCI_EXP_SAVE_REGS 7 1685 1686 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1687 u16 cap, bool extended) 1688 { 1689 struct pci_cap_saved_state *tmp; 1690 1691 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1692 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1693 return tmp; 1694 } 1695 return NULL; 1696 } 1697 1698 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1699 { 1700 return _pci_find_saved_cap(dev, cap, false); 1701 } 1702 1703 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1704 { 1705 return _pci_find_saved_cap(dev, cap, true); 1706 } 1707 1708 static int pci_save_pcie_state(struct pci_dev *dev) 1709 { 1710 int i = 0; 1711 struct pci_cap_saved_state *save_state; 1712 u16 *cap; 1713 1714 if (!pci_is_pcie(dev)) 1715 return 0; 1716 1717 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1718 if (!save_state) { 1719 pci_err(dev, "buffer not found in %s\n", __func__); 1720 return -ENOMEM; 1721 } 1722 1723 cap = (u16 *)&save_state->cap.data[0]; 1724 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1725 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1726 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1727 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1728 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1729 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1730 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1731 1732 pci_save_aspm_l1ss_state(dev); 1733 pci_save_ltr_state(dev); 1734 1735 return 0; 1736 } 1737 1738 static void pci_restore_pcie_state(struct pci_dev *dev) 1739 { 1740 int i = 0; 1741 struct pci_cap_saved_state *save_state; 1742 u16 *cap; 1743 1744 /* 1745 * Restore max latencies (in the LTR capability) before enabling 1746 * LTR itself in PCI_EXP_DEVCTL2. 1747 */ 1748 pci_restore_ltr_state(dev); 1749 pci_restore_aspm_l1ss_state(dev); 1750 1751 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1752 if (!save_state) 1753 return; 1754 1755 /* 1756 * Downstream ports reset the LTR enable bit when link goes down. 1757 * Check and re-configure the bit here before restoring device. 1758 * PCIe r5.0, sec 7.5.3.16. 1759 */ 1760 pci_bridge_reconfigure_ltr(dev); 1761 1762 cap = (u16 *)&save_state->cap.data[0]; 1763 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1764 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1765 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1766 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1767 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1768 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1769 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1770 } 1771 1772 static int pci_save_pcix_state(struct pci_dev *dev) 1773 { 1774 int pos; 1775 struct pci_cap_saved_state *save_state; 1776 1777 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1778 if (!pos) 1779 return 0; 1780 1781 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1782 if (!save_state) { 1783 pci_err(dev, "buffer not found in %s\n", __func__); 1784 return -ENOMEM; 1785 } 1786 1787 pci_read_config_word(dev, pos + PCI_X_CMD, 1788 (u16 *)save_state->cap.data); 1789 1790 return 0; 1791 } 1792 1793 static void pci_restore_pcix_state(struct pci_dev *dev) 1794 { 1795 int i = 0, pos; 1796 struct pci_cap_saved_state *save_state; 1797 u16 *cap; 1798 1799 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1800 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1801 if (!save_state || !pos) 1802 return; 1803 cap = (u16 *)&save_state->cap.data[0]; 1804 1805 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1806 } 1807 1808 /** 1809 * pci_save_state - save the PCI configuration space of a device before 1810 * suspending 1811 * @dev: PCI device that we're dealing with 1812 */ 1813 int pci_save_state(struct pci_dev *dev) 1814 { 1815 int i; 1816 /* XXX: 100% dword access ok here? */ 1817 for (i = 0; i < 16; i++) { 1818 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1819 pci_dbg(dev, "save config %#04x: %#010x\n", 1820 i * 4, dev->saved_config_space[i]); 1821 } 1822 dev->state_saved = true; 1823 1824 i = pci_save_pcie_state(dev); 1825 if (i != 0) 1826 return i; 1827 1828 i = pci_save_pcix_state(dev); 1829 if (i != 0) 1830 return i; 1831 1832 pci_save_dpc_state(dev); 1833 pci_save_aer_state(dev); 1834 pci_save_ptm_state(dev); 1835 return pci_save_vc_state(dev); 1836 } 1837 EXPORT_SYMBOL(pci_save_state); 1838 1839 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1840 u32 saved_val, int retry, bool force) 1841 { 1842 u32 val; 1843 1844 pci_read_config_dword(pdev, offset, &val); 1845 if (!force && val == saved_val) 1846 return; 1847 1848 for (;;) { 1849 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1850 offset, val, saved_val); 1851 pci_write_config_dword(pdev, offset, saved_val); 1852 if (retry-- <= 0) 1853 return; 1854 1855 pci_read_config_dword(pdev, offset, &val); 1856 if (val == saved_val) 1857 return; 1858 1859 mdelay(1); 1860 } 1861 } 1862 1863 static void pci_restore_config_space_range(struct pci_dev *pdev, 1864 int start, int end, int retry, 1865 bool force) 1866 { 1867 int index; 1868 1869 for (index = end; index >= start; index--) 1870 pci_restore_config_dword(pdev, 4 * index, 1871 pdev->saved_config_space[index], 1872 retry, force); 1873 } 1874 1875 static void pci_restore_config_space(struct pci_dev *pdev) 1876 { 1877 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1878 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1879 /* Restore BARs before the command register. */ 1880 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1881 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1882 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1883 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1884 1885 /* 1886 * Force rewriting of prefetch registers to avoid S3 resume 1887 * issues on Intel PCI bridges that occur when these 1888 * registers are not explicitly written. 1889 */ 1890 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1891 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1892 } else { 1893 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1894 } 1895 } 1896 1897 static void pci_restore_rebar_state(struct pci_dev *pdev) 1898 { 1899 unsigned int pos, nbars, i; 1900 u32 ctrl; 1901 1902 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1903 if (!pos) 1904 return; 1905 1906 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1907 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 1908 1909 for (i = 0; i < nbars; i++, pos += 8) { 1910 struct resource *res; 1911 int bar_idx, size; 1912 1913 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1914 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1915 res = pdev->resource + bar_idx; 1916 size = pci_rebar_bytes_to_size(resource_size(res)); 1917 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1918 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 1919 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1920 } 1921 } 1922 1923 /** 1924 * pci_restore_state - Restore the saved state of a PCI device 1925 * @dev: PCI device that we're dealing with 1926 */ 1927 void pci_restore_state(struct pci_dev *dev) 1928 { 1929 if (!dev->state_saved) 1930 return; 1931 1932 pci_restore_pcie_state(dev); 1933 pci_restore_pasid_state(dev); 1934 pci_restore_pri_state(dev); 1935 pci_restore_ats_state(dev); 1936 pci_restore_vc_state(dev); 1937 pci_restore_rebar_state(dev); 1938 pci_restore_dpc_state(dev); 1939 pci_restore_ptm_state(dev); 1940 1941 pci_aer_clear_status(dev); 1942 pci_restore_aer_state(dev); 1943 1944 pci_restore_config_space(dev); 1945 1946 pci_restore_pcix_state(dev); 1947 pci_restore_msi_state(dev); 1948 1949 /* Restore ACS and IOV configuration state */ 1950 pci_enable_acs(dev); 1951 pci_restore_iov_state(dev); 1952 1953 dev->state_saved = false; 1954 } 1955 EXPORT_SYMBOL(pci_restore_state); 1956 1957 struct pci_saved_state { 1958 u32 config_space[16]; 1959 struct pci_cap_saved_data cap[]; 1960 }; 1961 1962 /** 1963 * pci_store_saved_state - Allocate and return an opaque struct containing 1964 * the device saved state. 1965 * @dev: PCI device that we're dealing with 1966 * 1967 * Return NULL if no state or error. 1968 */ 1969 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1970 { 1971 struct pci_saved_state *state; 1972 struct pci_cap_saved_state *tmp; 1973 struct pci_cap_saved_data *cap; 1974 size_t size; 1975 1976 if (!dev->state_saved) 1977 return NULL; 1978 1979 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1980 1981 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1982 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1983 1984 state = kzalloc(size, GFP_KERNEL); 1985 if (!state) 1986 return NULL; 1987 1988 memcpy(state->config_space, dev->saved_config_space, 1989 sizeof(state->config_space)); 1990 1991 cap = state->cap; 1992 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1993 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1994 memcpy(cap, &tmp->cap, len); 1995 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1996 } 1997 /* Empty cap_save terminates list */ 1998 1999 return state; 2000 } 2001 EXPORT_SYMBOL_GPL(pci_store_saved_state); 2002 2003 /** 2004 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 2005 * @dev: PCI device that we're dealing with 2006 * @state: Saved state returned from pci_store_saved_state() 2007 */ 2008 int pci_load_saved_state(struct pci_dev *dev, 2009 struct pci_saved_state *state) 2010 { 2011 struct pci_cap_saved_data *cap; 2012 2013 dev->state_saved = false; 2014 2015 if (!state) 2016 return 0; 2017 2018 memcpy(dev->saved_config_space, state->config_space, 2019 sizeof(state->config_space)); 2020 2021 cap = state->cap; 2022 while (cap->size) { 2023 struct pci_cap_saved_state *tmp; 2024 2025 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 2026 if (!tmp || tmp->cap.size != cap->size) 2027 return -EINVAL; 2028 2029 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 2030 cap = (struct pci_cap_saved_data *)((u8 *)cap + 2031 sizeof(struct pci_cap_saved_data) + cap->size); 2032 } 2033 2034 dev->state_saved = true; 2035 return 0; 2036 } 2037 EXPORT_SYMBOL_GPL(pci_load_saved_state); 2038 2039 /** 2040 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 2041 * and free the memory allocated for it. 2042 * @dev: PCI device that we're dealing with 2043 * @state: Pointer to saved state returned from pci_store_saved_state() 2044 */ 2045 int pci_load_and_free_saved_state(struct pci_dev *dev, 2046 struct pci_saved_state **state) 2047 { 2048 int ret = pci_load_saved_state(dev, *state); 2049 kfree(*state); 2050 *state = NULL; 2051 return ret; 2052 } 2053 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 2054 2055 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 2056 { 2057 return pci_enable_resources(dev, bars); 2058 } 2059 2060 static int do_pci_enable_device(struct pci_dev *dev, int bars) 2061 { 2062 int err; 2063 struct pci_dev *bridge; 2064 u16 cmd; 2065 u8 pin; 2066 2067 err = pci_set_power_state(dev, PCI_D0); 2068 if (err < 0 && err != -EIO) 2069 return err; 2070 2071 bridge = pci_upstream_bridge(dev); 2072 if (bridge) 2073 pcie_aspm_powersave_config_link(bridge); 2074 2075 err = pcibios_enable_device(dev, bars); 2076 if (err < 0) 2077 return err; 2078 pci_fixup_device(pci_fixup_enable, dev); 2079 2080 if (dev->msi_enabled || dev->msix_enabled) 2081 return 0; 2082 2083 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 2084 if (pin) { 2085 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2086 if (cmd & PCI_COMMAND_INTX_DISABLE) 2087 pci_write_config_word(dev, PCI_COMMAND, 2088 cmd & ~PCI_COMMAND_INTX_DISABLE); 2089 } 2090 2091 return 0; 2092 } 2093 2094 /** 2095 * pci_reenable_device - Resume abandoned device 2096 * @dev: PCI device to be resumed 2097 * 2098 * NOTE: This function is a backend of pci_default_resume() and is not supposed 2099 * to be called by normal code, write proper resume handler and use it instead. 2100 */ 2101 int pci_reenable_device(struct pci_dev *dev) 2102 { 2103 if (pci_is_enabled(dev)) 2104 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 2105 return 0; 2106 } 2107 EXPORT_SYMBOL(pci_reenable_device); 2108 2109 static void pci_enable_bridge(struct pci_dev *dev) 2110 { 2111 struct pci_dev *bridge; 2112 int retval; 2113 2114 bridge = pci_upstream_bridge(dev); 2115 if (bridge) 2116 pci_enable_bridge(bridge); 2117 2118 if (pci_is_enabled(dev)) { 2119 if (!dev->is_busmaster) 2120 pci_set_master(dev); 2121 return; 2122 } 2123 2124 retval = pci_enable_device(dev); 2125 if (retval) 2126 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2127 retval); 2128 pci_set_master(dev); 2129 } 2130 2131 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2132 { 2133 struct pci_dev *bridge; 2134 int err; 2135 int i, bars = 0; 2136 2137 /* 2138 * Power state could be unknown at this point, either due to a fresh 2139 * boot or a device removal call. So get the current power state 2140 * so that things like MSI message writing will behave as expected 2141 * (e.g. if the device really is in D0 at enable time). 2142 */ 2143 pci_update_current_state(dev, dev->current_state); 2144 2145 if (atomic_inc_return(&dev->enable_cnt) > 1) 2146 return 0; /* already enabled */ 2147 2148 bridge = pci_upstream_bridge(dev); 2149 if (bridge) 2150 pci_enable_bridge(bridge); 2151 2152 /* only skip sriov related */ 2153 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2154 if (dev->resource[i].flags & flags) 2155 bars |= (1 << i); 2156 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2157 if (dev->resource[i].flags & flags) 2158 bars |= (1 << i); 2159 2160 err = do_pci_enable_device(dev, bars); 2161 if (err < 0) 2162 atomic_dec(&dev->enable_cnt); 2163 return err; 2164 } 2165 2166 /** 2167 * pci_enable_device_mem - Initialize a device for use with Memory space 2168 * @dev: PCI device to be initialized 2169 * 2170 * Initialize device before it's used by a driver. Ask low-level code 2171 * to enable Memory resources. Wake up the device if it was suspended. 2172 * Beware, this function can fail. 2173 */ 2174 int pci_enable_device_mem(struct pci_dev *dev) 2175 { 2176 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2177 } 2178 EXPORT_SYMBOL(pci_enable_device_mem); 2179 2180 /** 2181 * pci_enable_device - Initialize device before it's used by a driver. 2182 * @dev: PCI device to be initialized 2183 * 2184 * Initialize device before it's used by a driver. Ask low-level code 2185 * to enable I/O and memory. Wake up the device if it was suspended. 2186 * Beware, this function can fail. 2187 * 2188 * Note we don't actually enable the device many times if we call 2189 * this function repeatedly (we just increment the count). 2190 */ 2191 int pci_enable_device(struct pci_dev *dev) 2192 { 2193 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2194 } 2195 EXPORT_SYMBOL(pci_enable_device); 2196 2197 /* 2198 * pcibios_device_add - provide arch specific hooks when adding device dev 2199 * @dev: the PCI device being added 2200 * 2201 * Permits the platform to provide architecture specific functionality when 2202 * devices are added. This is the default implementation. Architecture 2203 * implementations can override this. 2204 */ 2205 int __weak pcibios_device_add(struct pci_dev *dev) 2206 { 2207 return 0; 2208 } 2209 2210 /** 2211 * pcibios_release_device - provide arch specific hooks when releasing 2212 * device dev 2213 * @dev: the PCI device being released 2214 * 2215 * Permits the platform to provide architecture specific functionality when 2216 * devices are released. This is the default implementation. Architecture 2217 * implementations can override this. 2218 */ 2219 void __weak pcibios_release_device(struct pci_dev *dev) {} 2220 2221 /** 2222 * pcibios_disable_device - disable arch specific PCI resources for device dev 2223 * @dev: the PCI device to disable 2224 * 2225 * Disables architecture specific PCI resources for the device. This 2226 * is the default implementation. Architecture implementations can 2227 * override this. 2228 */ 2229 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2230 2231 static void do_pci_disable_device(struct pci_dev *dev) 2232 { 2233 u16 pci_command; 2234 2235 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2236 if (pci_command & PCI_COMMAND_MASTER) { 2237 pci_command &= ~PCI_COMMAND_MASTER; 2238 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2239 } 2240 2241 pcibios_disable_device(dev); 2242 } 2243 2244 /** 2245 * pci_disable_enabled_device - Disable device without updating enable_cnt 2246 * @dev: PCI device to disable 2247 * 2248 * NOTE: This function is a backend of PCI power management routines and is 2249 * not supposed to be called drivers. 2250 */ 2251 void pci_disable_enabled_device(struct pci_dev *dev) 2252 { 2253 if (pci_is_enabled(dev)) 2254 do_pci_disable_device(dev); 2255 } 2256 2257 /** 2258 * pci_disable_device - Disable PCI device after use 2259 * @dev: PCI device to be disabled 2260 * 2261 * Signal to the system that the PCI device is not in use by the system 2262 * anymore. This only involves disabling PCI bus-mastering, if active. 2263 * 2264 * Note we don't actually disable the device until all callers of 2265 * pci_enable_device() have called pci_disable_device(). 2266 */ 2267 void pci_disable_device(struct pci_dev *dev) 2268 { 2269 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2270 "disabling already-disabled device"); 2271 2272 if (atomic_dec_return(&dev->enable_cnt) != 0) 2273 return; 2274 2275 do_pci_disable_device(dev); 2276 2277 dev->is_busmaster = 0; 2278 } 2279 EXPORT_SYMBOL(pci_disable_device); 2280 2281 /** 2282 * pcibios_set_pcie_reset_state - set reset state for device dev 2283 * @dev: the PCIe device reset 2284 * @state: Reset state to enter into 2285 * 2286 * Set the PCIe reset state for the device. This is the default 2287 * implementation. Architecture implementations can override this. 2288 */ 2289 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2290 enum pcie_reset_state state) 2291 { 2292 return -EINVAL; 2293 } 2294 2295 /** 2296 * pci_set_pcie_reset_state - set reset state for device dev 2297 * @dev: the PCIe device reset 2298 * @state: Reset state to enter into 2299 * 2300 * Sets the PCI reset state for the device. 2301 */ 2302 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2303 { 2304 return pcibios_set_pcie_reset_state(dev, state); 2305 } 2306 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2307 2308 #ifdef CONFIG_PCIEAER 2309 void pcie_clear_device_status(struct pci_dev *dev) 2310 { 2311 u16 sta; 2312 2313 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2314 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2315 } 2316 #endif 2317 2318 /** 2319 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2320 * @dev: PCIe root port or event collector. 2321 */ 2322 void pcie_clear_root_pme_status(struct pci_dev *dev) 2323 { 2324 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2325 } 2326 2327 /** 2328 * pci_check_pme_status - Check if given device has generated PME. 2329 * @dev: Device to check. 2330 * 2331 * Check the PME status of the device and if set, clear it and clear PME enable 2332 * (if set). Return 'true' if PME status and PME enable were both set or 2333 * 'false' otherwise. 2334 */ 2335 bool pci_check_pme_status(struct pci_dev *dev) 2336 { 2337 int pmcsr_pos; 2338 u16 pmcsr; 2339 bool ret = false; 2340 2341 if (!dev->pm_cap) 2342 return false; 2343 2344 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2345 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2346 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2347 return false; 2348 2349 /* Clear PME status. */ 2350 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2351 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2352 /* Disable PME to avoid interrupt flood. */ 2353 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2354 ret = true; 2355 } 2356 2357 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2358 2359 return ret; 2360 } 2361 2362 /** 2363 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2364 * @dev: Device to handle. 2365 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2366 * 2367 * Check if @dev has generated PME and queue a resume request for it in that 2368 * case. 2369 */ 2370 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2371 { 2372 if (pme_poll_reset && dev->pme_poll) 2373 dev->pme_poll = false; 2374 2375 if (pci_check_pme_status(dev)) { 2376 pci_wakeup_event(dev); 2377 pm_request_resume(&dev->dev); 2378 } 2379 return 0; 2380 } 2381 2382 /** 2383 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2384 * @bus: Top bus of the subtree to walk. 2385 */ 2386 void pci_pme_wakeup_bus(struct pci_bus *bus) 2387 { 2388 if (bus) 2389 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2390 } 2391 2392 2393 /** 2394 * pci_pme_capable - check the capability of PCI device to generate PME# 2395 * @dev: PCI device to handle. 2396 * @state: PCI state from which device will issue PME#. 2397 */ 2398 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2399 { 2400 if (!dev->pm_cap) 2401 return false; 2402 2403 return !!(dev->pme_support & (1 << state)); 2404 } 2405 EXPORT_SYMBOL(pci_pme_capable); 2406 2407 static void pci_pme_list_scan(struct work_struct *work) 2408 { 2409 struct pci_pme_device *pme_dev, *n; 2410 2411 mutex_lock(&pci_pme_list_mutex); 2412 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2413 struct pci_dev *pdev = pme_dev->dev; 2414 2415 if (pdev->pme_poll) { 2416 struct pci_dev *bridge = pdev->bus->self; 2417 struct device *dev = &pdev->dev; 2418 struct device *bdev = bridge ? &bridge->dev : NULL; 2419 int bref = 0; 2420 2421 /* 2422 * If we have a bridge, it should be in an active/D0 2423 * state or the configuration space of subordinate 2424 * devices may not be accessible or stable over the 2425 * course of the call. 2426 */ 2427 if (bdev) { 2428 bref = pm_runtime_get_if_active(bdev); 2429 if (!bref) 2430 continue; 2431 2432 if (bridge->current_state != PCI_D0) 2433 goto put_bridge; 2434 } 2435 2436 /* 2437 * The device itself should be suspended but config 2438 * space must be accessible, therefore it cannot be in 2439 * D3cold. 2440 */ 2441 if (pm_runtime_suspended(dev) && 2442 pdev->current_state != PCI_D3cold) 2443 pci_pme_wakeup(pdev, NULL); 2444 2445 put_bridge: 2446 if (bref > 0) 2447 pm_runtime_put(bdev); 2448 } else { 2449 list_del(&pme_dev->list); 2450 kfree(pme_dev); 2451 } 2452 } 2453 if (!list_empty(&pci_pme_list)) 2454 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2455 msecs_to_jiffies(PME_TIMEOUT)); 2456 mutex_unlock(&pci_pme_list_mutex); 2457 } 2458 2459 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2460 { 2461 u16 pmcsr; 2462 2463 if (!dev->pme_support) 2464 return; 2465 2466 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2467 /* Clear PME_Status by writing 1 to it and enable PME# */ 2468 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2469 if (!enable) 2470 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2471 2472 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2473 } 2474 2475 /** 2476 * pci_pme_restore - Restore PME configuration after config space restore. 2477 * @dev: PCI device to update. 2478 */ 2479 void pci_pme_restore(struct pci_dev *dev) 2480 { 2481 u16 pmcsr; 2482 2483 if (!dev->pme_support) 2484 return; 2485 2486 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2487 if (dev->wakeup_prepared) { 2488 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2489 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2490 } else { 2491 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2492 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2493 } 2494 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2495 } 2496 2497 /** 2498 * pci_pme_active - enable or disable PCI device's PME# function 2499 * @dev: PCI device to handle. 2500 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2501 * 2502 * The caller must verify that the device is capable of generating PME# before 2503 * calling this function with @enable equal to 'true'. 2504 */ 2505 void pci_pme_active(struct pci_dev *dev, bool enable) 2506 { 2507 __pci_pme_active(dev, enable); 2508 2509 /* 2510 * PCI (as opposed to PCIe) PME requires that the device have 2511 * its PME# line hooked up correctly. Not all hardware vendors 2512 * do this, so the PME never gets delivered and the device 2513 * remains asleep. The easiest way around this is to 2514 * periodically walk the list of suspended devices and check 2515 * whether any have their PME flag set. The assumption is that 2516 * we'll wake up often enough anyway that this won't be a huge 2517 * hit, and the power savings from the devices will still be a 2518 * win. 2519 * 2520 * Although PCIe uses in-band PME message instead of PME# line 2521 * to report PME, PME does not work for some PCIe devices in 2522 * reality. For example, there are devices that set their PME 2523 * status bits, but don't really bother to send a PME message; 2524 * there are PCI Express Root Ports that don't bother to 2525 * trigger interrupts when they receive PME messages from the 2526 * devices below. So PME poll is used for PCIe devices too. 2527 */ 2528 2529 if (dev->pme_poll) { 2530 struct pci_pme_device *pme_dev; 2531 if (enable) { 2532 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2533 GFP_KERNEL); 2534 if (!pme_dev) { 2535 pci_warn(dev, "can't enable PME#\n"); 2536 return; 2537 } 2538 pme_dev->dev = dev; 2539 mutex_lock(&pci_pme_list_mutex); 2540 list_add(&pme_dev->list, &pci_pme_list); 2541 if (list_is_singular(&pci_pme_list)) 2542 queue_delayed_work(system_freezable_wq, 2543 &pci_pme_work, 2544 msecs_to_jiffies(PME_TIMEOUT)); 2545 mutex_unlock(&pci_pme_list_mutex); 2546 } else { 2547 mutex_lock(&pci_pme_list_mutex); 2548 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2549 if (pme_dev->dev == dev) { 2550 list_del(&pme_dev->list); 2551 kfree(pme_dev); 2552 break; 2553 } 2554 } 2555 mutex_unlock(&pci_pme_list_mutex); 2556 } 2557 } 2558 2559 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2560 } 2561 EXPORT_SYMBOL(pci_pme_active); 2562 2563 /** 2564 * __pci_enable_wake - enable PCI device as wakeup event source 2565 * @dev: PCI device affected 2566 * @state: PCI state from which device will issue wakeup events 2567 * @enable: True to enable event generation; false to disable 2568 * 2569 * This enables the device as a wakeup event source, or disables it. 2570 * When such events involves platform-specific hooks, those hooks are 2571 * called automatically by this routine. 2572 * 2573 * Devices with legacy power management (no standard PCI PM capabilities) 2574 * always require such platform hooks. 2575 * 2576 * RETURN VALUE: 2577 * 0 is returned on success 2578 * -EINVAL is returned if device is not supposed to wake up the system 2579 * Error code depending on the platform is returned if both the platform and 2580 * the native mechanism fail to enable the generation of wake-up events 2581 */ 2582 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2583 { 2584 int ret = 0; 2585 2586 /* 2587 * Bridges that are not power-manageable directly only signal 2588 * wakeup on behalf of subordinate devices which is set up 2589 * elsewhere, so skip them. However, bridges that are 2590 * power-manageable may signal wakeup for themselves (for example, 2591 * on a hotplug event) and they need to be covered here. 2592 */ 2593 if (!pci_power_manageable(dev)) 2594 return 0; 2595 2596 /* Don't do the same thing twice in a row for one device. */ 2597 if (!!enable == !!dev->wakeup_prepared) 2598 return 0; 2599 2600 /* 2601 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2602 * Anderson we should be doing PME# wake enable followed by ACPI wake 2603 * enable. To disable wake-up we call the platform first, for symmetry. 2604 */ 2605 2606 if (enable) { 2607 int error; 2608 2609 /* 2610 * Enable PME signaling if the device can signal PME from 2611 * D3cold regardless of whether or not it can signal PME from 2612 * the current target state, because that will allow it to 2613 * signal PME when the hierarchy above it goes into D3cold and 2614 * the device itself ends up in D3cold as a result of that. 2615 */ 2616 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2617 pci_pme_active(dev, true); 2618 else 2619 ret = 1; 2620 error = platform_pci_set_wakeup(dev, true); 2621 if (ret) 2622 ret = error; 2623 if (!ret) 2624 dev->wakeup_prepared = true; 2625 } else { 2626 platform_pci_set_wakeup(dev, false); 2627 pci_pme_active(dev, false); 2628 dev->wakeup_prepared = false; 2629 } 2630 2631 return ret; 2632 } 2633 2634 /** 2635 * pci_enable_wake - change wakeup settings for a PCI device 2636 * @pci_dev: Target device 2637 * @state: PCI state from which device will issue wakeup events 2638 * @enable: Whether or not to enable event generation 2639 * 2640 * If @enable is set, check device_may_wakeup() for the device before calling 2641 * __pci_enable_wake() for it. 2642 */ 2643 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2644 { 2645 if (enable && !device_may_wakeup(&pci_dev->dev)) 2646 return -EINVAL; 2647 2648 return __pci_enable_wake(pci_dev, state, enable); 2649 } 2650 EXPORT_SYMBOL(pci_enable_wake); 2651 2652 /** 2653 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2654 * @dev: PCI device to prepare 2655 * @enable: True to enable wake-up event generation; false to disable 2656 * 2657 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2658 * and this function allows them to set that up cleanly - pci_enable_wake() 2659 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2660 * ordering constraints. 2661 * 2662 * This function only returns error code if the device is not allowed to wake 2663 * up the system from sleep or it is not capable of generating PME# from both 2664 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2665 */ 2666 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2667 { 2668 return pci_pme_capable(dev, PCI_D3cold) ? 2669 pci_enable_wake(dev, PCI_D3cold, enable) : 2670 pci_enable_wake(dev, PCI_D3hot, enable); 2671 } 2672 EXPORT_SYMBOL(pci_wake_from_d3); 2673 2674 /** 2675 * pci_target_state - find an appropriate low power state for a given PCI dev 2676 * @dev: PCI device 2677 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2678 * 2679 * Use underlying platform code to find a supported low power state for @dev. 2680 * If the platform can't manage @dev, return the deepest state from which it 2681 * can generate wake events, based on any available PME info. 2682 */ 2683 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2684 { 2685 if (platform_pci_power_manageable(dev)) { 2686 /* 2687 * Call the platform to find the target state for the device. 2688 */ 2689 pci_power_t state = platform_pci_choose_state(dev); 2690 2691 switch (state) { 2692 case PCI_POWER_ERROR: 2693 case PCI_UNKNOWN: 2694 return PCI_D3hot; 2695 2696 case PCI_D1: 2697 case PCI_D2: 2698 if (pci_no_d1d2(dev)) 2699 return PCI_D3hot; 2700 } 2701 2702 return state; 2703 } 2704 2705 /* 2706 * If the device is in D3cold even though it's not power-manageable by 2707 * the platform, it may have been powered down by non-standard means. 2708 * Best to let it slumber. 2709 */ 2710 if (dev->current_state == PCI_D3cold) 2711 return PCI_D3cold; 2712 else if (!dev->pm_cap) 2713 return PCI_D0; 2714 2715 if (wakeup && dev->pme_support) { 2716 pci_power_t state = PCI_D3hot; 2717 2718 /* 2719 * Find the deepest state from which the device can generate 2720 * PME#. 2721 */ 2722 while (state && !(dev->pme_support & (1 << state))) 2723 state--; 2724 2725 if (state) 2726 return state; 2727 else if (dev->pme_support & 1) 2728 return PCI_D0; 2729 } 2730 2731 return PCI_D3hot; 2732 } 2733 2734 /** 2735 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2736 * into a sleep state 2737 * @dev: Device to handle. 2738 * 2739 * Choose the power state appropriate for the device depending on whether 2740 * it can wake up the system and/or is power manageable by the platform 2741 * (PCI_D3hot is the default) and put the device into that state. 2742 */ 2743 int pci_prepare_to_sleep(struct pci_dev *dev) 2744 { 2745 bool wakeup = device_may_wakeup(&dev->dev); 2746 pci_power_t target_state = pci_target_state(dev, wakeup); 2747 int error; 2748 2749 if (target_state == PCI_POWER_ERROR) 2750 return -EIO; 2751 2752 pci_enable_wake(dev, target_state, wakeup); 2753 2754 error = pci_set_power_state(dev, target_state); 2755 2756 if (error) 2757 pci_enable_wake(dev, target_state, false); 2758 2759 return error; 2760 } 2761 EXPORT_SYMBOL(pci_prepare_to_sleep); 2762 2763 /** 2764 * pci_back_from_sleep - turn PCI device on during system-wide transition 2765 * into working state 2766 * @dev: Device to handle. 2767 * 2768 * Disable device's system wake-up capability and put it into D0. 2769 */ 2770 int pci_back_from_sleep(struct pci_dev *dev) 2771 { 2772 int ret = pci_set_power_state(dev, PCI_D0); 2773 2774 if (ret) 2775 return ret; 2776 2777 pci_enable_wake(dev, PCI_D0, false); 2778 return 0; 2779 } 2780 EXPORT_SYMBOL(pci_back_from_sleep); 2781 2782 /** 2783 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2784 * @dev: PCI device being suspended. 2785 * 2786 * Prepare @dev to generate wake-up events at run time and put it into a low 2787 * power state. 2788 */ 2789 int pci_finish_runtime_suspend(struct pci_dev *dev) 2790 { 2791 pci_power_t target_state; 2792 int error; 2793 2794 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2795 if (target_state == PCI_POWER_ERROR) 2796 return -EIO; 2797 2798 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2799 2800 error = pci_set_power_state(dev, target_state); 2801 2802 if (error) 2803 pci_enable_wake(dev, target_state, false); 2804 2805 return error; 2806 } 2807 2808 /** 2809 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2810 * @dev: Device to check. 2811 * 2812 * Return true if the device itself is capable of generating wake-up events 2813 * (through the platform or using the native PCIe PME) or if the device supports 2814 * PME and one of its upstream bridges can generate wake-up events. 2815 */ 2816 bool pci_dev_run_wake(struct pci_dev *dev) 2817 { 2818 struct pci_bus *bus = dev->bus; 2819 2820 if (!dev->pme_support) 2821 return false; 2822 2823 /* PME-capable in principle, but not from the target power state */ 2824 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2825 return false; 2826 2827 if (device_can_wakeup(&dev->dev)) 2828 return true; 2829 2830 while (bus->parent) { 2831 struct pci_dev *bridge = bus->self; 2832 2833 if (device_can_wakeup(&bridge->dev)) 2834 return true; 2835 2836 bus = bus->parent; 2837 } 2838 2839 /* We have reached the root bus. */ 2840 if (bus->bridge) 2841 return device_can_wakeup(bus->bridge); 2842 2843 return false; 2844 } 2845 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2846 2847 /** 2848 * pci_dev_need_resume - Check if it is necessary to resume the device. 2849 * @pci_dev: Device to check. 2850 * 2851 * Return 'true' if the device is not runtime-suspended or it has to be 2852 * reconfigured due to wakeup settings difference between system and runtime 2853 * suspend, or the current power state of it is not suitable for the upcoming 2854 * (system-wide) transition. 2855 */ 2856 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2857 { 2858 struct device *dev = &pci_dev->dev; 2859 pci_power_t target_state; 2860 2861 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2862 return true; 2863 2864 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2865 2866 /* 2867 * If the earlier platform check has not triggered, D3cold is just power 2868 * removal on top of D3hot, so no need to resume the device in that 2869 * case. 2870 */ 2871 return target_state != pci_dev->current_state && 2872 target_state != PCI_D3cold && 2873 pci_dev->current_state != PCI_D3hot; 2874 } 2875 2876 /** 2877 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2878 * @pci_dev: Device to check. 2879 * 2880 * If the device is suspended and it is not configured for system wakeup, 2881 * disable PME for it to prevent it from waking up the system unnecessarily. 2882 * 2883 * Note that if the device's power state is D3cold and the platform check in 2884 * pci_dev_need_resume() has not triggered, the device's configuration need not 2885 * be changed. 2886 */ 2887 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2888 { 2889 struct device *dev = &pci_dev->dev; 2890 2891 spin_lock_irq(&dev->power.lock); 2892 2893 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2894 pci_dev->current_state < PCI_D3cold) 2895 __pci_pme_active(pci_dev, false); 2896 2897 spin_unlock_irq(&dev->power.lock); 2898 } 2899 2900 /** 2901 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2902 * @pci_dev: Device to handle. 2903 * 2904 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2905 * it might have been disabled during the prepare phase of system suspend if 2906 * the device was not configured for system wakeup. 2907 */ 2908 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2909 { 2910 struct device *dev = &pci_dev->dev; 2911 2912 if (!pci_dev_run_wake(pci_dev)) 2913 return; 2914 2915 spin_lock_irq(&dev->power.lock); 2916 2917 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2918 __pci_pme_active(pci_dev, true); 2919 2920 spin_unlock_irq(&dev->power.lock); 2921 } 2922 2923 /** 2924 * pci_choose_state - Choose the power state of a PCI device. 2925 * @dev: Target PCI device. 2926 * @state: Target state for the whole system. 2927 * 2928 * Returns PCI power state suitable for @dev and @state. 2929 */ 2930 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2931 { 2932 if (state.event == PM_EVENT_ON) 2933 return PCI_D0; 2934 2935 return pci_target_state(dev, false); 2936 } 2937 EXPORT_SYMBOL(pci_choose_state); 2938 2939 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2940 { 2941 struct device *dev = &pdev->dev; 2942 struct device *parent = dev->parent; 2943 2944 if (parent) 2945 pm_runtime_get_sync(parent); 2946 pm_runtime_get_noresume(dev); 2947 /* 2948 * pdev->current_state is set to PCI_D3cold during suspending, 2949 * so wait until suspending completes 2950 */ 2951 pm_runtime_barrier(dev); 2952 /* 2953 * Only need to resume devices in D3cold, because config 2954 * registers are still accessible for devices suspended but 2955 * not in D3cold. 2956 */ 2957 if (pdev->current_state == PCI_D3cold) 2958 pm_runtime_resume(dev); 2959 } 2960 2961 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2962 { 2963 struct device *dev = &pdev->dev; 2964 struct device *parent = dev->parent; 2965 2966 pm_runtime_put(dev); 2967 if (parent) 2968 pm_runtime_put_sync(parent); 2969 } 2970 2971 static const struct dmi_system_id bridge_d3_blacklist[] = { 2972 #ifdef CONFIG_X86 2973 { 2974 /* 2975 * Gigabyte X299 root port is not marked as hotplug capable 2976 * which allows Linux to power manage it. However, this 2977 * confuses the BIOS SMI handler so don't power manage root 2978 * ports on that system. 2979 */ 2980 .ident = "X299 DESIGNARE EX-CF", 2981 .matches = { 2982 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2983 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2984 }, 2985 }, 2986 { 2987 /* 2988 * Downstream device is not accessible after putting a root port 2989 * into D3cold and back into D0 on Elo Continental Z2 board 2990 */ 2991 .ident = "Elo Continental Z2", 2992 .matches = { 2993 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 2994 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 2995 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 2996 }, 2997 }, 2998 { 2999 /* 3000 * Changing power state of root port dGPU is connected fails 3001 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229 3002 */ 3003 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972", 3004 .matches = { 3005 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"), 3006 DMI_MATCH(DMI_BOARD_NAME, "1972"), 3007 DMI_MATCH(DMI_BOARD_VERSION, "95.33"), 3008 }, 3009 }, 3010 #endif 3011 { } 3012 }; 3013 3014 /** 3015 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 3016 * @bridge: Bridge to check 3017 * 3018 * This function checks if it is possible to move the bridge to D3. 3019 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 3020 */ 3021 bool pci_bridge_d3_possible(struct pci_dev *bridge) 3022 { 3023 if (!pci_is_pcie(bridge)) 3024 return false; 3025 3026 switch (pci_pcie_type(bridge)) { 3027 case PCI_EXP_TYPE_ROOT_PORT: 3028 case PCI_EXP_TYPE_UPSTREAM: 3029 case PCI_EXP_TYPE_DOWNSTREAM: 3030 if (pci_bridge_d3_disable) 3031 return false; 3032 3033 /* 3034 * Hotplug ports handled by firmware in System Management Mode 3035 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3036 */ 3037 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3038 return false; 3039 3040 if (pci_bridge_d3_force) 3041 return true; 3042 3043 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3044 if (bridge->is_thunderbolt) 3045 return true; 3046 3047 /* Platform might know better if the bridge supports D3 */ 3048 if (platform_pci_bridge_d3(bridge)) 3049 return true; 3050 3051 /* 3052 * Hotplug ports handled natively by the OS were not validated 3053 * by vendors for runtime D3 at least until 2018 because there 3054 * was no OS support. 3055 */ 3056 if (bridge->is_hotplug_bridge) 3057 return false; 3058 3059 if (dmi_check_system(bridge_d3_blacklist)) 3060 return false; 3061 3062 /* 3063 * It should be safe to put PCIe ports from 2015 or newer 3064 * to D3. 3065 */ 3066 if (dmi_get_bios_year() >= 2015) 3067 return true; 3068 break; 3069 } 3070 3071 return false; 3072 } 3073 3074 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3075 { 3076 bool *d3cold_ok = data; 3077 3078 if (/* The device needs to be allowed to go D3cold ... */ 3079 dev->no_d3cold || !dev->d3cold_allowed || 3080 3081 /* ... and if it is wakeup capable to do so from D3cold. */ 3082 (device_may_wakeup(&dev->dev) && 3083 !pci_pme_capable(dev, PCI_D3cold)) || 3084 3085 /* If it is a bridge it must be allowed to go to D3. */ 3086 !pci_power_manageable(dev)) 3087 3088 *d3cold_ok = false; 3089 3090 return !*d3cold_ok; 3091 } 3092 3093 /* 3094 * pci_bridge_d3_update - Update bridge D3 capabilities 3095 * @dev: PCI device which is changed 3096 * 3097 * Update upstream bridge PM capabilities accordingly depending on if the 3098 * device PM configuration was changed or the device is being removed. The 3099 * change is also propagated upstream. 3100 */ 3101 void pci_bridge_d3_update(struct pci_dev *dev) 3102 { 3103 bool remove = !device_is_registered(&dev->dev); 3104 struct pci_dev *bridge; 3105 bool d3cold_ok = true; 3106 3107 bridge = pci_upstream_bridge(dev); 3108 if (!bridge || !pci_bridge_d3_possible(bridge)) 3109 return; 3110 3111 /* 3112 * If D3 is currently allowed for the bridge, removing one of its 3113 * children won't change that. 3114 */ 3115 if (remove && bridge->bridge_d3) 3116 return; 3117 3118 /* 3119 * If D3 is currently allowed for the bridge and a child is added or 3120 * changed, disallowance of D3 can only be caused by that child, so 3121 * we only need to check that single device, not any of its siblings. 3122 * 3123 * If D3 is currently not allowed for the bridge, checking the device 3124 * first may allow us to skip checking its siblings. 3125 */ 3126 if (!remove) 3127 pci_dev_check_d3cold(dev, &d3cold_ok); 3128 3129 /* 3130 * If D3 is currently not allowed for the bridge, this may be caused 3131 * either by the device being changed/removed or any of its siblings, 3132 * so we need to go through all children to find out if one of them 3133 * continues to block D3. 3134 */ 3135 if (d3cold_ok && !bridge->bridge_d3) 3136 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3137 &d3cold_ok); 3138 3139 if (bridge->bridge_d3 != d3cold_ok) { 3140 bridge->bridge_d3 = d3cold_ok; 3141 /* Propagate change to upstream bridges */ 3142 pci_bridge_d3_update(bridge); 3143 } 3144 } 3145 3146 /** 3147 * pci_d3cold_enable - Enable D3cold for device 3148 * @dev: PCI device to handle 3149 * 3150 * This function can be used in drivers to enable D3cold from the device 3151 * they handle. It also updates upstream PCI bridge PM capabilities 3152 * accordingly. 3153 */ 3154 void pci_d3cold_enable(struct pci_dev *dev) 3155 { 3156 if (dev->no_d3cold) { 3157 dev->no_d3cold = false; 3158 pci_bridge_d3_update(dev); 3159 } 3160 } 3161 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3162 3163 /** 3164 * pci_d3cold_disable - Disable D3cold for device 3165 * @dev: PCI device to handle 3166 * 3167 * This function can be used in drivers to disable D3cold from the device 3168 * they handle. It also updates upstream PCI bridge PM capabilities 3169 * accordingly. 3170 */ 3171 void pci_d3cold_disable(struct pci_dev *dev) 3172 { 3173 if (!dev->no_d3cold) { 3174 dev->no_d3cold = true; 3175 pci_bridge_d3_update(dev); 3176 } 3177 } 3178 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3179 3180 /** 3181 * pci_pm_init - Initialize PM functions of given PCI device 3182 * @dev: PCI device to handle. 3183 */ 3184 void pci_pm_init(struct pci_dev *dev) 3185 { 3186 int pm; 3187 u16 status; 3188 u16 pmc; 3189 3190 pm_runtime_forbid(&dev->dev); 3191 pm_runtime_set_active(&dev->dev); 3192 pm_runtime_enable(&dev->dev); 3193 device_enable_async_suspend(&dev->dev); 3194 dev->wakeup_prepared = false; 3195 3196 dev->pm_cap = 0; 3197 dev->pme_support = 0; 3198 3199 /* find PCI PM capability in list */ 3200 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3201 if (!pm) 3202 return; 3203 /* Check device's ability to generate PME# */ 3204 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3205 3206 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3207 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3208 pmc & PCI_PM_CAP_VER_MASK); 3209 return; 3210 } 3211 3212 dev->pm_cap = pm; 3213 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3214 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3215 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3216 dev->d3cold_allowed = true; 3217 3218 dev->d1_support = false; 3219 dev->d2_support = false; 3220 if (!pci_no_d1d2(dev)) { 3221 if (pmc & PCI_PM_CAP_D1) 3222 dev->d1_support = true; 3223 if (pmc & PCI_PM_CAP_D2) 3224 dev->d2_support = true; 3225 3226 if (dev->d1_support || dev->d2_support) 3227 pci_info(dev, "supports%s%s\n", 3228 dev->d1_support ? " D1" : "", 3229 dev->d2_support ? " D2" : ""); 3230 } 3231 3232 pmc &= PCI_PM_CAP_PME_MASK; 3233 if (pmc) { 3234 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3235 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3236 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3237 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3238 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3239 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3240 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc); 3241 dev->pme_poll = true; 3242 /* 3243 * Make device's PM flags reflect the wake-up capability, but 3244 * let the user space enable it to wake up the system as needed. 3245 */ 3246 device_set_wakeup_capable(&dev->dev, true); 3247 /* Disable the PME# generation functionality */ 3248 pci_pme_active(dev, false); 3249 } 3250 3251 pci_read_config_word(dev, PCI_STATUS, &status); 3252 if (status & PCI_STATUS_IMM_READY) 3253 dev->imm_ready = 1; 3254 } 3255 3256 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3257 { 3258 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3259 3260 switch (prop) { 3261 case PCI_EA_P_MEM: 3262 case PCI_EA_P_VF_MEM: 3263 flags |= IORESOURCE_MEM; 3264 break; 3265 case PCI_EA_P_MEM_PREFETCH: 3266 case PCI_EA_P_VF_MEM_PREFETCH: 3267 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3268 break; 3269 case PCI_EA_P_IO: 3270 flags |= IORESOURCE_IO; 3271 break; 3272 default: 3273 return 0; 3274 } 3275 3276 return flags; 3277 } 3278 3279 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3280 u8 prop) 3281 { 3282 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3283 return &dev->resource[bei]; 3284 #ifdef CONFIG_PCI_IOV 3285 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3286 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3287 return &dev->resource[PCI_IOV_RESOURCES + 3288 bei - PCI_EA_BEI_VF_BAR0]; 3289 #endif 3290 else if (bei == PCI_EA_BEI_ROM) 3291 return &dev->resource[PCI_ROM_RESOURCE]; 3292 else 3293 return NULL; 3294 } 3295 3296 /* Read an Enhanced Allocation (EA) entry */ 3297 static int pci_ea_read(struct pci_dev *dev, int offset) 3298 { 3299 struct resource *res; 3300 const char *res_name; 3301 int ent_size, ent_offset = offset; 3302 resource_size_t start, end; 3303 unsigned long flags; 3304 u32 dw0, bei, base, max_offset; 3305 u8 prop; 3306 bool support_64 = (sizeof(resource_size_t) >= 8); 3307 3308 pci_read_config_dword(dev, ent_offset, &dw0); 3309 ent_offset += 4; 3310 3311 /* Entry size field indicates DWORDs after 1st */ 3312 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2; 3313 3314 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3315 goto out; 3316 3317 bei = FIELD_GET(PCI_EA_BEI, dw0); 3318 prop = FIELD_GET(PCI_EA_PP, dw0); 3319 3320 /* 3321 * If the Property is in the reserved range, try the Secondary 3322 * Property instead. 3323 */ 3324 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3325 prop = FIELD_GET(PCI_EA_SP, dw0); 3326 if (prop > PCI_EA_P_BRIDGE_IO) 3327 goto out; 3328 3329 res = pci_ea_get_resource(dev, bei, prop); 3330 res_name = pci_resource_name(dev, bei); 3331 if (!res) { 3332 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3333 goto out; 3334 } 3335 3336 flags = pci_ea_flags(dev, prop); 3337 if (!flags) { 3338 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3339 goto out; 3340 } 3341 3342 /* Read Base */ 3343 pci_read_config_dword(dev, ent_offset, &base); 3344 start = (base & PCI_EA_FIELD_MASK); 3345 ent_offset += 4; 3346 3347 /* Read MaxOffset */ 3348 pci_read_config_dword(dev, ent_offset, &max_offset); 3349 ent_offset += 4; 3350 3351 /* Read Base MSBs (if 64-bit entry) */ 3352 if (base & PCI_EA_IS_64) { 3353 u32 base_upper; 3354 3355 pci_read_config_dword(dev, ent_offset, &base_upper); 3356 ent_offset += 4; 3357 3358 flags |= IORESOURCE_MEM_64; 3359 3360 /* entry starts above 32-bit boundary, can't use */ 3361 if (!support_64 && base_upper) 3362 goto out; 3363 3364 if (support_64) 3365 start |= ((u64)base_upper << 32); 3366 } 3367 3368 end = start + (max_offset | 0x03); 3369 3370 /* Read MaxOffset MSBs (if 64-bit entry) */ 3371 if (max_offset & PCI_EA_IS_64) { 3372 u32 max_offset_upper; 3373 3374 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3375 ent_offset += 4; 3376 3377 flags |= IORESOURCE_MEM_64; 3378 3379 /* entry too big, can't use */ 3380 if (!support_64 && max_offset_upper) 3381 goto out; 3382 3383 if (support_64) 3384 end += ((u64)max_offset_upper << 32); 3385 } 3386 3387 if (end < start) { 3388 pci_err(dev, "EA Entry crosses address boundary\n"); 3389 goto out; 3390 } 3391 3392 if (ent_size != ent_offset - offset) { 3393 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3394 ent_size, ent_offset - offset); 3395 goto out; 3396 } 3397 3398 res->name = pci_name(dev); 3399 res->start = start; 3400 res->end = end; 3401 res->flags = flags; 3402 3403 if (bei <= PCI_EA_BEI_BAR5) 3404 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3405 res_name, res, prop); 3406 else if (bei == PCI_EA_BEI_ROM) 3407 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3408 res_name, res, prop); 3409 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3410 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3411 res_name, res, prop); 3412 else 3413 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n", 3414 bei, res, prop); 3415 3416 out: 3417 return offset + ent_size; 3418 } 3419 3420 /* Enhanced Allocation Initialization */ 3421 void pci_ea_init(struct pci_dev *dev) 3422 { 3423 int ea; 3424 u8 num_ent; 3425 int offset; 3426 int i; 3427 3428 /* find PCI EA capability in list */ 3429 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3430 if (!ea) 3431 return; 3432 3433 /* determine the number of entries */ 3434 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3435 &num_ent); 3436 num_ent &= PCI_EA_NUM_ENT_MASK; 3437 3438 offset = ea + PCI_EA_FIRST_ENT; 3439 3440 /* Skip DWORD 2 for type 1 functions */ 3441 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3442 offset += 4; 3443 3444 /* parse each EA entry */ 3445 for (i = 0; i < num_ent; ++i) 3446 offset = pci_ea_read(dev, offset); 3447 } 3448 3449 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3450 struct pci_cap_saved_state *new_cap) 3451 { 3452 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3453 } 3454 3455 /** 3456 * _pci_add_cap_save_buffer - allocate buffer for saving given 3457 * capability registers 3458 * @dev: the PCI device 3459 * @cap: the capability to allocate the buffer for 3460 * @extended: Standard or Extended capability ID 3461 * @size: requested size of the buffer 3462 */ 3463 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3464 bool extended, unsigned int size) 3465 { 3466 int pos; 3467 struct pci_cap_saved_state *save_state; 3468 3469 if (extended) 3470 pos = pci_find_ext_capability(dev, cap); 3471 else 3472 pos = pci_find_capability(dev, cap); 3473 3474 if (!pos) 3475 return 0; 3476 3477 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3478 if (!save_state) 3479 return -ENOMEM; 3480 3481 save_state->cap.cap_nr = cap; 3482 save_state->cap.cap_extended = extended; 3483 save_state->cap.size = size; 3484 pci_add_saved_cap(dev, save_state); 3485 3486 return 0; 3487 } 3488 3489 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3490 { 3491 return _pci_add_cap_save_buffer(dev, cap, false, size); 3492 } 3493 3494 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3495 { 3496 return _pci_add_cap_save_buffer(dev, cap, true, size); 3497 } 3498 3499 /** 3500 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3501 * @dev: the PCI device 3502 */ 3503 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3504 { 3505 int error; 3506 3507 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3508 PCI_EXP_SAVE_REGS * sizeof(u16)); 3509 if (error) 3510 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3511 3512 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3513 if (error) 3514 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3515 3516 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3517 2 * sizeof(u16)); 3518 if (error) 3519 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3520 3521 pci_allocate_vc_save_buffers(dev); 3522 } 3523 3524 void pci_free_cap_save_buffers(struct pci_dev *dev) 3525 { 3526 struct pci_cap_saved_state *tmp; 3527 struct hlist_node *n; 3528 3529 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3530 kfree(tmp); 3531 } 3532 3533 /** 3534 * pci_configure_ari - enable or disable ARI forwarding 3535 * @dev: the PCI device 3536 * 3537 * If @dev and its upstream bridge both support ARI, enable ARI in the 3538 * bridge. Otherwise, disable ARI in the bridge. 3539 */ 3540 void pci_configure_ari(struct pci_dev *dev) 3541 { 3542 u32 cap; 3543 struct pci_dev *bridge; 3544 3545 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3546 return; 3547 3548 bridge = dev->bus->self; 3549 if (!bridge) 3550 return; 3551 3552 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3553 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3554 return; 3555 3556 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3557 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3558 PCI_EXP_DEVCTL2_ARI); 3559 bridge->ari_enabled = 1; 3560 } else { 3561 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3562 PCI_EXP_DEVCTL2_ARI); 3563 bridge->ari_enabled = 0; 3564 } 3565 } 3566 3567 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3568 { 3569 int pos; 3570 u16 cap, ctrl; 3571 3572 pos = pdev->acs_cap; 3573 if (!pos) 3574 return false; 3575 3576 /* 3577 * Except for egress control, capabilities are either required 3578 * or only required if controllable. Features missing from the 3579 * capability field can therefore be assumed as hard-wired enabled. 3580 */ 3581 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3582 acs_flags &= (cap | PCI_ACS_EC); 3583 3584 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3585 return (ctrl & acs_flags) == acs_flags; 3586 } 3587 3588 /** 3589 * pci_acs_enabled - test ACS against required flags for a given device 3590 * @pdev: device to test 3591 * @acs_flags: required PCI ACS flags 3592 * 3593 * Return true if the device supports the provided flags. Automatically 3594 * filters out flags that are not implemented on multifunction devices. 3595 * 3596 * Note that this interface checks the effective ACS capabilities of the 3597 * device rather than the actual capabilities. For instance, most single 3598 * function endpoints are not required to support ACS because they have no 3599 * opportunity for peer-to-peer access. We therefore return 'true' 3600 * regardless of whether the device exposes an ACS capability. This makes 3601 * it much easier for callers of this function to ignore the actual type 3602 * or topology of the device when testing ACS support. 3603 */ 3604 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3605 { 3606 int ret; 3607 3608 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3609 if (ret >= 0) 3610 return ret > 0; 3611 3612 /* 3613 * Conventional PCI and PCI-X devices never support ACS, either 3614 * effectively or actually. The shared bus topology implies that 3615 * any device on the bus can receive or snoop DMA. 3616 */ 3617 if (!pci_is_pcie(pdev)) 3618 return false; 3619 3620 switch (pci_pcie_type(pdev)) { 3621 /* 3622 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3623 * but since their primary interface is PCI/X, we conservatively 3624 * handle them as we would a non-PCIe device. 3625 */ 3626 case PCI_EXP_TYPE_PCIE_BRIDGE: 3627 /* 3628 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3629 * applicable... must never implement an ACS Extended Capability...". 3630 * This seems arbitrary, but we take a conservative interpretation 3631 * of this statement. 3632 */ 3633 case PCI_EXP_TYPE_PCI_BRIDGE: 3634 case PCI_EXP_TYPE_RC_EC: 3635 return false; 3636 /* 3637 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3638 * implement ACS in order to indicate their peer-to-peer capabilities, 3639 * regardless of whether they are single- or multi-function devices. 3640 */ 3641 case PCI_EXP_TYPE_DOWNSTREAM: 3642 case PCI_EXP_TYPE_ROOT_PORT: 3643 return pci_acs_flags_enabled(pdev, acs_flags); 3644 /* 3645 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3646 * implemented by the remaining PCIe types to indicate peer-to-peer 3647 * capabilities, but only when they are part of a multifunction 3648 * device. The footnote for section 6.12 indicates the specific 3649 * PCIe types included here. 3650 */ 3651 case PCI_EXP_TYPE_ENDPOINT: 3652 case PCI_EXP_TYPE_UPSTREAM: 3653 case PCI_EXP_TYPE_LEG_END: 3654 case PCI_EXP_TYPE_RC_END: 3655 if (!pdev->multifunction) 3656 break; 3657 3658 return pci_acs_flags_enabled(pdev, acs_flags); 3659 } 3660 3661 /* 3662 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3663 * to single function devices with the exception of downstream ports. 3664 */ 3665 return true; 3666 } 3667 3668 /** 3669 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3670 * @start: starting downstream device 3671 * @end: ending upstream device or NULL to search to the root bus 3672 * @acs_flags: required flags 3673 * 3674 * Walk up a device tree from start to end testing PCI ACS support. If 3675 * any step along the way does not support the required flags, return false. 3676 */ 3677 bool pci_acs_path_enabled(struct pci_dev *start, 3678 struct pci_dev *end, u16 acs_flags) 3679 { 3680 struct pci_dev *pdev, *parent = start; 3681 3682 do { 3683 pdev = parent; 3684 3685 if (!pci_acs_enabled(pdev, acs_flags)) 3686 return false; 3687 3688 if (pci_is_root_bus(pdev->bus)) 3689 return (end == NULL); 3690 3691 parent = pdev->bus->self; 3692 } while (pdev != end); 3693 3694 return true; 3695 } 3696 3697 /** 3698 * pci_acs_init - Initialize ACS if hardware supports it 3699 * @dev: the PCI device 3700 */ 3701 void pci_acs_init(struct pci_dev *dev) 3702 { 3703 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3704 3705 /* 3706 * Attempt to enable ACS regardless of capability because some Root 3707 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3708 * the standard ACS capability but still support ACS via those 3709 * quirks. 3710 */ 3711 pci_enable_acs(dev); 3712 } 3713 3714 /** 3715 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3716 * @pdev: PCI device 3717 * @bar: BAR to find 3718 * 3719 * Helper to find the position of the ctrl register for a BAR. 3720 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3721 * Returns -ENOENT if no ctrl register for the BAR could be found. 3722 */ 3723 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3724 { 3725 unsigned int pos, nbars, i; 3726 u32 ctrl; 3727 3728 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3729 if (!pos) 3730 return -ENOTSUPP; 3731 3732 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3733 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 3734 3735 for (i = 0; i < nbars; i++, pos += 8) { 3736 int bar_idx; 3737 3738 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3739 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl); 3740 if (bar_idx == bar) 3741 return pos; 3742 } 3743 3744 return -ENOENT; 3745 } 3746 3747 /** 3748 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3749 * @pdev: PCI device 3750 * @bar: BAR to query 3751 * 3752 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3753 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3754 */ 3755 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3756 { 3757 int pos; 3758 u32 cap; 3759 3760 pos = pci_rebar_find_pos(pdev, bar); 3761 if (pos < 0) 3762 return 0; 3763 3764 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3765 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3766 3767 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3768 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3769 bar == 0 && cap == 0x700) 3770 return 0x3f00; 3771 3772 return cap; 3773 } 3774 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3775 3776 /** 3777 * pci_rebar_get_current_size - get the current size of a BAR 3778 * @pdev: PCI device 3779 * @bar: BAR to set size to 3780 * 3781 * Read the size of a BAR from the resizable BAR config. 3782 * Returns size if found or negative error code. 3783 */ 3784 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3785 { 3786 int pos; 3787 u32 ctrl; 3788 3789 pos = pci_rebar_find_pos(pdev, bar); 3790 if (pos < 0) 3791 return pos; 3792 3793 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3794 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl); 3795 } 3796 3797 /** 3798 * pci_rebar_set_size - set a new size for a BAR 3799 * @pdev: PCI device 3800 * @bar: BAR to set size to 3801 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3802 * 3803 * Set the new size of a BAR as defined in the spec. 3804 * Returns zero if resizing was successful, error code otherwise. 3805 */ 3806 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3807 { 3808 int pos; 3809 u32 ctrl; 3810 3811 pos = pci_rebar_find_pos(pdev, bar); 3812 if (pos < 0) 3813 return pos; 3814 3815 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3816 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3817 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 3818 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3819 return 0; 3820 } 3821 3822 /** 3823 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3824 * @dev: the PCI device 3825 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3826 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3827 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3828 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3829 * 3830 * Return 0 if all upstream bridges support AtomicOp routing, egress 3831 * blocking is disabled on all upstream ports, and the root port supports 3832 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3833 * AtomicOp completion), or negative otherwise. 3834 */ 3835 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3836 { 3837 struct pci_bus *bus = dev->bus; 3838 struct pci_dev *bridge; 3839 u32 cap, ctl2; 3840 3841 /* 3842 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3843 * in Device Control 2 is reserved in VFs and the PF value applies 3844 * to all associated VFs. 3845 */ 3846 if (dev->is_virtfn) 3847 return -EINVAL; 3848 3849 if (!pci_is_pcie(dev)) 3850 return -EINVAL; 3851 3852 /* 3853 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3854 * AtomicOp requesters. For now, we only support endpoints as 3855 * requesters and root ports as completers. No endpoints as 3856 * completers, and no peer-to-peer. 3857 */ 3858 3859 switch (pci_pcie_type(dev)) { 3860 case PCI_EXP_TYPE_ENDPOINT: 3861 case PCI_EXP_TYPE_LEG_END: 3862 case PCI_EXP_TYPE_RC_END: 3863 break; 3864 default: 3865 return -EINVAL; 3866 } 3867 3868 while (bus->parent) { 3869 bridge = bus->self; 3870 3871 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3872 3873 switch (pci_pcie_type(bridge)) { 3874 /* Ensure switch ports support AtomicOp routing */ 3875 case PCI_EXP_TYPE_UPSTREAM: 3876 case PCI_EXP_TYPE_DOWNSTREAM: 3877 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3878 return -EINVAL; 3879 break; 3880 3881 /* Ensure root port supports all the sizes we care about */ 3882 case PCI_EXP_TYPE_ROOT_PORT: 3883 if ((cap & cap_mask) != cap_mask) 3884 return -EINVAL; 3885 break; 3886 } 3887 3888 /* Ensure upstream ports don't block AtomicOps on egress */ 3889 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3890 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3891 &ctl2); 3892 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3893 return -EINVAL; 3894 } 3895 3896 bus = bus->parent; 3897 } 3898 3899 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3900 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3901 return 0; 3902 } 3903 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3904 3905 /** 3906 * pci_release_region - Release a PCI bar 3907 * @pdev: PCI device whose resources were previously reserved by 3908 * pci_request_region() 3909 * @bar: BAR to release 3910 * 3911 * Releases the PCI I/O and memory resources previously reserved by a 3912 * successful call to pci_request_region(). Call this function only 3913 * after all use of the PCI regions has ceased. 3914 */ 3915 void pci_release_region(struct pci_dev *pdev, int bar) 3916 { 3917 /* 3918 * This is done for backwards compatibility, because the old PCI devres 3919 * API had a mode in which the function became managed if it had been 3920 * enabled with pcim_enable_device() instead of pci_enable_device(). 3921 */ 3922 if (pci_is_managed(pdev)) { 3923 pcim_release_region(pdev, bar); 3924 return; 3925 } 3926 3927 if (pci_resource_len(pdev, bar) == 0) 3928 return; 3929 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3930 release_region(pci_resource_start(pdev, bar), 3931 pci_resource_len(pdev, bar)); 3932 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3933 release_mem_region(pci_resource_start(pdev, bar), 3934 pci_resource_len(pdev, bar)); 3935 } 3936 EXPORT_SYMBOL(pci_release_region); 3937 3938 /** 3939 * __pci_request_region - Reserved PCI I/O and memory resource 3940 * @pdev: PCI device whose resources are to be reserved 3941 * @bar: BAR to be reserved 3942 * @res_name: Name to be associated with resource. 3943 * @exclusive: whether the region access is exclusive or not 3944 * 3945 * Returns: 0 on success, negative error code on failure. 3946 * 3947 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3948 * being reserved by owner @res_name. Do not access any 3949 * address inside the PCI regions unless this call returns 3950 * successfully. 3951 * 3952 * If @exclusive is set, then the region is marked so that userspace 3953 * is explicitly not allowed to map the resource via /dev/mem or 3954 * sysfs MMIO access. 3955 * 3956 * Returns 0 on success, or %EBUSY on error. A warning 3957 * message is also printed on failure. 3958 */ 3959 static int __pci_request_region(struct pci_dev *pdev, int bar, 3960 const char *res_name, int exclusive) 3961 { 3962 if (pci_is_managed(pdev)) { 3963 if (exclusive == IORESOURCE_EXCLUSIVE) 3964 return pcim_request_region_exclusive(pdev, bar, res_name); 3965 3966 return pcim_request_region(pdev, bar, res_name); 3967 } 3968 3969 if (pci_resource_len(pdev, bar) == 0) 3970 return 0; 3971 3972 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3973 if (!request_region(pci_resource_start(pdev, bar), 3974 pci_resource_len(pdev, bar), res_name)) 3975 goto err_out; 3976 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3977 if (!__request_mem_region(pci_resource_start(pdev, bar), 3978 pci_resource_len(pdev, bar), res_name, 3979 exclusive)) 3980 goto err_out; 3981 } 3982 3983 return 0; 3984 3985 err_out: 3986 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3987 &pdev->resource[bar]); 3988 return -EBUSY; 3989 } 3990 3991 /** 3992 * pci_request_region - Reserve PCI I/O and memory resource 3993 * @pdev: PCI device whose resources are to be reserved 3994 * @bar: BAR to be reserved 3995 * @res_name: Name to be associated with resource 3996 * 3997 * Returns: 0 on success, negative error code on failure. 3998 * 3999 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4000 * being reserved by owner @res_name. Do not access any 4001 * address inside the PCI regions unless this call returns 4002 * successfully. 4003 * 4004 * Returns 0 on success, or %EBUSY on error. A warning 4005 * message is also printed on failure. 4006 * 4007 * NOTE: 4008 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4009 * when pcim_enable_device() has been called in advance. This hybrid feature is 4010 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4011 */ 4012 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4013 { 4014 return __pci_request_region(pdev, bar, res_name, 0); 4015 } 4016 EXPORT_SYMBOL(pci_request_region); 4017 4018 /** 4019 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4020 * @pdev: PCI device whose resources were previously reserved 4021 * @bars: Bitmask of BARs to be released 4022 * 4023 * Release selected PCI I/O and memory resources previously reserved. 4024 * Call this function only after all use of the PCI regions has ceased. 4025 */ 4026 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4027 { 4028 int i; 4029 4030 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4031 if (bars & (1 << i)) 4032 pci_release_region(pdev, i); 4033 } 4034 EXPORT_SYMBOL(pci_release_selected_regions); 4035 4036 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4037 const char *res_name, int excl) 4038 { 4039 int i; 4040 4041 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4042 if (bars & (1 << i)) 4043 if (__pci_request_region(pdev, i, res_name, excl)) 4044 goto err_out; 4045 return 0; 4046 4047 err_out: 4048 while (--i >= 0) 4049 if (bars & (1 << i)) 4050 pci_release_region(pdev, i); 4051 4052 return -EBUSY; 4053 } 4054 4055 4056 /** 4057 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4058 * @pdev: PCI device whose resources are to be reserved 4059 * @bars: Bitmask of BARs to be requested 4060 * @res_name: Name to be associated with resource 4061 * 4062 * Returns: 0 on success, negative error code on failure. 4063 * 4064 * NOTE: 4065 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4066 * when pcim_enable_device() has been called in advance. This hybrid feature is 4067 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4068 */ 4069 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4070 const char *res_name) 4071 { 4072 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4073 } 4074 EXPORT_SYMBOL(pci_request_selected_regions); 4075 4076 /** 4077 * pci_request_selected_regions_exclusive - Request regions exclusively 4078 * @pdev: PCI device to request regions from 4079 * @bars: bit mask of BARs to request 4080 * @res_name: name to be associated with the requests 4081 * 4082 * Returns: 0 on success, negative error code on failure. 4083 * 4084 * NOTE: 4085 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4086 * when pcim_enable_device() has been called in advance. This hybrid feature is 4087 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4088 */ 4089 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4090 const char *res_name) 4091 { 4092 return __pci_request_selected_regions(pdev, bars, res_name, 4093 IORESOURCE_EXCLUSIVE); 4094 } 4095 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4096 4097 /** 4098 * pci_release_regions - Release reserved PCI I/O and memory resources 4099 * @pdev: PCI device whose resources were previously reserved by 4100 * pci_request_regions() 4101 * 4102 * Releases all PCI I/O and memory resources previously reserved by a 4103 * successful call to pci_request_regions(). Call this function only 4104 * after all use of the PCI regions has ceased. 4105 */ 4106 void pci_release_regions(struct pci_dev *pdev) 4107 { 4108 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4109 } 4110 EXPORT_SYMBOL(pci_release_regions); 4111 4112 /** 4113 * pci_request_regions - Reserve PCI I/O and memory resources 4114 * @pdev: PCI device whose resources are to be reserved 4115 * @res_name: Name to be associated with resource. 4116 * 4117 * Mark all PCI regions associated with PCI device @pdev as 4118 * being reserved by owner @res_name. Do not access any 4119 * address inside the PCI regions unless this call returns 4120 * successfully. 4121 * 4122 * Returns 0 on success, or %EBUSY on error. A warning 4123 * message is also printed on failure. 4124 * 4125 * NOTE: 4126 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4127 * when pcim_enable_device() has been called in advance. This hybrid feature is 4128 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4129 */ 4130 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4131 { 4132 return pci_request_selected_regions(pdev, 4133 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4134 } 4135 EXPORT_SYMBOL(pci_request_regions); 4136 4137 /** 4138 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4139 * @pdev: PCI device whose resources are to be reserved 4140 * @res_name: Name to be associated with resource. 4141 * 4142 * Returns: 0 on success, negative error code on failure. 4143 * 4144 * Mark all PCI regions associated with PCI device @pdev as being reserved 4145 * by owner @res_name. Do not access any address inside the PCI regions 4146 * unless this call returns successfully. 4147 * 4148 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4149 * and the sysfs MMIO access will not be allowed. 4150 * 4151 * Returns 0 on success, or %EBUSY on error. A warning message is also 4152 * printed on failure. 4153 * 4154 * NOTE: 4155 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4156 * when pcim_enable_device() has been called in advance. This hybrid feature is 4157 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4158 */ 4159 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4160 { 4161 return pci_request_selected_regions_exclusive(pdev, 4162 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4163 } 4164 EXPORT_SYMBOL(pci_request_regions_exclusive); 4165 4166 /* 4167 * Record the PCI IO range (expressed as CPU physical address + size). 4168 * Return a negative value if an error has occurred, zero otherwise 4169 */ 4170 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4171 resource_size_t size) 4172 { 4173 int ret = 0; 4174 #ifdef PCI_IOBASE 4175 struct logic_pio_hwaddr *range; 4176 4177 if (!size || addr + size < addr) 4178 return -EINVAL; 4179 4180 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4181 if (!range) 4182 return -ENOMEM; 4183 4184 range->fwnode = fwnode; 4185 range->size = size; 4186 range->hw_start = addr; 4187 range->flags = LOGIC_PIO_CPU_MMIO; 4188 4189 ret = logic_pio_register_range(range); 4190 if (ret) 4191 kfree(range); 4192 4193 /* Ignore duplicates due to deferred probing */ 4194 if (ret == -EEXIST) 4195 ret = 0; 4196 #endif 4197 4198 return ret; 4199 } 4200 4201 phys_addr_t pci_pio_to_address(unsigned long pio) 4202 { 4203 #ifdef PCI_IOBASE 4204 if (pio < MMIO_UPPER_LIMIT) 4205 return logic_pio_to_hwaddr(pio); 4206 #endif 4207 4208 return (phys_addr_t) OF_BAD_ADDR; 4209 } 4210 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4211 4212 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4213 { 4214 #ifdef PCI_IOBASE 4215 return logic_pio_trans_cpuaddr(address); 4216 #else 4217 if (address > IO_SPACE_LIMIT) 4218 return (unsigned long)-1; 4219 4220 return (unsigned long) address; 4221 #endif 4222 } 4223 4224 /** 4225 * pci_remap_iospace - Remap the memory mapped I/O space 4226 * @res: Resource describing the I/O space 4227 * @phys_addr: physical address of range to be mapped 4228 * 4229 * Remap the memory mapped I/O space described by the @res and the CPU 4230 * physical address @phys_addr into virtual address space. Only 4231 * architectures that have memory mapped IO functions defined (and the 4232 * PCI_IOBASE value defined) should call this function. 4233 */ 4234 #ifndef pci_remap_iospace 4235 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4236 { 4237 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4238 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4239 4240 if (!(res->flags & IORESOURCE_IO)) 4241 return -EINVAL; 4242 4243 if (res->end > IO_SPACE_LIMIT) 4244 return -EINVAL; 4245 4246 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4247 pgprot_device(PAGE_KERNEL)); 4248 #else 4249 /* 4250 * This architecture does not have memory mapped I/O space, 4251 * so this function should never be called 4252 */ 4253 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4254 return -ENODEV; 4255 #endif 4256 } 4257 EXPORT_SYMBOL(pci_remap_iospace); 4258 #endif 4259 4260 /** 4261 * pci_unmap_iospace - Unmap the memory mapped I/O space 4262 * @res: resource to be unmapped 4263 * 4264 * Unmap the CPU virtual address @res from virtual address space. Only 4265 * architectures that have memory mapped IO functions defined (and the 4266 * PCI_IOBASE value defined) should call this function. 4267 */ 4268 void pci_unmap_iospace(struct resource *res) 4269 { 4270 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4271 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4272 4273 vunmap_range(vaddr, vaddr + resource_size(res)); 4274 #endif 4275 } 4276 EXPORT_SYMBOL(pci_unmap_iospace); 4277 4278 static void __pci_set_master(struct pci_dev *dev, bool enable) 4279 { 4280 u16 old_cmd, cmd; 4281 4282 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4283 if (enable) 4284 cmd = old_cmd | PCI_COMMAND_MASTER; 4285 else 4286 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4287 if (cmd != old_cmd) { 4288 pci_dbg(dev, "%s bus mastering\n", 4289 enable ? "enabling" : "disabling"); 4290 pci_write_config_word(dev, PCI_COMMAND, cmd); 4291 } 4292 dev->is_busmaster = enable; 4293 } 4294 4295 /** 4296 * pcibios_setup - process "pci=" kernel boot arguments 4297 * @str: string used to pass in "pci=" kernel boot arguments 4298 * 4299 * Process kernel boot arguments. This is the default implementation. 4300 * Architecture specific implementations can override this as necessary. 4301 */ 4302 char * __weak __init pcibios_setup(char *str) 4303 { 4304 return str; 4305 } 4306 4307 /** 4308 * pcibios_set_master - enable PCI bus-mastering for device dev 4309 * @dev: the PCI device to enable 4310 * 4311 * Enables PCI bus-mastering for the device. This is the default 4312 * implementation. Architecture specific implementations can override 4313 * this if necessary. 4314 */ 4315 void __weak pcibios_set_master(struct pci_dev *dev) 4316 { 4317 u8 lat; 4318 4319 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4320 if (pci_is_pcie(dev)) 4321 return; 4322 4323 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4324 if (lat < 16) 4325 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4326 else if (lat > pcibios_max_latency) 4327 lat = pcibios_max_latency; 4328 else 4329 return; 4330 4331 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4332 } 4333 4334 /** 4335 * pci_set_master - enables bus-mastering for device dev 4336 * @dev: the PCI device to enable 4337 * 4338 * Enables bus-mastering on the device and calls pcibios_set_master() 4339 * to do the needed arch specific settings. 4340 */ 4341 void pci_set_master(struct pci_dev *dev) 4342 { 4343 __pci_set_master(dev, true); 4344 pcibios_set_master(dev); 4345 } 4346 EXPORT_SYMBOL(pci_set_master); 4347 4348 /** 4349 * pci_clear_master - disables bus-mastering for device dev 4350 * @dev: the PCI device to disable 4351 */ 4352 void pci_clear_master(struct pci_dev *dev) 4353 { 4354 __pci_set_master(dev, false); 4355 } 4356 EXPORT_SYMBOL(pci_clear_master); 4357 4358 /** 4359 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4360 * @dev: the PCI device for which MWI is to be enabled 4361 * 4362 * Helper function for pci_set_mwi. 4363 * Originally copied from drivers/net/acenic.c. 4364 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4365 * 4366 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4367 */ 4368 int pci_set_cacheline_size(struct pci_dev *dev) 4369 { 4370 u8 cacheline_size; 4371 4372 if (!pci_cache_line_size) 4373 return -EINVAL; 4374 4375 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4376 equal to or multiple of the right value. */ 4377 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4378 if (cacheline_size >= pci_cache_line_size && 4379 (cacheline_size % pci_cache_line_size) == 0) 4380 return 0; 4381 4382 /* Write the correct value. */ 4383 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4384 /* Read it back. */ 4385 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4386 if (cacheline_size == pci_cache_line_size) 4387 return 0; 4388 4389 pci_dbg(dev, "cache line size of %d is not supported\n", 4390 pci_cache_line_size << 2); 4391 4392 return -EINVAL; 4393 } 4394 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4395 4396 /** 4397 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4398 * @dev: the PCI device for which MWI is enabled 4399 * 4400 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4401 * 4402 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4403 */ 4404 int pci_set_mwi(struct pci_dev *dev) 4405 { 4406 #ifdef PCI_DISABLE_MWI 4407 return 0; 4408 #else 4409 int rc; 4410 u16 cmd; 4411 4412 rc = pci_set_cacheline_size(dev); 4413 if (rc) 4414 return rc; 4415 4416 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4417 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4418 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4419 cmd |= PCI_COMMAND_INVALIDATE; 4420 pci_write_config_word(dev, PCI_COMMAND, cmd); 4421 } 4422 return 0; 4423 #endif 4424 } 4425 EXPORT_SYMBOL(pci_set_mwi); 4426 4427 /** 4428 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4429 * @dev: the PCI device for which MWI is enabled 4430 * 4431 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4432 * Callers are not required to check the return value. 4433 * 4434 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4435 */ 4436 int pci_try_set_mwi(struct pci_dev *dev) 4437 { 4438 #ifdef PCI_DISABLE_MWI 4439 return 0; 4440 #else 4441 return pci_set_mwi(dev); 4442 #endif 4443 } 4444 EXPORT_SYMBOL(pci_try_set_mwi); 4445 4446 /** 4447 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4448 * @dev: the PCI device to disable 4449 * 4450 * Disables PCI Memory-Write-Invalidate transaction on the device 4451 */ 4452 void pci_clear_mwi(struct pci_dev *dev) 4453 { 4454 #ifndef PCI_DISABLE_MWI 4455 u16 cmd; 4456 4457 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4458 if (cmd & PCI_COMMAND_INVALIDATE) { 4459 cmd &= ~PCI_COMMAND_INVALIDATE; 4460 pci_write_config_word(dev, PCI_COMMAND, cmd); 4461 } 4462 #endif 4463 } 4464 EXPORT_SYMBOL(pci_clear_mwi); 4465 4466 /** 4467 * pci_disable_parity - disable parity checking for device 4468 * @dev: the PCI device to operate on 4469 * 4470 * Disable parity checking for device @dev 4471 */ 4472 void pci_disable_parity(struct pci_dev *dev) 4473 { 4474 u16 cmd; 4475 4476 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4477 if (cmd & PCI_COMMAND_PARITY) { 4478 cmd &= ~PCI_COMMAND_PARITY; 4479 pci_write_config_word(dev, PCI_COMMAND, cmd); 4480 } 4481 } 4482 4483 /** 4484 * pci_intx - enables/disables PCI INTx for device dev 4485 * @pdev: the PCI device to operate on 4486 * @enable: boolean: whether to enable or disable PCI INTx 4487 * 4488 * Enables/disables PCI INTx for device @pdev 4489 * 4490 * NOTE: 4491 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4492 * when pcim_enable_device() has been called in advance. This hybrid feature is 4493 * DEPRECATED! If you want managed cleanup, use pcim_intx() instead. 4494 */ 4495 void pci_intx(struct pci_dev *pdev, int enable) 4496 { 4497 u16 pci_command, new; 4498 4499 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4500 4501 if (enable) 4502 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4503 else 4504 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4505 4506 if (new != pci_command) { 4507 /* Preserve the "hybrid" behavior for backwards compatibility */ 4508 if (pci_is_managed(pdev)) { 4509 WARN_ON_ONCE(pcim_intx(pdev, enable) != 0); 4510 return; 4511 } 4512 4513 pci_write_config_word(pdev, PCI_COMMAND, new); 4514 } 4515 } 4516 EXPORT_SYMBOL_GPL(pci_intx); 4517 4518 /** 4519 * pci_wait_for_pending_transaction - wait for pending transaction 4520 * @dev: the PCI device to operate on 4521 * 4522 * Return 0 if transaction is pending 1 otherwise. 4523 */ 4524 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4525 { 4526 if (!pci_is_pcie(dev)) 4527 return 1; 4528 4529 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4530 PCI_EXP_DEVSTA_TRPND); 4531 } 4532 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4533 4534 /** 4535 * pcie_flr - initiate a PCIe function level reset 4536 * @dev: device to reset 4537 * 4538 * Initiate a function level reset unconditionally on @dev without 4539 * checking any flags and DEVCAP 4540 */ 4541 int pcie_flr(struct pci_dev *dev) 4542 { 4543 if (!pci_wait_for_pending_transaction(dev)) 4544 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4545 4546 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4547 4548 if (dev->imm_ready) 4549 return 0; 4550 4551 /* 4552 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4553 * 100ms, but may silently discard requests while the FLR is in 4554 * progress. Wait 100ms before trying to access the device. 4555 */ 4556 msleep(100); 4557 4558 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4559 } 4560 EXPORT_SYMBOL_GPL(pcie_flr); 4561 4562 /** 4563 * pcie_reset_flr - initiate a PCIe function level reset 4564 * @dev: device to reset 4565 * @probe: if true, return 0 if device can be reset this way 4566 * 4567 * Initiate a function level reset on @dev. 4568 */ 4569 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4570 { 4571 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4572 return -ENOTTY; 4573 4574 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4575 return -ENOTTY; 4576 4577 if (probe) 4578 return 0; 4579 4580 return pcie_flr(dev); 4581 } 4582 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4583 4584 static int pci_af_flr(struct pci_dev *dev, bool probe) 4585 { 4586 int pos; 4587 u8 cap; 4588 4589 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4590 if (!pos) 4591 return -ENOTTY; 4592 4593 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4594 return -ENOTTY; 4595 4596 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4597 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4598 return -ENOTTY; 4599 4600 if (probe) 4601 return 0; 4602 4603 /* 4604 * Wait for Transaction Pending bit to clear. A word-aligned test 4605 * is used, so we use the control offset rather than status and shift 4606 * the test bit to match. 4607 */ 4608 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4609 PCI_AF_STATUS_TP << 8)) 4610 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4611 4612 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4613 4614 if (dev->imm_ready) 4615 return 0; 4616 4617 /* 4618 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4619 * updated 27 July 2006; a device must complete an FLR within 4620 * 100ms, but may silently discard requests while the FLR is in 4621 * progress. Wait 100ms before trying to access the device. 4622 */ 4623 msleep(100); 4624 4625 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4626 } 4627 4628 /** 4629 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4630 * @dev: Device to reset. 4631 * @probe: if true, return 0 if the device can be reset this way. 4632 * 4633 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4634 * unset, it will be reinitialized internally when going from PCI_D3hot to 4635 * PCI_D0. If that's the case and the device is not in a low-power state 4636 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4637 * 4638 * NOTE: This causes the caller to sleep for twice the device power transition 4639 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4640 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4641 * Moreover, only devices in D0 can be reset by this function. 4642 */ 4643 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4644 { 4645 u16 csr; 4646 4647 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4648 return -ENOTTY; 4649 4650 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4651 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4652 return -ENOTTY; 4653 4654 if (probe) 4655 return 0; 4656 4657 if (dev->current_state != PCI_D0) 4658 return -EINVAL; 4659 4660 csr &= ~PCI_PM_CTRL_STATE_MASK; 4661 csr |= PCI_D3hot; 4662 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4663 pci_dev_d3_sleep(dev); 4664 4665 csr &= ~PCI_PM_CTRL_STATE_MASK; 4666 csr |= PCI_D0; 4667 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4668 pci_dev_d3_sleep(dev); 4669 4670 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4671 } 4672 4673 /** 4674 * pcie_wait_for_link_status - Wait for link status change 4675 * @pdev: Device whose link to wait for. 4676 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4677 * @active: Waiting for active or inactive? 4678 * 4679 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4680 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4681 */ 4682 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4683 bool use_lt, bool active) 4684 { 4685 u16 lnksta_mask, lnksta_match; 4686 unsigned long end_jiffies; 4687 u16 lnksta; 4688 4689 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4690 lnksta_match = active ? lnksta_mask : 0; 4691 4692 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4693 do { 4694 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4695 if ((lnksta & lnksta_mask) == lnksta_match) 4696 return 0; 4697 msleep(1); 4698 } while (time_before(jiffies, end_jiffies)); 4699 4700 return -ETIMEDOUT; 4701 } 4702 4703 /** 4704 * pcie_retrain_link - Request a link retrain and wait for it to complete 4705 * @pdev: Device whose link to retrain. 4706 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 4707 * 4708 * Retrain completion status is retrieved from the Link Status Register 4709 * according to @use_lt. It is not verified whether the use of the DLLLA 4710 * bit is valid. 4711 * 4712 * Return 0 if successful, or -ETIMEDOUT if training has not completed 4713 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4714 */ 4715 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 4716 { 4717 int rc; 4718 4719 /* 4720 * Ensure the updated LNKCTL parameters are used during link 4721 * training by checking that there is no ongoing link training that 4722 * may have started before link parameters were changed, so as to 4723 * avoid LTSSM race as recommended in Implementation Note at the end 4724 * of PCIe r6.1 sec 7.5.3.7. 4725 */ 4726 rc = pcie_wait_for_link_status(pdev, true, false); 4727 if (rc) 4728 return rc; 4729 4730 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4731 if (pdev->clear_retrain_link) { 4732 /* 4733 * Due to an erratum in some devices the Retrain Link bit 4734 * needs to be cleared again manually to allow the link 4735 * training to succeed. 4736 */ 4737 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4738 } 4739 4740 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4741 4742 /* 4743 * Clear LBMS after a manual retrain so that the bit can be used 4744 * to track link speed or width changes made by hardware itself 4745 * in attempt to correct unreliable link operation. 4746 */ 4747 pcie_capability_write_word(pdev, PCI_EXP_LNKSTA, PCI_EXP_LNKSTA_LBMS); 4748 return rc; 4749 } 4750 4751 /** 4752 * pcie_wait_for_link_delay - Wait until link is active or inactive 4753 * @pdev: Bridge device 4754 * @active: waiting for active or inactive? 4755 * @delay: Delay to wait after link has become active (in ms) 4756 * 4757 * Use this to wait till link becomes active or inactive. 4758 */ 4759 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4760 int delay) 4761 { 4762 int rc; 4763 4764 /* 4765 * Some controllers might not implement link active reporting. In this 4766 * case, we wait for 1000 ms + any delay requested by the caller. 4767 */ 4768 if (!pdev->link_active_reporting) { 4769 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 4770 return true; 4771 } 4772 4773 /* 4774 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4775 * after which we should expect an link active if the reset was 4776 * successful. If so, software must wait a minimum 100ms before sending 4777 * configuration requests to devices downstream this port. 4778 * 4779 * If the link fails to activate, either the device was physically 4780 * removed or the link is permanently failed. 4781 */ 4782 if (active) 4783 msleep(20); 4784 rc = pcie_wait_for_link_status(pdev, false, active); 4785 if (active) { 4786 if (rc) 4787 rc = pcie_failed_link_retrain(pdev); 4788 if (rc) 4789 return false; 4790 4791 msleep(delay); 4792 return true; 4793 } 4794 4795 if (rc) 4796 return false; 4797 4798 return true; 4799 } 4800 4801 /** 4802 * pcie_wait_for_link - Wait until link is active or inactive 4803 * @pdev: Bridge device 4804 * @active: waiting for active or inactive? 4805 * 4806 * Use this to wait till link becomes active or inactive. 4807 */ 4808 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4809 { 4810 return pcie_wait_for_link_delay(pdev, active, 100); 4811 } 4812 4813 /* 4814 * Find maximum D3cold delay required by all the devices on the bus. The 4815 * spec says 100 ms, but firmware can lower it and we allow drivers to 4816 * increase it as well. 4817 * 4818 * Called with @pci_bus_sem locked for reading. 4819 */ 4820 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4821 { 4822 const struct pci_dev *pdev; 4823 int min_delay = 100; 4824 int max_delay = 0; 4825 4826 list_for_each_entry(pdev, &bus->devices, bus_list) { 4827 if (pdev->d3cold_delay < min_delay) 4828 min_delay = pdev->d3cold_delay; 4829 if (pdev->d3cold_delay > max_delay) 4830 max_delay = pdev->d3cold_delay; 4831 } 4832 4833 return max(min_delay, max_delay); 4834 } 4835 4836 /** 4837 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4838 * @dev: PCI bridge 4839 * @reset_type: reset type in human-readable form 4840 * 4841 * Handle necessary delays before access to the devices on the secondary 4842 * side of the bridge are permitted after D3cold to D0 transition 4843 * or Conventional Reset. 4844 * 4845 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4846 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4847 * 4.3.2. 4848 * 4849 * Return 0 on success or -ENOTTY if the first device on the secondary bus 4850 * failed to become accessible. 4851 */ 4852 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 4853 { 4854 struct pci_dev *child __free(pci_dev_put) = NULL; 4855 int delay; 4856 4857 if (pci_dev_is_disconnected(dev)) 4858 return 0; 4859 4860 if (!pci_is_bridge(dev)) 4861 return 0; 4862 4863 down_read(&pci_bus_sem); 4864 4865 /* 4866 * We only deal with devices that are present currently on the bus. 4867 * For any hot-added devices the access delay is handled in pciehp 4868 * board_added(). In case of ACPI hotplug the firmware is expected 4869 * to configure the devices before OS is notified. 4870 */ 4871 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4872 up_read(&pci_bus_sem); 4873 return 0; 4874 } 4875 4876 /* Take d3cold_delay requirements into account */ 4877 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4878 if (!delay) { 4879 up_read(&pci_bus_sem); 4880 return 0; 4881 } 4882 4883 child = pci_dev_get(list_first_entry(&dev->subordinate->devices, 4884 struct pci_dev, bus_list)); 4885 up_read(&pci_bus_sem); 4886 4887 /* 4888 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4889 * accessing the device after reset (that is 1000 ms + 100 ms). 4890 */ 4891 if (!pci_is_pcie(dev)) { 4892 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4893 msleep(1000 + delay); 4894 return 0; 4895 } 4896 4897 /* 4898 * For PCIe downstream and root ports that do not support speeds 4899 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4900 * speeds (gen3) we need to wait first for the data link layer to 4901 * become active. 4902 * 4903 * However, 100 ms is the minimum and the PCIe spec says the 4904 * software must allow at least 1s before it can determine that the 4905 * device that did not respond is a broken device. Also device can 4906 * take longer than that to respond if it indicates so through Request 4907 * Retry Status completions. 4908 * 4909 * Therefore we wait for 100 ms and check for the device presence 4910 * until the timeout expires. 4911 */ 4912 if (!pcie_downstream_port(dev)) 4913 return 0; 4914 4915 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4916 u16 status; 4917 4918 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4919 msleep(delay); 4920 4921 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 4922 return 0; 4923 4924 /* 4925 * If the port supports active link reporting we now check 4926 * whether the link is active and if not bail out early with 4927 * the assumption that the device is not present anymore. 4928 */ 4929 if (!dev->link_active_reporting) 4930 return -ENOTTY; 4931 4932 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 4933 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 4934 return -ENOTTY; 4935 4936 return pci_dev_wait(child, reset_type, 4937 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 4938 } 4939 4940 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4941 delay); 4942 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4943 /* Did not train, no need to wait any further */ 4944 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 4945 return -ENOTTY; 4946 } 4947 4948 return pci_dev_wait(child, reset_type, 4949 PCIE_RESET_READY_POLL_MS - delay); 4950 } 4951 4952 void pci_reset_secondary_bus(struct pci_dev *dev) 4953 { 4954 u16 ctrl; 4955 4956 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4957 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4958 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4959 4960 /* 4961 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4962 * this to 2ms to ensure that we meet the minimum requirement. 4963 */ 4964 msleep(2); 4965 4966 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4967 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4968 } 4969 4970 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4971 { 4972 pci_reset_secondary_bus(dev); 4973 } 4974 4975 /** 4976 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4977 * @dev: Bridge device 4978 * 4979 * Use the bridge control register to assert reset on the secondary bus. 4980 * Devices on the secondary bus are left in power-on state. 4981 */ 4982 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4983 { 4984 if (!dev->block_cfg_access) 4985 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n", 4986 __builtin_return_address(0)); 4987 pcibios_reset_secondary_bus(dev); 4988 4989 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 4990 } 4991 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4992 4993 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 4994 { 4995 struct pci_dev *pdev; 4996 4997 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4998 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4999 return -ENOTTY; 5000 5001 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5002 if (pdev != dev) 5003 return -ENOTTY; 5004 5005 if (probe) 5006 return 0; 5007 5008 return pci_bridge_secondary_bus_reset(dev->bus->self); 5009 } 5010 5011 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5012 { 5013 int rc = -ENOTTY; 5014 5015 if (!hotplug || !try_module_get(hotplug->owner)) 5016 return rc; 5017 5018 if (hotplug->ops->reset_slot) 5019 rc = hotplug->ops->reset_slot(hotplug, probe); 5020 5021 module_put(hotplug->owner); 5022 5023 return rc; 5024 } 5025 5026 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5027 { 5028 if (dev->multifunction || dev->subordinate || !dev->slot || 5029 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5030 return -ENOTTY; 5031 5032 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5033 } 5034 5035 static u16 cxl_port_dvsec(struct pci_dev *dev) 5036 { 5037 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL, 5038 PCI_DVSEC_CXL_PORT); 5039 } 5040 5041 static bool cxl_sbr_masked(struct pci_dev *dev) 5042 { 5043 u16 dvsec, reg; 5044 int rc; 5045 5046 dvsec = cxl_port_dvsec(dev); 5047 if (!dvsec) 5048 return false; 5049 5050 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®); 5051 if (rc || PCI_POSSIBLE_ERROR(reg)) 5052 return false; 5053 5054 /* 5055 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR 5056 * bit in Bridge Control has no effect. When 1, the Port generates 5057 * hot reset when the SBR bit is set to 1. 5058 */ 5059 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) 5060 return false; 5061 5062 return true; 5063 } 5064 5065 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5066 { 5067 struct pci_dev *bridge = pci_upstream_bridge(dev); 5068 int rc; 5069 5070 /* 5071 * If "dev" is below a CXL port that has SBR control masked, SBR 5072 * won't do anything, so return error. 5073 */ 5074 if (bridge && cxl_sbr_masked(bridge)) { 5075 if (probe) 5076 return 0; 5077 5078 return -ENOTTY; 5079 } 5080 5081 rc = pci_dev_reset_slot_function(dev, probe); 5082 if (rc != -ENOTTY) 5083 return rc; 5084 return pci_parent_bus_reset(dev, probe); 5085 } 5086 5087 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe) 5088 { 5089 struct pci_dev *bridge; 5090 u16 dvsec, reg, val; 5091 int rc; 5092 5093 bridge = pci_upstream_bridge(dev); 5094 if (!bridge) 5095 return -ENOTTY; 5096 5097 dvsec = cxl_port_dvsec(bridge); 5098 if (!dvsec) 5099 return -ENOTTY; 5100 5101 if (probe) 5102 return 0; 5103 5104 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®); 5105 if (rc) 5106 return -ENOTTY; 5107 5108 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) { 5109 val = reg; 5110 } else { 5111 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR; 5112 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, 5113 val); 5114 } 5115 5116 rc = pci_reset_bus_function(dev, probe); 5117 5118 if (reg != val) 5119 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, 5120 reg); 5121 5122 return rc; 5123 } 5124 5125 void pci_dev_lock(struct pci_dev *dev) 5126 { 5127 /* block PM suspend, driver probe, etc. */ 5128 device_lock(&dev->dev); 5129 pci_cfg_access_lock(dev); 5130 } 5131 EXPORT_SYMBOL_GPL(pci_dev_lock); 5132 5133 /* Return 1 on successful lock, 0 on contention */ 5134 int pci_dev_trylock(struct pci_dev *dev) 5135 { 5136 if (device_trylock(&dev->dev)) { 5137 if (pci_cfg_access_trylock(dev)) 5138 return 1; 5139 device_unlock(&dev->dev); 5140 } 5141 5142 return 0; 5143 } 5144 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5145 5146 void pci_dev_unlock(struct pci_dev *dev) 5147 { 5148 pci_cfg_access_unlock(dev); 5149 device_unlock(&dev->dev); 5150 } 5151 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5152 5153 static void pci_dev_save_and_disable(struct pci_dev *dev) 5154 { 5155 const struct pci_error_handlers *err_handler = 5156 dev->driver ? dev->driver->err_handler : NULL; 5157 5158 /* 5159 * dev->driver->err_handler->reset_prepare() is protected against 5160 * races with ->remove() by the device lock, which must be held by 5161 * the caller. 5162 */ 5163 if (err_handler && err_handler->reset_prepare) 5164 err_handler->reset_prepare(dev); 5165 5166 /* 5167 * Wake-up device prior to save. PM registers default to D0 after 5168 * reset and a simple register restore doesn't reliably return 5169 * to a non-D0 state anyway. 5170 */ 5171 pci_set_power_state(dev, PCI_D0); 5172 5173 pci_save_state(dev); 5174 /* 5175 * Disable the device by clearing the Command register, except for 5176 * INTx-disable which is set. This not only disables MMIO and I/O port 5177 * BARs, but also prevents the device from being Bus Master, preventing 5178 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5179 * compliant devices, INTx-disable prevents legacy interrupts. 5180 */ 5181 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5182 } 5183 5184 static void pci_dev_restore(struct pci_dev *dev) 5185 { 5186 const struct pci_error_handlers *err_handler = 5187 dev->driver ? dev->driver->err_handler : NULL; 5188 5189 pci_restore_state(dev); 5190 5191 /* 5192 * dev->driver->err_handler->reset_done() is protected against 5193 * races with ->remove() by the device lock, which must be held by 5194 * the caller. 5195 */ 5196 if (err_handler && err_handler->reset_done) 5197 err_handler->reset_done(dev); 5198 } 5199 5200 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5201 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5202 { }, 5203 { pci_dev_specific_reset, .name = "device_specific" }, 5204 { pci_dev_acpi_reset, .name = "acpi" }, 5205 { pcie_reset_flr, .name = "flr" }, 5206 { pci_af_flr, .name = "af_flr" }, 5207 { pci_pm_reset, .name = "pm" }, 5208 { pci_reset_bus_function, .name = "bus" }, 5209 { cxl_reset_bus_function, .name = "cxl_bus" }, 5210 }; 5211 5212 static ssize_t reset_method_show(struct device *dev, 5213 struct device_attribute *attr, char *buf) 5214 { 5215 struct pci_dev *pdev = to_pci_dev(dev); 5216 ssize_t len = 0; 5217 int i, m; 5218 5219 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5220 m = pdev->reset_methods[i]; 5221 if (!m) 5222 break; 5223 5224 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5225 pci_reset_fn_methods[m].name); 5226 } 5227 5228 if (len) 5229 len += sysfs_emit_at(buf, len, "\n"); 5230 5231 return len; 5232 } 5233 5234 static int reset_method_lookup(const char *name) 5235 { 5236 int m; 5237 5238 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5239 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5240 return m; 5241 } 5242 5243 return 0; /* not found */ 5244 } 5245 5246 static ssize_t reset_method_store(struct device *dev, 5247 struct device_attribute *attr, 5248 const char *buf, size_t count) 5249 { 5250 struct pci_dev *pdev = to_pci_dev(dev); 5251 char *options, *name; 5252 int m, n; 5253 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5254 5255 if (sysfs_streq(buf, "")) { 5256 pdev->reset_methods[0] = 0; 5257 pci_warn(pdev, "All device reset methods disabled by user"); 5258 return count; 5259 } 5260 5261 if (sysfs_streq(buf, "default")) { 5262 pci_init_reset_methods(pdev); 5263 return count; 5264 } 5265 5266 options = kstrndup(buf, count, GFP_KERNEL); 5267 if (!options) 5268 return -ENOMEM; 5269 5270 n = 0; 5271 while ((name = strsep(&options, " ")) != NULL) { 5272 if (sysfs_streq(name, "")) 5273 continue; 5274 5275 name = strim(name); 5276 5277 m = reset_method_lookup(name); 5278 if (!m) { 5279 pci_err(pdev, "Invalid reset method '%s'", name); 5280 goto error; 5281 } 5282 5283 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5284 pci_err(pdev, "Unsupported reset method '%s'", name); 5285 goto error; 5286 } 5287 5288 if (n == PCI_NUM_RESET_METHODS - 1) { 5289 pci_err(pdev, "Too many reset methods\n"); 5290 goto error; 5291 } 5292 5293 reset_methods[n++] = m; 5294 } 5295 5296 reset_methods[n] = 0; 5297 5298 /* Warn if dev-specific supported but not highest priority */ 5299 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5300 reset_methods[0] != 1) 5301 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5302 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5303 kfree(options); 5304 return count; 5305 5306 error: 5307 /* Leave previous methods unchanged */ 5308 kfree(options); 5309 return -EINVAL; 5310 } 5311 static DEVICE_ATTR_RW(reset_method); 5312 5313 static struct attribute *pci_dev_reset_method_attrs[] = { 5314 &dev_attr_reset_method.attr, 5315 NULL, 5316 }; 5317 5318 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5319 struct attribute *a, int n) 5320 { 5321 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5322 5323 if (!pci_reset_supported(pdev)) 5324 return 0; 5325 5326 return a->mode; 5327 } 5328 5329 const struct attribute_group pci_dev_reset_method_attr_group = { 5330 .attrs = pci_dev_reset_method_attrs, 5331 .is_visible = pci_dev_reset_method_attr_is_visible, 5332 }; 5333 5334 /** 5335 * __pci_reset_function_locked - reset a PCI device function while holding 5336 * the @dev mutex lock. 5337 * @dev: PCI device to reset 5338 * 5339 * Some devices allow an individual function to be reset without affecting 5340 * other functions in the same device. The PCI device must be responsive 5341 * to PCI config space in order to use this function. 5342 * 5343 * The device function is presumed to be unused and the caller is holding 5344 * the device mutex lock when this function is called. 5345 * 5346 * Resetting the device will make the contents of PCI configuration space 5347 * random, so any caller of this must be prepared to reinitialise the 5348 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5349 * etc. 5350 * 5351 * Returns 0 if the device function was successfully reset or negative if the 5352 * device doesn't support resetting a single function. 5353 */ 5354 int __pci_reset_function_locked(struct pci_dev *dev) 5355 { 5356 int i, m, rc; 5357 5358 might_sleep(); 5359 5360 /* 5361 * A reset method returns -ENOTTY if it doesn't support this device and 5362 * we should try the next method. 5363 * 5364 * If it returns 0 (success), we're finished. If it returns any other 5365 * error, we're also finished: this indicates that further reset 5366 * mechanisms might be broken on the device. 5367 */ 5368 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5369 m = dev->reset_methods[i]; 5370 if (!m) 5371 return -ENOTTY; 5372 5373 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5374 if (!rc) 5375 return 0; 5376 if (rc != -ENOTTY) 5377 return rc; 5378 } 5379 5380 return -ENOTTY; 5381 } 5382 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5383 5384 /** 5385 * pci_init_reset_methods - check whether device can be safely reset 5386 * and store supported reset mechanisms. 5387 * @dev: PCI device to check for reset mechanisms 5388 * 5389 * Some devices allow an individual function to be reset without affecting 5390 * other functions in the same device. The PCI device must be in D0-D3hot 5391 * state. 5392 * 5393 * Stores reset mechanisms supported by device in reset_methods byte array 5394 * which is a member of struct pci_dev. 5395 */ 5396 void pci_init_reset_methods(struct pci_dev *dev) 5397 { 5398 int m, i, rc; 5399 5400 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5401 5402 might_sleep(); 5403 5404 i = 0; 5405 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5406 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5407 if (!rc) 5408 dev->reset_methods[i++] = m; 5409 else if (rc != -ENOTTY) 5410 break; 5411 } 5412 5413 dev->reset_methods[i] = 0; 5414 } 5415 5416 /** 5417 * pci_reset_function - quiesce and reset a PCI device function 5418 * @dev: PCI device to reset 5419 * 5420 * Some devices allow an individual function to be reset without affecting 5421 * other functions in the same device. The PCI device must be responsive 5422 * to PCI config space in order to use this function. 5423 * 5424 * This function does not just reset the PCI portion of a device, but 5425 * clears all the state associated with the device. This function differs 5426 * from __pci_reset_function_locked() in that it saves and restores device state 5427 * over the reset and takes the PCI device lock. 5428 * 5429 * Returns 0 if the device function was successfully reset or negative if the 5430 * device doesn't support resetting a single function. 5431 */ 5432 int pci_reset_function(struct pci_dev *dev) 5433 { 5434 struct pci_dev *bridge; 5435 int rc; 5436 5437 if (!pci_reset_supported(dev)) 5438 return -ENOTTY; 5439 5440 /* 5441 * If there's no upstream bridge, no locking is needed since there is 5442 * no upstream bridge configuration to hold consistent. 5443 */ 5444 bridge = pci_upstream_bridge(dev); 5445 if (bridge) 5446 pci_dev_lock(bridge); 5447 5448 pci_dev_lock(dev); 5449 pci_dev_save_and_disable(dev); 5450 5451 rc = __pci_reset_function_locked(dev); 5452 5453 pci_dev_restore(dev); 5454 pci_dev_unlock(dev); 5455 5456 if (bridge) 5457 pci_dev_unlock(bridge); 5458 5459 return rc; 5460 } 5461 EXPORT_SYMBOL_GPL(pci_reset_function); 5462 5463 /** 5464 * pci_reset_function_locked - quiesce and reset a PCI device function 5465 * @dev: PCI device to reset 5466 * 5467 * Some devices allow an individual function to be reset without affecting 5468 * other functions in the same device. The PCI device must be responsive 5469 * to PCI config space in order to use this function. 5470 * 5471 * This function does not just reset the PCI portion of a device, but 5472 * clears all the state associated with the device. This function differs 5473 * from __pci_reset_function_locked() in that it saves and restores device state 5474 * over the reset. It also differs from pci_reset_function() in that it 5475 * requires the PCI device lock to be held. 5476 * 5477 * Returns 0 if the device function was successfully reset or negative if the 5478 * device doesn't support resetting a single function. 5479 */ 5480 int pci_reset_function_locked(struct pci_dev *dev) 5481 { 5482 int rc; 5483 5484 if (!pci_reset_supported(dev)) 5485 return -ENOTTY; 5486 5487 pci_dev_save_and_disable(dev); 5488 5489 rc = __pci_reset_function_locked(dev); 5490 5491 pci_dev_restore(dev); 5492 5493 return rc; 5494 } 5495 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5496 5497 /** 5498 * pci_try_reset_function - quiesce and reset a PCI device function 5499 * @dev: PCI device to reset 5500 * 5501 * Same as above, except return -EAGAIN if unable to lock device. 5502 */ 5503 int pci_try_reset_function(struct pci_dev *dev) 5504 { 5505 int rc; 5506 5507 if (!pci_reset_supported(dev)) 5508 return -ENOTTY; 5509 5510 if (!pci_dev_trylock(dev)) 5511 return -EAGAIN; 5512 5513 pci_dev_save_and_disable(dev); 5514 rc = __pci_reset_function_locked(dev); 5515 pci_dev_restore(dev); 5516 pci_dev_unlock(dev); 5517 5518 return rc; 5519 } 5520 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5521 5522 /* Do any devices on or below this bus prevent a bus reset? */ 5523 static bool pci_bus_resettable(struct pci_bus *bus) 5524 { 5525 struct pci_dev *dev; 5526 5527 5528 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5529 return false; 5530 5531 list_for_each_entry(dev, &bus->devices, bus_list) { 5532 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5533 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5534 return false; 5535 } 5536 5537 return true; 5538 } 5539 5540 /* Lock devices from the top of the tree down */ 5541 static void pci_bus_lock(struct pci_bus *bus) 5542 { 5543 struct pci_dev *dev; 5544 5545 pci_dev_lock(bus->self); 5546 list_for_each_entry(dev, &bus->devices, bus_list) { 5547 if (dev->subordinate) 5548 pci_bus_lock(dev->subordinate); 5549 else 5550 pci_dev_lock(dev); 5551 } 5552 } 5553 5554 /* Unlock devices from the bottom of the tree up */ 5555 static void pci_bus_unlock(struct pci_bus *bus) 5556 { 5557 struct pci_dev *dev; 5558 5559 list_for_each_entry(dev, &bus->devices, bus_list) { 5560 if (dev->subordinate) 5561 pci_bus_unlock(dev->subordinate); 5562 else 5563 pci_dev_unlock(dev); 5564 } 5565 pci_dev_unlock(bus->self); 5566 } 5567 5568 /* Return 1 on successful lock, 0 on contention */ 5569 static int pci_bus_trylock(struct pci_bus *bus) 5570 { 5571 struct pci_dev *dev; 5572 5573 if (!pci_dev_trylock(bus->self)) 5574 return 0; 5575 5576 list_for_each_entry(dev, &bus->devices, bus_list) { 5577 if (dev->subordinate) { 5578 if (!pci_bus_trylock(dev->subordinate)) 5579 goto unlock; 5580 } else if (!pci_dev_trylock(dev)) 5581 goto unlock; 5582 } 5583 return 1; 5584 5585 unlock: 5586 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5587 if (dev->subordinate) 5588 pci_bus_unlock(dev->subordinate); 5589 else 5590 pci_dev_unlock(dev); 5591 } 5592 pci_dev_unlock(bus->self); 5593 return 0; 5594 } 5595 5596 /* Do any devices on or below this slot prevent a bus reset? */ 5597 static bool pci_slot_resettable(struct pci_slot *slot) 5598 { 5599 struct pci_dev *dev; 5600 5601 if (slot->bus->self && 5602 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5603 return false; 5604 5605 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5606 if (!dev->slot || dev->slot != slot) 5607 continue; 5608 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5609 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5610 return false; 5611 } 5612 5613 return true; 5614 } 5615 5616 /* Lock devices from the top of the tree down */ 5617 static void pci_slot_lock(struct pci_slot *slot) 5618 { 5619 struct pci_dev *dev; 5620 5621 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5622 if (!dev->slot || dev->slot != slot) 5623 continue; 5624 if (dev->subordinate) 5625 pci_bus_lock(dev->subordinate); 5626 else 5627 pci_dev_lock(dev); 5628 } 5629 } 5630 5631 /* Unlock devices from the bottom of the tree up */ 5632 static void pci_slot_unlock(struct pci_slot *slot) 5633 { 5634 struct pci_dev *dev; 5635 5636 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5637 if (!dev->slot || dev->slot != slot) 5638 continue; 5639 if (dev->subordinate) 5640 pci_bus_unlock(dev->subordinate); 5641 pci_dev_unlock(dev); 5642 } 5643 } 5644 5645 /* Return 1 on successful lock, 0 on contention */ 5646 static int pci_slot_trylock(struct pci_slot *slot) 5647 { 5648 struct pci_dev *dev; 5649 5650 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5651 if (!dev->slot || dev->slot != slot) 5652 continue; 5653 if (dev->subordinate) { 5654 if (!pci_bus_trylock(dev->subordinate)) { 5655 pci_dev_unlock(dev); 5656 goto unlock; 5657 } 5658 } else if (!pci_dev_trylock(dev)) 5659 goto unlock; 5660 } 5661 return 1; 5662 5663 unlock: 5664 list_for_each_entry_continue_reverse(dev, 5665 &slot->bus->devices, bus_list) { 5666 if (!dev->slot || dev->slot != slot) 5667 continue; 5668 if (dev->subordinate) 5669 pci_bus_unlock(dev->subordinate); 5670 else 5671 pci_dev_unlock(dev); 5672 } 5673 return 0; 5674 } 5675 5676 /* 5677 * Save and disable devices from the top of the tree down while holding 5678 * the @dev mutex lock for the entire tree. 5679 */ 5680 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5681 { 5682 struct pci_dev *dev; 5683 5684 list_for_each_entry(dev, &bus->devices, bus_list) { 5685 pci_dev_save_and_disable(dev); 5686 if (dev->subordinate) 5687 pci_bus_save_and_disable_locked(dev->subordinate); 5688 } 5689 } 5690 5691 /* 5692 * Restore devices from top of the tree down while holding @dev mutex lock 5693 * for the entire tree. Parent bridges need to be restored before we can 5694 * get to subordinate devices. 5695 */ 5696 static void pci_bus_restore_locked(struct pci_bus *bus) 5697 { 5698 struct pci_dev *dev; 5699 5700 list_for_each_entry(dev, &bus->devices, bus_list) { 5701 pci_dev_restore(dev); 5702 if (dev->subordinate) { 5703 pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5704 pci_bus_restore_locked(dev->subordinate); 5705 } 5706 } 5707 } 5708 5709 /* 5710 * Save and disable devices from the top of the tree down while holding 5711 * the @dev mutex lock for the entire tree. 5712 */ 5713 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5714 { 5715 struct pci_dev *dev; 5716 5717 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5718 if (!dev->slot || dev->slot != slot) 5719 continue; 5720 pci_dev_save_and_disable(dev); 5721 if (dev->subordinate) 5722 pci_bus_save_and_disable_locked(dev->subordinate); 5723 } 5724 } 5725 5726 /* 5727 * Restore devices from top of the tree down while holding @dev mutex lock 5728 * for the entire tree. Parent bridges need to be restored before we can 5729 * get to subordinate devices. 5730 */ 5731 static void pci_slot_restore_locked(struct pci_slot *slot) 5732 { 5733 struct pci_dev *dev; 5734 5735 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5736 if (!dev->slot || dev->slot != slot) 5737 continue; 5738 pci_dev_restore(dev); 5739 if (dev->subordinate) { 5740 pci_bridge_wait_for_secondary_bus(dev, "slot reset"); 5741 pci_bus_restore_locked(dev->subordinate); 5742 } 5743 } 5744 } 5745 5746 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5747 { 5748 int rc; 5749 5750 if (!slot || !pci_slot_resettable(slot)) 5751 return -ENOTTY; 5752 5753 if (!probe) 5754 pci_slot_lock(slot); 5755 5756 might_sleep(); 5757 5758 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5759 5760 if (!probe) 5761 pci_slot_unlock(slot); 5762 5763 return rc; 5764 } 5765 5766 /** 5767 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5768 * @slot: PCI slot to probe 5769 * 5770 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5771 */ 5772 int pci_probe_reset_slot(struct pci_slot *slot) 5773 { 5774 return pci_slot_reset(slot, PCI_RESET_PROBE); 5775 } 5776 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5777 5778 /** 5779 * __pci_reset_slot - Try to reset a PCI slot 5780 * @slot: PCI slot to reset 5781 * 5782 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5783 * independent of other slots. For instance, some slots may support slot power 5784 * control. In the case of a 1:1 bus to slot architecture, this function may 5785 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5786 * Generally a slot reset should be attempted before a bus reset. All of the 5787 * function of the slot and any subordinate buses behind the slot are reset 5788 * through this function. PCI config space of all devices in the slot and 5789 * behind the slot is saved before and restored after reset. 5790 * 5791 * Same as above except return -EAGAIN if the slot cannot be locked 5792 */ 5793 static int __pci_reset_slot(struct pci_slot *slot) 5794 { 5795 int rc; 5796 5797 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5798 if (rc) 5799 return rc; 5800 5801 if (pci_slot_trylock(slot)) { 5802 pci_slot_save_and_disable_locked(slot); 5803 might_sleep(); 5804 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5805 pci_slot_restore_locked(slot); 5806 pci_slot_unlock(slot); 5807 } else 5808 rc = -EAGAIN; 5809 5810 return rc; 5811 } 5812 5813 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5814 { 5815 int ret; 5816 5817 if (!bus->self || !pci_bus_resettable(bus)) 5818 return -ENOTTY; 5819 5820 if (probe) 5821 return 0; 5822 5823 pci_bus_lock(bus); 5824 5825 might_sleep(); 5826 5827 ret = pci_bridge_secondary_bus_reset(bus->self); 5828 5829 pci_bus_unlock(bus); 5830 5831 return ret; 5832 } 5833 5834 /** 5835 * pci_bus_error_reset - reset the bridge's subordinate bus 5836 * @bridge: The parent device that connects to the bus to reset 5837 * 5838 * This function will first try to reset the slots on this bus if the method is 5839 * available. If slot reset fails or is not available, this will fall back to a 5840 * secondary bus reset. 5841 */ 5842 int pci_bus_error_reset(struct pci_dev *bridge) 5843 { 5844 struct pci_bus *bus = bridge->subordinate; 5845 struct pci_slot *slot; 5846 5847 if (!bus) 5848 return -ENOTTY; 5849 5850 mutex_lock(&pci_slot_mutex); 5851 if (list_empty(&bus->slots)) 5852 goto bus_reset; 5853 5854 list_for_each_entry(slot, &bus->slots, list) 5855 if (pci_probe_reset_slot(slot)) 5856 goto bus_reset; 5857 5858 list_for_each_entry(slot, &bus->slots, list) 5859 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5860 goto bus_reset; 5861 5862 mutex_unlock(&pci_slot_mutex); 5863 return 0; 5864 bus_reset: 5865 mutex_unlock(&pci_slot_mutex); 5866 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5867 } 5868 5869 /** 5870 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5871 * @bus: PCI bus to probe 5872 * 5873 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5874 */ 5875 int pci_probe_reset_bus(struct pci_bus *bus) 5876 { 5877 return pci_bus_reset(bus, PCI_RESET_PROBE); 5878 } 5879 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5880 5881 /** 5882 * __pci_reset_bus - Try to reset a PCI bus 5883 * @bus: top level PCI bus to reset 5884 * 5885 * Same as above except return -EAGAIN if the bus cannot be locked 5886 */ 5887 static int __pci_reset_bus(struct pci_bus *bus) 5888 { 5889 int rc; 5890 5891 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5892 if (rc) 5893 return rc; 5894 5895 if (pci_bus_trylock(bus)) { 5896 pci_bus_save_and_disable_locked(bus); 5897 might_sleep(); 5898 rc = pci_bridge_secondary_bus_reset(bus->self); 5899 pci_bus_restore_locked(bus); 5900 pci_bus_unlock(bus); 5901 } else 5902 rc = -EAGAIN; 5903 5904 return rc; 5905 } 5906 5907 /** 5908 * pci_reset_bus - Try to reset a PCI bus 5909 * @pdev: top level PCI device to reset via slot/bus 5910 * 5911 * Same as above except return -EAGAIN if the bus cannot be locked 5912 */ 5913 int pci_reset_bus(struct pci_dev *pdev) 5914 { 5915 return (!pci_probe_reset_slot(pdev->slot)) ? 5916 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5917 } 5918 EXPORT_SYMBOL_GPL(pci_reset_bus); 5919 5920 /** 5921 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5922 * @dev: PCI device to query 5923 * 5924 * Returns mmrbc: maximum designed memory read count in bytes or 5925 * appropriate error value. 5926 */ 5927 int pcix_get_max_mmrbc(struct pci_dev *dev) 5928 { 5929 int cap; 5930 u32 stat; 5931 5932 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5933 if (!cap) 5934 return -EINVAL; 5935 5936 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5937 return -EINVAL; 5938 5939 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat); 5940 } 5941 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5942 5943 /** 5944 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5945 * @dev: PCI device to query 5946 * 5947 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5948 * value. 5949 */ 5950 int pcix_get_mmrbc(struct pci_dev *dev) 5951 { 5952 int cap; 5953 u16 cmd; 5954 5955 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5956 if (!cap) 5957 return -EINVAL; 5958 5959 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5960 return -EINVAL; 5961 5962 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 5963 } 5964 EXPORT_SYMBOL(pcix_get_mmrbc); 5965 5966 /** 5967 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5968 * @dev: PCI device to query 5969 * @mmrbc: maximum memory read count in bytes 5970 * valid values are 512, 1024, 2048, 4096 5971 * 5972 * If possible sets maximum memory read byte count, some bridges have errata 5973 * that prevent this. 5974 */ 5975 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5976 { 5977 int cap; 5978 u32 stat, v, o; 5979 u16 cmd; 5980 5981 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5982 return -EINVAL; 5983 5984 v = ffs(mmrbc) - 10; 5985 5986 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5987 if (!cap) 5988 return -EINVAL; 5989 5990 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5991 return -EINVAL; 5992 5993 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat)) 5994 return -E2BIG; 5995 5996 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5997 return -EINVAL; 5998 5999 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 6000 if (o != v) { 6001 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 6002 return -EIO; 6003 6004 cmd &= ~PCI_X_CMD_MAX_READ; 6005 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v); 6006 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 6007 return -EIO; 6008 } 6009 return 0; 6010 } 6011 EXPORT_SYMBOL(pcix_set_mmrbc); 6012 6013 /** 6014 * pcie_get_readrq - get PCI Express read request size 6015 * @dev: PCI device to query 6016 * 6017 * Returns maximum memory read request in bytes or appropriate error value. 6018 */ 6019 int pcie_get_readrq(struct pci_dev *dev) 6020 { 6021 u16 ctl; 6022 6023 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6024 6025 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl); 6026 } 6027 EXPORT_SYMBOL(pcie_get_readrq); 6028 6029 /** 6030 * pcie_set_readrq - set PCI Express maximum memory read request 6031 * @dev: PCI device to query 6032 * @rq: maximum memory read count in bytes 6033 * valid values are 128, 256, 512, 1024, 2048, 4096 6034 * 6035 * If possible sets maximum memory read request in bytes 6036 */ 6037 int pcie_set_readrq(struct pci_dev *dev, int rq) 6038 { 6039 u16 v; 6040 int ret; 6041 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 6042 6043 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6044 return -EINVAL; 6045 6046 /* 6047 * If using the "performance" PCIe config, we clamp the read rq 6048 * size to the max packet size to keep the host bridge from 6049 * generating requests larger than we can cope with. 6050 */ 6051 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6052 int mps = pcie_get_mps(dev); 6053 6054 if (mps < rq) 6055 rq = mps; 6056 } 6057 6058 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8); 6059 6060 if (bridge->no_inc_mrrs) { 6061 int max_mrrs = pcie_get_readrq(dev); 6062 6063 if (rq > max_mrrs) { 6064 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 6065 return -EINVAL; 6066 } 6067 } 6068 6069 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6070 PCI_EXP_DEVCTL_READRQ, v); 6071 6072 return pcibios_err_to_errno(ret); 6073 } 6074 EXPORT_SYMBOL(pcie_set_readrq); 6075 6076 /** 6077 * pcie_get_mps - get PCI Express maximum payload size 6078 * @dev: PCI device to query 6079 * 6080 * Returns maximum payload size in bytes 6081 */ 6082 int pcie_get_mps(struct pci_dev *dev) 6083 { 6084 u16 ctl; 6085 6086 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6087 6088 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl); 6089 } 6090 EXPORT_SYMBOL(pcie_get_mps); 6091 6092 /** 6093 * pcie_set_mps - set PCI Express maximum payload size 6094 * @dev: PCI device to query 6095 * @mps: maximum payload size in bytes 6096 * valid values are 128, 256, 512, 1024, 2048, 4096 6097 * 6098 * If possible sets maximum payload size 6099 */ 6100 int pcie_set_mps(struct pci_dev *dev, int mps) 6101 { 6102 u16 v; 6103 int ret; 6104 6105 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6106 return -EINVAL; 6107 6108 v = ffs(mps) - 8; 6109 if (v > dev->pcie_mpss) 6110 return -EINVAL; 6111 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v); 6112 6113 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6114 PCI_EXP_DEVCTL_PAYLOAD, v); 6115 6116 return pcibios_err_to_errno(ret); 6117 } 6118 EXPORT_SYMBOL(pcie_set_mps); 6119 6120 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta) 6121 { 6122 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)]; 6123 } 6124 6125 int pcie_link_speed_mbps(struct pci_dev *pdev) 6126 { 6127 u16 lnksta; 6128 int err; 6129 6130 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 6131 if (err) 6132 return err; 6133 6134 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta)); 6135 } 6136 EXPORT_SYMBOL(pcie_link_speed_mbps); 6137 6138 /** 6139 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6140 * device and its bandwidth limitation 6141 * @dev: PCI device to query 6142 * @limiting_dev: storage for device causing the bandwidth limitation 6143 * @speed: storage for speed of limiting device 6144 * @width: storage for width of limiting device 6145 * 6146 * Walk up the PCI device chain and find the point where the minimum 6147 * bandwidth is available. Return the bandwidth available there and (if 6148 * limiting_dev, speed, and width pointers are supplied) information about 6149 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6150 * raw bandwidth. 6151 */ 6152 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6153 enum pci_bus_speed *speed, 6154 enum pcie_link_width *width) 6155 { 6156 u16 lnksta; 6157 enum pci_bus_speed next_speed; 6158 enum pcie_link_width next_width; 6159 u32 bw, next_bw; 6160 6161 if (speed) 6162 *speed = PCI_SPEED_UNKNOWN; 6163 if (width) 6164 *width = PCIE_LNK_WIDTH_UNKNOWN; 6165 6166 bw = 0; 6167 6168 while (dev) { 6169 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6170 6171 next_speed = to_pcie_link_speed(lnksta); 6172 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6173 6174 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6175 6176 /* Check if current device limits the total bandwidth */ 6177 if (!bw || next_bw <= bw) { 6178 bw = next_bw; 6179 6180 if (limiting_dev) 6181 *limiting_dev = dev; 6182 if (speed) 6183 *speed = next_speed; 6184 if (width) 6185 *width = next_width; 6186 } 6187 6188 dev = pci_upstream_bridge(dev); 6189 } 6190 6191 return bw; 6192 } 6193 EXPORT_SYMBOL(pcie_bandwidth_available); 6194 6195 /** 6196 * pcie_get_speed_cap - query for the PCI device's link speed capability 6197 * @dev: PCI device to query 6198 * 6199 * Query the PCI device speed capability. Return the maximum link speed 6200 * supported by the device. 6201 */ 6202 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6203 { 6204 u32 lnkcap2, lnkcap; 6205 6206 /* 6207 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6208 * implementation note there recommends using the Supported Link 6209 * Speeds Vector in Link Capabilities 2 when supported. 6210 * 6211 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6212 * should use the Supported Link Speeds field in Link Capabilities, 6213 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6214 */ 6215 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6216 6217 /* PCIe r3.0-compliant */ 6218 if (lnkcap2) 6219 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6220 6221 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6222 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6223 return PCIE_SPEED_5_0GT; 6224 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6225 return PCIE_SPEED_2_5GT; 6226 6227 return PCI_SPEED_UNKNOWN; 6228 } 6229 EXPORT_SYMBOL(pcie_get_speed_cap); 6230 6231 /** 6232 * pcie_get_width_cap - query for the PCI device's link width capability 6233 * @dev: PCI device to query 6234 * 6235 * Query the PCI device width capability. Return the maximum link width 6236 * supported by the device. 6237 */ 6238 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6239 { 6240 u32 lnkcap; 6241 6242 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6243 if (lnkcap) 6244 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6245 6246 return PCIE_LNK_WIDTH_UNKNOWN; 6247 } 6248 EXPORT_SYMBOL(pcie_get_width_cap); 6249 6250 /** 6251 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6252 * @dev: PCI device 6253 * @speed: storage for link speed 6254 * @width: storage for link width 6255 * 6256 * Calculate a PCI device's link bandwidth by querying for its link speed 6257 * and width, multiplying them, and applying encoding overhead. The result 6258 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6259 */ 6260 static u32 pcie_bandwidth_capable(struct pci_dev *dev, 6261 enum pci_bus_speed *speed, 6262 enum pcie_link_width *width) 6263 { 6264 *speed = pcie_get_speed_cap(dev); 6265 *width = pcie_get_width_cap(dev); 6266 6267 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6268 return 0; 6269 6270 return *width * PCIE_SPEED2MBS_ENC(*speed); 6271 } 6272 6273 /** 6274 * __pcie_print_link_status - Report the PCI device's link speed and width 6275 * @dev: PCI device to query 6276 * @verbose: Print info even when enough bandwidth is available 6277 * 6278 * If the available bandwidth at the device is less than the device is 6279 * capable of, report the device's maximum possible bandwidth and the 6280 * upstream link that limits its performance. If @verbose, always print 6281 * the available bandwidth, even if the device isn't constrained. 6282 */ 6283 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6284 { 6285 enum pcie_link_width width, width_cap; 6286 enum pci_bus_speed speed, speed_cap; 6287 struct pci_dev *limiting_dev = NULL; 6288 u32 bw_avail, bw_cap; 6289 6290 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6291 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6292 6293 if (bw_avail >= bw_cap && verbose) 6294 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6295 bw_cap / 1000, bw_cap % 1000, 6296 pci_speed_string(speed_cap), width_cap); 6297 else if (bw_avail < bw_cap) 6298 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6299 bw_avail / 1000, bw_avail % 1000, 6300 pci_speed_string(speed), width, 6301 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6302 bw_cap / 1000, bw_cap % 1000, 6303 pci_speed_string(speed_cap), width_cap); 6304 } 6305 6306 /** 6307 * pcie_print_link_status - Report the PCI device's link speed and width 6308 * @dev: PCI device to query 6309 * 6310 * Report the available bandwidth at the device. 6311 */ 6312 void pcie_print_link_status(struct pci_dev *dev) 6313 { 6314 __pcie_print_link_status(dev, true); 6315 } 6316 EXPORT_SYMBOL(pcie_print_link_status); 6317 6318 /** 6319 * pci_select_bars - Make BAR mask from the type of resource 6320 * @dev: the PCI device for which BAR mask is made 6321 * @flags: resource type mask to be selected 6322 * 6323 * This helper routine makes bar mask from the type of resource. 6324 */ 6325 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6326 { 6327 int i, bars = 0; 6328 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6329 if (pci_resource_flags(dev, i) & flags) 6330 bars |= (1 << i); 6331 return bars; 6332 } 6333 EXPORT_SYMBOL(pci_select_bars); 6334 6335 /* Some architectures require additional programming to enable VGA */ 6336 static arch_set_vga_state_t arch_set_vga_state; 6337 6338 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6339 { 6340 arch_set_vga_state = func; /* NULL disables */ 6341 } 6342 6343 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6344 unsigned int command_bits, u32 flags) 6345 { 6346 if (arch_set_vga_state) 6347 return arch_set_vga_state(dev, decode, command_bits, 6348 flags); 6349 return 0; 6350 } 6351 6352 /** 6353 * pci_set_vga_state - set VGA decode state on device and parents if requested 6354 * @dev: the PCI device 6355 * @decode: true = enable decoding, false = disable decoding 6356 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6357 * @flags: traverse ancestors and change bridges 6358 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6359 */ 6360 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6361 unsigned int command_bits, u32 flags) 6362 { 6363 struct pci_bus *bus; 6364 struct pci_dev *bridge; 6365 u16 cmd; 6366 int rc; 6367 6368 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6369 6370 /* ARCH specific VGA enables */ 6371 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6372 if (rc) 6373 return rc; 6374 6375 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6376 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6377 if (decode) 6378 cmd |= command_bits; 6379 else 6380 cmd &= ~command_bits; 6381 pci_write_config_word(dev, PCI_COMMAND, cmd); 6382 } 6383 6384 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6385 return 0; 6386 6387 bus = dev->bus; 6388 while (bus) { 6389 bridge = bus->self; 6390 if (bridge) { 6391 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6392 &cmd); 6393 if (decode) 6394 cmd |= PCI_BRIDGE_CTL_VGA; 6395 else 6396 cmd &= ~PCI_BRIDGE_CTL_VGA; 6397 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6398 cmd); 6399 } 6400 bus = bus->parent; 6401 } 6402 return 0; 6403 } 6404 6405 #ifdef CONFIG_ACPI 6406 bool pci_pr3_present(struct pci_dev *pdev) 6407 { 6408 struct acpi_device *adev; 6409 6410 if (acpi_disabled) 6411 return false; 6412 6413 adev = ACPI_COMPANION(&pdev->dev); 6414 if (!adev) 6415 return false; 6416 6417 return adev->power.flags.power_resources && 6418 acpi_has_method(adev->handle, "_PR3"); 6419 } 6420 EXPORT_SYMBOL_GPL(pci_pr3_present); 6421 #endif 6422 6423 /** 6424 * pci_add_dma_alias - Add a DMA devfn alias for a device 6425 * @dev: the PCI device for which alias is added 6426 * @devfn_from: alias slot and function 6427 * @nr_devfns: number of subsequent devfns to alias 6428 * 6429 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6430 * which is used to program permissible bus-devfn source addresses for DMA 6431 * requests in an IOMMU. These aliases factor into IOMMU group creation 6432 * and are useful for devices generating DMA requests beyond or different 6433 * from their logical bus-devfn. Examples include device quirks where the 6434 * device simply uses the wrong devfn, as well as non-transparent bridges 6435 * where the alias may be a proxy for devices in another domain. 6436 * 6437 * IOMMU group creation is performed during device discovery or addition, 6438 * prior to any potential DMA mapping and therefore prior to driver probing 6439 * (especially for userspace assigned devices where IOMMU group definition 6440 * cannot be left as a userspace activity). DMA aliases should therefore 6441 * be configured via quirks, such as the PCI fixup header quirk. 6442 */ 6443 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6444 unsigned int nr_devfns) 6445 { 6446 int devfn_to; 6447 6448 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6449 devfn_to = devfn_from + nr_devfns - 1; 6450 6451 if (!dev->dma_alias_mask) 6452 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6453 if (!dev->dma_alias_mask) { 6454 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6455 return; 6456 } 6457 6458 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6459 6460 if (nr_devfns == 1) 6461 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6462 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6463 else if (nr_devfns > 1) 6464 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6465 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6466 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6467 } 6468 6469 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6470 { 6471 return (dev1->dma_alias_mask && 6472 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6473 (dev2->dma_alias_mask && 6474 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6475 pci_real_dma_dev(dev1) == dev2 || 6476 pci_real_dma_dev(dev2) == dev1; 6477 } 6478 6479 bool pci_device_is_present(struct pci_dev *pdev) 6480 { 6481 u32 v; 6482 6483 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6484 pdev = pci_physfn(pdev); 6485 if (pci_dev_is_disconnected(pdev)) 6486 return false; 6487 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6488 } 6489 EXPORT_SYMBOL_GPL(pci_device_is_present); 6490 6491 void pci_ignore_hotplug(struct pci_dev *dev) 6492 { 6493 struct pci_dev *bridge = dev->bus->self; 6494 6495 dev->ignore_hotplug = 1; 6496 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6497 if (bridge) 6498 bridge->ignore_hotplug = 1; 6499 } 6500 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6501 6502 /** 6503 * pci_real_dma_dev - Get PCI DMA device for PCI device 6504 * @dev: the PCI device that may have a PCI DMA alias 6505 * 6506 * Permits the platform to provide architecture-specific functionality to 6507 * devices needing to alias DMA to another PCI device on another PCI bus. If 6508 * the PCI device is on the same bus, it is recommended to use 6509 * pci_add_dma_alias(). This is the default implementation. Architecture 6510 * implementations can override this. 6511 */ 6512 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6513 { 6514 return dev; 6515 } 6516 6517 resource_size_t __weak pcibios_default_alignment(void) 6518 { 6519 return 0; 6520 } 6521 6522 /* 6523 * Arches that don't want to expose struct resource to userland as-is in 6524 * sysfs and /proc can implement their own pci_resource_to_user(). 6525 */ 6526 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6527 const struct resource *rsrc, 6528 resource_size_t *start, resource_size_t *end) 6529 { 6530 *start = rsrc->start; 6531 *end = rsrc->end; 6532 } 6533 6534 static char *resource_alignment_param; 6535 static DEFINE_SPINLOCK(resource_alignment_lock); 6536 6537 /** 6538 * pci_specified_resource_alignment - get resource alignment specified by user. 6539 * @dev: the PCI device to get 6540 * @resize: whether or not to change resources' size when reassigning alignment 6541 * 6542 * RETURNS: Resource alignment if it is specified. 6543 * Zero if it is not specified. 6544 */ 6545 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6546 bool *resize) 6547 { 6548 int align_order, count; 6549 resource_size_t align = pcibios_default_alignment(); 6550 const char *p; 6551 int ret; 6552 6553 spin_lock(&resource_alignment_lock); 6554 p = resource_alignment_param; 6555 if (!p || !*p) 6556 goto out; 6557 if (pci_has_flag(PCI_PROBE_ONLY)) { 6558 align = 0; 6559 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6560 goto out; 6561 } 6562 6563 while (*p) { 6564 count = 0; 6565 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6566 p[count] == '@') { 6567 p += count + 1; 6568 if (align_order > 63) { 6569 pr_err("PCI: Invalid requested alignment (order %d)\n", 6570 align_order); 6571 align_order = PAGE_SHIFT; 6572 } 6573 } else { 6574 align_order = PAGE_SHIFT; 6575 } 6576 6577 ret = pci_dev_str_match(dev, p, &p); 6578 if (ret == 1) { 6579 *resize = true; 6580 align = 1ULL << align_order; 6581 break; 6582 } else if (ret < 0) { 6583 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6584 p); 6585 break; 6586 } 6587 6588 if (*p != ';' && *p != ',') { 6589 /* End of param or invalid format */ 6590 break; 6591 } 6592 p++; 6593 } 6594 out: 6595 spin_unlock(&resource_alignment_lock); 6596 return align; 6597 } 6598 6599 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6600 resource_size_t align, bool resize) 6601 { 6602 struct resource *r = &dev->resource[bar]; 6603 const char *r_name = pci_resource_name(dev, bar); 6604 resource_size_t size; 6605 6606 if (!(r->flags & IORESOURCE_MEM)) 6607 return; 6608 6609 if (r->flags & IORESOURCE_PCI_FIXED) { 6610 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n", 6611 r_name, r, (unsigned long long)align); 6612 return; 6613 } 6614 6615 size = resource_size(r); 6616 if (size >= align) 6617 return; 6618 6619 /* 6620 * Increase the alignment of the resource. There are two ways we 6621 * can do this: 6622 * 6623 * 1) Increase the size of the resource. BARs are aligned on their 6624 * size, so when we reallocate space for this resource, we'll 6625 * allocate it with the larger alignment. This also prevents 6626 * assignment of any other BARs inside the alignment region, so 6627 * if we're requesting page alignment, this means no other BARs 6628 * will share the page. 6629 * 6630 * The disadvantage is that this makes the resource larger than 6631 * the hardware BAR, which may break drivers that compute things 6632 * based on the resource size, e.g., to find registers at a 6633 * fixed offset before the end of the BAR. 6634 * 6635 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6636 * set r->start to the desired alignment. By itself this 6637 * doesn't prevent other BARs being put inside the alignment 6638 * region, but if we realign *every* resource of every device in 6639 * the system, none of them will share an alignment region. 6640 * 6641 * When the user has requested alignment for only some devices via 6642 * the "pci=resource_alignment" argument, "resize" is true and we 6643 * use the first method. Otherwise we assume we're aligning all 6644 * devices and we use the second. 6645 */ 6646 6647 pci_info(dev, "%s %pR: requesting alignment to %#llx\n", 6648 r_name, r, (unsigned long long)align); 6649 6650 if (resize) { 6651 r->start = 0; 6652 r->end = align - 1; 6653 } else { 6654 r->flags &= ~IORESOURCE_SIZEALIGN; 6655 r->flags |= IORESOURCE_STARTALIGN; 6656 r->start = align; 6657 r->end = r->start + size - 1; 6658 } 6659 r->flags |= IORESOURCE_UNSET; 6660 } 6661 6662 /* 6663 * This function disables memory decoding and releases memory resources 6664 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6665 * It also rounds up size to specified alignment. 6666 * Later on, the kernel will assign page-aligned memory resource back 6667 * to the device. 6668 */ 6669 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6670 { 6671 int i; 6672 struct resource *r; 6673 resource_size_t align; 6674 u16 command; 6675 bool resize = false; 6676 6677 /* 6678 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6679 * 3.4.1.11. Their resources are allocated from the space 6680 * described by the VF BARx register in the PF's SR-IOV capability. 6681 * We can't influence their alignment here. 6682 */ 6683 if (dev->is_virtfn) 6684 return; 6685 6686 /* check if specified PCI is target device to reassign */ 6687 align = pci_specified_resource_alignment(dev, &resize); 6688 if (!align) 6689 return; 6690 6691 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6692 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6693 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6694 return; 6695 } 6696 6697 pci_read_config_word(dev, PCI_COMMAND, &command); 6698 command &= ~PCI_COMMAND_MEMORY; 6699 pci_write_config_word(dev, PCI_COMMAND, command); 6700 6701 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6702 pci_request_resource_alignment(dev, i, align, resize); 6703 6704 /* 6705 * Need to disable bridge's resource window, 6706 * to enable the kernel to reassign new resource 6707 * window later on. 6708 */ 6709 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6710 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6711 r = &dev->resource[i]; 6712 if (!(r->flags & IORESOURCE_MEM)) 6713 continue; 6714 r->flags |= IORESOURCE_UNSET; 6715 r->end = resource_size(r) - 1; 6716 r->start = 0; 6717 } 6718 pci_disable_bridge_window(dev); 6719 } 6720 } 6721 6722 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6723 { 6724 size_t count = 0; 6725 6726 spin_lock(&resource_alignment_lock); 6727 if (resource_alignment_param) 6728 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6729 spin_unlock(&resource_alignment_lock); 6730 6731 return count; 6732 } 6733 6734 static ssize_t resource_alignment_store(const struct bus_type *bus, 6735 const char *buf, size_t count) 6736 { 6737 char *param, *old, *end; 6738 6739 if (count >= (PAGE_SIZE - 1)) 6740 return -EINVAL; 6741 6742 param = kstrndup(buf, count, GFP_KERNEL); 6743 if (!param) 6744 return -ENOMEM; 6745 6746 end = strchr(param, '\n'); 6747 if (end) 6748 *end = '\0'; 6749 6750 spin_lock(&resource_alignment_lock); 6751 old = resource_alignment_param; 6752 if (strlen(param)) { 6753 resource_alignment_param = param; 6754 } else { 6755 kfree(param); 6756 resource_alignment_param = NULL; 6757 } 6758 spin_unlock(&resource_alignment_lock); 6759 6760 kfree(old); 6761 6762 return count; 6763 } 6764 6765 static BUS_ATTR_RW(resource_alignment); 6766 6767 static int __init pci_resource_alignment_sysfs_init(void) 6768 { 6769 return bus_create_file(&pci_bus_type, 6770 &bus_attr_resource_alignment); 6771 } 6772 late_initcall(pci_resource_alignment_sysfs_init); 6773 6774 static void pci_no_domains(void) 6775 { 6776 #ifdef CONFIG_PCI_DOMAINS 6777 pci_domains_supported = 0; 6778 #endif 6779 } 6780 6781 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6782 static DEFINE_IDA(pci_domain_nr_static_ida); 6783 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6784 6785 static void of_pci_reserve_static_domain_nr(void) 6786 { 6787 struct device_node *np; 6788 int domain_nr; 6789 6790 for_each_node_by_type(np, "pci") { 6791 domain_nr = of_get_pci_domain_nr(np); 6792 if (domain_nr < 0) 6793 continue; 6794 /* 6795 * Permanently allocate domain_nr in dynamic_ida 6796 * to prevent it from dynamic allocation. 6797 */ 6798 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6799 domain_nr, domain_nr, GFP_KERNEL); 6800 } 6801 } 6802 6803 static int of_pci_bus_find_domain_nr(struct device *parent) 6804 { 6805 static bool static_domains_reserved = false; 6806 int domain_nr; 6807 6808 /* On the first call scan device tree for static allocations. */ 6809 if (!static_domains_reserved) { 6810 of_pci_reserve_static_domain_nr(); 6811 static_domains_reserved = true; 6812 } 6813 6814 if (parent) { 6815 /* 6816 * If domain is in DT, allocate it in static IDA. This 6817 * prevents duplicate static allocations in case of errors 6818 * in DT. 6819 */ 6820 domain_nr = of_get_pci_domain_nr(parent->of_node); 6821 if (domain_nr >= 0) 6822 return ida_alloc_range(&pci_domain_nr_static_ida, 6823 domain_nr, domain_nr, 6824 GFP_KERNEL); 6825 } 6826 6827 /* 6828 * If domain was not specified in DT, choose a free ID from dynamic 6829 * allocations. All domain numbers from DT are permanently in 6830 * dynamic allocations to prevent assigning them to other DT nodes 6831 * without static domain. 6832 */ 6833 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6834 } 6835 6836 static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr) 6837 { 6838 if (domain_nr < 0) 6839 return; 6840 6841 /* Release domain from IDA where it was allocated. */ 6842 if (of_get_pci_domain_nr(parent->of_node) == domain_nr) 6843 ida_free(&pci_domain_nr_static_ida, domain_nr); 6844 else 6845 ida_free(&pci_domain_nr_dynamic_ida, domain_nr); 6846 } 6847 6848 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6849 { 6850 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6851 acpi_pci_bus_find_domain_nr(bus); 6852 } 6853 6854 void pci_bus_release_domain_nr(struct device *parent, int domain_nr) 6855 { 6856 if (!acpi_disabled) 6857 return; 6858 of_pci_bus_release_domain_nr(parent, domain_nr); 6859 } 6860 #endif 6861 6862 /** 6863 * pci_ext_cfg_avail - can we access extended PCI config space? 6864 * 6865 * Returns 1 if we can access PCI extended config space (offsets 6866 * greater than 0xff). This is the default implementation. Architecture 6867 * implementations can override this. 6868 */ 6869 int __weak pci_ext_cfg_avail(void) 6870 { 6871 return 1; 6872 } 6873 6874 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6875 { 6876 } 6877 EXPORT_SYMBOL(pci_fixup_cardbus); 6878 6879 static int __init pci_setup(char *str) 6880 { 6881 while (str) { 6882 char *k = strchr(str, ','); 6883 if (k) 6884 *k++ = 0; 6885 if (*str && (str = pcibios_setup(str)) && *str) { 6886 if (!strcmp(str, "nomsi")) { 6887 pci_no_msi(); 6888 } else if (!strncmp(str, "noats", 5)) { 6889 pr_info("PCIe: ATS is disabled\n"); 6890 pcie_ats_disabled = true; 6891 } else if (!strcmp(str, "noaer")) { 6892 pci_no_aer(); 6893 } else if (!strcmp(str, "earlydump")) { 6894 pci_early_dump = true; 6895 } else if (!strncmp(str, "realloc=", 8)) { 6896 pci_realloc_get_opt(str + 8); 6897 } else if (!strncmp(str, "realloc", 7)) { 6898 pci_realloc_get_opt("on"); 6899 } else if (!strcmp(str, "nodomains")) { 6900 pci_no_domains(); 6901 } else if (!strncmp(str, "noari", 5)) { 6902 pcie_ari_disabled = true; 6903 } else if (!strncmp(str, "cbiosize=", 9)) { 6904 pci_cardbus_io_size = memparse(str + 9, &str); 6905 } else if (!strncmp(str, "cbmemsize=", 10)) { 6906 pci_cardbus_mem_size = memparse(str + 10, &str); 6907 } else if (!strncmp(str, "resource_alignment=", 19)) { 6908 resource_alignment_param = str + 19; 6909 } else if (!strncmp(str, "ecrc=", 5)) { 6910 pcie_ecrc_get_policy(str + 5); 6911 } else if (!strncmp(str, "hpiosize=", 9)) { 6912 pci_hotplug_io_size = memparse(str + 9, &str); 6913 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6914 pci_hotplug_mmio_size = memparse(str + 11, &str); 6915 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6916 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6917 } else if (!strncmp(str, "hpmemsize=", 10)) { 6918 pci_hotplug_mmio_size = memparse(str + 10, &str); 6919 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6920 } else if (!strncmp(str, "hpbussize=", 10)) { 6921 pci_hotplug_bus_size = 6922 simple_strtoul(str + 10, &str, 0); 6923 if (pci_hotplug_bus_size > 0xff) 6924 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6925 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6926 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6927 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6928 pcie_bus_config = PCIE_BUS_SAFE; 6929 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6930 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6931 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6932 pcie_bus_config = PCIE_BUS_PEER2PEER; 6933 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6934 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6935 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6936 disable_acs_redir_param = str + 18; 6937 } else if (!strncmp(str, "config_acs=", 11)) { 6938 config_acs_param = str + 11; 6939 } else { 6940 pr_err("PCI: Unknown option `%s'\n", str); 6941 } 6942 } 6943 str = k; 6944 } 6945 return 0; 6946 } 6947 early_param("pci", pci_setup); 6948 6949 /* 6950 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6951 * in pci_setup(), above, to point to data in the __initdata section which 6952 * will be freed after the init sequence is complete. We can't allocate memory 6953 * in pci_setup() because some architectures do not have any memory allocation 6954 * service available during an early_param() call. So we allocate memory and 6955 * copy the variable here before the init section is freed. 6956 * 6957 */ 6958 static int __init pci_realloc_setup_params(void) 6959 { 6960 resource_alignment_param = kstrdup(resource_alignment_param, 6961 GFP_KERNEL); 6962 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6963 config_acs_param = kstrdup(config_acs_param, GFP_KERNEL); 6964 6965 return 0; 6966 } 6967 pure_initcall(pci_realloc_setup_params); 6968