1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/device.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/pci_hotplug.h> 29 #include <linux/vmalloc.h> 30 #include <asm/dma.h> 31 #include <linux/aer.h> 32 #include <linux/bitfield.h> 33 #include "pci.h" 34 35 DEFINE_MUTEX(pci_slot_mutex); 36 37 const char *pci_power_names[] = { 38 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 39 }; 40 EXPORT_SYMBOL_GPL(pci_power_names); 41 42 #ifdef CONFIG_X86_32 43 int isa_dma_bridge_buggy; 44 EXPORT_SYMBOL(isa_dma_bridge_buggy); 45 #endif 46 47 int pci_pci_problems; 48 EXPORT_SYMBOL(pci_pci_problems); 49 50 unsigned int pci_pm_d3hot_delay; 51 52 static void pci_pme_list_scan(struct work_struct *work); 53 54 static LIST_HEAD(pci_pme_list); 55 static DEFINE_MUTEX(pci_pme_list_mutex); 56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 57 58 struct pci_pme_device { 59 struct list_head list; 60 struct pci_dev *dev; 61 }; 62 63 #define PME_TIMEOUT 1000 /* How long between PME checks */ 64 65 /* 66 * Following exit from Conventional Reset, devices must be ready within 1 sec 67 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 68 * Reset (PCIe r6.0 sec 5.8). 69 */ 70 #define PCI_RESET_WAIT 1000 /* msec */ 71 72 /* 73 * Devices may extend the 1 sec period through Request Retry Status 74 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 75 * limit, but 60 sec ought to be enough for any device to become 76 * responsive. 77 */ 78 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 79 80 static void pci_dev_d3_sleep(struct pci_dev *dev) 81 { 82 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 83 unsigned int upper; 84 85 if (delay_ms) { 86 /* Use a 20% upper bound, 1ms minimum */ 87 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 88 usleep_range(delay_ms * USEC_PER_MSEC, 89 (delay_ms + upper) * USEC_PER_MSEC); 90 } 91 } 92 93 bool pci_reset_supported(struct pci_dev *dev) 94 { 95 return dev->reset_methods[0] != 0; 96 } 97 98 #ifdef CONFIG_PCI_DOMAINS 99 int pci_domains_supported = 1; 100 #endif 101 102 #define DEFAULT_CARDBUS_IO_SIZE (256) 103 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 104 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 105 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 106 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 107 108 #define DEFAULT_HOTPLUG_IO_SIZE (256) 109 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 110 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 111 /* hpiosize=nn can override this */ 112 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 113 /* 114 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 115 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 116 * pci=hpmemsize=nnM overrides both 117 */ 118 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 119 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 120 121 #define DEFAULT_HOTPLUG_BUS_SIZE 1 122 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 123 124 125 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 126 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 127 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 128 #elif defined CONFIG_PCIE_BUS_SAFE 129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 130 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 132 #elif defined CONFIG_PCIE_BUS_PEER2PEER 133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 134 #else 135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 136 #endif 137 138 /* 139 * The default CLS is used if arch didn't set CLS explicitly and not 140 * all pci devices agree on the same value. Arch can override either 141 * the dfl or actual value as it sees fit. Don't forget this is 142 * measured in 32-bit words, not bytes. 143 */ 144 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2; 145 u8 pci_cache_line_size __ro_after_init ; 146 147 /* 148 * If we set up a device for bus mastering, we need to check the latency 149 * timer as certain BIOSes forget to set it properly. 150 */ 151 unsigned int pcibios_max_latency = 255; 152 153 /* If set, the PCIe ARI capability will not be used. */ 154 static bool pcie_ari_disabled; 155 156 /* If set, the PCIe ATS capability will not be used. */ 157 static bool pcie_ats_disabled; 158 159 /* If set, the PCI config space of each device is printed during boot. */ 160 bool pci_early_dump; 161 162 bool pci_ats_disabled(void) 163 { 164 return pcie_ats_disabled; 165 } 166 EXPORT_SYMBOL_GPL(pci_ats_disabled); 167 168 /* Disable bridge_d3 for all PCIe ports */ 169 static bool pci_bridge_d3_disable; 170 /* Force bridge_d3 for all PCIe ports */ 171 static bool pci_bridge_d3_force; 172 173 static int __init pcie_port_pm_setup(char *str) 174 { 175 if (!strcmp(str, "off")) 176 pci_bridge_d3_disable = true; 177 else if (!strcmp(str, "force")) 178 pci_bridge_d3_force = true; 179 return 1; 180 } 181 __setup("pcie_port_pm=", pcie_port_pm_setup); 182 183 /** 184 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 185 * @bus: pointer to PCI bus structure to search 186 * 187 * Given a PCI bus, returns the highest PCI bus number present in the set 188 * including the given PCI bus and its list of child PCI buses. 189 */ 190 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 191 { 192 struct pci_bus *tmp; 193 unsigned char max, n; 194 195 max = bus->busn_res.end; 196 list_for_each_entry(tmp, &bus->children, node) { 197 n = pci_bus_max_busnr(tmp); 198 if (n > max) 199 max = n; 200 } 201 return max; 202 } 203 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 204 205 /** 206 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 207 * @pdev: the PCI device 208 * 209 * Returns error bits set in PCI_STATUS and clears them. 210 */ 211 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 212 { 213 u16 status; 214 int ret; 215 216 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 217 if (ret != PCIBIOS_SUCCESSFUL) 218 return -EIO; 219 220 status &= PCI_STATUS_ERROR_BITS; 221 if (status) 222 pci_write_config_word(pdev, PCI_STATUS, status); 223 224 return status; 225 } 226 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 227 228 #ifdef CONFIG_HAS_IOMEM 229 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 230 bool write_combine) 231 { 232 struct resource *res = &pdev->resource[bar]; 233 resource_size_t start = res->start; 234 resource_size_t size = resource_size(res); 235 236 /* 237 * Make sure the BAR is actually a memory resource, not an IO resource 238 */ 239 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 240 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 241 return NULL; 242 } 243 244 if (write_combine) 245 return ioremap_wc(start, size); 246 247 return ioremap(start, size); 248 } 249 250 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 251 { 252 return __pci_ioremap_resource(pdev, bar, false); 253 } 254 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 255 256 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 257 { 258 return __pci_ioremap_resource(pdev, bar, true); 259 } 260 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 261 #endif 262 263 /** 264 * pci_dev_str_match_path - test if a path string matches a device 265 * @dev: the PCI device to test 266 * @path: string to match the device against 267 * @endptr: pointer to the string after the match 268 * 269 * Test if a string (typically from a kernel parameter) formatted as a 270 * path of device/function addresses matches a PCI device. The string must 271 * be of the form: 272 * 273 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 274 * 275 * A path for a device can be obtained using 'lspci -t'. Using a path 276 * is more robust against bus renumbering than using only a single bus, 277 * device and function address. 278 * 279 * Returns 1 if the string matches the device, 0 if it does not and 280 * a negative error code if it fails to parse the string. 281 */ 282 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 283 const char **endptr) 284 { 285 int ret; 286 unsigned int seg, bus, slot, func; 287 char *wpath, *p; 288 char end; 289 290 *endptr = strchrnul(path, ';'); 291 292 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 293 if (!wpath) 294 return -ENOMEM; 295 296 while (1) { 297 p = strrchr(wpath, '/'); 298 if (!p) 299 break; 300 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 301 if (ret != 2) { 302 ret = -EINVAL; 303 goto free_and_exit; 304 } 305 306 if (dev->devfn != PCI_DEVFN(slot, func)) { 307 ret = 0; 308 goto free_and_exit; 309 } 310 311 /* 312 * Note: we don't need to get a reference to the upstream 313 * bridge because we hold a reference to the top level 314 * device which should hold a reference to the bridge, 315 * and so on. 316 */ 317 dev = pci_upstream_bridge(dev); 318 if (!dev) { 319 ret = 0; 320 goto free_and_exit; 321 } 322 323 *p = 0; 324 } 325 326 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 327 &func, &end); 328 if (ret != 4) { 329 seg = 0; 330 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 331 if (ret != 3) { 332 ret = -EINVAL; 333 goto free_and_exit; 334 } 335 } 336 337 ret = (seg == pci_domain_nr(dev->bus) && 338 bus == dev->bus->number && 339 dev->devfn == PCI_DEVFN(slot, func)); 340 341 free_and_exit: 342 kfree(wpath); 343 return ret; 344 } 345 346 /** 347 * pci_dev_str_match - test if a string matches a device 348 * @dev: the PCI device to test 349 * @p: string to match the device against 350 * @endptr: pointer to the string after the match 351 * 352 * Test if a string (typically from a kernel parameter) matches a specified 353 * PCI device. The string may be of one of the following formats: 354 * 355 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 356 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 357 * 358 * The first format specifies a PCI bus/device/function address which 359 * may change if new hardware is inserted, if motherboard firmware changes, 360 * or due to changes caused in kernel parameters. If the domain is 361 * left unspecified, it is taken to be 0. In order to be robust against 362 * bus renumbering issues, a path of PCI device/function numbers may be used 363 * to address the specific device. The path for a device can be determined 364 * through the use of 'lspci -t'. 365 * 366 * The second format matches devices using IDs in the configuration 367 * space which may match multiple devices in the system. A value of 0 368 * for any field will match all devices. (Note: this differs from 369 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 370 * legacy reasons and convenience so users don't have to specify 371 * FFFFFFFFs on the command line.) 372 * 373 * Returns 1 if the string matches the device, 0 if it does not and 374 * a negative error code if the string cannot be parsed. 375 */ 376 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 377 const char **endptr) 378 { 379 int ret; 380 int count; 381 unsigned short vendor, device, subsystem_vendor, subsystem_device; 382 383 if (strncmp(p, "pci:", 4) == 0) { 384 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 385 p += 4; 386 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 387 &subsystem_vendor, &subsystem_device, &count); 388 if (ret != 4) { 389 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 390 if (ret != 2) 391 return -EINVAL; 392 393 subsystem_vendor = 0; 394 subsystem_device = 0; 395 } 396 397 p += count; 398 399 if ((!vendor || vendor == dev->vendor) && 400 (!device || device == dev->device) && 401 (!subsystem_vendor || 402 subsystem_vendor == dev->subsystem_vendor) && 403 (!subsystem_device || 404 subsystem_device == dev->subsystem_device)) 405 goto found; 406 } else { 407 /* 408 * PCI Bus, Device, Function IDs are specified 409 * (optionally, may include a path of devfns following it) 410 */ 411 ret = pci_dev_str_match_path(dev, p, &p); 412 if (ret < 0) 413 return ret; 414 else if (ret) 415 goto found; 416 } 417 418 *endptr = p; 419 return 0; 420 421 found: 422 *endptr = p; 423 return 1; 424 } 425 426 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 427 u8 pos, int cap, int *ttl) 428 { 429 u8 id; 430 u16 ent; 431 432 pci_bus_read_config_byte(bus, devfn, pos, &pos); 433 434 while ((*ttl)--) { 435 if (pos < 0x40) 436 break; 437 pos &= ~3; 438 pci_bus_read_config_word(bus, devfn, pos, &ent); 439 440 id = ent & 0xff; 441 if (id == 0xff) 442 break; 443 if (id == cap) 444 return pos; 445 pos = (ent >> 8); 446 } 447 return 0; 448 } 449 450 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 451 u8 pos, int cap) 452 { 453 int ttl = PCI_FIND_CAP_TTL; 454 455 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 456 } 457 458 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 459 { 460 return __pci_find_next_cap(dev->bus, dev->devfn, 461 pos + PCI_CAP_LIST_NEXT, cap); 462 } 463 EXPORT_SYMBOL_GPL(pci_find_next_capability); 464 465 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 466 unsigned int devfn, u8 hdr_type) 467 { 468 u16 status; 469 470 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 471 if (!(status & PCI_STATUS_CAP_LIST)) 472 return 0; 473 474 switch (hdr_type) { 475 case PCI_HEADER_TYPE_NORMAL: 476 case PCI_HEADER_TYPE_BRIDGE: 477 return PCI_CAPABILITY_LIST; 478 case PCI_HEADER_TYPE_CARDBUS: 479 return PCI_CB_CAPABILITY_LIST; 480 } 481 482 return 0; 483 } 484 485 /** 486 * pci_find_capability - query for devices' capabilities 487 * @dev: PCI device to query 488 * @cap: capability code 489 * 490 * Tell if a device supports a given PCI capability. 491 * Returns the address of the requested capability structure within the 492 * device's PCI configuration space or 0 in case the device does not 493 * support it. Possible values for @cap include: 494 * 495 * %PCI_CAP_ID_PM Power Management 496 * %PCI_CAP_ID_AGP Accelerated Graphics Port 497 * %PCI_CAP_ID_VPD Vital Product Data 498 * %PCI_CAP_ID_SLOTID Slot Identification 499 * %PCI_CAP_ID_MSI Message Signalled Interrupts 500 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 501 * %PCI_CAP_ID_PCIX PCI-X 502 * %PCI_CAP_ID_EXP PCI Express 503 */ 504 u8 pci_find_capability(struct pci_dev *dev, int cap) 505 { 506 u8 pos; 507 508 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 509 if (pos) 510 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 511 512 return pos; 513 } 514 EXPORT_SYMBOL(pci_find_capability); 515 516 /** 517 * pci_bus_find_capability - query for devices' capabilities 518 * @bus: the PCI bus to query 519 * @devfn: PCI device to query 520 * @cap: capability code 521 * 522 * Like pci_find_capability() but works for PCI devices that do not have a 523 * pci_dev structure set up yet. 524 * 525 * Returns the address of the requested capability structure within the 526 * device's PCI configuration space or 0 in case the device does not 527 * support it. 528 */ 529 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 530 { 531 u8 hdr_type, pos; 532 533 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 534 535 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK); 536 if (pos) 537 pos = __pci_find_next_cap(bus, devfn, pos, cap); 538 539 return pos; 540 } 541 EXPORT_SYMBOL(pci_bus_find_capability); 542 543 /** 544 * pci_find_next_ext_capability - Find an extended capability 545 * @dev: PCI device to query 546 * @start: address at which to start looking (0 to start at beginning of list) 547 * @cap: capability code 548 * 549 * Returns the address of the next matching extended capability structure 550 * within the device's PCI configuration space or 0 if the device does 551 * not support it. Some capabilities can occur several times, e.g., the 552 * vendor-specific capability, and this provides a way to find them all. 553 */ 554 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 555 { 556 u32 header; 557 int ttl; 558 u16 pos = PCI_CFG_SPACE_SIZE; 559 560 /* minimum 8 bytes per capability */ 561 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 562 563 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 564 return 0; 565 566 if (start) 567 pos = start; 568 569 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 570 return 0; 571 572 /* 573 * If we have no capabilities, this is indicated by cap ID, 574 * cap version and next pointer all being 0. 575 */ 576 if (header == 0) 577 return 0; 578 579 while (ttl-- > 0) { 580 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 581 return pos; 582 583 pos = PCI_EXT_CAP_NEXT(header); 584 if (pos < PCI_CFG_SPACE_SIZE) 585 break; 586 587 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 588 break; 589 } 590 591 return 0; 592 } 593 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 594 595 /** 596 * pci_find_ext_capability - Find an extended capability 597 * @dev: PCI device to query 598 * @cap: capability code 599 * 600 * Returns the address of the requested extended capability structure 601 * within the device's PCI configuration space or 0 if the device does 602 * not support it. Possible values for @cap include: 603 * 604 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 605 * %PCI_EXT_CAP_ID_VC Virtual Channel 606 * %PCI_EXT_CAP_ID_DSN Device Serial Number 607 * %PCI_EXT_CAP_ID_PWR Power Budgeting 608 */ 609 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 610 { 611 return pci_find_next_ext_capability(dev, 0, cap); 612 } 613 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 614 615 /** 616 * pci_get_dsn - Read and return the 8-byte Device Serial Number 617 * @dev: PCI device to query 618 * 619 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 620 * Number. 621 * 622 * Returns the DSN, or zero if the capability does not exist. 623 */ 624 u64 pci_get_dsn(struct pci_dev *dev) 625 { 626 u32 dword; 627 u64 dsn; 628 int pos; 629 630 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 631 if (!pos) 632 return 0; 633 634 /* 635 * The Device Serial Number is two dwords offset 4 bytes from the 636 * capability position. The specification says that the first dword is 637 * the lower half, and the second dword is the upper half. 638 */ 639 pos += 4; 640 pci_read_config_dword(dev, pos, &dword); 641 dsn = (u64)dword; 642 pci_read_config_dword(dev, pos + 4, &dword); 643 dsn |= ((u64)dword) << 32; 644 645 return dsn; 646 } 647 EXPORT_SYMBOL_GPL(pci_get_dsn); 648 649 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 650 { 651 int rc, ttl = PCI_FIND_CAP_TTL; 652 u8 cap, mask; 653 654 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 655 mask = HT_3BIT_CAP_MASK; 656 else 657 mask = HT_5BIT_CAP_MASK; 658 659 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 660 PCI_CAP_ID_HT, &ttl); 661 while (pos) { 662 rc = pci_read_config_byte(dev, pos + 3, &cap); 663 if (rc != PCIBIOS_SUCCESSFUL) 664 return 0; 665 666 if ((cap & mask) == ht_cap) 667 return pos; 668 669 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 670 pos + PCI_CAP_LIST_NEXT, 671 PCI_CAP_ID_HT, &ttl); 672 } 673 674 return 0; 675 } 676 677 /** 678 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 679 * @dev: PCI device to query 680 * @pos: Position from which to continue searching 681 * @ht_cap: HyperTransport capability code 682 * 683 * To be used in conjunction with pci_find_ht_capability() to search for 684 * all capabilities matching @ht_cap. @pos should always be a value returned 685 * from pci_find_ht_capability(). 686 * 687 * NB. To be 100% safe against broken PCI devices, the caller should take 688 * steps to avoid an infinite loop. 689 */ 690 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 691 { 692 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 693 } 694 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 695 696 /** 697 * pci_find_ht_capability - query a device's HyperTransport capabilities 698 * @dev: PCI device to query 699 * @ht_cap: HyperTransport capability code 700 * 701 * Tell if a device supports a given HyperTransport capability. 702 * Returns an address within the device's PCI configuration space 703 * or 0 in case the device does not support the request capability. 704 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 705 * which has a HyperTransport capability matching @ht_cap. 706 */ 707 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 708 { 709 u8 pos; 710 711 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 712 if (pos) 713 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 714 715 return pos; 716 } 717 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 718 719 /** 720 * pci_find_vsec_capability - Find a vendor-specific extended capability 721 * @dev: PCI device to query 722 * @vendor: Vendor ID for which capability is defined 723 * @cap: Vendor-specific capability ID 724 * 725 * If @dev has Vendor ID @vendor, search for a VSEC capability with 726 * VSEC ID @cap. If found, return the capability offset in 727 * config space; otherwise return 0. 728 */ 729 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 730 { 731 u16 vsec = 0; 732 u32 header; 733 int ret; 734 735 if (vendor != dev->vendor) 736 return 0; 737 738 while ((vsec = pci_find_next_ext_capability(dev, vsec, 739 PCI_EXT_CAP_ID_VNDR))) { 740 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 741 if (ret != PCIBIOS_SUCCESSFUL) 742 continue; 743 744 if (PCI_VNDR_HEADER_ID(header) == cap) 745 return vsec; 746 } 747 748 return 0; 749 } 750 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 751 752 /** 753 * pci_find_dvsec_capability - Find DVSEC for vendor 754 * @dev: PCI device to query 755 * @vendor: Vendor ID to match for the DVSEC 756 * @dvsec: Designated Vendor-specific capability ID 757 * 758 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 759 * offset in config space; otherwise return 0. 760 */ 761 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 762 { 763 int pos; 764 765 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 766 if (!pos) 767 return 0; 768 769 while (pos) { 770 u16 v, id; 771 772 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 774 if (vendor == v && dvsec == id) 775 return pos; 776 777 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 778 } 779 780 return 0; 781 } 782 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 783 784 /** 785 * pci_find_parent_resource - return resource region of parent bus of given 786 * region 787 * @dev: PCI device structure contains resources to be searched 788 * @res: child resource record for which parent is sought 789 * 790 * For given resource region of given device, return the resource region of 791 * parent bus the given region is contained in. 792 */ 793 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 794 struct resource *res) 795 { 796 const struct pci_bus *bus = dev->bus; 797 struct resource *r; 798 799 pci_bus_for_each_resource(bus, r) { 800 if (!r) 801 continue; 802 if (resource_contains(r, res)) { 803 804 /* 805 * If the window is prefetchable but the BAR is 806 * not, the allocator made a mistake. 807 */ 808 if (r->flags & IORESOURCE_PREFETCH && 809 !(res->flags & IORESOURCE_PREFETCH)) 810 return NULL; 811 812 /* 813 * If we're below a transparent bridge, there may 814 * be both a positively-decoded aperture and a 815 * subtractively-decoded region that contain the BAR. 816 * We want the positively-decoded one, so this depends 817 * on pci_bus_for_each_resource() giving us those 818 * first. 819 */ 820 return r; 821 } 822 } 823 return NULL; 824 } 825 EXPORT_SYMBOL(pci_find_parent_resource); 826 827 /** 828 * pci_find_resource - Return matching PCI device resource 829 * @dev: PCI device to query 830 * @res: Resource to look for 831 * 832 * Goes over standard PCI resources (BARs) and checks if the given resource 833 * is partially or fully contained in any of them. In that case the 834 * matching resource is returned, %NULL otherwise. 835 */ 836 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 837 { 838 int i; 839 840 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 841 struct resource *r = &dev->resource[i]; 842 843 if (r->start && resource_contains(r, res)) 844 return r; 845 } 846 847 return NULL; 848 } 849 EXPORT_SYMBOL(pci_find_resource); 850 851 /** 852 * pci_resource_name - Return the name of the PCI resource 853 * @dev: PCI device to query 854 * @i: index of the resource 855 * 856 * Return the standard PCI resource (BAR) name according to their index. 857 */ 858 const char *pci_resource_name(struct pci_dev *dev, unsigned int i) 859 { 860 static const char * const bar_name[] = { 861 "BAR 0", 862 "BAR 1", 863 "BAR 2", 864 "BAR 3", 865 "BAR 4", 866 "BAR 5", 867 "ROM", 868 #ifdef CONFIG_PCI_IOV 869 "VF BAR 0", 870 "VF BAR 1", 871 "VF BAR 2", 872 "VF BAR 3", 873 "VF BAR 4", 874 "VF BAR 5", 875 #endif 876 "bridge window", /* "io" included in %pR */ 877 "bridge window", /* "mem" included in %pR */ 878 "bridge window", /* "mem pref" included in %pR */ 879 }; 880 static const char * const cardbus_name[] = { 881 "BAR 1", 882 "unknown", 883 "unknown", 884 "unknown", 885 "unknown", 886 "unknown", 887 #ifdef CONFIG_PCI_IOV 888 "unknown", 889 "unknown", 890 "unknown", 891 "unknown", 892 "unknown", 893 "unknown", 894 #endif 895 "CardBus bridge window 0", /* I/O */ 896 "CardBus bridge window 1", /* I/O */ 897 "CardBus bridge window 0", /* mem */ 898 "CardBus bridge window 1", /* mem */ 899 }; 900 901 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS && 902 i < ARRAY_SIZE(cardbus_name)) 903 return cardbus_name[i]; 904 905 if (i < ARRAY_SIZE(bar_name)) 906 return bar_name[i]; 907 908 return "unknown"; 909 } 910 911 /** 912 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 913 * @dev: the PCI device to operate on 914 * @pos: config space offset of status word 915 * @mask: mask of bit(s) to care about in status word 916 * 917 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 918 */ 919 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 920 { 921 int i; 922 923 /* Wait for Transaction Pending bit clean */ 924 for (i = 0; i < 4; i++) { 925 u16 status; 926 if (i) 927 msleep((1 << (i - 1)) * 100); 928 929 pci_read_config_word(dev, pos, &status); 930 if (!(status & mask)) 931 return 1; 932 } 933 934 return 0; 935 } 936 937 static int pci_acs_enable; 938 939 /** 940 * pci_request_acs - ask for ACS to be enabled if supported 941 */ 942 void pci_request_acs(void) 943 { 944 pci_acs_enable = 1; 945 } 946 947 static const char *disable_acs_redir_param; 948 static const char *config_acs_param; 949 950 struct pci_acs { 951 u16 cap; 952 u16 ctrl; 953 u16 fw_ctrl; 954 }; 955 956 static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps, 957 const char *p, u16 mask, u16 flags) 958 { 959 char *delimit; 960 int ret = 0; 961 962 if (!p) 963 return; 964 965 while (*p) { 966 if (!mask) { 967 /* Check for ACS flags */ 968 delimit = strstr(p, "@"); 969 if (delimit) { 970 int end; 971 u32 shift = 0; 972 973 end = delimit - p - 1; 974 975 while (end > -1) { 976 if (*(p + end) == '0') { 977 mask |= 1 << shift; 978 shift++; 979 end--; 980 } else if (*(p + end) == '1') { 981 mask |= 1 << shift; 982 flags |= 1 << shift; 983 shift++; 984 end--; 985 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) { 986 shift++; 987 end--; 988 } else { 989 pci_err(dev, "Invalid ACS flags... Ignoring\n"); 990 return; 991 } 992 } 993 p = delimit + 1; 994 } else { 995 pci_err(dev, "ACS Flags missing\n"); 996 return; 997 } 998 } 999 1000 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR | 1001 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) { 1002 pci_err(dev, "Invalid ACS flags specified\n"); 1003 return; 1004 } 1005 1006 ret = pci_dev_str_match(dev, p, &p); 1007 if (ret < 0) { 1008 pr_info_once("PCI: Can't parse ACS command line parameter\n"); 1009 break; 1010 } else if (ret == 1) { 1011 /* Found a match */ 1012 break; 1013 } 1014 1015 if (*p != ';' && *p != ',') { 1016 /* End of param or invalid format */ 1017 break; 1018 } 1019 p++; 1020 } 1021 1022 if (ret != 1) 1023 return; 1024 1025 if (!pci_dev_specific_disable_acs_redir(dev)) 1026 return; 1027 1028 pci_dbg(dev, "ACS mask = %#06x\n", mask); 1029 pci_dbg(dev, "ACS flags = %#06x\n", flags); 1030 1031 /* If mask is 0 then we copy the bit from the firmware setting. */ 1032 caps->ctrl = (caps->ctrl & ~mask) | (caps->fw_ctrl & mask); 1033 caps->ctrl |= flags; 1034 1035 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl); 1036 } 1037 1038 /** 1039 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 1040 * @dev: the PCI device 1041 * @caps: default ACS controls 1042 */ 1043 static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps) 1044 { 1045 /* Source Validation */ 1046 caps->ctrl |= (caps->cap & PCI_ACS_SV); 1047 1048 /* P2P Request Redirect */ 1049 caps->ctrl |= (caps->cap & PCI_ACS_RR); 1050 1051 /* P2P Completion Redirect */ 1052 caps->ctrl |= (caps->cap & PCI_ACS_CR); 1053 1054 /* Upstream Forwarding */ 1055 caps->ctrl |= (caps->cap & PCI_ACS_UF); 1056 1057 /* Enable Translation Blocking for external devices and noats */ 1058 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 1059 caps->ctrl |= (caps->cap & PCI_ACS_TB); 1060 } 1061 1062 /** 1063 * pci_enable_acs - enable ACS if hardware support it 1064 * @dev: the PCI device 1065 */ 1066 static void pci_enable_acs(struct pci_dev *dev) 1067 { 1068 struct pci_acs caps; 1069 bool enable_acs = false; 1070 int pos; 1071 1072 /* If an iommu is present we start with kernel default caps */ 1073 if (pci_acs_enable) { 1074 if (pci_dev_specific_enable_acs(dev)) 1075 enable_acs = true; 1076 } 1077 1078 pos = dev->acs_cap; 1079 if (!pos) 1080 return; 1081 1082 pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap); 1083 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl); 1084 caps.fw_ctrl = caps.ctrl; 1085 1086 if (enable_acs) 1087 pci_std_enable_acs(dev, &caps); 1088 1089 /* 1090 * Always apply caps from the command line, even if there is no iommu. 1091 * Trust that the admin has a reason to change the ACS settings. 1092 */ 1093 __pci_config_acs(dev, &caps, disable_acs_redir_param, 1094 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC, 1095 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)); 1096 __pci_config_acs(dev, &caps, config_acs_param, 0, 0); 1097 1098 pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl); 1099 } 1100 1101 /** 1102 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1103 * @dev: PCI device to have its BARs restored 1104 * 1105 * Restore the BAR values for a given device, so as to make it 1106 * accessible by its driver. 1107 */ 1108 static void pci_restore_bars(struct pci_dev *dev) 1109 { 1110 int i; 1111 1112 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1113 pci_update_resource(dev, i); 1114 } 1115 1116 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1117 { 1118 if (pci_use_mid_pm()) 1119 return true; 1120 1121 return acpi_pci_power_manageable(dev); 1122 } 1123 1124 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1125 pci_power_t t) 1126 { 1127 if (pci_use_mid_pm()) 1128 return mid_pci_set_power_state(dev, t); 1129 1130 return acpi_pci_set_power_state(dev, t); 1131 } 1132 1133 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1134 { 1135 if (pci_use_mid_pm()) 1136 return mid_pci_get_power_state(dev); 1137 1138 return acpi_pci_get_power_state(dev); 1139 } 1140 1141 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1142 { 1143 if (!pci_use_mid_pm()) 1144 acpi_pci_refresh_power_state(dev); 1145 } 1146 1147 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1148 { 1149 if (pci_use_mid_pm()) 1150 return PCI_POWER_ERROR; 1151 1152 return acpi_pci_choose_state(dev); 1153 } 1154 1155 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1156 { 1157 if (pci_use_mid_pm()) 1158 return PCI_POWER_ERROR; 1159 1160 return acpi_pci_wakeup(dev, enable); 1161 } 1162 1163 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1164 { 1165 if (pci_use_mid_pm()) 1166 return false; 1167 1168 return acpi_pci_need_resume(dev); 1169 } 1170 1171 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1172 { 1173 if (pci_use_mid_pm()) 1174 return false; 1175 1176 return acpi_pci_bridge_d3(dev); 1177 } 1178 1179 /** 1180 * pci_update_current_state - Read power state of given device and cache it 1181 * @dev: PCI device to handle. 1182 * @state: State to cache in case the device doesn't have the PM capability 1183 * 1184 * The power state is read from the PMCSR register, which however is 1185 * inaccessible in D3cold. The platform firmware is therefore queried first 1186 * to detect accessibility of the register. In case the platform firmware 1187 * reports an incorrect state or the device isn't power manageable by the 1188 * platform at all, we try to detect D3cold by testing accessibility of the 1189 * vendor ID in config space. 1190 */ 1191 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1192 { 1193 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1194 dev->current_state = PCI_D3cold; 1195 } else if (dev->pm_cap) { 1196 u16 pmcsr; 1197 1198 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1199 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1200 dev->current_state = PCI_D3cold; 1201 return; 1202 } 1203 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1204 } else { 1205 dev->current_state = state; 1206 } 1207 } 1208 1209 /** 1210 * pci_refresh_power_state - Refresh the given device's power state data 1211 * @dev: Target PCI device. 1212 * 1213 * Ask the platform to refresh the devices power state information and invoke 1214 * pci_update_current_state() to update its current PCI power state. 1215 */ 1216 void pci_refresh_power_state(struct pci_dev *dev) 1217 { 1218 platform_pci_refresh_power_state(dev); 1219 pci_update_current_state(dev, dev->current_state); 1220 } 1221 1222 /** 1223 * pci_platform_power_transition - Use platform to change device power state 1224 * @dev: PCI device to handle. 1225 * @state: State to put the device into. 1226 */ 1227 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1228 { 1229 int error; 1230 1231 error = platform_pci_set_power_state(dev, state); 1232 if (!error) 1233 pci_update_current_state(dev, state); 1234 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1235 dev->current_state = PCI_D0; 1236 1237 return error; 1238 } 1239 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1240 1241 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1242 { 1243 pm_request_resume(&pci_dev->dev); 1244 return 0; 1245 } 1246 1247 /** 1248 * pci_resume_bus - Walk given bus and runtime resume devices on it 1249 * @bus: Top bus of the subtree to walk. 1250 */ 1251 void pci_resume_bus(struct pci_bus *bus) 1252 { 1253 if (bus) 1254 pci_walk_bus(bus, pci_resume_one, NULL); 1255 } 1256 1257 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1258 { 1259 int delay = 1; 1260 bool retrain = false; 1261 struct pci_dev *root, *bridge; 1262 1263 root = pcie_find_root_port(dev); 1264 1265 if (pci_is_pcie(dev)) { 1266 bridge = pci_upstream_bridge(dev); 1267 if (bridge) 1268 retrain = true; 1269 } 1270 1271 /* 1272 * The caller has already waited long enough after a reset that the 1273 * device should respond to config requests, but it may respond 1274 * with Request Retry Status (RRS) if it needs more time to 1275 * initialize. 1276 * 1277 * If the device is below a Root Port with Configuration RRS 1278 * Software Visibility enabled, reading the Vendor ID returns a 1279 * special data value if the device responded with RRS. Read the 1280 * Vendor ID until we get non-RRS status. 1281 * 1282 * If there's no Root Port or Configuration RRS Software Visibility 1283 * is not enabled, the device may still respond with RRS, but 1284 * hardware may retry the config request. If no retries receive 1285 * Successful Completion, hardware generally synthesizes ~0 1286 * (PCI_ERROR_RESPONSE) data to complete the read. Reading Vendor 1287 * ID for VFs and non-existent devices also returns ~0, so read the 1288 * Command register until it returns something other than ~0. 1289 */ 1290 for (;;) { 1291 u32 id; 1292 1293 if (pci_dev_is_disconnected(dev)) { 1294 pci_dbg(dev, "disconnected; not waiting\n"); 1295 return -ENOTTY; 1296 } 1297 1298 if (root && root->config_rrs_sv) { 1299 pci_read_config_dword(dev, PCI_VENDOR_ID, &id); 1300 if (!pci_bus_rrs_vendor_id(id)) 1301 break; 1302 } else { 1303 pci_read_config_dword(dev, PCI_COMMAND, &id); 1304 if (!PCI_POSSIBLE_ERROR(id)) 1305 break; 1306 } 1307 1308 if (delay > timeout) { 1309 pci_warn(dev, "not ready %dms after %s; giving up\n", 1310 delay - 1, reset_type); 1311 return -ENOTTY; 1312 } 1313 1314 if (delay > PCI_RESET_WAIT) { 1315 if (retrain) { 1316 retrain = false; 1317 if (pcie_failed_link_retrain(bridge) == 0) { 1318 delay = 1; 1319 continue; 1320 } 1321 } 1322 pci_info(dev, "not ready %dms after %s; waiting\n", 1323 delay - 1, reset_type); 1324 } 1325 1326 msleep(delay); 1327 delay *= 2; 1328 } 1329 1330 if (delay > PCI_RESET_WAIT) 1331 pci_info(dev, "ready %dms after %s\n", delay - 1, 1332 reset_type); 1333 else 1334 pci_dbg(dev, "ready %dms after %s\n", delay - 1, 1335 reset_type); 1336 1337 return 0; 1338 } 1339 1340 /** 1341 * pci_power_up - Put the given device into D0 1342 * @dev: PCI device to power up 1343 * 1344 * On success, return 0 or 1, depending on whether or not it is necessary to 1345 * restore the device's BARs subsequently (1 is returned in that case). 1346 * 1347 * On failure, return a negative error code. Always return failure if @dev 1348 * lacks a Power Management Capability, even if the platform was able to 1349 * put the device in D0 via non-PCI means. 1350 */ 1351 int pci_power_up(struct pci_dev *dev) 1352 { 1353 bool need_restore; 1354 pci_power_t state; 1355 u16 pmcsr; 1356 1357 platform_pci_set_power_state(dev, PCI_D0); 1358 1359 if (!dev->pm_cap) { 1360 state = platform_pci_get_power_state(dev); 1361 if (state == PCI_UNKNOWN) 1362 dev->current_state = PCI_D0; 1363 else 1364 dev->current_state = state; 1365 1366 return -EIO; 1367 } 1368 1369 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1370 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1371 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1372 pci_power_name(dev->current_state)); 1373 dev->current_state = PCI_D3cold; 1374 return -EIO; 1375 } 1376 1377 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1378 1379 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1380 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1381 1382 if (state == PCI_D0) 1383 goto end; 1384 1385 /* 1386 * Force the entire word to 0. This doesn't affect PME_Status, disables 1387 * PME_En, and sets PowerState to 0. 1388 */ 1389 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1390 1391 /* Mandatory transition delays; see PCI PM 1.2. */ 1392 if (state == PCI_D3hot) 1393 pci_dev_d3_sleep(dev); 1394 else if (state == PCI_D2) 1395 udelay(PCI_PM_D2_DELAY); 1396 1397 end: 1398 dev->current_state = PCI_D0; 1399 if (need_restore) 1400 return 1; 1401 1402 return 0; 1403 } 1404 1405 /** 1406 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1407 * @dev: PCI device to power up 1408 * @locked: whether pci_bus_sem is held 1409 * 1410 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1411 * to confirm the state change, restore its BARs if they might be lost and 1412 * reconfigure ASPM in accordance with the new power state. 1413 * 1414 * If pci_restore_state() is going to be called right after a power state change 1415 * to D0, it is more efficient to use pci_power_up() directly instead of this 1416 * function. 1417 */ 1418 static int pci_set_full_power_state(struct pci_dev *dev, bool locked) 1419 { 1420 u16 pmcsr; 1421 int ret; 1422 1423 ret = pci_power_up(dev); 1424 if (ret < 0) { 1425 if (dev->current_state == PCI_D0) 1426 return 0; 1427 1428 return ret; 1429 } 1430 1431 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1432 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1433 if (dev->current_state != PCI_D0) { 1434 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1435 pci_power_name(dev->current_state)); 1436 } else if (ret > 0) { 1437 /* 1438 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1439 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1440 * from D3hot to D0 _may_ perform an internal reset, thereby 1441 * going to "D0 Uninitialized" rather than "D0 Initialized". 1442 * For example, at least some versions of the 3c905B and the 1443 * 3c556B exhibit this behaviour. 1444 * 1445 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1446 * devices in a D3hot state at boot. Consequently, we need to 1447 * restore at least the BARs so that the device will be 1448 * accessible to its driver. 1449 */ 1450 pci_restore_bars(dev); 1451 } 1452 1453 if (dev->bus->self) 1454 pcie_aspm_pm_state_change(dev->bus->self, locked); 1455 1456 return 0; 1457 } 1458 1459 /** 1460 * __pci_dev_set_current_state - Set current state of a PCI device 1461 * @dev: Device to handle 1462 * @data: pointer to state to be set 1463 */ 1464 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1465 { 1466 pci_power_t state = *(pci_power_t *)data; 1467 1468 dev->current_state = state; 1469 return 0; 1470 } 1471 1472 /** 1473 * pci_bus_set_current_state - Walk given bus and set current state of devices 1474 * @bus: Top bus of the subtree to walk. 1475 * @state: state to be set 1476 */ 1477 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1478 { 1479 if (bus) 1480 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1481 } 1482 1483 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked) 1484 { 1485 if (!bus) 1486 return; 1487 1488 if (locked) 1489 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state); 1490 else 1491 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1492 } 1493 1494 /** 1495 * pci_set_low_power_state - Put a PCI device into a low-power state. 1496 * @dev: PCI device to handle. 1497 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1498 * @locked: whether pci_bus_sem is held 1499 * 1500 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1501 * 1502 * RETURN VALUE: 1503 * -EINVAL if the requested state is invalid. 1504 * -EIO if device does not support PCI PM or its PM capabilities register has a 1505 * wrong version, or device doesn't support the requested state. 1506 * 0 if device already is in the requested state. 1507 * 0 if device's power state has been successfully changed. 1508 */ 1509 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1510 { 1511 u16 pmcsr; 1512 1513 if (!dev->pm_cap) 1514 return -EIO; 1515 1516 /* 1517 * Validate transition: We can enter D0 from any state, but if 1518 * we're already in a low-power state, we can only go deeper. E.g., 1519 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1520 * we'd have to go from D3 to D0, then to D1. 1521 */ 1522 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1523 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1524 pci_power_name(dev->current_state), 1525 pci_power_name(state)); 1526 return -EINVAL; 1527 } 1528 1529 /* Check if this device supports the desired state */ 1530 if ((state == PCI_D1 && !dev->d1_support) 1531 || (state == PCI_D2 && !dev->d2_support)) 1532 return -EIO; 1533 1534 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1535 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1536 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1537 pci_power_name(dev->current_state), 1538 pci_power_name(state)); 1539 dev->current_state = PCI_D3cold; 1540 return -EIO; 1541 } 1542 1543 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1544 pmcsr |= state; 1545 1546 /* Enter specified state */ 1547 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1548 1549 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1550 if (state == PCI_D3hot) 1551 pci_dev_d3_sleep(dev); 1552 else if (state == PCI_D2) 1553 udelay(PCI_PM_D2_DELAY); 1554 1555 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1556 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1557 if (dev->current_state != state) 1558 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1559 pci_power_name(dev->current_state), 1560 pci_power_name(state)); 1561 1562 if (dev->bus->self) 1563 pcie_aspm_pm_state_change(dev->bus->self, locked); 1564 1565 return 0; 1566 } 1567 1568 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1569 { 1570 int error; 1571 1572 /* Bound the state we're entering */ 1573 if (state > PCI_D3cold) 1574 state = PCI_D3cold; 1575 else if (state < PCI_D0) 1576 state = PCI_D0; 1577 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1578 1579 /* 1580 * If the device or the parent bridge do not support PCI 1581 * PM, ignore the request if we're doing anything other 1582 * than putting it into D0 (which would only happen on 1583 * boot). 1584 */ 1585 return 0; 1586 1587 /* Check if we're already there */ 1588 if (dev->current_state == state) 1589 return 0; 1590 1591 if (state == PCI_D0) 1592 return pci_set_full_power_state(dev, locked); 1593 1594 /* 1595 * This device is quirked not to be put into D3, so don't put it in 1596 * D3 1597 */ 1598 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1599 return 0; 1600 1601 if (state == PCI_D3cold) { 1602 /* 1603 * To put the device in D3cold, put it into D3hot in the native 1604 * way, then put it into D3cold using platform ops. 1605 */ 1606 error = pci_set_low_power_state(dev, PCI_D3hot, locked); 1607 1608 if (pci_platform_power_transition(dev, PCI_D3cold)) 1609 return error; 1610 1611 /* Powering off a bridge may power off the whole hierarchy */ 1612 if (dev->current_state == PCI_D3cold) 1613 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked); 1614 } else { 1615 error = pci_set_low_power_state(dev, state, locked); 1616 1617 if (pci_platform_power_transition(dev, state)) 1618 return error; 1619 } 1620 1621 return 0; 1622 } 1623 1624 /** 1625 * pci_set_power_state - Set the power state of a PCI device 1626 * @dev: PCI device to handle. 1627 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1628 * 1629 * Transition a device to a new power state, using the platform firmware and/or 1630 * the device's PCI PM registers. 1631 * 1632 * RETURN VALUE: 1633 * -EINVAL if the requested state is invalid. 1634 * -EIO if device does not support PCI PM or its PM capabilities register has a 1635 * wrong version, or device doesn't support the requested state. 1636 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1637 * 0 if device already is in the requested state. 1638 * 0 if the transition is to D3 but D3 is not supported. 1639 * 0 if device's power state has been successfully changed. 1640 */ 1641 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1642 { 1643 return __pci_set_power_state(dev, state, false); 1644 } 1645 EXPORT_SYMBOL(pci_set_power_state); 1646 1647 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state) 1648 { 1649 lockdep_assert_held(&pci_bus_sem); 1650 1651 return __pci_set_power_state(dev, state, true); 1652 } 1653 EXPORT_SYMBOL(pci_set_power_state_locked); 1654 1655 #define PCI_EXP_SAVE_REGS 7 1656 1657 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1658 u16 cap, bool extended) 1659 { 1660 struct pci_cap_saved_state *tmp; 1661 1662 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1663 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1664 return tmp; 1665 } 1666 return NULL; 1667 } 1668 1669 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1670 { 1671 return _pci_find_saved_cap(dev, cap, false); 1672 } 1673 1674 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1675 { 1676 return _pci_find_saved_cap(dev, cap, true); 1677 } 1678 1679 static int pci_save_pcie_state(struct pci_dev *dev) 1680 { 1681 int i = 0; 1682 struct pci_cap_saved_state *save_state; 1683 u16 *cap; 1684 1685 if (!pci_is_pcie(dev)) 1686 return 0; 1687 1688 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1689 if (!save_state) { 1690 pci_err(dev, "buffer not found in %s\n", __func__); 1691 return -ENOMEM; 1692 } 1693 1694 cap = (u16 *)&save_state->cap.data[0]; 1695 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1696 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1697 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1698 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1699 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1700 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1701 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1702 1703 pci_save_aspm_l1ss_state(dev); 1704 pci_save_ltr_state(dev); 1705 1706 return 0; 1707 } 1708 1709 static void pci_restore_pcie_state(struct pci_dev *dev) 1710 { 1711 int i = 0; 1712 struct pci_cap_saved_state *save_state; 1713 u16 *cap; 1714 1715 /* 1716 * Restore max latencies (in the LTR capability) before enabling 1717 * LTR itself in PCI_EXP_DEVCTL2. 1718 */ 1719 pci_restore_ltr_state(dev); 1720 pci_restore_aspm_l1ss_state(dev); 1721 1722 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1723 if (!save_state) 1724 return; 1725 1726 /* 1727 * Downstream ports reset the LTR enable bit when link goes down. 1728 * Check and re-configure the bit here before restoring device. 1729 * PCIe r5.0, sec 7.5.3.16. 1730 */ 1731 pci_bridge_reconfigure_ltr(dev); 1732 1733 cap = (u16 *)&save_state->cap.data[0]; 1734 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1735 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1736 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1737 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1738 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1739 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1740 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1741 } 1742 1743 static int pci_save_pcix_state(struct pci_dev *dev) 1744 { 1745 int pos; 1746 struct pci_cap_saved_state *save_state; 1747 1748 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1749 if (!pos) 1750 return 0; 1751 1752 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1753 if (!save_state) { 1754 pci_err(dev, "buffer not found in %s\n", __func__); 1755 return -ENOMEM; 1756 } 1757 1758 pci_read_config_word(dev, pos + PCI_X_CMD, 1759 (u16 *)save_state->cap.data); 1760 1761 return 0; 1762 } 1763 1764 static void pci_restore_pcix_state(struct pci_dev *dev) 1765 { 1766 int i = 0, pos; 1767 struct pci_cap_saved_state *save_state; 1768 u16 *cap; 1769 1770 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1771 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1772 if (!save_state || !pos) 1773 return; 1774 cap = (u16 *)&save_state->cap.data[0]; 1775 1776 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1777 } 1778 1779 /** 1780 * pci_save_state - save the PCI configuration space of a device before 1781 * suspending 1782 * @dev: PCI device that we're dealing with 1783 */ 1784 int pci_save_state(struct pci_dev *dev) 1785 { 1786 int i; 1787 /* XXX: 100% dword access ok here? */ 1788 for (i = 0; i < 16; i++) { 1789 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1790 pci_dbg(dev, "save config %#04x: %#010x\n", 1791 i * 4, dev->saved_config_space[i]); 1792 } 1793 dev->state_saved = true; 1794 1795 i = pci_save_pcie_state(dev); 1796 if (i != 0) 1797 return i; 1798 1799 i = pci_save_pcix_state(dev); 1800 if (i != 0) 1801 return i; 1802 1803 pci_save_dpc_state(dev); 1804 pci_save_aer_state(dev); 1805 pci_save_ptm_state(dev); 1806 pci_save_tph_state(dev); 1807 return pci_save_vc_state(dev); 1808 } 1809 EXPORT_SYMBOL(pci_save_state); 1810 1811 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1812 u32 saved_val, int retry, bool force) 1813 { 1814 u32 val; 1815 1816 pci_read_config_dword(pdev, offset, &val); 1817 if (!force && val == saved_val) 1818 return; 1819 1820 for (;;) { 1821 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1822 offset, val, saved_val); 1823 pci_write_config_dword(pdev, offset, saved_val); 1824 if (retry-- <= 0) 1825 return; 1826 1827 pci_read_config_dword(pdev, offset, &val); 1828 if (val == saved_val) 1829 return; 1830 1831 mdelay(1); 1832 } 1833 } 1834 1835 static void pci_restore_config_space_range(struct pci_dev *pdev, 1836 int start, int end, int retry, 1837 bool force) 1838 { 1839 int index; 1840 1841 for (index = end; index >= start; index--) 1842 pci_restore_config_dword(pdev, 4 * index, 1843 pdev->saved_config_space[index], 1844 retry, force); 1845 } 1846 1847 static void pci_restore_config_space(struct pci_dev *pdev) 1848 { 1849 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1850 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1851 /* Restore BARs before the command register. */ 1852 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1853 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1854 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1855 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1856 1857 /* 1858 * Force rewriting of prefetch registers to avoid S3 resume 1859 * issues on Intel PCI bridges that occur when these 1860 * registers are not explicitly written. 1861 */ 1862 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1863 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1864 } else { 1865 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1866 } 1867 } 1868 1869 static void pci_restore_rebar_state(struct pci_dev *pdev) 1870 { 1871 unsigned int pos, nbars, i; 1872 u32 ctrl; 1873 1874 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1875 if (!pos) 1876 return; 1877 1878 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1879 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 1880 1881 for (i = 0; i < nbars; i++, pos += 8) { 1882 struct resource *res; 1883 int bar_idx, size; 1884 1885 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1886 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1887 res = pdev->resource + bar_idx; 1888 size = pci_rebar_bytes_to_size(resource_size(res)); 1889 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1890 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 1891 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1892 } 1893 } 1894 1895 /** 1896 * pci_restore_state - Restore the saved state of a PCI device 1897 * @dev: PCI device that we're dealing with 1898 */ 1899 void pci_restore_state(struct pci_dev *dev) 1900 { 1901 if (!dev->state_saved) 1902 return; 1903 1904 pci_restore_pcie_state(dev); 1905 pci_restore_pasid_state(dev); 1906 pci_restore_pri_state(dev); 1907 pci_restore_ats_state(dev); 1908 pci_restore_vc_state(dev); 1909 pci_restore_rebar_state(dev); 1910 pci_restore_dpc_state(dev); 1911 pci_restore_ptm_state(dev); 1912 pci_restore_tph_state(dev); 1913 1914 pci_aer_clear_status(dev); 1915 pci_restore_aer_state(dev); 1916 1917 pci_restore_config_space(dev); 1918 1919 pci_restore_pcix_state(dev); 1920 pci_restore_msi_state(dev); 1921 1922 /* Restore ACS and IOV configuration state */ 1923 pci_enable_acs(dev); 1924 pci_restore_iov_state(dev); 1925 1926 dev->state_saved = false; 1927 } 1928 EXPORT_SYMBOL(pci_restore_state); 1929 1930 struct pci_saved_state { 1931 u32 config_space[16]; 1932 struct pci_cap_saved_data cap[]; 1933 }; 1934 1935 /** 1936 * pci_store_saved_state - Allocate and return an opaque struct containing 1937 * the device saved state. 1938 * @dev: PCI device that we're dealing with 1939 * 1940 * Return NULL if no state or error. 1941 */ 1942 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1943 { 1944 struct pci_saved_state *state; 1945 struct pci_cap_saved_state *tmp; 1946 struct pci_cap_saved_data *cap; 1947 size_t size; 1948 1949 if (!dev->state_saved) 1950 return NULL; 1951 1952 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1953 1954 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1955 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1956 1957 state = kzalloc(size, GFP_KERNEL); 1958 if (!state) 1959 return NULL; 1960 1961 memcpy(state->config_space, dev->saved_config_space, 1962 sizeof(state->config_space)); 1963 1964 cap = state->cap; 1965 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1966 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1967 memcpy(cap, &tmp->cap, len); 1968 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1969 } 1970 /* Empty cap_save terminates list */ 1971 1972 return state; 1973 } 1974 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1975 1976 /** 1977 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1978 * @dev: PCI device that we're dealing with 1979 * @state: Saved state returned from pci_store_saved_state() 1980 */ 1981 int pci_load_saved_state(struct pci_dev *dev, 1982 struct pci_saved_state *state) 1983 { 1984 struct pci_cap_saved_data *cap; 1985 1986 dev->state_saved = false; 1987 1988 if (!state) 1989 return 0; 1990 1991 memcpy(dev->saved_config_space, state->config_space, 1992 sizeof(state->config_space)); 1993 1994 cap = state->cap; 1995 while (cap->size) { 1996 struct pci_cap_saved_state *tmp; 1997 1998 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1999 if (!tmp || tmp->cap.size != cap->size) 2000 return -EINVAL; 2001 2002 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 2003 cap = (struct pci_cap_saved_data *)((u8 *)cap + 2004 sizeof(struct pci_cap_saved_data) + cap->size); 2005 } 2006 2007 dev->state_saved = true; 2008 return 0; 2009 } 2010 EXPORT_SYMBOL_GPL(pci_load_saved_state); 2011 2012 /** 2013 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 2014 * and free the memory allocated for it. 2015 * @dev: PCI device that we're dealing with 2016 * @state: Pointer to saved state returned from pci_store_saved_state() 2017 */ 2018 int pci_load_and_free_saved_state(struct pci_dev *dev, 2019 struct pci_saved_state **state) 2020 { 2021 int ret = pci_load_saved_state(dev, *state); 2022 kfree(*state); 2023 *state = NULL; 2024 return ret; 2025 } 2026 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 2027 2028 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 2029 { 2030 return pci_enable_resources(dev, bars); 2031 } 2032 2033 static int pci_host_bridge_enable_device(struct pci_dev *dev) 2034 { 2035 struct pci_host_bridge *host_bridge = pci_find_host_bridge(dev->bus); 2036 int err; 2037 2038 if (host_bridge && host_bridge->enable_device) { 2039 err = host_bridge->enable_device(host_bridge, dev); 2040 if (err) 2041 return err; 2042 } 2043 2044 return 0; 2045 } 2046 2047 static void pci_host_bridge_disable_device(struct pci_dev *dev) 2048 { 2049 struct pci_host_bridge *host_bridge = pci_find_host_bridge(dev->bus); 2050 2051 if (host_bridge && host_bridge->disable_device) 2052 host_bridge->disable_device(host_bridge, dev); 2053 } 2054 2055 static int do_pci_enable_device(struct pci_dev *dev, int bars) 2056 { 2057 int err; 2058 struct pci_dev *bridge; 2059 u16 cmd; 2060 u8 pin; 2061 2062 err = pci_set_power_state(dev, PCI_D0); 2063 if (err < 0 && err != -EIO) 2064 return err; 2065 2066 bridge = pci_upstream_bridge(dev); 2067 if (bridge) 2068 pcie_aspm_powersave_config_link(bridge); 2069 2070 err = pci_host_bridge_enable_device(dev); 2071 if (err) 2072 return err; 2073 2074 err = pcibios_enable_device(dev, bars); 2075 if (err < 0) 2076 goto err_enable; 2077 pci_fixup_device(pci_fixup_enable, dev); 2078 2079 if (dev->msi_enabled || dev->msix_enabled) 2080 return 0; 2081 2082 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 2083 if (pin) { 2084 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2085 if (cmd & PCI_COMMAND_INTX_DISABLE) 2086 pci_write_config_word(dev, PCI_COMMAND, 2087 cmd & ~PCI_COMMAND_INTX_DISABLE); 2088 } 2089 2090 return 0; 2091 2092 err_enable: 2093 pci_host_bridge_disable_device(dev); 2094 2095 return err; 2096 2097 } 2098 2099 /** 2100 * pci_reenable_device - Resume abandoned device 2101 * @dev: PCI device to be resumed 2102 * 2103 * NOTE: This function is a backend of pci_default_resume() and is not supposed 2104 * to be called by normal code, write proper resume handler and use it instead. 2105 */ 2106 int pci_reenable_device(struct pci_dev *dev) 2107 { 2108 if (pci_is_enabled(dev)) 2109 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 2110 return 0; 2111 } 2112 EXPORT_SYMBOL(pci_reenable_device); 2113 2114 static void pci_enable_bridge(struct pci_dev *dev) 2115 { 2116 struct pci_dev *bridge; 2117 int retval; 2118 2119 bridge = pci_upstream_bridge(dev); 2120 if (bridge) 2121 pci_enable_bridge(bridge); 2122 2123 if (pci_is_enabled(dev)) { 2124 if (!dev->is_busmaster) 2125 pci_set_master(dev); 2126 return; 2127 } 2128 2129 retval = pci_enable_device(dev); 2130 if (retval) 2131 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2132 retval); 2133 pci_set_master(dev); 2134 } 2135 2136 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2137 { 2138 struct pci_dev *bridge; 2139 int err; 2140 int i, bars = 0; 2141 2142 /* 2143 * Power state could be unknown at this point, either due to a fresh 2144 * boot or a device removal call. So get the current power state 2145 * so that things like MSI message writing will behave as expected 2146 * (e.g. if the device really is in D0 at enable time). 2147 */ 2148 pci_update_current_state(dev, dev->current_state); 2149 2150 if (atomic_inc_return(&dev->enable_cnt) > 1) 2151 return 0; /* already enabled */ 2152 2153 bridge = pci_upstream_bridge(dev); 2154 if (bridge) 2155 pci_enable_bridge(bridge); 2156 2157 /* only skip sriov related */ 2158 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2159 if (dev->resource[i].flags & flags) 2160 bars |= (1 << i); 2161 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2162 if (dev->resource[i].flags & flags) 2163 bars |= (1 << i); 2164 2165 err = do_pci_enable_device(dev, bars); 2166 if (err < 0) 2167 atomic_dec(&dev->enable_cnt); 2168 return err; 2169 } 2170 2171 /** 2172 * pci_enable_device_mem - Initialize a device for use with Memory space 2173 * @dev: PCI device to be initialized 2174 * 2175 * Initialize device before it's used by a driver. Ask low-level code 2176 * to enable Memory resources. Wake up the device if it was suspended. 2177 * Beware, this function can fail. 2178 */ 2179 int pci_enable_device_mem(struct pci_dev *dev) 2180 { 2181 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2182 } 2183 EXPORT_SYMBOL(pci_enable_device_mem); 2184 2185 /** 2186 * pci_enable_device - Initialize device before it's used by a driver. 2187 * @dev: PCI device to be initialized 2188 * 2189 * Initialize device before it's used by a driver. Ask low-level code 2190 * to enable I/O and memory. Wake up the device if it was suspended. 2191 * Beware, this function can fail. 2192 * 2193 * Note we don't actually enable the device many times if we call 2194 * this function repeatedly (we just increment the count). 2195 */ 2196 int pci_enable_device(struct pci_dev *dev) 2197 { 2198 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2199 } 2200 EXPORT_SYMBOL(pci_enable_device); 2201 2202 /* 2203 * pcibios_device_add - provide arch specific hooks when adding device dev 2204 * @dev: the PCI device being added 2205 * 2206 * Permits the platform to provide architecture specific functionality when 2207 * devices are added. This is the default implementation. Architecture 2208 * implementations can override this. 2209 */ 2210 int __weak pcibios_device_add(struct pci_dev *dev) 2211 { 2212 return 0; 2213 } 2214 2215 /** 2216 * pcibios_release_device - provide arch specific hooks when releasing 2217 * device dev 2218 * @dev: the PCI device being released 2219 * 2220 * Permits the platform to provide architecture specific functionality when 2221 * devices are released. This is the default implementation. Architecture 2222 * implementations can override this. 2223 */ 2224 void __weak pcibios_release_device(struct pci_dev *dev) {} 2225 2226 /** 2227 * pcibios_disable_device - disable arch specific PCI resources for device dev 2228 * @dev: the PCI device to disable 2229 * 2230 * Disables architecture specific PCI resources for the device. This 2231 * is the default implementation. Architecture implementations can 2232 * override this. 2233 */ 2234 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2235 2236 static void do_pci_disable_device(struct pci_dev *dev) 2237 { 2238 u16 pci_command; 2239 2240 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2241 if (pci_command & PCI_COMMAND_MASTER) { 2242 pci_command &= ~PCI_COMMAND_MASTER; 2243 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2244 } 2245 2246 pcibios_disable_device(dev); 2247 } 2248 2249 /** 2250 * pci_disable_enabled_device - Disable device without updating enable_cnt 2251 * @dev: PCI device to disable 2252 * 2253 * NOTE: This function is a backend of PCI power management routines and is 2254 * not supposed to be called drivers. 2255 */ 2256 void pci_disable_enabled_device(struct pci_dev *dev) 2257 { 2258 if (pci_is_enabled(dev)) 2259 do_pci_disable_device(dev); 2260 } 2261 2262 /** 2263 * pci_disable_device - Disable PCI device after use 2264 * @dev: PCI device to be disabled 2265 * 2266 * Signal to the system that the PCI device is not in use by the system 2267 * anymore. This only involves disabling PCI bus-mastering, if active. 2268 * 2269 * Note we don't actually disable the device until all callers of 2270 * pci_enable_device() have called pci_disable_device(). 2271 */ 2272 void pci_disable_device(struct pci_dev *dev) 2273 { 2274 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2275 "disabling already-disabled device"); 2276 2277 if (atomic_dec_return(&dev->enable_cnt) != 0) 2278 return; 2279 2280 pci_host_bridge_disable_device(dev); 2281 2282 do_pci_disable_device(dev); 2283 2284 dev->is_busmaster = 0; 2285 } 2286 EXPORT_SYMBOL(pci_disable_device); 2287 2288 /** 2289 * pcibios_set_pcie_reset_state - set reset state for device dev 2290 * @dev: the PCIe device reset 2291 * @state: Reset state to enter into 2292 * 2293 * Set the PCIe reset state for the device. This is the default 2294 * implementation. Architecture implementations can override this. 2295 */ 2296 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2297 enum pcie_reset_state state) 2298 { 2299 return -EINVAL; 2300 } 2301 2302 /** 2303 * pci_set_pcie_reset_state - set reset state for device dev 2304 * @dev: the PCIe device reset 2305 * @state: Reset state to enter into 2306 * 2307 * Sets the PCI reset state for the device. 2308 */ 2309 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2310 { 2311 return pcibios_set_pcie_reset_state(dev, state); 2312 } 2313 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2314 2315 #ifdef CONFIG_PCIEAER 2316 void pcie_clear_device_status(struct pci_dev *dev) 2317 { 2318 u16 sta; 2319 2320 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2321 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2322 } 2323 #endif 2324 2325 /** 2326 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2327 * @dev: PCIe root port or event collector. 2328 */ 2329 void pcie_clear_root_pme_status(struct pci_dev *dev) 2330 { 2331 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2332 } 2333 2334 /** 2335 * pci_check_pme_status - Check if given device has generated PME. 2336 * @dev: Device to check. 2337 * 2338 * Check the PME status of the device and if set, clear it and clear PME enable 2339 * (if set). Return 'true' if PME status and PME enable were both set or 2340 * 'false' otherwise. 2341 */ 2342 bool pci_check_pme_status(struct pci_dev *dev) 2343 { 2344 int pmcsr_pos; 2345 u16 pmcsr; 2346 bool ret = false; 2347 2348 if (!dev->pm_cap) 2349 return false; 2350 2351 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2352 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2353 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2354 return false; 2355 2356 /* Clear PME status. */ 2357 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2358 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2359 /* Disable PME to avoid interrupt flood. */ 2360 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2361 ret = true; 2362 } 2363 2364 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2365 2366 return ret; 2367 } 2368 2369 /** 2370 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2371 * @dev: Device to handle. 2372 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2373 * 2374 * Check if @dev has generated PME and queue a resume request for it in that 2375 * case. 2376 */ 2377 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2378 { 2379 if (pme_poll_reset && dev->pme_poll) 2380 dev->pme_poll = false; 2381 2382 if (pci_check_pme_status(dev)) { 2383 pci_wakeup_event(dev); 2384 pm_request_resume(&dev->dev); 2385 } 2386 return 0; 2387 } 2388 2389 /** 2390 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2391 * @bus: Top bus of the subtree to walk. 2392 */ 2393 void pci_pme_wakeup_bus(struct pci_bus *bus) 2394 { 2395 if (bus) 2396 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2397 } 2398 2399 2400 /** 2401 * pci_pme_capable - check the capability of PCI device to generate PME# 2402 * @dev: PCI device to handle. 2403 * @state: PCI state from which device will issue PME#. 2404 */ 2405 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2406 { 2407 if (!dev->pm_cap) 2408 return false; 2409 2410 return !!(dev->pme_support & (1 << state)); 2411 } 2412 EXPORT_SYMBOL(pci_pme_capable); 2413 2414 static void pci_pme_list_scan(struct work_struct *work) 2415 { 2416 struct pci_pme_device *pme_dev, *n; 2417 2418 mutex_lock(&pci_pme_list_mutex); 2419 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2420 struct pci_dev *pdev = pme_dev->dev; 2421 2422 if (pdev->pme_poll) { 2423 struct pci_dev *bridge = pdev->bus->self; 2424 struct device *dev = &pdev->dev; 2425 struct device *bdev = bridge ? &bridge->dev : NULL; 2426 int bref = 0; 2427 2428 /* 2429 * If we have a bridge, it should be in an active/D0 2430 * state or the configuration space of subordinate 2431 * devices may not be accessible or stable over the 2432 * course of the call. 2433 */ 2434 if (bdev) { 2435 bref = pm_runtime_get_if_active(bdev); 2436 if (!bref) 2437 continue; 2438 2439 if (bridge->current_state != PCI_D0) 2440 goto put_bridge; 2441 } 2442 2443 /* 2444 * The device itself should be suspended but config 2445 * space must be accessible, therefore it cannot be in 2446 * D3cold. 2447 */ 2448 if (pm_runtime_suspended(dev) && 2449 pdev->current_state != PCI_D3cold) 2450 pci_pme_wakeup(pdev, NULL); 2451 2452 put_bridge: 2453 if (bref > 0) 2454 pm_runtime_put(bdev); 2455 } else { 2456 list_del(&pme_dev->list); 2457 kfree(pme_dev); 2458 } 2459 } 2460 if (!list_empty(&pci_pme_list)) 2461 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2462 msecs_to_jiffies(PME_TIMEOUT)); 2463 mutex_unlock(&pci_pme_list_mutex); 2464 } 2465 2466 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2467 { 2468 u16 pmcsr; 2469 2470 if (!dev->pme_support) 2471 return; 2472 2473 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2474 /* Clear PME_Status by writing 1 to it and enable PME# */ 2475 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2476 if (!enable) 2477 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2478 2479 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2480 } 2481 2482 /** 2483 * pci_pme_restore - Restore PME configuration after config space restore. 2484 * @dev: PCI device to update. 2485 */ 2486 void pci_pme_restore(struct pci_dev *dev) 2487 { 2488 u16 pmcsr; 2489 2490 if (!dev->pme_support) 2491 return; 2492 2493 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2494 if (dev->wakeup_prepared) { 2495 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2496 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2497 } else { 2498 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2499 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2500 } 2501 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2502 } 2503 2504 /** 2505 * pci_pme_active - enable or disable PCI device's PME# function 2506 * @dev: PCI device to handle. 2507 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2508 * 2509 * The caller must verify that the device is capable of generating PME# before 2510 * calling this function with @enable equal to 'true'. 2511 */ 2512 void pci_pme_active(struct pci_dev *dev, bool enable) 2513 { 2514 __pci_pme_active(dev, enable); 2515 2516 /* 2517 * PCI (as opposed to PCIe) PME requires that the device have 2518 * its PME# line hooked up correctly. Not all hardware vendors 2519 * do this, so the PME never gets delivered and the device 2520 * remains asleep. The easiest way around this is to 2521 * periodically walk the list of suspended devices and check 2522 * whether any have their PME flag set. The assumption is that 2523 * we'll wake up often enough anyway that this won't be a huge 2524 * hit, and the power savings from the devices will still be a 2525 * win. 2526 * 2527 * Although PCIe uses in-band PME message instead of PME# line 2528 * to report PME, PME does not work for some PCIe devices in 2529 * reality. For example, there are devices that set their PME 2530 * status bits, but don't really bother to send a PME message; 2531 * there are PCI Express Root Ports that don't bother to 2532 * trigger interrupts when they receive PME messages from the 2533 * devices below. So PME poll is used for PCIe devices too. 2534 */ 2535 2536 if (dev->pme_poll) { 2537 struct pci_pme_device *pme_dev; 2538 if (enable) { 2539 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2540 GFP_KERNEL); 2541 if (!pme_dev) { 2542 pci_warn(dev, "can't enable PME#\n"); 2543 return; 2544 } 2545 pme_dev->dev = dev; 2546 mutex_lock(&pci_pme_list_mutex); 2547 list_add(&pme_dev->list, &pci_pme_list); 2548 if (list_is_singular(&pci_pme_list)) 2549 queue_delayed_work(system_freezable_wq, 2550 &pci_pme_work, 2551 msecs_to_jiffies(PME_TIMEOUT)); 2552 mutex_unlock(&pci_pme_list_mutex); 2553 } else { 2554 mutex_lock(&pci_pme_list_mutex); 2555 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2556 if (pme_dev->dev == dev) { 2557 list_del(&pme_dev->list); 2558 kfree(pme_dev); 2559 break; 2560 } 2561 } 2562 mutex_unlock(&pci_pme_list_mutex); 2563 } 2564 } 2565 2566 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2567 } 2568 EXPORT_SYMBOL(pci_pme_active); 2569 2570 /** 2571 * __pci_enable_wake - enable PCI device as wakeup event source 2572 * @dev: PCI device affected 2573 * @state: PCI state from which device will issue wakeup events 2574 * @enable: True to enable event generation; false to disable 2575 * 2576 * This enables the device as a wakeup event source, or disables it. 2577 * When such events involves platform-specific hooks, those hooks are 2578 * called automatically by this routine. 2579 * 2580 * Devices with legacy power management (no standard PCI PM capabilities) 2581 * always require such platform hooks. 2582 * 2583 * RETURN VALUE: 2584 * 0 is returned on success 2585 * -EINVAL is returned if device is not supposed to wake up the system 2586 * Error code depending on the platform is returned if both the platform and 2587 * the native mechanism fail to enable the generation of wake-up events 2588 */ 2589 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2590 { 2591 int ret = 0; 2592 2593 /* 2594 * Bridges that are not power-manageable directly only signal 2595 * wakeup on behalf of subordinate devices which is set up 2596 * elsewhere, so skip them. However, bridges that are 2597 * power-manageable may signal wakeup for themselves (for example, 2598 * on a hotplug event) and they need to be covered here. 2599 */ 2600 if (!pci_power_manageable(dev)) 2601 return 0; 2602 2603 /* Don't do the same thing twice in a row for one device. */ 2604 if (!!enable == !!dev->wakeup_prepared) 2605 return 0; 2606 2607 /* 2608 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2609 * Anderson we should be doing PME# wake enable followed by ACPI wake 2610 * enable. To disable wake-up we call the platform first, for symmetry. 2611 */ 2612 2613 if (enable) { 2614 int error; 2615 2616 /* 2617 * Enable PME signaling if the device can signal PME from 2618 * D3cold regardless of whether or not it can signal PME from 2619 * the current target state, because that will allow it to 2620 * signal PME when the hierarchy above it goes into D3cold and 2621 * the device itself ends up in D3cold as a result of that. 2622 */ 2623 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2624 pci_pme_active(dev, true); 2625 else 2626 ret = 1; 2627 error = platform_pci_set_wakeup(dev, true); 2628 if (ret) 2629 ret = error; 2630 if (!ret) 2631 dev->wakeup_prepared = true; 2632 } else { 2633 platform_pci_set_wakeup(dev, false); 2634 pci_pme_active(dev, false); 2635 dev->wakeup_prepared = false; 2636 } 2637 2638 return ret; 2639 } 2640 2641 /** 2642 * pci_enable_wake - change wakeup settings for a PCI device 2643 * @pci_dev: Target device 2644 * @state: PCI state from which device will issue wakeup events 2645 * @enable: Whether or not to enable event generation 2646 * 2647 * If @enable is set, check device_may_wakeup() for the device before calling 2648 * __pci_enable_wake() for it. 2649 */ 2650 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2651 { 2652 if (enable && !device_may_wakeup(&pci_dev->dev)) 2653 return -EINVAL; 2654 2655 return __pci_enable_wake(pci_dev, state, enable); 2656 } 2657 EXPORT_SYMBOL(pci_enable_wake); 2658 2659 /** 2660 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2661 * @dev: PCI device to prepare 2662 * @enable: True to enable wake-up event generation; false to disable 2663 * 2664 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2665 * and this function allows them to set that up cleanly - pci_enable_wake() 2666 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2667 * ordering constraints. 2668 * 2669 * This function only returns error code if the device is not allowed to wake 2670 * up the system from sleep or it is not capable of generating PME# from both 2671 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2672 */ 2673 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2674 { 2675 return pci_pme_capable(dev, PCI_D3cold) ? 2676 pci_enable_wake(dev, PCI_D3cold, enable) : 2677 pci_enable_wake(dev, PCI_D3hot, enable); 2678 } 2679 EXPORT_SYMBOL(pci_wake_from_d3); 2680 2681 /** 2682 * pci_target_state - find an appropriate low power state for a given PCI dev 2683 * @dev: PCI device 2684 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2685 * 2686 * Use underlying platform code to find a supported low power state for @dev. 2687 * If the platform can't manage @dev, return the deepest state from which it 2688 * can generate wake events, based on any available PME info. 2689 */ 2690 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2691 { 2692 if (platform_pci_power_manageable(dev)) { 2693 /* 2694 * Call the platform to find the target state for the device. 2695 */ 2696 pci_power_t state = platform_pci_choose_state(dev); 2697 2698 switch (state) { 2699 case PCI_POWER_ERROR: 2700 case PCI_UNKNOWN: 2701 return PCI_D3hot; 2702 2703 case PCI_D1: 2704 case PCI_D2: 2705 if (pci_no_d1d2(dev)) 2706 return PCI_D3hot; 2707 } 2708 2709 return state; 2710 } 2711 2712 /* 2713 * If the device is in D3cold even though it's not power-manageable by 2714 * the platform, it may have been powered down by non-standard means. 2715 * Best to let it slumber. 2716 */ 2717 if (dev->current_state == PCI_D3cold) 2718 return PCI_D3cold; 2719 else if (!dev->pm_cap) 2720 return PCI_D0; 2721 2722 if (wakeup && dev->pme_support) { 2723 pci_power_t state = PCI_D3hot; 2724 2725 /* 2726 * Find the deepest state from which the device can generate 2727 * PME#. 2728 */ 2729 while (state && !(dev->pme_support & (1 << state))) 2730 state--; 2731 2732 if (state) 2733 return state; 2734 else if (dev->pme_support & 1) 2735 return PCI_D0; 2736 } 2737 2738 return PCI_D3hot; 2739 } 2740 2741 /** 2742 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2743 * into a sleep state 2744 * @dev: Device to handle. 2745 * 2746 * Choose the power state appropriate for the device depending on whether 2747 * it can wake up the system and/or is power manageable by the platform 2748 * (PCI_D3hot is the default) and put the device into that state. 2749 */ 2750 int pci_prepare_to_sleep(struct pci_dev *dev) 2751 { 2752 bool wakeup = device_may_wakeup(&dev->dev); 2753 pci_power_t target_state = pci_target_state(dev, wakeup); 2754 int error; 2755 2756 if (target_state == PCI_POWER_ERROR) 2757 return -EIO; 2758 2759 pci_enable_wake(dev, target_state, wakeup); 2760 2761 error = pci_set_power_state(dev, target_state); 2762 2763 if (error) 2764 pci_enable_wake(dev, target_state, false); 2765 2766 return error; 2767 } 2768 EXPORT_SYMBOL(pci_prepare_to_sleep); 2769 2770 /** 2771 * pci_back_from_sleep - turn PCI device on during system-wide transition 2772 * into working state 2773 * @dev: Device to handle. 2774 * 2775 * Disable device's system wake-up capability and put it into D0. 2776 */ 2777 int pci_back_from_sleep(struct pci_dev *dev) 2778 { 2779 int ret = pci_set_power_state(dev, PCI_D0); 2780 2781 if (ret) 2782 return ret; 2783 2784 pci_enable_wake(dev, PCI_D0, false); 2785 return 0; 2786 } 2787 EXPORT_SYMBOL(pci_back_from_sleep); 2788 2789 /** 2790 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2791 * @dev: PCI device being suspended. 2792 * 2793 * Prepare @dev to generate wake-up events at run time and put it into a low 2794 * power state. 2795 */ 2796 int pci_finish_runtime_suspend(struct pci_dev *dev) 2797 { 2798 pci_power_t target_state; 2799 int error; 2800 2801 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2802 if (target_state == PCI_POWER_ERROR) 2803 return -EIO; 2804 2805 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2806 2807 error = pci_set_power_state(dev, target_state); 2808 2809 if (error) 2810 pci_enable_wake(dev, target_state, false); 2811 2812 return error; 2813 } 2814 2815 /** 2816 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2817 * @dev: Device to check. 2818 * 2819 * Return true if the device itself is capable of generating wake-up events 2820 * (through the platform or using the native PCIe PME) or if the device supports 2821 * PME and one of its upstream bridges can generate wake-up events. 2822 */ 2823 bool pci_dev_run_wake(struct pci_dev *dev) 2824 { 2825 struct pci_bus *bus = dev->bus; 2826 2827 if (!dev->pme_support) 2828 return false; 2829 2830 /* PME-capable in principle, but not from the target power state */ 2831 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2832 return false; 2833 2834 if (device_can_wakeup(&dev->dev)) 2835 return true; 2836 2837 while (bus->parent) { 2838 struct pci_dev *bridge = bus->self; 2839 2840 if (device_can_wakeup(&bridge->dev)) 2841 return true; 2842 2843 bus = bus->parent; 2844 } 2845 2846 /* We have reached the root bus. */ 2847 if (bus->bridge) 2848 return device_can_wakeup(bus->bridge); 2849 2850 return false; 2851 } 2852 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2853 2854 /** 2855 * pci_dev_need_resume - Check if it is necessary to resume the device. 2856 * @pci_dev: Device to check. 2857 * 2858 * Return 'true' if the device is not runtime-suspended or it has to be 2859 * reconfigured due to wakeup settings difference between system and runtime 2860 * suspend, or the current power state of it is not suitable for the upcoming 2861 * (system-wide) transition. 2862 */ 2863 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2864 { 2865 struct device *dev = &pci_dev->dev; 2866 pci_power_t target_state; 2867 2868 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2869 return true; 2870 2871 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2872 2873 /* 2874 * If the earlier platform check has not triggered, D3cold is just power 2875 * removal on top of D3hot, so no need to resume the device in that 2876 * case. 2877 */ 2878 return target_state != pci_dev->current_state && 2879 target_state != PCI_D3cold && 2880 pci_dev->current_state != PCI_D3hot; 2881 } 2882 2883 /** 2884 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2885 * @pci_dev: Device to check. 2886 * 2887 * If the device is suspended and it is not configured for system wakeup, 2888 * disable PME for it to prevent it from waking up the system unnecessarily. 2889 * 2890 * Note that if the device's power state is D3cold and the platform check in 2891 * pci_dev_need_resume() has not triggered, the device's configuration need not 2892 * be changed. 2893 */ 2894 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2895 { 2896 struct device *dev = &pci_dev->dev; 2897 2898 spin_lock_irq(&dev->power.lock); 2899 2900 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2901 pci_dev->current_state < PCI_D3cold) 2902 __pci_pme_active(pci_dev, false); 2903 2904 spin_unlock_irq(&dev->power.lock); 2905 } 2906 2907 /** 2908 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2909 * @pci_dev: Device to handle. 2910 * 2911 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2912 * it might have been disabled during the prepare phase of system suspend if 2913 * the device was not configured for system wakeup. 2914 */ 2915 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2916 { 2917 struct device *dev = &pci_dev->dev; 2918 2919 if (!pci_dev_run_wake(pci_dev)) 2920 return; 2921 2922 spin_lock_irq(&dev->power.lock); 2923 2924 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2925 __pci_pme_active(pci_dev, true); 2926 2927 spin_unlock_irq(&dev->power.lock); 2928 } 2929 2930 /** 2931 * pci_choose_state - Choose the power state of a PCI device. 2932 * @dev: Target PCI device. 2933 * @state: Target state for the whole system. 2934 * 2935 * Returns PCI power state suitable for @dev and @state. 2936 */ 2937 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2938 { 2939 if (state.event == PM_EVENT_ON) 2940 return PCI_D0; 2941 2942 return pci_target_state(dev, false); 2943 } 2944 EXPORT_SYMBOL(pci_choose_state); 2945 2946 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2947 { 2948 struct device *dev = &pdev->dev; 2949 struct device *parent = dev->parent; 2950 2951 if (parent) 2952 pm_runtime_get_sync(parent); 2953 pm_runtime_get_noresume(dev); 2954 /* 2955 * pdev->current_state is set to PCI_D3cold during suspending, 2956 * so wait until suspending completes 2957 */ 2958 pm_runtime_barrier(dev); 2959 /* 2960 * Only need to resume devices in D3cold, because config 2961 * registers are still accessible for devices suspended but 2962 * not in D3cold. 2963 */ 2964 if (pdev->current_state == PCI_D3cold) 2965 pm_runtime_resume(dev); 2966 } 2967 2968 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2969 { 2970 struct device *dev = &pdev->dev; 2971 struct device *parent = dev->parent; 2972 2973 pm_runtime_put(dev); 2974 if (parent) 2975 pm_runtime_put_sync(parent); 2976 } 2977 2978 static const struct dmi_system_id bridge_d3_blacklist[] = { 2979 #ifdef CONFIG_X86 2980 { 2981 /* 2982 * Gigabyte X299 root port is not marked as hotplug capable 2983 * which allows Linux to power manage it. However, this 2984 * confuses the BIOS SMI handler so don't power manage root 2985 * ports on that system. 2986 */ 2987 .ident = "X299 DESIGNARE EX-CF", 2988 .matches = { 2989 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2990 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2991 }, 2992 }, 2993 { 2994 /* 2995 * Downstream device is not accessible after putting a root port 2996 * into D3cold and back into D0 on Elo Continental Z2 board 2997 */ 2998 .ident = "Elo Continental Z2", 2999 .matches = { 3000 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 3001 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 3002 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 3003 }, 3004 }, 3005 { 3006 /* 3007 * Changing power state of root port dGPU is connected fails 3008 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229 3009 */ 3010 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972", 3011 .matches = { 3012 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"), 3013 DMI_MATCH(DMI_BOARD_NAME, "1972"), 3014 DMI_MATCH(DMI_BOARD_VERSION, "95.33"), 3015 }, 3016 }, 3017 #endif 3018 { } 3019 }; 3020 3021 /** 3022 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 3023 * @bridge: Bridge to check 3024 * 3025 * This function checks if it is possible to move the bridge to D3. 3026 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 3027 */ 3028 bool pci_bridge_d3_possible(struct pci_dev *bridge) 3029 { 3030 if (!pci_is_pcie(bridge)) 3031 return false; 3032 3033 switch (pci_pcie_type(bridge)) { 3034 case PCI_EXP_TYPE_ROOT_PORT: 3035 case PCI_EXP_TYPE_UPSTREAM: 3036 case PCI_EXP_TYPE_DOWNSTREAM: 3037 if (pci_bridge_d3_disable) 3038 return false; 3039 3040 /* 3041 * Hotplug ports handled by firmware in System Management Mode 3042 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3043 */ 3044 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3045 return false; 3046 3047 if (pci_bridge_d3_force) 3048 return true; 3049 3050 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3051 if (bridge->is_thunderbolt) 3052 return true; 3053 3054 /* Platform might know better if the bridge supports D3 */ 3055 if (platform_pci_bridge_d3(bridge)) 3056 return true; 3057 3058 /* 3059 * Hotplug ports handled natively by the OS were not validated 3060 * by vendors for runtime D3 at least until 2018 because there 3061 * was no OS support. 3062 */ 3063 if (bridge->is_hotplug_bridge) 3064 return false; 3065 3066 if (dmi_check_system(bridge_d3_blacklist)) 3067 return false; 3068 3069 /* 3070 * It should be safe to put PCIe ports from 2015 or newer 3071 * to D3. 3072 */ 3073 if (dmi_get_bios_year() >= 2015) 3074 return true; 3075 break; 3076 } 3077 3078 return false; 3079 } 3080 3081 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3082 { 3083 bool *d3cold_ok = data; 3084 3085 if (/* The device needs to be allowed to go D3cold ... */ 3086 dev->no_d3cold || !dev->d3cold_allowed || 3087 3088 /* ... and if it is wakeup capable to do so from D3cold. */ 3089 (device_may_wakeup(&dev->dev) && 3090 !pci_pme_capable(dev, PCI_D3cold)) || 3091 3092 /* If it is a bridge it must be allowed to go to D3. */ 3093 !pci_power_manageable(dev)) 3094 3095 *d3cold_ok = false; 3096 3097 return !*d3cold_ok; 3098 } 3099 3100 /* 3101 * pci_bridge_d3_update - Update bridge D3 capabilities 3102 * @dev: PCI device which is changed 3103 * 3104 * Update upstream bridge PM capabilities accordingly depending on if the 3105 * device PM configuration was changed or the device is being removed. The 3106 * change is also propagated upstream. 3107 */ 3108 void pci_bridge_d3_update(struct pci_dev *dev) 3109 { 3110 bool remove = !device_is_registered(&dev->dev); 3111 struct pci_dev *bridge; 3112 bool d3cold_ok = true; 3113 3114 bridge = pci_upstream_bridge(dev); 3115 if (!bridge || !pci_bridge_d3_possible(bridge)) 3116 return; 3117 3118 /* 3119 * If D3 is currently allowed for the bridge, removing one of its 3120 * children won't change that. 3121 */ 3122 if (remove && bridge->bridge_d3) 3123 return; 3124 3125 /* 3126 * If D3 is currently allowed for the bridge and a child is added or 3127 * changed, disallowance of D3 can only be caused by that child, so 3128 * we only need to check that single device, not any of its siblings. 3129 * 3130 * If D3 is currently not allowed for the bridge, checking the device 3131 * first may allow us to skip checking its siblings. 3132 */ 3133 if (!remove) 3134 pci_dev_check_d3cold(dev, &d3cold_ok); 3135 3136 /* 3137 * If D3 is currently not allowed for the bridge, this may be caused 3138 * either by the device being changed/removed or any of its siblings, 3139 * so we need to go through all children to find out if one of them 3140 * continues to block D3. 3141 */ 3142 if (d3cold_ok && !bridge->bridge_d3) 3143 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3144 &d3cold_ok); 3145 3146 if (bridge->bridge_d3 != d3cold_ok) { 3147 bridge->bridge_d3 = d3cold_ok; 3148 /* Propagate change to upstream bridges */ 3149 pci_bridge_d3_update(bridge); 3150 } 3151 } 3152 3153 /** 3154 * pci_d3cold_enable - Enable D3cold for device 3155 * @dev: PCI device to handle 3156 * 3157 * This function can be used in drivers to enable D3cold from the device 3158 * they handle. It also updates upstream PCI bridge PM capabilities 3159 * accordingly. 3160 */ 3161 void pci_d3cold_enable(struct pci_dev *dev) 3162 { 3163 if (dev->no_d3cold) { 3164 dev->no_d3cold = false; 3165 pci_bridge_d3_update(dev); 3166 } 3167 } 3168 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3169 3170 /** 3171 * pci_d3cold_disable - Disable D3cold for device 3172 * @dev: PCI device to handle 3173 * 3174 * This function can be used in drivers to disable D3cold from the device 3175 * they handle. It also updates upstream PCI bridge PM capabilities 3176 * accordingly. 3177 */ 3178 void pci_d3cold_disable(struct pci_dev *dev) 3179 { 3180 if (!dev->no_d3cold) { 3181 dev->no_d3cold = true; 3182 pci_bridge_d3_update(dev); 3183 } 3184 } 3185 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3186 3187 /** 3188 * pci_pm_init - Initialize PM functions of given PCI device 3189 * @dev: PCI device to handle. 3190 */ 3191 void pci_pm_init(struct pci_dev *dev) 3192 { 3193 int pm; 3194 u16 status; 3195 u16 pmc; 3196 3197 pm_runtime_forbid(&dev->dev); 3198 pm_runtime_set_active(&dev->dev); 3199 pm_runtime_enable(&dev->dev); 3200 device_enable_async_suspend(&dev->dev); 3201 dev->wakeup_prepared = false; 3202 3203 dev->pm_cap = 0; 3204 dev->pme_support = 0; 3205 3206 /* find PCI PM capability in list */ 3207 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3208 if (!pm) 3209 return; 3210 /* Check device's ability to generate PME# */ 3211 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3212 3213 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3214 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3215 pmc & PCI_PM_CAP_VER_MASK); 3216 return; 3217 } 3218 3219 dev->pm_cap = pm; 3220 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3221 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3222 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3223 dev->d3cold_allowed = true; 3224 3225 dev->d1_support = false; 3226 dev->d2_support = false; 3227 if (!pci_no_d1d2(dev)) { 3228 if (pmc & PCI_PM_CAP_D1) 3229 dev->d1_support = true; 3230 if (pmc & PCI_PM_CAP_D2) 3231 dev->d2_support = true; 3232 3233 if (dev->d1_support || dev->d2_support) 3234 pci_info(dev, "supports%s%s\n", 3235 dev->d1_support ? " D1" : "", 3236 dev->d2_support ? " D2" : ""); 3237 } 3238 3239 pmc &= PCI_PM_CAP_PME_MASK; 3240 if (pmc) { 3241 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3242 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3243 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3244 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3245 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3246 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3247 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc); 3248 dev->pme_poll = true; 3249 /* 3250 * Make device's PM flags reflect the wake-up capability, but 3251 * let the user space enable it to wake up the system as needed. 3252 */ 3253 device_set_wakeup_capable(&dev->dev, true); 3254 /* Disable the PME# generation functionality */ 3255 pci_pme_active(dev, false); 3256 } 3257 3258 pci_read_config_word(dev, PCI_STATUS, &status); 3259 if (status & PCI_STATUS_IMM_READY) 3260 dev->imm_ready = 1; 3261 } 3262 3263 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3264 { 3265 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3266 3267 switch (prop) { 3268 case PCI_EA_P_MEM: 3269 case PCI_EA_P_VF_MEM: 3270 flags |= IORESOURCE_MEM; 3271 break; 3272 case PCI_EA_P_MEM_PREFETCH: 3273 case PCI_EA_P_VF_MEM_PREFETCH: 3274 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3275 break; 3276 case PCI_EA_P_IO: 3277 flags |= IORESOURCE_IO; 3278 break; 3279 default: 3280 return 0; 3281 } 3282 3283 return flags; 3284 } 3285 3286 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3287 u8 prop) 3288 { 3289 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3290 return &dev->resource[bei]; 3291 #ifdef CONFIG_PCI_IOV 3292 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3293 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3294 return &dev->resource[PCI_IOV_RESOURCES + 3295 bei - PCI_EA_BEI_VF_BAR0]; 3296 #endif 3297 else if (bei == PCI_EA_BEI_ROM) 3298 return &dev->resource[PCI_ROM_RESOURCE]; 3299 else 3300 return NULL; 3301 } 3302 3303 /* Read an Enhanced Allocation (EA) entry */ 3304 static int pci_ea_read(struct pci_dev *dev, int offset) 3305 { 3306 struct resource *res; 3307 const char *res_name; 3308 int ent_size, ent_offset = offset; 3309 resource_size_t start, end; 3310 unsigned long flags; 3311 u32 dw0, bei, base, max_offset; 3312 u8 prop; 3313 bool support_64 = (sizeof(resource_size_t) >= 8); 3314 3315 pci_read_config_dword(dev, ent_offset, &dw0); 3316 ent_offset += 4; 3317 3318 /* Entry size field indicates DWORDs after 1st */ 3319 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2; 3320 3321 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3322 goto out; 3323 3324 bei = FIELD_GET(PCI_EA_BEI, dw0); 3325 prop = FIELD_GET(PCI_EA_PP, dw0); 3326 3327 /* 3328 * If the Property is in the reserved range, try the Secondary 3329 * Property instead. 3330 */ 3331 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3332 prop = FIELD_GET(PCI_EA_SP, dw0); 3333 if (prop > PCI_EA_P_BRIDGE_IO) 3334 goto out; 3335 3336 res = pci_ea_get_resource(dev, bei, prop); 3337 res_name = pci_resource_name(dev, bei); 3338 if (!res) { 3339 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3340 goto out; 3341 } 3342 3343 flags = pci_ea_flags(dev, prop); 3344 if (!flags) { 3345 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3346 goto out; 3347 } 3348 3349 /* Read Base */ 3350 pci_read_config_dword(dev, ent_offset, &base); 3351 start = (base & PCI_EA_FIELD_MASK); 3352 ent_offset += 4; 3353 3354 /* Read MaxOffset */ 3355 pci_read_config_dword(dev, ent_offset, &max_offset); 3356 ent_offset += 4; 3357 3358 /* Read Base MSBs (if 64-bit entry) */ 3359 if (base & PCI_EA_IS_64) { 3360 u32 base_upper; 3361 3362 pci_read_config_dword(dev, ent_offset, &base_upper); 3363 ent_offset += 4; 3364 3365 flags |= IORESOURCE_MEM_64; 3366 3367 /* entry starts above 32-bit boundary, can't use */ 3368 if (!support_64 && base_upper) 3369 goto out; 3370 3371 if (support_64) 3372 start |= ((u64)base_upper << 32); 3373 } 3374 3375 end = start + (max_offset | 0x03); 3376 3377 /* Read MaxOffset MSBs (if 64-bit entry) */ 3378 if (max_offset & PCI_EA_IS_64) { 3379 u32 max_offset_upper; 3380 3381 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3382 ent_offset += 4; 3383 3384 flags |= IORESOURCE_MEM_64; 3385 3386 /* entry too big, can't use */ 3387 if (!support_64 && max_offset_upper) 3388 goto out; 3389 3390 if (support_64) 3391 end += ((u64)max_offset_upper << 32); 3392 } 3393 3394 if (end < start) { 3395 pci_err(dev, "EA Entry crosses address boundary\n"); 3396 goto out; 3397 } 3398 3399 if (ent_size != ent_offset - offset) { 3400 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3401 ent_size, ent_offset - offset); 3402 goto out; 3403 } 3404 3405 res->name = pci_name(dev); 3406 res->start = start; 3407 res->end = end; 3408 res->flags = flags; 3409 3410 if (bei <= PCI_EA_BEI_BAR5) 3411 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3412 res_name, res, prop); 3413 else if (bei == PCI_EA_BEI_ROM) 3414 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3415 res_name, res, prop); 3416 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3417 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3418 res_name, res, prop); 3419 else 3420 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n", 3421 bei, res, prop); 3422 3423 out: 3424 return offset + ent_size; 3425 } 3426 3427 /* Enhanced Allocation Initialization */ 3428 void pci_ea_init(struct pci_dev *dev) 3429 { 3430 int ea; 3431 u8 num_ent; 3432 int offset; 3433 int i; 3434 3435 /* find PCI EA capability in list */ 3436 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3437 if (!ea) 3438 return; 3439 3440 /* determine the number of entries */ 3441 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3442 &num_ent); 3443 num_ent &= PCI_EA_NUM_ENT_MASK; 3444 3445 offset = ea + PCI_EA_FIRST_ENT; 3446 3447 /* Skip DWORD 2 for type 1 functions */ 3448 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3449 offset += 4; 3450 3451 /* parse each EA entry */ 3452 for (i = 0; i < num_ent; ++i) 3453 offset = pci_ea_read(dev, offset); 3454 } 3455 3456 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3457 struct pci_cap_saved_state *new_cap) 3458 { 3459 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3460 } 3461 3462 /** 3463 * _pci_add_cap_save_buffer - allocate buffer for saving given 3464 * capability registers 3465 * @dev: the PCI device 3466 * @cap: the capability to allocate the buffer for 3467 * @extended: Standard or Extended capability ID 3468 * @size: requested size of the buffer 3469 */ 3470 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3471 bool extended, unsigned int size) 3472 { 3473 int pos; 3474 struct pci_cap_saved_state *save_state; 3475 3476 if (extended) 3477 pos = pci_find_ext_capability(dev, cap); 3478 else 3479 pos = pci_find_capability(dev, cap); 3480 3481 if (!pos) 3482 return 0; 3483 3484 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3485 if (!save_state) 3486 return -ENOMEM; 3487 3488 save_state->cap.cap_nr = cap; 3489 save_state->cap.cap_extended = extended; 3490 save_state->cap.size = size; 3491 pci_add_saved_cap(dev, save_state); 3492 3493 return 0; 3494 } 3495 3496 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3497 { 3498 return _pci_add_cap_save_buffer(dev, cap, false, size); 3499 } 3500 3501 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3502 { 3503 return _pci_add_cap_save_buffer(dev, cap, true, size); 3504 } 3505 3506 /** 3507 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3508 * @dev: the PCI device 3509 */ 3510 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3511 { 3512 int error; 3513 3514 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3515 PCI_EXP_SAVE_REGS * sizeof(u16)); 3516 if (error) 3517 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3518 3519 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3520 if (error) 3521 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3522 3523 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3524 2 * sizeof(u16)); 3525 if (error) 3526 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3527 3528 pci_allocate_vc_save_buffers(dev); 3529 } 3530 3531 void pci_free_cap_save_buffers(struct pci_dev *dev) 3532 { 3533 struct pci_cap_saved_state *tmp; 3534 struct hlist_node *n; 3535 3536 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3537 kfree(tmp); 3538 } 3539 3540 /** 3541 * pci_configure_ari - enable or disable ARI forwarding 3542 * @dev: the PCI device 3543 * 3544 * If @dev and its upstream bridge both support ARI, enable ARI in the 3545 * bridge. Otherwise, disable ARI in the bridge. 3546 */ 3547 void pci_configure_ari(struct pci_dev *dev) 3548 { 3549 u32 cap; 3550 struct pci_dev *bridge; 3551 3552 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3553 return; 3554 3555 bridge = dev->bus->self; 3556 if (!bridge) 3557 return; 3558 3559 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3560 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3561 return; 3562 3563 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3564 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3565 PCI_EXP_DEVCTL2_ARI); 3566 bridge->ari_enabled = 1; 3567 } else { 3568 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3569 PCI_EXP_DEVCTL2_ARI); 3570 bridge->ari_enabled = 0; 3571 } 3572 } 3573 3574 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3575 { 3576 int pos; 3577 u16 cap, ctrl; 3578 3579 pos = pdev->acs_cap; 3580 if (!pos) 3581 return false; 3582 3583 /* 3584 * Except for egress control, capabilities are either required 3585 * or only required if controllable. Features missing from the 3586 * capability field can therefore be assumed as hard-wired enabled. 3587 */ 3588 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3589 acs_flags &= (cap | PCI_ACS_EC); 3590 3591 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3592 return (ctrl & acs_flags) == acs_flags; 3593 } 3594 3595 /** 3596 * pci_acs_enabled - test ACS against required flags for a given device 3597 * @pdev: device to test 3598 * @acs_flags: required PCI ACS flags 3599 * 3600 * Return true if the device supports the provided flags. Automatically 3601 * filters out flags that are not implemented on multifunction devices. 3602 * 3603 * Note that this interface checks the effective ACS capabilities of the 3604 * device rather than the actual capabilities. For instance, most single 3605 * function endpoints are not required to support ACS because they have no 3606 * opportunity for peer-to-peer access. We therefore return 'true' 3607 * regardless of whether the device exposes an ACS capability. This makes 3608 * it much easier for callers of this function to ignore the actual type 3609 * or topology of the device when testing ACS support. 3610 */ 3611 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3612 { 3613 int ret; 3614 3615 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3616 if (ret >= 0) 3617 return ret > 0; 3618 3619 /* 3620 * Conventional PCI and PCI-X devices never support ACS, either 3621 * effectively or actually. The shared bus topology implies that 3622 * any device on the bus can receive or snoop DMA. 3623 */ 3624 if (!pci_is_pcie(pdev)) 3625 return false; 3626 3627 switch (pci_pcie_type(pdev)) { 3628 /* 3629 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3630 * but since their primary interface is PCI/X, we conservatively 3631 * handle them as we would a non-PCIe device. 3632 */ 3633 case PCI_EXP_TYPE_PCIE_BRIDGE: 3634 /* 3635 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3636 * applicable... must never implement an ACS Extended Capability...". 3637 * This seems arbitrary, but we take a conservative interpretation 3638 * of this statement. 3639 */ 3640 case PCI_EXP_TYPE_PCI_BRIDGE: 3641 case PCI_EXP_TYPE_RC_EC: 3642 return false; 3643 /* 3644 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3645 * implement ACS in order to indicate their peer-to-peer capabilities, 3646 * regardless of whether they are single- or multi-function devices. 3647 */ 3648 case PCI_EXP_TYPE_DOWNSTREAM: 3649 case PCI_EXP_TYPE_ROOT_PORT: 3650 return pci_acs_flags_enabled(pdev, acs_flags); 3651 /* 3652 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3653 * implemented by the remaining PCIe types to indicate peer-to-peer 3654 * capabilities, but only when they are part of a multifunction 3655 * device. The footnote for section 6.12 indicates the specific 3656 * PCIe types included here. 3657 */ 3658 case PCI_EXP_TYPE_ENDPOINT: 3659 case PCI_EXP_TYPE_UPSTREAM: 3660 case PCI_EXP_TYPE_LEG_END: 3661 case PCI_EXP_TYPE_RC_END: 3662 if (!pdev->multifunction) 3663 break; 3664 3665 return pci_acs_flags_enabled(pdev, acs_flags); 3666 } 3667 3668 /* 3669 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3670 * to single function devices with the exception of downstream ports. 3671 */ 3672 return true; 3673 } 3674 3675 /** 3676 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3677 * @start: starting downstream device 3678 * @end: ending upstream device or NULL to search to the root bus 3679 * @acs_flags: required flags 3680 * 3681 * Walk up a device tree from start to end testing PCI ACS support. If 3682 * any step along the way does not support the required flags, return false. 3683 */ 3684 bool pci_acs_path_enabled(struct pci_dev *start, 3685 struct pci_dev *end, u16 acs_flags) 3686 { 3687 struct pci_dev *pdev, *parent = start; 3688 3689 do { 3690 pdev = parent; 3691 3692 if (!pci_acs_enabled(pdev, acs_flags)) 3693 return false; 3694 3695 if (pci_is_root_bus(pdev->bus)) 3696 return (end == NULL); 3697 3698 parent = pdev->bus->self; 3699 } while (pdev != end); 3700 3701 return true; 3702 } 3703 3704 /** 3705 * pci_acs_init - Initialize ACS if hardware supports it 3706 * @dev: the PCI device 3707 */ 3708 void pci_acs_init(struct pci_dev *dev) 3709 { 3710 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3711 3712 /* 3713 * Attempt to enable ACS regardless of capability because some Root 3714 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3715 * the standard ACS capability but still support ACS via those 3716 * quirks. 3717 */ 3718 pci_enable_acs(dev); 3719 } 3720 3721 /** 3722 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3723 * @pdev: PCI device 3724 * @bar: BAR to find 3725 * 3726 * Helper to find the position of the ctrl register for a BAR. 3727 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3728 * Returns -ENOENT if no ctrl register for the BAR could be found. 3729 */ 3730 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3731 { 3732 unsigned int pos, nbars, i; 3733 u32 ctrl; 3734 3735 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3736 if (!pos) 3737 return -ENOTSUPP; 3738 3739 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3740 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 3741 3742 for (i = 0; i < nbars; i++, pos += 8) { 3743 int bar_idx; 3744 3745 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3746 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl); 3747 if (bar_idx == bar) 3748 return pos; 3749 } 3750 3751 return -ENOENT; 3752 } 3753 3754 /** 3755 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3756 * @pdev: PCI device 3757 * @bar: BAR to query 3758 * 3759 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3760 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3761 */ 3762 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3763 { 3764 int pos; 3765 u32 cap; 3766 3767 pos = pci_rebar_find_pos(pdev, bar); 3768 if (pos < 0) 3769 return 0; 3770 3771 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3772 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3773 3774 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3775 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3776 bar == 0 && cap == 0x700) 3777 return 0x3f00; 3778 3779 return cap; 3780 } 3781 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3782 3783 /** 3784 * pci_rebar_get_current_size - get the current size of a BAR 3785 * @pdev: PCI device 3786 * @bar: BAR to set size to 3787 * 3788 * Read the size of a BAR from the resizable BAR config. 3789 * Returns size if found or negative error code. 3790 */ 3791 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3792 { 3793 int pos; 3794 u32 ctrl; 3795 3796 pos = pci_rebar_find_pos(pdev, bar); 3797 if (pos < 0) 3798 return pos; 3799 3800 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3801 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl); 3802 } 3803 3804 /** 3805 * pci_rebar_set_size - set a new size for a BAR 3806 * @pdev: PCI device 3807 * @bar: BAR to set size to 3808 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3809 * 3810 * Set the new size of a BAR as defined in the spec. 3811 * Returns zero if resizing was successful, error code otherwise. 3812 */ 3813 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3814 { 3815 int pos; 3816 u32 ctrl; 3817 3818 pos = pci_rebar_find_pos(pdev, bar); 3819 if (pos < 0) 3820 return pos; 3821 3822 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3823 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3824 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 3825 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3826 return 0; 3827 } 3828 3829 /** 3830 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3831 * @dev: the PCI device 3832 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3833 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3834 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3835 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3836 * 3837 * Return 0 if all upstream bridges support AtomicOp routing, egress 3838 * blocking is disabled on all upstream ports, and the root port supports 3839 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3840 * AtomicOp completion), or negative otherwise. 3841 */ 3842 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3843 { 3844 struct pci_bus *bus = dev->bus; 3845 struct pci_dev *bridge; 3846 u32 cap, ctl2; 3847 3848 /* 3849 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3850 * in Device Control 2 is reserved in VFs and the PF value applies 3851 * to all associated VFs. 3852 */ 3853 if (dev->is_virtfn) 3854 return -EINVAL; 3855 3856 if (!pci_is_pcie(dev)) 3857 return -EINVAL; 3858 3859 /* 3860 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3861 * AtomicOp requesters. For now, we only support endpoints as 3862 * requesters and root ports as completers. No endpoints as 3863 * completers, and no peer-to-peer. 3864 */ 3865 3866 switch (pci_pcie_type(dev)) { 3867 case PCI_EXP_TYPE_ENDPOINT: 3868 case PCI_EXP_TYPE_LEG_END: 3869 case PCI_EXP_TYPE_RC_END: 3870 break; 3871 default: 3872 return -EINVAL; 3873 } 3874 3875 while (bus->parent) { 3876 bridge = bus->self; 3877 3878 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3879 3880 switch (pci_pcie_type(bridge)) { 3881 /* Ensure switch ports support AtomicOp routing */ 3882 case PCI_EXP_TYPE_UPSTREAM: 3883 case PCI_EXP_TYPE_DOWNSTREAM: 3884 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3885 return -EINVAL; 3886 break; 3887 3888 /* Ensure root port supports all the sizes we care about */ 3889 case PCI_EXP_TYPE_ROOT_PORT: 3890 if ((cap & cap_mask) != cap_mask) 3891 return -EINVAL; 3892 break; 3893 } 3894 3895 /* Ensure upstream ports don't block AtomicOps on egress */ 3896 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3897 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3898 &ctl2); 3899 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3900 return -EINVAL; 3901 } 3902 3903 bus = bus->parent; 3904 } 3905 3906 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3907 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3908 return 0; 3909 } 3910 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3911 3912 /** 3913 * pci_release_region - Release a PCI bar 3914 * @pdev: PCI device whose resources were previously reserved by 3915 * pci_request_region() 3916 * @bar: BAR to release 3917 * 3918 * Releases the PCI I/O and memory resources previously reserved by a 3919 * successful call to pci_request_region(). Call this function only 3920 * after all use of the PCI regions has ceased. 3921 */ 3922 void pci_release_region(struct pci_dev *pdev, int bar) 3923 { 3924 /* 3925 * This is done for backwards compatibility, because the old PCI devres 3926 * API had a mode in which the function became managed if it had been 3927 * enabled with pcim_enable_device() instead of pci_enable_device(). 3928 */ 3929 if (pci_is_managed(pdev)) { 3930 pcim_release_region(pdev, bar); 3931 return; 3932 } 3933 3934 if (pci_resource_len(pdev, bar) == 0) 3935 return; 3936 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3937 release_region(pci_resource_start(pdev, bar), 3938 pci_resource_len(pdev, bar)); 3939 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3940 release_mem_region(pci_resource_start(pdev, bar), 3941 pci_resource_len(pdev, bar)); 3942 } 3943 EXPORT_SYMBOL(pci_release_region); 3944 3945 /** 3946 * __pci_request_region - Reserved PCI I/O and memory resource 3947 * @pdev: PCI device whose resources are to be reserved 3948 * @bar: BAR to be reserved 3949 * @name: name of the driver requesting the resource 3950 * @exclusive: whether the region access is exclusive or not 3951 * 3952 * Returns: 0 on success, negative error code on failure. 3953 * 3954 * Mark the PCI region associated with PCI device @pdev BAR @bar as being 3955 * reserved by owner @name. Do not access any address inside the PCI regions 3956 * unless this call returns successfully. 3957 * 3958 * If @exclusive is set, then the region is marked so that userspace 3959 * is explicitly not allowed to map the resource via /dev/mem or 3960 * sysfs MMIO access. 3961 * 3962 * Returns 0 on success, or %EBUSY on error. A warning 3963 * message is also printed on failure. 3964 */ 3965 static int __pci_request_region(struct pci_dev *pdev, int bar, 3966 const char *name, int exclusive) 3967 { 3968 if (pci_is_managed(pdev)) { 3969 if (exclusive == IORESOURCE_EXCLUSIVE) 3970 return pcim_request_region_exclusive(pdev, bar, name); 3971 3972 return pcim_request_region(pdev, bar, name); 3973 } 3974 3975 if (pci_resource_len(pdev, bar) == 0) 3976 return 0; 3977 3978 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3979 if (!request_region(pci_resource_start(pdev, bar), 3980 pci_resource_len(pdev, bar), name)) 3981 goto err_out; 3982 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3983 if (!__request_mem_region(pci_resource_start(pdev, bar), 3984 pci_resource_len(pdev, bar), name, 3985 exclusive)) 3986 goto err_out; 3987 } 3988 3989 return 0; 3990 3991 err_out: 3992 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3993 &pdev->resource[bar]); 3994 return -EBUSY; 3995 } 3996 3997 /** 3998 * pci_request_region - Reserve PCI I/O and memory resource 3999 * @pdev: PCI device whose resources are to be reserved 4000 * @bar: BAR to be reserved 4001 * @name: name of the driver requesting the resource 4002 * 4003 * Returns: 0 on success, negative error code on failure. 4004 * 4005 * Mark the PCI region associated with PCI device @pdev BAR @bar as being 4006 * reserved by owner @name. Do not access any address inside the PCI regions 4007 * unless this call returns successfully. 4008 * 4009 * Returns 0 on success, or %EBUSY on error. A warning 4010 * message is also printed on failure. 4011 * 4012 * NOTE: 4013 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4014 * when pcim_enable_device() has been called in advance. This hybrid feature is 4015 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4016 */ 4017 int pci_request_region(struct pci_dev *pdev, int bar, const char *name) 4018 { 4019 return __pci_request_region(pdev, bar, name, 0); 4020 } 4021 EXPORT_SYMBOL(pci_request_region); 4022 4023 /** 4024 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4025 * @pdev: PCI device whose resources were previously reserved 4026 * @bars: Bitmask of BARs to be released 4027 * 4028 * Release selected PCI I/O and memory resources previously reserved. 4029 * Call this function only after all use of the PCI regions has ceased. 4030 */ 4031 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4032 { 4033 int i; 4034 4035 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4036 if (bars & (1 << i)) 4037 pci_release_region(pdev, i); 4038 } 4039 EXPORT_SYMBOL(pci_release_selected_regions); 4040 4041 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4042 const char *name, int excl) 4043 { 4044 int i; 4045 4046 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4047 if (bars & (1 << i)) 4048 if (__pci_request_region(pdev, i, name, excl)) 4049 goto err_out; 4050 return 0; 4051 4052 err_out: 4053 while (--i >= 0) 4054 if (bars & (1 << i)) 4055 pci_release_region(pdev, i); 4056 4057 return -EBUSY; 4058 } 4059 4060 4061 /** 4062 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4063 * @pdev: PCI device whose resources are to be reserved 4064 * @bars: Bitmask of BARs to be requested 4065 * @name: Name of the driver requesting the resources 4066 * 4067 * Returns: 0 on success, negative error code on failure. 4068 * 4069 * NOTE: 4070 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4071 * when pcim_enable_device() has been called in advance. This hybrid feature is 4072 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4073 */ 4074 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4075 const char *name) 4076 { 4077 return __pci_request_selected_regions(pdev, bars, name, 0); 4078 } 4079 EXPORT_SYMBOL(pci_request_selected_regions); 4080 4081 /** 4082 * pci_request_selected_regions_exclusive - Request regions exclusively 4083 * @pdev: PCI device to request regions from 4084 * @bars: bit mask of BARs to request 4085 * @name: name of the driver requesting the resources 4086 * 4087 * Returns: 0 on success, negative error code on failure. 4088 * 4089 * NOTE: 4090 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4091 * when pcim_enable_device() has been called in advance. This hybrid feature is 4092 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4093 */ 4094 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4095 const char *name) 4096 { 4097 return __pci_request_selected_regions(pdev, bars, name, 4098 IORESOURCE_EXCLUSIVE); 4099 } 4100 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4101 4102 /** 4103 * pci_release_regions - Release reserved PCI I/O and memory resources 4104 * @pdev: PCI device whose resources were previously reserved by 4105 * pci_request_regions() 4106 * 4107 * Releases all PCI I/O and memory resources previously reserved by a 4108 * successful call to pci_request_regions(). Call this function only 4109 * after all use of the PCI regions has ceased. 4110 */ 4111 void pci_release_regions(struct pci_dev *pdev) 4112 { 4113 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4114 } 4115 EXPORT_SYMBOL(pci_release_regions); 4116 4117 /** 4118 * pci_request_regions - Reserve PCI I/O and memory resources 4119 * @pdev: PCI device whose resources are to be reserved 4120 * @name: name of the driver requesting the resources 4121 * 4122 * Mark all PCI regions associated with PCI device @pdev as being reserved by 4123 * owner @name. Do not access any address inside the PCI regions unless this 4124 * call returns successfully. 4125 * 4126 * Returns 0 on success, or %EBUSY on error. A warning 4127 * message is also printed on failure. 4128 * 4129 * NOTE: 4130 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4131 * when pcim_enable_device() has been called in advance. This hybrid feature is 4132 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4133 */ 4134 int pci_request_regions(struct pci_dev *pdev, const char *name) 4135 { 4136 return pci_request_selected_regions(pdev, 4137 ((1 << PCI_STD_NUM_BARS) - 1), name); 4138 } 4139 EXPORT_SYMBOL(pci_request_regions); 4140 4141 /** 4142 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4143 * @pdev: PCI device whose resources are to be reserved 4144 * @name: name of the driver requesting the resources 4145 * 4146 * Returns: 0 on success, negative error code on failure. 4147 * 4148 * Mark all PCI regions associated with PCI device @pdev as being reserved 4149 * by owner @name. Do not access any address inside the PCI regions 4150 * unless this call returns successfully. 4151 * 4152 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4153 * and the sysfs MMIO access will not be allowed. 4154 * 4155 * Returns 0 on success, or %EBUSY on error. A warning message is also 4156 * printed on failure. 4157 * 4158 * NOTE: 4159 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4160 * when pcim_enable_device() has been called in advance. This hybrid feature is 4161 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4162 */ 4163 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *name) 4164 { 4165 return pci_request_selected_regions_exclusive(pdev, 4166 ((1 << PCI_STD_NUM_BARS) - 1), name); 4167 } 4168 EXPORT_SYMBOL(pci_request_regions_exclusive); 4169 4170 /* 4171 * Record the PCI IO range (expressed as CPU physical address + size). 4172 * Return a negative value if an error has occurred, zero otherwise 4173 */ 4174 int pci_register_io_range(const struct fwnode_handle *fwnode, phys_addr_t addr, 4175 resource_size_t size) 4176 { 4177 int ret = 0; 4178 #ifdef PCI_IOBASE 4179 struct logic_pio_hwaddr *range; 4180 4181 if (!size || addr + size < addr) 4182 return -EINVAL; 4183 4184 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4185 if (!range) 4186 return -ENOMEM; 4187 4188 range->fwnode = fwnode; 4189 range->size = size; 4190 range->hw_start = addr; 4191 range->flags = LOGIC_PIO_CPU_MMIO; 4192 4193 ret = logic_pio_register_range(range); 4194 if (ret) 4195 kfree(range); 4196 4197 /* Ignore duplicates due to deferred probing */ 4198 if (ret == -EEXIST) 4199 ret = 0; 4200 #endif 4201 4202 return ret; 4203 } 4204 4205 phys_addr_t pci_pio_to_address(unsigned long pio) 4206 { 4207 #ifdef PCI_IOBASE 4208 if (pio < MMIO_UPPER_LIMIT) 4209 return logic_pio_to_hwaddr(pio); 4210 #endif 4211 4212 return (phys_addr_t) OF_BAD_ADDR; 4213 } 4214 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4215 4216 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4217 { 4218 #ifdef PCI_IOBASE 4219 return logic_pio_trans_cpuaddr(address); 4220 #else 4221 if (address > IO_SPACE_LIMIT) 4222 return (unsigned long)-1; 4223 4224 return (unsigned long) address; 4225 #endif 4226 } 4227 4228 /** 4229 * pci_remap_iospace - Remap the memory mapped I/O space 4230 * @res: Resource describing the I/O space 4231 * @phys_addr: physical address of range to be mapped 4232 * 4233 * Remap the memory mapped I/O space described by the @res and the CPU 4234 * physical address @phys_addr into virtual address space. Only 4235 * architectures that have memory mapped IO functions defined (and the 4236 * PCI_IOBASE value defined) should call this function. 4237 */ 4238 #ifndef pci_remap_iospace 4239 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4240 { 4241 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4242 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4243 4244 if (!(res->flags & IORESOURCE_IO)) 4245 return -EINVAL; 4246 4247 if (res->end > IO_SPACE_LIMIT) 4248 return -EINVAL; 4249 4250 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4251 pgprot_device(PAGE_KERNEL)); 4252 #else 4253 /* 4254 * This architecture does not have memory mapped I/O space, 4255 * so this function should never be called 4256 */ 4257 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4258 return -ENODEV; 4259 #endif 4260 } 4261 EXPORT_SYMBOL(pci_remap_iospace); 4262 #endif 4263 4264 /** 4265 * pci_unmap_iospace - Unmap the memory mapped I/O space 4266 * @res: resource to be unmapped 4267 * 4268 * Unmap the CPU virtual address @res from virtual address space. Only 4269 * architectures that have memory mapped IO functions defined (and the 4270 * PCI_IOBASE value defined) should call this function. 4271 */ 4272 void pci_unmap_iospace(struct resource *res) 4273 { 4274 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4275 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4276 4277 vunmap_range(vaddr, vaddr + resource_size(res)); 4278 #endif 4279 } 4280 EXPORT_SYMBOL(pci_unmap_iospace); 4281 4282 static void __pci_set_master(struct pci_dev *dev, bool enable) 4283 { 4284 u16 old_cmd, cmd; 4285 4286 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4287 if (enable) 4288 cmd = old_cmd | PCI_COMMAND_MASTER; 4289 else 4290 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4291 if (cmd != old_cmd) { 4292 pci_dbg(dev, "%s bus mastering\n", 4293 enable ? "enabling" : "disabling"); 4294 pci_write_config_word(dev, PCI_COMMAND, cmd); 4295 } 4296 dev->is_busmaster = enable; 4297 } 4298 4299 /** 4300 * pcibios_setup - process "pci=" kernel boot arguments 4301 * @str: string used to pass in "pci=" kernel boot arguments 4302 * 4303 * Process kernel boot arguments. This is the default implementation. 4304 * Architecture specific implementations can override this as necessary. 4305 */ 4306 char * __weak __init pcibios_setup(char *str) 4307 { 4308 return str; 4309 } 4310 4311 /** 4312 * pcibios_set_master - enable PCI bus-mastering for device dev 4313 * @dev: the PCI device to enable 4314 * 4315 * Enables PCI bus-mastering for the device. This is the default 4316 * implementation. Architecture specific implementations can override 4317 * this if necessary. 4318 */ 4319 void __weak pcibios_set_master(struct pci_dev *dev) 4320 { 4321 u8 lat; 4322 4323 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4324 if (pci_is_pcie(dev)) 4325 return; 4326 4327 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4328 if (lat < 16) 4329 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4330 else if (lat > pcibios_max_latency) 4331 lat = pcibios_max_latency; 4332 else 4333 return; 4334 4335 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4336 } 4337 4338 /** 4339 * pci_set_master - enables bus-mastering for device dev 4340 * @dev: the PCI device to enable 4341 * 4342 * Enables bus-mastering on the device and calls pcibios_set_master() 4343 * to do the needed arch specific settings. 4344 */ 4345 void pci_set_master(struct pci_dev *dev) 4346 { 4347 __pci_set_master(dev, true); 4348 pcibios_set_master(dev); 4349 } 4350 EXPORT_SYMBOL(pci_set_master); 4351 4352 /** 4353 * pci_clear_master - disables bus-mastering for device dev 4354 * @dev: the PCI device to disable 4355 */ 4356 void pci_clear_master(struct pci_dev *dev) 4357 { 4358 __pci_set_master(dev, false); 4359 } 4360 EXPORT_SYMBOL(pci_clear_master); 4361 4362 /** 4363 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4364 * @dev: the PCI device for which MWI is to be enabled 4365 * 4366 * Helper function for pci_set_mwi. 4367 * Originally copied from drivers/net/acenic.c. 4368 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4369 * 4370 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4371 */ 4372 int pci_set_cacheline_size(struct pci_dev *dev) 4373 { 4374 u8 cacheline_size; 4375 4376 if (!pci_cache_line_size) 4377 return -EINVAL; 4378 4379 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4380 equal to or multiple of the right value. */ 4381 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4382 if (cacheline_size >= pci_cache_line_size && 4383 (cacheline_size % pci_cache_line_size) == 0) 4384 return 0; 4385 4386 /* Write the correct value. */ 4387 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4388 /* Read it back. */ 4389 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4390 if (cacheline_size == pci_cache_line_size) 4391 return 0; 4392 4393 pci_dbg(dev, "cache line size of %d is not supported\n", 4394 pci_cache_line_size << 2); 4395 4396 return -EINVAL; 4397 } 4398 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4399 4400 /** 4401 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4402 * @dev: the PCI device for which MWI is enabled 4403 * 4404 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4405 * 4406 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4407 */ 4408 int pci_set_mwi(struct pci_dev *dev) 4409 { 4410 #ifdef PCI_DISABLE_MWI 4411 return 0; 4412 #else 4413 int rc; 4414 u16 cmd; 4415 4416 rc = pci_set_cacheline_size(dev); 4417 if (rc) 4418 return rc; 4419 4420 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4421 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4422 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4423 cmd |= PCI_COMMAND_INVALIDATE; 4424 pci_write_config_word(dev, PCI_COMMAND, cmd); 4425 } 4426 return 0; 4427 #endif 4428 } 4429 EXPORT_SYMBOL(pci_set_mwi); 4430 4431 /** 4432 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4433 * @dev: the PCI device for which MWI is enabled 4434 * 4435 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4436 * Callers are not required to check the return value. 4437 * 4438 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4439 */ 4440 int pci_try_set_mwi(struct pci_dev *dev) 4441 { 4442 #ifdef PCI_DISABLE_MWI 4443 return 0; 4444 #else 4445 return pci_set_mwi(dev); 4446 #endif 4447 } 4448 EXPORT_SYMBOL(pci_try_set_mwi); 4449 4450 /** 4451 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4452 * @dev: the PCI device to disable 4453 * 4454 * Disables PCI Memory-Write-Invalidate transaction on the device 4455 */ 4456 void pci_clear_mwi(struct pci_dev *dev) 4457 { 4458 #ifndef PCI_DISABLE_MWI 4459 u16 cmd; 4460 4461 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4462 if (cmd & PCI_COMMAND_INVALIDATE) { 4463 cmd &= ~PCI_COMMAND_INVALIDATE; 4464 pci_write_config_word(dev, PCI_COMMAND, cmd); 4465 } 4466 #endif 4467 } 4468 EXPORT_SYMBOL(pci_clear_mwi); 4469 4470 /** 4471 * pci_disable_parity - disable parity checking for device 4472 * @dev: the PCI device to operate on 4473 * 4474 * Disable parity checking for device @dev 4475 */ 4476 void pci_disable_parity(struct pci_dev *dev) 4477 { 4478 u16 cmd; 4479 4480 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4481 if (cmd & PCI_COMMAND_PARITY) { 4482 cmd &= ~PCI_COMMAND_PARITY; 4483 pci_write_config_word(dev, PCI_COMMAND, cmd); 4484 } 4485 } 4486 4487 /** 4488 * pci_intx - enables/disables PCI INTx for device dev 4489 * @pdev: the PCI device to operate on 4490 * @enable: boolean: whether to enable or disable PCI INTx 4491 * 4492 * Enables/disables PCI INTx for device @pdev 4493 */ 4494 void pci_intx(struct pci_dev *pdev, int enable) 4495 { 4496 u16 pci_command, new; 4497 4498 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4499 4500 if (enable) 4501 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4502 else 4503 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4504 4505 if (new == pci_command) 4506 return; 4507 4508 pci_write_config_word(pdev, PCI_COMMAND, new); 4509 } 4510 EXPORT_SYMBOL_GPL(pci_intx); 4511 4512 /** 4513 * pci_wait_for_pending_transaction - wait for pending transaction 4514 * @dev: the PCI device to operate on 4515 * 4516 * Return 0 if transaction is pending 1 otherwise. 4517 */ 4518 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4519 { 4520 if (!pci_is_pcie(dev)) 4521 return 1; 4522 4523 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4524 PCI_EXP_DEVSTA_TRPND); 4525 } 4526 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4527 4528 /** 4529 * pcie_flr - initiate a PCIe function level reset 4530 * @dev: device to reset 4531 * 4532 * Initiate a function level reset unconditionally on @dev without 4533 * checking any flags and DEVCAP 4534 */ 4535 int pcie_flr(struct pci_dev *dev) 4536 { 4537 if (!pci_wait_for_pending_transaction(dev)) 4538 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4539 4540 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4541 4542 if (dev->imm_ready) 4543 return 0; 4544 4545 /* 4546 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4547 * 100ms, but may silently discard requests while the FLR is in 4548 * progress. Wait 100ms before trying to access the device. 4549 */ 4550 msleep(100); 4551 4552 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4553 } 4554 EXPORT_SYMBOL_GPL(pcie_flr); 4555 4556 /** 4557 * pcie_reset_flr - initiate a PCIe function level reset 4558 * @dev: device to reset 4559 * @probe: if true, return 0 if device can be reset this way 4560 * 4561 * Initiate a function level reset on @dev. 4562 */ 4563 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4564 { 4565 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4566 return -ENOTTY; 4567 4568 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4569 return -ENOTTY; 4570 4571 if (probe) 4572 return 0; 4573 4574 return pcie_flr(dev); 4575 } 4576 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4577 4578 static int pci_af_flr(struct pci_dev *dev, bool probe) 4579 { 4580 int pos; 4581 u8 cap; 4582 4583 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4584 if (!pos) 4585 return -ENOTTY; 4586 4587 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4588 return -ENOTTY; 4589 4590 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4591 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4592 return -ENOTTY; 4593 4594 if (probe) 4595 return 0; 4596 4597 /* 4598 * Wait for Transaction Pending bit to clear. A word-aligned test 4599 * is used, so we use the control offset rather than status and shift 4600 * the test bit to match. 4601 */ 4602 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4603 PCI_AF_STATUS_TP << 8)) 4604 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4605 4606 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4607 4608 if (dev->imm_ready) 4609 return 0; 4610 4611 /* 4612 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4613 * updated 27 July 2006; a device must complete an FLR within 4614 * 100ms, but may silently discard requests while the FLR is in 4615 * progress. Wait 100ms before trying to access the device. 4616 */ 4617 msleep(100); 4618 4619 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4620 } 4621 4622 /** 4623 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4624 * @dev: Device to reset. 4625 * @probe: if true, return 0 if the device can be reset this way. 4626 * 4627 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4628 * unset, it will be reinitialized internally when going from PCI_D3hot to 4629 * PCI_D0. If that's the case and the device is not in a low-power state 4630 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4631 * 4632 * NOTE: This causes the caller to sleep for twice the device power transition 4633 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4634 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4635 * Moreover, only devices in D0 can be reset by this function. 4636 */ 4637 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4638 { 4639 u16 csr; 4640 4641 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4642 return -ENOTTY; 4643 4644 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4645 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4646 return -ENOTTY; 4647 4648 if (probe) 4649 return 0; 4650 4651 if (dev->current_state != PCI_D0) 4652 return -EINVAL; 4653 4654 csr &= ~PCI_PM_CTRL_STATE_MASK; 4655 csr |= PCI_D3hot; 4656 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4657 pci_dev_d3_sleep(dev); 4658 4659 csr &= ~PCI_PM_CTRL_STATE_MASK; 4660 csr |= PCI_D0; 4661 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4662 pci_dev_d3_sleep(dev); 4663 4664 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4665 } 4666 4667 /** 4668 * pcie_wait_for_link_status - Wait for link status change 4669 * @pdev: Device whose link to wait for. 4670 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4671 * @active: Waiting for active or inactive? 4672 * 4673 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4674 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4675 */ 4676 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4677 bool use_lt, bool active) 4678 { 4679 u16 lnksta_mask, lnksta_match; 4680 unsigned long end_jiffies; 4681 u16 lnksta; 4682 4683 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4684 lnksta_match = active ? lnksta_mask : 0; 4685 4686 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4687 do { 4688 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4689 if ((lnksta & lnksta_mask) == lnksta_match) 4690 return 0; 4691 msleep(1); 4692 } while (time_before(jiffies, end_jiffies)); 4693 4694 return -ETIMEDOUT; 4695 } 4696 4697 /** 4698 * pcie_retrain_link - Request a link retrain and wait for it to complete 4699 * @pdev: Device whose link to retrain. 4700 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 4701 * 4702 * Retrain completion status is retrieved from the Link Status Register 4703 * according to @use_lt. It is not verified whether the use of the DLLLA 4704 * bit is valid. 4705 * 4706 * Return 0 if successful, or -ETIMEDOUT if training has not completed 4707 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4708 */ 4709 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 4710 { 4711 int rc; 4712 4713 /* 4714 * Ensure the updated LNKCTL parameters are used during link 4715 * training by checking that there is no ongoing link training that 4716 * may have started before link parameters were changed, so as to 4717 * avoid LTSSM race as recommended in Implementation Note at the end 4718 * of PCIe r6.1 sec 7.5.3.7. 4719 */ 4720 rc = pcie_wait_for_link_status(pdev, true, false); 4721 if (rc) 4722 return rc; 4723 4724 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4725 if (pdev->clear_retrain_link) { 4726 /* 4727 * Due to an erratum in some devices the Retrain Link bit 4728 * needs to be cleared again manually to allow the link 4729 * training to succeed. 4730 */ 4731 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4732 } 4733 4734 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4735 4736 /* 4737 * Clear LBMS after a manual retrain so that the bit can be used 4738 * to track link speed or width changes made by hardware itself 4739 * in attempt to correct unreliable link operation. 4740 */ 4741 pcie_reset_lbms_count(pdev); 4742 return rc; 4743 } 4744 4745 /** 4746 * pcie_wait_for_link_delay - Wait until link is active or inactive 4747 * @pdev: Bridge device 4748 * @active: waiting for active or inactive? 4749 * @delay: Delay to wait after link has become active (in ms) 4750 * 4751 * Use this to wait till link becomes active or inactive. 4752 */ 4753 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4754 int delay) 4755 { 4756 int rc; 4757 4758 /* 4759 * Some controllers might not implement link active reporting. In this 4760 * case, we wait for 1000 ms + any delay requested by the caller. 4761 */ 4762 if (!pdev->link_active_reporting) { 4763 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 4764 return true; 4765 } 4766 4767 /* 4768 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4769 * after which we should expect an link active if the reset was 4770 * successful. If so, software must wait a minimum 100ms before sending 4771 * configuration requests to devices downstream this port. 4772 * 4773 * If the link fails to activate, either the device was physically 4774 * removed or the link is permanently failed. 4775 */ 4776 if (active) 4777 msleep(20); 4778 rc = pcie_wait_for_link_status(pdev, false, active); 4779 if (active) { 4780 if (rc) 4781 rc = pcie_failed_link_retrain(pdev); 4782 if (rc) 4783 return false; 4784 4785 msleep(delay); 4786 return true; 4787 } 4788 4789 if (rc) 4790 return false; 4791 4792 return true; 4793 } 4794 4795 /** 4796 * pcie_wait_for_link - Wait until link is active or inactive 4797 * @pdev: Bridge device 4798 * @active: waiting for active or inactive? 4799 * 4800 * Use this to wait till link becomes active or inactive. 4801 */ 4802 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4803 { 4804 return pcie_wait_for_link_delay(pdev, active, 100); 4805 } 4806 4807 /* 4808 * Find maximum D3cold delay required by all the devices on the bus. The 4809 * spec says 100 ms, but firmware can lower it and we allow drivers to 4810 * increase it as well. 4811 * 4812 * Called with @pci_bus_sem locked for reading. 4813 */ 4814 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4815 { 4816 const struct pci_dev *pdev; 4817 int min_delay = 100; 4818 int max_delay = 0; 4819 4820 list_for_each_entry(pdev, &bus->devices, bus_list) { 4821 if (pdev->d3cold_delay < min_delay) 4822 min_delay = pdev->d3cold_delay; 4823 if (pdev->d3cold_delay > max_delay) 4824 max_delay = pdev->d3cold_delay; 4825 } 4826 4827 return max(min_delay, max_delay); 4828 } 4829 4830 /** 4831 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4832 * @dev: PCI bridge 4833 * @reset_type: reset type in human-readable form 4834 * 4835 * Handle necessary delays before access to the devices on the secondary 4836 * side of the bridge are permitted after D3cold to D0 transition 4837 * or Conventional Reset. 4838 * 4839 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4840 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4841 * 4.3.2. 4842 * 4843 * Return 0 on success or -ENOTTY if the first device on the secondary bus 4844 * failed to become accessible. 4845 */ 4846 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 4847 { 4848 struct pci_dev *child __free(pci_dev_put) = NULL; 4849 int delay; 4850 4851 if (pci_dev_is_disconnected(dev)) 4852 return 0; 4853 4854 if (!pci_is_bridge(dev)) 4855 return 0; 4856 4857 down_read(&pci_bus_sem); 4858 4859 /* 4860 * We only deal with devices that are present currently on the bus. 4861 * For any hot-added devices the access delay is handled in pciehp 4862 * board_added(). In case of ACPI hotplug the firmware is expected 4863 * to configure the devices before OS is notified. 4864 */ 4865 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4866 up_read(&pci_bus_sem); 4867 return 0; 4868 } 4869 4870 /* Take d3cold_delay requirements into account */ 4871 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4872 if (!delay) { 4873 up_read(&pci_bus_sem); 4874 return 0; 4875 } 4876 4877 child = pci_dev_get(list_first_entry(&dev->subordinate->devices, 4878 struct pci_dev, bus_list)); 4879 up_read(&pci_bus_sem); 4880 4881 /* 4882 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4883 * accessing the device after reset (that is 1000 ms + 100 ms). 4884 */ 4885 if (!pci_is_pcie(dev)) { 4886 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4887 msleep(1000 + delay); 4888 return 0; 4889 } 4890 4891 /* 4892 * For PCIe downstream and root ports that do not support speeds 4893 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4894 * speeds (gen3) we need to wait first for the data link layer to 4895 * become active. 4896 * 4897 * However, 100 ms is the minimum and the PCIe spec says the 4898 * software must allow at least 1s before it can determine that the 4899 * device that did not respond is a broken device. Also device can 4900 * take longer than that to respond if it indicates so through Request 4901 * Retry Status completions. 4902 * 4903 * Therefore we wait for 100 ms and check for the device presence 4904 * until the timeout expires. 4905 */ 4906 if (!pcie_downstream_port(dev)) 4907 return 0; 4908 4909 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4910 u16 status; 4911 4912 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4913 msleep(delay); 4914 4915 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 4916 return 0; 4917 4918 /* 4919 * If the port supports active link reporting we now check 4920 * whether the link is active and if not bail out early with 4921 * the assumption that the device is not present anymore. 4922 */ 4923 if (!dev->link_active_reporting) 4924 return -ENOTTY; 4925 4926 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 4927 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 4928 return -ENOTTY; 4929 4930 return pci_dev_wait(child, reset_type, 4931 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 4932 } 4933 4934 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4935 delay); 4936 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4937 /* Did not train, no need to wait any further */ 4938 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 4939 return -ENOTTY; 4940 } 4941 4942 return pci_dev_wait(child, reset_type, 4943 PCIE_RESET_READY_POLL_MS - delay); 4944 } 4945 4946 void pci_reset_secondary_bus(struct pci_dev *dev) 4947 { 4948 u16 ctrl; 4949 4950 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4951 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4952 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4953 4954 /* 4955 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4956 * this to 2ms to ensure that we meet the minimum requirement. 4957 */ 4958 msleep(2); 4959 4960 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4961 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4962 } 4963 4964 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4965 { 4966 pci_reset_secondary_bus(dev); 4967 } 4968 4969 /** 4970 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4971 * @dev: Bridge device 4972 * 4973 * Use the bridge control register to assert reset on the secondary bus. 4974 * Devices on the secondary bus are left in power-on state. 4975 */ 4976 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4977 { 4978 if (!dev->block_cfg_access) 4979 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n", 4980 __builtin_return_address(0)); 4981 pcibios_reset_secondary_bus(dev); 4982 4983 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 4984 } 4985 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4986 4987 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 4988 { 4989 struct pci_dev *pdev; 4990 4991 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4992 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4993 return -ENOTTY; 4994 4995 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4996 if (pdev != dev) 4997 return -ENOTTY; 4998 4999 if (probe) 5000 return 0; 5001 5002 return pci_bridge_secondary_bus_reset(dev->bus->self); 5003 } 5004 5005 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5006 { 5007 int rc = -ENOTTY; 5008 5009 if (!hotplug || !try_module_get(hotplug->owner)) 5010 return rc; 5011 5012 if (hotplug->ops->reset_slot) 5013 rc = hotplug->ops->reset_slot(hotplug, probe); 5014 5015 module_put(hotplug->owner); 5016 5017 return rc; 5018 } 5019 5020 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5021 { 5022 if (dev->multifunction || dev->subordinate || !dev->slot || 5023 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5024 return -ENOTTY; 5025 5026 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5027 } 5028 5029 static u16 cxl_port_dvsec(struct pci_dev *dev) 5030 { 5031 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL, 5032 PCI_DVSEC_CXL_PORT); 5033 } 5034 5035 static bool cxl_sbr_masked(struct pci_dev *dev) 5036 { 5037 u16 dvsec, reg; 5038 int rc; 5039 5040 dvsec = cxl_port_dvsec(dev); 5041 if (!dvsec) 5042 return false; 5043 5044 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®); 5045 if (rc || PCI_POSSIBLE_ERROR(reg)) 5046 return false; 5047 5048 /* 5049 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR 5050 * bit in Bridge Control has no effect. When 1, the Port generates 5051 * hot reset when the SBR bit is set to 1. 5052 */ 5053 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) 5054 return false; 5055 5056 return true; 5057 } 5058 5059 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5060 { 5061 struct pci_dev *bridge = pci_upstream_bridge(dev); 5062 int rc; 5063 5064 /* 5065 * If "dev" is below a CXL port that has SBR control masked, SBR 5066 * won't do anything, so return error. 5067 */ 5068 if (bridge && cxl_sbr_masked(bridge)) { 5069 if (probe) 5070 return 0; 5071 5072 return -ENOTTY; 5073 } 5074 5075 rc = pci_dev_reset_slot_function(dev, probe); 5076 if (rc != -ENOTTY) 5077 return rc; 5078 return pci_parent_bus_reset(dev, probe); 5079 } 5080 5081 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe) 5082 { 5083 struct pci_dev *bridge; 5084 u16 dvsec, reg, val; 5085 int rc; 5086 5087 bridge = pci_upstream_bridge(dev); 5088 if (!bridge) 5089 return -ENOTTY; 5090 5091 dvsec = cxl_port_dvsec(bridge); 5092 if (!dvsec) 5093 return -ENOTTY; 5094 5095 if (probe) 5096 return 0; 5097 5098 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®); 5099 if (rc) 5100 return -ENOTTY; 5101 5102 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) { 5103 val = reg; 5104 } else { 5105 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR; 5106 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, 5107 val); 5108 } 5109 5110 rc = pci_reset_bus_function(dev, probe); 5111 5112 if (reg != val) 5113 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, 5114 reg); 5115 5116 return rc; 5117 } 5118 5119 void pci_dev_lock(struct pci_dev *dev) 5120 { 5121 /* block PM suspend, driver probe, etc. */ 5122 device_lock(&dev->dev); 5123 pci_cfg_access_lock(dev); 5124 } 5125 EXPORT_SYMBOL_GPL(pci_dev_lock); 5126 5127 /* Return 1 on successful lock, 0 on contention */ 5128 int pci_dev_trylock(struct pci_dev *dev) 5129 { 5130 if (device_trylock(&dev->dev)) { 5131 if (pci_cfg_access_trylock(dev)) 5132 return 1; 5133 device_unlock(&dev->dev); 5134 } 5135 5136 return 0; 5137 } 5138 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5139 5140 void pci_dev_unlock(struct pci_dev *dev) 5141 { 5142 pci_cfg_access_unlock(dev); 5143 device_unlock(&dev->dev); 5144 } 5145 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5146 5147 static void pci_dev_save_and_disable(struct pci_dev *dev) 5148 { 5149 const struct pci_error_handlers *err_handler = 5150 dev->driver ? dev->driver->err_handler : NULL; 5151 5152 /* 5153 * dev->driver->err_handler->reset_prepare() is protected against 5154 * races with ->remove() by the device lock, which must be held by 5155 * the caller. 5156 */ 5157 if (err_handler && err_handler->reset_prepare) 5158 err_handler->reset_prepare(dev); 5159 else if (dev->driver) 5160 pci_warn(dev, "resetting"); 5161 5162 /* 5163 * Wake-up device prior to save. PM registers default to D0 after 5164 * reset and a simple register restore doesn't reliably return 5165 * to a non-D0 state anyway. 5166 */ 5167 pci_set_power_state(dev, PCI_D0); 5168 5169 pci_save_state(dev); 5170 /* 5171 * Disable the device by clearing the Command register, except for 5172 * INTx-disable which is set. This not only disables MMIO and I/O port 5173 * BARs, but also prevents the device from being Bus Master, preventing 5174 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5175 * compliant devices, INTx-disable prevents legacy interrupts. 5176 */ 5177 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5178 } 5179 5180 static void pci_dev_restore(struct pci_dev *dev) 5181 { 5182 const struct pci_error_handlers *err_handler = 5183 dev->driver ? dev->driver->err_handler : NULL; 5184 5185 pci_restore_state(dev); 5186 5187 /* 5188 * dev->driver->err_handler->reset_done() is protected against 5189 * races with ->remove() by the device lock, which must be held by 5190 * the caller. 5191 */ 5192 if (err_handler && err_handler->reset_done) 5193 err_handler->reset_done(dev); 5194 else if (dev->driver) 5195 pci_warn(dev, "reset done"); 5196 } 5197 5198 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5199 const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5200 { }, 5201 { pci_dev_specific_reset, .name = "device_specific" }, 5202 { pci_dev_acpi_reset, .name = "acpi" }, 5203 { pcie_reset_flr, .name = "flr" }, 5204 { pci_af_flr, .name = "af_flr" }, 5205 { pci_pm_reset, .name = "pm" }, 5206 { pci_reset_bus_function, .name = "bus" }, 5207 { cxl_reset_bus_function, .name = "cxl_bus" }, 5208 }; 5209 5210 /** 5211 * __pci_reset_function_locked - reset a PCI device function while holding 5212 * the @dev mutex lock. 5213 * @dev: PCI device to reset 5214 * 5215 * Some devices allow an individual function to be reset without affecting 5216 * other functions in the same device. The PCI device must be responsive 5217 * to PCI config space in order to use this function. 5218 * 5219 * The device function is presumed to be unused and the caller is holding 5220 * the device mutex lock when this function is called. 5221 * 5222 * Resetting the device will make the contents of PCI configuration space 5223 * random, so any caller of this must be prepared to reinitialise the 5224 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5225 * etc. 5226 * 5227 * Returns 0 if the device function was successfully reset or negative if the 5228 * device doesn't support resetting a single function. 5229 */ 5230 int __pci_reset_function_locked(struct pci_dev *dev) 5231 { 5232 int i, m, rc; 5233 5234 might_sleep(); 5235 5236 /* 5237 * A reset method returns -ENOTTY if it doesn't support this device and 5238 * we should try the next method. 5239 * 5240 * If it returns 0 (success), we're finished. If it returns any other 5241 * error, we're also finished: this indicates that further reset 5242 * mechanisms might be broken on the device. 5243 */ 5244 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5245 m = dev->reset_methods[i]; 5246 if (!m) 5247 return -ENOTTY; 5248 5249 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5250 if (!rc) 5251 return 0; 5252 if (rc != -ENOTTY) 5253 return rc; 5254 } 5255 5256 return -ENOTTY; 5257 } 5258 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5259 5260 /** 5261 * pci_init_reset_methods - check whether device can be safely reset 5262 * and store supported reset mechanisms. 5263 * @dev: PCI device to check for reset mechanisms 5264 * 5265 * Some devices allow an individual function to be reset without affecting 5266 * other functions in the same device. The PCI device must be in D0-D3hot 5267 * state. 5268 * 5269 * Stores reset mechanisms supported by device in reset_methods byte array 5270 * which is a member of struct pci_dev. 5271 */ 5272 void pci_init_reset_methods(struct pci_dev *dev) 5273 { 5274 int m, i, rc; 5275 5276 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5277 5278 might_sleep(); 5279 5280 i = 0; 5281 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5282 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5283 if (!rc) 5284 dev->reset_methods[i++] = m; 5285 else if (rc != -ENOTTY) 5286 break; 5287 } 5288 5289 dev->reset_methods[i] = 0; 5290 } 5291 5292 /** 5293 * pci_reset_function - quiesce and reset a PCI device function 5294 * @dev: PCI device to reset 5295 * 5296 * Some devices allow an individual function to be reset without affecting 5297 * other functions in the same device. The PCI device must be responsive 5298 * to PCI config space in order to use this function. 5299 * 5300 * This function does not just reset the PCI portion of a device, but 5301 * clears all the state associated with the device. This function differs 5302 * from __pci_reset_function_locked() in that it saves and restores device state 5303 * over the reset and takes the PCI device lock. 5304 * 5305 * Returns 0 if the device function was successfully reset or negative if the 5306 * device doesn't support resetting a single function. 5307 */ 5308 int pci_reset_function(struct pci_dev *dev) 5309 { 5310 struct pci_dev *bridge; 5311 int rc; 5312 5313 if (!pci_reset_supported(dev)) 5314 return -ENOTTY; 5315 5316 /* 5317 * If there's no upstream bridge, no locking is needed since there is 5318 * no upstream bridge configuration to hold consistent. 5319 */ 5320 bridge = pci_upstream_bridge(dev); 5321 if (bridge) 5322 pci_dev_lock(bridge); 5323 5324 pci_dev_lock(dev); 5325 pci_dev_save_and_disable(dev); 5326 5327 rc = __pci_reset_function_locked(dev); 5328 5329 pci_dev_restore(dev); 5330 pci_dev_unlock(dev); 5331 5332 if (bridge) 5333 pci_dev_unlock(bridge); 5334 5335 return rc; 5336 } 5337 EXPORT_SYMBOL_GPL(pci_reset_function); 5338 5339 /** 5340 * pci_reset_function_locked - quiesce and reset a PCI device function 5341 * @dev: PCI device to reset 5342 * 5343 * Some devices allow an individual function to be reset without affecting 5344 * other functions in the same device. The PCI device must be responsive 5345 * to PCI config space in order to use this function. 5346 * 5347 * This function does not just reset the PCI portion of a device, but 5348 * clears all the state associated with the device. This function differs 5349 * from __pci_reset_function_locked() in that it saves and restores device state 5350 * over the reset. It also differs from pci_reset_function() in that it 5351 * requires the PCI device lock to be held. 5352 * 5353 * Returns 0 if the device function was successfully reset or negative if the 5354 * device doesn't support resetting a single function. 5355 */ 5356 int pci_reset_function_locked(struct pci_dev *dev) 5357 { 5358 int rc; 5359 5360 if (!pci_reset_supported(dev)) 5361 return -ENOTTY; 5362 5363 pci_dev_save_and_disable(dev); 5364 5365 rc = __pci_reset_function_locked(dev); 5366 5367 pci_dev_restore(dev); 5368 5369 return rc; 5370 } 5371 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5372 5373 /** 5374 * pci_try_reset_function - quiesce and reset a PCI device function 5375 * @dev: PCI device to reset 5376 * 5377 * Same as above, except return -EAGAIN if unable to lock device. 5378 */ 5379 int pci_try_reset_function(struct pci_dev *dev) 5380 { 5381 int rc; 5382 5383 if (!pci_reset_supported(dev)) 5384 return -ENOTTY; 5385 5386 if (!pci_dev_trylock(dev)) 5387 return -EAGAIN; 5388 5389 pci_dev_save_and_disable(dev); 5390 rc = __pci_reset_function_locked(dev); 5391 pci_dev_restore(dev); 5392 pci_dev_unlock(dev); 5393 5394 return rc; 5395 } 5396 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5397 5398 /* Do any devices on or below this bus prevent a bus reset? */ 5399 static bool pci_bus_resettable(struct pci_bus *bus) 5400 { 5401 struct pci_dev *dev; 5402 5403 5404 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5405 return false; 5406 5407 list_for_each_entry(dev, &bus->devices, bus_list) { 5408 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5409 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5410 return false; 5411 } 5412 5413 return true; 5414 } 5415 5416 /* Lock devices from the top of the tree down */ 5417 static void pci_bus_lock(struct pci_bus *bus) 5418 { 5419 struct pci_dev *dev; 5420 5421 pci_dev_lock(bus->self); 5422 list_for_each_entry(dev, &bus->devices, bus_list) { 5423 if (dev->subordinate) 5424 pci_bus_lock(dev->subordinate); 5425 else 5426 pci_dev_lock(dev); 5427 } 5428 } 5429 5430 /* Unlock devices from the bottom of the tree up */ 5431 static void pci_bus_unlock(struct pci_bus *bus) 5432 { 5433 struct pci_dev *dev; 5434 5435 list_for_each_entry(dev, &bus->devices, bus_list) { 5436 if (dev->subordinate) 5437 pci_bus_unlock(dev->subordinate); 5438 else 5439 pci_dev_unlock(dev); 5440 } 5441 pci_dev_unlock(bus->self); 5442 } 5443 5444 /* Return 1 on successful lock, 0 on contention */ 5445 static int pci_bus_trylock(struct pci_bus *bus) 5446 { 5447 struct pci_dev *dev; 5448 5449 if (!pci_dev_trylock(bus->self)) 5450 return 0; 5451 5452 list_for_each_entry(dev, &bus->devices, bus_list) { 5453 if (dev->subordinate) { 5454 if (!pci_bus_trylock(dev->subordinate)) 5455 goto unlock; 5456 } else if (!pci_dev_trylock(dev)) 5457 goto unlock; 5458 } 5459 return 1; 5460 5461 unlock: 5462 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5463 if (dev->subordinate) 5464 pci_bus_unlock(dev->subordinate); 5465 else 5466 pci_dev_unlock(dev); 5467 } 5468 pci_dev_unlock(bus->self); 5469 return 0; 5470 } 5471 5472 /* Do any devices on or below this slot prevent a bus reset? */ 5473 static bool pci_slot_resettable(struct pci_slot *slot) 5474 { 5475 struct pci_dev *dev; 5476 5477 if (slot->bus->self && 5478 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5479 return false; 5480 5481 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5482 if (!dev->slot || dev->slot != slot) 5483 continue; 5484 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5485 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5486 return false; 5487 } 5488 5489 return true; 5490 } 5491 5492 /* Lock devices from the top of the tree down */ 5493 static void pci_slot_lock(struct pci_slot *slot) 5494 { 5495 struct pci_dev *dev; 5496 5497 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5498 if (!dev->slot || dev->slot != slot) 5499 continue; 5500 if (dev->subordinate) 5501 pci_bus_lock(dev->subordinate); 5502 else 5503 pci_dev_lock(dev); 5504 } 5505 } 5506 5507 /* Unlock devices from the bottom of the tree up */ 5508 static void pci_slot_unlock(struct pci_slot *slot) 5509 { 5510 struct pci_dev *dev; 5511 5512 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5513 if (!dev->slot || dev->slot != slot) 5514 continue; 5515 if (dev->subordinate) 5516 pci_bus_unlock(dev->subordinate); 5517 pci_dev_unlock(dev); 5518 } 5519 } 5520 5521 /* Return 1 on successful lock, 0 on contention */ 5522 static int pci_slot_trylock(struct pci_slot *slot) 5523 { 5524 struct pci_dev *dev; 5525 5526 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5527 if (!dev->slot || dev->slot != slot) 5528 continue; 5529 if (dev->subordinate) { 5530 if (!pci_bus_trylock(dev->subordinate)) { 5531 pci_dev_unlock(dev); 5532 goto unlock; 5533 } 5534 } else if (!pci_dev_trylock(dev)) 5535 goto unlock; 5536 } 5537 return 1; 5538 5539 unlock: 5540 list_for_each_entry_continue_reverse(dev, 5541 &slot->bus->devices, bus_list) { 5542 if (!dev->slot || dev->slot != slot) 5543 continue; 5544 if (dev->subordinate) 5545 pci_bus_unlock(dev->subordinate); 5546 else 5547 pci_dev_unlock(dev); 5548 } 5549 return 0; 5550 } 5551 5552 /* 5553 * Save and disable devices from the top of the tree down while holding 5554 * the @dev mutex lock for the entire tree. 5555 */ 5556 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5557 { 5558 struct pci_dev *dev; 5559 5560 list_for_each_entry(dev, &bus->devices, bus_list) { 5561 pci_dev_save_and_disable(dev); 5562 if (dev->subordinate) 5563 pci_bus_save_and_disable_locked(dev->subordinate); 5564 } 5565 } 5566 5567 /* 5568 * Restore devices from top of the tree down while holding @dev mutex lock 5569 * for the entire tree. Parent bridges need to be restored before we can 5570 * get to subordinate devices. 5571 */ 5572 static void pci_bus_restore_locked(struct pci_bus *bus) 5573 { 5574 struct pci_dev *dev; 5575 5576 list_for_each_entry(dev, &bus->devices, bus_list) { 5577 pci_dev_restore(dev); 5578 if (dev->subordinate) { 5579 pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5580 pci_bus_restore_locked(dev->subordinate); 5581 } 5582 } 5583 } 5584 5585 /* 5586 * Save and disable devices from the top of the tree down while holding 5587 * the @dev mutex lock for the entire tree. 5588 */ 5589 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5590 { 5591 struct pci_dev *dev; 5592 5593 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5594 if (!dev->slot || dev->slot != slot) 5595 continue; 5596 pci_dev_save_and_disable(dev); 5597 if (dev->subordinate) 5598 pci_bus_save_and_disable_locked(dev->subordinate); 5599 } 5600 } 5601 5602 /* 5603 * Restore devices from top of the tree down while holding @dev mutex lock 5604 * for the entire tree. Parent bridges need to be restored before we can 5605 * get to subordinate devices. 5606 */ 5607 static void pci_slot_restore_locked(struct pci_slot *slot) 5608 { 5609 struct pci_dev *dev; 5610 5611 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5612 if (!dev->slot || dev->slot != slot) 5613 continue; 5614 pci_dev_restore(dev); 5615 if (dev->subordinate) { 5616 pci_bridge_wait_for_secondary_bus(dev, "slot reset"); 5617 pci_bus_restore_locked(dev->subordinate); 5618 } 5619 } 5620 } 5621 5622 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5623 { 5624 int rc; 5625 5626 if (!slot || !pci_slot_resettable(slot)) 5627 return -ENOTTY; 5628 5629 if (!probe) 5630 pci_slot_lock(slot); 5631 5632 might_sleep(); 5633 5634 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5635 5636 if (!probe) 5637 pci_slot_unlock(slot); 5638 5639 return rc; 5640 } 5641 5642 /** 5643 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5644 * @slot: PCI slot to probe 5645 * 5646 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5647 */ 5648 int pci_probe_reset_slot(struct pci_slot *slot) 5649 { 5650 return pci_slot_reset(slot, PCI_RESET_PROBE); 5651 } 5652 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5653 5654 /** 5655 * __pci_reset_slot - Try to reset a PCI slot 5656 * @slot: PCI slot to reset 5657 * 5658 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5659 * independent of other slots. For instance, some slots may support slot power 5660 * control. In the case of a 1:1 bus to slot architecture, this function may 5661 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5662 * Generally a slot reset should be attempted before a bus reset. All of the 5663 * function of the slot and any subordinate buses behind the slot are reset 5664 * through this function. PCI config space of all devices in the slot and 5665 * behind the slot is saved before and restored after reset. 5666 * 5667 * Same as above except return -EAGAIN if the slot cannot be locked 5668 */ 5669 static int __pci_reset_slot(struct pci_slot *slot) 5670 { 5671 int rc; 5672 5673 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5674 if (rc) 5675 return rc; 5676 5677 if (pci_slot_trylock(slot)) { 5678 pci_slot_save_and_disable_locked(slot); 5679 might_sleep(); 5680 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5681 pci_slot_restore_locked(slot); 5682 pci_slot_unlock(slot); 5683 } else 5684 rc = -EAGAIN; 5685 5686 return rc; 5687 } 5688 5689 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5690 { 5691 int ret; 5692 5693 if (!bus->self || !pci_bus_resettable(bus)) 5694 return -ENOTTY; 5695 5696 if (probe) 5697 return 0; 5698 5699 pci_bus_lock(bus); 5700 5701 might_sleep(); 5702 5703 ret = pci_bridge_secondary_bus_reset(bus->self); 5704 5705 pci_bus_unlock(bus); 5706 5707 return ret; 5708 } 5709 5710 /** 5711 * pci_bus_error_reset - reset the bridge's subordinate bus 5712 * @bridge: The parent device that connects to the bus to reset 5713 * 5714 * This function will first try to reset the slots on this bus if the method is 5715 * available. If slot reset fails or is not available, this will fall back to a 5716 * secondary bus reset. 5717 */ 5718 int pci_bus_error_reset(struct pci_dev *bridge) 5719 { 5720 struct pci_bus *bus = bridge->subordinate; 5721 struct pci_slot *slot; 5722 5723 if (!bus) 5724 return -ENOTTY; 5725 5726 mutex_lock(&pci_slot_mutex); 5727 if (list_empty(&bus->slots)) 5728 goto bus_reset; 5729 5730 list_for_each_entry(slot, &bus->slots, list) 5731 if (pci_probe_reset_slot(slot)) 5732 goto bus_reset; 5733 5734 list_for_each_entry(slot, &bus->slots, list) 5735 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5736 goto bus_reset; 5737 5738 mutex_unlock(&pci_slot_mutex); 5739 return 0; 5740 bus_reset: 5741 mutex_unlock(&pci_slot_mutex); 5742 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5743 } 5744 5745 /** 5746 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5747 * @bus: PCI bus to probe 5748 * 5749 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5750 */ 5751 int pci_probe_reset_bus(struct pci_bus *bus) 5752 { 5753 return pci_bus_reset(bus, PCI_RESET_PROBE); 5754 } 5755 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5756 5757 /** 5758 * __pci_reset_bus - Try to reset a PCI bus 5759 * @bus: top level PCI bus to reset 5760 * 5761 * Same as above except return -EAGAIN if the bus cannot be locked 5762 */ 5763 int __pci_reset_bus(struct pci_bus *bus) 5764 { 5765 int rc; 5766 5767 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5768 if (rc) 5769 return rc; 5770 5771 if (pci_bus_trylock(bus)) { 5772 pci_bus_save_and_disable_locked(bus); 5773 might_sleep(); 5774 rc = pci_bridge_secondary_bus_reset(bus->self); 5775 pci_bus_restore_locked(bus); 5776 pci_bus_unlock(bus); 5777 } else 5778 rc = -EAGAIN; 5779 5780 return rc; 5781 } 5782 5783 /** 5784 * pci_reset_bus - Try to reset a PCI bus 5785 * @pdev: top level PCI device to reset via slot/bus 5786 * 5787 * Same as above except return -EAGAIN if the bus cannot be locked 5788 */ 5789 int pci_reset_bus(struct pci_dev *pdev) 5790 { 5791 return (!pci_probe_reset_slot(pdev->slot)) ? 5792 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5793 } 5794 EXPORT_SYMBOL_GPL(pci_reset_bus); 5795 5796 /** 5797 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5798 * @dev: PCI device to query 5799 * 5800 * Returns mmrbc: maximum designed memory read count in bytes or 5801 * appropriate error value. 5802 */ 5803 int pcix_get_max_mmrbc(struct pci_dev *dev) 5804 { 5805 int cap; 5806 u32 stat; 5807 5808 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5809 if (!cap) 5810 return -EINVAL; 5811 5812 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5813 return -EINVAL; 5814 5815 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat); 5816 } 5817 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5818 5819 /** 5820 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5821 * @dev: PCI device to query 5822 * 5823 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5824 * value. 5825 */ 5826 int pcix_get_mmrbc(struct pci_dev *dev) 5827 { 5828 int cap; 5829 u16 cmd; 5830 5831 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5832 if (!cap) 5833 return -EINVAL; 5834 5835 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5836 return -EINVAL; 5837 5838 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 5839 } 5840 EXPORT_SYMBOL(pcix_get_mmrbc); 5841 5842 /** 5843 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5844 * @dev: PCI device to query 5845 * @mmrbc: maximum memory read count in bytes 5846 * valid values are 512, 1024, 2048, 4096 5847 * 5848 * If possible sets maximum memory read byte count, some bridges have errata 5849 * that prevent this. 5850 */ 5851 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5852 { 5853 int cap; 5854 u32 stat, v, o; 5855 u16 cmd; 5856 5857 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5858 return -EINVAL; 5859 5860 v = ffs(mmrbc) - 10; 5861 5862 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5863 if (!cap) 5864 return -EINVAL; 5865 5866 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5867 return -EINVAL; 5868 5869 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat)) 5870 return -E2BIG; 5871 5872 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5873 return -EINVAL; 5874 5875 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 5876 if (o != v) { 5877 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5878 return -EIO; 5879 5880 cmd &= ~PCI_X_CMD_MAX_READ; 5881 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v); 5882 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5883 return -EIO; 5884 } 5885 return 0; 5886 } 5887 EXPORT_SYMBOL(pcix_set_mmrbc); 5888 5889 /** 5890 * pcie_get_readrq - get PCI Express read request size 5891 * @dev: PCI device to query 5892 * 5893 * Returns maximum memory read request in bytes or appropriate error value. 5894 */ 5895 int pcie_get_readrq(struct pci_dev *dev) 5896 { 5897 u16 ctl; 5898 5899 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5900 5901 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl); 5902 } 5903 EXPORT_SYMBOL(pcie_get_readrq); 5904 5905 /** 5906 * pcie_set_readrq - set PCI Express maximum memory read request 5907 * @dev: PCI device to query 5908 * @rq: maximum memory read count in bytes 5909 * valid values are 128, 256, 512, 1024, 2048, 4096 5910 * 5911 * If possible sets maximum memory read request in bytes 5912 */ 5913 int pcie_set_readrq(struct pci_dev *dev, int rq) 5914 { 5915 u16 v; 5916 int ret; 5917 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 5918 5919 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5920 return -EINVAL; 5921 5922 /* 5923 * If using the "performance" PCIe config, we clamp the read rq 5924 * size to the max packet size to keep the host bridge from 5925 * generating requests larger than we can cope with. 5926 */ 5927 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5928 int mps = pcie_get_mps(dev); 5929 5930 if (mps < rq) 5931 rq = mps; 5932 } 5933 5934 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8); 5935 5936 if (bridge->no_inc_mrrs) { 5937 int max_mrrs = pcie_get_readrq(dev); 5938 5939 if (rq > max_mrrs) { 5940 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 5941 return -EINVAL; 5942 } 5943 } 5944 5945 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5946 PCI_EXP_DEVCTL_READRQ, v); 5947 5948 return pcibios_err_to_errno(ret); 5949 } 5950 EXPORT_SYMBOL(pcie_set_readrq); 5951 5952 /** 5953 * pcie_get_mps - get PCI Express maximum payload size 5954 * @dev: PCI device to query 5955 * 5956 * Returns maximum payload size in bytes 5957 */ 5958 int pcie_get_mps(struct pci_dev *dev) 5959 { 5960 u16 ctl; 5961 5962 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5963 5964 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl); 5965 } 5966 EXPORT_SYMBOL(pcie_get_mps); 5967 5968 /** 5969 * pcie_set_mps - set PCI Express maximum payload size 5970 * @dev: PCI device to query 5971 * @mps: maximum payload size in bytes 5972 * valid values are 128, 256, 512, 1024, 2048, 4096 5973 * 5974 * If possible sets maximum payload size 5975 */ 5976 int pcie_set_mps(struct pci_dev *dev, int mps) 5977 { 5978 u16 v; 5979 int ret; 5980 5981 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5982 return -EINVAL; 5983 5984 v = ffs(mps) - 8; 5985 if (v > dev->pcie_mpss) 5986 return -EINVAL; 5987 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v); 5988 5989 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5990 PCI_EXP_DEVCTL_PAYLOAD, v); 5991 5992 return pcibios_err_to_errno(ret); 5993 } 5994 EXPORT_SYMBOL(pcie_set_mps); 5995 5996 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta) 5997 { 5998 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)]; 5999 } 6000 6001 int pcie_link_speed_mbps(struct pci_dev *pdev) 6002 { 6003 u16 lnksta; 6004 int err; 6005 6006 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 6007 if (err) 6008 return err; 6009 6010 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta)); 6011 } 6012 EXPORT_SYMBOL(pcie_link_speed_mbps); 6013 6014 /** 6015 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6016 * device and its bandwidth limitation 6017 * @dev: PCI device to query 6018 * @limiting_dev: storage for device causing the bandwidth limitation 6019 * @speed: storage for speed of limiting device 6020 * @width: storage for width of limiting device 6021 * 6022 * Walk up the PCI device chain and find the point where the minimum 6023 * bandwidth is available. Return the bandwidth available there and (if 6024 * limiting_dev, speed, and width pointers are supplied) information about 6025 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6026 * raw bandwidth. 6027 */ 6028 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6029 enum pci_bus_speed *speed, 6030 enum pcie_link_width *width) 6031 { 6032 u16 lnksta; 6033 enum pci_bus_speed next_speed; 6034 enum pcie_link_width next_width; 6035 u32 bw, next_bw; 6036 6037 if (speed) 6038 *speed = PCI_SPEED_UNKNOWN; 6039 if (width) 6040 *width = PCIE_LNK_WIDTH_UNKNOWN; 6041 6042 bw = 0; 6043 6044 while (dev) { 6045 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6046 6047 next_speed = to_pcie_link_speed(lnksta); 6048 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6049 6050 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6051 6052 /* Check if current device limits the total bandwidth */ 6053 if (!bw || next_bw <= bw) { 6054 bw = next_bw; 6055 6056 if (limiting_dev) 6057 *limiting_dev = dev; 6058 if (speed) 6059 *speed = next_speed; 6060 if (width) 6061 *width = next_width; 6062 } 6063 6064 dev = pci_upstream_bridge(dev); 6065 } 6066 6067 return bw; 6068 } 6069 EXPORT_SYMBOL(pcie_bandwidth_available); 6070 6071 /** 6072 * pcie_get_supported_speeds - query Supported Link Speed Vector 6073 * @dev: PCI device to query 6074 * 6075 * Query @dev supported link speeds. 6076 * 6077 * Implementation Note in PCIe r6.0 sec 7.5.3.18 recommends determining 6078 * supported link speeds using the Supported Link Speeds Vector in the Link 6079 * Capabilities 2 Register (when available). 6080 * 6081 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. 6082 * 6083 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, Supported Link 6084 * Speeds field in Link Capabilities is used and only 2.5 GT/s and 5.0 GT/s 6085 * speeds were defined. 6086 * 6087 * For @dev without Supported Link Speed Vector, the field is synthesized 6088 * from the Max Link Speed field in the Link Capabilities Register. 6089 * 6090 * Return: Supported Link Speeds Vector (+ reserved 0 at LSB). 6091 */ 6092 u8 pcie_get_supported_speeds(struct pci_dev *dev) 6093 { 6094 u32 lnkcap2, lnkcap; 6095 u8 speeds; 6096 6097 /* 6098 * Speeds retain the reserved 0 at LSB before PCIe Supported Link 6099 * Speeds Vector to allow using SLS Vector bit defines directly. 6100 */ 6101 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6102 speeds = lnkcap2 & PCI_EXP_LNKCAP2_SLS; 6103 6104 /* Ignore speeds higher than Max Link Speed */ 6105 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6106 speeds &= GENMASK(lnkcap & PCI_EXP_LNKCAP_SLS, 0); 6107 6108 /* PCIe r3.0-compliant */ 6109 if (speeds) 6110 return speeds; 6111 6112 /* Synthesize from the Max Link Speed field */ 6113 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6114 speeds = PCI_EXP_LNKCAP2_SLS_5_0GB | PCI_EXP_LNKCAP2_SLS_2_5GB; 6115 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6116 speeds = PCI_EXP_LNKCAP2_SLS_2_5GB; 6117 6118 return speeds; 6119 } 6120 6121 /** 6122 * pcie_get_speed_cap - query for the PCI device's link speed capability 6123 * @dev: PCI device to query 6124 * 6125 * Query the PCI device speed capability. 6126 * 6127 * Return: the maximum link speed supported by the device. 6128 */ 6129 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6130 { 6131 return PCIE_LNKCAP2_SLS2SPEED(dev->supported_speeds); 6132 } 6133 EXPORT_SYMBOL(pcie_get_speed_cap); 6134 6135 /** 6136 * pcie_get_width_cap - query for the PCI device's link width capability 6137 * @dev: PCI device to query 6138 * 6139 * Query the PCI device width capability. Return the maximum link width 6140 * supported by the device. 6141 */ 6142 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6143 { 6144 u32 lnkcap; 6145 6146 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6147 if (lnkcap) 6148 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6149 6150 return PCIE_LNK_WIDTH_UNKNOWN; 6151 } 6152 EXPORT_SYMBOL(pcie_get_width_cap); 6153 6154 /** 6155 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6156 * @dev: PCI device 6157 * @speed: storage for link speed 6158 * @width: storage for link width 6159 * 6160 * Calculate a PCI device's link bandwidth by querying for its link speed 6161 * and width, multiplying them, and applying encoding overhead. The result 6162 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6163 */ 6164 static u32 pcie_bandwidth_capable(struct pci_dev *dev, 6165 enum pci_bus_speed *speed, 6166 enum pcie_link_width *width) 6167 { 6168 *speed = pcie_get_speed_cap(dev); 6169 *width = pcie_get_width_cap(dev); 6170 6171 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6172 return 0; 6173 6174 return *width * PCIE_SPEED2MBS_ENC(*speed); 6175 } 6176 6177 /** 6178 * __pcie_print_link_status - Report the PCI device's link speed and width 6179 * @dev: PCI device to query 6180 * @verbose: Print info even when enough bandwidth is available 6181 * 6182 * If the available bandwidth at the device is less than the device is 6183 * capable of, report the device's maximum possible bandwidth and the 6184 * upstream link that limits its performance. If @verbose, always print 6185 * the available bandwidth, even if the device isn't constrained. 6186 */ 6187 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6188 { 6189 enum pcie_link_width width, width_cap; 6190 enum pci_bus_speed speed, speed_cap; 6191 struct pci_dev *limiting_dev = NULL; 6192 u32 bw_avail, bw_cap; 6193 6194 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6195 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6196 6197 if (bw_avail >= bw_cap && verbose) 6198 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6199 bw_cap / 1000, bw_cap % 1000, 6200 pci_speed_string(speed_cap), width_cap); 6201 else if (bw_avail < bw_cap) 6202 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6203 bw_avail / 1000, bw_avail % 1000, 6204 pci_speed_string(speed), width, 6205 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6206 bw_cap / 1000, bw_cap % 1000, 6207 pci_speed_string(speed_cap), width_cap); 6208 } 6209 6210 /** 6211 * pcie_print_link_status - Report the PCI device's link speed and width 6212 * @dev: PCI device to query 6213 * 6214 * Report the available bandwidth at the device. 6215 */ 6216 void pcie_print_link_status(struct pci_dev *dev) 6217 { 6218 __pcie_print_link_status(dev, true); 6219 } 6220 EXPORT_SYMBOL(pcie_print_link_status); 6221 6222 /** 6223 * pci_select_bars - Make BAR mask from the type of resource 6224 * @dev: the PCI device for which BAR mask is made 6225 * @flags: resource type mask to be selected 6226 * 6227 * This helper routine makes bar mask from the type of resource. 6228 */ 6229 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6230 { 6231 int i, bars = 0; 6232 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6233 if (pci_resource_flags(dev, i) & flags) 6234 bars |= (1 << i); 6235 return bars; 6236 } 6237 EXPORT_SYMBOL(pci_select_bars); 6238 6239 /* Some architectures require additional programming to enable VGA */ 6240 static arch_set_vga_state_t arch_set_vga_state; 6241 6242 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6243 { 6244 arch_set_vga_state = func; /* NULL disables */ 6245 } 6246 6247 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6248 unsigned int command_bits, u32 flags) 6249 { 6250 if (arch_set_vga_state) 6251 return arch_set_vga_state(dev, decode, command_bits, 6252 flags); 6253 return 0; 6254 } 6255 6256 /** 6257 * pci_set_vga_state - set VGA decode state on device and parents if requested 6258 * @dev: the PCI device 6259 * @decode: true = enable decoding, false = disable decoding 6260 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6261 * @flags: traverse ancestors and change bridges 6262 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6263 */ 6264 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6265 unsigned int command_bits, u32 flags) 6266 { 6267 struct pci_bus *bus; 6268 struct pci_dev *bridge; 6269 u16 cmd; 6270 int rc; 6271 6272 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6273 6274 /* ARCH specific VGA enables */ 6275 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6276 if (rc) 6277 return rc; 6278 6279 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6280 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6281 if (decode) 6282 cmd |= command_bits; 6283 else 6284 cmd &= ~command_bits; 6285 pci_write_config_word(dev, PCI_COMMAND, cmd); 6286 } 6287 6288 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6289 return 0; 6290 6291 bus = dev->bus; 6292 while (bus) { 6293 bridge = bus->self; 6294 if (bridge) { 6295 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6296 &cmd); 6297 if (decode) 6298 cmd |= PCI_BRIDGE_CTL_VGA; 6299 else 6300 cmd &= ~PCI_BRIDGE_CTL_VGA; 6301 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6302 cmd); 6303 } 6304 bus = bus->parent; 6305 } 6306 return 0; 6307 } 6308 6309 #ifdef CONFIG_ACPI 6310 bool pci_pr3_present(struct pci_dev *pdev) 6311 { 6312 struct acpi_device *adev; 6313 6314 if (acpi_disabled) 6315 return false; 6316 6317 adev = ACPI_COMPANION(&pdev->dev); 6318 if (!adev) 6319 return false; 6320 6321 return adev->power.flags.power_resources && 6322 acpi_has_method(adev->handle, "_PR3"); 6323 } 6324 EXPORT_SYMBOL_GPL(pci_pr3_present); 6325 #endif 6326 6327 /** 6328 * pci_add_dma_alias - Add a DMA devfn alias for a device 6329 * @dev: the PCI device for which alias is added 6330 * @devfn_from: alias slot and function 6331 * @nr_devfns: number of subsequent devfns to alias 6332 * 6333 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6334 * which is used to program permissible bus-devfn source addresses for DMA 6335 * requests in an IOMMU. These aliases factor into IOMMU group creation 6336 * and are useful for devices generating DMA requests beyond or different 6337 * from their logical bus-devfn. Examples include device quirks where the 6338 * device simply uses the wrong devfn, as well as non-transparent bridges 6339 * where the alias may be a proxy for devices in another domain. 6340 * 6341 * IOMMU group creation is performed during device discovery or addition, 6342 * prior to any potential DMA mapping and therefore prior to driver probing 6343 * (especially for userspace assigned devices where IOMMU group definition 6344 * cannot be left as a userspace activity). DMA aliases should therefore 6345 * be configured via quirks, such as the PCI fixup header quirk. 6346 */ 6347 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6348 unsigned int nr_devfns) 6349 { 6350 int devfn_to; 6351 6352 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6353 devfn_to = devfn_from + nr_devfns - 1; 6354 6355 if (!dev->dma_alias_mask) 6356 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6357 if (!dev->dma_alias_mask) { 6358 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6359 return; 6360 } 6361 6362 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6363 6364 if (nr_devfns == 1) 6365 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6366 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6367 else if (nr_devfns > 1) 6368 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6369 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6370 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6371 } 6372 6373 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6374 { 6375 return (dev1->dma_alias_mask && 6376 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6377 (dev2->dma_alias_mask && 6378 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6379 pci_real_dma_dev(dev1) == dev2 || 6380 pci_real_dma_dev(dev2) == dev1; 6381 } 6382 6383 bool pci_device_is_present(struct pci_dev *pdev) 6384 { 6385 u32 v; 6386 6387 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6388 pdev = pci_physfn(pdev); 6389 if (pci_dev_is_disconnected(pdev)) 6390 return false; 6391 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6392 } 6393 EXPORT_SYMBOL_GPL(pci_device_is_present); 6394 6395 void pci_ignore_hotplug(struct pci_dev *dev) 6396 { 6397 struct pci_dev *bridge = dev->bus->self; 6398 6399 dev->ignore_hotplug = 1; 6400 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6401 if (bridge) 6402 bridge->ignore_hotplug = 1; 6403 } 6404 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6405 6406 /** 6407 * pci_real_dma_dev - Get PCI DMA device for PCI device 6408 * @dev: the PCI device that may have a PCI DMA alias 6409 * 6410 * Permits the platform to provide architecture-specific functionality to 6411 * devices needing to alias DMA to another PCI device on another PCI bus. If 6412 * the PCI device is on the same bus, it is recommended to use 6413 * pci_add_dma_alias(). This is the default implementation. Architecture 6414 * implementations can override this. 6415 */ 6416 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6417 { 6418 return dev; 6419 } 6420 6421 resource_size_t __weak pcibios_default_alignment(void) 6422 { 6423 return 0; 6424 } 6425 6426 /* 6427 * Arches that don't want to expose struct resource to userland as-is in 6428 * sysfs and /proc can implement their own pci_resource_to_user(). 6429 */ 6430 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6431 const struct resource *rsrc, 6432 resource_size_t *start, resource_size_t *end) 6433 { 6434 *start = rsrc->start; 6435 *end = rsrc->end; 6436 } 6437 6438 static char *resource_alignment_param; 6439 static DEFINE_SPINLOCK(resource_alignment_lock); 6440 6441 /** 6442 * pci_specified_resource_alignment - get resource alignment specified by user. 6443 * @dev: the PCI device to get 6444 * @resize: whether or not to change resources' size when reassigning alignment 6445 * 6446 * RETURNS: Resource alignment if it is specified. 6447 * Zero if it is not specified. 6448 */ 6449 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6450 bool *resize) 6451 { 6452 int align_order, count; 6453 resource_size_t align = pcibios_default_alignment(); 6454 const char *p; 6455 int ret; 6456 6457 spin_lock(&resource_alignment_lock); 6458 p = resource_alignment_param; 6459 if (!p || !*p) 6460 goto out; 6461 if (pci_has_flag(PCI_PROBE_ONLY)) { 6462 align = 0; 6463 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6464 goto out; 6465 } 6466 6467 while (*p) { 6468 count = 0; 6469 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6470 p[count] == '@') { 6471 p += count + 1; 6472 if (align_order > 63) { 6473 pr_err("PCI: Invalid requested alignment (order %d)\n", 6474 align_order); 6475 align_order = PAGE_SHIFT; 6476 } 6477 } else { 6478 align_order = PAGE_SHIFT; 6479 } 6480 6481 ret = pci_dev_str_match(dev, p, &p); 6482 if (ret == 1) { 6483 *resize = true; 6484 align = 1ULL << align_order; 6485 break; 6486 } else if (ret < 0) { 6487 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6488 p); 6489 break; 6490 } 6491 6492 if (*p != ';' && *p != ',') { 6493 /* End of param or invalid format */ 6494 break; 6495 } 6496 p++; 6497 } 6498 out: 6499 spin_unlock(&resource_alignment_lock); 6500 return align; 6501 } 6502 6503 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6504 resource_size_t align, bool resize) 6505 { 6506 struct resource *r = &dev->resource[bar]; 6507 const char *r_name = pci_resource_name(dev, bar); 6508 resource_size_t size; 6509 6510 if (!(r->flags & IORESOURCE_MEM)) 6511 return; 6512 6513 if (r->flags & IORESOURCE_PCI_FIXED) { 6514 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n", 6515 r_name, r, (unsigned long long)align); 6516 return; 6517 } 6518 6519 size = resource_size(r); 6520 if (size >= align) 6521 return; 6522 6523 /* 6524 * Increase the alignment of the resource. There are two ways we 6525 * can do this: 6526 * 6527 * 1) Increase the size of the resource. BARs are aligned on their 6528 * size, so when we reallocate space for this resource, we'll 6529 * allocate it with the larger alignment. This also prevents 6530 * assignment of any other BARs inside the alignment region, so 6531 * if we're requesting page alignment, this means no other BARs 6532 * will share the page. 6533 * 6534 * The disadvantage is that this makes the resource larger than 6535 * the hardware BAR, which may break drivers that compute things 6536 * based on the resource size, e.g., to find registers at a 6537 * fixed offset before the end of the BAR. 6538 * 6539 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6540 * set r->start to the desired alignment. By itself this 6541 * doesn't prevent other BARs being put inside the alignment 6542 * region, but if we realign *every* resource of every device in 6543 * the system, none of them will share an alignment region. 6544 * 6545 * When the user has requested alignment for only some devices via 6546 * the "pci=resource_alignment" argument, "resize" is true and we 6547 * use the first method. Otherwise we assume we're aligning all 6548 * devices and we use the second. 6549 */ 6550 6551 pci_info(dev, "%s %pR: requesting alignment to %#llx\n", 6552 r_name, r, (unsigned long long)align); 6553 6554 if (resize) { 6555 r->start = 0; 6556 r->end = align - 1; 6557 } else { 6558 r->flags &= ~IORESOURCE_SIZEALIGN; 6559 r->flags |= IORESOURCE_STARTALIGN; 6560 resource_set_range(r, align, size); 6561 } 6562 r->flags |= IORESOURCE_UNSET; 6563 } 6564 6565 /* 6566 * This function disables memory decoding and releases memory resources 6567 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6568 * It also rounds up size to specified alignment. 6569 * Later on, the kernel will assign page-aligned memory resource back 6570 * to the device. 6571 */ 6572 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6573 { 6574 int i; 6575 struct resource *r; 6576 resource_size_t align; 6577 u16 command; 6578 bool resize = false; 6579 6580 /* 6581 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6582 * 3.4.1.11. Their resources are allocated from the space 6583 * described by the VF BARx register in the PF's SR-IOV capability. 6584 * We can't influence their alignment here. 6585 */ 6586 if (dev->is_virtfn) 6587 return; 6588 6589 /* check if specified PCI is target device to reassign */ 6590 align = pci_specified_resource_alignment(dev, &resize); 6591 if (!align) 6592 return; 6593 6594 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6595 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6596 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6597 return; 6598 } 6599 6600 pci_read_config_word(dev, PCI_COMMAND, &command); 6601 command &= ~PCI_COMMAND_MEMORY; 6602 pci_write_config_word(dev, PCI_COMMAND, command); 6603 6604 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6605 pci_request_resource_alignment(dev, i, align, resize); 6606 6607 /* 6608 * Need to disable bridge's resource window, 6609 * to enable the kernel to reassign new resource 6610 * window later on. 6611 */ 6612 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6613 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6614 r = &dev->resource[i]; 6615 if (!(r->flags & IORESOURCE_MEM)) 6616 continue; 6617 r->flags |= IORESOURCE_UNSET; 6618 r->end = resource_size(r) - 1; 6619 r->start = 0; 6620 } 6621 pci_disable_bridge_window(dev); 6622 } 6623 } 6624 6625 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6626 { 6627 size_t count = 0; 6628 6629 spin_lock(&resource_alignment_lock); 6630 if (resource_alignment_param) 6631 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6632 spin_unlock(&resource_alignment_lock); 6633 6634 return count; 6635 } 6636 6637 static ssize_t resource_alignment_store(const struct bus_type *bus, 6638 const char *buf, size_t count) 6639 { 6640 char *param, *old, *end; 6641 6642 if (count >= (PAGE_SIZE - 1)) 6643 return -EINVAL; 6644 6645 param = kstrndup(buf, count, GFP_KERNEL); 6646 if (!param) 6647 return -ENOMEM; 6648 6649 end = strchr(param, '\n'); 6650 if (end) 6651 *end = '\0'; 6652 6653 spin_lock(&resource_alignment_lock); 6654 old = resource_alignment_param; 6655 if (strlen(param)) { 6656 resource_alignment_param = param; 6657 } else { 6658 kfree(param); 6659 resource_alignment_param = NULL; 6660 } 6661 spin_unlock(&resource_alignment_lock); 6662 6663 kfree(old); 6664 6665 return count; 6666 } 6667 6668 static BUS_ATTR_RW(resource_alignment); 6669 6670 static int __init pci_resource_alignment_sysfs_init(void) 6671 { 6672 return bus_create_file(&pci_bus_type, 6673 &bus_attr_resource_alignment); 6674 } 6675 late_initcall(pci_resource_alignment_sysfs_init); 6676 6677 static void pci_no_domains(void) 6678 { 6679 #ifdef CONFIG_PCI_DOMAINS 6680 pci_domains_supported = 0; 6681 #endif 6682 } 6683 6684 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6685 static DEFINE_IDA(pci_domain_nr_static_ida); 6686 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6687 6688 static void of_pci_reserve_static_domain_nr(void) 6689 { 6690 struct device_node *np; 6691 int domain_nr; 6692 6693 for_each_node_by_type(np, "pci") { 6694 domain_nr = of_get_pci_domain_nr(np); 6695 if (domain_nr < 0) 6696 continue; 6697 /* 6698 * Permanently allocate domain_nr in dynamic_ida 6699 * to prevent it from dynamic allocation. 6700 */ 6701 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6702 domain_nr, domain_nr, GFP_KERNEL); 6703 } 6704 } 6705 6706 static int of_pci_bus_find_domain_nr(struct device *parent) 6707 { 6708 static bool static_domains_reserved = false; 6709 int domain_nr; 6710 6711 /* On the first call scan device tree for static allocations. */ 6712 if (!static_domains_reserved) { 6713 of_pci_reserve_static_domain_nr(); 6714 static_domains_reserved = true; 6715 } 6716 6717 if (parent) { 6718 /* 6719 * If domain is in DT, allocate it in static IDA. This 6720 * prevents duplicate static allocations in case of errors 6721 * in DT. 6722 */ 6723 domain_nr = of_get_pci_domain_nr(parent->of_node); 6724 if (domain_nr >= 0) 6725 return ida_alloc_range(&pci_domain_nr_static_ida, 6726 domain_nr, domain_nr, 6727 GFP_KERNEL); 6728 } 6729 6730 /* 6731 * If domain was not specified in DT, choose a free ID from dynamic 6732 * allocations. All domain numbers from DT are permanently in 6733 * dynamic allocations to prevent assigning them to other DT nodes 6734 * without static domain. 6735 */ 6736 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6737 } 6738 6739 static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr) 6740 { 6741 if (domain_nr < 0) 6742 return; 6743 6744 /* Release domain from IDA where it was allocated. */ 6745 if (of_get_pci_domain_nr(parent->of_node) == domain_nr) 6746 ida_free(&pci_domain_nr_static_ida, domain_nr); 6747 else 6748 ida_free(&pci_domain_nr_dynamic_ida, domain_nr); 6749 } 6750 6751 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6752 { 6753 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6754 acpi_pci_bus_find_domain_nr(bus); 6755 } 6756 6757 void pci_bus_release_domain_nr(struct device *parent, int domain_nr) 6758 { 6759 if (!acpi_disabled) 6760 return; 6761 of_pci_bus_release_domain_nr(parent, domain_nr); 6762 } 6763 #endif 6764 6765 /** 6766 * pci_ext_cfg_avail - can we access extended PCI config space? 6767 * 6768 * Returns 1 if we can access PCI extended config space (offsets 6769 * greater than 0xff). This is the default implementation. Architecture 6770 * implementations can override this. 6771 */ 6772 int __weak pci_ext_cfg_avail(void) 6773 { 6774 return 1; 6775 } 6776 6777 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6778 { 6779 } 6780 EXPORT_SYMBOL(pci_fixup_cardbus); 6781 6782 static int __init pci_setup(char *str) 6783 { 6784 while (str) { 6785 char *k = strchr(str, ','); 6786 if (k) 6787 *k++ = 0; 6788 if (*str && (str = pcibios_setup(str)) && *str) { 6789 if (!strcmp(str, "nomsi")) { 6790 pci_no_msi(); 6791 } else if (!strncmp(str, "noats", 5)) { 6792 pr_info("PCIe: ATS is disabled\n"); 6793 pcie_ats_disabled = true; 6794 } else if (!strcmp(str, "noaer")) { 6795 pci_no_aer(); 6796 } else if (!strcmp(str, "earlydump")) { 6797 pci_early_dump = true; 6798 } else if (!strncmp(str, "realloc=", 8)) { 6799 pci_realloc_get_opt(str + 8); 6800 } else if (!strncmp(str, "realloc", 7)) { 6801 pci_realloc_get_opt("on"); 6802 } else if (!strcmp(str, "nodomains")) { 6803 pci_no_domains(); 6804 } else if (!strncmp(str, "noari", 5)) { 6805 pcie_ari_disabled = true; 6806 } else if (!strncmp(str, "notph", 5)) { 6807 pci_no_tph(); 6808 } else if (!strncmp(str, "cbiosize=", 9)) { 6809 pci_cardbus_io_size = memparse(str + 9, &str); 6810 } else if (!strncmp(str, "cbmemsize=", 10)) { 6811 pci_cardbus_mem_size = memparse(str + 10, &str); 6812 } else if (!strncmp(str, "resource_alignment=", 19)) { 6813 resource_alignment_param = str + 19; 6814 } else if (!strncmp(str, "ecrc=", 5)) { 6815 pcie_ecrc_get_policy(str + 5); 6816 } else if (!strncmp(str, "hpiosize=", 9)) { 6817 pci_hotplug_io_size = memparse(str + 9, &str); 6818 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6819 pci_hotplug_mmio_size = memparse(str + 11, &str); 6820 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6821 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6822 } else if (!strncmp(str, "hpmemsize=", 10)) { 6823 pci_hotplug_mmio_size = memparse(str + 10, &str); 6824 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6825 } else if (!strncmp(str, "hpbussize=", 10)) { 6826 pci_hotplug_bus_size = 6827 simple_strtoul(str + 10, &str, 0); 6828 if (pci_hotplug_bus_size > 0xff) 6829 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6830 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6831 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6832 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6833 pcie_bus_config = PCIE_BUS_SAFE; 6834 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6835 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6836 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6837 pcie_bus_config = PCIE_BUS_PEER2PEER; 6838 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6839 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6840 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6841 disable_acs_redir_param = str + 18; 6842 } else if (!strncmp(str, "config_acs=", 11)) { 6843 config_acs_param = str + 11; 6844 } else { 6845 pr_err("PCI: Unknown option `%s'\n", str); 6846 } 6847 } 6848 str = k; 6849 } 6850 return 0; 6851 } 6852 early_param("pci", pci_setup); 6853 6854 /* 6855 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6856 * in pci_setup(), above, to point to data in the __initdata section which 6857 * will be freed after the init sequence is complete. We can't allocate memory 6858 * in pci_setup() because some architectures do not have any memory allocation 6859 * service available during an early_param() call. So we allocate memory and 6860 * copy the variable here before the init section is freed. 6861 * 6862 */ 6863 static int __init pci_realloc_setup_params(void) 6864 { 6865 resource_alignment_param = kstrdup(resource_alignment_param, 6866 GFP_KERNEL); 6867 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6868 config_acs_param = kstrdup(config_acs_param, GFP_KERNEL); 6869 6870 return 0; 6871 } 6872 pure_initcall(pci_realloc_setup_params); 6873