1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/pci_hotplug.h> 30 #include <linux/vmalloc.h> 31 #include <asm/dma.h> 32 #include <linux/aer.h> 33 #include <linux/bitfield.h> 34 #include "pci.h" 35 36 DEFINE_MUTEX(pci_slot_mutex); 37 38 const char *pci_power_names[] = { 39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 40 }; 41 EXPORT_SYMBOL_GPL(pci_power_names); 42 43 #ifdef CONFIG_X86_32 44 int isa_dma_bridge_buggy; 45 EXPORT_SYMBOL(isa_dma_bridge_buggy); 46 #endif 47 48 int pci_pci_problems; 49 EXPORT_SYMBOL(pci_pci_problems); 50 51 unsigned int pci_pm_d3hot_delay; 52 53 static void pci_pme_list_scan(struct work_struct *work); 54 55 static LIST_HEAD(pci_pme_list); 56 static DEFINE_MUTEX(pci_pme_list_mutex); 57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 58 59 struct pci_pme_device { 60 struct list_head list; 61 struct pci_dev *dev; 62 }; 63 64 #define PME_TIMEOUT 1000 /* How long between PME checks */ 65 66 /* 67 * Following exit from Conventional Reset, devices must be ready within 1 sec 68 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 69 * Reset (PCIe r6.0 sec 5.8). 70 */ 71 #define PCI_RESET_WAIT 1000 /* msec */ 72 73 /* 74 * Devices may extend the 1 sec period through Request Retry Status 75 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 76 * limit, but 60 sec ought to be enough for any device to become 77 * responsive. 78 */ 79 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 80 81 static void pci_dev_d3_sleep(struct pci_dev *dev) 82 { 83 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 84 unsigned int upper; 85 86 if (delay_ms) { 87 /* Use a 20% upper bound, 1ms minimum */ 88 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 89 usleep_range(delay_ms * USEC_PER_MSEC, 90 (delay_ms + upper) * USEC_PER_MSEC); 91 } 92 } 93 94 bool pci_reset_supported(struct pci_dev *dev) 95 { 96 return dev->reset_methods[0] != 0; 97 } 98 99 #ifdef CONFIG_PCI_DOMAINS 100 int pci_domains_supported = 1; 101 #endif 102 103 #define DEFAULT_CARDBUS_IO_SIZE (256) 104 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 105 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 106 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 107 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 108 109 #define DEFAULT_HOTPLUG_IO_SIZE (256) 110 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 111 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 112 /* hpiosize=nn can override this */ 113 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 114 /* 115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 117 * pci=hpmemsize=nnM overrides both 118 */ 119 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 120 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 121 122 #define DEFAULT_HOTPLUG_BUS_SIZE 1 123 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 124 125 126 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 127 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 129 #elif defined CONFIG_PCIE_BUS_SAFE 130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 131 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 132 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 133 #elif defined CONFIG_PCIE_BUS_PEER2PEER 134 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 135 #else 136 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 137 #endif 138 139 /* 140 * The default CLS is used if arch didn't set CLS explicitly and not 141 * all pci devices agree on the same value. Arch can override either 142 * the dfl or actual value as it sees fit. Don't forget this is 143 * measured in 32-bit words, not bytes. 144 */ 145 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2; 146 u8 pci_cache_line_size __ro_after_init ; 147 148 /* 149 * If we set up a device for bus mastering, we need to check the latency 150 * timer as certain BIOSes forget to set it properly. 151 */ 152 unsigned int pcibios_max_latency = 255; 153 154 /* If set, the PCIe ARI capability will not be used. */ 155 static bool pcie_ari_disabled; 156 157 /* If set, the PCIe ATS capability will not be used. */ 158 static bool pcie_ats_disabled; 159 160 /* If set, the PCI config space of each device is printed during boot. */ 161 bool pci_early_dump; 162 163 bool pci_ats_disabled(void) 164 { 165 return pcie_ats_disabled; 166 } 167 EXPORT_SYMBOL_GPL(pci_ats_disabled); 168 169 /* Disable bridge_d3 for all PCIe ports */ 170 static bool pci_bridge_d3_disable; 171 /* Force bridge_d3 for all PCIe ports */ 172 static bool pci_bridge_d3_force; 173 174 static int __init pcie_port_pm_setup(char *str) 175 { 176 if (!strcmp(str, "off")) 177 pci_bridge_d3_disable = true; 178 else if (!strcmp(str, "force")) 179 pci_bridge_d3_force = true; 180 return 1; 181 } 182 __setup("pcie_port_pm=", pcie_port_pm_setup); 183 184 /** 185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 186 * @bus: pointer to PCI bus structure to search 187 * 188 * Given a PCI bus, returns the highest PCI bus number present in the set 189 * including the given PCI bus and its list of child PCI buses. 190 */ 191 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 192 { 193 struct pci_bus *tmp; 194 unsigned char max, n; 195 196 max = bus->busn_res.end; 197 list_for_each_entry(tmp, &bus->children, node) { 198 n = pci_bus_max_busnr(tmp); 199 if (n > max) 200 max = n; 201 } 202 return max; 203 } 204 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 205 206 /** 207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 208 * @pdev: the PCI device 209 * 210 * Returns error bits set in PCI_STATUS and clears them. 211 */ 212 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 213 { 214 u16 status; 215 int ret; 216 217 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 218 if (ret != PCIBIOS_SUCCESSFUL) 219 return -EIO; 220 221 status &= PCI_STATUS_ERROR_BITS; 222 if (status) 223 pci_write_config_word(pdev, PCI_STATUS, status); 224 225 return status; 226 } 227 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 228 229 #ifdef CONFIG_HAS_IOMEM 230 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 231 bool write_combine) 232 { 233 struct resource *res = &pdev->resource[bar]; 234 resource_size_t start = res->start; 235 resource_size_t size = resource_size(res); 236 237 /* 238 * Make sure the BAR is actually a memory resource, not an IO resource 239 */ 240 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 241 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 242 return NULL; 243 } 244 245 if (write_combine) 246 return ioremap_wc(start, size); 247 248 return ioremap(start, size); 249 } 250 251 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 252 { 253 return __pci_ioremap_resource(pdev, bar, false); 254 } 255 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 256 257 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 258 { 259 return __pci_ioremap_resource(pdev, bar, true); 260 } 261 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 262 #endif 263 264 /** 265 * pci_dev_str_match_path - test if a path string matches a device 266 * @dev: the PCI device to test 267 * @path: string to match the device against 268 * @endptr: pointer to the string after the match 269 * 270 * Test if a string (typically from a kernel parameter) formatted as a 271 * path of device/function addresses matches a PCI device. The string must 272 * be of the form: 273 * 274 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 275 * 276 * A path for a device can be obtained using 'lspci -t'. Using a path 277 * is more robust against bus renumbering than using only a single bus, 278 * device and function address. 279 * 280 * Returns 1 if the string matches the device, 0 if it does not and 281 * a negative error code if it fails to parse the string. 282 */ 283 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 284 const char **endptr) 285 { 286 int ret; 287 unsigned int seg, bus, slot, func; 288 char *wpath, *p; 289 char end; 290 291 *endptr = strchrnul(path, ';'); 292 293 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 294 if (!wpath) 295 return -ENOMEM; 296 297 while (1) { 298 p = strrchr(wpath, '/'); 299 if (!p) 300 break; 301 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 302 if (ret != 2) { 303 ret = -EINVAL; 304 goto free_and_exit; 305 } 306 307 if (dev->devfn != PCI_DEVFN(slot, func)) { 308 ret = 0; 309 goto free_and_exit; 310 } 311 312 /* 313 * Note: we don't need to get a reference to the upstream 314 * bridge because we hold a reference to the top level 315 * device which should hold a reference to the bridge, 316 * and so on. 317 */ 318 dev = pci_upstream_bridge(dev); 319 if (!dev) { 320 ret = 0; 321 goto free_and_exit; 322 } 323 324 *p = 0; 325 } 326 327 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 328 &func, &end); 329 if (ret != 4) { 330 seg = 0; 331 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 332 if (ret != 3) { 333 ret = -EINVAL; 334 goto free_and_exit; 335 } 336 } 337 338 ret = (seg == pci_domain_nr(dev->bus) && 339 bus == dev->bus->number && 340 dev->devfn == PCI_DEVFN(slot, func)); 341 342 free_and_exit: 343 kfree(wpath); 344 return ret; 345 } 346 347 /** 348 * pci_dev_str_match - test if a string matches a device 349 * @dev: the PCI device to test 350 * @p: string to match the device against 351 * @endptr: pointer to the string after the match 352 * 353 * Test if a string (typically from a kernel parameter) matches a specified 354 * PCI device. The string may be of one of the following formats: 355 * 356 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 357 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 358 * 359 * The first format specifies a PCI bus/device/function address which 360 * may change if new hardware is inserted, if motherboard firmware changes, 361 * or due to changes caused in kernel parameters. If the domain is 362 * left unspecified, it is taken to be 0. In order to be robust against 363 * bus renumbering issues, a path of PCI device/function numbers may be used 364 * to address the specific device. The path for a device can be determined 365 * through the use of 'lspci -t'. 366 * 367 * The second format matches devices using IDs in the configuration 368 * space which may match multiple devices in the system. A value of 0 369 * for any field will match all devices. (Note: this differs from 370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 371 * legacy reasons and convenience so users don't have to specify 372 * FFFFFFFFs on the command line.) 373 * 374 * Returns 1 if the string matches the device, 0 if it does not and 375 * a negative error code if the string cannot be parsed. 376 */ 377 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 378 const char **endptr) 379 { 380 int ret; 381 int count; 382 unsigned short vendor, device, subsystem_vendor, subsystem_device; 383 384 if (strncmp(p, "pci:", 4) == 0) { 385 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 386 p += 4; 387 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 388 &subsystem_vendor, &subsystem_device, &count); 389 if (ret != 4) { 390 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 391 if (ret != 2) 392 return -EINVAL; 393 394 subsystem_vendor = 0; 395 subsystem_device = 0; 396 } 397 398 p += count; 399 400 if ((!vendor || vendor == dev->vendor) && 401 (!device || device == dev->device) && 402 (!subsystem_vendor || 403 subsystem_vendor == dev->subsystem_vendor) && 404 (!subsystem_device || 405 subsystem_device == dev->subsystem_device)) 406 goto found; 407 } else { 408 /* 409 * PCI Bus, Device, Function IDs are specified 410 * (optionally, may include a path of devfns following it) 411 */ 412 ret = pci_dev_str_match_path(dev, p, &p); 413 if (ret < 0) 414 return ret; 415 else if (ret) 416 goto found; 417 } 418 419 *endptr = p; 420 return 0; 421 422 found: 423 *endptr = p; 424 return 1; 425 } 426 427 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 428 u8 pos, int cap, int *ttl) 429 { 430 u8 id; 431 u16 ent; 432 433 pci_bus_read_config_byte(bus, devfn, pos, &pos); 434 435 while ((*ttl)--) { 436 if (pos < 0x40) 437 break; 438 pos &= ~3; 439 pci_bus_read_config_word(bus, devfn, pos, &ent); 440 441 id = ent & 0xff; 442 if (id == 0xff) 443 break; 444 if (id == cap) 445 return pos; 446 pos = (ent >> 8); 447 } 448 return 0; 449 } 450 451 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 452 u8 pos, int cap) 453 { 454 int ttl = PCI_FIND_CAP_TTL; 455 456 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 457 } 458 459 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 460 { 461 return __pci_find_next_cap(dev->bus, dev->devfn, 462 pos + PCI_CAP_LIST_NEXT, cap); 463 } 464 EXPORT_SYMBOL_GPL(pci_find_next_capability); 465 466 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 467 unsigned int devfn, u8 hdr_type) 468 { 469 u16 status; 470 471 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 472 if (!(status & PCI_STATUS_CAP_LIST)) 473 return 0; 474 475 switch (hdr_type) { 476 case PCI_HEADER_TYPE_NORMAL: 477 case PCI_HEADER_TYPE_BRIDGE: 478 return PCI_CAPABILITY_LIST; 479 case PCI_HEADER_TYPE_CARDBUS: 480 return PCI_CB_CAPABILITY_LIST; 481 } 482 483 return 0; 484 } 485 486 /** 487 * pci_find_capability - query for devices' capabilities 488 * @dev: PCI device to query 489 * @cap: capability code 490 * 491 * Tell if a device supports a given PCI capability. 492 * Returns the address of the requested capability structure within the 493 * device's PCI configuration space or 0 in case the device does not 494 * support it. Possible values for @cap include: 495 * 496 * %PCI_CAP_ID_PM Power Management 497 * %PCI_CAP_ID_AGP Accelerated Graphics Port 498 * %PCI_CAP_ID_VPD Vital Product Data 499 * %PCI_CAP_ID_SLOTID Slot Identification 500 * %PCI_CAP_ID_MSI Message Signalled Interrupts 501 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 502 * %PCI_CAP_ID_PCIX PCI-X 503 * %PCI_CAP_ID_EXP PCI Express 504 */ 505 u8 pci_find_capability(struct pci_dev *dev, int cap) 506 { 507 u8 pos; 508 509 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 510 if (pos) 511 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 512 513 return pos; 514 } 515 EXPORT_SYMBOL(pci_find_capability); 516 517 /** 518 * pci_bus_find_capability - query for devices' capabilities 519 * @bus: the PCI bus to query 520 * @devfn: PCI device to query 521 * @cap: capability code 522 * 523 * Like pci_find_capability() but works for PCI devices that do not have a 524 * pci_dev structure set up yet. 525 * 526 * Returns the address of the requested capability structure within the 527 * device's PCI configuration space or 0 in case the device does not 528 * support it. 529 */ 530 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 531 { 532 u8 hdr_type, pos; 533 534 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 535 536 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK); 537 if (pos) 538 pos = __pci_find_next_cap(bus, devfn, pos, cap); 539 540 return pos; 541 } 542 EXPORT_SYMBOL(pci_bus_find_capability); 543 544 /** 545 * pci_find_next_ext_capability - Find an extended capability 546 * @dev: PCI device to query 547 * @start: address at which to start looking (0 to start at beginning of list) 548 * @cap: capability code 549 * 550 * Returns the address of the next matching extended capability structure 551 * within the device's PCI configuration space or 0 if the device does 552 * not support it. Some capabilities can occur several times, e.g., the 553 * vendor-specific capability, and this provides a way to find them all. 554 */ 555 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 556 { 557 u32 header; 558 int ttl; 559 u16 pos = PCI_CFG_SPACE_SIZE; 560 561 /* minimum 8 bytes per capability */ 562 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 563 564 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 565 return 0; 566 567 if (start) 568 pos = start; 569 570 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 571 return 0; 572 573 /* 574 * If we have no capabilities, this is indicated by cap ID, 575 * cap version and next pointer all being 0. 576 */ 577 if (header == 0) 578 return 0; 579 580 while (ttl-- > 0) { 581 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 582 return pos; 583 584 pos = PCI_EXT_CAP_NEXT(header); 585 if (pos < PCI_CFG_SPACE_SIZE) 586 break; 587 588 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 589 break; 590 } 591 592 return 0; 593 } 594 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 595 596 /** 597 * pci_find_ext_capability - Find an extended capability 598 * @dev: PCI device to query 599 * @cap: capability code 600 * 601 * Returns the address of the requested extended capability structure 602 * within the device's PCI configuration space or 0 if the device does 603 * not support it. Possible values for @cap include: 604 * 605 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 606 * %PCI_EXT_CAP_ID_VC Virtual Channel 607 * %PCI_EXT_CAP_ID_DSN Device Serial Number 608 * %PCI_EXT_CAP_ID_PWR Power Budgeting 609 */ 610 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 611 { 612 return pci_find_next_ext_capability(dev, 0, cap); 613 } 614 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 615 616 /** 617 * pci_get_dsn - Read and return the 8-byte Device Serial Number 618 * @dev: PCI device to query 619 * 620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 621 * Number. 622 * 623 * Returns the DSN, or zero if the capability does not exist. 624 */ 625 u64 pci_get_dsn(struct pci_dev *dev) 626 { 627 u32 dword; 628 u64 dsn; 629 int pos; 630 631 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 632 if (!pos) 633 return 0; 634 635 /* 636 * The Device Serial Number is two dwords offset 4 bytes from the 637 * capability position. The specification says that the first dword is 638 * the lower half, and the second dword is the upper half. 639 */ 640 pos += 4; 641 pci_read_config_dword(dev, pos, &dword); 642 dsn = (u64)dword; 643 pci_read_config_dword(dev, pos + 4, &dword); 644 dsn |= ((u64)dword) << 32; 645 646 return dsn; 647 } 648 EXPORT_SYMBOL_GPL(pci_get_dsn); 649 650 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 651 { 652 int rc, ttl = PCI_FIND_CAP_TTL; 653 u8 cap, mask; 654 655 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 656 mask = HT_3BIT_CAP_MASK; 657 else 658 mask = HT_5BIT_CAP_MASK; 659 660 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 661 PCI_CAP_ID_HT, &ttl); 662 while (pos) { 663 rc = pci_read_config_byte(dev, pos + 3, &cap); 664 if (rc != PCIBIOS_SUCCESSFUL) 665 return 0; 666 667 if ((cap & mask) == ht_cap) 668 return pos; 669 670 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 671 pos + PCI_CAP_LIST_NEXT, 672 PCI_CAP_ID_HT, &ttl); 673 } 674 675 return 0; 676 } 677 678 /** 679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 680 * @dev: PCI device to query 681 * @pos: Position from which to continue searching 682 * @ht_cap: HyperTransport capability code 683 * 684 * To be used in conjunction with pci_find_ht_capability() to search for 685 * all capabilities matching @ht_cap. @pos should always be a value returned 686 * from pci_find_ht_capability(). 687 * 688 * NB. To be 100% safe against broken PCI devices, the caller should take 689 * steps to avoid an infinite loop. 690 */ 691 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 692 { 693 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 694 } 695 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 696 697 /** 698 * pci_find_ht_capability - query a device's HyperTransport capabilities 699 * @dev: PCI device to query 700 * @ht_cap: HyperTransport capability code 701 * 702 * Tell if a device supports a given HyperTransport capability. 703 * Returns an address within the device's PCI configuration space 704 * or 0 in case the device does not support the request capability. 705 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 706 * which has a HyperTransport capability matching @ht_cap. 707 */ 708 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 709 { 710 u8 pos; 711 712 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 713 if (pos) 714 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 715 716 return pos; 717 } 718 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 719 720 /** 721 * pci_find_vsec_capability - Find a vendor-specific extended capability 722 * @dev: PCI device to query 723 * @vendor: Vendor ID for which capability is defined 724 * @cap: Vendor-specific capability ID 725 * 726 * If @dev has Vendor ID @vendor, search for a VSEC capability with 727 * VSEC ID @cap. If found, return the capability offset in 728 * config space; otherwise return 0. 729 */ 730 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 731 { 732 u16 vsec = 0; 733 u32 header; 734 int ret; 735 736 if (vendor != dev->vendor) 737 return 0; 738 739 while ((vsec = pci_find_next_ext_capability(dev, vsec, 740 PCI_EXT_CAP_ID_VNDR))) { 741 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 742 if (ret != PCIBIOS_SUCCESSFUL) 743 continue; 744 745 if (PCI_VNDR_HEADER_ID(header) == cap) 746 return vsec; 747 } 748 749 return 0; 750 } 751 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 752 753 /** 754 * pci_find_dvsec_capability - Find DVSEC for vendor 755 * @dev: PCI device to query 756 * @vendor: Vendor ID to match for the DVSEC 757 * @dvsec: Designated Vendor-specific capability ID 758 * 759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 760 * offset in config space; otherwise return 0. 761 */ 762 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 763 { 764 int pos; 765 766 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 767 if (!pos) 768 return 0; 769 770 while (pos) { 771 u16 v, id; 772 773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 775 if (vendor == v && dvsec == id) 776 return pos; 777 778 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 779 } 780 781 return 0; 782 } 783 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 784 785 /** 786 * pci_find_parent_resource - return resource region of parent bus of given 787 * region 788 * @dev: PCI device structure contains resources to be searched 789 * @res: child resource record for which parent is sought 790 * 791 * For given resource region of given device, return the resource region of 792 * parent bus the given region is contained in. 793 */ 794 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 795 struct resource *res) 796 { 797 const struct pci_bus *bus = dev->bus; 798 struct resource *r; 799 800 pci_bus_for_each_resource(bus, r) { 801 if (!r) 802 continue; 803 if (resource_contains(r, res)) { 804 805 /* 806 * If the window is prefetchable but the BAR is 807 * not, the allocator made a mistake. 808 */ 809 if (r->flags & IORESOURCE_PREFETCH && 810 !(res->flags & IORESOURCE_PREFETCH)) 811 return NULL; 812 813 /* 814 * If we're below a transparent bridge, there may 815 * be both a positively-decoded aperture and a 816 * subtractively-decoded region that contain the BAR. 817 * We want the positively-decoded one, so this depends 818 * on pci_bus_for_each_resource() giving us those 819 * first. 820 */ 821 return r; 822 } 823 } 824 return NULL; 825 } 826 EXPORT_SYMBOL(pci_find_parent_resource); 827 828 /** 829 * pci_find_resource - Return matching PCI device resource 830 * @dev: PCI device to query 831 * @res: Resource to look for 832 * 833 * Goes over standard PCI resources (BARs) and checks if the given resource 834 * is partially or fully contained in any of them. In that case the 835 * matching resource is returned, %NULL otherwise. 836 */ 837 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 838 { 839 int i; 840 841 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 842 struct resource *r = &dev->resource[i]; 843 844 if (r->start && resource_contains(r, res)) 845 return r; 846 } 847 848 return NULL; 849 } 850 EXPORT_SYMBOL(pci_find_resource); 851 852 /** 853 * pci_resource_name - Return the name of the PCI resource 854 * @dev: PCI device to query 855 * @i: index of the resource 856 * 857 * Return the standard PCI resource (BAR) name according to their index. 858 */ 859 const char *pci_resource_name(struct pci_dev *dev, unsigned int i) 860 { 861 static const char * const bar_name[] = { 862 "BAR 0", 863 "BAR 1", 864 "BAR 2", 865 "BAR 3", 866 "BAR 4", 867 "BAR 5", 868 "ROM", 869 #ifdef CONFIG_PCI_IOV 870 "VF BAR 0", 871 "VF BAR 1", 872 "VF BAR 2", 873 "VF BAR 3", 874 "VF BAR 4", 875 "VF BAR 5", 876 #endif 877 "bridge window", /* "io" included in %pR */ 878 "bridge window", /* "mem" included in %pR */ 879 "bridge window", /* "mem pref" included in %pR */ 880 }; 881 static const char * const cardbus_name[] = { 882 "BAR 1", 883 "unknown", 884 "unknown", 885 "unknown", 886 "unknown", 887 "unknown", 888 #ifdef CONFIG_PCI_IOV 889 "unknown", 890 "unknown", 891 "unknown", 892 "unknown", 893 "unknown", 894 "unknown", 895 #endif 896 "CardBus bridge window 0", /* I/O */ 897 "CardBus bridge window 1", /* I/O */ 898 "CardBus bridge window 0", /* mem */ 899 "CardBus bridge window 1", /* mem */ 900 }; 901 902 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS && 903 i < ARRAY_SIZE(cardbus_name)) 904 return cardbus_name[i]; 905 906 if (i < ARRAY_SIZE(bar_name)) 907 return bar_name[i]; 908 909 return "unknown"; 910 } 911 912 /** 913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 914 * @dev: the PCI device to operate on 915 * @pos: config space offset of status word 916 * @mask: mask of bit(s) to care about in status word 917 * 918 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 919 */ 920 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 921 { 922 int i; 923 924 /* Wait for Transaction Pending bit clean */ 925 for (i = 0; i < 4; i++) { 926 u16 status; 927 if (i) 928 msleep((1 << (i - 1)) * 100); 929 930 pci_read_config_word(dev, pos, &status); 931 if (!(status & mask)) 932 return 1; 933 } 934 935 return 0; 936 } 937 938 static int pci_acs_enable; 939 940 /** 941 * pci_request_acs - ask for ACS to be enabled if supported 942 */ 943 void pci_request_acs(void) 944 { 945 pci_acs_enable = 1; 946 } 947 948 static const char *disable_acs_redir_param; 949 static const char *config_acs_param; 950 951 struct pci_acs { 952 u16 cap; 953 u16 ctrl; 954 u16 fw_ctrl; 955 }; 956 957 static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps, 958 const char *p, u16 mask, u16 flags) 959 { 960 char *delimit; 961 int ret = 0; 962 963 if (!p) 964 return; 965 966 while (*p) { 967 if (!mask) { 968 /* Check for ACS flags */ 969 delimit = strstr(p, "@"); 970 if (delimit) { 971 int end; 972 u32 shift = 0; 973 974 end = delimit - p - 1; 975 976 while (end > -1) { 977 if (*(p + end) == '0') { 978 mask |= 1 << shift; 979 shift++; 980 end--; 981 } else if (*(p + end) == '1') { 982 mask |= 1 << shift; 983 flags |= 1 << shift; 984 shift++; 985 end--; 986 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) { 987 shift++; 988 end--; 989 } else { 990 pci_err(dev, "Invalid ACS flags... Ignoring\n"); 991 return; 992 } 993 } 994 p = delimit + 1; 995 } else { 996 pci_err(dev, "ACS Flags missing\n"); 997 return; 998 } 999 } 1000 1001 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR | 1002 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) { 1003 pci_err(dev, "Invalid ACS flags specified\n"); 1004 return; 1005 } 1006 1007 ret = pci_dev_str_match(dev, p, &p); 1008 if (ret < 0) { 1009 pr_info_once("PCI: Can't parse ACS command line parameter\n"); 1010 break; 1011 } else if (ret == 1) { 1012 /* Found a match */ 1013 break; 1014 } 1015 1016 if (*p != ';' && *p != ',') { 1017 /* End of param or invalid format */ 1018 break; 1019 } 1020 p++; 1021 } 1022 1023 if (ret != 1) 1024 return; 1025 1026 if (!pci_dev_specific_disable_acs_redir(dev)) 1027 return; 1028 1029 pci_dbg(dev, "ACS mask = %#06x\n", mask); 1030 pci_dbg(dev, "ACS flags = %#06x\n", flags); 1031 1032 /* If mask is 0 then we copy the bit from the firmware setting. */ 1033 caps->ctrl = (caps->ctrl & ~mask) | (caps->fw_ctrl & mask); 1034 caps->ctrl |= flags; 1035 1036 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl); 1037 } 1038 1039 /** 1040 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 1041 * @dev: the PCI device 1042 * @caps: default ACS controls 1043 */ 1044 static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps) 1045 { 1046 /* Source Validation */ 1047 caps->ctrl |= (caps->cap & PCI_ACS_SV); 1048 1049 /* P2P Request Redirect */ 1050 caps->ctrl |= (caps->cap & PCI_ACS_RR); 1051 1052 /* P2P Completion Redirect */ 1053 caps->ctrl |= (caps->cap & PCI_ACS_CR); 1054 1055 /* Upstream Forwarding */ 1056 caps->ctrl |= (caps->cap & PCI_ACS_UF); 1057 1058 /* Enable Translation Blocking for external devices and noats */ 1059 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 1060 caps->ctrl |= (caps->cap & PCI_ACS_TB); 1061 } 1062 1063 /** 1064 * pci_enable_acs - enable ACS if hardware support it 1065 * @dev: the PCI device 1066 */ 1067 static void pci_enable_acs(struct pci_dev *dev) 1068 { 1069 struct pci_acs caps; 1070 bool enable_acs = false; 1071 int pos; 1072 1073 /* If an iommu is present we start with kernel default caps */ 1074 if (pci_acs_enable) { 1075 if (pci_dev_specific_enable_acs(dev)) 1076 enable_acs = true; 1077 } 1078 1079 pos = dev->acs_cap; 1080 if (!pos) 1081 return; 1082 1083 pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap); 1084 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl); 1085 caps.fw_ctrl = caps.ctrl; 1086 1087 if (enable_acs) 1088 pci_std_enable_acs(dev, &caps); 1089 1090 /* 1091 * Always apply caps from the command line, even if there is no iommu. 1092 * Trust that the admin has a reason to change the ACS settings. 1093 */ 1094 __pci_config_acs(dev, &caps, disable_acs_redir_param, 1095 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC, 1096 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)); 1097 __pci_config_acs(dev, &caps, config_acs_param, 0, 0); 1098 1099 pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl); 1100 } 1101 1102 /** 1103 * pcie_read_tlp_log - read TLP Header Log 1104 * @dev: PCIe device 1105 * @where: PCI Config offset of TLP Header Log 1106 * @tlp_log: TLP Log structure to fill 1107 * 1108 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC. 1109 * 1110 * Return: 0 on success and filled TLP Log structure, <0 on error. 1111 */ 1112 int pcie_read_tlp_log(struct pci_dev *dev, int where, 1113 struct pcie_tlp_log *tlp_log) 1114 { 1115 int i, ret; 1116 1117 memset(tlp_log, 0, sizeof(*tlp_log)); 1118 1119 for (i = 0; i < 4; i++) { 1120 ret = pci_read_config_dword(dev, where + i * 4, 1121 &tlp_log->dw[i]); 1122 if (ret) 1123 return pcibios_err_to_errno(ret); 1124 } 1125 1126 return 0; 1127 } 1128 EXPORT_SYMBOL_GPL(pcie_read_tlp_log); 1129 1130 /** 1131 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1132 * @dev: PCI device to have its BARs restored 1133 * 1134 * Restore the BAR values for a given device, so as to make it 1135 * accessible by its driver. 1136 */ 1137 static void pci_restore_bars(struct pci_dev *dev) 1138 { 1139 int i; 1140 1141 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1142 pci_update_resource(dev, i); 1143 } 1144 1145 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1146 { 1147 if (pci_use_mid_pm()) 1148 return true; 1149 1150 return acpi_pci_power_manageable(dev); 1151 } 1152 1153 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1154 pci_power_t t) 1155 { 1156 if (pci_use_mid_pm()) 1157 return mid_pci_set_power_state(dev, t); 1158 1159 return acpi_pci_set_power_state(dev, t); 1160 } 1161 1162 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1163 { 1164 if (pci_use_mid_pm()) 1165 return mid_pci_get_power_state(dev); 1166 1167 return acpi_pci_get_power_state(dev); 1168 } 1169 1170 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1171 { 1172 if (!pci_use_mid_pm()) 1173 acpi_pci_refresh_power_state(dev); 1174 } 1175 1176 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1177 { 1178 if (pci_use_mid_pm()) 1179 return PCI_POWER_ERROR; 1180 1181 return acpi_pci_choose_state(dev); 1182 } 1183 1184 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1185 { 1186 if (pci_use_mid_pm()) 1187 return PCI_POWER_ERROR; 1188 1189 return acpi_pci_wakeup(dev, enable); 1190 } 1191 1192 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1193 { 1194 if (pci_use_mid_pm()) 1195 return false; 1196 1197 return acpi_pci_need_resume(dev); 1198 } 1199 1200 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1201 { 1202 if (pci_use_mid_pm()) 1203 return false; 1204 1205 return acpi_pci_bridge_d3(dev); 1206 } 1207 1208 /** 1209 * pci_update_current_state - Read power state of given device and cache it 1210 * @dev: PCI device to handle. 1211 * @state: State to cache in case the device doesn't have the PM capability 1212 * 1213 * The power state is read from the PMCSR register, which however is 1214 * inaccessible in D3cold. The platform firmware is therefore queried first 1215 * to detect accessibility of the register. In case the platform firmware 1216 * reports an incorrect state or the device isn't power manageable by the 1217 * platform at all, we try to detect D3cold by testing accessibility of the 1218 * vendor ID in config space. 1219 */ 1220 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1221 { 1222 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1223 dev->current_state = PCI_D3cold; 1224 } else if (dev->pm_cap) { 1225 u16 pmcsr; 1226 1227 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1228 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1229 dev->current_state = PCI_D3cold; 1230 return; 1231 } 1232 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1233 } else { 1234 dev->current_state = state; 1235 } 1236 } 1237 1238 /** 1239 * pci_refresh_power_state - Refresh the given device's power state data 1240 * @dev: Target PCI device. 1241 * 1242 * Ask the platform to refresh the devices power state information and invoke 1243 * pci_update_current_state() to update its current PCI power state. 1244 */ 1245 void pci_refresh_power_state(struct pci_dev *dev) 1246 { 1247 platform_pci_refresh_power_state(dev); 1248 pci_update_current_state(dev, dev->current_state); 1249 } 1250 1251 /** 1252 * pci_platform_power_transition - Use platform to change device power state 1253 * @dev: PCI device to handle. 1254 * @state: State to put the device into. 1255 */ 1256 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1257 { 1258 int error; 1259 1260 error = platform_pci_set_power_state(dev, state); 1261 if (!error) 1262 pci_update_current_state(dev, state); 1263 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1264 dev->current_state = PCI_D0; 1265 1266 return error; 1267 } 1268 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1269 1270 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1271 { 1272 pm_request_resume(&pci_dev->dev); 1273 return 0; 1274 } 1275 1276 /** 1277 * pci_resume_bus - Walk given bus and runtime resume devices on it 1278 * @bus: Top bus of the subtree to walk. 1279 */ 1280 void pci_resume_bus(struct pci_bus *bus) 1281 { 1282 if (bus) 1283 pci_walk_bus(bus, pci_resume_one, NULL); 1284 } 1285 1286 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1287 { 1288 int delay = 1; 1289 bool retrain = false; 1290 struct pci_dev *root, *bridge; 1291 1292 root = pcie_find_root_port(dev); 1293 1294 if (pci_is_pcie(dev)) { 1295 bridge = pci_upstream_bridge(dev); 1296 if (bridge) 1297 retrain = true; 1298 } 1299 1300 /* 1301 * The caller has already waited long enough after a reset that the 1302 * device should respond to config requests, but it may respond 1303 * with Request Retry Status (RRS) if it needs more time to 1304 * initialize. 1305 * 1306 * If the device is below a Root Port with Configuration RRS 1307 * Software Visibility enabled, reading the Vendor ID returns a 1308 * special data value if the device responded with RRS. Read the 1309 * Vendor ID until we get non-RRS status. 1310 * 1311 * If there's no Root Port or Configuration RRS Software Visibility 1312 * is not enabled, the device may still respond with RRS, but 1313 * hardware may retry the config request. If no retries receive 1314 * Successful Completion, hardware generally synthesizes ~0 1315 * (PCI_ERROR_RESPONSE) data to complete the read. Reading Vendor 1316 * ID for VFs and non-existent devices also returns ~0, so read the 1317 * Command register until it returns something other than ~0. 1318 */ 1319 for (;;) { 1320 u32 id; 1321 1322 if (pci_dev_is_disconnected(dev)) { 1323 pci_dbg(dev, "disconnected; not waiting\n"); 1324 return -ENOTTY; 1325 } 1326 1327 if (root && root->config_rrs_sv) { 1328 pci_read_config_dword(dev, PCI_VENDOR_ID, &id); 1329 if (!pci_bus_rrs_vendor_id(id)) 1330 break; 1331 } else { 1332 pci_read_config_dword(dev, PCI_COMMAND, &id); 1333 if (!PCI_POSSIBLE_ERROR(id)) 1334 break; 1335 } 1336 1337 if (delay > timeout) { 1338 pci_warn(dev, "not ready %dms after %s; giving up\n", 1339 delay - 1, reset_type); 1340 return -ENOTTY; 1341 } 1342 1343 if (delay > PCI_RESET_WAIT) { 1344 if (retrain) { 1345 retrain = false; 1346 if (pcie_failed_link_retrain(bridge) == 0) { 1347 delay = 1; 1348 continue; 1349 } 1350 } 1351 pci_info(dev, "not ready %dms after %s; waiting\n", 1352 delay - 1, reset_type); 1353 } 1354 1355 msleep(delay); 1356 delay *= 2; 1357 } 1358 1359 if (delay > PCI_RESET_WAIT) 1360 pci_info(dev, "ready %dms after %s\n", delay - 1, 1361 reset_type); 1362 else 1363 pci_dbg(dev, "ready %dms after %s\n", delay - 1, 1364 reset_type); 1365 1366 return 0; 1367 } 1368 1369 /** 1370 * pci_power_up - Put the given device into D0 1371 * @dev: PCI device to power up 1372 * 1373 * On success, return 0 or 1, depending on whether or not it is necessary to 1374 * restore the device's BARs subsequently (1 is returned in that case). 1375 * 1376 * On failure, return a negative error code. Always return failure if @dev 1377 * lacks a Power Management Capability, even if the platform was able to 1378 * put the device in D0 via non-PCI means. 1379 */ 1380 int pci_power_up(struct pci_dev *dev) 1381 { 1382 bool need_restore; 1383 pci_power_t state; 1384 u16 pmcsr; 1385 1386 platform_pci_set_power_state(dev, PCI_D0); 1387 1388 if (!dev->pm_cap) { 1389 state = platform_pci_get_power_state(dev); 1390 if (state == PCI_UNKNOWN) 1391 dev->current_state = PCI_D0; 1392 else 1393 dev->current_state = state; 1394 1395 return -EIO; 1396 } 1397 1398 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1399 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1400 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1401 pci_power_name(dev->current_state)); 1402 dev->current_state = PCI_D3cold; 1403 return -EIO; 1404 } 1405 1406 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1407 1408 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1409 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1410 1411 if (state == PCI_D0) 1412 goto end; 1413 1414 /* 1415 * Force the entire word to 0. This doesn't affect PME_Status, disables 1416 * PME_En, and sets PowerState to 0. 1417 */ 1418 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1419 1420 /* Mandatory transition delays; see PCI PM 1.2. */ 1421 if (state == PCI_D3hot) 1422 pci_dev_d3_sleep(dev); 1423 else if (state == PCI_D2) 1424 udelay(PCI_PM_D2_DELAY); 1425 1426 end: 1427 dev->current_state = PCI_D0; 1428 if (need_restore) 1429 return 1; 1430 1431 return 0; 1432 } 1433 1434 /** 1435 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1436 * @dev: PCI device to power up 1437 * @locked: whether pci_bus_sem is held 1438 * 1439 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1440 * to confirm the state change, restore its BARs if they might be lost and 1441 * reconfigure ASPM in accordance with the new power state. 1442 * 1443 * If pci_restore_state() is going to be called right after a power state change 1444 * to D0, it is more efficient to use pci_power_up() directly instead of this 1445 * function. 1446 */ 1447 static int pci_set_full_power_state(struct pci_dev *dev, bool locked) 1448 { 1449 u16 pmcsr; 1450 int ret; 1451 1452 ret = pci_power_up(dev); 1453 if (ret < 0) { 1454 if (dev->current_state == PCI_D0) 1455 return 0; 1456 1457 return ret; 1458 } 1459 1460 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1461 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1462 if (dev->current_state != PCI_D0) { 1463 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1464 pci_power_name(dev->current_state)); 1465 } else if (ret > 0) { 1466 /* 1467 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1468 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1469 * from D3hot to D0 _may_ perform an internal reset, thereby 1470 * going to "D0 Uninitialized" rather than "D0 Initialized". 1471 * For example, at least some versions of the 3c905B and the 1472 * 3c556B exhibit this behaviour. 1473 * 1474 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1475 * devices in a D3hot state at boot. Consequently, we need to 1476 * restore at least the BARs so that the device will be 1477 * accessible to its driver. 1478 */ 1479 pci_restore_bars(dev); 1480 } 1481 1482 if (dev->bus->self) 1483 pcie_aspm_pm_state_change(dev->bus->self, locked); 1484 1485 return 0; 1486 } 1487 1488 /** 1489 * __pci_dev_set_current_state - Set current state of a PCI device 1490 * @dev: Device to handle 1491 * @data: pointer to state to be set 1492 */ 1493 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1494 { 1495 pci_power_t state = *(pci_power_t *)data; 1496 1497 dev->current_state = state; 1498 return 0; 1499 } 1500 1501 /** 1502 * pci_bus_set_current_state - Walk given bus and set current state of devices 1503 * @bus: Top bus of the subtree to walk. 1504 * @state: state to be set 1505 */ 1506 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1507 { 1508 if (bus) 1509 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1510 } 1511 1512 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked) 1513 { 1514 if (!bus) 1515 return; 1516 1517 if (locked) 1518 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state); 1519 else 1520 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1521 } 1522 1523 /** 1524 * pci_set_low_power_state - Put a PCI device into a low-power state. 1525 * @dev: PCI device to handle. 1526 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1527 * @locked: whether pci_bus_sem is held 1528 * 1529 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1530 * 1531 * RETURN VALUE: 1532 * -EINVAL if the requested state is invalid. 1533 * -EIO if device does not support PCI PM or its PM capabilities register has a 1534 * wrong version, or device doesn't support the requested state. 1535 * 0 if device already is in the requested state. 1536 * 0 if device's power state has been successfully changed. 1537 */ 1538 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1539 { 1540 u16 pmcsr; 1541 1542 if (!dev->pm_cap) 1543 return -EIO; 1544 1545 /* 1546 * Validate transition: We can enter D0 from any state, but if 1547 * we're already in a low-power state, we can only go deeper. E.g., 1548 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1549 * we'd have to go from D3 to D0, then to D1. 1550 */ 1551 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1552 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1553 pci_power_name(dev->current_state), 1554 pci_power_name(state)); 1555 return -EINVAL; 1556 } 1557 1558 /* Check if this device supports the desired state */ 1559 if ((state == PCI_D1 && !dev->d1_support) 1560 || (state == PCI_D2 && !dev->d2_support)) 1561 return -EIO; 1562 1563 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1564 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1565 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1566 pci_power_name(dev->current_state), 1567 pci_power_name(state)); 1568 dev->current_state = PCI_D3cold; 1569 return -EIO; 1570 } 1571 1572 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1573 pmcsr |= state; 1574 1575 /* Enter specified state */ 1576 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1577 1578 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1579 if (state == PCI_D3hot) 1580 pci_dev_d3_sleep(dev); 1581 else if (state == PCI_D2) 1582 udelay(PCI_PM_D2_DELAY); 1583 1584 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1585 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1586 if (dev->current_state != state) 1587 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1588 pci_power_name(dev->current_state), 1589 pci_power_name(state)); 1590 1591 if (dev->bus->self) 1592 pcie_aspm_pm_state_change(dev->bus->self, locked); 1593 1594 return 0; 1595 } 1596 1597 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1598 { 1599 int error; 1600 1601 /* Bound the state we're entering */ 1602 if (state > PCI_D3cold) 1603 state = PCI_D3cold; 1604 else if (state < PCI_D0) 1605 state = PCI_D0; 1606 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1607 1608 /* 1609 * If the device or the parent bridge do not support PCI 1610 * PM, ignore the request if we're doing anything other 1611 * than putting it into D0 (which would only happen on 1612 * boot). 1613 */ 1614 return 0; 1615 1616 /* Check if we're already there */ 1617 if (dev->current_state == state) 1618 return 0; 1619 1620 if (state == PCI_D0) 1621 return pci_set_full_power_state(dev, locked); 1622 1623 /* 1624 * This device is quirked not to be put into D3, so don't put it in 1625 * D3 1626 */ 1627 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1628 return 0; 1629 1630 if (state == PCI_D3cold) { 1631 /* 1632 * To put the device in D3cold, put it into D3hot in the native 1633 * way, then put it into D3cold using platform ops. 1634 */ 1635 error = pci_set_low_power_state(dev, PCI_D3hot, locked); 1636 1637 if (pci_platform_power_transition(dev, PCI_D3cold)) 1638 return error; 1639 1640 /* Powering off a bridge may power off the whole hierarchy */ 1641 if (dev->current_state == PCI_D3cold) 1642 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked); 1643 } else { 1644 error = pci_set_low_power_state(dev, state, locked); 1645 1646 if (pci_platform_power_transition(dev, state)) 1647 return error; 1648 } 1649 1650 return 0; 1651 } 1652 1653 /** 1654 * pci_set_power_state - Set the power state of a PCI device 1655 * @dev: PCI device to handle. 1656 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1657 * 1658 * Transition a device to a new power state, using the platform firmware and/or 1659 * the device's PCI PM registers. 1660 * 1661 * RETURN VALUE: 1662 * -EINVAL if the requested state is invalid. 1663 * -EIO if device does not support PCI PM or its PM capabilities register has a 1664 * wrong version, or device doesn't support the requested state. 1665 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1666 * 0 if device already is in the requested state. 1667 * 0 if the transition is to D3 but D3 is not supported. 1668 * 0 if device's power state has been successfully changed. 1669 */ 1670 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1671 { 1672 return __pci_set_power_state(dev, state, false); 1673 } 1674 EXPORT_SYMBOL(pci_set_power_state); 1675 1676 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state) 1677 { 1678 lockdep_assert_held(&pci_bus_sem); 1679 1680 return __pci_set_power_state(dev, state, true); 1681 } 1682 EXPORT_SYMBOL(pci_set_power_state_locked); 1683 1684 #define PCI_EXP_SAVE_REGS 7 1685 1686 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1687 u16 cap, bool extended) 1688 { 1689 struct pci_cap_saved_state *tmp; 1690 1691 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1692 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1693 return tmp; 1694 } 1695 return NULL; 1696 } 1697 1698 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1699 { 1700 return _pci_find_saved_cap(dev, cap, false); 1701 } 1702 1703 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1704 { 1705 return _pci_find_saved_cap(dev, cap, true); 1706 } 1707 1708 static int pci_save_pcie_state(struct pci_dev *dev) 1709 { 1710 int i = 0; 1711 struct pci_cap_saved_state *save_state; 1712 u16 *cap; 1713 1714 if (!pci_is_pcie(dev)) 1715 return 0; 1716 1717 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1718 if (!save_state) { 1719 pci_err(dev, "buffer not found in %s\n", __func__); 1720 return -ENOMEM; 1721 } 1722 1723 cap = (u16 *)&save_state->cap.data[0]; 1724 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1725 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1726 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1727 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1728 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1729 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1730 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1731 1732 pci_save_aspm_l1ss_state(dev); 1733 pci_save_ltr_state(dev); 1734 1735 return 0; 1736 } 1737 1738 static void pci_restore_pcie_state(struct pci_dev *dev) 1739 { 1740 int i = 0; 1741 struct pci_cap_saved_state *save_state; 1742 u16 *cap; 1743 1744 /* 1745 * Restore max latencies (in the LTR capability) before enabling 1746 * LTR itself in PCI_EXP_DEVCTL2. 1747 */ 1748 pci_restore_ltr_state(dev); 1749 pci_restore_aspm_l1ss_state(dev); 1750 1751 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1752 if (!save_state) 1753 return; 1754 1755 /* 1756 * Downstream ports reset the LTR enable bit when link goes down. 1757 * Check and re-configure the bit here before restoring device. 1758 * PCIe r5.0, sec 7.5.3.16. 1759 */ 1760 pci_bridge_reconfigure_ltr(dev); 1761 1762 cap = (u16 *)&save_state->cap.data[0]; 1763 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1764 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1765 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1766 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1767 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1768 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1769 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1770 } 1771 1772 static int pci_save_pcix_state(struct pci_dev *dev) 1773 { 1774 int pos; 1775 struct pci_cap_saved_state *save_state; 1776 1777 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1778 if (!pos) 1779 return 0; 1780 1781 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1782 if (!save_state) { 1783 pci_err(dev, "buffer not found in %s\n", __func__); 1784 return -ENOMEM; 1785 } 1786 1787 pci_read_config_word(dev, pos + PCI_X_CMD, 1788 (u16 *)save_state->cap.data); 1789 1790 return 0; 1791 } 1792 1793 static void pci_restore_pcix_state(struct pci_dev *dev) 1794 { 1795 int i = 0, pos; 1796 struct pci_cap_saved_state *save_state; 1797 u16 *cap; 1798 1799 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1800 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1801 if (!save_state || !pos) 1802 return; 1803 cap = (u16 *)&save_state->cap.data[0]; 1804 1805 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1806 } 1807 1808 /** 1809 * pci_save_state - save the PCI configuration space of a device before 1810 * suspending 1811 * @dev: PCI device that we're dealing with 1812 */ 1813 int pci_save_state(struct pci_dev *dev) 1814 { 1815 int i; 1816 /* XXX: 100% dword access ok here? */ 1817 for (i = 0; i < 16; i++) { 1818 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1819 pci_dbg(dev, "save config %#04x: %#010x\n", 1820 i * 4, dev->saved_config_space[i]); 1821 } 1822 dev->state_saved = true; 1823 1824 i = pci_save_pcie_state(dev); 1825 if (i != 0) 1826 return i; 1827 1828 i = pci_save_pcix_state(dev); 1829 if (i != 0) 1830 return i; 1831 1832 pci_save_dpc_state(dev); 1833 pci_save_aer_state(dev); 1834 pci_save_ptm_state(dev); 1835 pci_save_tph_state(dev); 1836 return pci_save_vc_state(dev); 1837 } 1838 EXPORT_SYMBOL(pci_save_state); 1839 1840 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1841 u32 saved_val, int retry, bool force) 1842 { 1843 u32 val; 1844 1845 pci_read_config_dword(pdev, offset, &val); 1846 if (!force && val == saved_val) 1847 return; 1848 1849 for (;;) { 1850 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1851 offset, val, saved_val); 1852 pci_write_config_dword(pdev, offset, saved_val); 1853 if (retry-- <= 0) 1854 return; 1855 1856 pci_read_config_dword(pdev, offset, &val); 1857 if (val == saved_val) 1858 return; 1859 1860 mdelay(1); 1861 } 1862 } 1863 1864 static void pci_restore_config_space_range(struct pci_dev *pdev, 1865 int start, int end, int retry, 1866 bool force) 1867 { 1868 int index; 1869 1870 for (index = end; index >= start; index--) 1871 pci_restore_config_dword(pdev, 4 * index, 1872 pdev->saved_config_space[index], 1873 retry, force); 1874 } 1875 1876 static void pci_restore_config_space(struct pci_dev *pdev) 1877 { 1878 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1879 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1880 /* Restore BARs before the command register. */ 1881 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1882 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1883 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1884 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1885 1886 /* 1887 * Force rewriting of prefetch registers to avoid S3 resume 1888 * issues on Intel PCI bridges that occur when these 1889 * registers are not explicitly written. 1890 */ 1891 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1892 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1893 } else { 1894 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1895 } 1896 } 1897 1898 static void pci_restore_rebar_state(struct pci_dev *pdev) 1899 { 1900 unsigned int pos, nbars, i; 1901 u32 ctrl; 1902 1903 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1904 if (!pos) 1905 return; 1906 1907 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1908 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 1909 1910 for (i = 0; i < nbars; i++, pos += 8) { 1911 struct resource *res; 1912 int bar_idx, size; 1913 1914 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1915 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1916 res = pdev->resource + bar_idx; 1917 size = pci_rebar_bytes_to_size(resource_size(res)); 1918 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1919 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 1920 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1921 } 1922 } 1923 1924 /** 1925 * pci_restore_state - Restore the saved state of a PCI device 1926 * @dev: PCI device that we're dealing with 1927 */ 1928 void pci_restore_state(struct pci_dev *dev) 1929 { 1930 if (!dev->state_saved) 1931 return; 1932 1933 pci_restore_pcie_state(dev); 1934 pci_restore_pasid_state(dev); 1935 pci_restore_pri_state(dev); 1936 pci_restore_ats_state(dev); 1937 pci_restore_vc_state(dev); 1938 pci_restore_rebar_state(dev); 1939 pci_restore_dpc_state(dev); 1940 pci_restore_ptm_state(dev); 1941 pci_restore_tph_state(dev); 1942 1943 pci_aer_clear_status(dev); 1944 pci_restore_aer_state(dev); 1945 1946 pci_restore_config_space(dev); 1947 1948 pci_restore_pcix_state(dev); 1949 pci_restore_msi_state(dev); 1950 1951 /* Restore ACS and IOV configuration state */ 1952 pci_enable_acs(dev); 1953 pci_restore_iov_state(dev); 1954 1955 dev->state_saved = false; 1956 } 1957 EXPORT_SYMBOL(pci_restore_state); 1958 1959 struct pci_saved_state { 1960 u32 config_space[16]; 1961 struct pci_cap_saved_data cap[]; 1962 }; 1963 1964 /** 1965 * pci_store_saved_state - Allocate and return an opaque struct containing 1966 * the device saved state. 1967 * @dev: PCI device that we're dealing with 1968 * 1969 * Return NULL if no state or error. 1970 */ 1971 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1972 { 1973 struct pci_saved_state *state; 1974 struct pci_cap_saved_state *tmp; 1975 struct pci_cap_saved_data *cap; 1976 size_t size; 1977 1978 if (!dev->state_saved) 1979 return NULL; 1980 1981 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1982 1983 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1984 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1985 1986 state = kzalloc(size, GFP_KERNEL); 1987 if (!state) 1988 return NULL; 1989 1990 memcpy(state->config_space, dev->saved_config_space, 1991 sizeof(state->config_space)); 1992 1993 cap = state->cap; 1994 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1995 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1996 memcpy(cap, &tmp->cap, len); 1997 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1998 } 1999 /* Empty cap_save terminates list */ 2000 2001 return state; 2002 } 2003 EXPORT_SYMBOL_GPL(pci_store_saved_state); 2004 2005 /** 2006 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 2007 * @dev: PCI device that we're dealing with 2008 * @state: Saved state returned from pci_store_saved_state() 2009 */ 2010 int pci_load_saved_state(struct pci_dev *dev, 2011 struct pci_saved_state *state) 2012 { 2013 struct pci_cap_saved_data *cap; 2014 2015 dev->state_saved = false; 2016 2017 if (!state) 2018 return 0; 2019 2020 memcpy(dev->saved_config_space, state->config_space, 2021 sizeof(state->config_space)); 2022 2023 cap = state->cap; 2024 while (cap->size) { 2025 struct pci_cap_saved_state *tmp; 2026 2027 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 2028 if (!tmp || tmp->cap.size != cap->size) 2029 return -EINVAL; 2030 2031 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 2032 cap = (struct pci_cap_saved_data *)((u8 *)cap + 2033 sizeof(struct pci_cap_saved_data) + cap->size); 2034 } 2035 2036 dev->state_saved = true; 2037 return 0; 2038 } 2039 EXPORT_SYMBOL_GPL(pci_load_saved_state); 2040 2041 /** 2042 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 2043 * and free the memory allocated for it. 2044 * @dev: PCI device that we're dealing with 2045 * @state: Pointer to saved state returned from pci_store_saved_state() 2046 */ 2047 int pci_load_and_free_saved_state(struct pci_dev *dev, 2048 struct pci_saved_state **state) 2049 { 2050 int ret = pci_load_saved_state(dev, *state); 2051 kfree(*state); 2052 *state = NULL; 2053 return ret; 2054 } 2055 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 2056 2057 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 2058 { 2059 return pci_enable_resources(dev, bars); 2060 } 2061 2062 static int do_pci_enable_device(struct pci_dev *dev, int bars) 2063 { 2064 int err; 2065 struct pci_dev *bridge; 2066 u16 cmd; 2067 u8 pin; 2068 2069 err = pci_set_power_state(dev, PCI_D0); 2070 if (err < 0 && err != -EIO) 2071 return err; 2072 2073 bridge = pci_upstream_bridge(dev); 2074 if (bridge) 2075 pcie_aspm_powersave_config_link(bridge); 2076 2077 err = pcibios_enable_device(dev, bars); 2078 if (err < 0) 2079 return err; 2080 pci_fixup_device(pci_fixup_enable, dev); 2081 2082 if (dev->msi_enabled || dev->msix_enabled) 2083 return 0; 2084 2085 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 2086 if (pin) { 2087 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2088 if (cmd & PCI_COMMAND_INTX_DISABLE) 2089 pci_write_config_word(dev, PCI_COMMAND, 2090 cmd & ~PCI_COMMAND_INTX_DISABLE); 2091 } 2092 2093 return 0; 2094 } 2095 2096 /** 2097 * pci_reenable_device - Resume abandoned device 2098 * @dev: PCI device to be resumed 2099 * 2100 * NOTE: This function is a backend of pci_default_resume() and is not supposed 2101 * to be called by normal code, write proper resume handler and use it instead. 2102 */ 2103 int pci_reenable_device(struct pci_dev *dev) 2104 { 2105 if (pci_is_enabled(dev)) 2106 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 2107 return 0; 2108 } 2109 EXPORT_SYMBOL(pci_reenable_device); 2110 2111 static void pci_enable_bridge(struct pci_dev *dev) 2112 { 2113 struct pci_dev *bridge; 2114 int retval; 2115 2116 bridge = pci_upstream_bridge(dev); 2117 if (bridge) 2118 pci_enable_bridge(bridge); 2119 2120 if (pci_is_enabled(dev)) { 2121 if (!dev->is_busmaster) 2122 pci_set_master(dev); 2123 return; 2124 } 2125 2126 retval = pci_enable_device(dev); 2127 if (retval) 2128 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2129 retval); 2130 pci_set_master(dev); 2131 } 2132 2133 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2134 { 2135 struct pci_dev *bridge; 2136 int err; 2137 int i, bars = 0; 2138 2139 /* 2140 * Power state could be unknown at this point, either due to a fresh 2141 * boot or a device removal call. So get the current power state 2142 * so that things like MSI message writing will behave as expected 2143 * (e.g. if the device really is in D0 at enable time). 2144 */ 2145 pci_update_current_state(dev, dev->current_state); 2146 2147 if (atomic_inc_return(&dev->enable_cnt) > 1) 2148 return 0; /* already enabled */ 2149 2150 bridge = pci_upstream_bridge(dev); 2151 if (bridge) 2152 pci_enable_bridge(bridge); 2153 2154 /* only skip sriov related */ 2155 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2156 if (dev->resource[i].flags & flags) 2157 bars |= (1 << i); 2158 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2159 if (dev->resource[i].flags & flags) 2160 bars |= (1 << i); 2161 2162 err = do_pci_enable_device(dev, bars); 2163 if (err < 0) 2164 atomic_dec(&dev->enable_cnt); 2165 return err; 2166 } 2167 2168 /** 2169 * pci_enable_device_mem - Initialize a device for use with Memory space 2170 * @dev: PCI device to be initialized 2171 * 2172 * Initialize device before it's used by a driver. Ask low-level code 2173 * to enable Memory resources. Wake up the device if it was suspended. 2174 * Beware, this function can fail. 2175 */ 2176 int pci_enable_device_mem(struct pci_dev *dev) 2177 { 2178 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2179 } 2180 EXPORT_SYMBOL(pci_enable_device_mem); 2181 2182 /** 2183 * pci_enable_device - Initialize device before it's used by a driver. 2184 * @dev: PCI device to be initialized 2185 * 2186 * Initialize device before it's used by a driver. Ask low-level code 2187 * to enable I/O and memory. Wake up the device if it was suspended. 2188 * Beware, this function can fail. 2189 * 2190 * Note we don't actually enable the device many times if we call 2191 * this function repeatedly (we just increment the count). 2192 */ 2193 int pci_enable_device(struct pci_dev *dev) 2194 { 2195 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2196 } 2197 EXPORT_SYMBOL(pci_enable_device); 2198 2199 /* 2200 * pcibios_device_add - provide arch specific hooks when adding device dev 2201 * @dev: the PCI device being added 2202 * 2203 * Permits the platform to provide architecture specific functionality when 2204 * devices are added. This is the default implementation. Architecture 2205 * implementations can override this. 2206 */ 2207 int __weak pcibios_device_add(struct pci_dev *dev) 2208 { 2209 return 0; 2210 } 2211 2212 /** 2213 * pcibios_release_device - provide arch specific hooks when releasing 2214 * device dev 2215 * @dev: the PCI device being released 2216 * 2217 * Permits the platform to provide architecture specific functionality when 2218 * devices are released. This is the default implementation. Architecture 2219 * implementations can override this. 2220 */ 2221 void __weak pcibios_release_device(struct pci_dev *dev) {} 2222 2223 /** 2224 * pcibios_disable_device - disable arch specific PCI resources for device dev 2225 * @dev: the PCI device to disable 2226 * 2227 * Disables architecture specific PCI resources for the device. This 2228 * is the default implementation. Architecture implementations can 2229 * override this. 2230 */ 2231 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2232 2233 static void do_pci_disable_device(struct pci_dev *dev) 2234 { 2235 u16 pci_command; 2236 2237 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2238 if (pci_command & PCI_COMMAND_MASTER) { 2239 pci_command &= ~PCI_COMMAND_MASTER; 2240 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2241 } 2242 2243 pcibios_disable_device(dev); 2244 } 2245 2246 /** 2247 * pci_disable_enabled_device - Disable device without updating enable_cnt 2248 * @dev: PCI device to disable 2249 * 2250 * NOTE: This function is a backend of PCI power management routines and is 2251 * not supposed to be called drivers. 2252 */ 2253 void pci_disable_enabled_device(struct pci_dev *dev) 2254 { 2255 if (pci_is_enabled(dev)) 2256 do_pci_disable_device(dev); 2257 } 2258 2259 /** 2260 * pci_disable_device - Disable PCI device after use 2261 * @dev: PCI device to be disabled 2262 * 2263 * Signal to the system that the PCI device is not in use by the system 2264 * anymore. This only involves disabling PCI bus-mastering, if active. 2265 * 2266 * Note we don't actually disable the device until all callers of 2267 * pci_enable_device() have called pci_disable_device(). 2268 */ 2269 void pci_disable_device(struct pci_dev *dev) 2270 { 2271 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2272 "disabling already-disabled device"); 2273 2274 if (atomic_dec_return(&dev->enable_cnt) != 0) 2275 return; 2276 2277 do_pci_disable_device(dev); 2278 2279 dev->is_busmaster = 0; 2280 } 2281 EXPORT_SYMBOL(pci_disable_device); 2282 2283 /** 2284 * pcibios_set_pcie_reset_state - set reset state for device dev 2285 * @dev: the PCIe device reset 2286 * @state: Reset state to enter into 2287 * 2288 * Set the PCIe reset state for the device. This is the default 2289 * implementation. Architecture implementations can override this. 2290 */ 2291 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2292 enum pcie_reset_state state) 2293 { 2294 return -EINVAL; 2295 } 2296 2297 /** 2298 * pci_set_pcie_reset_state - set reset state for device dev 2299 * @dev: the PCIe device reset 2300 * @state: Reset state to enter into 2301 * 2302 * Sets the PCI reset state for the device. 2303 */ 2304 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2305 { 2306 return pcibios_set_pcie_reset_state(dev, state); 2307 } 2308 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2309 2310 #ifdef CONFIG_PCIEAER 2311 void pcie_clear_device_status(struct pci_dev *dev) 2312 { 2313 u16 sta; 2314 2315 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2316 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2317 } 2318 #endif 2319 2320 /** 2321 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2322 * @dev: PCIe root port or event collector. 2323 */ 2324 void pcie_clear_root_pme_status(struct pci_dev *dev) 2325 { 2326 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2327 } 2328 2329 /** 2330 * pci_check_pme_status - Check if given device has generated PME. 2331 * @dev: Device to check. 2332 * 2333 * Check the PME status of the device and if set, clear it and clear PME enable 2334 * (if set). Return 'true' if PME status and PME enable were both set or 2335 * 'false' otherwise. 2336 */ 2337 bool pci_check_pme_status(struct pci_dev *dev) 2338 { 2339 int pmcsr_pos; 2340 u16 pmcsr; 2341 bool ret = false; 2342 2343 if (!dev->pm_cap) 2344 return false; 2345 2346 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2347 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2348 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2349 return false; 2350 2351 /* Clear PME status. */ 2352 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2353 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2354 /* Disable PME to avoid interrupt flood. */ 2355 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2356 ret = true; 2357 } 2358 2359 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2360 2361 return ret; 2362 } 2363 2364 /** 2365 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2366 * @dev: Device to handle. 2367 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2368 * 2369 * Check if @dev has generated PME and queue a resume request for it in that 2370 * case. 2371 */ 2372 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2373 { 2374 if (pme_poll_reset && dev->pme_poll) 2375 dev->pme_poll = false; 2376 2377 if (pci_check_pme_status(dev)) { 2378 pci_wakeup_event(dev); 2379 pm_request_resume(&dev->dev); 2380 } 2381 return 0; 2382 } 2383 2384 /** 2385 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2386 * @bus: Top bus of the subtree to walk. 2387 */ 2388 void pci_pme_wakeup_bus(struct pci_bus *bus) 2389 { 2390 if (bus) 2391 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2392 } 2393 2394 2395 /** 2396 * pci_pme_capable - check the capability of PCI device to generate PME# 2397 * @dev: PCI device to handle. 2398 * @state: PCI state from which device will issue PME#. 2399 */ 2400 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2401 { 2402 if (!dev->pm_cap) 2403 return false; 2404 2405 return !!(dev->pme_support & (1 << state)); 2406 } 2407 EXPORT_SYMBOL(pci_pme_capable); 2408 2409 static void pci_pme_list_scan(struct work_struct *work) 2410 { 2411 struct pci_pme_device *pme_dev, *n; 2412 2413 mutex_lock(&pci_pme_list_mutex); 2414 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2415 struct pci_dev *pdev = pme_dev->dev; 2416 2417 if (pdev->pme_poll) { 2418 struct pci_dev *bridge = pdev->bus->self; 2419 struct device *dev = &pdev->dev; 2420 struct device *bdev = bridge ? &bridge->dev : NULL; 2421 int bref = 0; 2422 2423 /* 2424 * If we have a bridge, it should be in an active/D0 2425 * state or the configuration space of subordinate 2426 * devices may not be accessible or stable over the 2427 * course of the call. 2428 */ 2429 if (bdev) { 2430 bref = pm_runtime_get_if_active(bdev); 2431 if (!bref) 2432 continue; 2433 2434 if (bridge->current_state != PCI_D0) 2435 goto put_bridge; 2436 } 2437 2438 /* 2439 * The device itself should be suspended but config 2440 * space must be accessible, therefore it cannot be in 2441 * D3cold. 2442 */ 2443 if (pm_runtime_suspended(dev) && 2444 pdev->current_state != PCI_D3cold) 2445 pci_pme_wakeup(pdev, NULL); 2446 2447 put_bridge: 2448 if (bref > 0) 2449 pm_runtime_put(bdev); 2450 } else { 2451 list_del(&pme_dev->list); 2452 kfree(pme_dev); 2453 } 2454 } 2455 if (!list_empty(&pci_pme_list)) 2456 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2457 msecs_to_jiffies(PME_TIMEOUT)); 2458 mutex_unlock(&pci_pme_list_mutex); 2459 } 2460 2461 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2462 { 2463 u16 pmcsr; 2464 2465 if (!dev->pme_support) 2466 return; 2467 2468 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2469 /* Clear PME_Status by writing 1 to it and enable PME# */ 2470 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2471 if (!enable) 2472 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2473 2474 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2475 } 2476 2477 /** 2478 * pci_pme_restore - Restore PME configuration after config space restore. 2479 * @dev: PCI device to update. 2480 */ 2481 void pci_pme_restore(struct pci_dev *dev) 2482 { 2483 u16 pmcsr; 2484 2485 if (!dev->pme_support) 2486 return; 2487 2488 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2489 if (dev->wakeup_prepared) { 2490 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2491 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2492 } else { 2493 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2494 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2495 } 2496 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2497 } 2498 2499 /** 2500 * pci_pme_active - enable or disable PCI device's PME# function 2501 * @dev: PCI device to handle. 2502 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2503 * 2504 * The caller must verify that the device is capable of generating PME# before 2505 * calling this function with @enable equal to 'true'. 2506 */ 2507 void pci_pme_active(struct pci_dev *dev, bool enable) 2508 { 2509 __pci_pme_active(dev, enable); 2510 2511 /* 2512 * PCI (as opposed to PCIe) PME requires that the device have 2513 * its PME# line hooked up correctly. Not all hardware vendors 2514 * do this, so the PME never gets delivered and the device 2515 * remains asleep. The easiest way around this is to 2516 * periodically walk the list of suspended devices and check 2517 * whether any have their PME flag set. The assumption is that 2518 * we'll wake up often enough anyway that this won't be a huge 2519 * hit, and the power savings from the devices will still be a 2520 * win. 2521 * 2522 * Although PCIe uses in-band PME message instead of PME# line 2523 * to report PME, PME does not work for some PCIe devices in 2524 * reality. For example, there are devices that set their PME 2525 * status bits, but don't really bother to send a PME message; 2526 * there are PCI Express Root Ports that don't bother to 2527 * trigger interrupts when they receive PME messages from the 2528 * devices below. So PME poll is used for PCIe devices too. 2529 */ 2530 2531 if (dev->pme_poll) { 2532 struct pci_pme_device *pme_dev; 2533 if (enable) { 2534 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2535 GFP_KERNEL); 2536 if (!pme_dev) { 2537 pci_warn(dev, "can't enable PME#\n"); 2538 return; 2539 } 2540 pme_dev->dev = dev; 2541 mutex_lock(&pci_pme_list_mutex); 2542 list_add(&pme_dev->list, &pci_pme_list); 2543 if (list_is_singular(&pci_pme_list)) 2544 queue_delayed_work(system_freezable_wq, 2545 &pci_pme_work, 2546 msecs_to_jiffies(PME_TIMEOUT)); 2547 mutex_unlock(&pci_pme_list_mutex); 2548 } else { 2549 mutex_lock(&pci_pme_list_mutex); 2550 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2551 if (pme_dev->dev == dev) { 2552 list_del(&pme_dev->list); 2553 kfree(pme_dev); 2554 break; 2555 } 2556 } 2557 mutex_unlock(&pci_pme_list_mutex); 2558 } 2559 } 2560 2561 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2562 } 2563 EXPORT_SYMBOL(pci_pme_active); 2564 2565 /** 2566 * __pci_enable_wake - enable PCI device as wakeup event source 2567 * @dev: PCI device affected 2568 * @state: PCI state from which device will issue wakeup events 2569 * @enable: True to enable event generation; false to disable 2570 * 2571 * This enables the device as a wakeup event source, or disables it. 2572 * When such events involves platform-specific hooks, those hooks are 2573 * called automatically by this routine. 2574 * 2575 * Devices with legacy power management (no standard PCI PM capabilities) 2576 * always require such platform hooks. 2577 * 2578 * RETURN VALUE: 2579 * 0 is returned on success 2580 * -EINVAL is returned if device is not supposed to wake up the system 2581 * Error code depending on the platform is returned if both the platform and 2582 * the native mechanism fail to enable the generation of wake-up events 2583 */ 2584 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2585 { 2586 int ret = 0; 2587 2588 /* 2589 * Bridges that are not power-manageable directly only signal 2590 * wakeup on behalf of subordinate devices which is set up 2591 * elsewhere, so skip them. However, bridges that are 2592 * power-manageable may signal wakeup for themselves (for example, 2593 * on a hotplug event) and they need to be covered here. 2594 */ 2595 if (!pci_power_manageable(dev)) 2596 return 0; 2597 2598 /* Don't do the same thing twice in a row for one device. */ 2599 if (!!enable == !!dev->wakeup_prepared) 2600 return 0; 2601 2602 /* 2603 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2604 * Anderson we should be doing PME# wake enable followed by ACPI wake 2605 * enable. To disable wake-up we call the platform first, for symmetry. 2606 */ 2607 2608 if (enable) { 2609 int error; 2610 2611 /* 2612 * Enable PME signaling if the device can signal PME from 2613 * D3cold regardless of whether or not it can signal PME from 2614 * the current target state, because that will allow it to 2615 * signal PME when the hierarchy above it goes into D3cold and 2616 * the device itself ends up in D3cold as a result of that. 2617 */ 2618 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2619 pci_pme_active(dev, true); 2620 else 2621 ret = 1; 2622 error = platform_pci_set_wakeup(dev, true); 2623 if (ret) 2624 ret = error; 2625 if (!ret) 2626 dev->wakeup_prepared = true; 2627 } else { 2628 platform_pci_set_wakeup(dev, false); 2629 pci_pme_active(dev, false); 2630 dev->wakeup_prepared = false; 2631 } 2632 2633 return ret; 2634 } 2635 2636 /** 2637 * pci_enable_wake - change wakeup settings for a PCI device 2638 * @pci_dev: Target device 2639 * @state: PCI state from which device will issue wakeup events 2640 * @enable: Whether or not to enable event generation 2641 * 2642 * If @enable is set, check device_may_wakeup() for the device before calling 2643 * __pci_enable_wake() for it. 2644 */ 2645 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2646 { 2647 if (enable && !device_may_wakeup(&pci_dev->dev)) 2648 return -EINVAL; 2649 2650 return __pci_enable_wake(pci_dev, state, enable); 2651 } 2652 EXPORT_SYMBOL(pci_enable_wake); 2653 2654 /** 2655 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2656 * @dev: PCI device to prepare 2657 * @enable: True to enable wake-up event generation; false to disable 2658 * 2659 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2660 * and this function allows them to set that up cleanly - pci_enable_wake() 2661 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2662 * ordering constraints. 2663 * 2664 * This function only returns error code if the device is not allowed to wake 2665 * up the system from sleep or it is not capable of generating PME# from both 2666 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2667 */ 2668 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2669 { 2670 return pci_pme_capable(dev, PCI_D3cold) ? 2671 pci_enable_wake(dev, PCI_D3cold, enable) : 2672 pci_enable_wake(dev, PCI_D3hot, enable); 2673 } 2674 EXPORT_SYMBOL(pci_wake_from_d3); 2675 2676 /** 2677 * pci_target_state - find an appropriate low power state for a given PCI dev 2678 * @dev: PCI device 2679 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2680 * 2681 * Use underlying platform code to find a supported low power state for @dev. 2682 * If the platform can't manage @dev, return the deepest state from which it 2683 * can generate wake events, based on any available PME info. 2684 */ 2685 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2686 { 2687 if (platform_pci_power_manageable(dev)) { 2688 /* 2689 * Call the platform to find the target state for the device. 2690 */ 2691 pci_power_t state = platform_pci_choose_state(dev); 2692 2693 switch (state) { 2694 case PCI_POWER_ERROR: 2695 case PCI_UNKNOWN: 2696 return PCI_D3hot; 2697 2698 case PCI_D1: 2699 case PCI_D2: 2700 if (pci_no_d1d2(dev)) 2701 return PCI_D3hot; 2702 } 2703 2704 return state; 2705 } 2706 2707 /* 2708 * If the device is in D3cold even though it's not power-manageable by 2709 * the platform, it may have been powered down by non-standard means. 2710 * Best to let it slumber. 2711 */ 2712 if (dev->current_state == PCI_D3cold) 2713 return PCI_D3cold; 2714 else if (!dev->pm_cap) 2715 return PCI_D0; 2716 2717 if (wakeup && dev->pme_support) { 2718 pci_power_t state = PCI_D3hot; 2719 2720 /* 2721 * Find the deepest state from which the device can generate 2722 * PME#. 2723 */ 2724 while (state && !(dev->pme_support & (1 << state))) 2725 state--; 2726 2727 if (state) 2728 return state; 2729 else if (dev->pme_support & 1) 2730 return PCI_D0; 2731 } 2732 2733 return PCI_D3hot; 2734 } 2735 2736 /** 2737 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2738 * into a sleep state 2739 * @dev: Device to handle. 2740 * 2741 * Choose the power state appropriate for the device depending on whether 2742 * it can wake up the system and/or is power manageable by the platform 2743 * (PCI_D3hot is the default) and put the device into that state. 2744 */ 2745 int pci_prepare_to_sleep(struct pci_dev *dev) 2746 { 2747 bool wakeup = device_may_wakeup(&dev->dev); 2748 pci_power_t target_state = pci_target_state(dev, wakeup); 2749 int error; 2750 2751 if (target_state == PCI_POWER_ERROR) 2752 return -EIO; 2753 2754 pci_enable_wake(dev, target_state, wakeup); 2755 2756 error = pci_set_power_state(dev, target_state); 2757 2758 if (error) 2759 pci_enable_wake(dev, target_state, false); 2760 2761 return error; 2762 } 2763 EXPORT_SYMBOL(pci_prepare_to_sleep); 2764 2765 /** 2766 * pci_back_from_sleep - turn PCI device on during system-wide transition 2767 * into working state 2768 * @dev: Device to handle. 2769 * 2770 * Disable device's system wake-up capability and put it into D0. 2771 */ 2772 int pci_back_from_sleep(struct pci_dev *dev) 2773 { 2774 int ret = pci_set_power_state(dev, PCI_D0); 2775 2776 if (ret) 2777 return ret; 2778 2779 pci_enable_wake(dev, PCI_D0, false); 2780 return 0; 2781 } 2782 EXPORT_SYMBOL(pci_back_from_sleep); 2783 2784 /** 2785 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2786 * @dev: PCI device being suspended. 2787 * 2788 * Prepare @dev to generate wake-up events at run time and put it into a low 2789 * power state. 2790 */ 2791 int pci_finish_runtime_suspend(struct pci_dev *dev) 2792 { 2793 pci_power_t target_state; 2794 int error; 2795 2796 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2797 if (target_state == PCI_POWER_ERROR) 2798 return -EIO; 2799 2800 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2801 2802 error = pci_set_power_state(dev, target_state); 2803 2804 if (error) 2805 pci_enable_wake(dev, target_state, false); 2806 2807 return error; 2808 } 2809 2810 /** 2811 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2812 * @dev: Device to check. 2813 * 2814 * Return true if the device itself is capable of generating wake-up events 2815 * (through the platform or using the native PCIe PME) or if the device supports 2816 * PME and one of its upstream bridges can generate wake-up events. 2817 */ 2818 bool pci_dev_run_wake(struct pci_dev *dev) 2819 { 2820 struct pci_bus *bus = dev->bus; 2821 2822 if (!dev->pme_support) 2823 return false; 2824 2825 /* PME-capable in principle, but not from the target power state */ 2826 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2827 return false; 2828 2829 if (device_can_wakeup(&dev->dev)) 2830 return true; 2831 2832 while (bus->parent) { 2833 struct pci_dev *bridge = bus->self; 2834 2835 if (device_can_wakeup(&bridge->dev)) 2836 return true; 2837 2838 bus = bus->parent; 2839 } 2840 2841 /* We have reached the root bus. */ 2842 if (bus->bridge) 2843 return device_can_wakeup(bus->bridge); 2844 2845 return false; 2846 } 2847 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2848 2849 /** 2850 * pci_dev_need_resume - Check if it is necessary to resume the device. 2851 * @pci_dev: Device to check. 2852 * 2853 * Return 'true' if the device is not runtime-suspended or it has to be 2854 * reconfigured due to wakeup settings difference between system and runtime 2855 * suspend, or the current power state of it is not suitable for the upcoming 2856 * (system-wide) transition. 2857 */ 2858 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2859 { 2860 struct device *dev = &pci_dev->dev; 2861 pci_power_t target_state; 2862 2863 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2864 return true; 2865 2866 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2867 2868 /* 2869 * If the earlier platform check has not triggered, D3cold is just power 2870 * removal on top of D3hot, so no need to resume the device in that 2871 * case. 2872 */ 2873 return target_state != pci_dev->current_state && 2874 target_state != PCI_D3cold && 2875 pci_dev->current_state != PCI_D3hot; 2876 } 2877 2878 /** 2879 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2880 * @pci_dev: Device to check. 2881 * 2882 * If the device is suspended and it is not configured for system wakeup, 2883 * disable PME for it to prevent it from waking up the system unnecessarily. 2884 * 2885 * Note that if the device's power state is D3cold and the platform check in 2886 * pci_dev_need_resume() has not triggered, the device's configuration need not 2887 * be changed. 2888 */ 2889 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2890 { 2891 struct device *dev = &pci_dev->dev; 2892 2893 spin_lock_irq(&dev->power.lock); 2894 2895 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2896 pci_dev->current_state < PCI_D3cold) 2897 __pci_pme_active(pci_dev, false); 2898 2899 spin_unlock_irq(&dev->power.lock); 2900 } 2901 2902 /** 2903 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2904 * @pci_dev: Device to handle. 2905 * 2906 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2907 * it might have been disabled during the prepare phase of system suspend if 2908 * the device was not configured for system wakeup. 2909 */ 2910 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2911 { 2912 struct device *dev = &pci_dev->dev; 2913 2914 if (!pci_dev_run_wake(pci_dev)) 2915 return; 2916 2917 spin_lock_irq(&dev->power.lock); 2918 2919 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2920 __pci_pme_active(pci_dev, true); 2921 2922 spin_unlock_irq(&dev->power.lock); 2923 } 2924 2925 /** 2926 * pci_choose_state - Choose the power state of a PCI device. 2927 * @dev: Target PCI device. 2928 * @state: Target state for the whole system. 2929 * 2930 * Returns PCI power state suitable for @dev and @state. 2931 */ 2932 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2933 { 2934 if (state.event == PM_EVENT_ON) 2935 return PCI_D0; 2936 2937 return pci_target_state(dev, false); 2938 } 2939 EXPORT_SYMBOL(pci_choose_state); 2940 2941 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2942 { 2943 struct device *dev = &pdev->dev; 2944 struct device *parent = dev->parent; 2945 2946 if (parent) 2947 pm_runtime_get_sync(parent); 2948 pm_runtime_get_noresume(dev); 2949 /* 2950 * pdev->current_state is set to PCI_D3cold during suspending, 2951 * so wait until suspending completes 2952 */ 2953 pm_runtime_barrier(dev); 2954 /* 2955 * Only need to resume devices in D3cold, because config 2956 * registers are still accessible for devices suspended but 2957 * not in D3cold. 2958 */ 2959 if (pdev->current_state == PCI_D3cold) 2960 pm_runtime_resume(dev); 2961 } 2962 2963 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2964 { 2965 struct device *dev = &pdev->dev; 2966 struct device *parent = dev->parent; 2967 2968 pm_runtime_put(dev); 2969 if (parent) 2970 pm_runtime_put_sync(parent); 2971 } 2972 2973 static const struct dmi_system_id bridge_d3_blacklist[] = { 2974 #ifdef CONFIG_X86 2975 { 2976 /* 2977 * Gigabyte X299 root port is not marked as hotplug capable 2978 * which allows Linux to power manage it. However, this 2979 * confuses the BIOS SMI handler so don't power manage root 2980 * ports on that system. 2981 */ 2982 .ident = "X299 DESIGNARE EX-CF", 2983 .matches = { 2984 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2985 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2986 }, 2987 }, 2988 { 2989 /* 2990 * Downstream device is not accessible after putting a root port 2991 * into D3cold and back into D0 on Elo Continental Z2 board 2992 */ 2993 .ident = "Elo Continental Z2", 2994 .matches = { 2995 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 2996 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 2997 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 2998 }, 2999 }, 3000 { 3001 /* 3002 * Changing power state of root port dGPU is connected fails 3003 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229 3004 */ 3005 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972", 3006 .matches = { 3007 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"), 3008 DMI_MATCH(DMI_BOARD_NAME, "1972"), 3009 DMI_MATCH(DMI_BOARD_VERSION, "95.33"), 3010 }, 3011 }, 3012 #endif 3013 { } 3014 }; 3015 3016 /** 3017 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 3018 * @bridge: Bridge to check 3019 * 3020 * This function checks if it is possible to move the bridge to D3. 3021 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 3022 */ 3023 bool pci_bridge_d3_possible(struct pci_dev *bridge) 3024 { 3025 if (!pci_is_pcie(bridge)) 3026 return false; 3027 3028 switch (pci_pcie_type(bridge)) { 3029 case PCI_EXP_TYPE_ROOT_PORT: 3030 case PCI_EXP_TYPE_UPSTREAM: 3031 case PCI_EXP_TYPE_DOWNSTREAM: 3032 if (pci_bridge_d3_disable) 3033 return false; 3034 3035 /* 3036 * Hotplug ports handled by firmware in System Management Mode 3037 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3038 */ 3039 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3040 return false; 3041 3042 if (pci_bridge_d3_force) 3043 return true; 3044 3045 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3046 if (bridge->is_thunderbolt) 3047 return true; 3048 3049 /* Platform might know better if the bridge supports D3 */ 3050 if (platform_pci_bridge_d3(bridge)) 3051 return true; 3052 3053 /* 3054 * Hotplug ports handled natively by the OS were not validated 3055 * by vendors for runtime D3 at least until 2018 because there 3056 * was no OS support. 3057 */ 3058 if (bridge->is_hotplug_bridge) 3059 return false; 3060 3061 if (dmi_check_system(bridge_d3_blacklist)) 3062 return false; 3063 3064 /* 3065 * It should be safe to put PCIe ports from 2015 or newer 3066 * to D3. 3067 */ 3068 if (dmi_get_bios_year() >= 2015) 3069 return true; 3070 break; 3071 } 3072 3073 return false; 3074 } 3075 3076 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3077 { 3078 bool *d3cold_ok = data; 3079 3080 if (/* The device needs to be allowed to go D3cold ... */ 3081 dev->no_d3cold || !dev->d3cold_allowed || 3082 3083 /* ... and if it is wakeup capable to do so from D3cold. */ 3084 (device_may_wakeup(&dev->dev) && 3085 !pci_pme_capable(dev, PCI_D3cold)) || 3086 3087 /* If it is a bridge it must be allowed to go to D3. */ 3088 !pci_power_manageable(dev)) 3089 3090 *d3cold_ok = false; 3091 3092 return !*d3cold_ok; 3093 } 3094 3095 /* 3096 * pci_bridge_d3_update - Update bridge D3 capabilities 3097 * @dev: PCI device which is changed 3098 * 3099 * Update upstream bridge PM capabilities accordingly depending on if the 3100 * device PM configuration was changed or the device is being removed. The 3101 * change is also propagated upstream. 3102 */ 3103 void pci_bridge_d3_update(struct pci_dev *dev) 3104 { 3105 bool remove = !device_is_registered(&dev->dev); 3106 struct pci_dev *bridge; 3107 bool d3cold_ok = true; 3108 3109 bridge = pci_upstream_bridge(dev); 3110 if (!bridge || !pci_bridge_d3_possible(bridge)) 3111 return; 3112 3113 /* 3114 * If D3 is currently allowed for the bridge, removing one of its 3115 * children won't change that. 3116 */ 3117 if (remove && bridge->bridge_d3) 3118 return; 3119 3120 /* 3121 * If D3 is currently allowed for the bridge and a child is added or 3122 * changed, disallowance of D3 can only be caused by that child, so 3123 * we only need to check that single device, not any of its siblings. 3124 * 3125 * If D3 is currently not allowed for the bridge, checking the device 3126 * first may allow us to skip checking its siblings. 3127 */ 3128 if (!remove) 3129 pci_dev_check_d3cold(dev, &d3cold_ok); 3130 3131 /* 3132 * If D3 is currently not allowed for the bridge, this may be caused 3133 * either by the device being changed/removed or any of its siblings, 3134 * so we need to go through all children to find out if one of them 3135 * continues to block D3. 3136 */ 3137 if (d3cold_ok && !bridge->bridge_d3) 3138 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3139 &d3cold_ok); 3140 3141 if (bridge->bridge_d3 != d3cold_ok) { 3142 bridge->bridge_d3 = d3cold_ok; 3143 /* Propagate change to upstream bridges */ 3144 pci_bridge_d3_update(bridge); 3145 } 3146 } 3147 3148 /** 3149 * pci_d3cold_enable - Enable D3cold for device 3150 * @dev: PCI device to handle 3151 * 3152 * This function can be used in drivers to enable D3cold from the device 3153 * they handle. It also updates upstream PCI bridge PM capabilities 3154 * accordingly. 3155 */ 3156 void pci_d3cold_enable(struct pci_dev *dev) 3157 { 3158 if (dev->no_d3cold) { 3159 dev->no_d3cold = false; 3160 pci_bridge_d3_update(dev); 3161 } 3162 } 3163 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3164 3165 /** 3166 * pci_d3cold_disable - Disable D3cold for device 3167 * @dev: PCI device to handle 3168 * 3169 * This function can be used in drivers to disable D3cold from the device 3170 * they handle. It also updates upstream PCI bridge PM capabilities 3171 * accordingly. 3172 */ 3173 void pci_d3cold_disable(struct pci_dev *dev) 3174 { 3175 if (!dev->no_d3cold) { 3176 dev->no_d3cold = true; 3177 pci_bridge_d3_update(dev); 3178 } 3179 } 3180 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3181 3182 /** 3183 * pci_pm_init - Initialize PM functions of given PCI device 3184 * @dev: PCI device to handle. 3185 */ 3186 void pci_pm_init(struct pci_dev *dev) 3187 { 3188 int pm; 3189 u16 status; 3190 u16 pmc; 3191 3192 pm_runtime_forbid(&dev->dev); 3193 pm_runtime_set_active(&dev->dev); 3194 pm_runtime_enable(&dev->dev); 3195 device_enable_async_suspend(&dev->dev); 3196 dev->wakeup_prepared = false; 3197 3198 dev->pm_cap = 0; 3199 dev->pme_support = 0; 3200 3201 /* find PCI PM capability in list */ 3202 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3203 if (!pm) 3204 return; 3205 /* Check device's ability to generate PME# */ 3206 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3207 3208 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3209 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3210 pmc & PCI_PM_CAP_VER_MASK); 3211 return; 3212 } 3213 3214 dev->pm_cap = pm; 3215 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3216 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3217 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3218 dev->d3cold_allowed = true; 3219 3220 dev->d1_support = false; 3221 dev->d2_support = false; 3222 if (!pci_no_d1d2(dev)) { 3223 if (pmc & PCI_PM_CAP_D1) 3224 dev->d1_support = true; 3225 if (pmc & PCI_PM_CAP_D2) 3226 dev->d2_support = true; 3227 3228 if (dev->d1_support || dev->d2_support) 3229 pci_info(dev, "supports%s%s\n", 3230 dev->d1_support ? " D1" : "", 3231 dev->d2_support ? " D2" : ""); 3232 } 3233 3234 pmc &= PCI_PM_CAP_PME_MASK; 3235 if (pmc) { 3236 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3237 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3238 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3239 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3240 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3241 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3242 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc); 3243 dev->pme_poll = true; 3244 /* 3245 * Make device's PM flags reflect the wake-up capability, but 3246 * let the user space enable it to wake up the system as needed. 3247 */ 3248 device_set_wakeup_capable(&dev->dev, true); 3249 /* Disable the PME# generation functionality */ 3250 pci_pme_active(dev, false); 3251 } 3252 3253 pci_read_config_word(dev, PCI_STATUS, &status); 3254 if (status & PCI_STATUS_IMM_READY) 3255 dev->imm_ready = 1; 3256 } 3257 3258 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3259 { 3260 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3261 3262 switch (prop) { 3263 case PCI_EA_P_MEM: 3264 case PCI_EA_P_VF_MEM: 3265 flags |= IORESOURCE_MEM; 3266 break; 3267 case PCI_EA_P_MEM_PREFETCH: 3268 case PCI_EA_P_VF_MEM_PREFETCH: 3269 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3270 break; 3271 case PCI_EA_P_IO: 3272 flags |= IORESOURCE_IO; 3273 break; 3274 default: 3275 return 0; 3276 } 3277 3278 return flags; 3279 } 3280 3281 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3282 u8 prop) 3283 { 3284 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3285 return &dev->resource[bei]; 3286 #ifdef CONFIG_PCI_IOV 3287 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3288 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3289 return &dev->resource[PCI_IOV_RESOURCES + 3290 bei - PCI_EA_BEI_VF_BAR0]; 3291 #endif 3292 else if (bei == PCI_EA_BEI_ROM) 3293 return &dev->resource[PCI_ROM_RESOURCE]; 3294 else 3295 return NULL; 3296 } 3297 3298 /* Read an Enhanced Allocation (EA) entry */ 3299 static int pci_ea_read(struct pci_dev *dev, int offset) 3300 { 3301 struct resource *res; 3302 const char *res_name; 3303 int ent_size, ent_offset = offset; 3304 resource_size_t start, end; 3305 unsigned long flags; 3306 u32 dw0, bei, base, max_offset; 3307 u8 prop; 3308 bool support_64 = (sizeof(resource_size_t) >= 8); 3309 3310 pci_read_config_dword(dev, ent_offset, &dw0); 3311 ent_offset += 4; 3312 3313 /* Entry size field indicates DWORDs after 1st */ 3314 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2; 3315 3316 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3317 goto out; 3318 3319 bei = FIELD_GET(PCI_EA_BEI, dw0); 3320 prop = FIELD_GET(PCI_EA_PP, dw0); 3321 3322 /* 3323 * If the Property is in the reserved range, try the Secondary 3324 * Property instead. 3325 */ 3326 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3327 prop = FIELD_GET(PCI_EA_SP, dw0); 3328 if (prop > PCI_EA_P_BRIDGE_IO) 3329 goto out; 3330 3331 res = pci_ea_get_resource(dev, bei, prop); 3332 res_name = pci_resource_name(dev, bei); 3333 if (!res) { 3334 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3335 goto out; 3336 } 3337 3338 flags = pci_ea_flags(dev, prop); 3339 if (!flags) { 3340 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3341 goto out; 3342 } 3343 3344 /* Read Base */ 3345 pci_read_config_dword(dev, ent_offset, &base); 3346 start = (base & PCI_EA_FIELD_MASK); 3347 ent_offset += 4; 3348 3349 /* Read MaxOffset */ 3350 pci_read_config_dword(dev, ent_offset, &max_offset); 3351 ent_offset += 4; 3352 3353 /* Read Base MSBs (if 64-bit entry) */ 3354 if (base & PCI_EA_IS_64) { 3355 u32 base_upper; 3356 3357 pci_read_config_dword(dev, ent_offset, &base_upper); 3358 ent_offset += 4; 3359 3360 flags |= IORESOURCE_MEM_64; 3361 3362 /* entry starts above 32-bit boundary, can't use */ 3363 if (!support_64 && base_upper) 3364 goto out; 3365 3366 if (support_64) 3367 start |= ((u64)base_upper << 32); 3368 } 3369 3370 end = start + (max_offset | 0x03); 3371 3372 /* Read MaxOffset MSBs (if 64-bit entry) */ 3373 if (max_offset & PCI_EA_IS_64) { 3374 u32 max_offset_upper; 3375 3376 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3377 ent_offset += 4; 3378 3379 flags |= IORESOURCE_MEM_64; 3380 3381 /* entry too big, can't use */ 3382 if (!support_64 && max_offset_upper) 3383 goto out; 3384 3385 if (support_64) 3386 end += ((u64)max_offset_upper << 32); 3387 } 3388 3389 if (end < start) { 3390 pci_err(dev, "EA Entry crosses address boundary\n"); 3391 goto out; 3392 } 3393 3394 if (ent_size != ent_offset - offset) { 3395 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3396 ent_size, ent_offset - offset); 3397 goto out; 3398 } 3399 3400 res->name = pci_name(dev); 3401 res->start = start; 3402 res->end = end; 3403 res->flags = flags; 3404 3405 if (bei <= PCI_EA_BEI_BAR5) 3406 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3407 res_name, res, prop); 3408 else if (bei == PCI_EA_BEI_ROM) 3409 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3410 res_name, res, prop); 3411 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3412 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3413 res_name, res, prop); 3414 else 3415 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n", 3416 bei, res, prop); 3417 3418 out: 3419 return offset + ent_size; 3420 } 3421 3422 /* Enhanced Allocation Initialization */ 3423 void pci_ea_init(struct pci_dev *dev) 3424 { 3425 int ea; 3426 u8 num_ent; 3427 int offset; 3428 int i; 3429 3430 /* find PCI EA capability in list */ 3431 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3432 if (!ea) 3433 return; 3434 3435 /* determine the number of entries */ 3436 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3437 &num_ent); 3438 num_ent &= PCI_EA_NUM_ENT_MASK; 3439 3440 offset = ea + PCI_EA_FIRST_ENT; 3441 3442 /* Skip DWORD 2 for type 1 functions */ 3443 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3444 offset += 4; 3445 3446 /* parse each EA entry */ 3447 for (i = 0; i < num_ent; ++i) 3448 offset = pci_ea_read(dev, offset); 3449 } 3450 3451 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3452 struct pci_cap_saved_state *new_cap) 3453 { 3454 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3455 } 3456 3457 /** 3458 * _pci_add_cap_save_buffer - allocate buffer for saving given 3459 * capability registers 3460 * @dev: the PCI device 3461 * @cap: the capability to allocate the buffer for 3462 * @extended: Standard or Extended capability ID 3463 * @size: requested size of the buffer 3464 */ 3465 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3466 bool extended, unsigned int size) 3467 { 3468 int pos; 3469 struct pci_cap_saved_state *save_state; 3470 3471 if (extended) 3472 pos = pci_find_ext_capability(dev, cap); 3473 else 3474 pos = pci_find_capability(dev, cap); 3475 3476 if (!pos) 3477 return 0; 3478 3479 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3480 if (!save_state) 3481 return -ENOMEM; 3482 3483 save_state->cap.cap_nr = cap; 3484 save_state->cap.cap_extended = extended; 3485 save_state->cap.size = size; 3486 pci_add_saved_cap(dev, save_state); 3487 3488 return 0; 3489 } 3490 3491 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3492 { 3493 return _pci_add_cap_save_buffer(dev, cap, false, size); 3494 } 3495 3496 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3497 { 3498 return _pci_add_cap_save_buffer(dev, cap, true, size); 3499 } 3500 3501 /** 3502 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3503 * @dev: the PCI device 3504 */ 3505 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3506 { 3507 int error; 3508 3509 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3510 PCI_EXP_SAVE_REGS * sizeof(u16)); 3511 if (error) 3512 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3513 3514 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3515 if (error) 3516 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3517 3518 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3519 2 * sizeof(u16)); 3520 if (error) 3521 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3522 3523 pci_allocate_vc_save_buffers(dev); 3524 } 3525 3526 void pci_free_cap_save_buffers(struct pci_dev *dev) 3527 { 3528 struct pci_cap_saved_state *tmp; 3529 struct hlist_node *n; 3530 3531 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3532 kfree(tmp); 3533 } 3534 3535 /** 3536 * pci_configure_ari - enable or disable ARI forwarding 3537 * @dev: the PCI device 3538 * 3539 * If @dev and its upstream bridge both support ARI, enable ARI in the 3540 * bridge. Otherwise, disable ARI in the bridge. 3541 */ 3542 void pci_configure_ari(struct pci_dev *dev) 3543 { 3544 u32 cap; 3545 struct pci_dev *bridge; 3546 3547 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3548 return; 3549 3550 bridge = dev->bus->self; 3551 if (!bridge) 3552 return; 3553 3554 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3555 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3556 return; 3557 3558 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3559 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3560 PCI_EXP_DEVCTL2_ARI); 3561 bridge->ari_enabled = 1; 3562 } else { 3563 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3564 PCI_EXP_DEVCTL2_ARI); 3565 bridge->ari_enabled = 0; 3566 } 3567 } 3568 3569 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3570 { 3571 int pos; 3572 u16 cap, ctrl; 3573 3574 pos = pdev->acs_cap; 3575 if (!pos) 3576 return false; 3577 3578 /* 3579 * Except for egress control, capabilities are either required 3580 * or only required if controllable. Features missing from the 3581 * capability field can therefore be assumed as hard-wired enabled. 3582 */ 3583 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3584 acs_flags &= (cap | PCI_ACS_EC); 3585 3586 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3587 return (ctrl & acs_flags) == acs_flags; 3588 } 3589 3590 /** 3591 * pci_acs_enabled - test ACS against required flags for a given device 3592 * @pdev: device to test 3593 * @acs_flags: required PCI ACS flags 3594 * 3595 * Return true if the device supports the provided flags. Automatically 3596 * filters out flags that are not implemented on multifunction devices. 3597 * 3598 * Note that this interface checks the effective ACS capabilities of the 3599 * device rather than the actual capabilities. For instance, most single 3600 * function endpoints are not required to support ACS because they have no 3601 * opportunity for peer-to-peer access. We therefore return 'true' 3602 * regardless of whether the device exposes an ACS capability. This makes 3603 * it much easier for callers of this function to ignore the actual type 3604 * or topology of the device when testing ACS support. 3605 */ 3606 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3607 { 3608 int ret; 3609 3610 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3611 if (ret >= 0) 3612 return ret > 0; 3613 3614 /* 3615 * Conventional PCI and PCI-X devices never support ACS, either 3616 * effectively or actually. The shared bus topology implies that 3617 * any device on the bus can receive or snoop DMA. 3618 */ 3619 if (!pci_is_pcie(pdev)) 3620 return false; 3621 3622 switch (pci_pcie_type(pdev)) { 3623 /* 3624 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3625 * but since their primary interface is PCI/X, we conservatively 3626 * handle them as we would a non-PCIe device. 3627 */ 3628 case PCI_EXP_TYPE_PCIE_BRIDGE: 3629 /* 3630 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3631 * applicable... must never implement an ACS Extended Capability...". 3632 * This seems arbitrary, but we take a conservative interpretation 3633 * of this statement. 3634 */ 3635 case PCI_EXP_TYPE_PCI_BRIDGE: 3636 case PCI_EXP_TYPE_RC_EC: 3637 return false; 3638 /* 3639 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3640 * implement ACS in order to indicate their peer-to-peer capabilities, 3641 * regardless of whether they are single- or multi-function devices. 3642 */ 3643 case PCI_EXP_TYPE_DOWNSTREAM: 3644 case PCI_EXP_TYPE_ROOT_PORT: 3645 return pci_acs_flags_enabled(pdev, acs_flags); 3646 /* 3647 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3648 * implemented by the remaining PCIe types to indicate peer-to-peer 3649 * capabilities, but only when they are part of a multifunction 3650 * device. The footnote for section 6.12 indicates the specific 3651 * PCIe types included here. 3652 */ 3653 case PCI_EXP_TYPE_ENDPOINT: 3654 case PCI_EXP_TYPE_UPSTREAM: 3655 case PCI_EXP_TYPE_LEG_END: 3656 case PCI_EXP_TYPE_RC_END: 3657 if (!pdev->multifunction) 3658 break; 3659 3660 return pci_acs_flags_enabled(pdev, acs_flags); 3661 } 3662 3663 /* 3664 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3665 * to single function devices with the exception of downstream ports. 3666 */ 3667 return true; 3668 } 3669 3670 /** 3671 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3672 * @start: starting downstream device 3673 * @end: ending upstream device or NULL to search to the root bus 3674 * @acs_flags: required flags 3675 * 3676 * Walk up a device tree from start to end testing PCI ACS support. If 3677 * any step along the way does not support the required flags, return false. 3678 */ 3679 bool pci_acs_path_enabled(struct pci_dev *start, 3680 struct pci_dev *end, u16 acs_flags) 3681 { 3682 struct pci_dev *pdev, *parent = start; 3683 3684 do { 3685 pdev = parent; 3686 3687 if (!pci_acs_enabled(pdev, acs_flags)) 3688 return false; 3689 3690 if (pci_is_root_bus(pdev->bus)) 3691 return (end == NULL); 3692 3693 parent = pdev->bus->self; 3694 } while (pdev != end); 3695 3696 return true; 3697 } 3698 3699 /** 3700 * pci_acs_init - Initialize ACS if hardware supports it 3701 * @dev: the PCI device 3702 */ 3703 void pci_acs_init(struct pci_dev *dev) 3704 { 3705 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3706 3707 /* 3708 * Attempt to enable ACS regardless of capability because some Root 3709 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3710 * the standard ACS capability but still support ACS via those 3711 * quirks. 3712 */ 3713 pci_enable_acs(dev); 3714 } 3715 3716 /** 3717 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3718 * @pdev: PCI device 3719 * @bar: BAR to find 3720 * 3721 * Helper to find the position of the ctrl register for a BAR. 3722 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3723 * Returns -ENOENT if no ctrl register for the BAR could be found. 3724 */ 3725 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3726 { 3727 unsigned int pos, nbars, i; 3728 u32 ctrl; 3729 3730 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3731 if (!pos) 3732 return -ENOTSUPP; 3733 3734 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3735 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 3736 3737 for (i = 0; i < nbars; i++, pos += 8) { 3738 int bar_idx; 3739 3740 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3741 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl); 3742 if (bar_idx == bar) 3743 return pos; 3744 } 3745 3746 return -ENOENT; 3747 } 3748 3749 /** 3750 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3751 * @pdev: PCI device 3752 * @bar: BAR to query 3753 * 3754 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3755 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3756 */ 3757 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3758 { 3759 int pos; 3760 u32 cap; 3761 3762 pos = pci_rebar_find_pos(pdev, bar); 3763 if (pos < 0) 3764 return 0; 3765 3766 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3767 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3768 3769 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3770 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3771 bar == 0 && cap == 0x700) 3772 return 0x3f00; 3773 3774 return cap; 3775 } 3776 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3777 3778 /** 3779 * pci_rebar_get_current_size - get the current size of a BAR 3780 * @pdev: PCI device 3781 * @bar: BAR to set size to 3782 * 3783 * Read the size of a BAR from the resizable BAR config. 3784 * Returns size if found or negative error code. 3785 */ 3786 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3787 { 3788 int pos; 3789 u32 ctrl; 3790 3791 pos = pci_rebar_find_pos(pdev, bar); 3792 if (pos < 0) 3793 return pos; 3794 3795 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3796 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl); 3797 } 3798 3799 /** 3800 * pci_rebar_set_size - set a new size for a BAR 3801 * @pdev: PCI device 3802 * @bar: BAR to set size to 3803 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3804 * 3805 * Set the new size of a BAR as defined in the spec. 3806 * Returns zero if resizing was successful, error code otherwise. 3807 */ 3808 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3809 { 3810 int pos; 3811 u32 ctrl; 3812 3813 pos = pci_rebar_find_pos(pdev, bar); 3814 if (pos < 0) 3815 return pos; 3816 3817 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3818 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3819 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 3820 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3821 return 0; 3822 } 3823 3824 /** 3825 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3826 * @dev: the PCI device 3827 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3828 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3829 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3830 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3831 * 3832 * Return 0 if all upstream bridges support AtomicOp routing, egress 3833 * blocking is disabled on all upstream ports, and the root port supports 3834 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3835 * AtomicOp completion), or negative otherwise. 3836 */ 3837 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3838 { 3839 struct pci_bus *bus = dev->bus; 3840 struct pci_dev *bridge; 3841 u32 cap, ctl2; 3842 3843 /* 3844 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3845 * in Device Control 2 is reserved in VFs and the PF value applies 3846 * to all associated VFs. 3847 */ 3848 if (dev->is_virtfn) 3849 return -EINVAL; 3850 3851 if (!pci_is_pcie(dev)) 3852 return -EINVAL; 3853 3854 /* 3855 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3856 * AtomicOp requesters. For now, we only support endpoints as 3857 * requesters and root ports as completers. No endpoints as 3858 * completers, and no peer-to-peer. 3859 */ 3860 3861 switch (pci_pcie_type(dev)) { 3862 case PCI_EXP_TYPE_ENDPOINT: 3863 case PCI_EXP_TYPE_LEG_END: 3864 case PCI_EXP_TYPE_RC_END: 3865 break; 3866 default: 3867 return -EINVAL; 3868 } 3869 3870 while (bus->parent) { 3871 bridge = bus->self; 3872 3873 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3874 3875 switch (pci_pcie_type(bridge)) { 3876 /* Ensure switch ports support AtomicOp routing */ 3877 case PCI_EXP_TYPE_UPSTREAM: 3878 case PCI_EXP_TYPE_DOWNSTREAM: 3879 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3880 return -EINVAL; 3881 break; 3882 3883 /* Ensure root port supports all the sizes we care about */ 3884 case PCI_EXP_TYPE_ROOT_PORT: 3885 if ((cap & cap_mask) != cap_mask) 3886 return -EINVAL; 3887 break; 3888 } 3889 3890 /* Ensure upstream ports don't block AtomicOps on egress */ 3891 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3892 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3893 &ctl2); 3894 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3895 return -EINVAL; 3896 } 3897 3898 bus = bus->parent; 3899 } 3900 3901 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3902 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3903 return 0; 3904 } 3905 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3906 3907 /** 3908 * pci_release_region - Release a PCI bar 3909 * @pdev: PCI device whose resources were previously reserved by 3910 * pci_request_region() 3911 * @bar: BAR to release 3912 * 3913 * Releases the PCI I/O and memory resources previously reserved by a 3914 * successful call to pci_request_region(). Call this function only 3915 * after all use of the PCI regions has ceased. 3916 */ 3917 void pci_release_region(struct pci_dev *pdev, int bar) 3918 { 3919 /* 3920 * This is done for backwards compatibility, because the old PCI devres 3921 * API had a mode in which the function became managed if it had been 3922 * enabled with pcim_enable_device() instead of pci_enable_device(). 3923 */ 3924 if (pci_is_managed(pdev)) { 3925 pcim_release_region(pdev, bar); 3926 return; 3927 } 3928 3929 if (pci_resource_len(pdev, bar) == 0) 3930 return; 3931 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3932 release_region(pci_resource_start(pdev, bar), 3933 pci_resource_len(pdev, bar)); 3934 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3935 release_mem_region(pci_resource_start(pdev, bar), 3936 pci_resource_len(pdev, bar)); 3937 } 3938 EXPORT_SYMBOL(pci_release_region); 3939 3940 /** 3941 * __pci_request_region - Reserved PCI I/O and memory resource 3942 * @pdev: PCI device whose resources are to be reserved 3943 * @bar: BAR to be reserved 3944 * @res_name: Name to be associated with resource. 3945 * @exclusive: whether the region access is exclusive or not 3946 * 3947 * Returns: 0 on success, negative error code on failure. 3948 * 3949 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3950 * being reserved by owner @res_name. Do not access any 3951 * address inside the PCI regions unless this call returns 3952 * successfully. 3953 * 3954 * If @exclusive is set, then the region is marked so that userspace 3955 * is explicitly not allowed to map the resource via /dev/mem or 3956 * sysfs MMIO access. 3957 * 3958 * Returns 0 on success, or %EBUSY on error. A warning 3959 * message is also printed on failure. 3960 */ 3961 static int __pci_request_region(struct pci_dev *pdev, int bar, 3962 const char *res_name, int exclusive) 3963 { 3964 if (pci_is_managed(pdev)) { 3965 if (exclusive == IORESOURCE_EXCLUSIVE) 3966 return pcim_request_region_exclusive(pdev, bar, res_name); 3967 3968 return pcim_request_region(pdev, bar, res_name); 3969 } 3970 3971 if (pci_resource_len(pdev, bar) == 0) 3972 return 0; 3973 3974 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3975 if (!request_region(pci_resource_start(pdev, bar), 3976 pci_resource_len(pdev, bar), res_name)) 3977 goto err_out; 3978 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3979 if (!__request_mem_region(pci_resource_start(pdev, bar), 3980 pci_resource_len(pdev, bar), res_name, 3981 exclusive)) 3982 goto err_out; 3983 } 3984 3985 return 0; 3986 3987 err_out: 3988 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3989 &pdev->resource[bar]); 3990 return -EBUSY; 3991 } 3992 3993 /** 3994 * pci_request_region - Reserve PCI I/O and memory resource 3995 * @pdev: PCI device whose resources are to be reserved 3996 * @bar: BAR to be reserved 3997 * @res_name: Name to be associated with resource 3998 * 3999 * Returns: 0 on success, negative error code on failure. 4000 * 4001 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4002 * being reserved by owner @res_name. Do not access any 4003 * address inside the PCI regions unless this call returns 4004 * successfully. 4005 * 4006 * Returns 0 on success, or %EBUSY on error. A warning 4007 * message is also printed on failure. 4008 * 4009 * NOTE: 4010 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4011 * when pcim_enable_device() has been called in advance. This hybrid feature is 4012 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4013 */ 4014 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4015 { 4016 return __pci_request_region(pdev, bar, res_name, 0); 4017 } 4018 EXPORT_SYMBOL(pci_request_region); 4019 4020 /** 4021 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4022 * @pdev: PCI device whose resources were previously reserved 4023 * @bars: Bitmask of BARs to be released 4024 * 4025 * Release selected PCI I/O and memory resources previously reserved. 4026 * Call this function only after all use of the PCI regions has ceased. 4027 */ 4028 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4029 { 4030 int i; 4031 4032 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4033 if (bars & (1 << i)) 4034 pci_release_region(pdev, i); 4035 } 4036 EXPORT_SYMBOL(pci_release_selected_regions); 4037 4038 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4039 const char *res_name, int excl) 4040 { 4041 int i; 4042 4043 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4044 if (bars & (1 << i)) 4045 if (__pci_request_region(pdev, i, res_name, excl)) 4046 goto err_out; 4047 return 0; 4048 4049 err_out: 4050 while (--i >= 0) 4051 if (bars & (1 << i)) 4052 pci_release_region(pdev, i); 4053 4054 return -EBUSY; 4055 } 4056 4057 4058 /** 4059 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4060 * @pdev: PCI device whose resources are to be reserved 4061 * @bars: Bitmask of BARs to be requested 4062 * @res_name: Name to be associated with resource 4063 * 4064 * Returns: 0 on success, negative error code on failure. 4065 * 4066 * NOTE: 4067 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4068 * when pcim_enable_device() has been called in advance. This hybrid feature is 4069 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4070 */ 4071 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4072 const char *res_name) 4073 { 4074 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4075 } 4076 EXPORT_SYMBOL(pci_request_selected_regions); 4077 4078 /** 4079 * pci_request_selected_regions_exclusive - Request regions exclusively 4080 * @pdev: PCI device to request regions from 4081 * @bars: bit mask of BARs to request 4082 * @res_name: name to be associated with the requests 4083 * 4084 * Returns: 0 on success, negative error code on failure. 4085 * 4086 * NOTE: 4087 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4088 * when pcim_enable_device() has been called in advance. This hybrid feature is 4089 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4090 */ 4091 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4092 const char *res_name) 4093 { 4094 return __pci_request_selected_regions(pdev, bars, res_name, 4095 IORESOURCE_EXCLUSIVE); 4096 } 4097 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4098 4099 /** 4100 * pci_release_regions - Release reserved PCI I/O and memory resources 4101 * @pdev: PCI device whose resources were previously reserved by 4102 * pci_request_regions() 4103 * 4104 * Releases all PCI I/O and memory resources previously reserved by a 4105 * successful call to pci_request_regions(). Call this function only 4106 * after all use of the PCI regions has ceased. 4107 */ 4108 void pci_release_regions(struct pci_dev *pdev) 4109 { 4110 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4111 } 4112 EXPORT_SYMBOL(pci_release_regions); 4113 4114 /** 4115 * pci_request_regions - Reserve PCI I/O and memory resources 4116 * @pdev: PCI device whose resources are to be reserved 4117 * @res_name: Name to be associated with resource. 4118 * 4119 * Mark all PCI regions associated with PCI device @pdev as 4120 * being reserved by owner @res_name. Do not access any 4121 * address inside the PCI regions unless this call returns 4122 * successfully. 4123 * 4124 * Returns 0 on success, or %EBUSY on error. A warning 4125 * message is also printed on failure. 4126 * 4127 * NOTE: 4128 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4129 * when pcim_enable_device() has been called in advance. This hybrid feature is 4130 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4131 */ 4132 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4133 { 4134 return pci_request_selected_regions(pdev, 4135 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4136 } 4137 EXPORT_SYMBOL(pci_request_regions); 4138 4139 /** 4140 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4141 * @pdev: PCI device whose resources are to be reserved 4142 * @res_name: Name to be associated with resource. 4143 * 4144 * Returns: 0 on success, negative error code on failure. 4145 * 4146 * Mark all PCI regions associated with PCI device @pdev as being reserved 4147 * by owner @res_name. Do not access any address inside the PCI regions 4148 * unless this call returns successfully. 4149 * 4150 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4151 * and the sysfs MMIO access will not be allowed. 4152 * 4153 * Returns 0 on success, or %EBUSY on error. A warning message is also 4154 * printed on failure. 4155 * 4156 * NOTE: 4157 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4158 * when pcim_enable_device() has been called in advance. This hybrid feature is 4159 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4160 */ 4161 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4162 { 4163 return pci_request_selected_regions_exclusive(pdev, 4164 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4165 } 4166 EXPORT_SYMBOL(pci_request_regions_exclusive); 4167 4168 /* 4169 * Record the PCI IO range (expressed as CPU physical address + size). 4170 * Return a negative value if an error has occurred, zero otherwise 4171 */ 4172 int pci_register_io_range(const struct fwnode_handle *fwnode, phys_addr_t addr, 4173 resource_size_t size) 4174 { 4175 int ret = 0; 4176 #ifdef PCI_IOBASE 4177 struct logic_pio_hwaddr *range; 4178 4179 if (!size || addr + size < addr) 4180 return -EINVAL; 4181 4182 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4183 if (!range) 4184 return -ENOMEM; 4185 4186 range->fwnode = fwnode; 4187 range->size = size; 4188 range->hw_start = addr; 4189 range->flags = LOGIC_PIO_CPU_MMIO; 4190 4191 ret = logic_pio_register_range(range); 4192 if (ret) 4193 kfree(range); 4194 4195 /* Ignore duplicates due to deferred probing */ 4196 if (ret == -EEXIST) 4197 ret = 0; 4198 #endif 4199 4200 return ret; 4201 } 4202 4203 phys_addr_t pci_pio_to_address(unsigned long pio) 4204 { 4205 #ifdef PCI_IOBASE 4206 if (pio < MMIO_UPPER_LIMIT) 4207 return logic_pio_to_hwaddr(pio); 4208 #endif 4209 4210 return (phys_addr_t) OF_BAD_ADDR; 4211 } 4212 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4213 4214 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4215 { 4216 #ifdef PCI_IOBASE 4217 return logic_pio_trans_cpuaddr(address); 4218 #else 4219 if (address > IO_SPACE_LIMIT) 4220 return (unsigned long)-1; 4221 4222 return (unsigned long) address; 4223 #endif 4224 } 4225 4226 /** 4227 * pci_remap_iospace - Remap the memory mapped I/O space 4228 * @res: Resource describing the I/O space 4229 * @phys_addr: physical address of range to be mapped 4230 * 4231 * Remap the memory mapped I/O space described by the @res and the CPU 4232 * physical address @phys_addr into virtual address space. Only 4233 * architectures that have memory mapped IO functions defined (and the 4234 * PCI_IOBASE value defined) should call this function. 4235 */ 4236 #ifndef pci_remap_iospace 4237 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4238 { 4239 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4240 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4241 4242 if (!(res->flags & IORESOURCE_IO)) 4243 return -EINVAL; 4244 4245 if (res->end > IO_SPACE_LIMIT) 4246 return -EINVAL; 4247 4248 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4249 pgprot_device(PAGE_KERNEL)); 4250 #else 4251 /* 4252 * This architecture does not have memory mapped I/O space, 4253 * so this function should never be called 4254 */ 4255 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4256 return -ENODEV; 4257 #endif 4258 } 4259 EXPORT_SYMBOL(pci_remap_iospace); 4260 #endif 4261 4262 /** 4263 * pci_unmap_iospace - Unmap the memory mapped I/O space 4264 * @res: resource to be unmapped 4265 * 4266 * Unmap the CPU virtual address @res from virtual address space. Only 4267 * architectures that have memory mapped IO functions defined (and the 4268 * PCI_IOBASE value defined) should call this function. 4269 */ 4270 void pci_unmap_iospace(struct resource *res) 4271 { 4272 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4273 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4274 4275 vunmap_range(vaddr, vaddr + resource_size(res)); 4276 #endif 4277 } 4278 EXPORT_SYMBOL(pci_unmap_iospace); 4279 4280 static void __pci_set_master(struct pci_dev *dev, bool enable) 4281 { 4282 u16 old_cmd, cmd; 4283 4284 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4285 if (enable) 4286 cmd = old_cmd | PCI_COMMAND_MASTER; 4287 else 4288 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4289 if (cmd != old_cmd) { 4290 pci_dbg(dev, "%s bus mastering\n", 4291 enable ? "enabling" : "disabling"); 4292 pci_write_config_word(dev, PCI_COMMAND, cmd); 4293 } 4294 dev->is_busmaster = enable; 4295 } 4296 4297 /** 4298 * pcibios_setup - process "pci=" kernel boot arguments 4299 * @str: string used to pass in "pci=" kernel boot arguments 4300 * 4301 * Process kernel boot arguments. This is the default implementation. 4302 * Architecture specific implementations can override this as necessary. 4303 */ 4304 char * __weak __init pcibios_setup(char *str) 4305 { 4306 return str; 4307 } 4308 4309 /** 4310 * pcibios_set_master - enable PCI bus-mastering for device dev 4311 * @dev: the PCI device to enable 4312 * 4313 * Enables PCI bus-mastering for the device. This is the default 4314 * implementation. Architecture specific implementations can override 4315 * this if necessary. 4316 */ 4317 void __weak pcibios_set_master(struct pci_dev *dev) 4318 { 4319 u8 lat; 4320 4321 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4322 if (pci_is_pcie(dev)) 4323 return; 4324 4325 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4326 if (lat < 16) 4327 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4328 else if (lat > pcibios_max_latency) 4329 lat = pcibios_max_latency; 4330 else 4331 return; 4332 4333 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4334 } 4335 4336 /** 4337 * pci_set_master - enables bus-mastering for device dev 4338 * @dev: the PCI device to enable 4339 * 4340 * Enables bus-mastering on the device and calls pcibios_set_master() 4341 * to do the needed arch specific settings. 4342 */ 4343 void pci_set_master(struct pci_dev *dev) 4344 { 4345 __pci_set_master(dev, true); 4346 pcibios_set_master(dev); 4347 } 4348 EXPORT_SYMBOL(pci_set_master); 4349 4350 /** 4351 * pci_clear_master - disables bus-mastering for device dev 4352 * @dev: the PCI device to disable 4353 */ 4354 void pci_clear_master(struct pci_dev *dev) 4355 { 4356 __pci_set_master(dev, false); 4357 } 4358 EXPORT_SYMBOL(pci_clear_master); 4359 4360 /** 4361 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4362 * @dev: the PCI device for which MWI is to be enabled 4363 * 4364 * Helper function for pci_set_mwi. 4365 * Originally copied from drivers/net/acenic.c. 4366 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4367 * 4368 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4369 */ 4370 int pci_set_cacheline_size(struct pci_dev *dev) 4371 { 4372 u8 cacheline_size; 4373 4374 if (!pci_cache_line_size) 4375 return -EINVAL; 4376 4377 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4378 equal to or multiple of the right value. */ 4379 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4380 if (cacheline_size >= pci_cache_line_size && 4381 (cacheline_size % pci_cache_line_size) == 0) 4382 return 0; 4383 4384 /* Write the correct value. */ 4385 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4386 /* Read it back. */ 4387 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4388 if (cacheline_size == pci_cache_line_size) 4389 return 0; 4390 4391 pci_dbg(dev, "cache line size of %d is not supported\n", 4392 pci_cache_line_size << 2); 4393 4394 return -EINVAL; 4395 } 4396 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4397 4398 /** 4399 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4400 * @dev: the PCI device for which MWI is enabled 4401 * 4402 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4403 * 4404 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4405 */ 4406 int pci_set_mwi(struct pci_dev *dev) 4407 { 4408 #ifdef PCI_DISABLE_MWI 4409 return 0; 4410 #else 4411 int rc; 4412 u16 cmd; 4413 4414 rc = pci_set_cacheline_size(dev); 4415 if (rc) 4416 return rc; 4417 4418 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4419 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4420 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4421 cmd |= PCI_COMMAND_INVALIDATE; 4422 pci_write_config_word(dev, PCI_COMMAND, cmd); 4423 } 4424 return 0; 4425 #endif 4426 } 4427 EXPORT_SYMBOL(pci_set_mwi); 4428 4429 /** 4430 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4431 * @dev: the PCI device for which MWI is enabled 4432 * 4433 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4434 * Callers are not required to check the return value. 4435 * 4436 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4437 */ 4438 int pci_try_set_mwi(struct pci_dev *dev) 4439 { 4440 #ifdef PCI_DISABLE_MWI 4441 return 0; 4442 #else 4443 return pci_set_mwi(dev); 4444 #endif 4445 } 4446 EXPORT_SYMBOL(pci_try_set_mwi); 4447 4448 /** 4449 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4450 * @dev: the PCI device to disable 4451 * 4452 * Disables PCI Memory-Write-Invalidate transaction on the device 4453 */ 4454 void pci_clear_mwi(struct pci_dev *dev) 4455 { 4456 #ifndef PCI_DISABLE_MWI 4457 u16 cmd; 4458 4459 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4460 if (cmd & PCI_COMMAND_INVALIDATE) { 4461 cmd &= ~PCI_COMMAND_INVALIDATE; 4462 pci_write_config_word(dev, PCI_COMMAND, cmd); 4463 } 4464 #endif 4465 } 4466 EXPORT_SYMBOL(pci_clear_mwi); 4467 4468 /** 4469 * pci_disable_parity - disable parity checking for device 4470 * @dev: the PCI device to operate on 4471 * 4472 * Disable parity checking for device @dev 4473 */ 4474 void pci_disable_parity(struct pci_dev *dev) 4475 { 4476 u16 cmd; 4477 4478 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4479 if (cmd & PCI_COMMAND_PARITY) { 4480 cmd &= ~PCI_COMMAND_PARITY; 4481 pci_write_config_word(dev, PCI_COMMAND, cmd); 4482 } 4483 } 4484 4485 /** 4486 * pci_intx - enables/disables PCI INTx for device dev 4487 * @pdev: the PCI device to operate on 4488 * @enable: boolean: whether to enable or disable PCI INTx 4489 * 4490 * Enables/disables PCI INTx for device @pdev 4491 * 4492 * NOTE: 4493 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4494 * when pcim_enable_device() has been called in advance. This hybrid feature is 4495 * DEPRECATED! If you want managed cleanup, use pcim_intx() instead. 4496 */ 4497 void pci_intx(struct pci_dev *pdev, int enable) 4498 { 4499 u16 pci_command, new; 4500 4501 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4502 4503 if (enable) 4504 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4505 else 4506 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4507 4508 if (new != pci_command) { 4509 /* Preserve the "hybrid" behavior for backwards compatibility */ 4510 if (pci_is_managed(pdev)) { 4511 WARN_ON_ONCE(pcim_intx(pdev, enable) != 0); 4512 return; 4513 } 4514 4515 pci_write_config_word(pdev, PCI_COMMAND, new); 4516 } 4517 } 4518 EXPORT_SYMBOL_GPL(pci_intx); 4519 4520 /** 4521 * pci_wait_for_pending_transaction - wait for pending transaction 4522 * @dev: the PCI device to operate on 4523 * 4524 * Return 0 if transaction is pending 1 otherwise. 4525 */ 4526 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4527 { 4528 if (!pci_is_pcie(dev)) 4529 return 1; 4530 4531 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4532 PCI_EXP_DEVSTA_TRPND); 4533 } 4534 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4535 4536 /** 4537 * pcie_flr - initiate a PCIe function level reset 4538 * @dev: device to reset 4539 * 4540 * Initiate a function level reset unconditionally on @dev without 4541 * checking any flags and DEVCAP 4542 */ 4543 int pcie_flr(struct pci_dev *dev) 4544 { 4545 if (!pci_wait_for_pending_transaction(dev)) 4546 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4547 4548 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4549 4550 if (dev->imm_ready) 4551 return 0; 4552 4553 /* 4554 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4555 * 100ms, but may silently discard requests while the FLR is in 4556 * progress. Wait 100ms before trying to access the device. 4557 */ 4558 msleep(100); 4559 4560 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4561 } 4562 EXPORT_SYMBOL_GPL(pcie_flr); 4563 4564 /** 4565 * pcie_reset_flr - initiate a PCIe function level reset 4566 * @dev: device to reset 4567 * @probe: if true, return 0 if device can be reset this way 4568 * 4569 * Initiate a function level reset on @dev. 4570 */ 4571 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4572 { 4573 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4574 return -ENOTTY; 4575 4576 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4577 return -ENOTTY; 4578 4579 if (probe) 4580 return 0; 4581 4582 return pcie_flr(dev); 4583 } 4584 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4585 4586 static int pci_af_flr(struct pci_dev *dev, bool probe) 4587 { 4588 int pos; 4589 u8 cap; 4590 4591 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4592 if (!pos) 4593 return -ENOTTY; 4594 4595 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4596 return -ENOTTY; 4597 4598 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4599 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4600 return -ENOTTY; 4601 4602 if (probe) 4603 return 0; 4604 4605 /* 4606 * Wait for Transaction Pending bit to clear. A word-aligned test 4607 * is used, so we use the control offset rather than status and shift 4608 * the test bit to match. 4609 */ 4610 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4611 PCI_AF_STATUS_TP << 8)) 4612 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4613 4614 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4615 4616 if (dev->imm_ready) 4617 return 0; 4618 4619 /* 4620 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4621 * updated 27 July 2006; a device must complete an FLR within 4622 * 100ms, but may silently discard requests while the FLR is in 4623 * progress. Wait 100ms before trying to access the device. 4624 */ 4625 msleep(100); 4626 4627 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4628 } 4629 4630 /** 4631 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4632 * @dev: Device to reset. 4633 * @probe: if true, return 0 if the device can be reset this way. 4634 * 4635 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4636 * unset, it will be reinitialized internally when going from PCI_D3hot to 4637 * PCI_D0. If that's the case and the device is not in a low-power state 4638 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4639 * 4640 * NOTE: This causes the caller to sleep for twice the device power transition 4641 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4642 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4643 * Moreover, only devices in D0 can be reset by this function. 4644 */ 4645 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4646 { 4647 u16 csr; 4648 4649 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4650 return -ENOTTY; 4651 4652 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4653 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4654 return -ENOTTY; 4655 4656 if (probe) 4657 return 0; 4658 4659 if (dev->current_state != PCI_D0) 4660 return -EINVAL; 4661 4662 csr &= ~PCI_PM_CTRL_STATE_MASK; 4663 csr |= PCI_D3hot; 4664 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4665 pci_dev_d3_sleep(dev); 4666 4667 csr &= ~PCI_PM_CTRL_STATE_MASK; 4668 csr |= PCI_D0; 4669 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4670 pci_dev_d3_sleep(dev); 4671 4672 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4673 } 4674 4675 /** 4676 * pcie_wait_for_link_status - Wait for link status change 4677 * @pdev: Device whose link to wait for. 4678 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4679 * @active: Waiting for active or inactive? 4680 * 4681 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4682 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4683 */ 4684 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4685 bool use_lt, bool active) 4686 { 4687 u16 lnksta_mask, lnksta_match; 4688 unsigned long end_jiffies; 4689 u16 lnksta; 4690 4691 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4692 lnksta_match = active ? lnksta_mask : 0; 4693 4694 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4695 do { 4696 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4697 if ((lnksta & lnksta_mask) == lnksta_match) 4698 return 0; 4699 msleep(1); 4700 } while (time_before(jiffies, end_jiffies)); 4701 4702 return -ETIMEDOUT; 4703 } 4704 4705 /** 4706 * pcie_retrain_link - Request a link retrain and wait for it to complete 4707 * @pdev: Device whose link to retrain. 4708 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 4709 * 4710 * Retrain completion status is retrieved from the Link Status Register 4711 * according to @use_lt. It is not verified whether the use of the DLLLA 4712 * bit is valid. 4713 * 4714 * Return 0 if successful, or -ETIMEDOUT if training has not completed 4715 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4716 */ 4717 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 4718 { 4719 int rc; 4720 4721 /* 4722 * Ensure the updated LNKCTL parameters are used during link 4723 * training by checking that there is no ongoing link training that 4724 * may have started before link parameters were changed, so as to 4725 * avoid LTSSM race as recommended in Implementation Note at the end 4726 * of PCIe r6.1 sec 7.5.3.7. 4727 */ 4728 rc = pcie_wait_for_link_status(pdev, true, false); 4729 if (rc) 4730 return rc; 4731 4732 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4733 if (pdev->clear_retrain_link) { 4734 /* 4735 * Due to an erratum in some devices the Retrain Link bit 4736 * needs to be cleared again manually to allow the link 4737 * training to succeed. 4738 */ 4739 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4740 } 4741 4742 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4743 4744 /* 4745 * Clear LBMS after a manual retrain so that the bit can be used 4746 * to track link speed or width changes made by hardware itself 4747 * in attempt to correct unreliable link operation. 4748 */ 4749 pcie_reset_lbms_count(pdev); 4750 return rc; 4751 } 4752 4753 /** 4754 * pcie_wait_for_link_delay - Wait until link is active or inactive 4755 * @pdev: Bridge device 4756 * @active: waiting for active or inactive? 4757 * @delay: Delay to wait after link has become active (in ms) 4758 * 4759 * Use this to wait till link becomes active or inactive. 4760 */ 4761 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4762 int delay) 4763 { 4764 int rc; 4765 4766 /* 4767 * Some controllers might not implement link active reporting. In this 4768 * case, we wait for 1000 ms + any delay requested by the caller. 4769 */ 4770 if (!pdev->link_active_reporting) { 4771 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 4772 return true; 4773 } 4774 4775 /* 4776 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4777 * after which we should expect an link active if the reset was 4778 * successful. If so, software must wait a minimum 100ms before sending 4779 * configuration requests to devices downstream this port. 4780 * 4781 * If the link fails to activate, either the device was physically 4782 * removed or the link is permanently failed. 4783 */ 4784 if (active) 4785 msleep(20); 4786 rc = pcie_wait_for_link_status(pdev, false, active); 4787 if (active) { 4788 if (rc) 4789 rc = pcie_failed_link_retrain(pdev); 4790 if (rc) 4791 return false; 4792 4793 msleep(delay); 4794 return true; 4795 } 4796 4797 if (rc) 4798 return false; 4799 4800 return true; 4801 } 4802 4803 /** 4804 * pcie_wait_for_link - Wait until link is active or inactive 4805 * @pdev: Bridge device 4806 * @active: waiting for active or inactive? 4807 * 4808 * Use this to wait till link becomes active or inactive. 4809 */ 4810 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4811 { 4812 return pcie_wait_for_link_delay(pdev, active, 100); 4813 } 4814 4815 /* 4816 * Find maximum D3cold delay required by all the devices on the bus. The 4817 * spec says 100 ms, but firmware can lower it and we allow drivers to 4818 * increase it as well. 4819 * 4820 * Called with @pci_bus_sem locked for reading. 4821 */ 4822 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4823 { 4824 const struct pci_dev *pdev; 4825 int min_delay = 100; 4826 int max_delay = 0; 4827 4828 list_for_each_entry(pdev, &bus->devices, bus_list) { 4829 if (pdev->d3cold_delay < min_delay) 4830 min_delay = pdev->d3cold_delay; 4831 if (pdev->d3cold_delay > max_delay) 4832 max_delay = pdev->d3cold_delay; 4833 } 4834 4835 return max(min_delay, max_delay); 4836 } 4837 4838 /** 4839 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4840 * @dev: PCI bridge 4841 * @reset_type: reset type in human-readable form 4842 * 4843 * Handle necessary delays before access to the devices on the secondary 4844 * side of the bridge are permitted after D3cold to D0 transition 4845 * or Conventional Reset. 4846 * 4847 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4848 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4849 * 4.3.2. 4850 * 4851 * Return 0 on success or -ENOTTY if the first device on the secondary bus 4852 * failed to become accessible. 4853 */ 4854 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 4855 { 4856 struct pci_dev *child __free(pci_dev_put) = NULL; 4857 int delay; 4858 4859 if (pci_dev_is_disconnected(dev)) 4860 return 0; 4861 4862 if (!pci_is_bridge(dev)) 4863 return 0; 4864 4865 down_read(&pci_bus_sem); 4866 4867 /* 4868 * We only deal with devices that are present currently on the bus. 4869 * For any hot-added devices the access delay is handled in pciehp 4870 * board_added(). In case of ACPI hotplug the firmware is expected 4871 * to configure the devices before OS is notified. 4872 */ 4873 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4874 up_read(&pci_bus_sem); 4875 return 0; 4876 } 4877 4878 /* Take d3cold_delay requirements into account */ 4879 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4880 if (!delay) { 4881 up_read(&pci_bus_sem); 4882 return 0; 4883 } 4884 4885 child = pci_dev_get(list_first_entry(&dev->subordinate->devices, 4886 struct pci_dev, bus_list)); 4887 up_read(&pci_bus_sem); 4888 4889 /* 4890 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4891 * accessing the device after reset (that is 1000 ms + 100 ms). 4892 */ 4893 if (!pci_is_pcie(dev)) { 4894 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4895 msleep(1000 + delay); 4896 return 0; 4897 } 4898 4899 /* 4900 * For PCIe downstream and root ports that do not support speeds 4901 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4902 * speeds (gen3) we need to wait first for the data link layer to 4903 * become active. 4904 * 4905 * However, 100 ms is the minimum and the PCIe spec says the 4906 * software must allow at least 1s before it can determine that the 4907 * device that did not respond is a broken device. Also device can 4908 * take longer than that to respond if it indicates so through Request 4909 * Retry Status completions. 4910 * 4911 * Therefore we wait for 100 ms and check for the device presence 4912 * until the timeout expires. 4913 */ 4914 if (!pcie_downstream_port(dev)) 4915 return 0; 4916 4917 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4918 u16 status; 4919 4920 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4921 msleep(delay); 4922 4923 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 4924 return 0; 4925 4926 /* 4927 * If the port supports active link reporting we now check 4928 * whether the link is active and if not bail out early with 4929 * the assumption that the device is not present anymore. 4930 */ 4931 if (!dev->link_active_reporting) 4932 return -ENOTTY; 4933 4934 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 4935 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 4936 return -ENOTTY; 4937 4938 return pci_dev_wait(child, reset_type, 4939 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 4940 } 4941 4942 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4943 delay); 4944 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4945 /* Did not train, no need to wait any further */ 4946 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 4947 return -ENOTTY; 4948 } 4949 4950 return pci_dev_wait(child, reset_type, 4951 PCIE_RESET_READY_POLL_MS - delay); 4952 } 4953 4954 void pci_reset_secondary_bus(struct pci_dev *dev) 4955 { 4956 u16 ctrl; 4957 4958 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4959 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4960 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4961 4962 /* 4963 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4964 * this to 2ms to ensure that we meet the minimum requirement. 4965 */ 4966 msleep(2); 4967 4968 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4969 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4970 } 4971 4972 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4973 { 4974 pci_reset_secondary_bus(dev); 4975 } 4976 4977 /** 4978 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4979 * @dev: Bridge device 4980 * 4981 * Use the bridge control register to assert reset on the secondary bus. 4982 * Devices on the secondary bus are left in power-on state. 4983 */ 4984 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4985 { 4986 if (!dev->block_cfg_access) 4987 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n", 4988 __builtin_return_address(0)); 4989 pcibios_reset_secondary_bus(dev); 4990 4991 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 4992 } 4993 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4994 4995 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 4996 { 4997 struct pci_dev *pdev; 4998 4999 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5000 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5001 return -ENOTTY; 5002 5003 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5004 if (pdev != dev) 5005 return -ENOTTY; 5006 5007 if (probe) 5008 return 0; 5009 5010 return pci_bridge_secondary_bus_reset(dev->bus->self); 5011 } 5012 5013 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5014 { 5015 int rc = -ENOTTY; 5016 5017 if (!hotplug || !try_module_get(hotplug->owner)) 5018 return rc; 5019 5020 if (hotplug->ops->reset_slot) 5021 rc = hotplug->ops->reset_slot(hotplug, probe); 5022 5023 module_put(hotplug->owner); 5024 5025 return rc; 5026 } 5027 5028 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5029 { 5030 if (dev->multifunction || dev->subordinate || !dev->slot || 5031 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5032 return -ENOTTY; 5033 5034 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5035 } 5036 5037 static u16 cxl_port_dvsec(struct pci_dev *dev) 5038 { 5039 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL, 5040 PCI_DVSEC_CXL_PORT); 5041 } 5042 5043 static bool cxl_sbr_masked(struct pci_dev *dev) 5044 { 5045 u16 dvsec, reg; 5046 int rc; 5047 5048 dvsec = cxl_port_dvsec(dev); 5049 if (!dvsec) 5050 return false; 5051 5052 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®); 5053 if (rc || PCI_POSSIBLE_ERROR(reg)) 5054 return false; 5055 5056 /* 5057 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR 5058 * bit in Bridge Control has no effect. When 1, the Port generates 5059 * hot reset when the SBR bit is set to 1. 5060 */ 5061 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) 5062 return false; 5063 5064 return true; 5065 } 5066 5067 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5068 { 5069 struct pci_dev *bridge = pci_upstream_bridge(dev); 5070 int rc; 5071 5072 /* 5073 * If "dev" is below a CXL port that has SBR control masked, SBR 5074 * won't do anything, so return error. 5075 */ 5076 if (bridge && cxl_sbr_masked(bridge)) { 5077 if (probe) 5078 return 0; 5079 5080 return -ENOTTY; 5081 } 5082 5083 rc = pci_dev_reset_slot_function(dev, probe); 5084 if (rc != -ENOTTY) 5085 return rc; 5086 return pci_parent_bus_reset(dev, probe); 5087 } 5088 5089 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe) 5090 { 5091 struct pci_dev *bridge; 5092 u16 dvsec, reg, val; 5093 int rc; 5094 5095 bridge = pci_upstream_bridge(dev); 5096 if (!bridge) 5097 return -ENOTTY; 5098 5099 dvsec = cxl_port_dvsec(bridge); 5100 if (!dvsec) 5101 return -ENOTTY; 5102 5103 if (probe) 5104 return 0; 5105 5106 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®); 5107 if (rc) 5108 return -ENOTTY; 5109 5110 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) { 5111 val = reg; 5112 } else { 5113 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR; 5114 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, 5115 val); 5116 } 5117 5118 rc = pci_reset_bus_function(dev, probe); 5119 5120 if (reg != val) 5121 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, 5122 reg); 5123 5124 return rc; 5125 } 5126 5127 void pci_dev_lock(struct pci_dev *dev) 5128 { 5129 /* block PM suspend, driver probe, etc. */ 5130 device_lock(&dev->dev); 5131 pci_cfg_access_lock(dev); 5132 } 5133 EXPORT_SYMBOL_GPL(pci_dev_lock); 5134 5135 /* Return 1 on successful lock, 0 on contention */ 5136 int pci_dev_trylock(struct pci_dev *dev) 5137 { 5138 if (device_trylock(&dev->dev)) { 5139 if (pci_cfg_access_trylock(dev)) 5140 return 1; 5141 device_unlock(&dev->dev); 5142 } 5143 5144 return 0; 5145 } 5146 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5147 5148 void pci_dev_unlock(struct pci_dev *dev) 5149 { 5150 pci_cfg_access_unlock(dev); 5151 device_unlock(&dev->dev); 5152 } 5153 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5154 5155 static void pci_dev_save_and_disable(struct pci_dev *dev) 5156 { 5157 const struct pci_error_handlers *err_handler = 5158 dev->driver ? dev->driver->err_handler : NULL; 5159 5160 /* 5161 * dev->driver->err_handler->reset_prepare() is protected against 5162 * races with ->remove() by the device lock, which must be held by 5163 * the caller. 5164 */ 5165 if (err_handler && err_handler->reset_prepare) 5166 err_handler->reset_prepare(dev); 5167 else if (dev->driver) 5168 pci_warn(dev, "resetting"); 5169 5170 /* 5171 * Wake-up device prior to save. PM registers default to D0 after 5172 * reset and a simple register restore doesn't reliably return 5173 * to a non-D0 state anyway. 5174 */ 5175 pci_set_power_state(dev, PCI_D0); 5176 5177 pci_save_state(dev); 5178 /* 5179 * Disable the device by clearing the Command register, except for 5180 * INTx-disable which is set. This not only disables MMIO and I/O port 5181 * BARs, but also prevents the device from being Bus Master, preventing 5182 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5183 * compliant devices, INTx-disable prevents legacy interrupts. 5184 */ 5185 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5186 } 5187 5188 static void pci_dev_restore(struct pci_dev *dev) 5189 { 5190 const struct pci_error_handlers *err_handler = 5191 dev->driver ? dev->driver->err_handler : NULL; 5192 5193 pci_restore_state(dev); 5194 5195 /* 5196 * dev->driver->err_handler->reset_done() is protected against 5197 * races with ->remove() by the device lock, which must be held by 5198 * the caller. 5199 */ 5200 if (err_handler && err_handler->reset_done) 5201 err_handler->reset_done(dev); 5202 else if (dev->driver) 5203 pci_warn(dev, "reset done"); 5204 } 5205 5206 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5207 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5208 { }, 5209 { pci_dev_specific_reset, .name = "device_specific" }, 5210 { pci_dev_acpi_reset, .name = "acpi" }, 5211 { pcie_reset_flr, .name = "flr" }, 5212 { pci_af_flr, .name = "af_flr" }, 5213 { pci_pm_reset, .name = "pm" }, 5214 { pci_reset_bus_function, .name = "bus" }, 5215 { cxl_reset_bus_function, .name = "cxl_bus" }, 5216 }; 5217 5218 static ssize_t reset_method_show(struct device *dev, 5219 struct device_attribute *attr, char *buf) 5220 { 5221 struct pci_dev *pdev = to_pci_dev(dev); 5222 ssize_t len = 0; 5223 int i, m; 5224 5225 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5226 m = pdev->reset_methods[i]; 5227 if (!m) 5228 break; 5229 5230 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5231 pci_reset_fn_methods[m].name); 5232 } 5233 5234 if (len) 5235 len += sysfs_emit_at(buf, len, "\n"); 5236 5237 return len; 5238 } 5239 5240 static int reset_method_lookup(const char *name) 5241 { 5242 int m; 5243 5244 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5245 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5246 return m; 5247 } 5248 5249 return 0; /* not found */ 5250 } 5251 5252 static ssize_t reset_method_store(struct device *dev, 5253 struct device_attribute *attr, 5254 const char *buf, size_t count) 5255 { 5256 struct pci_dev *pdev = to_pci_dev(dev); 5257 char *options, *tmp_options, *name; 5258 int m, n; 5259 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5260 5261 if (sysfs_streq(buf, "")) { 5262 pdev->reset_methods[0] = 0; 5263 pci_warn(pdev, "All device reset methods disabled by user"); 5264 return count; 5265 } 5266 5267 if (sysfs_streq(buf, "default")) { 5268 pci_init_reset_methods(pdev); 5269 return count; 5270 } 5271 5272 options = kstrndup(buf, count, GFP_KERNEL); 5273 if (!options) 5274 return -ENOMEM; 5275 5276 n = 0; 5277 tmp_options = options; 5278 while ((name = strsep(&tmp_options, " ")) != NULL) { 5279 if (sysfs_streq(name, "")) 5280 continue; 5281 5282 name = strim(name); 5283 5284 m = reset_method_lookup(name); 5285 if (!m) { 5286 pci_err(pdev, "Invalid reset method '%s'", name); 5287 goto error; 5288 } 5289 5290 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5291 pci_err(pdev, "Unsupported reset method '%s'", name); 5292 goto error; 5293 } 5294 5295 if (n == PCI_NUM_RESET_METHODS - 1) { 5296 pci_err(pdev, "Too many reset methods\n"); 5297 goto error; 5298 } 5299 5300 reset_methods[n++] = m; 5301 } 5302 5303 reset_methods[n] = 0; 5304 5305 /* Warn if dev-specific supported but not highest priority */ 5306 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5307 reset_methods[0] != 1) 5308 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5309 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5310 kfree(options); 5311 return count; 5312 5313 error: 5314 /* Leave previous methods unchanged */ 5315 kfree(options); 5316 return -EINVAL; 5317 } 5318 static DEVICE_ATTR_RW(reset_method); 5319 5320 static struct attribute *pci_dev_reset_method_attrs[] = { 5321 &dev_attr_reset_method.attr, 5322 NULL, 5323 }; 5324 5325 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5326 struct attribute *a, int n) 5327 { 5328 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5329 5330 if (!pci_reset_supported(pdev)) 5331 return 0; 5332 5333 return a->mode; 5334 } 5335 5336 const struct attribute_group pci_dev_reset_method_attr_group = { 5337 .attrs = pci_dev_reset_method_attrs, 5338 .is_visible = pci_dev_reset_method_attr_is_visible, 5339 }; 5340 5341 /** 5342 * __pci_reset_function_locked - reset a PCI device function while holding 5343 * the @dev mutex lock. 5344 * @dev: PCI device to reset 5345 * 5346 * Some devices allow an individual function to be reset without affecting 5347 * other functions in the same device. The PCI device must be responsive 5348 * to PCI config space in order to use this function. 5349 * 5350 * The device function is presumed to be unused and the caller is holding 5351 * the device mutex lock when this function is called. 5352 * 5353 * Resetting the device will make the contents of PCI configuration space 5354 * random, so any caller of this must be prepared to reinitialise the 5355 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5356 * etc. 5357 * 5358 * Returns 0 if the device function was successfully reset or negative if the 5359 * device doesn't support resetting a single function. 5360 */ 5361 int __pci_reset_function_locked(struct pci_dev *dev) 5362 { 5363 int i, m, rc; 5364 5365 might_sleep(); 5366 5367 /* 5368 * A reset method returns -ENOTTY if it doesn't support this device and 5369 * we should try the next method. 5370 * 5371 * If it returns 0 (success), we're finished. If it returns any other 5372 * error, we're also finished: this indicates that further reset 5373 * mechanisms might be broken on the device. 5374 */ 5375 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5376 m = dev->reset_methods[i]; 5377 if (!m) 5378 return -ENOTTY; 5379 5380 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5381 if (!rc) 5382 return 0; 5383 if (rc != -ENOTTY) 5384 return rc; 5385 } 5386 5387 return -ENOTTY; 5388 } 5389 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5390 5391 /** 5392 * pci_init_reset_methods - check whether device can be safely reset 5393 * and store supported reset mechanisms. 5394 * @dev: PCI device to check for reset mechanisms 5395 * 5396 * Some devices allow an individual function to be reset without affecting 5397 * other functions in the same device. The PCI device must be in D0-D3hot 5398 * state. 5399 * 5400 * Stores reset mechanisms supported by device in reset_methods byte array 5401 * which is a member of struct pci_dev. 5402 */ 5403 void pci_init_reset_methods(struct pci_dev *dev) 5404 { 5405 int m, i, rc; 5406 5407 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5408 5409 might_sleep(); 5410 5411 i = 0; 5412 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5413 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5414 if (!rc) 5415 dev->reset_methods[i++] = m; 5416 else if (rc != -ENOTTY) 5417 break; 5418 } 5419 5420 dev->reset_methods[i] = 0; 5421 } 5422 5423 /** 5424 * pci_reset_function - quiesce and reset a PCI device function 5425 * @dev: PCI device to reset 5426 * 5427 * Some devices allow an individual function to be reset without affecting 5428 * other functions in the same device. The PCI device must be responsive 5429 * to PCI config space in order to use this function. 5430 * 5431 * This function does not just reset the PCI portion of a device, but 5432 * clears all the state associated with the device. This function differs 5433 * from __pci_reset_function_locked() in that it saves and restores device state 5434 * over the reset and takes the PCI device lock. 5435 * 5436 * Returns 0 if the device function was successfully reset or negative if the 5437 * device doesn't support resetting a single function. 5438 */ 5439 int pci_reset_function(struct pci_dev *dev) 5440 { 5441 struct pci_dev *bridge; 5442 int rc; 5443 5444 if (!pci_reset_supported(dev)) 5445 return -ENOTTY; 5446 5447 /* 5448 * If there's no upstream bridge, no locking is needed since there is 5449 * no upstream bridge configuration to hold consistent. 5450 */ 5451 bridge = pci_upstream_bridge(dev); 5452 if (bridge) 5453 pci_dev_lock(bridge); 5454 5455 pci_dev_lock(dev); 5456 pci_dev_save_and_disable(dev); 5457 5458 rc = __pci_reset_function_locked(dev); 5459 5460 pci_dev_restore(dev); 5461 pci_dev_unlock(dev); 5462 5463 if (bridge) 5464 pci_dev_unlock(bridge); 5465 5466 return rc; 5467 } 5468 EXPORT_SYMBOL_GPL(pci_reset_function); 5469 5470 /** 5471 * pci_reset_function_locked - quiesce and reset a PCI device function 5472 * @dev: PCI device to reset 5473 * 5474 * Some devices allow an individual function to be reset without affecting 5475 * other functions in the same device. The PCI device must be responsive 5476 * to PCI config space in order to use this function. 5477 * 5478 * This function does not just reset the PCI portion of a device, but 5479 * clears all the state associated with the device. This function differs 5480 * from __pci_reset_function_locked() in that it saves and restores device state 5481 * over the reset. It also differs from pci_reset_function() in that it 5482 * requires the PCI device lock to be held. 5483 * 5484 * Returns 0 if the device function was successfully reset or negative if the 5485 * device doesn't support resetting a single function. 5486 */ 5487 int pci_reset_function_locked(struct pci_dev *dev) 5488 { 5489 int rc; 5490 5491 if (!pci_reset_supported(dev)) 5492 return -ENOTTY; 5493 5494 pci_dev_save_and_disable(dev); 5495 5496 rc = __pci_reset_function_locked(dev); 5497 5498 pci_dev_restore(dev); 5499 5500 return rc; 5501 } 5502 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5503 5504 /** 5505 * pci_try_reset_function - quiesce and reset a PCI device function 5506 * @dev: PCI device to reset 5507 * 5508 * Same as above, except return -EAGAIN if unable to lock device. 5509 */ 5510 int pci_try_reset_function(struct pci_dev *dev) 5511 { 5512 int rc; 5513 5514 if (!pci_reset_supported(dev)) 5515 return -ENOTTY; 5516 5517 if (!pci_dev_trylock(dev)) 5518 return -EAGAIN; 5519 5520 pci_dev_save_and_disable(dev); 5521 rc = __pci_reset_function_locked(dev); 5522 pci_dev_restore(dev); 5523 pci_dev_unlock(dev); 5524 5525 return rc; 5526 } 5527 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5528 5529 /* Do any devices on or below this bus prevent a bus reset? */ 5530 static bool pci_bus_resettable(struct pci_bus *bus) 5531 { 5532 struct pci_dev *dev; 5533 5534 5535 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5536 return false; 5537 5538 list_for_each_entry(dev, &bus->devices, bus_list) { 5539 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5540 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5541 return false; 5542 } 5543 5544 return true; 5545 } 5546 5547 /* Lock devices from the top of the tree down */ 5548 static void pci_bus_lock(struct pci_bus *bus) 5549 { 5550 struct pci_dev *dev; 5551 5552 pci_dev_lock(bus->self); 5553 list_for_each_entry(dev, &bus->devices, bus_list) { 5554 if (dev->subordinate) 5555 pci_bus_lock(dev->subordinate); 5556 else 5557 pci_dev_lock(dev); 5558 } 5559 } 5560 5561 /* Unlock devices from the bottom of the tree up */ 5562 static void pci_bus_unlock(struct pci_bus *bus) 5563 { 5564 struct pci_dev *dev; 5565 5566 list_for_each_entry(dev, &bus->devices, bus_list) { 5567 if (dev->subordinate) 5568 pci_bus_unlock(dev->subordinate); 5569 else 5570 pci_dev_unlock(dev); 5571 } 5572 pci_dev_unlock(bus->self); 5573 } 5574 5575 /* Return 1 on successful lock, 0 on contention */ 5576 static int pci_bus_trylock(struct pci_bus *bus) 5577 { 5578 struct pci_dev *dev; 5579 5580 if (!pci_dev_trylock(bus->self)) 5581 return 0; 5582 5583 list_for_each_entry(dev, &bus->devices, bus_list) { 5584 if (dev->subordinate) { 5585 if (!pci_bus_trylock(dev->subordinate)) 5586 goto unlock; 5587 } else if (!pci_dev_trylock(dev)) 5588 goto unlock; 5589 } 5590 return 1; 5591 5592 unlock: 5593 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5594 if (dev->subordinate) 5595 pci_bus_unlock(dev->subordinate); 5596 else 5597 pci_dev_unlock(dev); 5598 } 5599 pci_dev_unlock(bus->self); 5600 return 0; 5601 } 5602 5603 /* Do any devices on or below this slot prevent a bus reset? */ 5604 static bool pci_slot_resettable(struct pci_slot *slot) 5605 { 5606 struct pci_dev *dev; 5607 5608 if (slot->bus->self && 5609 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5610 return false; 5611 5612 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5613 if (!dev->slot || dev->slot != slot) 5614 continue; 5615 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5616 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5617 return false; 5618 } 5619 5620 return true; 5621 } 5622 5623 /* Lock devices from the top of the tree down */ 5624 static void pci_slot_lock(struct pci_slot *slot) 5625 { 5626 struct pci_dev *dev; 5627 5628 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5629 if (!dev->slot || dev->slot != slot) 5630 continue; 5631 if (dev->subordinate) 5632 pci_bus_lock(dev->subordinate); 5633 else 5634 pci_dev_lock(dev); 5635 } 5636 } 5637 5638 /* Unlock devices from the bottom of the tree up */ 5639 static void pci_slot_unlock(struct pci_slot *slot) 5640 { 5641 struct pci_dev *dev; 5642 5643 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5644 if (!dev->slot || dev->slot != slot) 5645 continue; 5646 if (dev->subordinate) 5647 pci_bus_unlock(dev->subordinate); 5648 pci_dev_unlock(dev); 5649 } 5650 } 5651 5652 /* Return 1 on successful lock, 0 on contention */ 5653 static int pci_slot_trylock(struct pci_slot *slot) 5654 { 5655 struct pci_dev *dev; 5656 5657 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5658 if (!dev->slot || dev->slot != slot) 5659 continue; 5660 if (dev->subordinate) { 5661 if (!pci_bus_trylock(dev->subordinate)) { 5662 pci_dev_unlock(dev); 5663 goto unlock; 5664 } 5665 } else if (!pci_dev_trylock(dev)) 5666 goto unlock; 5667 } 5668 return 1; 5669 5670 unlock: 5671 list_for_each_entry_continue_reverse(dev, 5672 &slot->bus->devices, bus_list) { 5673 if (!dev->slot || dev->slot != slot) 5674 continue; 5675 if (dev->subordinate) 5676 pci_bus_unlock(dev->subordinate); 5677 else 5678 pci_dev_unlock(dev); 5679 } 5680 return 0; 5681 } 5682 5683 /* 5684 * Save and disable devices from the top of the tree down while holding 5685 * the @dev mutex lock for the entire tree. 5686 */ 5687 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5688 { 5689 struct pci_dev *dev; 5690 5691 list_for_each_entry(dev, &bus->devices, bus_list) { 5692 pci_dev_save_and_disable(dev); 5693 if (dev->subordinate) 5694 pci_bus_save_and_disable_locked(dev->subordinate); 5695 } 5696 } 5697 5698 /* 5699 * Restore devices from top of the tree down while holding @dev mutex lock 5700 * for the entire tree. Parent bridges need to be restored before we can 5701 * get to subordinate devices. 5702 */ 5703 static void pci_bus_restore_locked(struct pci_bus *bus) 5704 { 5705 struct pci_dev *dev; 5706 5707 list_for_each_entry(dev, &bus->devices, bus_list) { 5708 pci_dev_restore(dev); 5709 if (dev->subordinate) { 5710 pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5711 pci_bus_restore_locked(dev->subordinate); 5712 } 5713 } 5714 } 5715 5716 /* 5717 * Save and disable devices from the top of the tree down while holding 5718 * the @dev mutex lock for the entire tree. 5719 */ 5720 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5721 { 5722 struct pci_dev *dev; 5723 5724 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5725 if (!dev->slot || dev->slot != slot) 5726 continue; 5727 pci_dev_save_and_disable(dev); 5728 if (dev->subordinate) 5729 pci_bus_save_and_disable_locked(dev->subordinate); 5730 } 5731 } 5732 5733 /* 5734 * Restore devices from top of the tree down while holding @dev mutex lock 5735 * for the entire tree. Parent bridges need to be restored before we can 5736 * get to subordinate devices. 5737 */ 5738 static void pci_slot_restore_locked(struct pci_slot *slot) 5739 { 5740 struct pci_dev *dev; 5741 5742 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5743 if (!dev->slot || dev->slot != slot) 5744 continue; 5745 pci_dev_restore(dev); 5746 if (dev->subordinate) { 5747 pci_bridge_wait_for_secondary_bus(dev, "slot reset"); 5748 pci_bus_restore_locked(dev->subordinate); 5749 } 5750 } 5751 } 5752 5753 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5754 { 5755 int rc; 5756 5757 if (!slot || !pci_slot_resettable(slot)) 5758 return -ENOTTY; 5759 5760 if (!probe) 5761 pci_slot_lock(slot); 5762 5763 might_sleep(); 5764 5765 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5766 5767 if (!probe) 5768 pci_slot_unlock(slot); 5769 5770 return rc; 5771 } 5772 5773 /** 5774 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5775 * @slot: PCI slot to probe 5776 * 5777 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5778 */ 5779 int pci_probe_reset_slot(struct pci_slot *slot) 5780 { 5781 return pci_slot_reset(slot, PCI_RESET_PROBE); 5782 } 5783 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5784 5785 /** 5786 * __pci_reset_slot - Try to reset a PCI slot 5787 * @slot: PCI slot to reset 5788 * 5789 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5790 * independent of other slots. For instance, some slots may support slot power 5791 * control. In the case of a 1:1 bus to slot architecture, this function may 5792 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5793 * Generally a slot reset should be attempted before a bus reset. All of the 5794 * function of the slot and any subordinate buses behind the slot are reset 5795 * through this function. PCI config space of all devices in the slot and 5796 * behind the slot is saved before and restored after reset. 5797 * 5798 * Same as above except return -EAGAIN if the slot cannot be locked 5799 */ 5800 static int __pci_reset_slot(struct pci_slot *slot) 5801 { 5802 int rc; 5803 5804 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5805 if (rc) 5806 return rc; 5807 5808 if (pci_slot_trylock(slot)) { 5809 pci_slot_save_and_disable_locked(slot); 5810 might_sleep(); 5811 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5812 pci_slot_restore_locked(slot); 5813 pci_slot_unlock(slot); 5814 } else 5815 rc = -EAGAIN; 5816 5817 return rc; 5818 } 5819 5820 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5821 { 5822 int ret; 5823 5824 if (!bus->self || !pci_bus_resettable(bus)) 5825 return -ENOTTY; 5826 5827 if (probe) 5828 return 0; 5829 5830 pci_bus_lock(bus); 5831 5832 might_sleep(); 5833 5834 ret = pci_bridge_secondary_bus_reset(bus->self); 5835 5836 pci_bus_unlock(bus); 5837 5838 return ret; 5839 } 5840 5841 /** 5842 * pci_bus_error_reset - reset the bridge's subordinate bus 5843 * @bridge: The parent device that connects to the bus to reset 5844 * 5845 * This function will first try to reset the slots on this bus if the method is 5846 * available. If slot reset fails or is not available, this will fall back to a 5847 * secondary bus reset. 5848 */ 5849 int pci_bus_error_reset(struct pci_dev *bridge) 5850 { 5851 struct pci_bus *bus = bridge->subordinate; 5852 struct pci_slot *slot; 5853 5854 if (!bus) 5855 return -ENOTTY; 5856 5857 mutex_lock(&pci_slot_mutex); 5858 if (list_empty(&bus->slots)) 5859 goto bus_reset; 5860 5861 list_for_each_entry(slot, &bus->slots, list) 5862 if (pci_probe_reset_slot(slot)) 5863 goto bus_reset; 5864 5865 list_for_each_entry(slot, &bus->slots, list) 5866 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5867 goto bus_reset; 5868 5869 mutex_unlock(&pci_slot_mutex); 5870 return 0; 5871 bus_reset: 5872 mutex_unlock(&pci_slot_mutex); 5873 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5874 } 5875 5876 /** 5877 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5878 * @bus: PCI bus to probe 5879 * 5880 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5881 */ 5882 int pci_probe_reset_bus(struct pci_bus *bus) 5883 { 5884 return pci_bus_reset(bus, PCI_RESET_PROBE); 5885 } 5886 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5887 5888 /** 5889 * __pci_reset_bus - Try to reset a PCI bus 5890 * @bus: top level PCI bus to reset 5891 * 5892 * Same as above except return -EAGAIN if the bus cannot be locked 5893 */ 5894 int __pci_reset_bus(struct pci_bus *bus) 5895 { 5896 int rc; 5897 5898 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5899 if (rc) 5900 return rc; 5901 5902 if (pci_bus_trylock(bus)) { 5903 pci_bus_save_and_disable_locked(bus); 5904 might_sleep(); 5905 rc = pci_bridge_secondary_bus_reset(bus->self); 5906 pci_bus_restore_locked(bus); 5907 pci_bus_unlock(bus); 5908 } else 5909 rc = -EAGAIN; 5910 5911 return rc; 5912 } 5913 5914 /** 5915 * pci_reset_bus - Try to reset a PCI bus 5916 * @pdev: top level PCI device to reset via slot/bus 5917 * 5918 * Same as above except return -EAGAIN if the bus cannot be locked 5919 */ 5920 int pci_reset_bus(struct pci_dev *pdev) 5921 { 5922 return (!pci_probe_reset_slot(pdev->slot)) ? 5923 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5924 } 5925 EXPORT_SYMBOL_GPL(pci_reset_bus); 5926 5927 /** 5928 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5929 * @dev: PCI device to query 5930 * 5931 * Returns mmrbc: maximum designed memory read count in bytes or 5932 * appropriate error value. 5933 */ 5934 int pcix_get_max_mmrbc(struct pci_dev *dev) 5935 { 5936 int cap; 5937 u32 stat; 5938 5939 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5940 if (!cap) 5941 return -EINVAL; 5942 5943 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5944 return -EINVAL; 5945 5946 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat); 5947 } 5948 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5949 5950 /** 5951 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5952 * @dev: PCI device to query 5953 * 5954 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5955 * value. 5956 */ 5957 int pcix_get_mmrbc(struct pci_dev *dev) 5958 { 5959 int cap; 5960 u16 cmd; 5961 5962 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5963 if (!cap) 5964 return -EINVAL; 5965 5966 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5967 return -EINVAL; 5968 5969 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 5970 } 5971 EXPORT_SYMBOL(pcix_get_mmrbc); 5972 5973 /** 5974 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5975 * @dev: PCI device to query 5976 * @mmrbc: maximum memory read count in bytes 5977 * valid values are 512, 1024, 2048, 4096 5978 * 5979 * If possible sets maximum memory read byte count, some bridges have errata 5980 * that prevent this. 5981 */ 5982 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5983 { 5984 int cap; 5985 u32 stat, v, o; 5986 u16 cmd; 5987 5988 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5989 return -EINVAL; 5990 5991 v = ffs(mmrbc) - 10; 5992 5993 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5994 if (!cap) 5995 return -EINVAL; 5996 5997 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5998 return -EINVAL; 5999 6000 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat)) 6001 return -E2BIG; 6002 6003 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6004 return -EINVAL; 6005 6006 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 6007 if (o != v) { 6008 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 6009 return -EIO; 6010 6011 cmd &= ~PCI_X_CMD_MAX_READ; 6012 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v); 6013 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 6014 return -EIO; 6015 } 6016 return 0; 6017 } 6018 EXPORT_SYMBOL(pcix_set_mmrbc); 6019 6020 /** 6021 * pcie_get_readrq - get PCI Express read request size 6022 * @dev: PCI device to query 6023 * 6024 * Returns maximum memory read request in bytes or appropriate error value. 6025 */ 6026 int pcie_get_readrq(struct pci_dev *dev) 6027 { 6028 u16 ctl; 6029 6030 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6031 6032 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl); 6033 } 6034 EXPORT_SYMBOL(pcie_get_readrq); 6035 6036 /** 6037 * pcie_set_readrq - set PCI Express maximum memory read request 6038 * @dev: PCI device to query 6039 * @rq: maximum memory read count in bytes 6040 * valid values are 128, 256, 512, 1024, 2048, 4096 6041 * 6042 * If possible sets maximum memory read request in bytes 6043 */ 6044 int pcie_set_readrq(struct pci_dev *dev, int rq) 6045 { 6046 u16 v; 6047 int ret; 6048 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 6049 6050 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6051 return -EINVAL; 6052 6053 /* 6054 * If using the "performance" PCIe config, we clamp the read rq 6055 * size to the max packet size to keep the host bridge from 6056 * generating requests larger than we can cope with. 6057 */ 6058 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6059 int mps = pcie_get_mps(dev); 6060 6061 if (mps < rq) 6062 rq = mps; 6063 } 6064 6065 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8); 6066 6067 if (bridge->no_inc_mrrs) { 6068 int max_mrrs = pcie_get_readrq(dev); 6069 6070 if (rq > max_mrrs) { 6071 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 6072 return -EINVAL; 6073 } 6074 } 6075 6076 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6077 PCI_EXP_DEVCTL_READRQ, v); 6078 6079 return pcibios_err_to_errno(ret); 6080 } 6081 EXPORT_SYMBOL(pcie_set_readrq); 6082 6083 /** 6084 * pcie_get_mps - get PCI Express maximum payload size 6085 * @dev: PCI device to query 6086 * 6087 * Returns maximum payload size in bytes 6088 */ 6089 int pcie_get_mps(struct pci_dev *dev) 6090 { 6091 u16 ctl; 6092 6093 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6094 6095 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl); 6096 } 6097 EXPORT_SYMBOL(pcie_get_mps); 6098 6099 /** 6100 * pcie_set_mps - set PCI Express maximum payload size 6101 * @dev: PCI device to query 6102 * @mps: maximum payload size in bytes 6103 * valid values are 128, 256, 512, 1024, 2048, 4096 6104 * 6105 * If possible sets maximum payload size 6106 */ 6107 int pcie_set_mps(struct pci_dev *dev, int mps) 6108 { 6109 u16 v; 6110 int ret; 6111 6112 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6113 return -EINVAL; 6114 6115 v = ffs(mps) - 8; 6116 if (v > dev->pcie_mpss) 6117 return -EINVAL; 6118 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v); 6119 6120 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6121 PCI_EXP_DEVCTL_PAYLOAD, v); 6122 6123 return pcibios_err_to_errno(ret); 6124 } 6125 EXPORT_SYMBOL(pcie_set_mps); 6126 6127 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta) 6128 { 6129 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)]; 6130 } 6131 6132 int pcie_link_speed_mbps(struct pci_dev *pdev) 6133 { 6134 u16 lnksta; 6135 int err; 6136 6137 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 6138 if (err) 6139 return err; 6140 6141 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta)); 6142 } 6143 EXPORT_SYMBOL(pcie_link_speed_mbps); 6144 6145 /** 6146 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6147 * device and its bandwidth limitation 6148 * @dev: PCI device to query 6149 * @limiting_dev: storage for device causing the bandwidth limitation 6150 * @speed: storage for speed of limiting device 6151 * @width: storage for width of limiting device 6152 * 6153 * Walk up the PCI device chain and find the point where the minimum 6154 * bandwidth is available. Return the bandwidth available there and (if 6155 * limiting_dev, speed, and width pointers are supplied) information about 6156 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6157 * raw bandwidth. 6158 */ 6159 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6160 enum pci_bus_speed *speed, 6161 enum pcie_link_width *width) 6162 { 6163 u16 lnksta; 6164 enum pci_bus_speed next_speed; 6165 enum pcie_link_width next_width; 6166 u32 bw, next_bw; 6167 6168 if (speed) 6169 *speed = PCI_SPEED_UNKNOWN; 6170 if (width) 6171 *width = PCIE_LNK_WIDTH_UNKNOWN; 6172 6173 bw = 0; 6174 6175 while (dev) { 6176 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6177 6178 next_speed = to_pcie_link_speed(lnksta); 6179 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6180 6181 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6182 6183 /* Check if current device limits the total bandwidth */ 6184 if (!bw || next_bw <= bw) { 6185 bw = next_bw; 6186 6187 if (limiting_dev) 6188 *limiting_dev = dev; 6189 if (speed) 6190 *speed = next_speed; 6191 if (width) 6192 *width = next_width; 6193 } 6194 6195 dev = pci_upstream_bridge(dev); 6196 } 6197 6198 return bw; 6199 } 6200 EXPORT_SYMBOL(pcie_bandwidth_available); 6201 6202 /** 6203 * pcie_get_supported_speeds - query Supported Link Speed Vector 6204 * @dev: PCI device to query 6205 * 6206 * Query @dev supported link speeds. 6207 * 6208 * Implementation Note in PCIe r6.0 sec 7.5.3.18 recommends determining 6209 * supported link speeds using the Supported Link Speeds Vector in the Link 6210 * Capabilities 2 Register (when available). 6211 * 6212 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. 6213 * 6214 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, Supported Link 6215 * Speeds field in Link Capabilities is used and only 2.5 GT/s and 5.0 GT/s 6216 * speeds were defined. 6217 * 6218 * For @dev without Supported Link Speed Vector, the field is synthesized 6219 * from the Max Link Speed field in the Link Capabilities Register. 6220 * 6221 * Return: Supported Link Speeds Vector (+ reserved 0 at LSB). 6222 */ 6223 u8 pcie_get_supported_speeds(struct pci_dev *dev) 6224 { 6225 u32 lnkcap2, lnkcap; 6226 u8 speeds; 6227 6228 /* 6229 * Speeds retain the reserved 0 at LSB before PCIe Supported Link 6230 * Speeds Vector to allow using SLS Vector bit defines directly. 6231 */ 6232 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6233 speeds = lnkcap2 & PCI_EXP_LNKCAP2_SLS; 6234 6235 /* PCIe r3.0-compliant */ 6236 if (speeds) 6237 return speeds; 6238 6239 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6240 6241 /* Synthesize from the Max Link Speed field */ 6242 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6243 speeds = PCI_EXP_LNKCAP2_SLS_5_0GB | PCI_EXP_LNKCAP2_SLS_2_5GB; 6244 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6245 speeds = PCI_EXP_LNKCAP2_SLS_2_5GB; 6246 6247 return speeds; 6248 } 6249 6250 /** 6251 * pcie_get_speed_cap - query for the PCI device's link speed capability 6252 * @dev: PCI device to query 6253 * 6254 * Query the PCI device speed capability. 6255 * 6256 * Return: the maximum link speed supported by the device. 6257 */ 6258 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6259 { 6260 return PCIE_LNKCAP2_SLS2SPEED(dev->supported_speeds); 6261 } 6262 EXPORT_SYMBOL(pcie_get_speed_cap); 6263 6264 /** 6265 * pcie_get_width_cap - query for the PCI device's link width capability 6266 * @dev: PCI device to query 6267 * 6268 * Query the PCI device width capability. Return the maximum link width 6269 * supported by the device. 6270 */ 6271 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6272 { 6273 u32 lnkcap; 6274 6275 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6276 if (lnkcap) 6277 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6278 6279 return PCIE_LNK_WIDTH_UNKNOWN; 6280 } 6281 EXPORT_SYMBOL(pcie_get_width_cap); 6282 6283 /** 6284 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6285 * @dev: PCI device 6286 * @speed: storage for link speed 6287 * @width: storage for link width 6288 * 6289 * Calculate a PCI device's link bandwidth by querying for its link speed 6290 * and width, multiplying them, and applying encoding overhead. The result 6291 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6292 */ 6293 static u32 pcie_bandwidth_capable(struct pci_dev *dev, 6294 enum pci_bus_speed *speed, 6295 enum pcie_link_width *width) 6296 { 6297 *speed = pcie_get_speed_cap(dev); 6298 *width = pcie_get_width_cap(dev); 6299 6300 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6301 return 0; 6302 6303 return *width * PCIE_SPEED2MBS_ENC(*speed); 6304 } 6305 6306 /** 6307 * __pcie_print_link_status - Report the PCI device's link speed and width 6308 * @dev: PCI device to query 6309 * @verbose: Print info even when enough bandwidth is available 6310 * 6311 * If the available bandwidth at the device is less than the device is 6312 * capable of, report the device's maximum possible bandwidth and the 6313 * upstream link that limits its performance. If @verbose, always print 6314 * the available bandwidth, even if the device isn't constrained. 6315 */ 6316 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6317 { 6318 enum pcie_link_width width, width_cap; 6319 enum pci_bus_speed speed, speed_cap; 6320 struct pci_dev *limiting_dev = NULL; 6321 u32 bw_avail, bw_cap; 6322 6323 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6324 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6325 6326 if (bw_avail >= bw_cap && verbose) 6327 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6328 bw_cap / 1000, bw_cap % 1000, 6329 pci_speed_string(speed_cap), width_cap); 6330 else if (bw_avail < bw_cap) 6331 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6332 bw_avail / 1000, bw_avail % 1000, 6333 pci_speed_string(speed), width, 6334 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6335 bw_cap / 1000, bw_cap % 1000, 6336 pci_speed_string(speed_cap), width_cap); 6337 } 6338 6339 /** 6340 * pcie_print_link_status - Report the PCI device's link speed and width 6341 * @dev: PCI device to query 6342 * 6343 * Report the available bandwidth at the device. 6344 */ 6345 void pcie_print_link_status(struct pci_dev *dev) 6346 { 6347 __pcie_print_link_status(dev, true); 6348 } 6349 EXPORT_SYMBOL(pcie_print_link_status); 6350 6351 /** 6352 * pci_select_bars - Make BAR mask from the type of resource 6353 * @dev: the PCI device for which BAR mask is made 6354 * @flags: resource type mask to be selected 6355 * 6356 * This helper routine makes bar mask from the type of resource. 6357 */ 6358 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6359 { 6360 int i, bars = 0; 6361 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6362 if (pci_resource_flags(dev, i) & flags) 6363 bars |= (1 << i); 6364 return bars; 6365 } 6366 EXPORT_SYMBOL(pci_select_bars); 6367 6368 /* Some architectures require additional programming to enable VGA */ 6369 static arch_set_vga_state_t arch_set_vga_state; 6370 6371 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6372 { 6373 arch_set_vga_state = func; /* NULL disables */ 6374 } 6375 6376 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6377 unsigned int command_bits, u32 flags) 6378 { 6379 if (arch_set_vga_state) 6380 return arch_set_vga_state(dev, decode, command_bits, 6381 flags); 6382 return 0; 6383 } 6384 6385 /** 6386 * pci_set_vga_state - set VGA decode state on device and parents if requested 6387 * @dev: the PCI device 6388 * @decode: true = enable decoding, false = disable decoding 6389 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6390 * @flags: traverse ancestors and change bridges 6391 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6392 */ 6393 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6394 unsigned int command_bits, u32 flags) 6395 { 6396 struct pci_bus *bus; 6397 struct pci_dev *bridge; 6398 u16 cmd; 6399 int rc; 6400 6401 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6402 6403 /* ARCH specific VGA enables */ 6404 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6405 if (rc) 6406 return rc; 6407 6408 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6409 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6410 if (decode) 6411 cmd |= command_bits; 6412 else 6413 cmd &= ~command_bits; 6414 pci_write_config_word(dev, PCI_COMMAND, cmd); 6415 } 6416 6417 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6418 return 0; 6419 6420 bus = dev->bus; 6421 while (bus) { 6422 bridge = bus->self; 6423 if (bridge) { 6424 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6425 &cmd); 6426 if (decode) 6427 cmd |= PCI_BRIDGE_CTL_VGA; 6428 else 6429 cmd &= ~PCI_BRIDGE_CTL_VGA; 6430 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6431 cmd); 6432 } 6433 bus = bus->parent; 6434 } 6435 return 0; 6436 } 6437 6438 #ifdef CONFIG_ACPI 6439 bool pci_pr3_present(struct pci_dev *pdev) 6440 { 6441 struct acpi_device *adev; 6442 6443 if (acpi_disabled) 6444 return false; 6445 6446 adev = ACPI_COMPANION(&pdev->dev); 6447 if (!adev) 6448 return false; 6449 6450 return adev->power.flags.power_resources && 6451 acpi_has_method(adev->handle, "_PR3"); 6452 } 6453 EXPORT_SYMBOL_GPL(pci_pr3_present); 6454 #endif 6455 6456 /** 6457 * pci_add_dma_alias - Add a DMA devfn alias for a device 6458 * @dev: the PCI device for which alias is added 6459 * @devfn_from: alias slot and function 6460 * @nr_devfns: number of subsequent devfns to alias 6461 * 6462 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6463 * which is used to program permissible bus-devfn source addresses for DMA 6464 * requests in an IOMMU. These aliases factor into IOMMU group creation 6465 * and are useful for devices generating DMA requests beyond or different 6466 * from their logical bus-devfn. Examples include device quirks where the 6467 * device simply uses the wrong devfn, as well as non-transparent bridges 6468 * where the alias may be a proxy for devices in another domain. 6469 * 6470 * IOMMU group creation is performed during device discovery or addition, 6471 * prior to any potential DMA mapping and therefore prior to driver probing 6472 * (especially for userspace assigned devices where IOMMU group definition 6473 * cannot be left as a userspace activity). DMA aliases should therefore 6474 * be configured via quirks, such as the PCI fixup header quirk. 6475 */ 6476 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6477 unsigned int nr_devfns) 6478 { 6479 int devfn_to; 6480 6481 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6482 devfn_to = devfn_from + nr_devfns - 1; 6483 6484 if (!dev->dma_alias_mask) 6485 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6486 if (!dev->dma_alias_mask) { 6487 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6488 return; 6489 } 6490 6491 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6492 6493 if (nr_devfns == 1) 6494 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6495 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6496 else if (nr_devfns > 1) 6497 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6498 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6499 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6500 } 6501 6502 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6503 { 6504 return (dev1->dma_alias_mask && 6505 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6506 (dev2->dma_alias_mask && 6507 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6508 pci_real_dma_dev(dev1) == dev2 || 6509 pci_real_dma_dev(dev2) == dev1; 6510 } 6511 6512 bool pci_device_is_present(struct pci_dev *pdev) 6513 { 6514 u32 v; 6515 6516 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6517 pdev = pci_physfn(pdev); 6518 if (pci_dev_is_disconnected(pdev)) 6519 return false; 6520 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6521 } 6522 EXPORT_SYMBOL_GPL(pci_device_is_present); 6523 6524 void pci_ignore_hotplug(struct pci_dev *dev) 6525 { 6526 struct pci_dev *bridge = dev->bus->self; 6527 6528 dev->ignore_hotplug = 1; 6529 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6530 if (bridge) 6531 bridge->ignore_hotplug = 1; 6532 } 6533 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6534 6535 /** 6536 * pci_real_dma_dev - Get PCI DMA device for PCI device 6537 * @dev: the PCI device that may have a PCI DMA alias 6538 * 6539 * Permits the platform to provide architecture-specific functionality to 6540 * devices needing to alias DMA to another PCI device on another PCI bus. If 6541 * the PCI device is on the same bus, it is recommended to use 6542 * pci_add_dma_alias(). This is the default implementation. Architecture 6543 * implementations can override this. 6544 */ 6545 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6546 { 6547 return dev; 6548 } 6549 6550 resource_size_t __weak pcibios_default_alignment(void) 6551 { 6552 return 0; 6553 } 6554 6555 /* 6556 * Arches that don't want to expose struct resource to userland as-is in 6557 * sysfs and /proc can implement their own pci_resource_to_user(). 6558 */ 6559 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6560 const struct resource *rsrc, 6561 resource_size_t *start, resource_size_t *end) 6562 { 6563 *start = rsrc->start; 6564 *end = rsrc->end; 6565 } 6566 6567 static char *resource_alignment_param; 6568 static DEFINE_SPINLOCK(resource_alignment_lock); 6569 6570 /** 6571 * pci_specified_resource_alignment - get resource alignment specified by user. 6572 * @dev: the PCI device to get 6573 * @resize: whether or not to change resources' size when reassigning alignment 6574 * 6575 * RETURNS: Resource alignment if it is specified. 6576 * Zero if it is not specified. 6577 */ 6578 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6579 bool *resize) 6580 { 6581 int align_order, count; 6582 resource_size_t align = pcibios_default_alignment(); 6583 const char *p; 6584 int ret; 6585 6586 spin_lock(&resource_alignment_lock); 6587 p = resource_alignment_param; 6588 if (!p || !*p) 6589 goto out; 6590 if (pci_has_flag(PCI_PROBE_ONLY)) { 6591 align = 0; 6592 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6593 goto out; 6594 } 6595 6596 while (*p) { 6597 count = 0; 6598 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6599 p[count] == '@') { 6600 p += count + 1; 6601 if (align_order > 63) { 6602 pr_err("PCI: Invalid requested alignment (order %d)\n", 6603 align_order); 6604 align_order = PAGE_SHIFT; 6605 } 6606 } else { 6607 align_order = PAGE_SHIFT; 6608 } 6609 6610 ret = pci_dev_str_match(dev, p, &p); 6611 if (ret == 1) { 6612 *resize = true; 6613 align = 1ULL << align_order; 6614 break; 6615 } else if (ret < 0) { 6616 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6617 p); 6618 break; 6619 } 6620 6621 if (*p != ';' && *p != ',') { 6622 /* End of param or invalid format */ 6623 break; 6624 } 6625 p++; 6626 } 6627 out: 6628 spin_unlock(&resource_alignment_lock); 6629 return align; 6630 } 6631 6632 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6633 resource_size_t align, bool resize) 6634 { 6635 struct resource *r = &dev->resource[bar]; 6636 const char *r_name = pci_resource_name(dev, bar); 6637 resource_size_t size; 6638 6639 if (!(r->flags & IORESOURCE_MEM)) 6640 return; 6641 6642 if (r->flags & IORESOURCE_PCI_FIXED) { 6643 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n", 6644 r_name, r, (unsigned long long)align); 6645 return; 6646 } 6647 6648 size = resource_size(r); 6649 if (size >= align) 6650 return; 6651 6652 /* 6653 * Increase the alignment of the resource. There are two ways we 6654 * can do this: 6655 * 6656 * 1) Increase the size of the resource. BARs are aligned on their 6657 * size, so when we reallocate space for this resource, we'll 6658 * allocate it with the larger alignment. This also prevents 6659 * assignment of any other BARs inside the alignment region, so 6660 * if we're requesting page alignment, this means no other BARs 6661 * will share the page. 6662 * 6663 * The disadvantage is that this makes the resource larger than 6664 * the hardware BAR, which may break drivers that compute things 6665 * based on the resource size, e.g., to find registers at a 6666 * fixed offset before the end of the BAR. 6667 * 6668 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6669 * set r->start to the desired alignment. By itself this 6670 * doesn't prevent other BARs being put inside the alignment 6671 * region, but if we realign *every* resource of every device in 6672 * the system, none of them will share an alignment region. 6673 * 6674 * When the user has requested alignment for only some devices via 6675 * the "pci=resource_alignment" argument, "resize" is true and we 6676 * use the first method. Otherwise we assume we're aligning all 6677 * devices and we use the second. 6678 */ 6679 6680 pci_info(dev, "%s %pR: requesting alignment to %#llx\n", 6681 r_name, r, (unsigned long long)align); 6682 6683 if (resize) { 6684 r->start = 0; 6685 r->end = align - 1; 6686 } else { 6687 r->flags &= ~IORESOURCE_SIZEALIGN; 6688 r->flags |= IORESOURCE_STARTALIGN; 6689 resource_set_range(r, align, size); 6690 } 6691 r->flags |= IORESOURCE_UNSET; 6692 } 6693 6694 /* 6695 * This function disables memory decoding and releases memory resources 6696 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6697 * It also rounds up size to specified alignment. 6698 * Later on, the kernel will assign page-aligned memory resource back 6699 * to the device. 6700 */ 6701 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6702 { 6703 int i; 6704 struct resource *r; 6705 resource_size_t align; 6706 u16 command; 6707 bool resize = false; 6708 6709 /* 6710 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6711 * 3.4.1.11. Their resources are allocated from the space 6712 * described by the VF BARx register in the PF's SR-IOV capability. 6713 * We can't influence their alignment here. 6714 */ 6715 if (dev->is_virtfn) 6716 return; 6717 6718 /* check if specified PCI is target device to reassign */ 6719 align = pci_specified_resource_alignment(dev, &resize); 6720 if (!align) 6721 return; 6722 6723 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6724 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6725 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6726 return; 6727 } 6728 6729 pci_read_config_word(dev, PCI_COMMAND, &command); 6730 command &= ~PCI_COMMAND_MEMORY; 6731 pci_write_config_word(dev, PCI_COMMAND, command); 6732 6733 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6734 pci_request_resource_alignment(dev, i, align, resize); 6735 6736 /* 6737 * Need to disable bridge's resource window, 6738 * to enable the kernel to reassign new resource 6739 * window later on. 6740 */ 6741 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6742 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6743 r = &dev->resource[i]; 6744 if (!(r->flags & IORESOURCE_MEM)) 6745 continue; 6746 r->flags |= IORESOURCE_UNSET; 6747 r->end = resource_size(r) - 1; 6748 r->start = 0; 6749 } 6750 pci_disable_bridge_window(dev); 6751 } 6752 } 6753 6754 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6755 { 6756 size_t count = 0; 6757 6758 spin_lock(&resource_alignment_lock); 6759 if (resource_alignment_param) 6760 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6761 spin_unlock(&resource_alignment_lock); 6762 6763 return count; 6764 } 6765 6766 static ssize_t resource_alignment_store(const struct bus_type *bus, 6767 const char *buf, size_t count) 6768 { 6769 char *param, *old, *end; 6770 6771 if (count >= (PAGE_SIZE - 1)) 6772 return -EINVAL; 6773 6774 param = kstrndup(buf, count, GFP_KERNEL); 6775 if (!param) 6776 return -ENOMEM; 6777 6778 end = strchr(param, '\n'); 6779 if (end) 6780 *end = '\0'; 6781 6782 spin_lock(&resource_alignment_lock); 6783 old = resource_alignment_param; 6784 if (strlen(param)) { 6785 resource_alignment_param = param; 6786 } else { 6787 kfree(param); 6788 resource_alignment_param = NULL; 6789 } 6790 spin_unlock(&resource_alignment_lock); 6791 6792 kfree(old); 6793 6794 return count; 6795 } 6796 6797 static BUS_ATTR_RW(resource_alignment); 6798 6799 static int __init pci_resource_alignment_sysfs_init(void) 6800 { 6801 return bus_create_file(&pci_bus_type, 6802 &bus_attr_resource_alignment); 6803 } 6804 late_initcall(pci_resource_alignment_sysfs_init); 6805 6806 static void pci_no_domains(void) 6807 { 6808 #ifdef CONFIG_PCI_DOMAINS 6809 pci_domains_supported = 0; 6810 #endif 6811 } 6812 6813 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6814 static DEFINE_IDA(pci_domain_nr_static_ida); 6815 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6816 6817 static void of_pci_reserve_static_domain_nr(void) 6818 { 6819 struct device_node *np; 6820 int domain_nr; 6821 6822 for_each_node_by_type(np, "pci") { 6823 domain_nr = of_get_pci_domain_nr(np); 6824 if (domain_nr < 0) 6825 continue; 6826 /* 6827 * Permanently allocate domain_nr in dynamic_ida 6828 * to prevent it from dynamic allocation. 6829 */ 6830 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6831 domain_nr, domain_nr, GFP_KERNEL); 6832 } 6833 } 6834 6835 static int of_pci_bus_find_domain_nr(struct device *parent) 6836 { 6837 static bool static_domains_reserved = false; 6838 int domain_nr; 6839 6840 /* On the first call scan device tree for static allocations. */ 6841 if (!static_domains_reserved) { 6842 of_pci_reserve_static_domain_nr(); 6843 static_domains_reserved = true; 6844 } 6845 6846 if (parent) { 6847 /* 6848 * If domain is in DT, allocate it in static IDA. This 6849 * prevents duplicate static allocations in case of errors 6850 * in DT. 6851 */ 6852 domain_nr = of_get_pci_domain_nr(parent->of_node); 6853 if (domain_nr >= 0) 6854 return ida_alloc_range(&pci_domain_nr_static_ida, 6855 domain_nr, domain_nr, 6856 GFP_KERNEL); 6857 } 6858 6859 /* 6860 * If domain was not specified in DT, choose a free ID from dynamic 6861 * allocations. All domain numbers from DT are permanently in 6862 * dynamic allocations to prevent assigning them to other DT nodes 6863 * without static domain. 6864 */ 6865 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6866 } 6867 6868 static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr) 6869 { 6870 if (domain_nr < 0) 6871 return; 6872 6873 /* Release domain from IDA where it was allocated. */ 6874 if (of_get_pci_domain_nr(parent->of_node) == domain_nr) 6875 ida_free(&pci_domain_nr_static_ida, domain_nr); 6876 else 6877 ida_free(&pci_domain_nr_dynamic_ida, domain_nr); 6878 } 6879 6880 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6881 { 6882 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6883 acpi_pci_bus_find_domain_nr(bus); 6884 } 6885 6886 void pci_bus_release_domain_nr(struct device *parent, int domain_nr) 6887 { 6888 if (!acpi_disabled) 6889 return; 6890 of_pci_bus_release_domain_nr(parent, domain_nr); 6891 } 6892 #endif 6893 6894 /** 6895 * pci_ext_cfg_avail - can we access extended PCI config space? 6896 * 6897 * Returns 1 if we can access PCI extended config space (offsets 6898 * greater than 0xff). This is the default implementation. Architecture 6899 * implementations can override this. 6900 */ 6901 int __weak pci_ext_cfg_avail(void) 6902 { 6903 return 1; 6904 } 6905 6906 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6907 { 6908 } 6909 EXPORT_SYMBOL(pci_fixup_cardbus); 6910 6911 static int __init pci_setup(char *str) 6912 { 6913 while (str) { 6914 char *k = strchr(str, ','); 6915 if (k) 6916 *k++ = 0; 6917 if (*str && (str = pcibios_setup(str)) && *str) { 6918 if (!strcmp(str, "nomsi")) { 6919 pci_no_msi(); 6920 } else if (!strncmp(str, "noats", 5)) { 6921 pr_info("PCIe: ATS is disabled\n"); 6922 pcie_ats_disabled = true; 6923 } else if (!strcmp(str, "noaer")) { 6924 pci_no_aer(); 6925 } else if (!strcmp(str, "earlydump")) { 6926 pci_early_dump = true; 6927 } else if (!strncmp(str, "realloc=", 8)) { 6928 pci_realloc_get_opt(str + 8); 6929 } else if (!strncmp(str, "realloc", 7)) { 6930 pci_realloc_get_opt("on"); 6931 } else if (!strcmp(str, "nodomains")) { 6932 pci_no_domains(); 6933 } else if (!strncmp(str, "noari", 5)) { 6934 pcie_ari_disabled = true; 6935 } else if (!strncmp(str, "notph", 5)) { 6936 pci_no_tph(); 6937 } else if (!strncmp(str, "cbiosize=", 9)) { 6938 pci_cardbus_io_size = memparse(str + 9, &str); 6939 } else if (!strncmp(str, "cbmemsize=", 10)) { 6940 pci_cardbus_mem_size = memparse(str + 10, &str); 6941 } else if (!strncmp(str, "resource_alignment=", 19)) { 6942 resource_alignment_param = str + 19; 6943 } else if (!strncmp(str, "ecrc=", 5)) { 6944 pcie_ecrc_get_policy(str + 5); 6945 } else if (!strncmp(str, "hpiosize=", 9)) { 6946 pci_hotplug_io_size = memparse(str + 9, &str); 6947 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6948 pci_hotplug_mmio_size = memparse(str + 11, &str); 6949 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6950 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6951 } else if (!strncmp(str, "hpmemsize=", 10)) { 6952 pci_hotplug_mmio_size = memparse(str + 10, &str); 6953 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6954 } else if (!strncmp(str, "hpbussize=", 10)) { 6955 pci_hotplug_bus_size = 6956 simple_strtoul(str + 10, &str, 0); 6957 if (pci_hotplug_bus_size > 0xff) 6958 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6959 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6960 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6961 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6962 pcie_bus_config = PCIE_BUS_SAFE; 6963 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6964 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6965 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6966 pcie_bus_config = PCIE_BUS_PEER2PEER; 6967 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6968 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6969 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6970 disable_acs_redir_param = str + 18; 6971 } else if (!strncmp(str, "config_acs=", 11)) { 6972 config_acs_param = str + 11; 6973 } else { 6974 pr_err("PCI: Unknown option `%s'\n", str); 6975 } 6976 } 6977 str = k; 6978 } 6979 return 0; 6980 } 6981 early_param("pci", pci_setup); 6982 6983 /* 6984 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6985 * in pci_setup(), above, to point to data in the __initdata section which 6986 * will be freed after the init sequence is complete. We can't allocate memory 6987 * in pci_setup() because some architectures do not have any memory allocation 6988 * service available during an early_param() call. So we allocate memory and 6989 * copy the variable here before the init section is freed. 6990 * 6991 */ 6992 static int __init pci_realloc_setup_params(void) 6993 { 6994 resource_alignment_param = kstrdup(resource_alignment_param, 6995 GFP_KERNEL); 6996 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6997 config_acs_param = kstrdup(config_acs_param, GFP_KERNEL); 6998 6999 return 0; 7000 } 7001 pure_initcall(pci_realloc_setup_params); 7002