1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 #ifdef CONFIG_X86_32 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 #endif 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3hot_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 /* 68 * Following exit from Conventional Reset, devices must be ready within 1 sec 69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 70 * Reset (PCIe r6.0 sec 5.8). 71 */ 72 #define PCI_RESET_WAIT 1000 /* msec */ 73 74 /* 75 * Devices may extend the 1 sec period through Request Retry Status 76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 77 * limit, but 60 sec ought to be enough for any device to become 78 * responsive. 79 */ 80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 81 82 static void pci_dev_d3_sleep(struct pci_dev *dev) 83 { 84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 85 unsigned int upper; 86 87 if (delay_ms) { 88 /* Use a 20% upper bound, 1ms minimum */ 89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 90 usleep_range(delay_ms * USEC_PER_MSEC, 91 (delay_ms + upper) * USEC_PER_MSEC); 92 } 93 } 94 95 bool pci_reset_supported(struct pci_dev *dev) 96 { 97 return dev->reset_methods[0] != 0; 98 } 99 100 #ifdef CONFIG_PCI_DOMAINS 101 int pci_domains_supported = 1; 102 #endif 103 104 #define DEFAULT_CARDBUS_IO_SIZE (256) 105 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 109 110 #define DEFAULT_HOTPLUG_IO_SIZE (256) 111 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 113 /* hpiosize=nn can override this */ 114 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 115 /* 116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 118 * pci=hpmemsize=nnM overrides both 119 */ 120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 122 123 #define DEFAULT_HOTPLUG_BUS_SIZE 1 124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 125 126 127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 130 #elif defined CONFIG_PCIE_BUS_SAFE 131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 134 #elif defined CONFIG_PCIE_BUS_PEER2PEER 135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 136 #else 137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 138 #endif 139 140 /* 141 * The default CLS is used if arch didn't set CLS explicitly and not 142 * all pci devices agree on the same value. Arch can override either 143 * the dfl or actual value as it sees fit. Don't forget this is 144 * measured in 32-bit words, not bytes. 145 */ 146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 147 u8 pci_cache_line_size; 148 149 /* 150 * If we set up a device for bus mastering, we need to check the latency 151 * timer as certain BIOSes forget to set it properly. 152 */ 153 unsigned int pcibios_max_latency = 255; 154 155 /* If set, the PCIe ARI capability will not be used. */ 156 static bool pcie_ari_disabled; 157 158 /* If set, the PCIe ATS capability will not be used. */ 159 static bool pcie_ats_disabled; 160 161 /* If set, the PCI config space of each device is printed during boot. */ 162 bool pci_early_dump; 163 164 bool pci_ats_disabled(void) 165 { 166 return pcie_ats_disabled; 167 } 168 EXPORT_SYMBOL_GPL(pci_ats_disabled); 169 170 /* Disable bridge_d3 for all PCIe ports */ 171 static bool pci_bridge_d3_disable; 172 /* Force bridge_d3 for all PCIe ports */ 173 static bool pci_bridge_d3_force; 174 175 static int __init pcie_port_pm_setup(char *str) 176 { 177 if (!strcmp(str, "off")) 178 pci_bridge_d3_disable = true; 179 else if (!strcmp(str, "force")) 180 pci_bridge_d3_force = true; 181 return 1; 182 } 183 __setup("pcie_port_pm=", pcie_port_pm_setup); 184 185 /** 186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 187 * @bus: pointer to PCI bus structure to search 188 * 189 * Given a PCI bus, returns the highest PCI bus number present in the set 190 * including the given PCI bus and its list of child PCI buses. 191 */ 192 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 193 { 194 struct pci_bus *tmp; 195 unsigned char max, n; 196 197 max = bus->busn_res.end; 198 list_for_each_entry(tmp, &bus->children, node) { 199 n = pci_bus_max_busnr(tmp); 200 if (n > max) 201 max = n; 202 } 203 return max; 204 } 205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 206 207 /** 208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 209 * @pdev: the PCI device 210 * 211 * Returns error bits set in PCI_STATUS and clears them. 212 */ 213 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 214 { 215 u16 status; 216 int ret; 217 218 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 219 if (ret != PCIBIOS_SUCCESSFUL) 220 return -EIO; 221 222 status &= PCI_STATUS_ERROR_BITS; 223 if (status) 224 pci_write_config_word(pdev, PCI_STATUS, status); 225 226 return status; 227 } 228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 229 230 #ifdef CONFIG_HAS_IOMEM 231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 232 bool write_combine) 233 { 234 struct resource *res = &pdev->resource[bar]; 235 resource_size_t start = res->start; 236 resource_size_t size = resource_size(res); 237 238 /* 239 * Make sure the BAR is actually a memory resource, not an IO resource 240 */ 241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 243 return NULL; 244 } 245 246 if (write_combine) 247 return ioremap_wc(start, size); 248 249 return ioremap(start, size); 250 } 251 252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 253 { 254 return __pci_ioremap_resource(pdev, bar, false); 255 } 256 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 257 258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 259 { 260 return __pci_ioremap_resource(pdev, bar, true); 261 } 262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 263 #endif 264 265 /** 266 * pci_dev_str_match_path - test if a path string matches a device 267 * @dev: the PCI device to test 268 * @path: string to match the device against 269 * @endptr: pointer to the string after the match 270 * 271 * Test if a string (typically from a kernel parameter) formatted as a 272 * path of device/function addresses matches a PCI device. The string must 273 * be of the form: 274 * 275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 276 * 277 * A path for a device can be obtained using 'lspci -t'. Using a path 278 * is more robust against bus renumbering than using only a single bus, 279 * device and function address. 280 * 281 * Returns 1 if the string matches the device, 0 if it does not and 282 * a negative error code if it fails to parse the string. 283 */ 284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 285 const char **endptr) 286 { 287 int ret; 288 unsigned int seg, bus, slot, func; 289 char *wpath, *p; 290 char end; 291 292 *endptr = strchrnul(path, ';'); 293 294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 295 if (!wpath) 296 return -ENOMEM; 297 298 while (1) { 299 p = strrchr(wpath, '/'); 300 if (!p) 301 break; 302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 303 if (ret != 2) { 304 ret = -EINVAL; 305 goto free_and_exit; 306 } 307 308 if (dev->devfn != PCI_DEVFN(slot, func)) { 309 ret = 0; 310 goto free_and_exit; 311 } 312 313 /* 314 * Note: we don't need to get a reference to the upstream 315 * bridge because we hold a reference to the top level 316 * device which should hold a reference to the bridge, 317 * and so on. 318 */ 319 dev = pci_upstream_bridge(dev); 320 if (!dev) { 321 ret = 0; 322 goto free_and_exit; 323 } 324 325 *p = 0; 326 } 327 328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 329 &func, &end); 330 if (ret != 4) { 331 seg = 0; 332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 333 if (ret != 3) { 334 ret = -EINVAL; 335 goto free_and_exit; 336 } 337 } 338 339 ret = (seg == pci_domain_nr(dev->bus) && 340 bus == dev->bus->number && 341 dev->devfn == PCI_DEVFN(slot, func)); 342 343 free_and_exit: 344 kfree(wpath); 345 return ret; 346 } 347 348 /** 349 * pci_dev_str_match - test if a string matches a device 350 * @dev: the PCI device to test 351 * @p: string to match the device against 352 * @endptr: pointer to the string after the match 353 * 354 * Test if a string (typically from a kernel parameter) matches a specified 355 * PCI device. The string may be of one of the following formats: 356 * 357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 359 * 360 * The first format specifies a PCI bus/device/function address which 361 * may change if new hardware is inserted, if motherboard firmware changes, 362 * or due to changes caused in kernel parameters. If the domain is 363 * left unspecified, it is taken to be 0. In order to be robust against 364 * bus renumbering issues, a path of PCI device/function numbers may be used 365 * to address the specific device. The path for a device can be determined 366 * through the use of 'lspci -t'. 367 * 368 * The second format matches devices using IDs in the configuration 369 * space which may match multiple devices in the system. A value of 0 370 * for any field will match all devices. (Note: this differs from 371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 372 * legacy reasons and convenience so users don't have to specify 373 * FFFFFFFFs on the command line.) 374 * 375 * Returns 1 if the string matches the device, 0 if it does not and 376 * a negative error code if the string cannot be parsed. 377 */ 378 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 379 const char **endptr) 380 { 381 int ret; 382 int count; 383 unsigned short vendor, device, subsystem_vendor, subsystem_device; 384 385 if (strncmp(p, "pci:", 4) == 0) { 386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 387 p += 4; 388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 389 &subsystem_vendor, &subsystem_device, &count); 390 if (ret != 4) { 391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 392 if (ret != 2) 393 return -EINVAL; 394 395 subsystem_vendor = 0; 396 subsystem_device = 0; 397 } 398 399 p += count; 400 401 if ((!vendor || vendor == dev->vendor) && 402 (!device || device == dev->device) && 403 (!subsystem_vendor || 404 subsystem_vendor == dev->subsystem_vendor) && 405 (!subsystem_device || 406 subsystem_device == dev->subsystem_device)) 407 goto found; 408 } else { 409 /* 410 * PCI Bus, Device, Function IDs are specified 411 * (optionally, may include a path of devfns following it) 412 */ 413 ret = pci_dev_str_match_path(dev, p, &p); 414 if (ret < 0) 415 return ret; 416 else if (ret) 417 goto found; 418 } 419 420 *endptr = p; 421 return 0; 422 423 found: 424 *endptr = p; 425 return 1; 426 } 427 428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 429 u8 pos, int cap, int *ttl) 430 { 431 u8 id; 432 u16 ent; 433 434 pci_bus_read_config_byte(bus, devfn, pos, &pos); 435 436 while ((*ttl)--) { 437 if (pos < 0x40) 438 break; 439 pos &= ~3; 440 pci_bus_read_config_word(bus, devfn, pos, &ent); 441 442 id = ent & 0xff; 443 if (id == 0xff) 444 break; 445 if (id == cap) 446 return pos; 447 pos = (ent >> 8); 448 } 449 return 0; 450 } 451 452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 453 u8 pos, int cap) 454 { 455 int ttl = PCI_FIND_CAP_TTL; 456 457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 458 } 459 460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 461 { 462 return __pci_find_next_cap(dev->bus, dev->devfn, 463 pos + PCI_CAP_LIST_NEXT, cap); 464 } 465 EXPORT_SYMBOL_GPL(pci_find_next_capability); 466 467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 468 unsigned int devfn, u8 hdr_type) 469 { 470 u16 status; 471 472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 473 if (!(status & PCI_STATUS_CAP_LIST)) 474 return 0; 475 476 switch (hdr_type) { 477 case PCI_HEADER_TYPE_NORMAL: 478 case PCI_HEADER_TYPE_BRIDGE: 479 return PCI_CAPABILITY_LIST; 480 case PCI_HEADER_TYPE_CARDBUS: 481 return PCI_CB_CAPABILITY_LIST; 482 } 483 484 return 0; 485 } 486 487 /** 488 * pci_find_capability - query for devices' capabilities 489 * @dev: PCI device to query 490 * @cap: capability code 491 * 492 * Tell if a device supports a given PCI capability. 493 * Returns the address of the requested capability structure within the 494 * device's PCI configuration space or 0 in case the device does not 495 * support it. Possible values for @cap include: 496 * 497 * %PCI_CAP_ID_PM Power Management 498 * %PCI_CAP_ID_AGP Accelerated Graphics Port 499 * %PCI_CAP_ID_VPD Vital Product Data 500 * %PCI_CAP_ID_SLOTID Slot Identification 501 * %PCI_CAP_ID_MSI Message Signalled Interrupts 502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 503 * %PCI_CAP_ID_PCIX PCI-X 504 * %PCI_CAP_ID_EXP PCI Express 505 */ 506 u8 pci_find_capability(struct pci_dev *dev, int cap) 507 { 508 u8 pos; 509 510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 511 if (pos) 512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 513 514 return pos; 515 } 516 EXPORT_SYMBOL(pci_find_capability); 517 518 /** 519 * pci_bus_find_capability - query for devices' capabilities 520 * @bus: the PCI bus to query 521 * @devfn: PCI device to query 522 * @cap: capability code 523 * 524 * Like pci_find_capability() but works for PCI devices that do not have a 525 * pci_dev structure set up yet. 526 * 527 * Returns the address of the requested capability structure within the 528 * device's PCI configuration space or 0 in case the device does not 529 * support it. 530 */ 531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 532 { 533 u8 hdr_type, pos; 534 535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 536 537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK); 538 if (pos) 539 pos = __pci_find_next_cap(bus, devfn, pos, cap); 540 541 return pos; 542 } 543 EXPORT_SYMBOL(pci_bus_find_capability); 544 545 /** 546 * pci_find_next_ext_capability - Find an extended capability 547 * @dev: PCI device to query 548 * @start: address at which to start looking (0 to start at beginning of list) 549 * @cap: capability code 550 * 551 * Returns the address of the next matching extended capability structure 552 * within the device's PCI configuration space or 0 if the device does 553 * not support it. Some capabilities can occur several times, e.g., the 554 * vendor-specific capability, and this provides a way to find them all. 555 */ 556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 557 { 558 u32 header; 559 int ttl; 560 u16 pos = PCI_CFG_SPACE_SIZE; 561 562 /* minimum 8 bytes per capability */ 563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 564 565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 566 return 0; 567 568 if (start) 569 pos = start; 570 571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 572 return 0; 573 574 /* 575 * If we have no capabilities, this is indicated by cap ID, 576 * cap version and next pointer all being 0. 577 */ 578 if (header == 0) 579 return 0; 580 581 while (ttl-- > 0) { 582 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 583 return pos; 584 585 pos = PCI_EXT_CAP_NEXT(header); 586 if (pos < PCI_CFG_SPACE_SIZE) 587 break; 588 589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 590 break; 591 } 592 593 return 0; 594 } 595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 596 597 /** 598 * pci_find_ext_capability - Find an extended capability 599 * @dev: PCI device to query 600 * @cap: capability code 601 * 602 * Returns the address of the requested extended capability structure 603 * within the device's PCI configuration space or 0 if the device does 604 * not support it. Possible values for @cap include: 605 * 606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 607 * %PCI_EXT_CAP_ID_VC Virtual Channel 608 * %PCI_EXT_CAP_ID_DSN Device Serial Number 609 * %PCI_EXT_CAP_ID_PWR Power Budgeting 610 */ 611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 612 { 613 return pci_find_next_ext_capability(dev, 0, cap); 614 } 615 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 616 617 /** 618 * pci_get_dsn - Read and return the 8-byte Device Serial Number 619 * @dev: PCI device to query 620 * 621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 622 * Number. 623 * 624 * Returns the DSN, or zero if the capability does not exist. 625 */ 626 u64 pci_get_dsn(struct pci_dev *dev) 627 { 628 u32 dword; 629 u64 dsn; 630 int pos; 631 632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 633 if (!pos) 634 return 0; 635 636 /* 637 * The Device Serial Number is two dwords offset 4 bytes from the 638 * capability position. The specification says that the first dword is 639 * the lower half, and the second dword is the upper half. 640 */ 641 pos += 4; 642 pci_read_config_dword(dev, pos, &dword); 643 dsn = (u64)dword; 644 pci_read_config_dword(dev, pos + 4, &dword); 645 dsn |= ((u64)dword) << 32; 646 647 return dsn; 648 } 649 EXPORT_SYMBOL_GPL(pci_get_dsn); 650 651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 652 { 653 int rc, ttl = PCI_FIND_CAP_TTL; 654 u8 cap, mask; 655 656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 657 mask = HT_3BIT_CAP_MASK; 658 else 659 mask = HT_5BIT_CAP_MASK; 660 661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 662 PCI_CAP_ID_HT, &ttl); 663 while (pos) { 664 rc = pci_read_config_byte(dev, pos + 3, &cap); 665 if (rc != PCIBIOS_SUCCESSFUL) 666 return 0; 667 668 if ((cap & mask) == ht_cap) 669 return pos; 670 671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 672 pos + PCI_CAP_LIST_NEXT, 673 PCI_CAP_ID_HT, &ttl); 674 } 675 676 return 0; 677 } 678 679 /** 680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 681 * @dev: PCI device to query 682 * @pos: Position from which to continue searching 683 * @ht_cap: HyperTransport capability code 684 * 685 * To be used in conjunction with pci_find_ht_capability() to search for 686 * all capabilities matching @ht_cap. @pos should always be a value returned 687 * from pci_find_ht_capability(). 688 * 689 * NB. To be 100% safe against broken PCI devices, the caller should take 690 * steps to avoid an infinite loop. 691 */ 692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 693 { 694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 695 } 696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 697 698 /** 699 * pci_find_ht_capability - query a device's HyperTransport capabilities 700 * @dev: PCI device to query 701 * @ht_cap: HyperTransport capability code 702 * 703 * Tell if a device supports a given HyperTransport capability. 704 * Returns an address within the device's PCI configuration space 705 * or 0 in case the device does not support the request capability. 706 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 707 * which has a HyperTransport capability matching @ht_cap. 708 */ 709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 710 { 711 u8 pos; 712 713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 714 if (pos) 715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 716 717 return pos; 718 } 719 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 720 721 /** 722 * pci_find_vsec_capability - Find a vendor-specific extended capability 723 * @dev: PCI device to query 724 * @vendor: Vendor ID for which capability is defined 725 * @cap: Vendor-specific capability ID 726 * 727 * If @dev has Vendor ID @vendor, search for a VSEC capability with 728 * VSEC ID @cap. If found, return the capability offset in 729 * config space; otherwise return 0. 730 */ 731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 732 { 733 u16 vsec = 0; 734 u32 header; 735 int ret; 736 737 if (vendor != dev->vendor) 738 return 0; 739 740 while ((vsec = pci_find_next_ext_capability(dev, vsec, 741 PCI_EXT_CAP_ID_VNDR))) { 742 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 743 if (ret != PCIBIOS_SUCCESSFUL) 744 continue; 745 746 if (PCI_VNDR_HEADER_ID(header) == cap) 747 return vsec; 748 } 749 750 return 0; 751 } 752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 753 754 /** 755 * pci_find_dvsec_capability - Find DVSEC for vendor 756 * @dev: PCI device to query 757 * @vendor: Vendor ID to match for the DVSEC 758 * @dvsec: Designated Vendor-specific capability ID 759 * 760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 761 * offset in config space; otherwise return 0. 762 */ 763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 764 { 765 int pos; 766 767 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 768 if (!pos) 769 return 0; 770 771 while (pos) { 772 u16 v, id; 773 774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 775 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 776 if (vendor == v && dvsec == id) 777 return pos; 778 779 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 780 } 781 782 return 0; 783 } 784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 785 786 /** 787 * pci_find_parent_resource - return resource region of parent bus of given 788 * region 789 * @dev: PCI device structure contains resources to be searched 790 * @res: child resource record for which parent is sought 791 * 792 * For given resource region of given device, return the resource region of 793 * parent bus the given region is contained in. 794 */ 795 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 796 struct resource *res) 797 { 798 const struct pci_bus *bus = dev->bus; 799 struct resource *r; 800 801 pci_bus_for_each_resource(bus, r) { 802 if (!r) 803 continue; 804 if (resource_contains(r, res)) { 805 806 /* 807 * If the window is prefetchable but the BAR is 808 * not, the allocator made a mistake. 809 */ 810 if (r->flags & IORESOURCE_PREFETCH && 811 !(res->flags & IORESOURCE_PREFETCH)) 812 return NULL; 813 814 /* 815 * If we're below a transparent bridge, there may 816 * be both a positively-decoded aperture and a 817 * subtractively-decoded region that contain the BAR. 818 * We want the positively-decoded one, so this depends 819 * on pci_bus_for_each_resource() giving us those 820 * first. 821 */ 822 return r; 823 } 824 } 825 return NULL; 826 } 827 EXPORT_SYMBOL(pci_find_parent_resource); 828 829 /** 830 * pci_find_resource - Return matching PCI device resource 831 * @dev: PCI device to query 832 * @res: Resource to look for 833 * 834 * Goes over standard PCI resources (BARs) and checks if the given resource 835 * is partially or fully contained in any of them. In that case the 836 * matching resource is returned, %NULL otherwise. 837 */ 838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 839 { 840 int i; 841 842 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 843 struct resource *r = &dev->resource[i]; 844 845 if (r->start && resource_contains(r, res)) 846 return r; 847 } 848 849 return NULL; 850 } 851 EXPORT_SYMBOL(pci_find_resource); 852 853 /** 854 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 855 * @dev: the PCI device to operate on 856 * @pos: config space offset of status word 857 * @mask: mask of bit(s) to care about in status word 858 * 859 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 860 */ 861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 862 { 863 int i; 864 865 /* Wait for Transaction Pending bit clean */ 866 for (i = 0; i < 4; i++) { 867 u16 status; 868 if (i) 869 msleep((1 << (i - 1)) * 100); 870 871 pci_read_config_word(dev, pos, &status); 872 if (!(status & mask)) 873 return 1; 874 } 875 876 return 0; 877 } 878 879 static int pci_acs_enable; 880 881 /** 882 * pci_request_acs - ask for ACS to be enabled if supported 883 */ 884 void pci_request_acs(void) 885 { 886 pci_acs_enable = 1; 887 } 888 889 static const char *disable_acs_redir_param; 890 891 /** 892 * pci_disable_acs_redir - disable ACS redirect capabilities 893 * @dev: the PCI device 894 * 895 * For only devices specified in the disable_acs_redir parameter. 896 */ 897 static void pci_disable_acs_redir(struct pci_dev *dev) 898 { 899 int ret = 0; 900 const char *p; 901 int pos; 902 u16 ctrl; 903 904 if (!disable_acs_redir_param) 905 return; 906 907 p = disable_acs_redir_param; 908 while (*p) { 909 ret = pci_dev_str_match(dev, p, &p); 910 if (ret < 0) { 911 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 912 disable_acs_redir_param); 913 914 break; 915 } else if (ret == 1) { 916 /* Found a match */ 917 break; 918 } 919 920 if (*p != ';' && *p != ',') { 921 /* End of param or invalid format */ 922 break; 923 } 924 p++; 925 } 926 927 if (ret != 1) 928 return; 929 930 if (!pci_dev_specific_disable_acs_redir(dev)) 931 return; 932 933 pos = dev->acs_cap; 934 if (!pos) { 935 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 936 return; 937 } 938 939 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 940 941 /* P2P Request & Completion Redirect */ 942 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 943 944 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 945 946 pci_info(dev, "disabled ACS redirect\n"); 947 } 948 949 /** 950 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 951 * @dev: the PCI device 952 */ 953 static void pci_std_enable_acs(struct pci_dev *dev) 954 { 955 int pos; 956 u16 cap; 957 u16 ctrl; 958 959 pos = dev->acs_cap; 960 if (!pos) 961 return; 962 963 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 964 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 965 966 /* Source Validation */ 967 ctrl |= (cap & PCI_ACS_SV); 968 969 /* P2P Request Redirect */ 970 ctrl |= (cap & PCI_ACS_RR); 971 972 /* P2P Completion Redirect */ 973 ctrl |= (cap & PCI_ACS_CR); 974 975 /* Upstream Forwarding */ 976 ctrl |= (cap & PCI_ACS_UF); 977 978 /* Enable Translation Blocking for external devices and noats */ 979 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 980 ctrl |= (cap & PCI_ACS_TB); 981 982 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 983 } 984 985 /** 986 * pci_enable_acs - enable ACS if hardware support it 987 * @dev: the PCI device 988 */ 989 static void pci_enable_acs(struct pci_dev *dev) 990 { 991 if (!pci_acs_enable) 992 goto disable_acs_redir; 993 994 if (!pci_dev_specific_enable_acs(dev)) 995 goto disable_acs_redir; 996 997 pci_std_enable_acs(dev); 998 999 disable_acs_redir: 1000 /* 1001 * Note: pci_disable_acs_redir() must be called even if ACS was not 1002 * enabled by the kernel because it may have been enabled by 1003 * platform firmware. So if we are told to disable it, we should 1004 * always disable it after setting the kernel's default 1005 * preferences. 1006 */ 1007 pci_disable_acs_redir(dev); 1008 } 1009 1010 /** 1011 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1012 * @dev: PCI device to have its BARs restored 1013 * 1014 * Restore the BAR values for a given device, so as to make it 1015 * accessible by its driver. 1016 */ 1017 static void pci_restore_bars(struct pci_dev *dev) 1018 { 1019 int i; 1020 1021 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1022 pci_update_resource(dev, i); 1023 } 1024 1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1026 { 1027 if (pci_use_mid_pm()) 1028 return true; 1029 1030 return acpi_pci_power_manageable(dev); 1031 } 1032 1033 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1034 pci_power_t t) 1035 { 1036 if (pci_use_mid_pm()) 1037 return mid_pci_set_power_state(dev, t); 1038 1039 return acpi_pci_set_power_state(dev, t); 1040 } 1041 1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1043 { 1044 if (pci_use_mid_pm()) 1045 return mid_pci_get_power_state(dev); 1046 1047 return acpi_pci_get_power_state(dev); 1048 } 1049 1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1051 { 1052 if (!pci_use_mid_pm()) 1053 acpi_pci_refresh_power_state(dev); 1054 } 1055 1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1057 { 1058 if (pci_use_mid_pm()) 1059 return PCI_POWER_ERROR; 1060 1061 return acpi_pci_choose_state(dev); 1062 } 1063 1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1065 { 1066 if (pci_use_mid_pm()) 1067 return PCI_POWER_ERROR; 1068 1069 return acpi_pci_wakeup(dev, enable); 1070 } 1071 1072 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1073 { 1074 if (pci_use_mid_pm()) 1075 return false; 1076 1077 return acpi_pci_need_resume(dev); 1078 } 1079 1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1081 { 1082 if (pci_use_mid_pm()) 1083 return false; 1084 1085 return acpi_pci_bridge_d3(dev); 1086 } 1087 1088 /** 1089 * pci_update_current_state - Read power state of given device and cache it 1090 * @dev: PCI device to handle. 1091 * @state: State to cache in case the device doesn't have the PM capability 1092 * 1093 * The power state is read from the PMCSR register, which however is 1094 * inaccessible in D3cold. The platform firmware is therefore queried first 1095 * to detect accessibility of the register. In case the platform firmware 1096 * reports an incorrect state or the device isn't power manageable by the 1097 * platform at all, we try to detect D3cold by testing accessibility of the 1098 * vendor ID in config space. 1099 */ 1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1101 { 1102 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1103 dev->current_state = PCI_D3cold; 1104 } else if (dev->pm_cap) { 1105 u16 pmcsr; 1106 1107 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1108 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1109 dev->current_state = PCI_D3cold; 1110 return; 1111 } 1112 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1113 } else { 1114 dev->current_state = state; 1115 } 1116 } 1117 1118 /** 1119 * pci_refresh_power_state - Refresh the given device's power state data 1120 * @dev: Target PCI device. 1121 * 1122 * Ask the platform to refresh the devices power state information and invoke 1123 * pci_update_current_state() to update its current PCI power state. 1124 */ 1125 void pci_refresh_power_state(struct pci_dev *dev) 1126 { 1127 platform_pci_refresh_power_state(dev); 1128 pci_update_current_state(dev, dev->current_state); 1129 } 1130 1131 /** 1132 * pci_platform_power_transition - Use platform to change device power state 1133 * @dev: PCI device to handle. 1134 * @state: State to put the device into. 1135 */ 1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1137 { 1138 int error; 1139 1140 error = platform_pci_set_power_state(dev, state); 1141 if (!error) 1142 pci_update_current_state(dev, state); 1143 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1144 dev->current_state = PCI_D0; 1145 1146 return error; 1147 } 1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1149 1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1151 { 1152 pm_request_resume(&pci_dev->dev); 1153 return 0; 1154 } 1155 1156 /** 1157 * pci_resume_bus - Walk given bus and runtime resume devices on it 1158 * @bus: Top bus of the subtree to walk. 1159 */ 1160 void pci_resume_bus(struct pci_bus *bus) 1161 { 1162 if (bus) 1163 pci_walk_bus(bus, pci_resume_one, NULL); 1164 } 1165 1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1167 { 1168 int delay = 1; 1169 bool retrain = false; 1170 struct pci_dev *bridge; 1171 1172 if (pci_is_pcie(dev)) { 1173 bridge = pci_upstream_bridge(dev); 1174 if (bridge) 1175 retrain = true; 1176 } 1177 1178 /* 1179 * After reset, the device should not silently discard config 1180 * requests, but it may still indicate that it needs more time by 1181 * responding to them with CRS completions. The Root Port will 1182 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1183 * the read (except when CRS SV is enabled and the read was for the 1184 * Vendor ID; in that case it synthesizes 0x0001 data). 1185 * 1186 * Wait for the device to return a non-CRS completion. Read the 1187 * Command register instead of Vendor ID so we don't have to 1188 * contend with the CRS SV value. 1189 */ 1190 for (;;) { 1191 u32 id; 1192 1193 pci_read_config_dword(dev, PCI_COMMAND, &id); 1194 if (!PCI_POSSIBLE_ERROR(id)) 1195 break; 1196 1197 if (delay > timeout) { 1198 pci_warn(dev, "not ready %dms after %s; giving up\n", 1199 delay - 1, reset_type); 1200 return -ENOTTY; 1201 } 1202 1203 if (delay > PCI_RESET_WAIT) { 1204 if (retrain) { 1205 retrain = false; 1206 if (pcie_failed_link_retrain(bridge)) { 1207 delay = 1; 1208 continue; 1209 } 1210 } 1211 pci_info(dev, "not ready %dms after %s; waiting\n", 1212 delay - 1, reset_type); 1213 } 1214 1215 msleep(delay); 1216 delay *= 2; 1217 } 1218 1219 if (delay > PCI_RESET_WAIT) 1220 pci_info(dev, "ready %dms after %s\n", delay - 1, 1221 reset_type); 1222 else 1223 pci_dbg(dev, "ready %dms after %s\n", delay - 1, 1224 reset_type); 1225 1226 return 0; 1227 } 1228 1229 /** 1230 * pci_power_up - Put the given device into D0 1231 * @dev: PCI device to power up 1232 * 1233 * On success, return 0 or 1, depending on whether or not it is necessary to 1234 * restore the device's BARs subsequently (1 is returned in that case). 1235 * 1236 * On failure, return a negative error code. Always return failure if @dev 1237 * lacks a Power Management Capability, even if the platform was able to 1238 * put the device in D0 via non-PCI means. 1239 */ 1240 int pci_power_up(struct pci_dev *dev) 1241 { 1242 bool need_restore; 1243 pci_power_t state; 1244 u16 pmcsr; 1245 1246 platform_pci_set_power_state(dev, PCI_D0); 1247 1248 if (!dev->pm_cap) { 1249 state = platform_pci_get_power_state(dev); 1250 if (state == PCI_UNKNOWN) 1251 dev->current_state = PCI_D0; 1252 else 1253 dev->current_state = state; 1254 1255 return -EIO; 1256 } 1257 1258 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1259 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1260 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1261 pci_power_name(dev->current_state)); 1262 dev->current_state = PCI_D3cold; 1263 return -EIO; 1264 } 1265 1266 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1267 1268 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1269 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1270 1271 if (state == PCI_D0) 1272 goto end; 1273 1274 /* 1275 * Force the entire word to 0. This doesn't affect PME_Status, disables 1276 * PME_En, and sets PowerState to 0. 1277 */ 1278 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1279 1280 /* Mandatory transition delays; see PCI PM 1.2. */ 1281 if (state == PCI_D3hot) 1282 pci_dev_d3_sleep(dev); 1283 else if (state == PCI_D2) 1284 udelay(PCI_PM_D2_DELAY); 1285 1286 end: 1287 dev->current_state = PCI_D0; 1288 if (need_restore) 1289 return 1; 1290 1291 return 0; 1292 } 1293 1294 /** 1295 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1296 * @dev: PCI device to power up 1297 * 1298 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1299 * to confirm the state change, restore its BARs if they might be lost and 1300 * reconfigure ASPM in accordance with the new power state. 1301 * 1302 * If pci_restore_state() is going to be called right after a power state change 1303 * to D0, it is more efficient to use pci_power_up() directly instead of this 1304 * function. 1305 */ 1306 static int pci_set_full_power_state(struct pci_dev *dev) 1307 { 1308 u16 pmcsr; 1309 int ret; 1310 1311 ret = pci_power_up(dev); 1312 if (ret < 0) { 1313 if (dev->current_state == PCI_D0) 1314 return 0; 1315 1316 return ret; 1317 } 1318 1319 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1320 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1321 if (dev->current_state != PCI_D0) { 1322 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1323 pci_power_name(dev->current_state)); 1324 } else if (ret > 0) { 1325 /* 1326 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1327 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1328 * from D3hot to D0 _may_ perform an internal reset, thereby 1329 * going to "D0 Uninitialized" rather than "D0 Initialized". 1330 * For example, at least some versions of the 3c905B and the 1331 * 3c556B exhibit this behaviour. 1332 * 1333 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1334 * devices in a D3hot state at boot. Consequently, we need to 1335 * restore at least the BARs so that the device will be 1336 * accessible to its driver. 1337 */ 1338 pci_restore_bars(dev); 1339 } 1340 1341 return 0; 1342 } 1343 1344 /** 1345 * __pci_dev_set_current_state - Set current state of a PCI device 1346 * @dev: Device to handle 1347 * @data: pointer to state to be set 1348 */ 1349 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1350 { 1351 pci_power_t state = *(pci_power_t *)data; 1352 1353 dev->current_state = state; 1354 return 0; 1355 } 1356 1357 /** 1358 * pci_bus_set_current_state - Walk given bus and set current state of devices 1359 * @bus: Top bus of the subtree to walk. 1360 * @state: state to be set 1361 */ 1362 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1363 { 1364 if (bus) 1365 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1366 } 1367 1368 /** 1369 * pci_set_low_power_state - Put a PCI device into a low-power state. 1370 * @dev: PCI device to handle. 1371 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1372 * 1373 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1374 * 1375 * RETURN VALUE: 1376 * -EINVAL if the requested state is invalid. 1377 * -EIO if device does not support PCI PM or its PM capabilities register has a 1378 * wrong version, or device doesn't support the requested state. 1379 * 0 if device already is in the requested state. 1380 * 0 if device's power state has been successfully changed. 1381 */ 1382 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state) 1383 { 1384 u16 pmcsr; 1385 1386 if (!dev->pm_cap) 1387 return -EIO; 1388 1389 /* 1390 * Validate transition: We can enter D0 from any state, but if 1391 * we're already in a low-power state, we can only go deeper. E.g., 1392 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1393 * we'd have to go from D3 to D0, then to D1. 1394 */ 1395 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1396 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1397 pci_power_name(dev->current_state), 1398 pci_power_name(state)); 1399 return -EINVAL; 1400 } 1401 1402 /* Check if this device supports the desired state */ 1403 if ((state == PCI_D1 && !dev->d1_support) 1404 || (state == PCI_D2 && !dev->d2_support)) 1405 return -EIO; 1406 1407 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1408 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1409 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1410 pci_power_name(dev->current_state), 1411 pci_power_name(state)); 1412 dev->current_state = PCI_D3cold; 1413 return -EIO; 1414 } 1415 1416 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1417 pmcsr |= state; 1418 1419 /* Enter specified state */ 1420 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1421 1422 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1423 if (state == PCI_D3hot) 1424 pci_dev_d3_sleep(dev); 1425 else if (state == PCI_D2) 1426 udelay(PCI_PM_D2_DELAY); 1427 1428 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1429 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1430 if (dev->current_state != state) 1431 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1432 pci_power_name(dev->current_state), 1433 pci_power_name(state)); 1434 1435 return 0; 1436 } 1437 1438 /** 1439 * pci_set_power_state - Set the power state of a PCI device 1440 * @dev: PCI device to handle. 1441 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1442 * 1443 * Transition a device to a new power state, using the platform firmware and/or 1444 * the device's PCI PM registers. 1445 * 1446 * RETURN VALUE: 1447 * -EINVAL if the requested state is invalid. 1448 * -EIO if device does not support PCI PM or its PM capabilities register has a 1449 * wrong version, or device doesn't support the requested state. 1450 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1451 * 0 if device already is in the requested state. 1452 * 0 if the transition is to D3 but D3 is not supported. 1453 * 0 if device's power state has been successfully changed. 1454 */ 1455 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1456 { 1457 int error; 1458 1459 /* Bound the state we're entering */ 1460 if (state > PCI_D3cold) 1461 state = PCI_D3cold; 1462 else if (state < PCI_D0) 1463 state = PCI_D0; 1464 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1465 1466 /* 1467 * If the device or the parent bridge do not support PCI 1468 * PM, ignore the request if we're doing anything other 1469 * than putting it into D0 (which would only happen on 1470 * boot). 1471 */ 1472 return 0; 1473 1474 /* Check if we're already there */ 1475 if (dev->current_state == state) 1476 return 0; 1477 1478 if (state == PCI_D0) 1479 return pci_set_full_power_state(dev); 1480 1481 /* 1482 * This device is quirked not to be put into D3, so don't put it in 1483 * D3 1484 */ 1485 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1486 return 0; 1487 1488 if (state == PCI_D3cold) { 1489 /* 1490 * To put the device in D3cold, put it into D3hot in the native 1491 * way, then put it into D3cold using platform ops. 1492 */ 1493 error = pci_set_low_power_state(dev, PCI_D3hot); 1494 1495 if (pci_platform_power_transition(dev, PCI_D3cold)) 1496 return error; 1497 1498 /* Powering off a bridge may power off the whole hierarchy */ 1499 if (dev->current_state == PCI_D3cold) 1500 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1501 } else { 1502 error = pci_set_low_power_state(dev, state); 1503 1504 if (pci_platform_power_transition(dev, state)) 1505 return error; 1506 } 1507 1508 return 0; 1509 } 1510 EXPORT_SYMBOL(pci_set_power_state); 1511 1512 #define PCI_EXP_SAVE_REGS 7 1513 1514 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1515 u16 cap, bool extended) 1516 { 1517 struct pci_cap_saved_state *tmp; 1518 1519 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1520 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1521 return tmp; 1522 } 1523 return NULL; 1524 } 1525 1526 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1527 { 1528 return _pci_find_saved_cap(dev, cap, false); 1529 } 1530 1531 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1532 { 1533 return _pci_find_saved_cap(dev, cap, true); 1534 } 1535 1536 static int pci_save_pcie_state(struct pci_dev *dev) 1537 { 1538 int i = 0; 1539 struct pci_cap_saved_state *save_state; 1540 u16 *cap; 1541 1542 if (!pci_is_pcie(dev)) 1543 return 0; 1544 1545 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1546 if (!save_state) { 1547 pci_err(dev, "buffer not found in %s\n", __func__); 1548 return -ENOMEM; 1549 } 1550 1551 cap = (u16 *)&save_state->cap.data[0]; 1552 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1553 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1554 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1555 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1556 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1557 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1558 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1559 1560 return 0; 1561 } 1562 1563 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1564 { 1565 #ifdef CONFIG_PCIEASPM 1566 struct pci_dev *bridge; 1567 u32 ctl; 1568 1569 bridge = pci_upstream_bridge(dev); 1570 if (bridge && bridge->ltr_path) { 1571 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1572 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1573 pci_dbg(bridge, "re-enabling LTR\n"); 1574 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1575 PCI_EXP_DEVCTL2_LTR_EN); 1576 } 1577 } 1578 #endif 1579 } 1580 1581 static void pci_restore_pcie_state(struct pci_dev *dev) 1582 { 1583 int i = 0; 1584 struct pci_cap_saved_state *save_state; 1585 u16 *cap; 1586 1587 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1588 if (!save_state) 1589 return; 1590 1591 /* 1592 * Downstream ports reset the LTR enable bit when link goes down. 1593 * Check and re-configure the bit here before restoring device. 1594 * PCIe r5.0, sec 7.5.3.16. 1595 */ 1596 pci_bridge_reconfigure_ltr(dev); 1597 1598 cap = (u16 *)&save_state->cap.data[0]; 1599 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1600 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1601 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1602 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1603 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1604 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1605 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1606 } 1607 1608 static int pci_save_pcix_state(struct pci_dev *dev) 1609 { 1610 int pos; 1611 struct pci_cap_saved_state *save_state; 1612 1613 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1614 if (!pos) 1615 return 0; 1616 1617 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1618 if (!save_state) { 1619 pci_err(dev, "buffer not found in %s\n", __func__); 1620 return -ENOMEM; 1621 } 1622 1623 pci_read_config_word(dev, pos + PCI_X_CMD, 1624 (u16 *)save_state->cap.data); 1625 1626 return 0; 1627 } 1628 1629 static void pci_restore_pcix_state(struct pci_dev *dev) 1630 { 1631 int i = 0, pos; 1632 struct pci_cap_saved_state *save_state; 1633 u16 *cap; 1634 1635 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1636 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1637 if (!save_state || !pos) 1638 return; 1639 cap = (u16 *)&save_state->cap.data[0]; 1640 1641 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1642 } 1643 1644 static void pci_save_ltr_state(struct pci_dev *dev) 1645 { 1646 int ltr; 1647 struct pci_cap_saved_state *save_state; 1648 u32 *cap; 1649 1650 if (!pci_is_pcie(dev)) 1651 return; 1652 1653 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1654 if (!ltr) 1655 return; 1656 1657 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1658 if (!save_state) { 1659 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1660 return; 1661 } 1662 1663 /* Some broken devices only support dword access to LTR */ 1664 cap = &save_state->cap.data[0]; 1665 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap); 1666 } 1667 1668 static void pci_restore_ltr_state(struct pci_dev *dev) 1669 { 1670 struct pci_cap_saved_state *save_state; 1671 int ltr; 1672 u32 *cap; 1673 1674 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1675 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1676 if (!save_state || !ltr) 1677 return; 1678 1679 /* Some broken devices only support dword access to LTR */ 1680 cap = &save_state->cap.data[0]; 1681 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap); 1682 } 1683 1684 /** 1685 * pci_save_state - save the PCI configuration space of a device before 1686 * suspending 1687 * @dev: PCI device that we're dealing with 1688 */ 1689 int pci_save_state(struct pci_dev *dev) 1690 { 1691 int i; 1692 /* XXX: 100% dword access ok here? */ 1693 for (i = 0; i < 16; i++) { 1694 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1695 pci_dbg(dev, "save config %#04x: %#010x\n", 1696 i * 4, dev->saved_config_space[i]); 1697 } 1698 dev->state_saved = true; 1699 1700 i = pci_save_pcie_state(dev); 1701 if (i != 0) 1702 return i; 1703 1704 i = pci_save_pcix_state(dev); 1705 if (i != 0) 1706 return i; 1707 1708 pci_save_ltr_state(dev); 1709 pci_save_dpc_state(dev); 1710 pci_save_aer_state(dev); 1711 pci_save_ptm_state(dev); 1712 return pci_save_vc_state(dev); 1713 } 1714 EXPORT_SYMBOL(pci_save_state); 1715 1716 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1717 u32 saved_val, int retry, bool force) 1718 { 1719 u32 val; 1720 1721 pci_read_config_dword(pdev, offset, &val); 1722 if (!force && val == saved_val) 1723 return; 1724 1725 for (;;) { 1726 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1727 offset, val, saved_val); 1728 pci_write_config_dword(pdev, offset, saved_val); 1729 if (retry-- <= 0) 1730 return; 1731 1732 pci_read_config_dword(pdev, offset, &val); 1733 if (val == saved_val) 1734 return; 1735 1736 mdelay(1); 1737 } 1738 } 1739 1740 static void pci_restore_config_space_range(struct pci_dev *pdev, 1741 int start, int end, int retry, 1742 bool force) 1743 { 1744 int index; 1745 1746 for (index = end; index >= start; index--) 1747 pci_restore_config_dword(pdev, 4 * index, 1748 pdev->saved_config_space[index], 1749 retry, force); 1750 } 1751 1752 static void pci_restore_config_space(struct pci_dev *pdev) 1753 { 1754 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1755 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1756 /* Restore BARs before the command register. */ 1757 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1758 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1759 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1760 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1761 1762 /* 1763 * Force rewriting of prefetch registers to avoid S3 resume 1764 * issues on Intel PCI bridges that occur when these 1765 * registers are not explicitly written. 1766 */ 1767 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1768 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1769 } else { 1770 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1771 } 1772 } 1773 1774 static void pci_restore_rebar_state(struct pci_dev *pdev) 1775 { 1776 unsigned int pos, nbars, i; 1777 u32 ctrl; 1778 1779 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1780 if (!pos) 1781 return; 1782 1783 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1784 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 1785 1786 for (i = 0; i < nbars; i++, pos += 8) { 1787 struct resource *res; 1788 int bar_idx, size; 1789 1790 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1791 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1792 res = pdev->resource + bar_idx; 1793 size = pci_rebar_bytes_to_size(resource_size(res)); 1794 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1795 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 1796 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1797 } 1798 } 1799 1800 /** 1801 * pci_restore_state - Restore the saved state of a PCI device 1802 * @dev: PCI device that we're dealing with 1803 */ 1804 void pci_restore_state(struct pci_dev *dev) 1805 { 1806 if (!dev->state_saved) 1807 return; 1808 1809 /* 1810 * Restore max latencies (in the LTR capability) before enabling 1811 * LTR itself (in the PCIe capability). 1812 */ 1813 pci_restore_ltr_state(dev); 1814 1815 pci_restore_pcie_state(dev); 1816 pci_restore_pasid_state(dev); 1817 pci_restore_pri_state(dev); 1818 pci_restore_ats_state(dev); 1819 pci_restore_vc_state(dev); 1820 pci_restore_rebar_state(dev); 1821 pci_restore_dpc_state(dev); 1822 pci_restore_ptm_state(dev); 1823 1824 pci_aer_clear_status(dev); 1825 pci_restore_aer_state(dev); 1826 1827 pci_restore_config_space(dev); 1828 1829 pci_restore_pcix_state(dev); 1830 pci_restore_msi_state(dev); 1831 1832 /* Restore ACS and IOV configuration state */ 1833 pci_enable_acs(dev); 1834 pci_restore_iov_state(dev); 1835 1836 dev->state_saved = false; 1837 } 1838 EXPORT_SYMBOL(pci_restore_state); 1839 1840 struct pci_saved_state { 1841 u32 config_space[16]; 1842 struct pci_cap_saved_data cap[]; 1843 }; 1844 1845 /** 1846 * pci_store_saved_state - Allocate and return an opaque struct containing 1847 * the device saved state. 1848 * @dev: PCI device that we're dealing with 1849 * 1850 * Return NULL if no state or error. 1851 */ 1852 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1853 { 1854 struct pci_saved_state *state; 1855 struct pci_cap_saved_state *tmp; 1856 struct pci_cap_saved_data *cap; 1857 size_t size; 1858 1859 if (!dev->state_saved) 1860 return NULL; 1861 1862 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1863 1864 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1865 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1866 1867 state = kzalloc(size, GFP_KERNEL); 1868 if (!state) 1869 return NULL; 1870 1871 memcpy(state->config_space, dev->saved_config_space, 1872 sizeof(state->config_space)); 1873 1874 cap = state->cap; 1875 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1876 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1877 memcpy(cap, &tmp->cap, len); 1878 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1879 } 1880 /* Empty cap_save terminates list */ 1881 1882 return state; 1883 } 1884 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1885 1886 /** 1887 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1888 * @dev: PCI device that we're dealing with 1889 * @state: Saved state returned from pci_store_saved_state() 1890 */ 1891 int pci_load_saved_state(struct pci_dev *dev, 1892 struct pci_saved_state *state) 1893 { 1894 struct pci_cap_saved_data *cap; 1895 1896 dev->state_saved = false; 1897 1898 if (!state) 1899 return 0; 1900 1901 memcpy(dev->saved_config_space, state->config_space, 1902 sizeof(state->config_space)); 1903 1904 cap = state->cap; 1905 while (cap->size) { 1906 struct pci_cap_saved_state *tmp; 1907 1908 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1909 if (!tmp || tmp->cap.size != cap->size) 1910 return -EINVAL; 1911 1912 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1913 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1914 sizeof(struct pci_cap_saved_data) + cap->size); 1915 } 1916 1917 dev->state_saved = true; 1918 return 0; 1919 } 1920 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1921 1922 /** 1923 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1924 * and free the memory allocated for it. 1925 * @dev: PCI device that we're dealing with 1926 * @state: Pointer to saved state returned from pci_store_saved_state() 1927 */ 1928 int pci_load_and_free_saved_state(struct pci_dev *dev, 1929 struct pci_saved_state **state) 1930 { 1931 int ret = pci_load_saved_state(dev, *state); 1932 kfree(*state); 1933 *state = NULL; 1934 return ret; 1935 } 1936 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1937 1938 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1939 { 1940 return pci_enable_resources(dev, bars); 1941 } 1942 1943 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1944 { 1945 int err; 1946 struct pci_dev *bridge; 1947 u16 cmd; 1948 u8 pin; 1949 1950 err = pci_set_power_state(dev, PCI_D0); 1951 if (err < 0 && err != -EIO) 1952 return err; 1953 1954 bridge = pci_upstream_bridge(dev); 1955 if (bridge) 1956 pcie_aspm_powersave_config_link(bridge); 1957 1958 err = pcibios_enable_device(dev, bars); 1959 if (err < 0) 1960 return err; 1961 pci_fixup_device(pci_fixup_enable, dev); 1962 1963 if (dev->msi_enabled || dev->msix_enabled) 1964 return 0; 1965 1966 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1967 if (pin) { 1968 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1969 if (cmd & PCI_COMMAND_INTX_DISABLE) 1970 pci_write_config_word(dev, PCI_COMMAND, 1971 cmd & ~PCI_COMMAND_INTX_DISABLE); 1972 } 1973 1974 return 0; 1975 } 1976 1977 /** 1978 * pci_reenable_device - Resume abandoned device 1979 * @dev: PCI device to be resumed 1980 * 1981 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1982 * to be called by normal code, write proper resume handler and use it instead. 1983 */ 1984 int pci_reenable_device(struct pci_dev *dev) 1985 { 1986 if (pci_is_enabled(dev)) 1987 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1988 return 0; 1989 } 1990 EXPORT_SYMBOL(pci_reenable_device); 1991 1992 static void pci_enable_bridge(struct pci_dev *dev) 1993 { 1994 struct pci_dev *bridge; 1995 int retval; 1996 1997 bridge = pci_upstream_bridge(dev); 1998 if (bridge) 1999 pci_enable_bridge(bridge); 2000 2001 if (pci_is_enabled(dev)) { 2002 if (!dev->is_busmaster) 2003 pci_set_master(dev); 2004 return; 2005 } 2006 2007 retval = pci_enable_device(dev); 2008 if (retval) 2009 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2010 retval); 2011 pci_set_master(dev); 2012 } 2013 2014 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2015 { 2016 struct pci_dev *bridge; 2017 int err; 2018 int i, bars = 0; 2019 2020 /* 2021 * Power state could be unknown at this point, either due to a fresh 2022 * boot or a device removal call. So get the current power state 2023 * so that things like MSI message writing will behave as expected 2024 * (e.g. if the device really is in D0 at enable time). 2025 */ 2026 pci_update_current_state(dev, dev->current_state); 2027 2028 if (atomic_inc_return(&dev->enable_cnt) > 1) 2029 return 0; /* already enabled */ 2030 2031 bridge = pci_upstream_bridge(dev); 2032 if (bridge) 2033 pci_enable_bridge(bridge); 2034 2035 /* only skip sriov related */ 2036 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2037 if (dev->resource[i].flags & flags) 2038 bars |= (1 << i); 2039 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2040 if (dev->resource[i].flags & flags) 2041 bars |= (1 << i); 2042 2043 err = do_pci_enable_device(dev, bars); 2044 if (err < 0) 2045 atomic_dec(&dev->enable_cnt); 2046 return err; 2047 } 2048 2049 /** 2050 * pci_enable_device_io - Initialize a device for use with IO space 2051 * @dev: PCI device to be initialized 2052 * 2053 * Initialize device before it's used by a driver. Ask low-level code 2054 * to enable I/O resources. Wake up the device if it was suspended. 2055 * Beware, this function can fail. 2056 */ 2057 int pci_enable_device_io(struct pci_dev *dev) 2058 { 2059 return pci_enable_device_flags(dev, IORESOURCE_IO); 2060 } 2061 EXPORT_SYMBOL(pci_enable_device_io); 2062 2063 /** 2064 * pci_enable_device_mem - Initialize a device for use with Memory space 2065 * @dev: PCI device to be initialized 2066 * 2067 * Initialize device before it's used by a driver. Ask low-level code 2068 * to enable Memory resources. Wake up the device if it was suspended. 2069 * Beware, this function can fail. 2070 */ 2071 int pci_enable_device_mem(struct pci_dev *dev) 2072 { 2073 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2074 } 2075 EXPORT_SYMBOL(pci_enable_device_mem); 2076 2077 /** 2078 * pci_enable_device - Initialize device before it's used by a driver. 2079 * @dev: PCI device to be initialized 2080 * 2081 * Initialize device before it's used by a driver. Ask low-level code 2082 * to enable I/O and memory. Wake up the device if it was suspended. 2083 * Beware, this function can fail. 2084 * 2085 * Note we don't actually enable the device many times if we call 2086 * this function repeatedly (we just increment the count). 2087 */ 2088 int pci_enable_device(struct pci_dev *dev) 2089 { 2090 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2091 } 2092 EXPORT_SYMBOL(pci_enable_device); 2093 2094 /* 2095 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2096 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2097 * there's no need to track it separately. pci_devres is initialized 2098 * when a device is enabled using managed PCI device enable interface. 2099 */ 2100 struct pci_devres { 2101 unsigned int enabled:1; 2102 unsigned int pinned:1; 2103 unsigned int orig_intx:1; 2104 unsigned int restore_intx:1; 2105 unsigned int mwi:1; 2106 u32 region_mask; 2107 }; 2108 2109 static void pcim_release(struct device *gendev, void *res) 2110 { 2111 struct pci_dev *dev = to_pci_dev(gendev); 2112 struct pci_devres *this = res; 2113 int i; 2114 2115 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2116 if (this->region_mask & (1 << i)) 2117 pci_release_region(dev, i); 2118 2119 if (this->mwi) 2120 pci_clear_mwi(dev); 2121 2122 if (this->restore_intx) 2123 pci_intx(dev, this->orig_intx); 2124 2125 if (this->enabled && !this->pinned) 2126 pci_disable_device(dev); 2127 } 2128 2129 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2130 { 2131 struct pci_devres *dr, *new_dr; 2132 2133 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2134 if (dr) 2135 return dr; 2136 2137 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2138 if (!new_dr) 2139 return NULL; 2140 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2141 } 2142 2143 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2144 { 2145 if (pci_is_managed(pdev)) 2146 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2147 return NULL; 2148 } 2149 2150 /** 2151 * pcim_enable_device - Managed pci_enable_device() 2152 * @pdev: PCI device to be initialized 2153 * 2154 * Managed pci_enable_device(). 2155 */ 2156 int pcim_enable_device(struct pci_dev *pdev) 2157 { 2158 struct pci_devres *dr; 2159 int rc; 2160 2161 dr = get_pci_dr(pdev); 2162 if (unlikely(!dr)) 2163 return -ENOMEM; 2164 if (dr->enabled) 2165 return 0; 2166 2167 rc = pci_enable_device(pdev); 2168 if (!rc) { 2169 pdev->is_managed = 1; 2170 dr->enabled = 1; 2171 } 2172 return rc; 2173 } 2174 EXPORT_SYMBOL(pcim_enable_device); 2175 2176 /** 2177 * pcim_pin_device - Pin managed PCI device 2178 * @pdev: PCI device to pin 2179 * 2180 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2181 * driver detach. @pdev must have been enabled with 2182 * pcim_enable_device(). 2183 */ 2184 void pcim_pin_device(struct pci_dev *pdev) 2185 { 2186 struct pci_devres *dr; 2187 2188 dr = find_pci_dr(pdev); 2189 WARN_ON(!dr || !dr->enabled); 2190 if (dr) 2191 dr->pinned = 1; 2192 } 2193 EXPORT_SYMBOL(pcim_pin_device); 2194 2195 /* 2196 * pcibios_device_add - provide arch specific hooks when adding device dev 2197 * @dev: the PCI device being added 2198 * 2199 * Permits the platform to provide architecture specific functionality when 2200 * devices are added. This is the default implementation. Architecture 2201 * implementations can override this. 2202 */ 2203 int __weak pcibios_device_add(struct pci_dev *dev) 2204 { 2205 return 0; 2206 } 2207 2208 /** 2209 * pcibios_release_device - provide arch specific hooks when releasing 2210 * device dev 2211 * @dev: the PCI device being released 2212 * 2213 * Permits the platform to provide architecture specific functionality when 2214 * devices are released. This is the default implementation. Architecture 2215 * implementations can override this. 2216 */ 2217 void __weak pcibios_release_device(struct pci_dev *dev) {} 2218 2219 /** 2220 * pcibios_disable_device - disable arch specific PCI resources for device dev 2221 * @dev: the PCI device to disable 2222 * 2223 * Disables architecture specific PCI resources for the device. This 2224 * is the default implementation. Architecture implementations can 2225 * override this. 2226 */ 2227 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2228 2229 /** 2230 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2231 * @irq: ISA IRQ to penalize 2232 * @active: IRQ active or not 2233 * 2234 * Permits the platform to provide architecture-specific functionality when 2235 * penalizing ISA IRQs. This is the default implementation. Architecture 2236 * implementations can override this. 2237 */ 2238 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2239 2240 static void do_pci_disable_device(struct pci_dev *dev) 2241 { 2242 u16 pci_command; 2243 2244 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2245 if (pci_command & PCI_COMMAND_MASTER) { 2246 pci_command &= ~PCI_COMMAND_MASTER; 2247 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2248 } 2249 2250 pcibios_disable_device(dev); 2251 } 2252 2253 /** 2254 * pci_disable_enabled_device - Disable device without updating enable_cnt 2255 * @dev: PCI device to disable 2256 * 2257 * NOTE: This function is a backend of PCI power management routines and is 2258 * not supposed to be called drivers. 2259 */ 2260 void pci_disable_enabled_device(struct pci_dev *dev) 2261 { 2262 if (pci_is_enabled(dev)) 2263 do_pci_disable_device(dev); 2264 } 2265 2266 /** 2267 * pci_disable_device - Disable PCI device after use 2268 * @dev: PCI device to be disabled 2269 * 2270 * Signal to the system that the PCI device is not in use by the system 2271 * anymore. This only involves disabling PCI bus-mastering, if active. 2272 * 2273 * Note we don't actually disable the device until all callers of 2274 * pci_enable_device() have called pci_disable_device(). 2275 */ 2276 void pci_disable_device(struct pci_dev *dev) 2277 { 2278 struct pci_devres *dr; 2279 2280 dr = find_pci_dr(dev); 2281 if (dr) 2282 dr->enabled = 0; 2283 2284 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2285 "disabling already-disabled device"); 2286 2287 if (atomic_dec_return(&dev->enable_cnt) != 0) 2288 return; 2289 2290 do_pci_disable_device(dev); 2291 2292 dev->is_busmaster = 0; 2293 } 2294 EXPORT_SYMBOL(pci_disable_device); 2295 2296 /** 2297 * pcibios_set_pcie_reset_state - set reset state for device dev 2298 * @dev: the PCIe device reset 2299 * @state: Reset state to enter into 2300 * 2301 * Set the PCIe reset state for the device. This is the default 2302 * implementation. Architecture implementations can override this. 2303 */ 2304 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2305 enum pcie_reset_state state) 2306 { 2307 return -EINVAL; 2308 } 2309 2310 /** 2311 * pci_set_pcie_reset_state - set reset state for device dev 2312 * @dev: the PCIe device reset 2313 * @state: Reset state to enter into 2314 * 2315 * Sets the PCI reset state for the device. 2316 */ 2317 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2318 { 2319 return pcibios_set_pcie_reset_state(dev, state); 2320 } 2321 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2322 2323 #ifdef CONFIG_PCIEAER 2324 void pcie_clear_device_status(struct pci_dev *dev) 2325 { 2326 u16 sta; 2327 2328 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2329 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2330 } 2331 #endif 2332 2333 /** 2334 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2335 * @dev: PCIe root port or event collector. 2336 */ 2337 void pcie_clear_root_pme_status(struct pci_dev *dev) 2338 { 2339 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2340 } 2341 2342 /** 2343 * pci_check_pme_status - Check if given device has generated PME. 2344 * @dev: Device to check. 2345 * 2346 * Check the PME status of the device and if set, clear it and clear PME enable 2347 * (if set). Return 'true' if PME status and PME enable were both set or 2348 * 'false' otherwise. 2349 */ 2350 bool pci_check_pme_status(struct pci_dev *dev) 2351 { 2352 int pmcsr_pos; 2353 u16 pmcsr; 2354 bool ret = false; 2355 2356 if (!dev->pm_cap) 2357 return false; 2358 2359 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2360 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2361 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2362 return false; 2363 2364 /* Clear PME status. */ 2365 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2366 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2367 /* Disable PME to avoid interrupt flood. */ 2368 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2369 ret = true; 2370 } 2371 2372 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2373 2374 return ret; 2375 } 2376 2377 /** 2378 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2379 * @dev: Device to handle. 2380 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2381 * 2382 * Check if @dev has generated PME and queue a resume request for it in that 2383 * case. 2384 */ 2385 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2386 { 2387 if (pme_poll_reset && dev->pme_poll) 2388 dev->pme_poll = false; 2389 2390 if (pci_check_pme_status(dev)) { 2391 pci_wakeup_event(dev); 2392 pm_request_resume(&dev->dev); 2393 } 2394 return 0; 2395 } 2396 2397 /** 2398 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2399 * @bus: Top bus of the subtree to walk. 2400 */ 2401 void pci_pme_wakeup_bus(struct pci_bus *bus) 2402 { 2403 if (bus) 2404 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2405 } 2406 2407 2408 /** 2409 * pci_pme_capable - check the capability of PCI device to generate PME# 2410 * @dev: PCI device to handle. 2411 * @state: PCI state from which device will issue PME#. 2412 */ 2413 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2414 { 2415 if (!dev->pm_cap) 2416 return false; 2417 2418 return !!(dev->pme_support & (1 << state)); 2419 } 2420 EXPORT_SYMBOL(pci_pme_capable); 2421 2422 static void pci_pme_list_scan(struct work_struct *work) 2423 { 2424 struct pci_pme_device *pme_dev, *n; 2425 2426 mutex_lock(&pci_pme_list_mutex); 2427 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2428 struct pci_dev *pdev = pme_dev->dev; 2429 2430 if (pdev->pme_poll) { 2431 struct pci_dev *bridge = pdev->bus->self; 2432 struct device *dev = &pdev->dev; 2433 int pm_status; 2434 2435 /* 2436 * If bridge is in low power state, the 2437 * configuration space of subordinate devices 2438 * may be not accessible 2439 */ 2440 if (bridge && bridge->current_state != PCI_D0) 2441 continue; 2442 2443 /* 2444 * If the device is in a low power state it 2445 * should not be polled either. 2446 */ 2447 pm_status = pm_runtime_get_if_active(dev, true); 2448 if (!pm_status) 2449 continue; 2450 2451 if (pdev->current_state != PCI_D3cold) 2452 pci_pme_wakeup(pdev, NULL); 2453 2454 if (pm_status > 0) 2455 pm_runtime_put(dev); 2456 } else { 2457 list_del(&pme_dev->list); 2458 kfree(pme_dev); 2459 } 2460 } 2461 if (!list_empty(&pci_pme_list)) 2462 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2463 msecs_to_jiffies(PME_TIMEOUT)); 2464 mutex_unlock(&pci_pme_list_mutex); 2465 } 2466 2467 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2468 { 2469 u16 pmcsr; 2470 2471 if (!dev->pme_support) 2472 return; 2473 2474 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2475 /* Clear PME_Status by writing 1 to it and enable PME# */ 2476 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2477 if (!enable) 2478 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2479 2480 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2481 } 2482 2483 /** 2484 * pci_pme_restore - Restore PME configuration after config space restore. 2485 * @dev: PCI device to update. 2486 */ 2487 void pci_pme_restore(struct pci_dev *dev) 2488 { 2489 u16 pmcsr; 2490 2491 if (!dev->pme_support) 2492 return; 2493 2494 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2495 if (dev->wakeup_prepared) { 2496 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2497 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2498 } else { 2499 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2500 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2501 } 2502 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2503 } 2504 2505 /** 2506 * pci_pme_active - enable or disable PCI device's PME# function 2507 * @dev: PCI device to handle. 2508 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2509 * 2510 * The caller must verify that the device is capable of generating PME# before 2511 * calling this function with @enable equal to 'true'. 2512 */ 2513 void pci_pme_active(struct pci_dev *dev, bool enable) 2514 { 2515 __pci_pme_active(dev, enable); 2516 2517 /* 2518 * PCI (as opposed to PCIe) PME requires that the device have 2519 * its PME# line hooked up correctly. Not all hardware vendors 2520 * do this, so the PME never gets delivered and the device 2521 * remains asleep. The easiest way around this is to 2522 * periodically walk the list of suspended devices and check 2523 * whether any have their PME flag set. The assumption is that 2524 * we'll wake up often enough anyway that this won't be a huge 2525 * hit, and the power savings from the devices will still be a 2526 * win. 2527 * 2528 * Although PCIe uses in-band PME message instead of PME# line 2529 * to report PME, PME does not work for some PCIe devices in 2530 * reality. For example, there are devices that set their PME 2531 * status bits, but don't really bother to send a PME message; 2532 * there are PCI Express Root Ports that don't bother to 2533 * trigger interrupts when they receive PME messages from the 2534 * devices below. So PME poll is used for PCIe devices too. 2535 */ 2536 2537 if (dev->pme_poll) { 2538 struct pci_pme_device *pme_dev; 2539 if (enable) { 2540 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2541 GFP_KERNEL); 2542 if (!pme_dev) { 2543 pci_warn(dev, "can't enable PME#\n"); 2544 return; 2545 } 2546 pme_dev->dev = dev; 2547 mutex_lock(&pci_pme_list_mutex); 2548 list_add(&pme_dev->list, &pci_pme_list); 2549 if (list_is_singular(&pci_pme_list)) 2550 queue_delayed_work(system_freezable_wq, 2551 &pci_pme_work, 2552 msecs_to_jiffies(PME_TIMEOUT)); 2553 mutex_unlock(&pci_pme_list_mutex); 2554 } else { 2555 mutex_lock(&pci_pme_list_mutex); 2556 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2557 if (pme_dev->dev == dev) { 2558 list_del(&pme_dev->list); 2559 kfree(pme_dev); 2560 break; 2561 } 2562 } 2563 mutex_unlock(&pci_pme_list_mutex); 2564 } 2565 } 2566 2567 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2568 } 2569 EXPORT_SYMBOL(pci_pme_active); 2570 2571 /** 2572 * __pci_enable_wake - enable PCI device as wakeup event source 2573 * @dev: PCI device affected 2574 * @state: PCI state from which device will issue wakeup events 2575 * @enable: True to enable event generation; false to disable 2576 * 2577 * This enables the device as a wakeup event source, or disables it. 2578 * When such events involves platform-specific hooks, those hooks are 2579 * called automatically by this routine. 2580 * 2581 * Devices with legacy power management (no standard PCI PM capabilities) 2582 * always require such platform hooks. 2583 * 2584 * RETURN VALUE: 2585 * 0 is returned on success 2586 * -EINVAL is returned if device is not supposed to wake up the system 2587 * Error code depending on the platform is returned if both the platform and 2588 * the native mechanism fail to enable the generation of wake-up events 2589 */ 2590 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2591 { 2592 int ret = 0; 2593 2594 /* 2595 * Bridges that are not power-manageable directly only signal 2596 * wakeup on behalf of subordinate devices which is set up 2597 * elsewhere, so skip them. However, bridges that are 2598 * power-manageable may signal wakeup for themselves (for example, 2599 * on a hotplug event) and they need to be covered here. 2600 */ 2601 if (!pci_power_manageable(dev)) 2602 return 0; 2603 2604 /* Don't do the same thing twice in a row for one device. */ 2605 if (!!enable == !!dev->wakeup_prepared) 2606 return 0; 2607 2608 /* 2609 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2610 * Anderson we should be doing PME# wake enable followed by ACPI wake 2611 * enable. To disable wake-up we call the platform first, for symmetry. 2612 */ 2613 2614 if (enable) { 2615 int error; 2616 2617 /* 2618 * Enable PME signaling if the device can signal PME from 2619 * D3cold regardless of whether or not it can signal PME from 2620 * the current target state, because that will allow it to 2621 * signal PME when the hierarchy above it goes into D3cold and 2622 * the device itself ends up in D3cold as a result of that. 2623 */ 2624 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2625 pci_pme_active(dev, true); 2626 else 2627 ret = 1; 2628 error = platform_pci_set_wakeup(dev, true); 2629 if (ret) 2630 ret = error; 2631 if (!ret) 2632 dev->wakeup_prepared = true; 2633 } else { 2634 platform_pci_set_wakeup(dev, false); 2635 pci_pme_active(dev, false); 2636 dev->wakeup_prepared = false; 2637 } 2638 2639 return ret; 2640 } 2641 2642 /** 2643 * pci_enable_wake - change wakeup settings for a PCI device 2644 * @pci_dev: Target device 2645 * @state: PCI state from which device will issue wakeup events 2646 * @enable: Whether or not to enable event generation 2647 * 2648 * If @enable is set, check device_may_wakeup() for the device before calling 2649 * __pci_enable_wake() for it. 2650 */ 2651 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2652 { 2653 if (enable && !device_may_wakeup(&pci_dev->dev)) 2654 return -EINVAL; 2655 2656 return __pci_enable_wake(pci_dev, state, enable); 2657 } 2658 EXPORT_SYMBOL(pci_enable_wake); 2659 2660 /** 2661 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2662 * @dev: PCI device to prepare 2663 * @enable: True to enable wake-up event generation; false to disable 2664 * 2665 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2666 * and this function allows them to set that up cleanly - pci_enable_wake() 2667 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2668 * ordering constraints. 2669 * 2670 * This function only returns error code if the device is not allowed to wake 2671 * up the system from sleep or it is not capable of generating PME# from both 2672 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2673 */ 2674 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2675 { 2676 return pci_pme_capable(dev, PCI_D3cold) ? 2677 pci_enable_wake(dev, PCI_D3cold, enable) : 2678 pci_enable_wake(dev, PCI_D3hot, enable); 2679 } 2680 EXPORT_SYMBOL(pci_wake_from_d3); 2681 2682 /** 2683 * pci_target_state - find an appropriate low power state for a given PCI dev 2684 * @dev: PCI device 2685 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2686 * 2687 * Use underlying platform code to find a supported low power state for @dev. 2688 * If the platform can't manage @dev, return the deepest state from which it 2689 * can generate wake events, based on any available PME info. 2690 */ 2691 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2692 { 2693 if (platform_pci_power_manageable(dev)) { 2694 /* 2695 * Call the platform to find the target state for the device. 2696 */ 2697 pci_power_t state = platform_pci_choose_state(dev); 2698 2699 switch (state) { 2700 case PCI_POWER_ERROR: 2701 case PCI_UNKNOWN: 2702 return PCI_D3hot; 2703 2704 case PCI_D1: 2705 case PCI_D2: 2706 if (pci_no_d1d2(dev)) 2707 return PCI_D3hot; 2708 } 2709 2710 return state; 2711 } 2712 2713 /* 2714 * If the device is in D3cold even though it's not power-manageable by 2715 * the platform, it may have been powered down by non-standard means. 2716 * Best to let it slumber. 2717 */ 2718 if (dev->current_state == PCI_D3cold) 2719 return PCI_D3cold; 2720 else if (!dev->pm_cap) 2721 return PCI_D0; 2722 2723 if (wakeup && dev->pme_support) { 2724 pci_power_t state = PCI_D3hot; 2725 2726 /* 2727 * Find the deepest state from which the device can generate 2728 * PME#. 2729 */ 2730 while (state && !(dev->pme_support & (1 << state))) 2731 state--; 2732 2733 if (state) 2734 return state; 2735 else if (dev->pme_support & 1) 2736 return PCI_D0; 2737 } 2738 2739 return PCI_D3hot; 2740 } 2741 2742 /** 2743 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2744 * into a sleep state 2745 * @dev: Device to handle. 2746 * 2747 * Choose the power state appropriate for the device depending on whether 2748 * it can wake up the system and/or is power manageable by the platform 2749 * (PCI_D3hot is the default) and put the device into that state. 2750 */ 2751 int pci_prepare_to_sleep(struct pci_dev *dev) 2752 { 2753 bool wakeup = device_may_wakeup(&dev->dev); 2754 pci_power_t target_state = pci_target_state(dev, wakeup); 2755 int error; 2756 2757 if (target_state == PCI_POWER_ERROR) 2758 return -EIO; 2759 2760 pci_enable_wake(dev, target_state, wakeup); 2761 2762 error = pci_set_power_state(dev, target_state); 2763 2764 if (error) 2765 pci_enable_wake(dev, target_state, false); 2766 2767 return error; 2768 } 2769 EXPORT_SYMBOL(pci_prepare_to_sleep); 2770 2771 /** 2772 * pci_back_from_sleep - turn PCI device on during system-wide transition 2773 * into working state 2774 * @dev: Device to handle. 2775 * 2776 * Disable device's system wake-up capability and put it into D0. 2777 */ 2778 int pci_back_from_sleep(struct pci_dev *dev) 2779 { 2780 int ret = pci_set_power_state(dev, PCI_D0); 2781 2782 if (ret) 2783 return ret; 2784 2785 pci_enable_wake(dev, PCI_D0, false); 2786 return 0; 2787 } 2788 EXPORT_SYMBOL(pci_back_from_sleep); 2789 2790 /** 2791 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2792 * @dev: PCI device being suspended. 2793 * 2794 * Prepare @dev to generate wake-up events at run time and put it into a low 2795 * power state. 2796 */ 2797 int pci_finish_runtime_suspend(struct pci_dev *dev) 2798 { 2799 pci_power_t target_state; 2800 int error; 2801 2802 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2803 if (target_state == PCI_POWER_ERROR) 2804 return -EIO; 2805 2806 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2807 2808 error = pci_set_power_state(dev, target_state); 2809 2810 if (error) 2811 pci_enable_wake(dev, target_state, false); 2812 2813 return error; 2814 } 2815 2816 /** 2817 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2818 * @dev: Device to check. 2819 * 2820 * Return true if the device itself is capable of generating wake-up events 2821 * (through the platform or using the native PCIe PME) or if the device supports 2822 * PME and one of its upstream bridges can generate wake-up events. 2823 */ 2824 bool pci_dev_run_wake(struct pci_dev *dev) 2825 { 2826 struct pci_bus *bus = dev->bus; 2827 2828 if (!dev->pme_support) 2829 return false; 2830 2831 /* PME-capable in principle, but not from the target power state */ 2832 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2833 return false; 2834 2835 if (device_can_wakeup(&dev->dev)) 2836 return true; 2837 2838 while (bus->parent) { 2839 struct pci_dev *bridge = bus->self; 2840 2841 if (device_can_wakeup(&bridge->dev)) 2842 return true; 2843 2844 bus = bus->parent; 2845 } 2846 2847 /* We have reached the root bus. */ 2848 if (bus->bridge) 2849 return device_can_wakeup(bus->bridge); 2850 2851 return false; 2852 } 2853 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2854 2855 /** 2856 * pci_dev_need_resume - Check if it is necessary to resume the device. 2857 * @pci_dev: Device to check. 2858 * 2859 * Return 'true' if the device is not runtime-suspended or it has to be 2860 * reconfigured due to wakeup settings difference between system and runtime 2861 * suspend, or the current power state of it is not suitable for the upcoming 2862 * (system-wide) transition. 2863 */ 2864 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2865 { 2866 struct device *dev = &pci_dev->dev; 2867 pci_power_t target_state; 2868 2869 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2870 return true; 2871 2872 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2873 2874 /* 2875 * If the earlier platform check has not triggered, D3cold is just power 2876 * removal on top of D3hot, so no need to resume the device in that 2877 * case. 2878 */ 2879 return target_state != pci_dev->current_state && 2880 target_state != PCI_D3cold && 2881 pci_dev->current_state != PCI_D3hot; 2882 } 2883 2884 /** 2885 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2886 * @pci_dev: Device to check. 2887 * 2888 * If the device is suspended and it is not configured for system wakeup, 2889 * disable PME for it to prevent it from waking up the system unnecessarily. 2890 * 2891 * Note that if the device's power state is D3cold and the platform check in 2892 * pci_dev_need_resume() has not triggered, the device's configuration need not 2893 * be changed. 2894 */ 2895 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2896 { 2897 struct device *dev = &pci_dev->dev; 2898 2899 spin_lock_irq(&dev->power.lock); 2900 2901 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2902 pci_dev->current_state < PCI_D3cold) 2903 __pci_pme_active(pci_dev, false); 2904 2905 spin_unlock_irq(&dev->power.lock); 2906 } 2907 2908 /** 2909 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2910 * @pci_dev: Device to handle. 2911 * 2912 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2913 * it might have been disabled during the prepare phase of system suspend if 2914 * the device was not configured for system wakeup. 2915 */ 2916 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2917 { 2918 struct device *dev = &pci_dev->dev; 2919 2920 if (!pci_dev_run_wake(pci_dev)) 2921 return; 2922 2923 spin_lock_irq(&dev->power.lock); 2924 2925 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2926 __pci_pme_active(pci_dev, true); 2927 2928 spin_unlock_irq(&dev->power.lock); 2929 } 2930 2931 /** 2932 * pci_choose_state - Choose the power state of a PCI device. 2933 * @dev: Target PCI device. 2934 * @state: Target state for the whole system. 2935 * 2936 * Returns PCI power state suitable for @dev and @state. 2937 */ 2938 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2939 { 2940 if (state.event == PM_EVENT_ON) 2941 return PCI_D0; 2942 2943 return pci_target_state(dev, false); 2944 } 2945 EXPORT_SYMBOL(pci_choose_state); 2946 2947 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2948 { 2949 struct device *dev = &pdev->dev; 2950 struct device *parent = dev->parent; 2951 2952 if (parent) 2953 pm_runtime_get_sync(parent); 2954 pm_runtime_get_noresume(dev); 2955 /* 2956 * pdev->current_state is set to PCI_D3cold during suspending, 2957 * so wait until suspending completes 2958 */ 2959 pm_runtime_barrier(dev); 2960 /* 2961 * Only need to resume devices in D3cold, because config 2962 * registers are still accessible for devices suspended but 2963 * not in D3cold. 2964 */ 2965 if (pdev->current_state == PCI_D3cold) 2966 pm_runtime_resume(dev); 2967 } 2968 2969 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2970 { 2971 struct device *dev = &pdev->dev; 2972 struct device *parent = dev->parent; 2973 2974 pm_runtime_put(dev); 2975 if (parent) 2976 pm_runtime_put_sync(parent); 2977 } 2978 2979 static const struct dmi_system_id bridge_d3_blacklist[] = { 2980 #ifdef CONFIG_X86 2981 { 2982 /* 2983 * Gigabyte X299 root port is not marked as hotplug capable 2984 * which allows Linux to power manage it. However, this 2985 * confuses the BIOS SMI handler so don't power manage root 2986 * ports on that system. 2987 */ 2988 .ident = "X299 DESIGNARE EX-CF", 2989 .matches = { 2990 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2991 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2992 }, 2993 }, 2994 { 2995 /* 2996 * Downstream device is not accessible after putting a root port 2997 * into D3cold and back into D0 on Elo Continental Z2 board 2998 */ 2999 .ident = "Elo Continental Z2", 3000 .matches = { 3001 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 3002 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 3003 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 3004 }, 3005 }, 3006 #endif 3007 { } 3008 }; 3009 3010 /** 3011 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 3012 * @bridge: Bridge to check 3013 * 3014 * This function checks if it is possible to move the bridge to D3. 3015 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 3016 */ 3017 bool pci_bridge_d3_possible(struct pci_dev *bridge) 3018 { 3019 if (!pci_is_pcie(bridge)) 3020 return false; 3021 3022 switch (pci_pcie_type(bridge)) { 3023 case PCI_EXP_TYPE_ROOT_PORT: 3024 case PCI_EXP_TYPE_UPSTREAM: 3025 case PCI_EXP_TYPE_DOWNSTREAM: 3026 if (pci_bridge_d3_disable) 3027 return false; 3028 3029 /* 3030 * Hotplug ports handled by firmware in System Management Mode 3031 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3032 */ 3033 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3034 return false; 3035 3036 if (pci_bridge_d3_force) 3037 return true; 3038 3039 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3040 if (bridge->is_thunderbolt) 3041 return true; 3042 3043 /* Platform might know better if the bridge supports D3 */ 3044 if (platform_pci_bridge_d3(bridge)) 3045 return true; 3046 3047 /* 3048 * Hotplug ports handled natively by the OS were not validated 3049 * by vendors for runtime D3 at least until 2018 because there 3050 * was no OS support. 3051 */ 3052 if (bridge->is_hotplug_bridge) 3053 return false; 3054 3055 if (dmi_check_system(bridge_d3_blacklist)) 3056 return false; 3057 3058 /* 3059 * It should be safe to put PCIe ports from 2015 or newer 3060 * to D3. 3061 */ 3062 if (dmi_get_bios_year() >= 2015) 3063 return true; 3064 break; 3065 } 3066 3067 return false; 3068 } 3069 3070 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3071 { 3072 bool *d3cold_ok = data; 3073 3074 if (/* The device needs to be allowed to go D3cold ... */ 3075 dev->no_d3cold || !dev->d3cold_allowed || 3076 3077 /* ... and if it is wakeup capable to do so from D3cold. */ 3078 (device_may_wakeup(&dev->dev) && 3079 !pci_pme_capable(dev, PCI_D3cold)) || 3080 3081 /* If it is a bridge it must be allowed to go to D3. */ 3082 !pci_power_manageable(dev)) 3083 3084 *d3cold_ok = false; 3085 3086 return !*d3cold_ok; 3087 } 3088 3089 /* 3090 * pci_bridge_d3_update - Update bridge D3 capabilities 3091 * @dev: PCI device which is changed 3092 * 3093 * Update upstream bridge PM capabilities accordingly depending on if the 3094 * device PM configuration was changed or the device is being removed. The 3095 * change is also propagated upstream. 3096 */ 3097 void pci_bridge_d3_update(struct pci_dev *dev) 3098 { 3099 bool remove = !device_is_registered(&dev->dev); 3100 struct pci_dev *bridge; 3101 bool d3cold_ok = true; 3102 3103 bridge = pci_upstream_bridge(dev); 3104 if (!bridge || !pci_bridge_d3_possible(bridge)) 3105 return; 3106 3107 /* 3108 * If D3 is currently allowed for the bridge, removing one of its 3109 * children won't change that. 3110 */ 3111 if (remove && bridge->bridge_d3) 3112 return; 3113 3114 /* 3115 * If D3 is currently allowed for the bridge and a child is added or 3116 * changed, disallowance of D3 can only be caused by that child, so 3117 * we only need to check that single device, not any of its siblings. 3118 * 3119 * If D3 is currently not allowed for the bridge, checking the device 3120 * first may allow us to skip checking its siblings. 3121 */ 3122 if (!remove) 3123 pci_dev_check_d3cold(dev, &d3cold_ok); 3124 3125 /* 3126 * If D3 is currently not allowed for the bridge, this may be caused 3127 * either by the device being changed/removed or any of its siblings, 3128 * so we need to go through all children to find out if one of them 3129 * continues to block D3. 3130 */ 3131 if (d3cold_ok && !bridge->bridge_d3) 3132 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3133 &d3cold_ok); 3134 3135 if (bridge->bridge_d3 != d3cold_ok) { 3136 bridge->bridge_d3 = d3cold_ok; 3137 /* Propagate change to upstream bridges */ 3138 pci_bridge_d3_update(bridge); 3139 } 3140 } 3141 3142 /** 3143 * pci_d3cold_enable - Enable D3cold for device 3144 * @dev: PCI device to handle 3145 * 3146 * This function can be used in drivers to enable D3cold from the device 3147 * they handle. It also updates upstream PCI bridge PM capabilities 3148 * accordingly. 3149 */ 3150 void pci_d3cold_enable(struct pci_dev *dev) 3151 { 3152 if (dev->no_d3cold) { 3153 dev->no_d3cold = false; 3154 pci_bridge_d3_update(dev); 3155 } 3156 } 3157 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3158 3159 /** 3160 * pci_d3cold_disable - Disable D3cold for device 3161 * @dev: PCI device to handle 3162 * 3163 * This function can be used in drivers to disable D3cold from the device 3164 * they handle. It also updates upstream PCI bridge PM capabilities 3165 * accordingly. 3166 */ 3167 void pci_d3cold_disable(struct pci_dev *dev) 3168 { 3169 if (!dev->no_d3cold) { 3170 dev->no_d3cold = true; 3171 pci_bridge_d3_update(dev); 3172 } 3173 } 3174 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3175 3176 /** 3177 * pci_pm_init - Initialize PM functions of given PCI device 3178 * @dev: PCI device to handle. 3179 */ 3180 void pci_pm_init(struct pci_dev *dev) 3181 { 3182 int pm; 3183 u16 status; 3184 u16 pmc; 3185 3186 pm_runtime_forbid(&dev->dev); 3187 pm_runtime_set_active(&dev->dev); 3188 pm_runtime_enable(&dev->dev); 3189 device_enable_async_suspend(&dev->dev); 3190 dev->wakeup_prepared = false; 3191 3192 dev->pm_cap = 0; 3193 dev->pme_support = 0; 3194 3195 /* find PCI PM capability in list */ 3196 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3197 if (!pm) 3198 return; 3199 /* Check device's ability to generate PME# */ 3200 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3201 3202 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3203 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3204 pmc & PCI_PM_CAP_VER_MASK); 3205 return; 3206 } 3207 3208 dev->pm_cap = pm; 3209 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3210 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3211 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3212 dev->d3cold_allowed = true; 3213 3214 dev->d1_support = false; 3215 dev->d2_support = false; 3216 if (!pci_no_d1d2(dev)) { 3217 if (pmc & PCI_PM_CAP_D1) 3218 dev->d1_support = true; 3219 if (pmc & PCI_PM_CAP_D2) 3220 dev->d2_support = true; 3221 3222 if (dev->d1_support || dev->d2_support) 3223 pci_info(dev, "supports%s%s\n", 3224 dev->d1_support ? " D1" : "", 3225 dev->d2_support ? " D2" : ""); 3226 } 3227 3228 pmc &= PCI_PM_CAP_PME_MASK; 3229 if (pmc) { 3230 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3231 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3232 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3233 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3234 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3235 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3236 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc); 3237 dev->pme_poll = true; 3238 /* 3239 * Make device's PM flags reflect the wake-up capability, but 3240 * let the user space enable it to wake up the system as needed. 3241 */ 3242 device_set_wakeup_capable(&dev->dev, true); 3243 /* Disable the PME# generation functionality */ 3244 pci_pme_active(dev, false); 3245 } 3246 3247 pci_read_config_word(dev, PCI_STATUS, &status); 3248 if (status & PCI_STATUS_IMM_READY) 3249 dev->imm_ready = 1; 3250 } 3251 3252 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3253 { 3254 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3255 3256 switch (prop) { 3257 case PCI_EA_P_MEM: 3258 case PCI_EA_P_VF_MEM: 3259 flags |= IORESOURCE_MEM; 3260 break; 3261 case PCI_EA_P_MEM_PREFETCH: 3262 case PCI_EA_P_VF_MEM_PREFETCH: 3263 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3264 break; 3265 case PCI_EA_P_IO: 3266 flags |= IORESOURCE_IO; 3267 break; 3268 default: 3269 return 0; 3270 } 3271 3272 return flags; 3273 } 3274 3275 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3276 u8 prop) 3277 { 3278 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3279 return &dev->resource[bei]; 3280 #ifdef CONFIG_PCI_IOV 3281 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3282 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3283 return &dev->resource[PCI_IOV_RESOURCES + 3284 bei - PCI_EA_BEI_VF_BAR0]; 3285 #endif 3286 else if (bei == PCI_EA_BEI_ROM) 3287 return &dev->resource[PCI_ROM_RESOURCE]; 3288 else 3289 return NULL; 3290 } 3291 3292 /* Read an Enhanced Allocation (EA) entry */ 3293 static int pci_ea_read(struct pci_dev *dev, int offset) 3294 { 3295 struct resource *res; 3296 int ent_size, ent_offset = offset; 3297 resource_size_t start, end; 3298 unsigned long flags; 3299 u32 dw0, bei, base, max_offset; 3300 u8 prop; 3301 bool support_64 = (sizeof(resource_size_t) >= 8); 3302 3303 pci_read_config_dword(dev, ent_offset, &dw0); 3304 ent_offset += 4; 3305 3306 /* Entry size field indicates DWORDs after 1st */ 3307 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2; 3308 3309 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3310 goto out; 3311 3312 bei = FIELD_GET(PCI_EA_BEI, dw0); 3313 prop = FIELD_GET(PCI_EA_PP, dw0); 3314 3315 /* 3316 * If the Property is in the reserved range, try the Secondary 3317 * Property instead. 3318 */ 3319 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3320 prop = FIELD_GET(PCI_EA_SP, dw0); 3321 if (prop > PCI_EA_P_BRIDGE_IO) 3322 goto out; 3323 3324 res = pci_ea_get_resource(dev, bei, prop); 3325 if (!res) { 3326 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3327 goto out; 3328 } 3329 3330 flags = pci_ea_flags(dev, prop); 3331 if (!flags) { 3332 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3333 goto out; 3334 } 3335 3336 /* Read Base */ 3337 pci_read_config_dword(dev, ent_offset, &base); 3338 start = (base & PCI_EA_FIELD_MASK); 3339 ent_offset += 4; 3340 3341 /* Read MaxOffset */ 3342 pci_read_config_dword(dev, ent_offset, &max_offset); 3343 ent_offset += 4; 3344 3345 /* Read Base MSBs (if 64-bit entry) */ 3346 if (base & PCI_EA_IS_64) { 3347 u32 base_upper; 3348 3349 pci_read_config_dword(dev, ent_offset, &base_upper); 3350 ent_offset += 4; 3351 3352 flags |= IORESOURCE_MEM_64; 3353 3354 /* entry starts above 32-bit boundary, can't use */ 3355 if (!support_64 && base_upper) 3356 goto out; 3357 3358 if (support_64) 3359 start |= ((u64)base_upper << 32); 3360 } 3361 3362 end = start + (max_offset | 0x03); 3363 3364 /* Read MaxOffset MSBs (if 64-bit entry) */ 3365 if (max_offset & PCI_EA_IS_64) { 3366 u32 max_offset_upper; 3367 3368 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3369 ent_offset += 4; 3370 3371 flags |= IORESOURCE_MEM_64; 3372 3373 /* entry too big, can't use */ 3374 if (!support_64 && max_offset_upper) 3375 goto out; 3376 3377 if (support_64) 3378 end += ((u64)max_offset_upper << 32); 3379 } 3380 3381 if (end < start) { 3382 pci_err(dev, "EA Entry crosses address boundary\n"); 3383 goto out; 3384 } 3385 3386 if (ent_size != ent_offset - offset) { 3387 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3388 ent_size, ent_offset - offset); 3389 goto out; 3390 } 3391 3392 res->name = pci_name(dev); 3393 res->start = start; 3394 res->end = end; 3395 res->flags = flags; 3396 3397 if (bei <= PCI_EA_BEI_BAR5) 3398 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3399 bei, res, prop); 3400 else if (bei == PCI_EA_BEI_ROM) 3401 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3402 res, prop); 3403 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3404 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3405 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3406 else 3407 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3408 bei, res, prop); 3409 3410 out: 3411 return offset + ent_size; 3412 } 3413 3414 /* Enhanced Allocation Initialization */ 3415 void pci_ea_init(struct pci_dev *dev) 3416 { 3417 int ea; 3418 u8 num_ent; 3419 int offset; 3420 int i; 3421 3422 /* find PCI EA capability in list */ 3423 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3424 if (!ea) 3425 return; 3426 3427 /* determine the number of entries */ 3428 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3429 &num_ent); 3430 num_ent &= PCI_EA_NUM_ENT_MASK; 3431 3432 offset = ea + PCI_EA_FIRST_ENT; 3433 3434 /* Skip DWORD 2 for type 1 functions */ 3435 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3436 offset += 4; 3437 3438 /* parse each EA entry */ 3439 for (i = 0; i < num_ent; ++i) 3440 offset = pci_ea_read(dev, offset); 3441 } 3442 3443 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3444 struct pci_cap_saved_state *new_cap) 3445 { 3446 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3447 } 3448 3449 /** 3450 * _pci_add_cap_save_buffer - allocate buffer for saving given 3451 * capability registers 3452 * @dev: the PCI device 3453 * @cap: the capability to allocate the buffer for 3454 * @extended: Standard or Extended capability ID 3455 * @size: requested size of the buffer 3456 */ 3457 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3458 bool extended, unsigned int size) 3459 { 3460 int pos; 3461 struct pci_cap_saved_state *save_state; 3462 3463 if (extended) 3464 pos = pci_find_ext_capability(dev, cap); 3465 else 3466 pos = pci_find_capability(dev, cap); 3467 3468 if (!pos) 3469 return 0; 3470 3471 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3472 if (!save_state) 3473 return -ENOMEM; 3474 3475 save_state->cap.cap_nr = cap; 3476 save_state->cap.cap_extended = extended; 3477 save_state->cap.size = size; 3478 pci_add_saved_cap(dev, save_state); 3479 3480 return 0; 3481 } 3482 3483 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3484 { 3485 return _pci_add_cap_save_buffer(dev, cap, false, size); 3486 } 3487 3488 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3489 { 3490 return _pci_add_cap_save_buffer(dev, cap, true, size); 3491 } 3492 3493 /** 3494 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3495 * @dev: the PCI device 3496 */ 3497 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3498 { 3499 int error; 3500 3501 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3502 PCI_EXP_SAVE_REGS * sizeof(u16)); 3503 if (error) 3504 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3505 3506 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3507 if (error) 3508 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3509 3510 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3511 2 * sizeof(u16)); 3512 if (error) 3513 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3514 3515 pci_allocate_vc_save_buffers(dev); 3516 } 3517 3518 void pci_free_cap_save_buffers(struct pci_dev *dev) 3519 { 3520 struct pci_cap_saved_state *tmp; 3521 struct hlist_node *n; 3522 3523 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3524 kfree(tmp); 3525 } 3526 3527 /** 3528 * pci_configure_ari - enable or disable ARI forwarding 3529 * @dev: the PCI device 3530 * 3531 * If @dev and its upstream bridge both support ARI, enable ARI in the 3532 * bridge. Otherwise, disable ARI in the bridge. 3533 */ 3534 void pci_configure_ari(struct pci_dev *dev) 3535 { 3536 u32 cap; 3537 struct pci_dev *bridge; 3538 3539 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3540 return; 3541 3542 bridge = dev->bus->self; 3543 if (!bridge) 3544 return; 3545 3546 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3547 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3548 return; 3549 3550 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3551 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3552 PCI_EXP_DEVCTL2_ARI); 3553 bridge->ari_enabled = 1; 3554 } else { 3555 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3556 PCI_EXP_DEVCTL2_ARI); 3557 bridge->ari_enabled = 0; 3558 } 3559 } 3560 3561 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3562 { 3563 int pos; 3564 u16 cap, ctrl; 3565 3566 pos = pdev->acs_cap; 3567 if (!pos) 3568 return false; 3569 3570 /* 3571 * Except for egress control, capabilities are either required 3572 * or only required if controllable. Features missing from the 3573 * capability field can therefore be assumed as hard-wired enabled. 3574 */ 3575 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3576 acs_flags &= (cap | PCI_ACS_EC); 3577 3578 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3579 return (ctrl & acs_flags) == acs_flags; 3580 } 3581 3582 /** 3583 * pci_acs_enabled - test ACS against required flags for a given device 3584 * @pdev: device to test 3585 * @acs_flags: required PCI ACS flags 3586 * 3587 * Return true if the device supports the provided flags. Automatically 3588 * filters out flags that are not implemented on multifunction devices. 3589 * 3590 * Note that this interface checks the effective ACS capabilities of the 3591 * device rather than the actual capabilities. For instance, most single 3592 * function endpoints are not required to support ACS because they have no 3593 * opportunity for peer-to-peer access. We therefore return 'true' 3594 * regardless of whether the device exposes an ACS capability. This makes 3595 * it much easier for callers of this function to ignore the actual type 3596 * or topology of the device when testing ACS support. 3597 */ 3598 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3599 { 3600 int ret; 3601 3602 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3603 if (ret >= 0) 3604 return ret > 0; 3605 3606 /* 3607 * Conventional PCI and PCI-X devices never support ACS, either 3608 * effectively or actually. The shared bus topology implies that 3609 * any device on the bus can receive or snoop DMA. 3610 */ 3611 if (!pci_is_pcie(pdev)) 3612 return false; 3613 3614 switch (pci_pcie_type(pdev)) { 3615 /* 3616 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3617 * but since their primary interface is PCI/X, we conservatively 3618 * handle them as we would a non-PCIe device. 3619 */ 3620 case PCI_EXP_TYPE_PCIE_BRIDGE: 3621 /* 3622 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3623 * applicable... must never implement an ACS Extended Capability...". 3624 * This seems arbitrary, but we take a conservative interpretation 3625 * of this statement. 3626 */ 3627 case PCI_EXP_TYPE_PCI_BRIDGE: 3628 case PCI_EXP_TYPE_RC_EC: 3629 return false; 3630 /* 3631 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3632 * implement ACS in order to indicate their peer-to-peer capabilities, 3633 * regardless of whether they are single- or multi-function devices. 3634 */ 3635 case PCI_EXP_TYPE_DOWNSTREAM: 3636 case PCI_EXP_TYPE_ROOT_PORT: 3637 return pci_acs_flags_enabled(pdev, acs_flags); 3638 /* 3639 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3640 * implemented by the remaining PCIe types to indicate peer-to-peer 3641 * capabilities, but only when they are part of a multifunction 3642 * device. The footnote for section 6.12 indicates the specific 3643 * PCIe types included here. 3644 */ 3645 case PCI_EXP_TYPE_ENDPOINT: 3646 case PCI_EXP_TYPE_UPSTREAM: 3647 case PCI_EXP_TYPE_LEG_END: 3648 case PCI_EXP_TYPE_RC_END: 3649 if (!pdev->multifunction) 3650 break; 3651 3652 return pci_acs_flags_enabled(pdev, acs_flags); 3653 } 3654 3655 /* 3656 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3657 * to single function devices with the exception of downstream ports. 3658 */ 3659 return true; 3660 } 3661 3662 /** 3663 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3664 * @start: starting downstream device 3665 * @end: ending upstream device or NULL to search to the root bus 3666 * @acs_flags: required flags 3667 * 3668 * Walk up a device tree from start to end testing PCI ACS support. If 3669 * any step along the way does not support the required flags, return false. 3670 */ 3671 bool pci_acs_path_enabled(struct pci_dev *start, 3672 struct pci_dev *end, u16 acs_flags) 3673 { 3674 struct pci_dev *pdev, *parent = start; 3675 3676 do { 3677 pdev = parent; 3678 3679 if (!pci_acs_enabled(pdev, acs_flags)) 3680 return false; 3681 3682 if (pci_is_root_bus(pdev->bus)) 3683 return (end == NULL); 3684 3685 parent = pdev->bus->self; 3686 } while (pdev != end); 3687 3688 return true; 3689 } 3690 3691 /** 3692 * pci_acs_init - Initialize ACS if hardware supports it 3693 * @dev: the PCI device 3694 */ 3695 void pci_acs_init(struct pci_dev *dev) 3696 { 3697 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3698 3699 /* 3700 * Attempt to enable ACS regardless of capability because some Root 3701 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3702 * the standard ACS capability but still support ACS via those 3703 * quirks. 3704 */ 3705 pci_enable_acs(dev); 3706 } 3707 3708 /** 3709 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3710 * @pdev: PCI device 3711 * @bar: BAR to find 3712 * 3713 * Helper to find the position of the ctrl register for a BAR. 3714 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3715 * Returns -ENOENT if no ctrl register for the BAR could be found. 3716 */ 3717 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3718 { 3719 unsigned int pos, nbars, i; 3720 u32 ctrl; 3721 3722 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3723 if (!pos) 3724 return -ENOTSUPP; 3725 3726 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3727 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 3728 3729 for (i = 0; i < nbars; i++, pos += 8) { 3730 int bar_idx; 3731 3732 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3733 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl); 3734 if (bar_idx == bar) 3735 return pos; 3736 } 3737 3738 return -ENOENT; 3739 } 3740 3741 /** 3742 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3743 * @pdev: PCI device 3744 * @bar: BAR to query 3745 * 3746 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3747 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3748 */ 3749 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3750 { 3751 int pos; 3752 u32 cap; 3753 3754 pos = pci_rebar_find_pos(pdev, bar); 3755 if (pos < 0) 3756 return 0; 3757 3758 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3759 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3760 3761 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3762 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3763 bar == 0 && cap == 0x700) 3764 return 0x3f00; 3765 3766 return cap; 3767 } 3768 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3769 3770 /** 3771 * pci_rebar_get_current_size - get the current size of a BAR 3772 * @pdev: PCI device 3773 * @bar: BAR to set size to 3774 * 3775 * Read the size of a BAR from the resizable BAR config. 3776 * Returns size if found or negative error code. 3777 */ 3778 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3779 { 3780 int pos; 3781 u32 ctrl; 3782 3783 pos = pci_rebar_find_pos(pdev, bar); 3784 if (pos < 0) 3785 return pos; 3786 3787 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3788 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl); 3789 } 3790 3791 /** 3792 * pci_rebar_set_size - set a new size for a BAR 3793 * @pdev: PCI device 3794 * @bar: BAR to set size to 3795 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3796 * 3797 * Set the new size of a BAR as defined in the spec. 3798 * Returns zero if resizing was successful, error code otherwise. 3799 */ 3800 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3801 { 3802 int pos; 3803 u32 ctrl; 3804 3805 pos = pci_rebar_find_pos(pdev, bar); 3806 if (pos < 0) 3807 return pos; 3808 3809 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3810 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3811 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 3812 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3813 return 0; 3814 } 3815 3816 /** 3817 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3818 * @dev: the PCI device 3819 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3820 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3821 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3822 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3823 * 3824 * Return 0 if all upstream bridges support AtomicOp routing, egress 3825 * blocking is disabled on all upstream ports, and the root port supports 3826 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3827 * AtomicOp completion), or negative otherwise. 3828 */ 3829 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3830 { 3831 struct pci_bus *bus = dev->bus; 3832 struct pci_dev *bridge; 3833 u32 cap, ctl2; 3834 3835 /* 3836 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3837 * in Device Control 2 is reserved in VFs and the PF value applies 3838 * to all associated VFs. 3839 */ 3840 if (dev->is_virtfn) 3841 return -EINVAL; 3842 3843 if (!pci_is_pcie(dev)) 3844 return -EINVAL; 3845 3846 /* 3847 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3848 * AtomicOp requesters. For now, we only support endpoints as 3849 * requesters and root ports as completers. No endpoints as 3850 * completers, and no peer-to-peer. 3851 */ 3852 3853 switch (pci_pcie_type(dev)) { 3854 case PCI_EXP_TYPE_ENDPOINT: 3855 case PCI_EXP_TYPE_LEG_END: 3856 case PCI_EXP_TYPE_RC_END: 3857 break; 3858 default: 3859 return -EINVAL; 3860 } 3861 3862 while (bus->parent) { 3863 bridge = bus->self; 3864 3865 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3866 3867 switch (pci_pcie_type(bridge)) { 3868 /* Ensure switch ports support AtomicOp routing */ 3869 case PCI_EXP_TYPE_UPSTREAM: 3870 case PCI_EXP_TYPE_DOWNSTREAM: 3871 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3872 return -EINVAL; 3873 break; 3874 3875 /* Ensure root port supports all the sizes we care about */ 3876 case PCI_EXP_TYPE_ROOT_PORT: 3877 if ((cap & cap_mask) != cap_mask) 3878 return -EINVAL; 3879 break; 3880 } 3881 3882 /* Ensure upstream ports don't block AtomicOps on egress */ 3883 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3884 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3885 &ctl2); 3886 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3887 return -EINVAL; 3888 } 3889 3890 bus = bus->parent; 3891 } 3892 3893 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3894 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3895 return 0; 3896 } 3897 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3898 3899 /** 3900 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3901 * @dev: the PCI device 3902 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3903 * 3904 * Perform INTx swizzling for a device behind one level of bridge. This is 3905 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3906 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3907 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3908 * the PCI Express Base Specification, Revision 2.1) 3909 */ 3910 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3911 { 3912 int slot; 3913 3914 if (pci_ari_enabled(dev->bus)) 3915 slot = 0; 3916 else 3917 slot = PCI_SLOT(dev->devfn); 3918 3919 return (((pin - 1) + slot) % 4) + 1; 3920 } 3921 3922 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3923 { 3924 u8 pin; 3925 3926 pin = dev->pin; 3927 if (!pin) 3928 return -1; 3929 3930 while (!pci_is_root_bus(dev->bus)) { 3931 pin = pci_swizzle_interrupt_pin(dev, pin); 3932 dev = dev->bus->self; 3933 } 3934 *bridge = dev; 3935 return pin; 3936 } 3937 3938 /** 3939 * pci_common_swizzle - swizzle INTx all the way to root bridge 3940 * @dev: the PCI device 3941 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3942 * 3943 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3944 * bridges all the way up to a PCI root bus. 3945 */ 3946 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3947 { 3948 u8 pin = *pinp; 3949 3950 while (!pci_is_root_bus(dev->bus)) { 3951 pin = pci_swizzle_interrupt_pin(dev, pin); 3952 dev = dev->bus->self; 3953 } 3954 *pinp = pin; 3955 return PCI_SLOT(dev->devfn); 3956 } 3957 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3958 3959 /** 3960 * pci_release_region - Release a PCI bar 3961 * @pdev: PCI device whose resources were previously reserved by 3962 * pci_request_region() 3963 * @bar: BAR to release 3964 * 3965 * Releases the PCI I/O and memory resources previously reserved by a 3966 * successful call to pci_request_region(). Call this function only 3967 * after all use of the PCI regions has ceased. 3968 */ 3969 void pci_release_region(struct pci_dev *pdev, int bar) 3970 { 3971 struct pci_devres *dr; 3972 3973 if (pci_resource_len(pdev, bar) == 0) 3974 return; 3975 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3976 release_region(pci_resource_start(pdev, bar), 3977 pci_resource_len(pdev, bar)); 3978 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3979 release_mem_region(pci_resource_start(pdev, bar), 3980 pci_resource_len(pdev, bar)); 3981 3982 dr = find_pci_dr(pdev); 3983 if (dr) 3984 dr->region_mask &= ~(1 << bar); 3985 } 3986 EXPORT_SYMBOL(pci_release_region); 3987 3988 /** 3989 * __pci_request_region - Reserved PCI I/O and memory resource 3990 * @pdev: PCI device whose resources are to be reserved 3991 * @bar: BAR to be reserved 3992 * @res_name: Name to be associated with resource. 3993 * @exclusive: whether the region access is exclusive or not 3994 * 3995 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3996 * being reserved by owner @res_name. Do not access any 3997 * address inside the PCI regions unless this call returns 3998 * successfully. 3999 * 4000 * If @exclusive is set, then the region is marked so that userspace 4001 * is explicitly not allowed to map the resource via /dev/mem or 4002 * sysfs MMIO access. 4003 * 4004 * Returns 0 on success, or %EBUSY on error. A warning 4005 * message is also printed on failure. 4006 */ 4007 static int __pci_request_region(struct pci_dev *pdev, int bar, 4008 const char *res_name, int exclusive) 4009 { 4010 struct pci_devres *dr; 4011 4012 if (pci_resource_len(pdev, bar) == 0) 4013 return 0; 4014 4015 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 4016 if (!request_region(pci_resource_start(pdev, bar), 4017 pci_resource_len(pdev, bar), res_name)) 4018 goto err_out; 4019 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 4020 if (!__request_mem_region(pci_resource_start(pdev, bar), 4021 pci_resource_len(pdev, bar), res_name, 4022 exclusive)) 4023 goto err_out; 4024 } 4025 4026 dr = find_pci_dr(pdev); 4027 if (dr) 4028 dr->region_mask |= 1 << bar; 4029 4030 return 0; 4031 4032 err_out: 4033 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 4034 &pdev->resource[bar]); 4035 return -EBUSY; 4036 } 4037 4038 /** 4039 * pci_request_region - Reserve PCI I/O and memory resource 4040 * @pdev: PCI device whose resources are to be reserved 4041 * @bar: BAR to be reserved 4042 * @res_name: Name to be associated with resource 4043 * 4044 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4045 * being reserved by owner @res_name. Do not access any 4046 * address inside the PCI regions unless this call returns 4047 * successfully. 4048 * 4049 * Returns 0 on success, or %EBUSY on error. A warning 4050 * message is also printed on failure. 4051 */ 4052 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4053 { 4054 return __pci_request_region(pdev, bar, res_name, 0); 4055 } 4056 EXPORT_SYMBOL(pci_request_region); 4057 4058 /** 4059 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4060 * @pdev: PCI device whose resources were previously reserved 4061 * @bars: Bitmask of BARs to be released 4062 * 4063 * Release selected PCI I/O and memory resources previously reserved. 4064 * Call this function only after all use of the PCI regions has ceased. 4065 */ 4066 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4067 { 4068 int i; 4069 4070 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4071 if (bars & (1 << i)) 4072 pci_release_region(pdev, i); 4073 } 4074 EXPORT_SYMBOL(pci_release_selected_regions); 4075 4076 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4077 const char *res_name, int excl) 4078 { 4079 int i; 4080 4081 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4082 if (bars & (1 << i)) 4083 if (__pci_request_region(pdev, i, res_name, excl)) 4084 goto err_out; 4085 return 0; 4086 4087 err_out: 4088 while (--i >= 0) 4089 if (bars & (1 << i)) 4090 pci_release_region(pdev, i); 4091 4092 return -EBUSY; 4093 } 4094 4095 4096 /** 4097 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4098 * @pdev: PCI device whose resources are to be reserved 4099 * @bars: Bitmask of BARs to be requested 4100 * @res_name: Name to be associated with resource 4101 */ 4102 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4103 const char *res_name) 4104 { 4105 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4106 } 4107 EXPORT_SYMBOL(pci_request_selected_regions); 4108 4109 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4110 const char *res_name) 4111 { 4112 return __pci_request_selected_regions(pdev, bars, res_name, 4113 IORESOURCE_EXCLUSIVE); 4114 } 4115 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4116 4117 /** 4118 * pci_release_regions - Release reserved PCI I/O and memory resources 4119 * @pdev: PCI device whose resources were previously reserved by 4120 * pci_request_regions() 4121 * 4122 * Releases all PCI I/O and memory resources previously reserved by a 4123 * successful call to pci_request_regions(). Call this function only 4124 * after all use of the PCI regions has ceased. 4125 */ 4126 4127 void pci_release_regions(struct pci_dev *pdev) 4128 { 4129 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4130 } 4131 EXPORT_SYMBOL(pci_release_regions); 4132 4133 /** 4134 * pci_request_regions - Reserve PCI I/O and memory resources 4135 * @pdev: PCI device whose resources are to be reserved 4136 * @res_name: Name to be associated with resource. 4137 * 4138 * Mark all PCI regions associated with PCI device @pdev as 4139 * being reserved by owner @res_name. Do not access any 4140 * address inside the PCI regions unless this call returns 4141 * successfully. 4142 * 4143 * Returns 0 on success, or %EBUSY on error. A warning 4144 * message is also printed on failure. 4145 */ 4146 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4147 { 4148 return pci_request_selected_regions(pdev, 4149 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4150 } 4151 EXPORT_SYMBOL(pci_request_regions); 4152 4153 /** 4154 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4155 * @pdev: PCI device whose resources are to be reserved 4156 * @res_name: Name to be associated with resource. 4157 * 4158 * Mark all PCI regions associated with PCI device @pdev as being reserved 4159 * by owner @res_name. Do not access any address inside the PCI regions 4160 * unless this call returns successfully. 4161 * 4162 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4163 * and the sysfs MMIO access will not be allowed. 4164 * 4165 * Returns 0 on success, or %EBUSY on error. A warning message is also 4166 * printed on failure. 4167 */ 4168 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4169 { 4170 return pci_request_selected_regions_exclusive(pdev, 4171 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4172 } 4173 EXPORT_SYMBOL(pci_request_regions_exclusive); 4174 4175 /* 4176 * Record the PCI IO range (expressed as CPU physical address + size). 4177 * Return a negative value if an error has occurred, zero otherwise 4178 */ 4179 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4180 resource_size_t size) 4181 { 4182 int ret = 0; 4183 #ifdef PCI_IOBASE 4184 struct logic_pio_hwaddr *range; 4185 4186 if (!size || addr + size < addr) 4187 return -EINVAL; 4188 4189 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4190 if (!range) 4191 return -ENOMEM; 4192 4193 range->fwnode = fwnode; 4194 range->size = size; 4195 range->hw_start = addr; 4196 range->flags = LOGIC_PIO_CPU_MMIO; 4197 4198 ret = logic_pio_register_range(range); 4199 if (ret) 4200 kfree(range); 4201 4202 /* Ignore duplicates due to deferred probing */ 4203 if (ret == -EEXIST) 4204 ret = 0; 4205 #endif 4206 4207 return ret; 4208 } 4209 4210 phys_addr_t pci_pio_to_address(unsigned long pio) 4211 { 4212 #ifdef PCI_IOBASE 4213 if (pio < MMIO_UPPER_LIMIT) 4214 return logic_pio_to_hwaddr(pio); 4215 #endif 4216 4217 return (phys_addr_t) OF_BAD_ADDR; 4218 } 4219 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4220 4221 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4222 { 4223 #ifdef PCI_IOBASE 4224 return logic_pio_trans_cpuaddr(address); 4225 #else 4226 if (address > IO_SPACE_LIMIT) 4227 return (unsigned long)-1; 4228 4229 return (unsigned long) address; 4230 #endif 4231 } 4232 4233 /** 4234 * pci_remap_iospace - Remap the memory mapped I/O space 4235 * @res: Resource describing the I/O space 4236 * @phys_addr: physical address of range to be mapped 4237 * 4238 * Remap the memory mapped I/O space described by the @res and the CPU 4239 * physical address @phys_addr into virtual address space. Only 4240 * architectures that have memory mapped IO functions defined (and the 4241 * PCI_IOBASE value defined) should call this function. 4242 */ 4243 #ifndef pci_remap_iospace 4244 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4245 { 4246 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4247 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4248 4249 if (!(res->flags & IORESOURCE_IO)) 4250 return -EINVAL; 4251 4252 if (res->end > IO_SPACE_LIMIT) 4253 return -EINVAL; 4254 4255 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4256 pgprot_device(PAGE_KERNEL)); 4257 #else 4258 /* 4259 * This architecture does not have memory mapped I/O space, 4260 * so this function should never be called 4261 */ 4262 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4263 return -ENODEV; 4264 #endif 4265 } 4266 EXPORT_SYMBOL(pci_remap_iospace); 4267 #endif 4268 4269 /** 4270 * pci_unmap_iospace - Unmap the memory mapped I/O space 4271 * @res: resource to be unmapped 4272 * 4273 * Unmap the CPU virtual address @res from virtual address space. Only 4274 * architectures that have memory mapped IO functions defined (and the 4275 * PCI_IOBASE value defined) should call this function. 4276 */ 4277 void pci_unmap_iospace(struct resource *res) 4278 { 4279 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4280 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4281 4282 vunmap_range(vaddr, vaddr + resource_size(res)); 4283 #endif 4284 } 4285 EXPORT_SYMBOL(pci_unmap_iospace); 4286 4287 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4288 { 4289 struct resource **res = ptr; 4290 4291 pci_unmap_iospace(*res); 4292 } 4293 4294 /** 4295 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4296 * @dev: Generic device to remap IO address for 4297 * @res: Resource describing the I/O space 4298 * @phys_addr: physical address of range to be mapped 4299 * 4300 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4301 * detach. 4302 */ 4303 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4304 phys_addr_t phys_addr) 4305 { 4306 const struct resource **ptr; 4307 int error; 4308 4309 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4310 if (!ptr) 4311 return -ENOMEM; 4312 4313 error = pci_remap_iospace(res, phys_addr); 4314 if (error) { 4315 devres_free(ptr); 4316 } else { 4317 *ptr = res; 4318 devres_add(dev, ptr); 4319 } 4320 4321 return error; 4322 } 4323 EXPORT_SYMBOL(devm_pci_remap_iospace); 4324 4325 /** 4326 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4327 * @dev: Generic device to remap IO address for 4328 * @offset: Resource address to map 4329 * @size: Size of map 4330 * 4331 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4332 * detach. 4333 */ 4334 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4335 resource_size_t offset, 4336 resource_size_t size) 4337 { 4338 void __iomem **ptr, *addr; 4339 4340 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4341 if (!ptr) 4342 return NULL; 4343 4344 addr = pci_remap_cfgspace(offset, size); 4345 if (addr) { 4346 *ptr = addr; 4347 devres_add(dev, ptr); 4348 } else 4349 devres_free(ptr); 4350 4351 return addr; 4352 } 4353 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4354 4355 /** 4356 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4357 * @dev: generic device to handle the resource for 4358 * @res: configuration space resource to be handled 4359 * 4360 * Checks that a resource is a valid memory region, requests the memory 4361 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4362 * proper PCI configuration space memory attributes are guaranteed. 4363 * 4364 * All operations are managed and will be undone on driver detach. 4365 * 4366 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4367 * on failure. Usage example:: 4368 * 4369 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4370 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4371 * if (IS_ERR(base)) 4372 * return PTR_ERR(base); 4373 */ 4374 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4375 struct resource *res) 4376 { 4377 resource_size_t size; 4378 const char *name; 4379 void __iomem *dest_ptr; 4380 4381 BUG_ON(!dev); 4382 4383 if (!res || resource_type(res) != IORESOURCE_MEM) { 4384 dev_err(dev, "invalid resource\n"); 4385 return IOMEM_ERR_PTR(-EINVAL); 4386 } 4387 4388 size = resource_size(res); 4389 4390 if (res->name) 4391 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4392 res->name); 4393 else 4394 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4395 if (!name) 4396 return IOMEM_ERR_PTR(-ENOMEM); 4397 4398 if (!devm_request_mem_region(dev, res->start, size, name)) { 4399 dev_err(dev, "can't request region for resource %pR\n", res); 4400 return IOMEM_ERR_PTR(-EBUSY); 4401 } 4402 4403 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4404 if (!dest_ptr) { 4405 dev_err(dev, "ioremap failed for resource %pR\n", res); 4406 devm_release_mem_region(dev, res->start, size); 4407 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4408 } 4409 4410 return dest_ptr; 4411 } 4412 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4413 4414 static void __pci_set_master(struct pci_dev *dev, bool enable) 4415 { 4416 u16 old_cmd, cmd; 4417 4418 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4419 if (enable) 4420 cmd = old_cmd | PCI_COMMAND_MASTER; 4421 else 4422 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4423 if (cmd != old_cmd) { 4424 pci_dbg(dev, "%s bus mastering\n", 4425 enable ? "enabling" : "disabling"); 4426 pci_write_config_word(dev, PCI_COMMAND, cmd); 4427 } 4428 dev->is_busmaster = enable; 4429 } 4430 4431 /** 4432 * pcibios_setup - process "pci=" kernel boot arguments 4433 * @str: string used to pass in "pci=" kernel boot arguments 4434 * 4435 * Process kernel boot arguments. This is the default implementation. 4436 * Architecture specific implementations can override this as necessary. 4437 */ 4438 char * __weak __init pcibios_setup(char *str) 4439 { 4440 return str; 4441 } 4442 4443 /** 4444 * pcibios_set_master - enable PCI bus-mastering for device dev 4445 * @dev: the PCI device to enable 4446 * 4447 * Enables PCI bus-mastering for the device. This is the default 4448 * implementation. Architecture specific implementations can override 4449 * this if necessary. 4450 */ 4451 void __weak pcibios_set_master(struct pci_dev *dev) 4452 { 4453 u8 lat; 4454 4455 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4456 if (pci_is_pcie(dev)) 4457 return; 4458 4459 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4460 if (lat < 16) 4461 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4462 else if (lat > pcibios_max_latency) 4463 lat = pcibios_max_latency; 4464 else 4465 return; 4466 4467 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4468 } 4469 4470 /** 4471 * pci_set_master - enables bus-mastering for device dev 4472 * @dev: the PCI device to enable 4473 * 4474 * Enables bus-mastering on the device and calls pcibios_set_master() 4475 * to do the needed arch specific settings. 4476 */ 4477 void pci_set_master(struct pci_dev *dev) 4478 { 4479 __pci_set_master(dev, true); 4480 pcibios_set_master(dev); 4481 } 4482 EXPORT_SYMBOL(pci_set_master); 4483 4484 /** 4485 * pci_clear_master - disables bus-mastering for device dev 4486 * @dev: the PCI device to disable 4487 */ 4488 void pci_clear_master(struct pci_dev *dev) 4489 { 4490 __pci_set_master(dev, false); 4491 } 4492 EXPORT_SYMBOL(pci_clear_master); 4493 4494 /** 4495 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4496 * @dev: the PCI device for which MWI is to be enabled 4497 * 4498 * Helper function for pci_set_mwi. 4499 * Originally copied from drivers/net/acenic.c. 4500 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4501 * 4502 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4503 */ 4504 int pci_set_cacheline_size(struct pci_dev *dev) 4505 { 4506 u8 cacheline_size; 4507 4508 if (!pci_cache_line_size) 4509 return -EINVAL; 4510 4511 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4512 equal to or multiple of the right value. */ 4513 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4514 if (cacheline_size >= pci_cache_line_size && 4515 (cacheline_size % pci_cache_line_size) == 0) 4516 return 0; 4517 4518 /* Write the correct value. */ 4519 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4520 /* Read it back. */ 4521 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4522 if (cacheline_size == pci_cache_line_size) 4523 return 0; 4524 4525 pci_dbg(dev, "cache line size of %d is not supported\n", 4526 pci_cache_line_size << 2); 4527 4528 return -EINVAL; 4529 } 4530 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4531 4532 /** 4533 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4534 * @dev: the PCI device for which MWI is enabled 4535 * 4536 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4537 * 4538 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4539 */ 4540 int pci_set_mwi(struct pci_dev *dev) 4541 { 4542 #ifdef PCI_DISABLE_MWI 4543 return 0; 4544 #else 4545 int rc; 4546 u16 cmd; 4547 4548 rc = pci_set_cacheline_size(dev); 4549 if (rc) 4550 return rc; 4551 4552 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4553 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4554 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4555 cmd |= PCI_COMMAND_INVALIDATE; 4556 pci_write_config_word(dev, PCI_COMMAND, cmd); 4557 } 4558 return 0; 4559 #endif 4560 } 4561 EXPORT_SYMBOL(pci_set_mwi); 4562 4563 /** 4564 * pcim_set_mwi - a device-managed pci_set_mwi() 4565 * @dev: the PCI device for which MWI is enabled 4566 * 4567 * Managed pci_set_mwi(). 4568 * 4569 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4570 */ 4571 int pcim_set_mwi(struct pci_dev *dev) 4572 { 4573 struct pci_devres *dr; 4574 4575 dr = find_pci_dr(dev); 4576 if (!dr) 4577 return -ENOMEM; 4578 4579 dr->mwi = 1; 4580 return pci_set_mwi(dev); 4581 } 4582 EXPORT_SYMBOL(pcim_set_mwi); 4583 4584 /** 4585 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4586 * @dev: the PCI device for which MWI is enabled 4587 * 4588 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4589 * Callers are not required to check the return value. 4590 * 4591 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4592 */ 4593 int pci_try_set_mwi(struct pci_dev *dev) 4594 { 4595 #ifdef PCI_DISABLE_MWI 4596 return 0; 4597 #else 4598 return pci_set_mwi(dev); 4599 #endif 4600 } 4601 EXPORT_SYMBOL(pci_try_set_mwi); 4602 4603 /** 4604 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4605 * @dev: the PCI device to disable 4606 * 4607 * Disables PCI Memory-Write-Invalidate transaction on the device 4608 */ 4609 void pci_clear_mwi(struct pci_dev *dev) 4610 { 4611 #ifndef PCI_DISABLE_MWI 4612 u16 cmd; 4613 4614 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4615 if (cmd & PCI_COMMAND_INVALIDATE) { 4616 cmd &= ~PCI_COMMAND_INVALIDATE; 4617 pci_write_config_word(dev, PCI_COMMAND, cmd); 4618 } 4619 #endif 4620 } 4621 EXPORT_SYMBOL(pci_clear_mwi); 4622 4623 /** 4624 * pci_disable_parity - disable parity checking for device 4625 * @dev: the PCI device to operate on 4626 * 4627 * Disable parity checking for device @dev 4628 */ 4629 void pci_disable_parity(struct pci_dev *dev) 4630 { 4631 u16 cmd; 4632 4633 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4634 if (cmd & PCI_COMMAND_PARITY) { 4635 cmd &= ~PCI_COMMAND_PARITY; 4636 pci_write_config_word(dev, PCI_COMMAND, cmd); 4637 } 4638 } 4639 4640 /** 4641 * pci_intx - enables/disables PCI INTx for device dev 4642 * @pdev: the PCI device to operate on 4643 * @enable: boolean: whether to enable or disable PCI INTx 4644 * 4645 * Enables/disables PCI INTx for device @pdev 4646 */ 4647 void pci_intx(struct pci_dev *pdev, int enable) 4648 { 4649 u16 pci_command, new; 4650 4651 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4652 4653 if (enable) 4654 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4655 else 4656 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4657 4658 if (new != pci_command) { 4659 struct pci_devres *dr; 4660 4661 pci_write_config_word(pdev, PCI_COMMAND, new); 4662 4663 dr = find_pci_dr(pdev); 4664 if (dr && !dr->restore_intx) { 4665 dr->restore_intx = 1; 4666 dr->orig_intx = !enable; 4667 } 4668 } 4669 } 4670 EXPORT_SYMBOL_GPL(pci_intx); 4671 4672 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4673 { 4674 struct pci_bus *bus = dev->bus; 4675 bool mask_updated = true; 4676 u32 cmd_status_dword; 4677 u16 origcmd, newcmd; 4678 unsigned long flags; 4679 bool irq_pending; 4680 4681 /* 4682 * We do a single dword read to retrieve both command and status. 4683 * Document assumptions that make this possible. 4684 */ 4685 BUILD_BUG_ON(PCI_COMMAND % 4); 4686 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4687 4688 raw_spin_lock_irqsave(&pci_lock, flags); 4689 4690 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4691 4692 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4693 4694 /* 4695 * Check interrupt status register to see whether our device 4696 * triggered the interrupt (when masking) or the next IRQ is 4697 * already pending (when unmasking). 4698 */ 4699 if (mask != irq_pending) { 4700 mask_updated = false; 4701 goto done; 4702 } 4703 4704 origcmd = cmd_status_dword; 4705 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4706 if (mask) 4707 newcmd |= PCI_COMMAND_INTX_DISABLE; 4708 if (newcmd != origcmd) 4709 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4710 4711 done: 4712 raw_spin_unlock_irqrestore(&pci_lock, flags); 4713 4714 return mask_updated; 4715 } 4716 4717 /** 4718 * pci_check_and_mask_intx - mask INTx on pending interrupt 4719 * @dev: the PCI device to operate on 4720 * 4721 * Check if the device dev has its INTx line asserted, mask it and return 4722 * true in that case. False is returned if no interrupt was pending. 4723 */ 4724 bool pci_check_and_mask_intx(struct pci_dev *dev) 4725 { 4726 return pci_check_and_set_intx_mask(dev, true); 4727 } 4728 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4729 4730 /** 4731 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4732 * @dev: the PCI device to operate on 4733 * 4734 * Check if the device dev has its INTx line asserted, unmask it if not and 4735 * return true. False is returned and the mask remains active if there was 4736 * still an interrupt pending. 4737 */ 4738 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4739 { 4740 return pci_check_and_set_intx_mask(dev, false); 4741 } 4742 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4743 4744 /** 4745 * pci_wait_for_pending_transaction - wait for pending transaction 4746 * @dev: the PCI device to operate on 4747 * 4748 * Return 0 if transaction is pending 1 otherwise. 4749 */ 4750 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4751 { 4752 if (!pci_is_pcie(dev)) 4753 return 1; 4754 4755 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4756 PCI_EXP_DEVSTA_TRPND); 4757 } 4758 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4759 4760 /** 4761 * pcie_flr - initiate a PCIe function level reset 4762 * @dev: device to reset 4763 * 4764 * Initiate a function level reset unconditionally on @dev without 4765 * checking any flags and DEVCAP 4766 */ 4767 int pcie_flr(struct pci_dev *dev) 4768 { 4769 if (!pci_wait_for_pending_transaction(dev)) 4770 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4771 4772 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4773 4774 if (dev->imm_ready) 4775 return 0; 4776 4777 /* 4778 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4779 * 100ms, but may silently discard requests while the FLR is in 4780 * progress. Wait 100ms before trying to access the device. 4781 */ 4782 msleep(100); 4783 4784 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4785 } 4786 EXPORT_SYMBOL_GPL(pcie_flr); 4787 4788 /** 4789 * pcie_reset_flr - initiate a PCIe function level reset 4790 * @dev: device to reset 4791 * @probe: if true, return 0 if device can be reset this way 4792 * 4793 * Initiate a function level reset on @dev. 4794 */ 4795 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4796 { 4797 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4798 return -ENOTTY; 4799 4800 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4801 return -ENOTTY; 4802 4803 if (probe) 4804 return 0; 4805 4806 return pcie_flr(dev); 4807 } 4808 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4809 4810 static int pci_af_flr(struct pci_dev *dev, bool probe) 4811 { 4812 int pos; 4813 u8 cap; 4814 4815 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4816 if (!pos) 4817 return -ENOTTY; 4818 4819 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4820 return -ENOTTY; 4821 4822 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4823 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4824 return -ENOTTY; 4825 4826 if (probe) 4827 return 0; 4828 4829 /* 4830 * Wait for Transaction Pending bit to clear. A word-aligned test 4831 * is used, so we use the control offset rather than status and shift 4832 * the test bit to match. 4833 */ 4834 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4835 PCI_AF_STATUS_TP << 8)) 4836 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4837 4838 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4839 4840 if (dev->imm_ready) 4841 return 0; 4842 4843 /* 4844 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4845 * updated 27 July 2006; a device must complete an FLR within 4846 * 100ms, but may silently discard requests while the FLR is in 4847 * progress. Wait 100ms before trying to access the device. 4848 */ 4849 msleep(100); 4850 4851 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4852 } 4853 4854 /** 4855 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4856 * @dev: Device to reset. 4857 * @probe: if true, return 0 if the device can be reset this way. 4858 * 4859 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4860 * unset, it will be reinitialized internally when going from PCI_D3hot to 4861 * PCI_D0. If that's the case and the device is not in a low-power state 4862 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4863 * 4864 * NOTE: This causes the caller to sleep for twice the device power transition 4865 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4866 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4867 * Moreover, only devices in D0 can be reset by this function. 4868 */ 4869 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4870 { 4871 u16 csr; 4872 4873 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4874 return -ENOTTY; 4875 4876 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4877 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4878 return -ENOTTY; 4879 4880 if (probe) 4881 return 0; 4882 4883 if (dev->current_state != PCI_D0) 4884 return -EINVAL; 4885 4886 csr &= ~PCI_PM_CTRL_STATE_MASK; 4887 csr |= PCI_D3hot; 4888 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4889 pci_dev_d3_sleep(dev); 4890 4891 csr &= ~PCI_PM_CTRL_STATE_MASK; 4892 csr |= PCI_D0; 4893 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4894 pci_dev_d3_sleep(dev); 4895 4896 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4897 } 4898 4899 /** 4900 * pcie_wait_for_link_status - Wait for link status change 4901 * @pdev: Device whose link to wait for. 4902 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4903 * @active: Waiting for active or inactive? 4904 * 4905 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4906 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4907 */ 4908 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4909 bool use_lt, bool active) 4910 { 4911 u16 lnksta_mask, lnksta_match; 4912 unsigned long end_jiffies; 4913 u16 lnksta; 4914 4915 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4916 lnksta_match = active ? lnksta_mask : 0; 4917 4918 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4919 do { 4920 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4921 if ((lnksta & lnksta_mask) == lnksta_match) 4922 return 0; 4923 msleep(1); 4924 } while (time_before(jiffies, end_jiffies)); 4925 4926 return -ETIMEDOUT; 4927 } 4928 4929 /** 4930 * pcie_retrain_link - Request a link retrain and wait for it to complete 4931 * @pdev: Device whose link to retrain. 4932 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 4933 * 4934 * Retrain completion status is retrieved from the Link Status Register 4935 * according to @use_lt. It is not verified whether the use of the DLLLA 4936 * bit is valid. 4937 * 4938 * Return 0 if successful, or -ETIMEDOUT if training has not completed 4939 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4940 */ 4941 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 4942 { 4943 int rc; 4944 4945 /* 4946 * Ensure the updated LNKCTL parameters are used during link 4947 * training by checking that there is no ongoing link training to 4948 * avoid LTSSM race as recommended in Implementation Note at the 4949 * end of PCIe r6.0.1 sec 7.5.3.7. 4950 */ 4951 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4952 if (rc) 4953 return rc; 4954 4955 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4956 if (pdev->clear_retrain_link) { 4957 /* 4958 * Due to an erratum in some devices the Retrain Link bit 4959 * needs to be cleared again manually to allow the link 4960 * training to succeed. 4961 */ 4962 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4963 } 4964 4965 return pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4966 } 4967 4968 /** 4969 * pcie_wait_for_link_delay - Wait until link is active or inactive 4970 * @pdev: Bridge device 4971 * @active: waiting for active or inactive? 4972 * @delay: Delay to wait after link has become active (in ms) 4973 * 4974 * Use this to wait till link becomes active or inactive. 4975 */ 4976 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4977 int delay) 4978 { 4979 int rc; 4980 4981 /* 4982 * Some controllers might not implement link active reporting. In this 4983 * case, we wait for 1000 ms + any delay requested by the caller. 4984 */ 4985 if (!pdev->link_active_reporting) { 4986 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 4987 return true; 4988 } 4989 4990 /* 4991 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4992 * after which we should expect an link active if the reset was 4993 * successful. If so, software must wait a minimum 100ms before sending 4994 * configuration requests to devices downstream this port. 4995 * 4996 * If the link fails to activate, either the device was physically 4997 * removed or the link is permanently failed. 4998 */ 4999 if (active) 5000 msleep(20); 5001 rc = pcie_wait_for_link_status(pdev, false, active); 5002 if (active) { 5003 if (rc) 5004 rc = pcie_failed_link_retrain(pdev); 5005 if (rc) 5006 return false; 5007 5008 msleep(delay); 5009 return true; 5010 } 5011 5012 if (rc) 5013 return false; 5014 5015 return true; 5016 } 5017 5018 /** 5019 * pcie_wait_for_link - Wait until link is active or inactive 5020 * @pdev: Bridge device 5021 * @active: waiting for active or inactive? 5022 * 5023 * Use this to wait till link becomes active or inactive. 5024 */ 5025 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 5026 { 5027 return pcie_wait_for_link_delay(pdev, active, 100); 5028 } 5029 5030 /* 5031 * Find maximum D3cold delay required by all the devices on the bus. The 5032 * spec says 100 ms, but firmware can lower it and we allow drivers to 5033 * increase it as well. 5034 * 5035 * Called with @pci_bus_sem locked for reading. 5036 */ 5037 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 5038 { 5039 const struct pci_dev *pdev; 5040 int min_delay = 100; 5041 int max_delay = 0; 5042 5043 list_for_each_entry(pdev, &bus->devices, bus_list) { 5044 if (pdev->d3cold_delay < min_delay) 5045 min_delay = pdev->d3cold_delay; 5046 if (pdev->d3cold_delay > max_delay) 5047 max_delay = pdev->d3cold_delay; 5048 } 5049 5050 return max(min_delay, max_delay); 5051 } 5052 5053 /** 5054 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 5055 * @dev: PCI bridge 5056 * @reset_type: reset type in human-readable form 5057 * 5058 * Handle necessary delays before access to the devices on the secondary 5059 * side of the bridge are permitted after D3cold to D0 transition 5060 * or Conventional Reset. 5061 * 5062 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 5063 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 5064 * 4.3.2. 5065 * 5066 * Return 0 on success or -ENOTTY if the first device on the secondary bus 5067 * failed to become accessible. 5068 */ 5069 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 5070 { 5071 struct pci_dev *child; 5072 int delay; 5073 5074 if (pci_dev_is_disconnected(dev)) 5075 return 0; 5076 5077 if (!pci_is_bridge(dev)) 5078 return 0; 5079 5080 down_read(&pci_bus_sem); 5081 5082 /* 5083 * We only deal with devices that are present currently on the bus. 5084 * For any hot-added devices the access delay is handled in pciehp 5085 * board_added(). In case of ACPI hotplug the firmware is expected 5086 * to configure the devices before OS is notified. 5087 */ 5088 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 5089 up_read(&pci_bus_sem); 5090 return 0; 5091 } 5092 5093 /* Take d3cold_delay requirements into account */ 5094 delay = pci_bus_max_d3cold_delay(dev->subordinate); 5095 if (!delay) { 5096 up_read(&pci_bus_sem); 5097 return 0; 5098 } 5099 5100 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 5101 bus_list); 5102 up_read(&pci_bus_sem); 5103 5104 /* 5105 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 5106 * accessing the device after reset (that is 1000 ms + 100 ms). 5107 */ 5108 if (!pci_is_pcie(dev)) { 5109 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 5110 msleep(1000 + delay); 5111 return 0; 5112 } 5113 5114 /* 5115 * For PCIe downstream and root ports that do not support speeds 5116 * greater than 5 GT/s need to wait minimum 100 ms. For higher 5117 * speeds (gen3) we need to wait first for the data link layer to 5118 * become active. 5119 * 5120 * However, 100 ms is the minimum and the PCIe spec says the 5121 * software must allow at least 1s before it can determine that the 5122 * device that did not respond is a broken device. Also device can 5123 * take longer than that to respond if it indicates so through Request 5124 * Retry Status completions. 5125 * 5126 * Therefore we wait for 100 ms and check for the device presence 5127 * until the timeout expires. 5128 */ 5129 if (!pcie_downstream_port(dev)) 5130 return 0; 5131 5132 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 5133 u16 status; 5134 5135 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 5136 msleep(delay); 5137 5138 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 5139 return 0; 5140 5141 /* 5142 * If the port supports active link reporting we now check 5143 * whether the link is active and if not bail out early with 5144 * the assumption that the device is not present anymore. 5145 */ 5146 if (!dev->link_active_reporting) 5147 return -ENOTTY; 5148 5149 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 5150 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 5151 return -ENOTTY; 5152 5153 return pci_dev_wait(child, reset_type, 5154 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 5155 } 5156 5157 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 5158 delay); 5159 if (!pcie_wait_for_link_delay(dev, true, delay)) { 5160 /* Did not train, no need to wait any further */ 5161 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 5162 return -ENOTTY; 5163 } 5164 5165 return pci_dev_wait(child, reset_type, 5166 PCIE_RESET_READY_POLL_MS - delay); 5167 } 5168 5169 void pci_reset_secondary_bus(struct pci_dev *dev) 5170 { 5171 u16 ctrl; 5172 5173 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5174 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5175 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5176 5177 /* 5178 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5179 * this to 2ms to ensure that we meet the minimum requirement. 5180 */ 5181 msleep(2); 5182 5183 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5184 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5185 } 5186 5187 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5188 { 5189 pci_reset_secondary_bus(dev); 5190 } 5191 5192 /** 5193 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5194 * @dev: Bridge device 5195 * 5196 * Use the bridge control register to assert reset on the secondary bus. 5197 * Devices on the secondary bus are left in power-on state. 5198 */ 5199 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5200 { 5201 pcibios_reset_secondary_bus(dev); 5202 5203 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5204 } 5205 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5206 5207 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5208 { 5209 struct pci_dev *pdev; 5210 5211 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5212 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5213 return -ENOTTY; 5214 5215 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5216 if (pdev != dev) 5217 return -ENOTTY; 5218 5219 if (probe) 5220 return 0; 5221 5222 return pci_bridge_secondary_bus_reset(dev->bus->self); 5223 } 5224 5225 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5226 { 5227 int rc = -ENOTTY; 5228 5229 if (!hotplug || !try_module_get(hotplug->owner)) 5230 return rc; 5231 5232 if (hotplug->ops->reset_slot) 5233 rc = hotplug->ops->reset_slot(hotplug, probe); 5234 5235 module_put(hotplug->owner); 5236 5237 return rc; 5238 } 5239 5240 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5241 { 5242 if (dev->multifunction || dev->subordinate || !dev->slot || 5243 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5244 return -ENOTTY; 5245 5246 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5247 } 5248 5249 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5250 { 5251 int rc; 5252 5253 rc = pci_dev_reset_slot_function(dev, probe); 5254 if (rc != -ENOTTY) 5255 return rc; 5256 return pci_parent_bus_reset(dev, probe); 5257 } 5258 5259 void pci_dev_lock(struct pci_dev *dev) 5260 { 5261 /* block PM suspend, driver probe, etc. */ 5262 device_lock(&dev->dev); 5263 pci_cfg_access_lock(dev); 5264 } 5265 EXPORT_SYMBOL_GPL(pci_dev_lock); 5266 5267 /* Return 1 on successful lock, 0 on contention */ 5268 int pci_dev_trylock(struct pci_dev *dev) 5269 { 5270 if (device_trylock(&dev->dev)) { 5271 if (pci_cfg_access_trylock(dev)) 5272 return 1; 5273 device_unlock(&dev->dev); 5274 } 5275 5276 return 0; 5277 } 5278 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5279 5280 void pci_dev_unlock(struct pci_dev *dev) 5281 { 5282 pci_cfg_access_unlock(dev); 5283 device_unlock(&dev->dev); 5284 } 5285 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5286 5287 static void pci_dev_save_and_disable(struct pci_dev *dev) 5288 { 5289 const struct pci_error_handlers *err_handler = 5290 dev->driver ? dev->driver->err_handler : NULL; 5291 5292 /* 5293 * dev->driver->err_handler->reset_prepare() is protected against 5294 * races with ->remove() by the device lock, which must be held by 5295 * the caller. 5296 */ 5297 if (err_handler && err_handler->reset_prepare) 5298 err_handler->reset_prepare(dev); 5299 5300 /* 5301 * Wake-up device prior to save. PM registers default to D0 after 5302 * reset and a simple register restore doesn't reliably return 5303 * to a non-D0 state anyway. 5304 */ 5305 pci_set_power_state(dev, PCI_D0); 5306 5307 pci_save_state(dev); 5308 /* 5309 * Disable the device by clearing the Command register, except for 5310 * INTx-disable which is set. This not only disables MMIO and I/O port 5311 * BARs, but also prevents the device from being Bus Master, preventing 5312 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5313 * compliant devices, INTx-disable prevents legacy interrupts. 5314 */ 5315 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5316 } 5317 5318 static void pci_dev_restore(struct pci_dev *dev) 5319 { 5320 const struct pci_error_handlers *err_handler = 5321 dev->driver ? dev->driver->err_handler : NULL; 5322 5323 pci_restore_state(dev); 5324 5325 /* 5326 * dev->driver->err_handler->reset_done() is protected against 5327 * races with ->remove() by the device lock, which must be held by 5328 * the caller. 5329 */ 5330 if (err_handler && err_handler->reset_done) 5331 err_handler->reset_done(dev); 5332 } 5333 5334 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5335 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5336 { }, 5337 { pci_dev_specific_reset, .name = "device_specific" }, 5338 { pci_dev_acpi_reset, .name = "acpi" }, 5339 { pcie_reset_flr, .name = "flr" }, 5340 { pci_af_flr, .name = "af_flr" }, 5341 { pci_pm_reset, .name = "pm" }, 5342 { pci_reset_bus_function, .name = "bus" }, 5343 }; 5344 5345 static ssize_t reset_method_show(struct device *dev, 5346 struct device_attribute *attr, char *buf) 5347 { 5348 struct pci_dev *pdev = to_pci_dev(dev); 5349 ssize_t len = 0; 5350 int i, m; 5351 5352 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5353 m = pdev->reset_methods[i]; 5354 if (!m) 5355 break; 5356 5357 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5358 pci_reset_fn_methods[m].name); 5359 } 5360 5361 if (len) 5362 len += sysfs_emit_at(buf, len, "\n"); 5363 5364 return len; 5365 } 5366 5367 static int reset_method_lookup(const char *name) 5368 { 5369 int m; 5370 5371 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5372 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5373 return m; 5374 } 5375 5376 return 0; /* not found */ 5377 } 5378 5379 static ssize_t reset_method_store(struct device *dev, 5380 struct device_attribute *attr, 5381 const char *buf, size_t count) 5382 { 5383 struct pci_dev *pdev = to_pci_dev(dev); 5384 char *options, *name; 5385 int m, n; 5386 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5387 5388 if (sysfs_streq(buf, "")) { 5389 pdev->reset_methods[0] = 0; 5390 pci_warn(pdev, "All device reset methods disabled by user"); 5391 return count; 5392 } 5393 5394 if (sysfs_streq(buf, "default")) { 5395 pci_init_reset_methods(pdev); 5396 return count; 5397 } 5398 5399 options = kstrndup(buf, count, GFP_KERNEL); 5400 if (!options) 5401 return -ENOMEM; 5402 5403 n = 0; 5404 while ((name = strsep(&options, " ")) != NULL) { 5405 if (sysfs_streq(name, "")) 5406 continue; 5407 5408 name = strim(name); 5409 5410 m = reset_method_lookup(name); 5411 if (!m) { 5412 pci_err(pdev, "Invalid reset method '%s'", name); 5413 goto error; 5414 } 5415 5416 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5417 pci_err(pdev, "Unsupported reset method '%s'", name); 5418 goto error; 5419 } 5420 5421 if (n == PCI_NUM_RESET_METHODS - 1) { 5422 pci_err(pdev, "Too many reset methods\n"); 5423 goto error; 5424 } 5425 5426 reset_methods[n++] = m; 5427 } 5428 5429 reset_methods[n] = 0; 5430 5431 /* Warn if dev-specific supported but not highest priority */ 5432 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5433 reset_methods[0] != 1) 5434 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5435 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5436 kfree(options); 5437 return count; 5438 5439 error: 5440 /* Leave previous methods unchanged */ 5441 kfree(options); 5442 return -EINVAL; 5443 } 5444 static DEVICE_ATTR_RW(reset_method); 5445 5446 static struct attribute *pci_dev_reset_method_attrs[] = { 5447 &dev_attr_reset_method.attr, 5448 NULL, 5449 }; 5450 5451 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5452 struct attribute *a, int n) 5453 { 5454 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5455 5456 if (!pci_reset_supported(pdev)) 5457 return 0; 5458 5459 return a->mode; 5460 } 5461 5462 const struct attribute_group pci_dev_reset_method_attr_group = { 5463 .attrs = pci_dev_reset_method_attrs, 5464 .is_visible = pci_dev_reset_method_attr_is_visible, 5465 }; 5466 5467 /** 5468 * __pci_reset_function_locked - reset a PCI device function while holding 5469 * the @dev mutex lock. 5470 * @dev: PCI device to reset 5471 * 5472 * Some devices allow an individual function to be reset without affecting 5473 * other functions in the same device. The PCI device must be responsive 5474 * to PCI config space in order to use this function. 5475 * 5476 * The device function is presumed to be unused and the caller is holding 5477 * the device mutex lock when this function is called. 5478 * 5479 * Resetting the device will make the contents of PCI configuration space 5480 * random, so any caller of this must be prepared to reinitialise the 5481 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5482 * etc. 5483 * 5484 * Returns 0 if the device function was successfully reset or negative if the 5485 * device doesn't support resetting a single function. 5486 */ 5487 int __pci_reset_function_locked(struct pci_dev *dev) 5488 { 5489 int i, m, rc; 5490 5491 might_sleep(); 5492 5493 /* 5494 * A reset method returns -ENOTTY if it doesn't support this device and 5495 * we should try the next method. 5496 * 5497 * If it returns 0 (success), we're finished. If it returns any other 5498 * error, we're also finished: this indicates that further reset 5499 * mechanisms might be broken on the device. 5500 */ 5501 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5502 m = dev->reset_methods[i]; 5503 if (!m) 5504 return -ENOTTY; 5505 5506 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5507 if (!rc) 5508 return 0; 5509 if (rc != -ENOTTY) 5510 return rc; 5511 } 5512 5513 return -ENOTTY; 5514 } 5515 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5516 5517 /** 5518 * pci_init_reset_methods - check whether device can be safely reset 5519 * and store supported reset mechanisms. 5520 * @dev: PCI device to check for reset mechanisms 5521 * 5522 * Some devices allow an individual function to be reset without affecting 5523 * other functions in the same device. The PCI device must be in D0-D3hot 5524 * state. 5525 * 5526 * Stores reset mechanisms supported by device in reset_methods byte array 5527 * which is a member of struct pci_dev. 5528 */ 5529 void pci_init_reset_methods(struct pci_dev *dev) 5530 { 5531 int m, i, rc; 5532 5533 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5534 5535 might_sleep(); 5536 5537 i = 0; 5538 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5539 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5540 if (!rc) 5541 dev->reset_methods[i++] = m; 5542 else if (rc != -ENOTTY) 5543 break; 5544 } 5545 5546 dev->reset_methods[i] = 0; 5547 } 5548 5549 /** 5550 * pci_reset_function - quiesce and reset a PCI device function 5551 * @dev: PCI device to reset 5552 * 5553 * Some devices allow an individual function to be reset without affecting 5554 * other functions in the same device. The PCI device must be responsive 5555 * to PCI config space in order to use this function. 5556 * 5557 * This function does not just reset the PCI portion of a device, but 5558 * clears all the state associated with the device. This function differs 5559 * from __pci_reset_function_locked() in that it saves and restores device state 5560 * over the reset and takes the PCI device lock. 5561 * 5562 * Returns 0 if the device function was successfully reset or negative if the 5563 * device doesn't support resetting a single function. 5564 */ 5565 int pci_reset_function(struct pci_dev *dev) 5566 { 5567 int rc; 5568 5569 if (!pci_reset_supported(dev)) 5570 return -ENOTTY; 5571 5572 pci_dev_lock(dev); 5573 pci_dev_save_and_disable(dev); 5574 5575 rc = __pci_reset_function_locked(dev); 5576 5577 pci_dev_restore(dev); 5578 pci_dev_unlock(dev); 5579 5580 return rc; 5581 } 5582 EXPORT_SYMBOL_GPL(pci_reset_function); 5583 5584 /** 5585 * pci_reset_function_locked - quiesce and reset a PCI device function 5586 * @dev: PCI device to reset 5587 * 5588 * Some devices allow an individual function to be reset without affecting 5589 * other functions in the same device. The PCI device must be responsive 5590 * to PCI config space in order to use this function. 5591 * 5592 * This function does not just reset the PCI portion of a device, but 5593 * clears all the state associated with the device. This function differs 5594 * from __pci_reset_function_locked() in that it saves and restores device state 5595 * over the reset. It also differs from pci_reset_function() in that it 5596 * requires the PCI device lock to be held. 5597 * 5598 * Returns 0 if the device function was successfully reset or negative if the 5599 * device doesn't support resetting a single function. 5600 */ 5601 int pci_reset_function_locked(struct pci_dev *dev) 5602 { 5603 int rc; 5604 5605 if (!pci_reset_supported(dev)) 5606 return -ENOTTY; 5607 5608 pci_dev_save_and_disable(dev); 5609 5610 rc = __pci_reset_function_locked(dev); 5611 5612 pci_dev_restore(dev); 5613 5614 return rc; 5615 } 5616 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5617 5618 /** 5619 * pci_try_reset_function - quiesce and reset a PCI device function 5620 * @dev: PCI device to reset 5621 * 5622 * Same as above, except return -EAGAIN if unable to lock device. 5623 */ 5624 int pci_try_reset_function(struct pci_dev *dev) 5625 { 5626 int rc; 5627 5628 if (!pci_reset_supported(dev)) 5629 return -ENOTTY; 5630 5631 if (!pci_dev_trylock(dev)) 5632 return -EAGAIN; 5633 5634 pci_dev_save_and_disable(dev); 5635 rc = __pci_reset_function_locked(dev); 5636 pci_dev_restore(dev); 5637 pci_dev_unlock(dev); 5638 5639 return rc; 5640 } 5641 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5642 5643 /* Do any devices on or below this bus prevent a bus reset? */ 5644 static bool pci_bus_resettable(struct pci_bus *bus) 5645 { 5646 struct pci_dev *dev; 5647 5648 5649 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5650 return false; 5651 5652 list_for_each_entry(dev, &bus->devices, bus_list) { 5653 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5654 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5655 return false; 5656 } 5657 5658 return true; 5659 } 5660 5661 /* Lock devices from the top of the tree down */ 5662 static void pci_bus_lock(struct pci_bus *bus) 5663 { 5664 struct pci_dev *dev; 5665 5666 list_for_each_entry(dev, &bus->devices, bus_list) { 5667 pci_dev_lock(dev); 5668 if (dev->subordinate) 5669 pci_bus_lock(dev->subordinate); 5670 } 5671 } 5672 5673 /* Unlock devices from the bottom of the tree up */ 5674 static void pci_bus_unlock(struct pci_bus *bus) 5675 { 5676 struct pci_dev *dev; 5677 5678 list_for_each_entry(dev, &bus->devices, bus_list) { 5679 if (dev->subordinate) 5680 pci_bus_unlock(dev->subordinate); 5681 pci_dev_unlock(dev); 5682 } 5683 } 5684 5685 /* Return 1 on successful lock, 0 on contention */ 5686 static int pci_bus_trylock(struct pci_bus *bus) 5687 { 5688 struct pci_dev *dev; 5689 5690 list_for_each_entry(dev, &bus->devices, bus_list) { 5691 if (!pci_dev_trylock(dev)) 5692 goto unlock; 5693 if (dev->subordinate) { 5694 if (!pci_bus_trylock(dev->subordinate)) { 5695 pci_dev_unlock(dev); 5696 goto unlock; 5697 } 5698 } 5699 } 5700 return 1; 5701 5702 unlock: 5703 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5704 if (dev->subordinate) 5705 pci_bus_unlock(dev->subordinate); 5706 pci_dev_unlock(dev); 5707 } 5708 return 0; 5709 } 5710 5711 /* Do any devices on or below this slot prevent a bus reset? */ 5712 static bool pci_slot_resettable(struct pci_slot *slot) 5713 { 5714 struct pci_dev *dev; 5715 5716 if (slot->bus->self && 5717 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5718 return false; 5719 5720 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5721 if (!dev->slot || dev->slot != slot) 5722 continue; 5723 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5724 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5725 return false; 5726 } 5727 5728 return true; 5729 } 5730 5731 /* Lock devices from the top of the tree down */ 5732 static void pci_slot_lock(struct pci_slot *slot) 5733 { 5734 struct pci_dev *dev; 5735 5736 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5737 if (!dev->slot || dev->slot != slot) 5738 continue; 5739 pci_dev_lock(dev); 5740 if (dev->subordinate) 5741 pci_bus_lock(dev->subordinate); 5742 } 5743 } 5744 5745 /* Unlock devices from the bottom of the tree up */ 5746 static void pci_slot_unlock(struct pci_slot *slot) 5747 { 5748 struct pci_dev *dev; 5749 5750 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5751 if (!dev->slot || dev->slot != slot) 5752 continue; 5753 if (dev->subordinate) 5754 pci_bus_unlock(dev->subordinate); 5755 pci_dev_unlock(dev); 5756 } 5757 } 5758 5759 /* Return 1 on successful lock, 0 on contention */ 5760 static int pci_slot_trylock(struct pci_slot *slot) 5761 { 5762 struct pci_dev *dev; 5763 5764 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5765 if (!dev->slot || dev->slot != slot) 5766 continue; 5767 if (!pci_dev_trylock(dev)) 5768 goto unlock; 5769 if (dev->subordinate) { 5770 if (!pci_bus_trylock(dev->subordinate)) { 5771 pci_dev_unlock(dev); 5772 goto unlock; 5773 } 5774 } 5775 } 5776 return 1; 5777 5778 unlock: 5779 list_for_each_entry_continue_reverse(dev, 5780 &slot->bus->devices, bus_list) { 5781 if (!dev->slot || dev->slot != slot) 5782 continue; 5783 if (dev->subordinate) 5784 pci_bus_unlock(dev->subordinate); 5785 pci_dev_unlock(dev); 5786 } 5787 return 0; 5788 } 5789 5790 /* 5791 * Save and disable devices from the top of the tree down while holding 5792 * the @dev mutex lock for the entire tree. 5793 */ 5794 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5795 { 5796 struct pci_dev *dev; 5797 5798 list_for_each_entry(dev, &bus->devices, bus_list) { 5799 pci_dev_save_and_disable(dev); 5800 if (dev->subordinate) 5801 pci_bus_save_and_disable_locked(dev->subordinate); 5802 } 5803 } 5804 5805 /* 5806 * Restore devices from top of the tree down while holding @dev mutex lock 5807 * for the entire tree. Parent bridges need to be restored before we can 5808 * get to subordinate devices. 5809 */ 5810 static void pci_bus_restore_locked(struct pci_bus *bus) 5811 { 5812 struct pci_dev *dev; 5813 5814 list_for_each_entry(dev, &bus->devices, bus_list) { 5815 pci_dev_restore(dev); 5816 if (dev->subordinate) 5817 pci_bus_restore_locked(dev->subordinate); 5818 } 5819 } 5820 5821 /* 5822 * Save and disable devices from the top of the tree down while holding 5823 * the @dev mutex lock for the entire tree. 5824 */ 5825 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5826 { 5827 struct pci_dev *dev; 5828 5829 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5830 if (!dev->slot || dev->slot != slot) 5831 continue; 5832 pci_dev_save_and_disable(dev); 5833 if (dev->subordinate) 5834 pci_bus_save_and_disable_locked(dev->subordinate); 5835 } 5836 } 5837 5838 /* 5839 * Restore devices from top of the tree down while holding @dev mutex lock 5840 * for the entire tree. Parent bridges need to be restored before we can 5841 * get to subordinate devices. 5842 */ 5843 static void pci_slot_restore_locked(struct pci_slot *slot) 5844 { 5845 struct pci_dev *dev; 5846 5847 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5848 if (!dev->slot || dev->slot != slot) 5849 continue; 5850 pci_dev_restore(dev); 5851 if (dev->subordinate) 5852 pci_bus_restore_locked(dev->subordinate); 5853 } 5854 } 5855 5856 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5857 { 5858 int rc; 5859 5860 if (!slot || !pci_slot_resettable(slot)) 5861 return -ENOTTY; 5862 5863 if (!probe) 5864 pci_slot_lock(slot); 5865 5866 might_sleep(); 5867 5868 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5869 5870 if (!probe) 5871 pci_slot_unlock(slot); 5872 5873 return rc; 5874 } 5875 5876 /** 5877 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5878 * @slot: PCI slot to probe 5879 * 5880 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5881 */ 5882 int pci_probe_reset_slot(struct pci_slot *slot) 5883 { 5884 return pci_slot_reset(slot, PCI_RESET_PROBE); 5885 } 5886 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5887 5888 /** 5889 * __pci_reset_slot - Try to reset a PCI slot 5890 * @slot: PCI slot to reset 5891 * 5892 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5893 * independent of other slots. For instance, some slots may support slot power 5894 * control. In the case of a 1:1 bus to slot architecture, this function may 5895 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5896 * Generally a slot reset should be attempted before a bus reset. All of the 5897 * function of the slot and any subordinate buses behind the slot are reset 5898 * through this function. PCI config space of all devices in the slot and 5899 * behind the slot is saved before and restored after reset. 5900 * 5901 * Same as above except return -EAGAIN if the slot cannot be locked 5902 */ 5903 static int __pci_reset_slot(struct pci_slot *slot) 5904 { 5905 int rc; 5906 5907 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5908 if (rc) 5909 return rc; 5910 5911 if (pci_slot_trylock(slot)) { 5912 pci_slot_save_and_disable_locked(slot); 5913 might_sleep(); 5914 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5915 pci_slot_restore_locked(slot); 5916 pci_slot_unlock(slot); 5917 } else 5918 rc = -EAGAIN; 5919 5920 return rc; 5921 } 5922 5923 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5924 { 5925 int ret; 5926 5927 if (!bus->self || !pci_bus_resettable(bus)) 5928 return -ENOTTY; 5929 5930 if (probe) 5931 return 0; 5932 5933 pci_bus_lock(bus); 5934 5935 might_sleep(); 5936 5937 ret = pci_bridge_secondary_bus_reset(bus->self); 5938 5939 pci_bus_unlock(bus); 5940 5941 return ret; 5942 } 5943 5944 /** 5945 * pci_bus_error_reset - reset the bridge's subordinate bus 5946 * @bridge: The parent device that connects to the bus to reset 5947 * 5948 * This function will first try to reset the slots on this bus if the method is 5949 * available. If slot reset fails or is not available, this will fall back to a 5950 * secondary bus reset. 5951 */ 5952 int pci_bus_error_reset(struct pci_dev *bridge) 5953 { 5954 struct pci_bus *bus = bridge->subordinate; 5955 struct pci_slot *slot; 5956 5957 if (!bus) 5958 return -ENOTTY; 5959 5960 mutex_lock(&pci_slot_mutex); 5961 if (list_empty(&bus->slots)) 5962 goto bus_reset; 5963 5964 list_for_each_entry(slot, &bus->slots, list) 5965 if (pci_probe_reset_slot(slot)) 5966 goto bus_reset; 5967 5968 list_for_each_entry(slot, &bus->slots, list) 5969 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5970 goto bus_reset; 5971 5972 mutex_unlock(&pci_slot_mutex); 5973 return 0; 5974 bus_reset: 5975 mutex_unlock(&pci_slot_mutex); 5976 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5977 } 5978 5979 /** 5980 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5981 * @bus: PCI bus to probe 5982 * 5983 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5984 */ 5985 int pci_probe_reset_bus(struct pci_bus *bus) 5986 { 5987 return pci_bus_reset(bus, PCI_RESET_PROBE); 5988 } 5989 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5990 5991 /** 5992 * __pci_reset_bus - Try to reset a PCI bus 5993 * @bus: top level PCI bus to reset 5994 * 5995 * Same as above except return -EAGAIN if the bus cannot be locked 5996 */ 5997 static int __pci_reset_bus(struct pci_bus *bus) 5998 { 5999 int rc; 6000 6001 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 6002 if (rc) 6003 return rc; 6004 6005 if (pci_bus_trylock(bus)) { 6006 pci_bus_save_and_disable_locked(bus); 6007 might_sleep(); 6008 rc = pci_bridge_secondary_bus_reset(bus->self); 6009 pci_bus_restore_locked(bus); 6010 pci_bus_unlock(bus); 6011 } else 6012 rc = -EAGAIN; 6013 6014 return rc; 6015 } 6016 6017 /** 6018 * pci_reset_bus - Try to reset a PCI bus 6019 * @pdev: top level PCI device to reset via slot/bus 6020 * 6021 * Same as above except return -EAGAIN if the bus cannot be locked 6022 */ 6023 int pci_reset_bus(struct pci_dev *pdev) 6024 { 6025 return (!pci_probe_reset_slot(pdev->slot)) ? 6026 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 6027 } 6028 EXPORT_SYMBOL_GPL(pci_reset_bus); 6029 6030 /** 6031 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 6032 * @dev: PCI device to query 6033 * 6034 * Returns mmrbc: maximum designed memory read count in bytes or 6035 * appropriate error value. 6036 */ 6037 int pcix_get_max_mmrbc(struct pci_dev *dev) 6038 { 6039 int cap; 6040 u32 stat; 6041 6042 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6043 if (!cap) 6044 return -EINVAL; 6045 6046 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6047 return -EINVAL; 6048 6049 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat); 6050 } 6051 EXPORT_SYMBOL(pcix_get_max_mmrbc); 6052 6053 /** 6054 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 6055 * @dev: PCI device to query 6056 * 6057 * Returns mmrbc: maximum memory read count in bytes or appropriate error 6058 * value. 6059 */ 6060 int pcix_get_mmrbc(struct pci_dev *dev) 6061 { 6062 int cap; 6063 u16 cmd; 6064 6065 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6066 if (!cap) 6067 return -EINVAL; 6068 6069 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6070 return -EINVAL; 6071 6072 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 6073 } 6074 EXPORT_SYMBOL(pcix_get_mmrbc); 6075 6076 /** 6077 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 6078 * @dev: PCI device to query 6079 * @mmrbc: maximum memory read count in bytes 6080 * valid values are 512, 1024, 2048, 4096 6081 * 6082 * If possible sets maximum memory read byte count, some bridges have errata 6083 * that prevent this. 6084 */ 6085 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 6086 { 6087 int cap; 6088 u32 stat, v, o; 6089 u16 cmd; 6090 6091 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 6092 return -EINVAL; 6093 6094 v = ffs(mmrbc) - 10; 6095 6096 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6097 if (!cap) 6098 return -EINVAL; 6099 6100 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6101 return -EINVAL; 6102 6103 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat)) 6104 return -E2BIG; 6105 6106 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6107 return -EINVAL; 6108 6109 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 6110 if (o != v) { 6111 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 6112 return -EIO; 6113 6114 cmd &= ~PCI_X_CMD_MAX_READ; 6115 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v); 6116 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 6117 return -EIO; 6118 } 6119 return 0; 6120 } 6121 EXPORT_SYMBOL(pcix_set_mmrbc); 6122 6123 /** 6124 * pcie_get_readrq - get PCI Express read request size 6125 * @dev: PCI device to query 6126 * 6127 * Returns maximum memory read request in bytes or appropriate error value. 6128 */ 6129 int pcie_get_readrq(struct pci_dev *dev) 6130 { 6131 u16 ctl; 6132 6133 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6134 6135 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl); 6136 } 6137 EXPORT_SYMBOL(pcie_get_readrq); 6138 6139 /** 6140 * pcie_set_readrq - set PCI Express maximum memory read request 6141 * @dev: PCI device to query 6142 * @rq: maximum memory read count in bytes 6143 * valid values are 128, 256, 512, 1024, 2048, 4096 6144 * 6145 * If possible sets maximum memory read request in bytes 6146 */ 6147 int pcie_set_readrq(struct pci_dev *dev, int rq) 6148 { 6149 u16 v; 6150 int ret; 6151 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 6152 6153 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6154 return -EINVAL; 6155 6156 /* 6157 * If using the "performance" PCIe config, we clamp the read rq 6158 * size to the max packet size to keep the host bridge from 6159 * generating requests larger than we can cope with. 6160 */ 6161 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6162 int mps = pcie_get_mps(dev); 6163 6164 if (mps < rq) 6165 rq = mps; 6166 } 6167 6168 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8); 6169 6170 if (bridge->no_inc_mrrs) { 6171 int max_mrrs = pcie_get_readrq(dev); 6172 6173 if (rq > max_mrrs) { 6174 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 6175 return -EINVAL; 6176 } 6177 } 6178 6179 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6180 PCI_EXP_DEVCTL_READRQ, v); 6181 6182 return pcibios_err_to_errno(ret); 6183 } 6184 EXPORT_SYMBOL(pcie_set_readrq); 6185 6186 /** 6187 * pcie_get_mps - get PCI Express maximum payload size 6188 * @dev: PCI device to query 6189 * 6190 * Returns maximum payload size in bytes 6191 */ 6192 int pcie_get_mps(struct pci_dev *dev) 6193 { 6194 u16 ctl; 6195 6196 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6197 6198 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl); 6199 } 6200 EXPORT_SYMBOL(pcie_get_mps); 6201 6202 /** 6203 * pcie_set_mps - set PCI Express maximum payload size 6204 * @dev: PCI device to query 6205 * @mps: maximum payload size in bytes 6206 * valid values are 128, 256, 512, 1024, 2048, 4096 6207 * 6208 * If possible sets maximum payload size 6209 */ 6210 int pcie_set_mps(struct pci_dev *dev, int mps) 6211 { 6212 u16 v; 6213 int ret; 6214 6215 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6216 return -EINVAL; 6217 6218 v = ffs(mps) - 8; 6219 if (v > dev->pcie_mpss) 6220 return -EINVAL; 6221 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v); 6222 6223 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6224 PCI_EXP_DEVCTL_PAYLOAD, v); 6225 6226 return pcibios_err_to_errno(ret); 6227 } 6228 EXPORT_SYMBOL(pcie_set_mps); 6229 6230 /** 6231 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6232 * device and its bandwidth limitation 6233 * @dev: PCI device to query 6234 * @limiting_dev: storage for device causing the bandwidth limitation 6235 * @speed: storage for speed of limiting device 6236 * @width: storage for width of limiting device 6237 * 6238 * Walk up the PCI device chain and find the point where the minimum 6239 * bandwidth is available. Return the bandwidth available there and (if 6240 * limiting_dev, speed, and width pointers are supplied) information about 6241 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6242 * raw bandwidth. 6243 */ 6244 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6245 enum pci_bus_speed *speed, 6246 enum pcie_link_width *width) 6247 { 6248 u16 lnksta; 6249 enum pci_bus_speed next_speed; 6250 enum pcie_link_width next_width; 6251 u32 bw, next_bw; 6252 6253 if (speed) 6254 *speed = PCI_SPEED_UNKNOWN; 6255 if (width) 6256 *width = PCIE_LNK_WIDTH_UNKNOWN; 6257 6258 bw = 0; 6259 6260 while (dev) { 6261 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6262 6263 next_speed = pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, 6264 lnksta)]; 6265 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6266 6267 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6268 6269 /* Check if current device limits the total bandwidth */ 6270 if (!bw || next_bw <= bw) { 6271 bw = next_bw; 6272 6273 if (limiting_dev) 6274 *limiting_dev = dev; 6275 if (speed) 6276 *speed = next_speed; 6277 if (width) 6278 *width = next_width; 6279 } 6280 6281 dev = pci_upstream_bridge(dev); 6282 } 6283 6284 return bw; 6285 } 6286 EXPORT_SYMBOL(pcie_bandwidth_available); 6287 6288 /** 6289 * pcie_get_speed_cap - query for the PCI device's link speed capability 6290 * @dev: PCI device to query 6291 * 6292 * Query the PCI device speed capability. Return the maximum link speed 6293 * supported by the device. 6294 */ 6295 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6296 { 6297 u32 lnkcap2, lnkcap; 6298 6299 /* 6300 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6301 * implementation note there recommends using the Supported Link 6302 * Speeds Vector in Link Capabilities 2 when supported. 6303 * 6304 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6305 * should use the Supported Link Speeds field in Link Capabilities, 6306 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6307 */ 6308 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6309 6310 /* PCIe r3.0-compliant */ 6311 if (lnkcap2) 6312 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6313 6314 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6315 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6316 return PCIE_SPEED_5_0GT; 6317 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6318 return PCIE_SPEED_2_5GT; 6319 6320 return PCI_SPEED_UNKNOWN; 6321 } 6322 EXPORT_SYMBOL(pcie_get_speed_cap); 6323 6324 /** 6325 * pcie_get_width_cap - query for the PCI device's link width capability 6326 * @dev: PCI device to query 6327 * 6328 * Query the PCI device width capability. Return the maximum link width 6329 * supported by the device. 6330 */ 6331 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6332 { 6333 u32 lnkcap; 6334 6335 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6336 if (lnkcap) 6337 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6338 6339 return PCIE_LNK_WIDTH_UNKNOWN; 6340 } 6341 EXPORT_SYMBOL(pcie_get_width_cap); 6342 6343 /** 6344 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6345 * @dev: PCI device 6346 * @speed: storage for link speed 6347 * @width: storage for link width 6348 * 6349 * Calculate a PCI device's link bandwidth by querying for its link speed 6350 * and width, multiplying them, and applying encoding overhead. The result 6351 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6352 */ 6353 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6354 enum pcie_link_width *width) 6355 { 6356 *speed = pcie_get_speed_cap(dev); 6357 *width = pcie_get_width_cap(dev); 6358 6359 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6360 return 0; 6361 6362 return *width * PCIE_SPEED2MBS_ENC(*speed); 6363 } 6364 6365 /** 6366 * __pcie_print_link_status - Report the PCI device's link speed and width 6367 * @dev: PCI device to query 6368 * @verbose: Print info even when enough bandwidth is available 6369 * 6370 * If the available bandwidth at the device is less than the device is 6371 * capable of, report the device's maximum possible bandwidth and the 6372 * upstream link that limits its performance. If @verbose, always print 6373 * the available bandwidth, even if the device isn't constrained. 6374 */ 6375 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6376 { 6377 enum pcie_link_width width, width_cap; 6378 enum pci_bus_speed speed, speed_cap; 6379 struct pci_dev *limiting_dev = NULL; 6380 u32 bw_avail, bw_cap; 6381 6382 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6383 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6384 6385 if (bw_avail >= bw_cap && verbose) 6386 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6387 bw_cap / 1000, bw_cap % 1000, 6388 pci_speed_string(speed_cap), width_cap); 6389 else if (bw_avail < bw_cap) 6390 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6391 bw_avail / 1000, bw_avail % 1000, 6392 pci_speed_string(speed), width, 6393 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6394 bw_cap / 1000, bw_cap % 1000, 6395 pci_speed_string(speed_cap), width_cap); 6396 } 6397 6398 /** 6399 * pcie_print_link_status - Report the PCI device's link speed and width 6400 * @dev: PCI device to query 6401 * 6402 * Report the available bandwidth at the device. 6403 */ 6404 void pcie_print_link_status(struct pci_dev *dev) 6405 { 6406 __pcie_print_link_status(dev, true); 6407 } 6408 EXPORT_SYMBOL(pcie_print_link_status); 6409 6410 /** 6411 * pci_select_bars - Make BAR mask from the type of resource 6412 * @dev: the PCI device for which BAR mask is made 6413 * @flags: resource type mask to be selected 6414 * 6415 * This helper routine makes bar mask from the type of resource. 6416 */ 6417 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6418 { 6419 int i, bars = 0; 6420 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6421 if (pci_resource_flags(dev, i) & flags) 6422 bars |= (1 << i); 6423 return bars; 6424 } 6425 EXPORT_SYMBOL(pci_select_bars); 6426 6427 /* Some architectures require additional programming to enable VGA */ 6428 static arch_set_vga_state_t arch_set_vga_state; 6429 6430 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6431 { 6432 arch_set_vga_state = func; /* NULL disables */ 6433 } 6434 6435 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6436 unsigned int command_bits, u32 flags) 6437 { 6438 if (arch_set_vga_state) 6439 return arch_set_vga_state(dev, decode, command_bits, 6440 flags); 6441 return 0; 6442 } 6443 6444 /** 6445 * pci_set_vga_state - set VGA decode state on device and parents if requested 6446 * @dev: the PCI device 6447 * @decode: true = enable decoding, false = disable decoding 6448 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6449 * @flags: traverse ancestors and change bridges 6450 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6451 */ 6452 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6453 unsigned int command_bits, u32 flags) 6454 { 6455 struct pci_bus *bus; 6456 struct pci_dev *bridge; 6457 u16 cmd; 6458 int rc; 6459 6460 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6461 6462 /* ARCH specific VGA enables */ 6463 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6464 if (rc) 6465 return rc; 6466 6467 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6468 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6469 if (decode) 6470 cmd |= command_bits; 6471 else 6472 cmd &= ~command_bits; 6473 pci_write_config_word(dev, PCI_COMMAND, cmd); 6474 } 6475 6476 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6477 return 0; 6478 6479 bus = dev->bus; 6480 while (bus) { 6481 bridge = bus->self; 6482 if (bridge) { 6483 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6484 &cmd); 6485 if (decode) 6486 cmd |= PCI_BRIDGE_CTL_VGA; 6487 else 6488 cmd &= ~PCI_BRIDGE_CTL_VGA; 6489 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6490 cmd); 6491 } 6492 bus = bus->parent; 6493 } 6494 return 0; 6495 } 6496 6497 #ifdef CONFIG_ACPI 6498 bool pci_pr3_present(struct pci_dev *pdev) 6499 { 6500 struct acpi_device *adev; 6501 6502 if (acpi_disabled) 6503 return false; 6504 6505 adev = ACPI_COMPANION(&pdev->dev); 6506 if (!adev) 6507 return false; 6508 6509 return adev->power.flags.power_resources && 6510 acpi_has_method(adev->handle, "_PR3"); 6511 } 6512 EXPORT_SYMBOL_GPL(pci_pr3_present); 6513 #endif 6514 6515 /** 6516 * pci_add_dma_alias - Add a DMA devfn alias for a device 6517 * @dev: the PCI device for which alias is added 6518 * @devfn_from: alias slot and function 6519 * @nr_devfns: number of subsequent devfns to alias 6520 * 6521 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6522 * which is used to program permissible bus-devfn source addresses for DMA 6523 * requests in an IOMMU. These aliases factor into IOMMU group creation 6524 * and are useful for devices generating DMA requests beyond or different 6525 * from their logical bus-devfn. Examples include device quirks where the 6526 * device simply uses the wrong devfn, as well as non-transparent bridges 6527 * where the alias may be a proxy for devices in another domain. 6528 * 6529 * IOMMU group creation is performed during device discovery or addition, 6530 * prior to any potential DMA mapping and therefore prior to driver probing 6531 * (especially for userspace assigned devices where IOMMU group definition 6532 * cannot be left as a userspace activity). DMA aliases should therefore 6533 * be configured via quirks, such as the PCI fixup header quirk. 6534 */ 6535 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6536 unsigned int nr_devfns) 6537 { 6538 int devfn_to; 6539 6540 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6541 devfn_to = devfn_from + nr_devfns - 1; 6542 6543 if (!dev->dma_alias_mask) 6544 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6545 if (!dev->dma_alias_mask) { 6546 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6547 return; 6548 } 6549 6550 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6551 6552 if (nr_devfns == 1) 6553 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6554 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6555 else if (nr_devfns > 1) 6556 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6557 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6558 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6559 } 6560 6561 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6562 { 6563 return (dev1->dma_alias_mask && 6564 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6565 (dev2->dma_alias_mask && 6566 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6567 pci_real_dma_dev(dev1) == dev2 || 6568 pci_real_dma_dev(dev2) == dev1; 6569 } 6570 6571 bool pci_device_is_present(struct pci_dev *pdev) 6572 { 6573 u32 v; 6574 6575 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6576 pdev = pci_physfn(pdev); 6577 if (pci_dev_is_disconnected(pdev)) 6578 return false; 6579 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6580 } 6581 EXPORT_SYMBOL_GPL(pci_device_is_present); 6582 6583 void pci_ignore_hotplug(struct pci_dev *dev) 6584 { 6585 struct pci_dev *bridge = dev->bus->self; 6586 6587 dev->ignore_hotplug = 1; 6588 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6589 if (bridge) 6590 bridge->ignore_hotplug = 1; 6591 } 6592 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6593 6594 /** 6595 * pci_real_dma_dev - Get PCI DMA device for PCI device 6596 * @dev: the PCI device that may have a PCI DMA alias 6597 * 6598 * Permits the platform to provide architecture-specific functionality to 6599 * devices needing to alias DMA to another PCI device on another PCI bus. If 6600 * the PCI device is on the same bus, it is recommended to use 6601 * pci_add_dma_alias(). This is the default implementation. Architecture 6602 * implementations can override this. 6603 */ 6604 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6605 { 6606 return dev; 6607 } 6608 6609 resource_size_t __weak pcibios_default_alignment(void) 6610 { 6611 return 0; 6612 } 6613 6614 /* 6615 * Arches that don't want to expose struct resource to userland as-is in 6616 * sysfs and /proc can implement their own pci_resource_to_user(). 6617 */ 6618 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6619 const struct resource *rsrc, 6620 resource_size_t *start, resource_size_t *end) 6621 { 6622 *start = rsrc->start; 6623 *end = rsrc->end; 6624 } 6625 6626 static char *resource_alignment_param; 6627 static DEFINE_SPINLOCK(resource_alignment_lock); 6628 6629 /** 6630 * pci_specified_resource_alignment - get resource alignment specified by user. 6631 * @dev: the PCI device to get 6632 * @resize: whether or not to change resources' size when reassigning alignment 6633 * 6634 * RETURNS: Resource alignment if it is specified. 6635 * Zero if it is not specified. 6636 */ 6637 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6638 bool *resize) 6639 { 6640 int align_order, count; 6641 resource_size_t align = pcibios_default_alignment(); 6642 const char *p; 6643 int ret; 6644 6645 spin_lock(&resource_alignment_lock); 6646 p = resource_alignment_param; 6647 if (!p || !*p) 6648 goto out; 6649 if (pci_has_flag(PCI_PROBE_ONLY)) { 6650 align = 0; 6651 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6652 goto out; 6653 } 6654 6655 while (*p) { 6656 count = 0; 6657 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6658 p[count] == '@') { 6659 p += count + 1; 6660 if (align_order > 63) { 6661 pr_err("PCI: Invalid requested alignment (order %d)\n", 6662 align_order); 6663 align_order = PAGE_SHIFT; 6664 } 6665 } else { 6666 align_order = PAGE_SHIFT; 6667 } 6668 6669 ret = pci_dev_str_match(dev, p, &p); 6670 if (ret == 1) { 6671 *resize = true; 6672 align = 1ULL << align_order; 6673 break; 6674 } else if (ret < 0) { 6675 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6676 p); 6677 break; 6678 } 6679 6680 if (*p != ';' && *p != ',') { 6681 /* End of param or invalid format */ 6682 break; 6683 } 6684 p++; 6685 } 6686 out: 6687 spin_unlock(&resource_alignment_lock); 6688 return align; 6689 } 6690 6691 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6692 resource_size_t align, bool resize) 6693 { 6694 struct resource *r = &dev->resource[bar]; 6695 resource_size_t size; 6696 6697 if (!(r->flags & IORESOURCE_MEM)) 6698 return; 6699 6700 if (r->flags & IORESOURCE_PCI_FIXED) { 6701 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6702 bar, r, (unsigned long long)align); 6703 return; 6704 } 6705 6706 size = resource_size(r); 6707 if (size >= align) 6708 return; 6709 6710 /* 6711 * Increase the alignment of the resource. There are two ways we 6712 * can do this: 6713 * 6714 * 1) Increase the size of the resource. BARs are aligned on their 6715 * size, so when we reallocate space for this resource, we'll 6716 * allocate it with the larger alignment. This also prevents 6717 * assignment of any other BARs inside the alignment region, so 6718 * if we're requesting page alignment, this means no other BARs 6719 * will share the page. 6720 * 6721 * The disadvantage is that this makes the resource larger than 6722 * the hardware BAR, which may break drivers that compute things 6723 * based on the resource size, e.g., to find registers at a 6724 * fixed offset before the end of the BAR. 6725 * 6726 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6727 * set r->start to the desired alignment. By itself this 6728 * doesn't prevent other BARs being put inside the alignment 6729 * region, but if we realign *every* resource of every device in 6730 * the system, none of them will share an alignment region. 6731 * 6732 * When the user has requested alignment for only some devices via 6733 * the "pci=resource_alignment" argument, "resize" is true and we 6734 * use the first method. Otherwise we assume we're aligning all 6735 * devices and we use the second. 6736 */ 6737 6738 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6739 bar, r, (unsigned long long)align); 6740 6741 if (resize) { 6742 r->start = 0; 6743 r->end = align - 1; 6744 } else { 6745 r->flags &= ~IORESOURCE_SIZEALIGN; 6746 r->flags |= IORESOURCE_STARTALIGN; 6747 r->start = align; 6748 r->end = r->start + size - 1; 6749 } 6750 r->flags |= IORESOURCE_UNSET; 6751 } 6752 6753 /* 6754 * This function disables memory decoding and releases memory resources 6755 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6756 * It also rounds up size to specified alignment. 6757 * Later on, the kernel will assign page-aligned memory resource back 6758 * to the device. 6759 */ 6760 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6761 { 6762 int i; 6763 struct resource *r; 6764 resource_size_t align; 6765 u16 command; 6766 bool resize = false; 6767 6768 /* 6769 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6770 * 3.4.1.11. Their resources are allocated from the space 6771 * described by the VF BARx register in the PF's SR-IOV capability. 6772 * We can't influence their alignment here. 6773 */ 6774 if (dev->is_virtfn) 6775 return; 6776 6777 /* check if specified PCI is target device to reassign */ 6778 align = pci_specified_resource_alignment(dev, &resize); 6779 if (!align) 6780 return; 6781 6782 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6783 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6784 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6785 return; 6786 } 6787 6788 pci_read_config_word(dev, PCI_COMMAND, &command); 6789 command &= ~PCI_COMMAND_MEMORY; 6790 pci_write_config_word(dev, PCI_COMMAND, command); 6791 6792 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6793 pci_request_resource_alignment(dev, i, align, resize); 6794 6795 /* 6796 * Need to disable bridge's resource window, 6797 * to enable the kernel to reassign new resource 6798 * window later on. 6799 */ 6800 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6801 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6802 r = &dev->resource[i]; 6803 if (!(r->flags & IORESOURCE_MEM)) 6804 continue; 6805 r->flags |= IORESOURCE_UNSET; 6806 r->end = resource_size(r) - 1; 6807 r->start = 0; 6808 } 6809 pci_disable_bridge_window(dev); 6810 } 6811 } 6812 6813 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6814 { 6815 size_t count = 0; 6816 6817 spin_lock(&resource_alignment_lock); 6818 if (resource_alignment_param) 6819 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6820 spin_unlock(&resource_alignment_lock); 6821 6822 return count; 6823 } 6824 6825 static ssize_t resource_alignment_store(const struct bus_type *bus, 6826 const char *buf, size_t count) 6827 { 6828 char *param, *old, *end; 6829 6830 if (count >= (PAGE_SIZE - 1)) 6831 return -EINVAL; 6832 6833 param = kstrndup(buf, count, GFP_KERNEL); 6834 if (!param) 6835 return -ENOMEM; 6836 6837 end = strchr(param, '\n'); 6838 if (end) 6839 *end = '\0'; 6840 6841 spin_lock(&resource_alignment_lock); 6842 old = resource_alignment_param; 6843 if (strlen(param)) { 6844 resource_alignment_param = param; 6845 } else { 6846 kfree(param); 6847 resource_alignment_param = NULL; 6848 } 6849 spin_unlock(&resource_alignment_lock); 6850 6851 kfree(old); 6852 6853 return count; 6854 } 6855 6856 static BUS_ATTR_RW(resource_alignment); 6857 6858 static int __init pci_resource_alignment_sysfs_init(void) 6859 { 6860 return bus_create_file(&pci_bus_type, 6861 &bus_attr_resource_alignment); 6862 } 6863 late_initcall(pci_resource_alignment_sysfs_init); 6864 6865 static void pci_no_domains(void) 6866 { 6867 #ifdef CONFIG_PCI_DOMAINS 6868 pci_domains_supported = 0; 6869 #endif 6870 } 6871 6872 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6873 static DEFINE_IDA(pci_domain_nr_static_ida); 6874 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6875 6876 static void of_pci_reserve_static_domain_nr(void) 6877 { 6878 struct device_node *np; 6879 int domain_nr; 6880 6881 for_each_node_by_type(np, "pci") { 6882 domain_nr = of_get_pci_domain_nr(np); 6883 if (domain_nr < 0) 6884 continue; 6885 /* 6886 * Permanently allocate domain_nr in dynamic_ida 6887 * to prevent it from dynamic allocation. 6888 */ 6889 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6890 domain_nr, domain_nr, GFP_KERNEL); 6891 } 6892 } 6893 6894 static int of_pci_bus_find_domain_nr(struct device *parent) 6895 { 6896 static bool static_domains_reserved = false; 6897 int domain_nr; 6898 6899 /* On the first call scan device tree for static allocations. */ 6900 if (!static_domains_reserved) { 6901 of_pci_reserve_static_domain_nr(); 6902 static_domains_reserved = true; 6903 } 6904 6905 if (parent) { 6906 /* 6907 * If domain is in DT, allocate it in static IDA. This 6908 * prevents duplicate static allocations in case of errors 6909 * in DT. 6910 */ 6911 domain_nr = of_get_pci_domain_nr(parent->of_node); 6912 if (domain_nr >= 0) 6913 return ida_alloc_range(&pci_domain_nr_static_ida, 6914 domain_nr, domain_nr, 6915 GFP_KERNEL); 6916 } 6917 6918 /* 6919 * If domain was not specified in DT, choose a free ID from dynamic 6920 * allocations. All domain numbers from DT are permanently in 6921 * dynamic allocations to prevent assigning them to other DT nodes 6922 * without static domain. 6923 */ 6924 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6925 } 6926 6927 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6928 { 6929 if (bus->domain_nr < 0) 6930 return; 6931 6932 /* Release domain from IDA where it was allocated. */ 6933 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr) 6934 ida_free(&pci_domain_nr_static_ida, bus->domain_nr); 6935 else 6936 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr); 6937 } 6938 6939 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6940 { 6941 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6942 acpi_pci_bus_find_domain_nr(bus); 6943 } 6944 6945 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6946 { 6947 if (!acpi_disabled) 6948 return; 6949 of_pci_bus_release_domain_nr(bus, parent); 6950 } 6951 #endif 6952 6953 /** 6954 * pci_ext_cfg_avail - can we access extended PCI config space? 6955 * 6956 * Returns 1 if we can access PCI extended config space (offsets 6957 * greater than 0xff). This is the default implementation. Architecture 6958 * implementations can override this. 6959 */ 6960 int __weak pci_ext_cfg_avail(void) 6961 { 6962 return 1; 6963 } 6964 6965 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6966 { 6967 } 6968 EXPORT_SYMBOL(pci_fixup_cardbus); 6969 6970 static int __init pci_setup(char *str) 6971 { 6972 while (str) { 6973 char *k = strchr(str, ','); 6974 if (k) 6975 *k++ = 0; 6976 if (*str && (str = pcibios_setup(str)) && *str) { 6977 if (!strcmp(str, "nomsi")) { 6978 pci_no_msi(); 6979 } else if (!strncmp(str, "noats", 5)) { 6980 pr_info("PCIe: ATS is disabled\n"); 6981 pcie_ats_disabled = true; 6982 } else if (!strcmp(str, "noaer")) { 6983 pci_no_aer(); 6984 } else if (!strcmp(str, "earlydump")) { 6985 pci_early_dump = true; 6986 } else if (!strncmp(str, "realloc=", 8)) { 6987 pci_realloc_get_opt(str + 8); 6988 } else if (!strncmp(str, "realloc", 7)) { 6989 pci_realloc_get_opt("on"); 6990 } else if (!strcmp(str, "nodomains")) { 6991 pci_no_domains(); 6992 } else if (!strncmp(str, "noari", 5)) { 6993 pcie_ari_disabled = true; 6994 } else if (!strncmp(str, "cbiosize=", 9)) { 6995 pci_cardbus_io_size = memparse(str + 9, &str); 6996 } else if (!strncmp(str, "cbmemsize=", 10)) { 6997 pci_cardbus_mem_size = memparse(str + 10, &str); 6998 } else if (!strncmp(str, "resource_alignment=", 19)) { 6999 resource_alignment_param = str + 19; 7000 } else if (!strncmp(str, "ecrc=", 5)) { 7001 pcie_ecrc_get_policy(str + 5); 7002 } else if (!strncmp(str, "hpiosize=", 9)) { 7003 pci_hotplug_io_size = memparse(str + 9, &str); 7004 } else if (!strncmp(str, "hpmmiosize=", 11)) { 7005 pci_hotplug_mmio_size = memparse(str + 11, &str); 7006 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 7007 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 7008 } else if (!strncmp(str, "hpmemsize=", 10)) { 7009 pci_hotplug_mmio_size = memparse(str + 10, &str); 7010 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 7011 } else if (!strncmp(str, "hpbussize=", 10)) { 7012 pci_hotplug_bus_size = 7013 simple_strtoul(str + 10, &str, 0); 7014 if (pci_hotplug_bus_size > 0xff) 7015 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 7016 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 7017 pcie_bus_config = PCIE_BUS_TUNE_OFF; 7018 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 7019 pcie_bus_config = PCIE_BUS_SAFE; 7020 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 7021 pcie_bus_config = PCIE_BUS_PERFORMANCE; 7022 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 7023 pcie_bus_config = PCIE_BUS_PEER2PEER; 7024 } else if (!strncmp(str, "pcie_scan_all", 13)) { 7025 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 7026 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 7027 disable_acs_redir_param = str + 18; 7028 } else { 7029 pr_err("PCI: Unknown option `%s'\n", str); 7030 } 7031 } 7032 str = k; 7033 } 7034 return 0; 7035 } 7036 early_param("pci", pci_setup); 7037 7038 /* 7039 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 7040 * in pci_setup(), above, to point to data in the __initdata section which 7041 * will be freed after the init sequence is complete. We can't allocate memory 7042 * in pci_setup() because some architectures do not have any memory allocation 7043 * service available during an early_param() call. So we allocate memory and 7044 * copy the variable here before the init section is freed. 7045 * 7046 */ 7047 static int __init pci_realloc_setup_params(void) 7048 { 7049 resource_alignment_param = kstrdup(resource_alignment_param, 7050 GFP_KERNEL); 7051 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 7052 7053 return 0; 7054 } 7055 pure_initcall(pci_realloc_setup_params); 7056