xref: /linux/drivers/pci/pci.c (revision 79ac11393328fb1717d17c12e3c0eef0e9fa0647)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3hot_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 /*
68  * Following exit from Conventional Reset, devices must be ready within 1 sec
69  * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
70  * Reset (PCIe r6.0 sec 5.8).
71  */
72 #define PCI_RESET_WAIT 1000 /* msec */
73 
74 /*
75  * Devices may extend the 1 sec period through Request Retry Status
76  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
77  * limit, but 60 sec ought to be enough for any device to become
78  * responsive.
79  */
80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81 
82 static void pci_dev_d3_sleep(struct pci_dev *dev)
83 {
84 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85 	unsigned int upper;
86 
87 	if (delay_ms) {
88 		/* Use a 20% upper bound, 1ms minimum */
89 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 		usleep_range(delay_ms * USEC_PER_MSEC,
91 			     (delay_ms + upper) * USEC_PER_MSEC);
92 	}
93 }
94 
95 bool pci_reset_supported(struct pci_dev *dev)
96 {
97 	return dev->reset_methods[0] != 0;
98 }
99 
100 #ifdef CONFIG_PCI_DOMAINS
101 int pci_domains_supported = 1;
102 #endif
103 
104 #define DEFAULT_CARDBUS_IO_SIZE		(256)
105 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109 
110 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
111 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
113 /* hpiosize=nn can override this */
114 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
115 /*
116  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118  * pci=hpmemsize=nnM overrides both
119  */
120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122 
123 #define DEFAULT_HOTPLUG_BUS_SIZE	1
124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125 
126 
127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 #elif defined CONFIG_PCIE_BUS_SAFE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136 #else
137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138 #endif
139 
140 /*
141  * The default CLS is used if arch didn't set CLS explicitly and not
142  * all pci devices agree on the same value.  Arch can override either
143  * the dfl or actual value as it sees fit.  Don't forget this is
144  * measured in 32-bit words, not bytes.
145  */
146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 u8 pci_cache_line_size;
148 
149 /*
150  * If we set up a device for bus mastering, we need to check the latency
151  * timer as certain BIOSes forget to set it properly.
152  */
153 unsigned int pcibios_max_latency = 255;
154 
155 /* If set, the PCIe ARI capability will not be used. */
156 static bool pcie_ari_disabled;
157 
158 /* If set, the PCIe ATS capability will not be used. */
159 static bool pcie_ats_disabled;
160 
161 /* If set, the PCI config space of each device is printed during boot. */
162 bool pci_early_dump;
163 
164 bool pci_ats_disabled(void)
165 {
166 	return pcie_ats_disabled;
167 }
168 EXPORT_SYMBOL_GPL(pci_ats_disabled);
169 
170 /* Disable bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_disable;
172 /* Force bridge_d3 for all PCIe ports */
173 static bool pci_bridge_d3_force;
174 
175 static int __init pcie_port_pm_setup(char *str)
176 {
177 	if (!strcmp(str, "off"))
178 		pci_bridge_d3_disable = true;
179 	else if (!strcmp(str, "force"))
180 		pci_bridge_d3_force = true;
181 	return 1;
182 }
183 __setup("pcie_port_pm=", pcie_port_pm_setup);
184 
185 /**
186  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187  * @bus: pointer to PCI bus structure to search
188  *
189  * Given a PCI bus, returns the highest PCI bus number present in the set
190  * including the given PCI bus and its list of child PCI buses.
191  */
192 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193 {
194 	struct pci_bus *tmp;
195 	unsigned char max, n;
196 
197 	max = bus->busn_res.end;
198 	list_for_each_entry(tmp, &bus->children, node) {
199 		n = pci_bus_max_busnr(tmp);
200 		if (n > max)
201 			max = n;
202 	}
203 	return max;
204 }
205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206 
207 /**
208  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209  * @pdev: the PCI device
210  *
211  * Returns error bits set in PCI_STATUS and clears them.
212  */
213 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214 {
215 	u16 status;
216 	int ret;
217 
218 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 	if (ret != PCIBIOS_SUCCESSFUL)
220 		return -EIO;
221 
222 	status &= PCI_STATUS_ERROR_BITS;
223 	if (status)
224 		pci_write_config_word(pdev, PCI_STATUS, status);
225 
226 	return status;
227 }
228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229 
230 #ifdef CONFIG_HAS_IOMEM
231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232 					    bool write_combine)
233 {
234 	struct resource *res = &pdev->resource[bar];
235 	resource_size_t start = res->start;
236 	resource_size_t size = resource_size(res);
237 
238 	/*
239 	 * Make sure the BAR is actually a memory resource, not an IO resource
240 	 */
241 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 		return NULL;
244 	}
245 
246 	if (write_combine)
247 		return ioremap_wc(start, size);
248 
249 	return ioremap(start, size);
250 }
251 
252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253 {
254 	return __pci_ioremap_resource(pdev, bar, false);
255 }
256 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257 
258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259 {
260 	return __pci_ioremap_resource(pdev, bar, true);
261 }
262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263 #endif
264 
265 /**
266  * pci_dev_str_match_path - test if a path string matches a device
267  * @dev: the PCI device to test
268  * @path: string to match the device against
269  * @endptr: pointer to the string after the match
270  *
271  * Test if a string (typically from a kernel parameter) formatted as a
272  * path of device/function addresses matches a PCI device. The string must
273  * be of the form:
274  *
275  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276  *
277  * A path for a device can be obtained using 'lspci -t'.  Using a path
278  * is more robust against bus renumbering than using only a single bus,
279  * device and function address.
280  *
281  * Returns 1 if the string matches the device, 0 if it does not and
282  * a negative error code if it fails to parse the string.
283  */
284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285 				  const char **endptr)
286 {
287 	int ret;
288 	unsigned int seg, bus, slot, func;
289 	char *wpath, *p;
290 	char end;
291 
292 	*endptr = strchrnul(path, ';');
293 
294 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295 	if (!wpath)
296 		return -ENOMEM;
297 
298 	while (1) {
299 		p = strrchr(wpath, '/');
300 		if (!p)
301 			break;
302 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303 		if (ret != 2) {
304 			ret = -EINVAL;
305 			goto free_and_exit;
306 		}
307 
308 		if (dev->devfn != PCI_DEVFN(slot, func)) {
309 			ret = 0;
310 			goto free_and_exit;
311 		}
312 
313 		/*
314 		 * Note: we don't need to get a reference to the upstream
315 		 * bridge because we hold a reference to the top level
316 		 * device which should hold a reference to the bridge,
317 		 * and so on.
318 		 */
319 		dev = pci_upstream_bridge(dev);
320 		if (!dev) {
321 			ret = 0;
322 			goto free_and_exit;
323 		}
324 
325 		*p = 0;
326 	}
327 
328 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329 		     &func, &end);
330 	if (ret != 4) {
331 		seg = 0;
332 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333 		if (ret != 3) {
334 			ret = -EINVAL;
335 			goto free_and_exit;
336 		}
337 	}
338 
339 	ret = (seg == pci_domain_nr(dev->bus) &&
340 	       bus == dev->bus->number &&
341 	       dev->devfn == PCI_DEVFN(slot, func));
342 
343 free_and_exit:
344 	kfree(wpath);
345 	return ret;
346 }
347 
348 /**
349  * pci_dev_str_match - test if a string matches a device
350  * @dev: the PCI device to test
351  * @p: string to match the device against
352  * @endptr: pointer to the string after the match
353  *
354  * Test if a string (typically from a kernel parameter) matches a specified
355  * PCI device. The string may be of one of the following formats:
356  *
357  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359  *
360  * The first format specifies a PCI bus/device/function address which
361  * may change if new hardware is inserted, if motherboard firmware changes,
362  * or due to changes caused in kernel parameters. If the domain is
363  * left unspecified, it is taken to be 0.  In order to be robust against
364  * bus renumbering issues, a path of PCI device/function numbers may be used
365  * to address the specific device.  The path for a device can be determined
366  * through the use of 'lspci -t'.
367  *
368  * The second format matches devices using IDs in the configuration
369  * space which may match multiple devices in the system. A value of 0
370  * for any field will match all devices. (Note: this differs from
371  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372  * legacy reasons and convenience so users don't have to specify
373  * FFFFFFFFs on the command line.)
374  *
375  * Returns 1 if the string matches the device, 0 if it does not and
376  * a negative error code if the string cannot be parsed.
377  */
378 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379 			     const char **endptr)
380 {
381 	int ret;
382 	int count;
383 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
384 
385 	if (strncmp(p, "pci:", 4) == 0) {
386 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 		p += 4;
388 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 			     &subsystem_vendor, &subsystem_device, &count);
390 		if (ret != 4) {
391 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392 			if (ret != 2)
393 				return -EINVAL;
394 
395 			subsystem_vendor = 0;
396 			subsystem_device = 0;
397 		}
398 
399 		p += count;
400 
401 		if ((!vendor || vendor == dev->vendor) &&
402 		    (!device || device == dev->device) &&
403 		    (!subsystem_vendor ||
404 			    subsystem_vendor == dev->subsystem_vendor) &&
405 		    (!subsystem_device ||
406 			    subsystem_device == dev->subsystem_device))
407 			goto found;
408 	} else {
409 		/*
410 		 * PCI Bus, Device, Function IDs are specified
411 		 * (optionally, may include a path of devfns following it)
412 		 */
413 		ret = pci_dev_str_match_path(dev, p, &p);
414 		if (ret < 0)
415 			return ret;
416 		else if (ret)
417 			goto found;
418 	}
419 
420 	*endptr = p;
421 	return 0;
422 
423 found:
424 	*endptr = p;
425 	return 1;
426 }
427 
428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 				  u8 pos, int cap, int *ttl)
430 {
431 	u8 id;
432 	u16 ent;
433 
434 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
435 
436 	while ((*ttl)--) {
437 		if (pos < 0x40)
438 			break;
439 		pos &= ~3;
440 		pci_bus_read_config_word(bus, devfn, pos, &ent);
441 
442 		id = ent & 0xff;
443 		if (id == 0xff)
444 			break;
445 		if (id == cap)
446 			return pos;
447 		pos = (ent >> 8);
448 	}
449 	return 0;
450 }
451 
452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453 			      u8 pos, int cap)
454 {
455 	int ttl = PCI_FIND_CAP_TTL;
456 
457 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
458 }
459 
460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461 {
462 	return __pci_find_next_cap(dev->bus, dev->devfn,
463 				   pos + PCI_CAP_LIST_NEXT, cap);
464 }
465 EXPORT_SYMBOL_GPL(pci_find_next_capability);
466 
467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 				    unsigned int devfn, u8 hdr_type)
469 {
470 	u16 status;
471 
472 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 	if (!(status & PCI_STATUS_CAP_LIST))
474 		return 0;
475 
476 	switch (hdr_type) {
477 	case PCI_HEADER_TYPE_NORMAL:
478 	case PCI_HEADER_TYPE_BRIDGE:
479 		return PCI_CAPABILITY_LIST;
480 	case PCI_HEADER_TYPE_CARDBUS:
481 		return PCI_CB_CAPABILITY_LIST;
482 	}
483 
484 	return 0;
485 }
486 
487 /**
488  * pci_find_capability - query for devices' capabilities
489  * @dev: PCI device to query
490  * @cap: capability code
491  *
492  * Tell if a device supports a given PCI capability.
493  * Returns the address of the requested capability structure within the
494  * device's PCI configuration space or 0 in case the device does not
495  * support it.  Possible values for @cap include:
496  *
497  *  %PCI_CAP_ID_PM           Power Management
498  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
499  *  %PCI_CAP_ID_VPD          Vital Product Data
500  *  %PCI_CAP_ID_SLOTID       Slot Identification
501  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
502  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
503  *  %PCI_CAP_ID_PCIX         PCI-X
504  *  %PCI_CAP_ID_EXP          PCI Express
505  */
506 u8 pci_find_capability(struct pci_dev *dev, int cap)
507 {
508 	u8 pos;
509 
510 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511 	if (pos)
512 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
513 
514 	return pos;
515 }
516 EXPORT_SYMBOL(pci_find_capability);
517 
518 /**
519  * pci_bus_find_capability - query for devices' capabilities
520  * @bus: the PCI bus to query
521  * @devfn: PCI device to query
522  * @cap: capability code
523  *
524  * Like pci_find_capability() but works for PCI devices that do not have a
525  * pci_dev structure set up yet.
526  *
527  * Returns the address of the requested capability structure within the
528  * device's PCI configuration space or 0 in case the device does not
529  * support it.
530  */
531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532 {
533 	u8 hdr_type, pos;
534 
535 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536 
537 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
538 	if (pos)
539 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
540 
541 	return pos;
542 }
543 EXPORT_SYMBOL(pci_bus_find_capability);
544 
545 /**
546  * pci_find_next_ext_capability - Find an extended capability
547  * @dev: PCI device to query
548  * @start: address at which to start looking (0 to start at beginning of list)
549  * @cap: capability code
550  *
551  * Returns the address of the next matching extended capability structure
552  * within the device's PCI configuration space or 0 if the device does
553  * not support it.  Some capabilities can occur several times, e.g., the
554  * vendor-specific capability, and this provides a way to find them all.
555  */
556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557 {
558 	u32 header;
559 	int ttl;
560 	u16 pos = PCI_CFG_SPACE_SIZE;
561 
562 	/* minimum 8 bytes per capability */
563 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564 
565 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566 		return 0;
567 
568 	if (start)
569 		pos = start;
570 
571 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
572 		return 0;
573 
574 	/*
575 	 * If we have no capabilities, this is indicated by cap ID,
576 	 * cap version and next pointer all being 0.
577 	 */
578 	if (header == 0)
579 		return 0;
580 
581 	while (ttl-- > 0) {
582 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583 			return pos;
584 
585 		pos = PCI_EXT_CAP_NEXT(header);
586 		if (pos < PCI_CFG_SPACE_SIZE)
587 			break;
588 
589 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
590 			break;
591 	}
592 
593 	return 0;
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596 
597 /**
598  * pci_find_ext_capability - Find an extended capability
599  * @dev: PCI device to query
600  * @cap: capability code
601  *
602  * Returns the address of the requested extended capability structure
603  * within the device's PCI configuration space or 0 if the device does
604  * not support it.  Possible values for @cap include:
605  *
606  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
607  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
608  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
609  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
610  */
611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612 {
613 	return pci_find_next_ext_capability(dev, 0, cap);
614 }
615 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616 
617 /**
618  * pci_get_dsn - Read and return the 8-byte Device Serial Number
619  * @dev: PCI device to query
620  *
621  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622  * Number.
623  *
624  * Returns the DSN, or zero if the capability does not exist.
625  */
626 u64 pci_get_dsn(struct pci_dev *dev)
627 {
628 	u32 dword;
629 	u64 dsn;
630 	int pos;
631 
632 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633 	if (!pos)
634 		return 0;
635 
636 	/*
637 	 * The Device Serial Number is two dwords offset 4 bytes from the
638 	 * capability position. The specification says that the first dword is
639 	 * the lower half, and the second dword is the upper half.
640 	 */
641 	pos += 4;
642 	pci_read_config_dword(dev, pos, &dword);
643 	dsn = (u64)dword;
644 	pci_read_config_dword(dev, pos + 4, &dword);
645 	dsn |= ((u64)dword) << 32;
646 
647 	return dsn;
648 }
649 EXPORT_SYMBOL_GPL(pci_get_dsn);
650 
651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652 {
653 	int rc, ttl = PCI_FIND_CAP_TTL;
654 	u8 cap, mask;
655 
656 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 		mask = HT_3BIT_CAP_MASK;
658 	else
659 		mask = HT_5BIT_CAP_MASK;
660 
661 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 				      PCI_CAP_ID_HT, &ttl);
663 	while (pos) {
664 		rc = pci_read_config_byte(dev, pos + 3, &cap);
665 		if (rc != PCIBIOS_SUCCESSFUL)
666 			return 0;
667 
668 		if ((cap & mask) == ht_cap)
669 			return pos;
670 
671 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 					      pos + PCI_CAP_LIST_NEXT,
673 					      PCI_CAP_ID_HT, &ttl);
674 	}
675 
676 	return 0;
677 }
678 
679 /**
680  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681  * @dev: PCI device to query
682  * @pos: Position from which to continue searching
683  * @ht_cap: HyperTransport capability code
684  *
685  * To be used in conjunction with pci_find_ht_capability() to search for
686  * all capabilities matching @ht_cap. @pos should always be a value returned
687  * from pci_find_ht_capability().
688  *
689  * NB. To be 100% safe against broken PCI devices, the caller should take
690  * steps to avoid an infinite loop.
691  */
692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693 {
694 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695 }
696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697 
698 /**
699  * pci_find_ht_capability - query a device's HyperTransport capabilities
700  * @dev: PCI device to query
701  * @ht_cap: HyperTransport capability code
702  *
703  * Tell if a device supports a given HyperTransport capability.
704  * Returns an address within the device's PCI configuration space
705  * or 0 in case the device does not support the request capability.
706  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707  * which has a HyperTransport capability matching @ht_cap.
708  */
709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710 {
711 	u8 pos;
712 
713 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714 	if (pos)
715 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716 
717 	return pos;
718 }
719 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720 
721 /**
722  * pci_find_vsec_capability - Find a vendor-specific extended capability
723  * @dev: PCI device to query
724  * @vendor: Vendor ID for which capability is defined
725  * @cap: Vendor-specific capability ID
726  *
727  * If @dev has Vendor ID @vendor, search for a VSEC capability with
728  * VSEC ID @cap. If found, return the capability offset in
729  * config space; otherwise return 0.
730  */
731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732 {
733 	u16 vsec = 0;
734 	u32 header;
735 	int ret;
736 
737 	if (vendor != dev->vendor)
738 		return 0;
739 
740 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
741 						     PCI_EXT_CAP_ID_VNDR))) {
742 		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
743 		if (ret != PCIBIOS_SUCCESSFUL)
744 			continue;
745 
746 		if (PCI_VNDR_HEADER_ID(header) == cap)
747 			return vsec;
748 	}
749 
750 	return 0;
751 }
752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
753 
754 /**
755  * pci_find_dvsec_capability - Find DVSEC for vendor
756  * @dev: PCI device to query
757  * @vendor: Vendor ID to match for the DVSEC
758  * @dvsec: Designated Vendor-specific capability ID
759  *
760  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
761  * offset in config space; otherwise return 0.
762  */
763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
764 {
765 	int pos;
766 
767 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
768 	if (!pos)
769 		return 0;
770 
771 	while (pos) {
772 		u16 v, id;
773 
774 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
775 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
776 		if (vendor == v && dvsec == id)
777 			return pos;
778 
779 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
780 	}
781 
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
785 
786 /**
787  * pci_find_parent_resource - return resource region of parent bus of given
788  *			      region
789  * @dev: PCI device structure contains resources to be searched
790  * @res: child resource record for which parent is sought
791  *
792  * For given resource region of given device, return the resource region of
793  * parent bus the given region is contained in.
794  */
795 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
796 					  struct resource *res)
797 {
798 	const struct pci_bus *bus = dev->bus;
799 	struct resource *r;
800 
801 	pci_bus_for_each_resource(bus, r) {
802 		if (!r)
803 			continue;
804 		if (resource_contains(r, res)) {
805 
806 			/*
807 			 * If the window is prefetchable but the BAR is
808 			 * not, the allocator made a mistake.
809 			 */
810 			if (r->flags & IORESOURCE_PREFETCH &&
811 			    !(res->flags & IORESOURCE_PREFETCH))
812 				return NULL;
813 
814 			/*
815 			 * If we're below a transparent bridge, there may
816 			 * be both a positively-decoded aperture and a
817 			 * subtractively-decoded region that contain the BAR.
818 			 * We want the positively-decoded one, so this depends
819 			 * on pci_bus_for_each_resource() giving us those
820 			 * first.
821 			 */
822 			return r;
823 		}
824 	}
825 	return NULL;
826 }
827 EXPORT_SYMBOL(pci_find_parent_resource);
828 
829 /**
830  * pci_find_resource - Return matching PCI device resource
831  * @dev: PCI device to query
832  * @res: Resource to look for
833  *
834  * Goes over standard PCI resources (BARs) and checks if the given resource
835  * is partially or fully contained in any of them. In that case the
836  * matching resource is returned, %NULL otherwise.
837  */
838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
839 {
840 	int i;
841 
842 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
843 		struct resource *r = &dev->resource[i];
844 
845 		if (r->start && resource_contains(r, res))
846 			return r;
847 	}
848 
849 	return NULL;
850 }
851 EXPORT_SYMBOL(pci_find_resource);
852 
853 /**
854  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
855  * @dev: the PCI device to operate on
856  * @pos: config space offset of status word
857  * @mask: mask of bit(s) to care about in status word
858  *
859  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
860  */
861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
862 {
863 	int i;
864 
865 	/* Wait for Transaction Pending bit clean */
866 	for (i = 0; i < 4; i++) {
867 		u16 status;
868 		if (i)
869 			msleep((1 << (i - 1)) * 100);
870 
871 		pci_read_config_word(dev, pos, &status);
872 		if (!(status & mask))
873 			return 1;
874 	}
875 
876 	return 0;
877 }
878 
879 static int pci_acs_enable;
880 
881 /**
882  * pci_request_acs - ask for ACS to be enabled if supported
883  */
884 void pci_request_acs(void)
885 {
886 	pci_acs_enable = 1;
887 }
888 
889 static const char *disable_acs_redir_param;
890 
891 /**
892  * pci_disable_acs_redir - disable ACS redirect capabilities
893  * @dev: the PCI device
894  *
895  * For only devices specified in the disable_acs_redir parameter.
896  */
897 static void pci_disable_acs_redir(struct pci_dev *dev)
898 {
899 	int ret = 0;
900 	const char *p;
901 	int pos;
902 	u16 ctrl;
903 
904 	if (!disable_acs_redir_param)
905 		return;
906 
907 	p = disable_acs_redir_param;
908 	while (*p) {
909 		ret = pci_dev_str_match(dev, p, &p);
910 		if (ret < 0) {
911 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
912 				     disable_acs_redir_param);
913 
914 			break;
915 		} else if (ret == 1) {
916 			/* Found a match */
917 			break;
918 		}
919 
920 		if (*p != ';' && *p != ',') {
921 			/* End of param or invalid format */
922 			break;
923 		}
924 		p++;
925 	}
926 
927 	if (ret != 1)
928 		return;
929 
930 	if (!pci_dev_specific_disable_acs_redir(dev))
931 		return;
932 
933 	pos = dev->acs_cap;
934 	if (!pos) {
935 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
936 		return;
937 	}
938 
939 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
940 
941 	/* P2P Request & Completion Redirect */
942 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
943 
944 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
945 
946 	pci_info(dev, "disabled ACS redirect\n");
947 }
948 
949 /**
950  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
951  * @dev: the PCI device
952  */
953 static void pci_std_enable_acs(struct pci_dev *dev)
954 {
955 	int pos;
956 	u16 cap;
957 	u16 ctrl;
958 
959 	pos = dev->acs_cap;
960 	if (!pos)
961 		return;
962 
963 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
964 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
965 
966 	/* Source Validation */
967 	ctrl |= (cap & PCI_ACS_SV);
968 
969 	/* P2P Request Redirect */
970 	ctrl |= (cap & PCI_ACS_RR);
971 
972 	/* P2P Completion Redirect */
973 	ctrl |= (cap & PCI_ACS_CR);
974 
975 	/* Upstream Forwarding */
976 	ctrl |= (cap & PCI_ACS_UF);
977 
978 	/* Enable Translation Blocking for external devices and noats */
979 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
980 		ctrl |= (cap & PCI_ACS_TB);
981 
982 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
983 }
984 
985 /**
986  * pci_enable_acs - enable ACS if hardware support it
987  * @dev: the PCI device
988  */
989 static void pci_enable_acs(struct pci_dev *dev)
990 {
991 	if (!pci_acs_enable)
992 		goto disable_acs_redir;
993 
994 	if (!pci_dev_specific_enable_acs(dev))
995 		goto disable_acs_redir;
996 
997 	pci_std_enable_acs(dev);
998 
999 disable_acs_redir:
1000 	/*
1001 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
1002 	 * enabled by the kernel because it may have been enabled by
1003 	 * platform firmware.  So if we are told to disable it, we should
1004 	 * always disable it after setting the kernel's default
1005 	 * preferences.
1006 	 */
1007 	pci_disable_acs_redir(dev);
1008 }
1009 
1010 /**
1011  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1012  * @dev: PCI device to have its BARs restored
1013  *
1014  * Restore the BAR values for a given device, so as to make it
1015  * accessible by its driver.
1016  */
1017 static void pci_restore_bars(struct pci_dev *dev)
1018 {
1019 	int i;
1020 
1021 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1022 		pci_update_resource(dev, i);
1023 }
1024 
1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1026 {
1027 	if (pci_use_mid_pm())
1028 		return true;
1029 
1030 	return acpi_pci_power_manageable(dev);
1031 }
1032 
1033 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1034 					       pci_power_t t)
1035 {
1036 	if (pci_use_mid_pm())
1037 		return mid_pci_set_power_state(dev, t);
1038 
1039 	return acpi_pci_set_power_state(dev, t);
1040 }
1041 
1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1043 {
1044 	if (pci_use_mid_pm())
1045 		return mid_pci_get_power_state(dev);
1046 
1047 	return acpi_pci_get_power_state(dev);
1048 }
1049 
1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1051 {
1052 	if (!pci_use_mid_pm())
1053 		acpi_pci_refresh_power_state(dev);
1054 }
1055 
1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1057 {
1058 	if (pci_use_mid_pm())
1059 		return PCI_POWER_ERROR;
1060 
1061 	return acpi_pci_choose_state(dev);
1062 }
1063 
1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1065 {
1066 	if (pci_use_mid_pm())
1067 		return PCI_POWER_ERROR;
1068 
1069 	return acpi_pci_wakeup(dev, enable);
1070 }
1071 
1072 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1073 {
1074 	if (pci_use_mid_pm())
1075 		return false;
1076 
1077 	return acpi_pci_need_resume(dev);
1078 }
1079 
1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1081 {
1082 	if (pci_use_mid_pm())
1083 		return false;
1084 
1085 	return acpi_pci_bridge_d3(dev);
1086 }
1087 
1088 /**
1089  * pci_update_current_state - Read power state of given device and cache it
1090  * @dev: PCI device to handle.
1091  * @state: State to cache in case the device doesn't have the PM capability
1092  *
1093  * The power state is read from the PMCSR register, which however is
1094  * inaccessible in D3cold.  The platform firmware is therefore queried first
1095  * to detect accessibility of the register.  In case the platform firmware
1096  * reports an incorrect state or the device isn't power manageable by the
1097  * platform at all, we try to detect D3cold by testing accessibility of the
1098  * vendor ID in config space.
1099  */
1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1101 {
1102 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1103 		dev->current_state = PCI_D3cold;
1104 	} else if (dev->pm_cap) {
1105 		u16 pmcsr;
1106 
1107 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1108 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1109 			dev->current_state = PCI_D3cold;
1110 			return;
1111 		}
1112 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1113 	} else {
1114 		dev->current_state = state;
1115 	}
1116 }
1117 
1118 /**
1119  * pci_refresh_power_state - Refresh the given device's power state data
1120  * @dev: Target PCI device.
1121  *
1122  * Ask the platform to refresh the devices power state information and invoke
1123  * pci_update_current_state() to update its current PCI power state.
1124  */
1125 void pci_refresh_power_state(struct pci_dev *dev)
1126 {
1127 	platform_pci_refresh_power_state(dev);
1128 	pci_update_current_state(dev, dev->current_state);
1129 }
1130 
1131 /**
1132  * pci_platform_power_transition - Use platform to change device power state
1133  * @dev: PCI device to handle.
1134  * @state: State to put the device into.
1135  */
1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1137 {
1138 	int error;
1139 
1140 	error = platform_pci_set_power_state(dev, state);
1141 	if (!error)
1142 		pci_update_current_state(dev, state);
1143 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1144 		dev->current_state = PCI_D0;
1145 
1146 	return error;
1147 }
1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1149 
1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1151 {
1152 	pm_request_resume(&pci_dev->dev);
1153 	return 0;
1154 }
1155 
1156 /**
1157  * pci_resume_bus - Walk given bus and runtime resume devices on it
1158  * @bus: Top bus of the subtree to walk.
1159  */
1160 void pci_resume_bus(struct pci_bus *bus)
1161 {
1162 	if (bus)
1163 		pci_walk_bus(bus, pci_resume_one, NULL);
1164 }
1165 
1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1167 {
1168 	int delay = 1;
1169 	bool retrain = false;
1170 	struct pci_dev *bridge;
1171 
1172 	if (pci_is_pcie(dev)) {
1173 		bridge = pci_upstream_bridge(dev);
1174 		if (bridge)
1175 			retrain = true;
1176 	}
1177 
1178 	/*
1179 	 * After reset, the device should not silently discard config
1180 	 * requests, but it may still indicate that it needs more time by
1181 	 * responding to them with CRS completions.  The Root Port will
1182 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1183 	 * the read (except when CRS SV is enabled and the read was for the
1184 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1185 	 *
1186 	 * Wait for the device to return a non-CRS completion.  Read the
1187 	 * Command register instead of Vendor ID so we don't have to
1188 	 * contend with the CRS SV value.
1189 	 */
1190 	for (;;) {
1191 		u32 id;
1192 
1193 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1194 		if (!PCI_POSSIBLE_ERROR(id))
1195 			break;
1196 
1197 		if (delay > timeout) {
1198 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1199 				 delay - 1, reset_type);
1200 			return -ENOTTY;
1201 		}
1202 
1203 		if (delay > PCI_RESET_WAIT) {
1204 			if (retrain) {
1205 				retrain = false;
1206 				if (pcie_failed_link_retrain(bridge)) {
1207 					delay = 1;
1208 					continue;
1209 				}
1210 			}
1211 			pci_info(dev, "not ready %dms after %s; waiting\n",
1212 				 delay - 1, reset_type);
1213 		}
1214 
1215 		msleep(delay);
1216 		delay *= 2;
1217 	}
1218 
1219 	if (delay > PCI_RESET_WAIT)
1220 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1221 			 reset_type);
1222 	else
1223 		pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1224 			reset_type);
1225 
1226 	return 0;
1227 }
1228 
1229 /**
1230  * pci_power_up - Put the given device into D0
1231  * @dev: PCI device to power up
1232  *
1233  * On success, return 0 or 1, depending on whether or not it is necessary to
1234  * restore the device's BARs subsequently (1 is returned in that case).
1235  *
1236  * On failure, return a negative error code.  Always return failure if @dev
1237  * lacks a Power Management Capability, even if the platform was able to
1238  * put the device in D0 via non-PCI means.
1239  */
1240 int pci_power_up(struct pci_dev *dev)
1241 {
1242 	bool need_restore;
1243 	pci_power_t state;
1244 	u16 pmcsr;
1245 
1246 	platform_pci_set_power_state(dev, PCI_D0);
1247 
1248 	if (!dev->pm_cap) {
1249 		state = platform_pci_get_power_state(dev);
1250 		if (state == PCI_UNKNOWN)
1251 			dev->current_state = PCI_D0;
1252 		else
1253 			dev->current_state = state;
1254 
1255 		return -EIO;
1256 	}
1257 
1258 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1259 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1260 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1261 			pci_power_name(dev->current_state));
1262 		dev->current_state = PCI_D3cold;
1263 		return -EIO;
1264 	}
1265 
1266 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1267 
1268 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1269 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1270 
1271 	if (state == PCI_D0)
1272 		goto end;
1273 
1274 	/*
1275 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1276 	 * PME_En, and sets PowerState to 0.
1277 	 */
1278 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1279 
1280 	/* Mandatory transition delays; see PCI PM 1.2. */
1281 	if (state == PCI_D3hot)
1282 		pci_dev_d3_sleep(dev);
1283 	else if (state == PCI_D2)
1284 		udelay(PCI_PM_D2_DELAY);
1285 
1286 end:
1287 	dev->current_state = PCI_D0;
1288 	if (need_restore)
1289 		return 1;
1290 
1291 	return 0;
1292 }
1293 
1294 /**
1295  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1296  * @dev: PCI device to power up
1297  *
1298  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1299  * to confirm the state change, restore its BARs if they might be lost and
1300  * reconfigure ASPM in accordance with the new power state.
1301  *
1302  * If pci_restore_state() is going to be called right after a power state change
1303  * to D0, it is more efficient to use pci_power_up() directly instead of this
1304  * function.
1305  */
1306 static int pci_set_full_power_state(struct pci_dev *dev)
1307 {
1308 	u16 pmcsr;
1309 	int ret;
1310 
1311 	ret = pci_power_up(dev);
1312 	if (ret < 0) {
1313 		if (dev->current_state == PCI_D0)
1314 			return 0;
1315 
1316 		return ret;
1317 	}
1318 
1319 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1320 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1321 	if (dev->current_state != PCI_D0) {
1322 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1323 				     pci_power_name(dev->current_state));
1324 	} else if (ret > 0) {
1325 		/*
1326 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1327 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1328 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1329 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1330 		 * For example, at least some versions of the 3c905B and the
1331 		 * 3c556B exhibit this behaviour.
1332 		 *
1333 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1334 		 * devices in a D3hot state at boot.  Consequently, we need to
1335 		 * restore at least the BARs so that the device will be
1336 		 * accessible to its driver.
1337 		 */
1338 		pci_restore_bars(dev);
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 /**
1345  * __pci_dev_set_current_state - Set current state of a PCI device
1346  * @dev: Device to handle
1347  * @data: pointer to state to be set
1348  */
1349 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1350 {
1351 	pci_power_t state = *(pci_power_t *)data;
1352 
1353 	dev->current_state = state;
1354 	return 0;
1355 }
1356 
1357 /**
1358  * pci_bus_set_current_state - Walk given bus and set current state of devices
1359  * @bus: Top bus of the subtree to walk.
1360  * @state: state to be set
1361  */
1362 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1363 {
1364 	if (bus)
1365 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1366 }
1367 
1368 /**
1369  * pci_set_low_power_state - Put a PCI device into a low-power state.
1370  * @dev: PCI device to handle.
1371  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1372  *
1373  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1374  *
1375  * RETURN VALUE:
1376  * -EINVAL if the requested state is invalid.
1377  * -EIO if device does not support PCI PM or its PM capabilities register has a
1378  * wrong version, or device doesn't support the requested state.
1379  * 0 if device already is in the requested state.
1380  * 0 if device's power state has been successfully changed.
1381  */
1382 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1383 {
1384 	u16 pmcsr;
1385 
1386 	if (!dev->pm_cap)
1387 		return -EIO;
1388 
1389 	/*
1390 	 * Validate transition: We can enter D0 from any state, but if
1391 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1392 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1393 	 * we'd have to go from D3 to D0, then to D1.
1394 	 */
1395 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1396 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1397 			pci_power_name(dev->current_state),
1398 			pci_power_name(state));
1399 		return -EINVAL;
1400 	}
1401 
1402 	/* Check if this device supports the desired state */
1403 	if ((state == PCI_D1 && !dev->d1_support)
1404 	   || (state == PCI_D2 && !dev->d2_support))
1405 		return -EIO;
1406 
1407 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1408 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1409 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1410 			pci_power_name(dev->current_state),
1411 			pci_power_name(state));
1412 		dev->current_state = PCI_D3cold;
1413 		return -EIO;
1414 	}
1415 
1416 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1417 	pmcsr |= state;
1418 
1419 	/* Enter specified state */
1420 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1421 
1422 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1423 	if (state == PCI_D3hot)
1424 		pci_dev_d3_sleep(dev);
1425 	else if (state == PCI_D2)
1426 		udelay(PCI_PM_D2_DELAY);
1427 
1428 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1429 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1430 	if (dev->current_state != state)
1431 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1432 				     pci_power_name(dev->current_state),
1433 				     pci_power_name(state));
1434 
1435 	return 0;
1436 }
1437 
1438 /**
1439  * pci_set_power_state - Set the power state of a PCI device
1440  * @dev: PCI device to handle.
1441  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1442  *
1443  * Transition a device to a new power state, using the platform firmware and/or
1444  * the device's PCI PM registers.
1445  *
1446  * RETURN VALUE:
1447  * -EINVAL if the requested state is invalid.
1448  * -EIO if device does not support PCI PM or its PM capabilities register has a
1449  * wrong version, or device doesn't support the requested state.
1450  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1451  * 0 if device already is in the requested state.
1452  * 0 if the transition is to D3 but D3 is not supported.
1453  * 0 if device's power state has been successfully changed.
1454  */
1455 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1456 {
1457 	int error;
1458 
1459 	/* Bound the state we're entering */
1460 	if (state > PCI_D3cold)
1461 		state = PCI_D3cold;
1462 	else if (state < PCI_D0)
1463 		state = PCI_D0;
1464 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1465 
1466 		/*
1467 		 * If the device or the parent bridge do not support PCI
1468 		 * PM, ignore the request if we're doing anything other
1469 		 * than putting it into D0 (which would only happen on
1470 		 * boot).
1471 		 */
1472 		return 0;
1473 
1474 	/* Check if we're already there */
1475 	if (dev->current_state == state)
1476 		return 0;
1477 
1478 	if (state == PCI_D0)
1479 		return pci_set_full_power_state(dev);
1480 
1481 	/*
1482 	 * This device is quirked not to be put into D3, so don't put it in
1483 	 * D3
1484 	 */
1485 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1486 		return 0;
1487 
1488 	if (state == PCI_D3cold) {
1489 		/*
1490 		 * To put the device in D3cold, put it into D3hot in the native
1491 		 * way, then put it into D3cold using platform ops.
1492 		 */
1493 		error = pci_set_low_power_state(dev, PCI_D3hot);
1494 
1495 		if (pci_platform_power_transition(dev, PCI_D3cold))
1496 			return error;
1497 
1498 		/* Powering off a bridge may power off the whole hierarchy */
1499 		if (dev->current_state == PCI_D3cold)
1500 			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1501 	} else {
1502 		error = pci_set_low_power_state(dev, state);
1503 
1504 		if (pci_platform_power_transition(dev, state))
1505 			return error;
1506 	}
1507 
1508 	return 0;
1509 }
1510 EXPORT_SYMBOL(pci_set_power_state);
1511 
1512 #define PCI_EXP_SAVE_REGS	7
1513 
1514 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1515 						       u16 cap, bool extended)
1516 {
1517 	struct pci_cap_saved_state *tmp;
1518 
1519 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1520 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1521 			return tmp;
1522 	}
1523 	return NULL;
1524 }
1525 
1526 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1527 {
1528 	return _pci_find_saved_cap(dev, cap, false);
1529 }
1530 
1531 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1532 {
1533 	return _pci_find_saved_cap(dev, cap, true);
1534 }
1535 
1536 static int pci_save_pcie_state(struct pci_dev *dev)
1537 {
1538 	int i = 0;
1539 	struct pci_cap_saved_state *save_state;
1540 	u16 *cap;
1541 
1542 	if (!pci_is_pcie(dev))
1543 		return 0;
1544 
1545 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1546 	if (!save_state) {
1547 		pci_err(dev, "buffer not found in %s\n", __func__);
1548 		return -ENOMEM;
1549 	}
1550 
1551 	cap = (u16 *)&save_state->cap.data[0];
1552 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1553 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1554 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1555 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1556 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1557 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1558 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1559 
1560 	return 0;
1561 }
1562 
1563 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1564 {
1565 #ifdef CONFIG_PCIEASPM
1566 	struct pci_dev *bridge;
1567 	u32 ctl;
1568 
1569 	bridge = pci_upstream_bridge(dev);
1570 	if (bridge && bridge->ltr_path) {
1571 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1572 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1573 			pci_dbg(bridge, "re-enabling LTR\n");
1574 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1575 						 PCI_EXP_DEVCTL2_LTR_EN);
1576 		}
1577 	}
1578 #endif
1579 }
1580 
1581 static void pci_restore_pcie_state(struct pci_dev *dev)
1582 {
1583 	int i = 0;
1584 	struct pci_cap_saved_state *save_state;
1585 	u16 *cap;
1586 
1587 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1588 	if (!save_state)
1589 		return;
1590 
1591 	/*
1592 	 * Downstream ports reset the LTR enable bit when link goes down.
1593 	 * Check and re-configure the bit here before restoring device.
1594 	 * PCIe r5.0, sec 7.5.3.16.
1595 	 */
1596 	pci_bridge_reconfigure_ltr(dev);
1597 
1598 	cap = (u16 *)&save_state->cap.data[0];
1599 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1600 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1601 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1602 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1603 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1604 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1605 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1606 }
1607 
1608 static int pci_save_pcix_state(struct pci_dev *dev)
1609 {
1610 	int pos;
1611 	struct pci_cap_saved_state *save_state;
1612 
1613 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1614 	if (!pos)
1615 		return 0;
1616 
1617 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1618 	if (!save_state) {
1619 		pci_err(dev, "buffer not found in %s\n", __func__);
1620 		return -ENOMEM;
1621 	}
1622 
1623 	pci_read_config_word(dev, pos + PCI_X_CMD,
1624 			     (u16 *)save_state->cap.data);
1625 
1626 	return 0;
1627 }
1628 
1629 static void pci_restore_pcix_state(struct pci_dev *dev)
1630 {
1631 	int i = 0, pos;
1632 	struct pci_cap_saved_state *save_state;
1633 	u16 *cap;
1634 
1635 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1636 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1637 	if (!save_state || !pos)
1638 		return;
1639 	cap = (u16 *)&save_state->cap.data[0];
1640 
1641 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1642 }
1643 
1644 static void pci_save_ltr_state(struct pci_dev *dev)
1645 {
1646 	int ltr;
1647 	struct pci_cap_saved_state *save_state;
1648 	u32 *cap;
1649 
1650 	if (!pci_is_pcie(dev))
1651 		return;
1652 
1653 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1654 	if (!ltr)
1655 		return;
1656 
1657 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1658 	if (!save_state) {
1659 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1660 		return;
1661 	}
1662 
1663 	/* Some broken devices only support dword access to LTR */
1664 	cap = &save_state->cap.data[0];
1665 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1666 }
1667 
1668 static void pci_restore_ltr_state(struct pci_dev *dev)
1669 {
1670 	struct pci_cap_saved_state *save_state;
1671 	int ltr;
1672 	u32 *cap;
1673 
1674 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1675 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1676 	if (!save_state || !ltr)
1677 		return;
1678 
1679 	/* Some broken devices only support dword access to LTR */
1680 	cap = &save_state->cap.data[0];
1681 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1682 }
1683 
1684 /**
1685  * pci_save_state - save the PCI configuration space of a device before
1686  *		    suspending
1687  * @dev: PCI device that we're dealing with
1688  */
1689 int pci_save_state(struct pci_dev *dev)
1690 {
1691 	int i;
1692 	/* XXX: 100% dword access ok here? */
1693 	for (i = 0; i < 16; i++) {
1694 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1695 		pci_dbg(dev, "save config %#04x: %#010x\n",
1696 			i * 4, dev->saved_config_space[i]);
1697 	}
1698 	dev->state_saved = true;
1699 
1700 	i = pci_save_pcie_state(dev);
1701 	if (i != 0)
1702 		return i;
1703 
1704 	i = pci_save_pcix_state(dev);
1705 	if (i != 0)
1706 		return i;
1707 
1708 	pci_save_ltr_state(dev);
1709 	pci_save_dpc_state(dev);
1710 	pci_save_aer_state(dev);
1711 	pci_save_ptm_state(dev);
1712 	return pci_save_vc_state(dev);
1713 }
1714 EXPORT_SYMBOL(pci_save_state);
1715 
1716 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1717 				     u32 saved_val, int retry, bool force)
1718 {
1719 	u32 val;
1720 
1721 	pci_read_config_dword(pdev, offset, &val);
1722 	if (!force && val == saved_val)
1723 		return;
1724 
1725 	for (;;) {
1726 		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1727 			offset, val, saved_val);
1728 		pci_write_config_dword(pdev, offset, saved_val);
1729 		if (retry-- <= 0)
1730 			return;
1731 
1732 		pci_read_config_dword(pdev, offset, &val);
1733 		if (val == saved_val)
1734 			return;
1735 
1736 		mdelay(1);
1737 	}
1738 }
1739 
1740 static void pci_restore_config_space_range(struct pci_dev *pdev,
1741 					   int start, int end, int retry,
1742 					   bool force)
1743 {
1744 	int index;
1745 
1746 	for (index = end; index >= start; index--)
1747 		pci_restore_config_dword(pdev, 4 * index,
1748 					 pdev->saved_config_space[index],
1749 					 retry, force);
1750 }
1751 
1752 static void pci_restore_config_space(struct pci_dev *pdev)
1753 {
1754 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1755 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1756 		/* Restore BARs before the command register. */
1757 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1758 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1759 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1760 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1761 
1762 		/*
1763 		 * Force rewriting of prefetch registers to avoid S3 resume
1764 		 * issues on Intel PCI bridges that occur when these
1765 		 * registers are not explicitly written.
1766 		 */
1767 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1768 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1769 	} else {
1770 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1771 	}
1772 }
1773 
1774 static void pci_restore_rebar_state(struct pci_dev *pdev)
1775 {
1776 	unsigned int pos, nbars, i;
1777 	u32 ctrl;
1778 
1779 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1780 	if (!pos)
1781 		return;
1782 
1783 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1784 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1785 
1786 	for (i = 0; i < nbars; i++, pos += 8) {
1787 		struct resource *res;
1788 		int bar_idx, size;
1789 
1790 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1791 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1792 		res = pdev->resource + bar_idx;
1793 		size = pci_rebar_bytes_to_size(resource_size(res));
1794 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1795 		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1796 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1797 	}
1798 }
1799 
1800 /**
1801  * pci_restore_state - Restore the saved state of a PCI device
1802  * @dev: PCI device that we're dealing with
1803  */
1804 void pci_restore_state(struct pci_dev *dev)
1805 {
1806 	if (!dev->state_saved)
1807 		return;
1808 
1809 	/*
1810 	 * Restore max latencies (in the LTR capability) before enabling
1811 	 * LTR itself (in the PCIe capability).
1812 	 */
1813 	pci_restore_ltr_state(dev);
1814 
1815 	pci_restore_pcie_state(dev);
1816 	pci_restore_pasid_state(dev);
1817 	pci_restore_pri_state(dev);
1818 	pci_restore_ats_state(dev);
1819 	pci_restore_vc_state(dev);
1820 	pci_restore_rebar_state(dev);
1821 	pci_restore_dpc_state(dev);
1822 	pci_restore_ptm_state(dev);
1823 
1824 	pci_aer_clear_status(dev);
1825 	pci_restore_aer_state(dev);
1826 
1827 	pci_restore_config_space(dev);
1828 
1829 	pci_restore_pcix_state(dev);
1830 	pci_restore_msi_state(dev);
1831 
1832 	/* Restore ACS and IOV configuration state */
1833 	pci_enable_acs(dev);
1834 	pci_restore_iov_state(dev);
1835 
1836 	dev->state_saved = false;
1837 }
1838 EXPORT_SYMBOL(pci_restore_state);
1839 
1840 struct pci_saved_state {
1841 	u32 config_space[16];
1842 	struct pci_cap_saved_data cap[];
1843 };
1844 
1845 /**
1846  * pci_store_saved_state - Allocate and return an opaque struct containing
1847  *			   the device saved state.
1848  * @dev: PCI device that we're dealing with
1849  *
1850  * Return NULL if no state or error.
1851  */
1852 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1853 {
1854 	struct pci_saved_state *state;
1855 	struct pci_cap_saved_state *tmp;
1856 	struct pci_cap_saved_data *cap;
1857 	size_t size;
1858 
1859 	if (!dev->state_saved)
1860 		return NULL;
1861 
1862 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1863 
1864 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1865 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1866 
1867 	state = kzalloc(size, GFP_KERNEL);
1868 	if (!state)
1869 		return NULL;
1870 
1871 	memcpy(state->config_space, dev->saved_config_space,
1872 	       sizeof(state->config_space));
1873 
1874 	cap = state->cap;
1875 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1876 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1877 		memcpy(cap, &tmp->cap, len);
1878 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1879 	}
1880 	/* Empty cap_save terminates list */
1881 
1882 	return state;
1883 }
1884 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1885 
1886 /**
1887  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1888  * @dev: PCI device that we're dealing with
1889  * @state: Saved state returned from pci_store_saved_state()
1890  */
1891 int pci_load_saved_state(struct pci_dev *dev,
1892 			 struct pci_saved_state *state)
1893 {
1894 	struct pci_cap_saved_data *cap;
1895 
1896 	dev->state_saved = false;
1897 
1898 	if (!state)
1899 		return 0;
1900 
1901 	memcpy(dev->saved_config_space, state->config_space,
1902 	       sizeof(state->config_space));
1903 
1904 	cap = state->cap;
1905 	while (cap->size) {
1906 		struct pci_cap_saved_state *tmp;
1907 
1908 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1909 		if (!tmp || tmp->cap.size != cap->size)
1910 			return -EINVAL;
1911 
1912 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1913 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1914 		       sizeof(struct pci_cap_saved_data) + cap->size);
1915 	}
1916 
1917 	dev->state_saved = true;
1918 	return 0;
1919 }
1920 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1921 
1922 /**
1923  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1924  *				   and free the memory allocated for it.
1925  * @dev: PCI device that we're dealing with
1926  * @state: Pointer to saved state returned from pci_store_saved_state()
1927  */
1928 int pci_load_and_free_saved_state(struct pci_dev *dev,
1929 				  struct pci_saved_state **state)
1930 {
1931 	int ret = pci_load_saved_state(dev, *state);
1932 	kfree(*state);
1933 	*state = NULL;
1934 	return ret;
1935 }
1936 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1937 
1938 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1939 {
1940 	return pci_enable_resources(dev, bars);
1941 }
1942 
1943 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1944 {
1945 	int err;
1946 	struct pci_dev *bridge;
1947 	u16 cmd;
1948 	u8 pin;
1949 
1950 	err = pci_set_power_state(dev, PCI_D0);
1951 	if (err < 0 && err != -EIO)
1952 		return err;
1953 
1954 	bridge = pci_upstream_bridge(dev);
1955 	if (bridge)
1956 		pcie_aspm_powersave_config_link(bridge);
1957 
1958 	err = pcibios_enable_device(dev, bars);
1959 	if (err < 0)
1960 		return err;
1961 	pci_fixup_device(pci_fixup_enable, dev);
1962 
1963 	if (dev->msi_enabled || dev->msix_enabled)
1964 		return 0;
1965 
1966 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1967 	if (pin) {
1968 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1969 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1970 			pci_write_config_word(dev, PCI_COMMAND,
1971 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1972 	}
1973 
1974 	return 0;
1975 }
1976 
1977 /**
1978  * pci_reenable_device - Resume abandoned device
1979  * @dev: PCI device to be resumed
1980  *
1981  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1982  * to be called by normal code, write proper resume handler and use it instead.
1983  */
1984 int pci_reenable_device(struct pci_dev *dev)
1985 {
1986 	if (pci_is_enabled(dev))
1987 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1988 	return 0;
1989 }
1990 EXPORT_SYMBOL(pci_reenable_device);
1991 
1992 static void pci_enable_bridge(struct pci_dev *dev)
1993 {
1994 	struct pci_dev *bridge;
1995 	int retval;
1996 
1997 	bridge = pci_upstream_bridge(dev);
1998 	if (bridge)
1999 		pci_enable_bridge(bridge);
2000 
2001 	if (pci_is_enabled(dev)) {
2002 		if (!dev->is_busmaster)
2003 			pci_set_master(dev);
2004 		return;
2005 	}
2006 
2007 	retval = pci_enable_device(dev);
2008 	if (retval)
2009 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2010 			retval);
2011 	pci_set_master(dev);
2012 }
2013 
2014 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2015 {
2016 	struct pci_dev *bridge;
2017 	int err;
2018 	int i, bars = 0;
2019 
2020 	/*
2021 	 * Power state could be unknown at this point, either due to a fresh
2022 	 * boot or a device removal call.  So get the current power state
2023 	 * so that things like MSI message writing will behave as expected
2024 	 * (e.g. if the device really is in D0 at enable time).
2025 	 */
2026 	pci_update_current_state(dev, dev->current_state);
2027 
2028 	if (atomic_inc_return(&dev->enable_cnt) > 1)
2029 		return 0;		/* already enabled */
2030 
2031 	bridge = pci_upstream_bridge(dev);
2032 	if (bridge)
2033 		pci_enable_bridge(bridge);
2034 
2035 	/* only skip sriov related */
2036 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2037 		if (dev->resource[i].flags & flags)
2038 			bars |= (1 << i);
2039 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2040 		if (dev->resource[i].flags & flags)
2041 			bars |= (1 << i);
2042 
2043 	err = do_pci_enable_device(dev, bars);
2044 	if (err < 0)
2045 		atomic_dec(&dev->enable_cnt);
2046 	return err;
2047 }
2048 
2049 /**
2050  * pci_enable_device_io - Initialize a device for use with IO space
2051  * @dev: PCI device to be initialized
2052  *
2053  * Initialize device before it's used by a driver. Ask low-level code
2054  * to enable I/O resources. Wake up the device if it was suspended.
2055  * Beware, this function can fail.
2056  */
2057 int pci_enable_device_io(struct pci_dev *dev)
2058 {
2059 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2060 }
2061 EXPORT_SYMBOL(pci_enable_device_io);
2062 
2063 /**
2064  * pci_enable_device_mem - Initialize a device for use with Memory space
2065  * @dev: PCI device to be initialized
2066  *
2067  * Initialize device before it's used by a driver. Ask low-level code
2068  * to enable Memory resources. Wake up the device if it was suspended.
2069  * Beware, this function can fail.
2070  */
2071 int pci_enable_device_mem(struct pci_dev *dev)
2072 {
2073 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2074 }
2075 EXPORT_SYMBOL(pci_enable_device_mem);
2076 
2077 /**
2078  * pci_enable_device - Initialize device before it's used by a driver.
2079  * @dev: PCI device to be initialized
2080  *
2081  * Initialize device before it's used by a driver. Ask low-level code
2082  * to enable I/O and memory. Wake up the device if it was suspended.
2083  * Beware, this function can fail.
2084  *
2085  * Note we don't actually enable the device many times if we call
2086  * this function repeatedly (we just increment the count).
2087  */
2088 int pci_enable_device(struct pci_dev *dev)
2089 {
2090 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2091 }
2092 EXPORT_SYMBOL(pci_enable_device);
2093 
2094 /*
2095  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2096  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2097  * there's no need to track it separately.  pci_devres is initialized
2098  * when a device is enabled using managed PCI device enable interface.
2099  */
2100 struct pci_devres {
2101 	unsigned int enabled:1;
2102 	unsigned int pinned:1;
2103 	unsigned int orig_intx:1;
2104 	unsigned int restore_intx:1;
2105 	unsigned int mwi:1;
2106 	u32 region_mask;
2107 };
2108 
2109 static void pcim_release(struct device *gendev, void *res)
2110 {
2111 	struct pci_dev *dev = to_pci_dev(gendev);
2112 	struct pci_devres *this = res;
2113 	int i;
2114 
2115 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2116 		if (this->region_mask & (1 << i))
2117 			pci_release_region(dev, i);
2118 
2119 	if (this->mwi)
2120 		pci_clear_mwi(dev);
2121 
2122 	if (this->restore_intx)
2123 		pci_intx(dev, this->orig_intx);
2124 
2125 	if (this->enabled && !this->pinned)
2126 		pci_disable_device(dev);
2127 }
2128 
2129 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2130 {
2131 	struct pci_devres *dr, *new_dr;
2132 
2133 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2134 	if (dr)
2135 		return dr;
2136 
2137 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2138 	if (!new_dr)
2139 		return NULL;
2140 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2141 }
2142 
2143 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2144 {
2145 	if (pci_is_managed(pdev))
2146 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2147 	return NULL;
2148 }
2149 
2150 /**
2151  * pcim_enable_device - Managed pci_enable_device()
2152  * @pdev: PCI device to be initialized
2153  *
2154  * Managed pci_enable_device().
2155  */
2156 int pcim_enable_device(struct pci_dev *pdev)
2157 {
2158 	struct pci_devres *dr;
2159 	int rc;
2160 
2161 	dr = get_pci_dr(pdev);
2162 	if (unlikely(!dr))
2163 		return -ENOMEM;
2164 	if (dr->enabled)
2165 		return 0;
2166 
2167 	rc = pci_enable_device(pdev);
2168 	if (!rc) {
2169 		pdev->is_managed = 1;
2170 		dr->enabled = 1;
2171 	}
2172 	return rc;
2173 }
2174 EXPORT_SYMBOL(pcim_enable_device);
2175 
2176 /**
2177  * pcim_pin_device - Pin managed PCI device
2178  * @pdev: PCI device to pin
2179  *
2180  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2181  * driver detach.  @pdev must have been enabled with
2182  * pcim_enable_device().
2183  */
2184 void pcim_pin_device(struct pci_dev *pdev)
2185 {
2186 	struct pci_devres *dr;
2187 
2188 	dr = find_pci_dr(pdev);
2189 	WARN_ON(!dr || !dr->enabled);
2190 	if (dr)
2191 		dr->pinned = 1;
2192 }
2193 EXPORT_SYMBOL(pcim_pin_device);
2194 
2195 /*
2196  * pcibios_device_add - provide arch specific hooks when adding device dev
2197  * @dev: the PCI device being added
2198  *
2199  * Permits the platform to provide architecture specific functionality when
2200  * devices are added. This is the default implementation. Architecture
2201  * implementations can override this.
2202  */
2203 int __weak pcibios_device_add(struct pci_dev *dev)
2204 {
2205 	return 0;
2206 }
2207 
2208 /**
2209  * pcibios_release_device - provide arch specific hooks when releasing
2210  *			    device dev
2211  * @dev: the PCI device being released
2212  *
2213  * Permits the platform to provide architecture specific functionality when
2214  * devices are released. This is the default implementation. Architecture
2215  * implementations can override this.
2216  */
2217 void __weak pcibios_release_device(struct pci_dev *dev) {}
2218 
2219 /**
2220  * pcibios_disable_device - disable arch specific PCI resources for device dev
2221  * @dev: the PCI device to disable
2222  *
2223  * Disables architecture specific PCI resources for the device. This
2224  * is the default implementation. Architecture implementations can
2225  * override this.
2226  */
2227 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2228 
2229 /**
2230  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2231  * @irq: ISA IRQ to penalize
2232  * @active: IRQ active or not
2233  *
2234  * Permits the platform to provide architecture-specific functionality when
2235  * penalizing ISA IRQs. This is the default implementation. Architecture
2236  * implementations can override this.
2237  */
2238 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2239 
2240 static void do_pci_disable_device(struct pci_dev *dev)
2241 {
2242 	u16 pci_command;
2243 
2244 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2245 	if (pci_command & PCI_COMMAND_MASTER) {
2246 		pci_command &= ~PCI_COMMAND_MASTER;
2247 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2248 	}
2249 
2250 	pcibios_disable_device(dev);
2251 }
2252 
2253 /**
2254  * pci_disable_enabled_device - Disable device without updating enable_cnt
2255  * @dev: PCI device to disable
2256  *
2257  * NOTE: This function is a backend of PCI power management routines and is
2258  * not supposed to be called drivers.
2259  */
2260 void pci_disable_enabled_device(struct pci_dev *dev)
2261 {
2262 	if (pci_is_enabled(dev))
2263 		do_pci_disable_device(dev);
2264 }
2265 
2266 /**
2267  * pci_disable_device - Disable PCI device after use
2268  * @dev: PCI device to be disabled
2269  *
2270  * Signal to the system that the PCI device is not in use by the system
2271  * anymore.  This only involves disabling PCI bus-mastering, if active.
2272  *
2273  * Note we don't actually disable the device until all callers of
2274  * pci_enable_device() have called pci_disable_device().
2275  */
2276 void pci_disable_device(struct pci_dev *dev)
2277 {
2278 	struct pci_devres *dr;
2279 
2280 	dr = find_pci_dr(dev);
2281 	if (dr)
2282 		dr->enabled = 0;
2283 
2284 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2285 		      "disabling already-disabled device");
2286 
2287 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2288 		return;
2289 
2290 	do_pci_disable_device(dev);
2291 
2292 	dev->is_busmaster = 0;
2293 }
2294 EXPORT_SYMBOL(pci_disable_device);
2295 
2296 /**
2297  * pcibios_set_pcie_reset_state - set reset state for device dev
2298  * @dev: the PCIe device reset
2299  * @state: Reset state to enter into
2300  *
2301  * Set the PCIe reset state for the device. This is the default
2302  * implementation. Architecture implementations can override this.
2303  */
2304 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2305 					enum pcie_reset_state state)
2306 {
2307 	return -EINVAL;
2308 }
2309 
2310 /**
2311  * pci_set_pcie_reset_state - set reset state for device dev
2312  * @dev: the PCIe device reset
2313  * @state: Reset state to enter into
2314  *
2315  * Sets the PCI reset state for the device.
2316  */
2317 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2318 {
2319 	return pcibios_set_pcie_reset_state(dev, state);
2320 }
2321 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2322 
2323 #ifdef CONFIG_PCIEAER
2324 void pcie_clear_device_status(struct pci_dev *dev)
2325 {
2326 	u16 sta;
2327 
2328 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2329 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2330 }
2331 #endif
2332 
2333 /**
2334  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2335  * @dev: PCIe root port or event collector.
2336  */
2337 void pcie_clear_root_pme_status(struct pci_dev *dev)
2338 {
2339 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2340 }
2341 
2342 /**
2343  * pci_check_pme_status - Check if given device has generated PME.
2344  * @dev: Device to check.
2345  *
2346  * Check the PME status of the device and if set, clear it and clear PME enable
2347  * (if set).  Return 'true' if PME status and PME enable were both set or
2348  * 'false' otherwise.
2349  */
2350 bool pci_check_pme_status(struct pci_dev *dev)
2351 {
2352 	int pmcsr_pos;
2353 	u16 pmcsr;
2354 	bool ret = false;
2355 
2356 	if (!dev->pm_cap)
2357 		return false;
2358 
2359 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2360 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2361 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2362 		return false;
2363 
2364 	/* Clear PME status. */
2365 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2366 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2367 		/* Disable PME to avoid interrupt flood. */
2368 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2369 		ret = true;
2370 	}
2371 
2372 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2373 
2374 	return ret;
2375 }
2376 
2377 /**
2378  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2379  * @dev: Device to handle.
2380  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2381  *
2382  * Check if @dev has generated PME and queue a resume request for it in that
2383  * case.
2384  */
2385 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2386 {
2387 	if (pme_poll_reset && dev->pme_poll)
2388 		dev->pme_poll = false;
2389 
2390 	if (pci_check_pme_status(dev)) {
2391 		pci_wakeup_event(dev);
2392 		pm_request_resume(&dev->dev);
2393 	}
2394 	return 0;
2395 }
2396 
2397 /**
2398  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2399  * @bus: Top bus of the subtree to walk.
2400  */
2401 void pci_pme_wakeup_bus(struct pci_bus *bus)
2402 {
2403 	if (bus)
2404 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2405 }
2406 
2407 
2408 /**
2409  * pci_pme_capable - check the capability of PCI device to generate PME#
2410  * @dev: PCI device to handle.
2411  * @state: PCI state from which device will issue PME#.
2412  */
2413 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2414 {
2415 	if (!dev->pm_cap)
2416 		return false;
2417 
2418 	return !!(dev->pme_support & (1 << state));
2419 }
2420 EXPORT_SYMBOL(pci_pme_capable);
2421 
2422 static void pci_pme_list_scan(struct work_struct *work)
2423 {
2424 	struct pci_pme_device *pme_dev, *n;
2425 
2426 	mutex_lock(&pci_pme_list_mutex);
2427 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2428 		struct pci_dev *pdev = pme_dev->dev;
2429 
2430 		if (pdev->pme_poll) {
2431 			struct pci_dev *bridge = pdev->bus->self;
2432 			struct device *dev = &pdev->dev;
2433 			int pm_status;
2434 
2435 			/*
2436 			 * If bridge is in low power state, the
2437 			 * configuration space of subordinate devices
2438 			 * may be not accessible
2439 			 */
2440 			if (bridge && bridge->current_state != PCI_D0)
2441 				continue;
2442 
2443 			/*
2444 			 * If the device is in a low power state it
2445 			 * should not be polled either.
2446 			 */
2447 			pm_status = pm_runtime_get_if_active(dev, true);
2448 			if (!pm_status)
2449 				continue;
2450 
2451 			if (pdev->current_state != PCI_D3cold)
2452 				pci_pme_wakeup(pdev, NULL);
2453 
2454 			if (pm_status > 0)
2455 				pm_runtime_put(dev);
2456 		} else {
2457 			list_del(&pme_dev->list);
2458 			kfree(pme_dev);
2459 		}
2460 	}
2461 	if (!list_empty(&pci_pme_list))
2462 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2463 				   msecs_to_jiffies(PME_TIMEOUT));
2464 	mutex_unlock(&pci_pme_list_mutex);
2465 }
2466 
2467 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2468 {
2469 	u16 pmcsr;
2470 
2471 	if (!dev->pme_support)
2472 		return;
2473 
2474 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2475 	/* Clear PME_Status by writing 1 to it and enable PME# */
2476 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2477 	if (!enable)
2478 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2479 
2480 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2481 }
2482 
2483 /**
2484  * pci_pme_restore - Restore PME configuration after config space restore.
2485  * @dev: PCI device to update.
2486  */
2487 void pci_pme_restore(struct pci_dev *dev)
2488 {
2489 	u16 pmcsr;
2490 
2491 	if (!dev->pme_support)
2492 		return;
2493 
2494 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2495 	if (dev->wakeup_prepared) {
2496 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2497 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2498 	} else {
2499 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2500 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2501 	}
2502 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2503 }
2504 
2505 /**
2506  * pci_pme_active - enable or disable PCI device's PME# function
2507  * @dev: PCI device to handle.
2508  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2509  *
2510  * The caller must verify that the device is capable of generating PME# before
2511  * calling this function with @enable equal to 'true'.
2512  */
2513 void pci_pme_active(struct pci_dev *dev, bool enable)
2514 {
2515 	__pci_pme_active(dev, enable);
2516 
2517 	/*
2518 	 * PCI (as opposed to PCIe) PME requires that the device have
2519 	 * its PME# line hooked up correctly. Not all hardware vendors
2520 	 * do this, so the PME never gets delivered and the device
2521 	 * remains asleep. The easiest way around this is to
2522 	 * periodically walk the list of suspended devices and check
2523 	 * whether any have their PME flag set. The assumption is that
2524 	 * we'll wake up often enough anyway that this won't be a huge
2525 	 * hit, and the power savings from the devices will still be a
2526 	 * win.
2527 	 *
2528 	 * Although PCIe uses in-band PME message instead of PME# line
2529 	 * to report PME, PME does not work for some PCIe devices in
2530 	 * reality.  For example, there are devices that set their PME
2531 	 * status bits, but don't really bother to send a PME message;
2532 	 * there are PCI Express Root Ports that don't bother to
2533 	 * trigger interrupts when they receive PME messages from the
2534 	 * devices below.  So PME poll is used for PCIe devices too.
2535 	 */
2536 
2537 	if (dev->pme_poll) {
2538 		struct pci_pme_device *pme_dev;
2539 		if (enable) {
2540 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2541 					  GFP_KERNEL);
2542 			if (!pme_dev) {
2543 				pci_warn(dev, "can't enable PME#\n");
2544 				return;
2545 			}
2546 			pme_dev->dev = dev;
2547 			mutex_lock(&pci_pme_list_mutex);
2548 			list_add(&pme_dev->list, &pci_pme_list);
2549 			if (list_is_singular(&pci_pme_list))
2550 				queue_delayed_work(system_freezable_wq,
2551 						   &pci_pme_work,
2552 						   msecs_to_jiffies(PME_TIMEOUT));
2553 			mutex_unlock(&pci_pme_list_mutex);
2554 		} else {
2555 			mutex_lock(&pci_pme_list_mutex);
2556 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2557 				if (pme_dev->dev == dev) {
2558 					list_del(&pme_dev->list);
2559 					kfree(pme_dev);
2560 					break;
2561 				}
2562 			}
2563 			mutex_unlock(&pci_pme_list_mutex);
2564 		}
2565 	}
2566 
2567 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2568 }
2569 EXPORT_SYMBOL(pci_pme_active);
2570 
2571 /**
2572  * __pci_enable_wake - enable PCI device as wakeup event source
2573  * @dev: PCI device affected
2574  * @state: PCI state from which device will issue wakeup events
2575  * @enable: True to enable event generation; false to disable
2576  *
2577  * This enables the device as a wakeup event source, or disables it.
2578  * When such events involves platform-specific hooks, those hooks are
2579  * called automatically by this routine.
2580  *
2581  * Devices with legacy power management (no standard PCI PM capabilities)
2582  * always require such platform hooks.
2583  *
2584  * RETURN VALUE:
2585  * 0 is returned on success
2586  * -EINVAL is returned if device is not supposed to wake up the system
2587  * Error code depending on the platform is returned if both the platform and
2588  * the native mechanism fail to enable the generation of wake-up events
2589  */
2590 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2591 {
2592 	int ret = 0;
2593 
2594 	/*
2595 	 * Bridges that are not power-manageable directly only signal
2596 	 * wakeup on behalf of subordinate devices which is set up
2597 	 * elsewhere, so skip them. However, bridges that are
2598 	 * power-manageable may signal wakeup for themselves (for example,
2599 	 * on a hotplug event) and they need to be covered here.
2600 	 */
2601 	if (!pci_power_manageable(dev))
2602 		return 0;
2603 
2604 	/* Don't do the same thing twice in a row for one device. */
2605 	if (!!enable == !!dev->wakeup_prepared)
2606 		return 0;
2607 
2608 	/*
2609 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2610 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2611 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2612 	 */
2613 
2614 	if (enable) {
2615 		int error;
2616 
2617 		/*
2618 		 * Enable PME signaling if the device can signal PME from
2619 		 * D3cold regardless of whether or not it can signal PME from
2620 		 * the current target state, because that will allow it to
2621 		 * signal PME when the hierarchy above it goes into D3cold and
2622 		 * the device itself ends up in D3cold as a result of that.
2623 		 */
2624 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2625 			pci_pme_active(dev, true);
2626 		else
2627 			ret = 1;
2628 		error = platform_pci_set_wakeup(dev, true);
2629 		if (ret)
2630 			ret = error;
2631 		if (!ret)
2632 			dev->wakeup_prepared = true;
2633 	} else {
2634 		platform_pci_set_wakeup(dev, false);
2635 		pci_pme_active(dev, false);
2636 		dev->wakeup_prepared = false;
2637 	}
2638 
2639 	return ret;
2640 }
2641 
2642 /**
2643  * pci_enable_wake - change wakeup settings for a PCI device
2644  * @pci_dev: Target device
2645  * @state: PCI state from which device will issue wakeup events
2646  * @enable: Whether or not to enable event generation
2647  *
2648  * If @enable is set, check device_may_wakeup() for the device before calling
2649  * __pci_enable_wake() for it.
2650  */
2651 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2652 {
2653 	if (enable && !device_may_wakeup(&pci_dev->dev))
2654 		return -EINVAL;
2655 
2656 	return __pci_enable_wake(pci_dev, state, enable);
2657 }
2658 EXPORT_SYMBOL(pci_enable_wake);
2659 
2660 /**
2661  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2662  * @dev: PCI device to prepare
2663  * @enable: True to enable wake-up event generation; false to disable
2664  *
2665  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2666  * and this function allows them to set that up cleanly - pci_enable_wake()
2667  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2668  * ordering constraints.
2669  *
2670  * This function only returns error code if the device is not allowed to wake
2671  * up the system from sleep or it is not capable of generating PME# from both
2672  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2673  */
2674 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2675 {
2676 	return pci_pme_capable(dev, PCI_D3cold) ?
2677 			pci_enable_wake(dev, PCI_D3cold, enable) :
2678 			pci_enable_wake(dev, PCI_D3hot, enable);
2679 }
2680 EXPORT_SYMBOL(pci_wake_from_d3);
2681 
2682 /**
2683  * pci_target_state - find an appropriate low power state for a given PCI dev
2684  * @dev: PCI device
2685  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2686  *
2687  * Use underlying platform code to find a supported low power state for @dev.
2688  * If the platform can't manage @dev, return the deepest state from which it
2689  * can generate wake events, based on any available PME info.
2690  */
2691 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2692 {
2693 	if (platform_pci_power_manageable(dev)) {
2694 		/*
2695 		 * Call the platform to find the target state for the device.
2696 		 */
2697 		pci_power_t state = platform_pci_choose_state(dev);
2698 
2699 		switch (state) {
2700 		case PCI_POWER_ERROR:
2701 		case PCI_UNKNOWN:
2702 			return PCI_D3hot;
2703 
2704 		case PCI_D1:
2705 		case PCI_D2:
2706 			if (pci_no_d1d2(dev))
2707 				return PCI_D3hot;
2708 		}
2709 
2710 		return state;
2711 	}
2712 
2713 	/*
2714 	 * If the device is in D3cold even though it's not power-manageable by
2715 	 * the platform, it may have been powered down by non-standard means.
2716 	 * Best to let it slumber.
2717 	 */
2718 	if (dev->current_state == PCI_D3cold)
2719 		return PCI_D3cold;
2720 	else if (!dev->pm_cap)
2721 		return PCI_D0;
2722 
2723 	if (wakeup && dev->pme_support) {
2724 		pci_power_t state = PCI_D3hot;
2725 
2726 		/*
2727 		 * Find the deepest state from which the device can generate
2728 		 * PME#.
2729 		 */
2730 		while (state && !(dev->pme_support & (1 << state)))
2731 			state--;
2732 
2733 		if (state)
2734 			return state;
2735 		else if (dev->pme_support & 1)
2736 			return PCI_D0;
2737 	}
2738 
2739 	return PCI_D3hot;
2740 }
2741 
2742 /**
2743  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2744  *			  into a sleep state
2745  * @dev: Device to handle.
2746  *
2747  * Choose the power state appropriate for the device depending on whether
2748  * it can wake up the system and/or is power manageable by the platform
2749  * (PCI_D3hot is the default) and put the device into that state.
2750  */
2751 int pci_prepare_to_sleep(struct pci_dev *dev)
2752 {
2753 	bool wakeup = device_may_wakeup(&dev->dev);
2754 	pci_power_t target_state = pci_target_state(dev, wakeup);
2755 	int error;
2756 
2757 	if (target_state == PCI_POWER_ERROR)
2758 		return -EIO;
2759 
2760 	pci_enable_wake(dev, target_state, wakeup);
2761 
2762 	error = pci_set_power_state(dev, target_state);
2763 
2764 	if (error)
2765 		pci_enable_wake(dev, target_state, false);
2766 
2767 	return error;
2768 }
2769 EXPORT_SYMBOL(pci_prepare_to_sleep);
2770 
2771 /**
2772  * pci_back_from_sleep - turn PCI device on during system-wide transition
2773  *			 into working state
2774  * @dev: Device to handle.
2775  *
2776  * Disable device's system wake-up capability and put it into D0.
2777  */
2778 int pci_back_from_sleep(struct pci_dev *dev)
2779 {
2780 	int ret = pci_set_power_state(dev, PCI_D0);
2781 
2782 	if (ret)
2783 		return ret;
2784 
2785 	pci_enable_wake(dev, PCI_D0, false);
2786 	return 0;
2787 }
2788 EXPORT_SYMBOL(pci_back_from_sleep);
2789 
2790 /**
2791  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2792  * @dev: PCI device being suspended.
2793  *
2794  * Prepare @dev to generate wake-up events at run time and put it into a low
2795  * power state.
2796  */
2797 int pci_finish_runtime_suspend(struct pci_dev *dev)
2798 {
2799 	pci_power_t target_state;
2800 	int error;
2801 
2802 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2803 	if (target_state == PCI_POWER_ERROR)
2804 		return -EIO;
2805 
2806 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2807 
2808 	error = pci_set_power_state(dev, target_state);
2809 
2810 	if (error)
2811 		pci_enable_wake(dev, target_state, false);
2812 
2813 	return error;
2814 }
2815 
2816 /**
2817  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2818  * @dev: Device to check.
2819  *
2820  * Return true if the device itself is capable of generating wake-up events
2821  * (through the platform or using the native PCIe PME) or if the device supports
2822  * PME and one of its upstream bridges can generate wake-up events.
2823  */
2824 bool pci_dev_run_wake(struct pci_dev *dev)
2825 {
2826 	struct pci_bus *bus = dev->bus;
2827 
2828 	if (!dev->pme_support)
2829 		return false;
2830 
2831 	/* PME-capable in principle, but not from the target power state */
2832 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2833 		return false;
2834 
2835 	if (device_can_wakeup(&dev->dev))
2836 		return true;
2837 
2838 	while (bus->parent) {
2839 		struct pci_dev *bridge = bus->self;
2840 
2841 		if (device_can_wakeup(&bridge->dev))
2842 			return true;
2843 
2844 		bus = bus->parent;
2845 	}
2846 
2847 	/* We have reached the root bus. */
2848 	if (bus->bridge)
2849 		return device_can_wakeup(bus->bridge);
2850 
2851 	return false;
2852 }
2853 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2854 
2855 /**
2856  * pci_dev_need_resume - Check if it is necessary to resume the device.
2857  * @pci_dev: Device to check.
2858  *
2859  * Return 'true' if the device is not runtime-suspended or it has to be
2860  * reconfigured due to wakeup settings difference between system and runtime
2861  * suspend, or the current power state of it is not suitable for the upcoming
2862  * (system-wide) transition.
2863  */
2864 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2865 {
2866 	struct device *dev = &pci_dev->dev;
2867 	pci_power_t target_state;
2868 
2869 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2870 		return true;
2871 
2872 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2873 
2874 	/*
2875 	 * If the earlier platform check has not triggered, D3cold is just power
2876 	 * removal on top of D3hot, so no need to resume the device in that
2877 	 * case.
2878 	 */
2879 	return target_state != pci_dev->current_state &&
2880 		target_state != PCI_D3cold &&
2881 		pci_dev->current_state != PCI_D3hot;
2882 }
2883 
2884 /**
2885  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2886  * @pci_dev: Device to check.
2887  *
2888  * If the device is suspended and it is not configured for system wakeup,
2889  * disable PME for it to prevent it from waking up the system unnecessarily.
2890  *
2891  * Note that if the device's power state is D3cold and the platform check in
2892  * pci_dev_need_resume() has not triggered, the device's configuration need not
2893  * be changed.
2894  */
2895 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2896 {
2897 	struct device *dev = &pci_dev->dev;
2898 
2899 	spin_lock_irq(&dev->power.lock);
2900 
2901 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2902 	    pci_dev->current_state < PCI_D3cold)
2903 		__pci_pme_active(pci_dev, false);
2904 
2905 	spin_unlock_irq(&dev->power.lock);
2906 }
2907 
2908 /**
2909  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2910  * @pci_dev: Device to handle.
2911  *
2912  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2913  * it might have been disabled during the prepare phase of system suspend if
2914  * the device was not configured for system wakeup.
2915  */
2916 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2917 {
2918 	struct device *dev = &pci_dev->dev;
2919 
2920 	if (!pci_dev_run_wake(pci_dev))
2921 		return;
2922 
2923 	spin_lock_irq(&dev->power.lock);
2924 
2925 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2926 		__pci_pme_active(pci_dev, true);
2927 
2928 	spin_unlock_irq(&dev->power.lock);
2929 }
2930 
2931 /**
2932  * pci_choose_state - Choose the power state of a PCI device.
2933  * @dev: Target PCI device.
2934  * @state: Target state for the whole system.
2935  *
2936  * Returns PCI power state suitable for @dev and @state.
2937  */
2938 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2939 {
2940 	if (state.event == PM_EVENT_ON)
2941 		return PCI_D0;
2942 
2943 	return pci_target_state(dev, false);
2944 }
2945 EXPORT_SYMBOL(pci_choose_state);
2946 
2947 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2948 {
2949 	struct device *dev = &pdev->dev;
2950 	struct device *parent = dev->parent;
2951 
2952 	if (parent)
2953 		pm_runtime_get_sync(parent);
2954 	pm_runtime_get_noresume(dev);
2955 	/*
2956 	 * pdev->current_state is set to PCI_D3cold during suspending,
2957 	 * so wait until suspending completes
2958 	 */
2959 	pm_runtime_barrier(dev);
2960 	/*
2961 	 * Only need to resume devices in D3cold, because config
2962 	 * registers are still accessible for devices suspended but
2963 	 * not in D3cold.
2964 	 */
2965 	if (pdev->current_state == PCI_D3cold)
2966 		pm_runtime_resume(dev);
2967 }
2968 
2969 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2970 {
2971 	struct device *dev = &pdev->dev;
2972 	struct device *parent = dev->parent;
2973 
2974 	pm_runtime_put(dev);
2975 	if (parent)
2976 		pm_runtime_put_sync(parent);
2977 }
2978 
2979 static const struct dmi_system_id bridge_d3_blacklist[] = {
2980 #ifdef CONFIG_X86
2981 	{
2982 		/*
2983 		 * Gigabyte X299 root port is not marked as hotplug capable
2984 		 * which allows Linux to power manage it.  However, this
2985 		 * confuses the BIOS SMI handler so don't power manage root
2986 		 * ports on that system.
2987 		 */
2988 		.ident = "X299 DESIGNARE EX-CF",
2989 		.matches = {
2990 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2991 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2992 		},
2993 	},
2994 	{
2995 		/*
2996 		 * Downstream device is not accessible after putting a root port
2997 		 * into D3cold and back into D0 on Elo Continental Z2 board
2998 		 */
2999 		.ident = "Elo Continental Z2",
3000 		.matches = {
3001 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3002 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3003 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3004 		},
3005 	},
3006 #endif
3007 	{ }
3008 };
3009 
3010 /**
3011  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3012  * @bridge: Bridge to check
3013  *
3014  * This function checks if it is possible to move the bridge to D3.
3015  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3016  */
3017 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3018 {
3019 	if (!pci_is_pcie(bridge))
3020 		return false;
3021 
3022 	switch (pci_pcie_type(bridge)) {
3023 	case PCI_EXP_TYPE_ROOT_PORT:
3024 	case PCI_EXP_TYPE_UPSTREAM:
3025 	case PCI_EXP_TYPE_DOWNSTREAM:
3026 		if (pci_bridge_d3_disable)
3027 			return false;
3028 
3029 		/*
3030 		 * Hotplug ports handled by firmware in System Management Mode
3031 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3032 		 */
3033 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3034 			return false;
3035 
3036 		if (pci_bridge_d3_force)
3037 			return true;
3038 
3039 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3040 		if (bridge->is_thunderbolt)
3041 			return true;
3042 
3043 		/* Platform might know better if the bridge supports D3 */
3044 		if (platform_pci_bridge_d3(bridge))
3045 			return true;
3046 
3047 		/*
3048 		 * Hotplug ports handled natively by the OS were not validated
3049 		 * by vendors for runtime D3 at least until 2018 because there
3050 		 * was no OS support.
3051 		 */
3052 		if (bridge->is_hotplug_bridge)
3053 			return false;
3054 
3055 		if (dmi_check_system(bridge_d3_blacklist))
3056 			return false;
3057 
3058 		/*
3059 		 * It should be safe to put PCIe ports from 2015 or newer
3060 		 * to D3.
3061 		 */
3062 		if (dmi_get_bios_year() >= 2015)
3063 			return true;
3064 		break;
3065 	}
3066 
3067 	return false;
3068 }
3069 
3070 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3071 {
3072 	bool *d3cold_ok = data;
3073 
3074 	if (/* The device needs to be allowed to go D3cold ... */
3075 	    dev->no_d3cold || !dev->d3cold_allowed ||
3076 
3077 	    /* ... and if it is wakeup capable to do so from D3cold. */
3078 	    (device_may_wakeup(&dev->dev) &&
3079 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3080 
3081 	    /* If it is a bridge it must be allowed to go to D3. */
3082 	    !pci_power_manageable(dev))
3083 
3084 		*d3cold_ok = false;
3085 
3086 	return !*d3cold_ok;
3087 }
3088 
3089 /*
3090  * pci_bridge_d3_update - Update bridge D3 capabilities
3091  * @dev: PCI device which is changed
3092  *
3093  * Update upstream bridge PM capabilities accordingly depending on if the
3094  * device PM configuration was changed or the device is being removed.  The
3095  * change is also propagated upstream.
3096  */
3097 void pci_bridge_d3_update(struct pci_dev *dev)
3098 {
3099 	bool remove = !device_is_registered(&dev->dev);
3100 	struct pci_dev *bridge;
3101 	bool d3cold_ok = true;
3102 
3103 	bridge = pci_upstream_bridge(dev);
3104 	if (!bridge || !pci_bridge_d3_possible(bridge))
3105 		return;
3106 
3107 	/*
3108 	 * If D3 is currently allowed for the bridge, removing one of its
3109 	 * children won't change that.
3110 	 */
3111 	if (remove && bridge->bridge_d3)
3112 		return;
3113 
3114 	/*
3115 	 * If D3 is currently allowed for the bridge and a child is added or
3116 	 * changed, disallowance of D3 can only be caused by that child, so
3117 	 * we only need to check that single device, not any of its siblings.
3118 	 *
3119 	 * If D3 is currently not allowed for the bridge, checking the device
3120 	 * first may allow us to skip checking its siblings.
3121 	 */
3122 	if (!remove)
3123 		pci_dev_check_d3cold(dev, &d3cold_ok);
3124 
3125 	/*
3126 	 * If D3 is currently not allowed for the bridge, this may be caused
3127 	 * either by the device being changed/removed or any of its siblings,
3128 	 * so we need to go through all children to find out if one of them
3129 	 * continues to block D3.
3130 	 */
3131 	if (d3cold_ok && !bridge->bridge_d3)
3132 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3133 			     &d3cold_ok);
3134 
3135 	if (bridge->bridge_d3 != d3cold_ok) {
3136 		bridge->bridge_d3 = d3cold_ok;
3137 		/* Propagate change to upstream bridges */
3138 		pci_bridge_d3_update(bridge);
3139 	}
3140 }
3141 
3142 /**
3143  * pci_d3cold_enable - Enable D3cold for device
3144  * @dev: PCI device to handle
3145  *
3146  * This function can be used in drivers to enable D3cold from the device
3147  * they handle.  It also updates upstream PCI bridge PM capabilities
3148  * accordingly.
3149  */
3150 void pci_d3cold_enable(struct pci_dev *dev)
3151 {
3152 	if (dev->no_d3cold) {
3153 		dev->no_d3cold = false;
3154 		pci_bridge_d3_update(dev);
3155 	}
3156 }
3157 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3158 
3159 /**
3160  * pci_d3cold_disable - Disable D3cold for device
3161  * @dev: PCI device to handle
3162  *
3163  * This function can be used in drivers to disable D3cold from the device
3164  * they handle.  It also updates upstream PCI bridge PM capabilities
3165  * accordingly.
3166  */
3167 void pci_d3cold_disable(struct pci_dev *dev)
3168 {
3169 	if (!dev->no_d3cold) {
3170 		dev->no_d3cold = true;
3171 		pci_bridge_d3_update(dev);
3172 	}
3173 }
3174 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3175 
3176 /**
3177  * pci_pm_init - Initialize PM functions of given PCI device
3178  * @dev: PCI device to handle.
3179  */
3180 void pci_pm_init(struct pci_dev *dev)
3181 {
3182 	int pm;
3183 	u16 status;
3184 	u16 pmc;
3185 
3186 	pm_runtime_forbid(&dev->dev);
3187 	pm_runtime_set_active(&dev->dev);
3188 	pm_runtime_enable(&dev->dev);
3189 	device_enable_async_suspend(&dev->dev);
3190 	dev->wakeup_prepared = false;
3191 
3192 	dev->pm_cap = 0;
3193 	dev->pme_support = 0;
3194 
3195 	/* find PCI PM capability in list */
3196 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3197 	if (!pm)
3198 		return;
3199 	/* Check device's ability to generate PME# */
3200 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3201 
3202 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3203 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3204 			pmc & PCI_PM_CAP_VER_MASK);
3205 		return;
3206 	}
3207 
3208 	dev->pm_cap = pm;
3209 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3210 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3211 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3212 	dev->d3cold_allowed = true;
3213 
3214 	dev->d1_support = false;
3215 	dev->d2_support = false;
3216 	if (!pci_no_d1d2(dev)) {
3217 		if (pmc & PCI_PM_CAP_D1)
3218 			dev->d1_support = true;
3219 		if (pmc & PCI_PM_CAP_D2)
3220 			dev->d2_support = true;
3221 
3222 		if (dev->d1_support || dev->d2_support)
3223 			pci_info(dev, "supports%s%s\n",
3224 				   dev->d1_support ? " D1" : "",
3225 				   dev->d2_support ? " D2" : "");
3226 	}
3227 
3228 	pmc &= PCI_PM_CAP_PME_MASK;
3229 	if (pmc) {
3230 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3231 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3232 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3233 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3234 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3235 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3236 		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3237 		dev->pme_poll = true;
3238 		/*
3239 		 * Make device's PM flags reflect the wake-up capability, but
3240 		 * let the user space enable it to wake up the system as needed.
3241 		 */
3242 		device_set_wakeup_capable(&dev->dev, true);
3243 		/* Disable the PME# generation functionality */
3244 		pci_pme_active(dev, false);
3245 	}
3246 
3247 	pci_read_config_word(dev, PCI_STATUS, &status);
3248 	if (status & PCI_STATUS_IMM_READY)
3249 		dev->imm_ready = 1;
3250 }
3251 
3252 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3253 {
3254 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3255 
3256 	switch (prop) {
3257 	case PCI_EA_P_MEM:
3258 	case PCI_EA_P_VF_MEM:
3259 		flags |= IORESOURCE_MEM;
3260 		break;
3261 	case PCI_EA_P_MEM_PREFETCH:
3262 	case PCI_EA_P_VF_MEM_PREFETCH:
3263 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3264 		break;
3265 	case PCI_EA_P_IO:
3266 		flags |= IORESOURCE_IO;
3267 		break;
3268 	default:
3269 		return 0;
3270 	}
3271 
3272 	return flags;
3273 }
3274 
3275 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3276 					    u8 prop)
3277 {
3278 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3279 		return &dev->resource[bei];
3280 #ifdef CONFIG_PCI_IOV
3281 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3282 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3283 		return &dev->resource[PCI_IOV_RESOURCES +
3284 				      bei - PCI_EA_BEI_VF_BAR0];
3285 #endif
3286 	else if (bei == PCI_EA_BEI_ROM)
3287 		return &dev->resource[PCI_ROM_RESOURCE];
3288 	else
3289 		return NULL;
3290 }
3291 
3292 /* Read an Enhanced Allocation (EA) entry */
3293 static int pci_ea_read(struct pci_dev *dev, int offset)
3294 {
3295 	struct resource *res;
3296 	int ent_size, ent_offset = offset;
3297 	resource_size_t start, end;
3298 	unsigned long flags;
3299 	u32 dw0, bei, base, max_offset;
3300 	u8 prop;
3301 	bool support_64 = (sizeof(resource_size_t) >= 8);
3302 
3303 	pci_read_config_dword(dev, ent_offset, &dw0);
3304 	ent_offset += 4;
3305 
3306 	/* Entry size field indicates DWORDs after 1st */
3307 	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3308 
3309 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3310 		goto out;
3311 
3312 	bei = FIELD_GET(PCI_EA_BEI, dw0);
3313 	prop = FIELD_GET(PCI_EA_PP, dw0);
3314 
3315 	/*
3316 	 * If the Property is in the reserved range, try the Secondary
3317 	 * Property instead.
3318 	 */
3319 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3320 		prop = FIELD_GET(PCI_EA_SP, dw0);
3321 	if (prop > PCI_EA_P_BRIDGE_IO)
3322 		goto out;
3323 
3324 	res = pci_ea_get_resource(dev, bei, prop);
3325 	if (!res) {
3326 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3327 		goto out;
3328 	}
3329 
3330 	flags = pci_ea_flags(dev, prop);
3331 	if (!flags) {
3332 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3333 		goto out;
3334 	}
3335 
3336 	/* Read Base */
3337 	pci_read_config_dword(dev, ent_offset, &base);
3338 	start = (base & PCI_EA_FIELD_MASK);
3339 	ent_offset += 4;
3340 
3341 	/* Read MaxOffset */
3342 	pci_read_config_dword(dev, ent_offset, &max_offset);
3343 	ent_offset += 4;
3344 
3345 	/* Read Base MSBs (if 64-bit entry) */
3346 	if (base & PCI_EA_IS_64) {
3347 		u32 base_upper;
3348 
3349 		pci_read_config_dword(dev, ent_offset, &base_upper);
3350 		ent_offset += 4;
3351 
3352 		flags |= IORESOURCE_MEM_64;
3353 
3354 		/* entry starts above 32-bit boundary, can't use */
3355 		if (!support_64 && base_upper)
3356 			goto out;
3357 
3358 		if (support_64)
3359 			start |= ((u64)base_upper << 32);
3360 	}
3361 
3362 	end = start + (max_offset | 0x03);
3363 
3364 	/* Read MaxOffset MSBs (if 64-bit entry) */
3365 	if (max_offset & PCI_EA_IS_64) {
3366 		u32 max_offset_upper;
3367 
3368 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3369 		ent_offset += 4;
3370 
3371 		flags |= IORESOURCE_MEM_64;
3372 
3373 		/* entry too big, can't use */
3374 		if (!support_64 && max_offset_upper)
3375 			goto out;
3376 
3377 		if (support_64)
3378 			end += ((u64)max_offset_upper << 32);
3379 	}
3380 
3381 	if (end < start) {
3382 		pci_err(dev, "EA Entry crosses address boundary\n");
3383 		goto out;
3384 	}
3385 
3386 	if (ent_size != ent_offset - offset) {
3387 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3388 			ent_size, ent_offset - offset);
3389 		goto out;
3390 	}
3391 
3392 	res->name = pci_name(dev);
3393 	res->start = start;
3394 	res->end = end;
3395 	res->flags = flags;
3396 
3397 	if (bei <= PCI_EA_BEI_BAR5)
3398 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3399 			   bei, res, prop);
3400 	else if (bei == PCI_EA_BEI_ROM)
3401 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3402 			   res, prop);
3403 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3404 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3405 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3406 	else
3407 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3408 			   bei, res, prop);
3409 
3410 out:
3411 	return offset + ent_size;
3412 }
3413 
3414 /* Enhanced Allocation Initialization */
3415 void pci_ea_init(struct pci_dev *dev)
3416 {
3417 	int ea;
3418 	u8 num_ent;
3419 	int offset;
3420 	int i;
3421 
3422 	/* find PCI EA capability in list */
3423 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3424 	if (!ea)
3425 		return;
3426 
3427 	/* determine the number of entries */
3428 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3429 					&num_ent);
3430 	num_ent &= PCI_EA_NUM_ENT_MASK;
3431 
3432 	offset = ea + PCI_EA_FIRST_ENT;
3433 
3434 	/* Skip DWORD 2 for type 1 functions */
3435 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3436 		offset += 4;
3437 
3438 	/* parse each EA entry */
3439 	for (i = 0; i < num_ent; ++i)
3440 		offset = pci_ea_read(dev, offset);
3441 }
3442 
3443 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3444 	struct pci_cap_saved_state *new_cap)
3445 {
3446 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3447 }
3448 
3449 /**
3450  * _pci_add_cap_save_buffer - allocate buffer for saving given
3451  *			      capability registers
3452  * @dev: the PCI device
3453  * @cap: the capability to allocate the buffer for
3454  * @extended: Standard or Extended capability ID
3455  * @size: requested size of the buffer
3456  */
3457 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3458 				    bool extended, unsigned int size)
3459 {
3460 	int pos;
3461 	struct pci_cap_saved_state *save_state;
3462 
3463 	if (extended)
3464 		pos = pci_find_ext_capability(dev, cap);
3465 	else
3466 		pos = pci_find_capability(dev, cap);
3467 
3468 	if (!pos)
3469 		return 0;
3470 
3471 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3472 	if (!save_state)
3473 		return -ENOMEM;
3474 
3475 	save_state->cap.cap_nr = cap;
3476 	save_state->cap.cap_extended = extended;
3477 	save_state->cap.size = size;
3478 	pci_add_saved_cap(dev, save_state);
3479 
3480 	return 0;
3481 }
3482 
3483 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3484 {
3485 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3486 }
3487 
3488 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3489 {
3490 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3491 }
3492 
3493 /**
3494  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3495  * @dev: the PCI device
3496  */
3497 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3498 {
3499 	int error;
3500 
3501 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3502 					PCI_EXP_SAVE_REGS * sizeof(u16));
3503 	if (error)
3504 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3505 
3506 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3507 	if (error)
3508 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3509 
3510 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3511 					    2 * sizeof(u16));
3512 	if (error)
3513 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3514 
3515 	pci_allocate_vc_save_buffers(dev);
3516 }
3517 
3518 void pci_free_cap_save_buffers(struct pci_dev *dev)
3519 {
3520 	struct pci_cap_saved_state *tmp;
3521 	struct hlist_node *n;
3522 
3523 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3524 		kfree(tmp);
3525 }
3526 
3527 /**
3528  * pci_configure_ari - enable or disable ARI forwarding
3529  * @dev: the PCI device
3530  *
3531  * If @dev and its upstream bridge both support ARI, enable ARI in the
3532  * bridge.  Otherwise, disable ARI in the bridge.
3533  */
3534 void pci_configure_ari(struct pci_dev *dev)
3535 {
3536 	u32 cap;
3537 	struct pci_dev *bridge;
3538 
3539 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3540 		return;
3541 
3542 	bridge = dev->bus->self;
3543 	if (!bridge)
3544 		return;
3545 
3546 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3547 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3548 		return;
3549 
3550 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3551 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3552 					 PCI_EXP_DEVCTL2_ARI);
3553 		bridge->ari_enabled = 1;
3554 	} else {
3555 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3556 					   PCI_EXP_DEVCTL2_ARI);
3557 		bridge->ari_enabled = 0;
3558 	}
3559 }
3560 
3561 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3562 {
3563 	int pos;
3564 	u16 cap, ctrl;
3565 
3566 	pos = pdev->acs_cap;
3567 	if (!pos)
3568 		return false;
3569 
3570 	/*
3571 	 * Except for egress control, capabilities are either required
3572 	 * or only required if controllable.  Features missing from the
3573 	 * capability field can therefore be assumed as hard-wired enabled.
3574 	 */
3575 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3576 	acs_flags &= (cap | PCI_ACS_EC);
3577 
3578 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3579 	return (ctrl & acs_flags) == acs_flags;
3580 }
3581 
3582 /**
3583  * pci_acs_enabled - test ACS against required flags for a given device
3584  * @pdev: device to test
3585  * @acs_flags: required PCI ACS flags
3586  *
3587  * Return true if the device supports the provided flags.  Automatically
3588  * filters out flags that are not implemented on multifunction devices.
3589  *
3590  * Note that this interface checks the effective ACS capabilities of the
3591  * device rather than the actual capabilities.  For instance, most single
3592  * function endpoints are not required to support ACS because they have no
3593  * opportunity for peer-to-peer access.  We therefore return 'true'
3594  * regardless of whether the device exposes an ACS capability.  This makes
3595  * it much easier for callers of this function to ignore the actual type
3596  * or topology of the device when testing ACS support.
3597  */
3598 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3599 {
3600 	int ret;
3601 
3602 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3603 	if (ret >= 0)
3604 		return ret > 0;
3605 
3606 	/*
3607 	 * Conventional PCI and PCI-X devices never support ACS, either
3608 	 * effectively or actually.  The shared bus topology implies that
3609 	 * any device on the bus can receive or snoop DMA.
3610 	 */
3611 	if (!pci_is_pcie(pdev))
3612 		return false;
3613 
3614 	switch (pci_pcie_type(pdev)) {
3615 	/*
3616 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3617 	 * but since their primary interface is PCI/X, we conservatively
3618 	 * handle them as we would a non-PCIe device.
3619 	 */
3620 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3621 	/*
3622 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3623 	 * applicable... must never implement an ACS Extended Capability...".
3624 	 * This seems arbitrary, but we take a conservative interpretation
3625 	 * of this statement.
3626 	 */
3627 	case PCI_EXP_TYPE_PCI_BRIDGE:
3628 	case PCI_EXP_TYPE_RC_EC:
3629 		return false;
3630 	/*
3631 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3632 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3633 	 * regardless of whether they are single- or multi-function devices.
3634 	 */
3635 	case PCI_EXP_TYPE_DOWNSTREAM:
3636 	case PCI_EXP_TYPE_ROOT_PORT:
3637 		return pci_acs_flags_enabled(pdev, acs_flags);
3638 	/*
3639 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3640 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3641 	 * capabilities, but only when they are part of a multifunction
3642 	 * device.  The footnote for section 6.12 indicates the specific
3643 	 * PCIe types included here.
3644 	 */
3645 	case PCI_EXP_TYPE_ENDPOINT:
3646 	case PCI_EXP_TYPE_UPSTREAM:
3647 	case PCI_EXP_TYPE_LEG_END:
3648 	case PCI_EXP_TYPE_RC_END:
3649 		if (!pdev->multifunction)
3650 			break;
3651 
3652 		return pci_acs_flags_enabled(pdev, acs_flags);
3653 	}
3654 
3655 	/*
3656 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3657 	 * to single function devices with the exception of downstream ports.
3658 	 */
3659 	return true;
3660 }
3661 
3662 /**
3663  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3664  * @start: starting downstream device
3665  * @end: ending upstream device or NULL to search to the root bus
3666  * @acs_flags: required flags
3667  *
3668  * Walk up a device tree from start to end testing PCI ACS support.  If
3669  * any step along the way does not support the required flags, return false.
3670  */
3671 bool pci_acs_path_enabled(struct pci_dev *start,
3672 			  struct pci_dev *end, u16 acs_flags)
3673 {
3674 	struct pci_dev *pdev, *parent = start;
3675 
3676 	do {
3677 		pdev = parent;
3678 
3679 		if (!pci_acs_enabled(pdev, acs_flags))
3680 			return false;
3681 
3682 		if (pci_is_root_bus(pdev->bus))
3683 			return (end == NULL);
3684 
3685 		parent = pdev->bus->self;
3686 	} while (pdev != end);
3687 
3688 	return true;
3689 }
3690 
3691 /**
3692  * pci_acs_init - Initialize ACS if hardware supports it
3693  * @dev: the PCI device
3694  */
3695 void pci_acs_init(struct pci_dev *dev)
3696 {
3697 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3698 
3699 	/*
3700 	 * Attempt to enable ACS regardless of capability because some Root
3701 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3702 	 * the standard ACS capability but still support ACS via those
3703 	 * quirks.
3704 	 */
3705 	pci_enable_acs(dev);
3706 }
3707 
3708 /**
3709  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3710  * @pdev: PCI device
3711  * @bar: BAR to find
3712  *
3713  * Helper to find the position of the ctrl register for a BAR.
3714  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3715  * Returns -ENOENT if no ctrl register for the BAR could be found.
3716  */
3717 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3718 {
3719 	unsigned int pos, nbars, i;
3720 	u32 ctrl;
3721 
3722 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3723 	if (!pos)
3724 		return -ENOTSUPP;
3725 
3726 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3727 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3728 
3729 	for (i = 0; i < nbars; i++, pos += 8) {
3730 		int bar_idx;
3731 
3732 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3733 		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3734 		if (bar_idx == bar)
3735 			return pos;
3736 	}
3737 
3738 	return -ENOENT;
3739 }
3740 
3741 /**
3742  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3743  * @pdev: PCI device
3744  * @bar: BAR to query
3745  *
3746  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3747  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3748  */
3749 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3750 {
3751 	int pos;
3752 	u32 cap;
3753 
3754 	pos = pci_rebar_find_pos(pdev, bar);
3755 	if (pos < 0)
3756 		return 0;
3757 
3758 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3759 	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3760 
3761 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3762 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3763 	    bar == 0 && cap == 0x700)
3764 		return 0x3f00;
3765 
3766 	return cap;
3767 }
3768 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3769 
3770 /**
3771  * pci_rebar_get_current_size - get the current size of a BAR
3772  * @pdev: PCI device
3773  * @bar: BAR to set size to
3774  *
3775  * Read the size of a BAR from the resizable BAR config.
3776  * Returns size if found or negative error code.
3777  */
3778 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3779 {
3780 	int pos;
3781 	u32 ctrl;
3782 
3783 	pos = pci_rebar_find_pos(pdev, bar);
3784 	if (pos < 0)
3785 		return pos;
3786 
3787 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3788 	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3789 }
3790 
3791 /**
3792  * pci_rebar_set_size - set a new size for a BAR
3793  * @pdev: PCI device
3794  * @bar: BAR to set size to
3795  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3796  *
3797  * Set the new size of a BAR as defined in the spec.
3798  * Returns zero if resizing was successful, error code otherwise.
3799  */
3800 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3801 {
3802 	int pos;
3803 	u32 ctrl;
3804 
3805 	pos = pci_rebar_find_pos(pdev, bar);
3806 	if (pos < 0)
3807 		return pos;
3808 
3809 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3810 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3811 	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3812 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3813 	return 0;
3814 }
3815 
3816 /**
3817  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3818  * @dev: the PCI device
3819  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3820  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3821  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3822  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3823  *
3824  * Return 0 if all upstream bridges support AtomicOp routing, egress
3825  * blocking is disabled on all upstream ports, and the root port supports
3826  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3827  * AtomicOp completion), or negative otherwise.
3828  */
3829 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3830 {
3831 	struct pci_bus *bus = dev->bus;
3832 	struct pci_dev *bridge;
3833 	u32 cap, ctl2;
3834 
3835 	/*
3836 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3837 	 * in Device Control 2 is reserved in VFs and the PF value applies
3838 	 * to all associated VFs.
3839 	 */
3840 	if (dev->is_virtfn)
3841 		return -EINVAL;
3842 
3843 	if (!pci_is_pcie(dev))
3844 		return -EINVAL;
3845 
3846 	/*
3847 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3848 	 * AtomicOp requesters.  For now, we only support endpoints as
3849 	 * requesters and root ports as completers.  No endpoints as
3850 	 * completers, and no peer-to-peer.
3851 	 */
3852 
3853 	switch (pci_pcie_type(dev)) {
3854 	case PCI_EXP_TYPE_ENDPOINT:
3855 	case PCI_EXP_TYPE_LEG_END:
3856 	case PCI_EXP_TYPE_RC_END:
3857 		break;
3858 	default:
3859 		return -EINVAL;
3860 	}
3861 
3862 	while (bus->parent) {
3863 		bridge = bus->self;
3864 
3865 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3866 
3867 		switch (pci_pcie_type(bridge)) {
3868 		/* Ensure switch ports support AtomicOp routing */
3869 		case PCI_EXP_TYPE_UPSTREAM:
3870 		case PCI_EXP_TYPE_DOWNSTREAM:
3871 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3872 				return -EINVAL;
3873 			break;
3874 
3875 		/* Ensure root port supports all the sizes we care about */
3876 		case PCI_EXP_TYPE_ROOT_PORT:
3877 			if ((cap & cap_mask) != cap_mask)
3878 				return -EINVAL;
3879 			break;
3880 		}
3881 
3882 		/* Ensure upstream ports don't block AtomicOps on egress */
3883 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3884 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3885 						   &ctl2);
3886 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3887 				return -EINVAL;
3888 		}
3889 
3890 		bus = bus->parent;
3891 	}
3892 
3893 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3894 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3895 	return 0;
3896 }
3897 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3898 
3899 /**
3900  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3901  * @dev: the PCI device
3902  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3903  *
3904  * Perform INTx swizzling for a device behind one level of bridge.  This is
3905  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3906  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3907  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3908  * the PCI Express Base Specification, Revision 2.1)
3909  */
3910 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3911 {
3912 	int slot;
3913 
3914 	if (pci_ari_enabled(dev->bus))
3915 		slot = 0;
3916 	else
3917 		slot = PCI_SLOT(dev->devfn);
3918 
3919 	return (((pin - 1) + slot) % 4) + 1;
3920 }
3921 
3922 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3923 {
3924 	u8 pin;
3925 
3926 	pin = dev->pin;
3927 	if (!pin)
3928 		return -1;
3929 
3930 	while (!pci_is_root_bus(dev->bus)) {
3931 		pin = pci_swizzle_interrupt_pin(dev, pin);
3932 		dev = dev->bus->self;
3933 	}
3934 	*bridge = dev;
3935 	return pin;
3936 }
3937 
3938 /**
3939  * pci_common_swizzle - swizzle INTx all the way to root bridge
3940  * @dev: the PCI device
3941  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3942  *
3943  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3944  * bridges all the way up to a PCI root bus.
3945  */
3946 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3947 {
3948 	u8 pin = *pinp;
3949 
3950 	while (!pci_is_root_bus(dev->bus)) {
3951 		pin = pci_swizzle_interrupt_pin(dev, pin);
3952 		dev = dev->bus->self;
3953 	}
3954 	*pinp = pin;
3955 	return PCI_SLOT(dev->devfn);
3956 }
3957 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3958 
3959 /**
3960  * pci_release_region - Release a PCI bar
3961  * @pdev: PCI device whose resources were previously reserved by
3962  *	  pci_request_region()
3963  * @bar: BAR to release
3964  *
3965  * Releases the PCI I/O and memory resources previously reserved by a
3966  * successful call to pci_request_region().  Call this function only
3967  * after all use of the PCI regions has ceased.
3968  */
3969 void pci_release_region(struct pci_dev *pdev, int bar)
3970 {
3971 	struct pci_devres *dr;
3972 
3973 	if (pci_resource_len(pdev, bar) == 0)
3974 		return;
3975 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3976 		release_region(pci_resource_start(pdev, bar),
3977 				pci_resource_len(pdev, bar));
3978 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3979 		release_mem_region(pci_resource_start(pdev, bar),
3980 				pci_resource_len(pdev, bar));
3981 
3982 	dr = find_pci_dr(pdev);
3983 	if (dr)
3984 		dr->region_mask &= ~(1 << bar);
3985 }
3986 EXPORT_SYMBOL(pci_release_region);
3987 
3988 /**
3989  * __pci_request_region - Reserved PCI I/O and memory resource
3990  * @pdev: PCI device whose resources are to be reserved
3991  * @bar: BAR to be reserved
3992  * @res_name: Name to be associated with resource.
3993  * @exclusive: whether the region access is exclusive or not
3994  *
3995  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3996  * being reserved by owner @res_name.  Do not access any
3997  * address inside the PCI regions unless this call returns
3998  * successfully.
3999  *
4000  * If @exclusive is set, then the region is marked so that userspace
4001  * is explicitly not allowed to map the resource via /dev/mem or
4002  * sysfs MMIO access.
4003  *
4004  * Returns 0 on success, or %EBUSY on error.  A warning
4005  * message is also printed on failure.
4006  */
4007 static int __pci_request_region(struct pci_dev *pdev, int bar,
4008 				const char *res_name, int exclusive)
4009 {
4010 	struct pci_devres *dr;
4011 
4012 	if (pci_resource_len(pdev, bar) == 0)
4013 		return 0;
4014 
4015 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4016 		if (!request_region(pci_resource_start(pdev, bar),
4017 			    pci_resource_len(pdev, bar), res_name))
4018 			goto err_out;
4019 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4020 		if (!__request_mem_region(pci_resource_start(pdev, bar),
4021 					pci_resource_len(pdev, bar), res_name,
4022 					exclusive))
4023 			goto err_out;
4024 	}
4025 
4026 	dr = find_pci_dr(pdev);
4027 	if (dr)
4028 		dr->region_mask |= 1 << bar;
4029 
4030 	return 0;
4031 
4032 err_out:
4033 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4034 		 &pdev->resource[bar]);
4035 	return -EBUSY;
4036 }
4037 
4038 /**
4039  * pci_request_region - Reserve PCI I/O and memory resource
4040  * @pdev: PCI device whose resources are to be reserved
4041  * @bar: BAR to be reserved
4042  * @res_name: Name to be associated with resource
4043  *
4044  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4045  * being reserved by owner @res_name.  Do not access any
4046  * address inside the PCI regions unless this call returns
4047  * successfully.
4048  *
4049  * Returns 0 on success, or %EBUSY on error.  A warning
4050  * message is also printed on failure.
4051  */
4052 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4053 {
4054 	return __pci_request_region(pdev, bar, res_name, 0);
4055 }
4056 EXPORT_SYMBOL(pci_request_region);
4057 
4058 /**
4059  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4060  * @pdev: PCI device whose resources were previously reserved
4061  * @bars: Bitmask of BARs to be released
4062  *
4063  * Release selected PCI I/O and memory resources previously reserved.
4064  * Call this function only after all use of the PCI regions has ceased.
4065  */
4066 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4067 {
4068 	int i;
4069 
4070 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4071 		if (bars & (1 << i))
4072 			pci_release_region(pdev, i);
4073 }
4074 EXPORT_SYMBOL(pci_release_selected_regions);
4075 
4076 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4077 					  const char *res_name, int excl)
4078 {
4079 	int i;
4080 
4081 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4082 		if (bars & (1 << i))
4083 			if (__pci_request_region(pdev, i, res_name, excl))
4084 				goto err_out;
4085 	return 0;
4086 
4087 err_out:
4088 	while (--i >= 0)
4089 		if (bars & (1 << i))
4090 			pci_release_region(pdev, i);
4091 
4092 	return -EBUSY;
4093 }
4094 
4095 
4096 /**
4097  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4098  * @pdev: PCI device whose resources are to be reserved
4099  * @bars: Bitmask of BARs to be requested
4100  * @res_name: Name to be associated with resource
4101  */
4102 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4103 				 const char *res_name)
4104 {
4105 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4106 }
4107 EXPORT_SYMBOL(pci_request_selected_regions);
4108 
4109 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4110 					   const char *res_name)
4111 {
4112 	return __pci_request_selected_regions(pdev, bars, res_name,
4113 			IORESOURCE_EXCLUSIVE);
4114 }
4115 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4116 
4117 /**
4118  * pci_release_regions - Release reserved PCI I/O and memory resources
4119  * @pdev: PCI device whose resources were previously reserved by
4120  *	  pci_request_regions()
4121  *
4122  * Releases all PCI I/O and memory resources previously reserved by a
4123  * successful call to pci_request_regions().  Call this function only
4124  * after all use of the PCI regions has ceased.
4125  */
4126 
4127 void pci_release_regions(struct pci_dev *pdev)
4128 {
4129 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4130 }
4131 EXPORT_SYMBOL(pci_release_regions);
4132 
4133 /**
4134  * pci_request_regions - Reserve PCI I/O and memory resources
4135  * @pdev: PCI device whose resources are to be reserved
4136  * @res_name: Name to be associated with resource.
4137  *
4138  * Mark all PCI regions associated with PCI device @pdev as
4139  * being reserved by owner @res_name.  Do not access any
4140  * address inside the PCI regions unless this call returns
4141  * successfully.
4142  *
4143  * Returns 0 on success, or %EBUSY on error.  A warning
4144  * message is also printed on failure.
4145  */
4146 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4147 {
4148 	return pci_request_selected_regions(pdev,
4149 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4150 }
4151 EXPORT_SYMBOL(pci_request_regions);
4152 
4153 /**
4154  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4155  * @pdev: PCI device whose resources are to be reserved
4156  * @res_name: Name to be associated with resource.
4157  *
4158  * Mark all PCI regions associated with PCI device @pdev as being reserved
4159  * by owner @res_name.  Do not access any address inside the PCI regions
4160  * unless this call returns successfully.
4161  *
4162  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4163  * and the sysfs MMIO access will not be allowed.
4164  *
4165  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4166  * printed on failure.
4167  */
4168 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4169 {
4170 	return pci_request_selected_regions_exclusive(pdev,
4171 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4172 }
4173 EXPORT_SYMBOL(pci_request_regions_exclusive);
4174 
4175 /*
4176  * Record the PCI IO range (expressed as CPU physical address + size).
4177  * Return a negative value if an error has occurred, zero otherwise
4178  */
4179 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4180 			resource_size_t	size)
4181 {
4182 	int ret = 0;
4183 #ifdef PCI_IOBASE
4184 	struct logic_pio_hwaddr *range;
4185 
4186 	if (!size || addr + size < addr)
4187 		return -EINVAL;
4188 
4189 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4190 	if (!range)
4191 		return -ENOMEM;
4192 
4193 	range->fwnode = fwnode;
4194 	range->size = size;
4195 	range->hw_start = addr;
4196 	range->flags = LOGIC_PIO_CPU_MMIO;
4197 
4198 	ret = logic_pio_register_range(range);
4199 	if (ret)
4200 		kfree(range);
4201 
4202 	/* Ignore duplicates due to deferred probing */
4203 	if (ret == -EEXIST)
4204 		ret = 0;
4205 #endif
4206 
4207 	return ret;
4208 }
4209 
4210 phys_addr_t pci_pio_to_address(unsigned long pio)
4211 {
4212 #ifdef PCI_IOBASE
4213 	if (pio < MMIO_UPPER_LIMIT)
4214 		return logic_pio_to_hwaddr(pio);
4215 #endif
4216 
4217 	return (phys_addr_t) OF_BAD_ADDR;
4218 }
4219 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4220 
4221 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4222 {
4223 #ifdef PCI_IOBASE
4224 	return logic_pio_trans_cpuaddr(address);
4225 #else
4226 	if (address > IO_SPACE_LIMIT)
4227 		return (unsigned long)-1;
4228 
4229 	return (unsigned long) address;
4230 #endif
4231 }
4232 
4233 /**
4234  * pci_remap_iospace - Remap the memory mapped I/O space
4235  * @res: Resource describing the I/O space
4236  * @phys_addr: physical address of range to be mapped
4237  *
4238  * Remap the memory mapped I/O space described by the @res and the CPU
4239  * physical address @phys_addr into virtual address space.  Only
4240  * architectures that have memory mapped IO functions defined (and the
4241  * PCI_IOBASE value defined) should call this function.
4242  */
4243 #ifndef pci_remap_iospace
4244 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4245 {
4246 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4247 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4248 
4249 	if (!(res->flags & IORESOURCE_IO))
4250 		return -EINVAL;
4251 
4252 	if (res->end > IO_SPACE_LIMIT)
4253 		return -EINVAL;
4254 
4255 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4256 				  pgprot_device(PAGE_KERNEL));
4257 #else
4258 	/*
4259 	 * This architecture does not have memory mapped I/O space,
4260 	 * so this function should never be called
4261 	 */
4262 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4263 	return -ENODEV;
4264 #endif
4265 }
4266 EXPORT_SYMBOL(pci_remap_iospace);
4267 #endif
4268 
4269 /**
4270  * pci_unmap_iospace - Unmap the memory mapped I/O space
4271  * @res: resource to be unmapped
4272  *
4273  * Unmap the CPU virtual address @res from virtual address space.  Only
4274  * architectures that have memory mapped IO functions defined (and the
4275  * PCI_IOBASE value defined) should call this function.
4276  */
4277 void pci_unmap_iospace(struct resource *res)
4278 {
4279 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4280 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4281 
4282 	vunmap_range(vaddr, vaddr + resource_size(res));
4283 #endif
4284 }
4285 EXPORT_SYMBOL(pci_unmap_iospace);
4286 
4287 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4288 {
4289 	struct resource **res = ptr;
4290 
4291 	pci_unmap_iospace(*res);
4292 }
4293 
4294 /**
4295  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4296  * @dev: Generic device to remap IO address for
4297  * @res: Resource describing the I/O space
4298  * @phys_addr: physical address of range to be mapped
4299  *
4300  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4301  * detach.
4302  */
4303 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4304 			   phys_addr_t phys_addr)
4305 {
4306 	const struct resource **ptr;
4307 	int error;
4308 
4309 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4310 	if (!ptr)
4311 		return -ENOMEM;
4312 
4313 	error = pci_remap_iospace(res, phys_addr);
4314 	if (error) {
4315 		devres_free(ptr);
4316 	} else	{
4317 		*ptr = res;
4318 		devres_add(dev, ptr);
4319 	}
4320 
4321 	return error;
4322 }
4323 EXPORT_SYMBOL(devm_pci_remap_iospace);
4324 
4325 /**
4326  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4327  * @dev: Generic device to remap IO address for
4328  * @offset: Resource address to map
4329  * @size: Size of map
4330  *
4331  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4332  * detach.
4333  */
4334 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4335 				      resource_size_t offset,
4336 				      resource_size_t size)
4337 {
4338 	void __iomem **ptr, *addr;
4339 
4340 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4341 	if (!ptr)
4342 		return NULL;
4343 
4344 	addr = pci_remap_cfgspace(offset, size);
4345 	if (addr) {
4346 		*ptr = addr;
4347 		devres_add(dev, ptr);
4348 	} else
4349 		devres_free(ptr);
4350 
4351 	return addr;
4352 }
4353 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4354 
4355 /**
4356  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4357  * @dev: generic device to handle the resource for
4358  * @res: configuration space resource to be handled
4359  *
4360  * Checks that a resource is a valid memory region, requests the memory
4361  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4362  * proper PCI configuration space memory attributes are guaranteed.
4363  *
4364  * All operations are managed and will be undone on driver detach.
4365  *
4366  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4367  * on failure. Usage example::
4368  *
4369  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4370  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4371  *	if (IS_ERR(base))
4372  *		return PTR_ERR(base);
4373  */
4374 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4375 					  struct resource *res)
4376 {
4377 	resource_size_t size;
4378 	const char *name;
4379 	void __iomem *dest_ptr;
4380 
4381 	BUG_ON(!dev);
4382 
4383 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4384 		dev_err(dev, "invalid resource\n");
4385 		return IOMEM_ERR_PTR(-EINVAL);
4386 	}
4387 
4388 	size = resource_size(res);
4389 
4390 	if (res->name)
4391 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4392 				      res->name);
4393 	else
4394 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4395 	if (!name)
4396 		return IOMEM_ERR_PTR(-ENOMEM);
4397 
4398 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4399 		dev_err(dev, "can't request region for resource %pR\n", res);
4400 		return IOMEM_ERR_PTR(-EBUSY);
4401 	}
4402 
4403 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4404 	if (!dest_ptr) {
4405 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4406 		devm_release_mem_region(dev, res->start, size);
4407 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4408 	}
4409 
4410 	return dest_ptr;
4411 }
4412 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4413 
4414 static void __pci_set_master(struct pci_dev *dev, bool enable)
4415 {
4416 	u16 old_cmd, cmd;
4417 
4418 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4419 	if (enable)
4420 		cmd = old_cmd | PCI_COMMAND_MASTER;
4421 	else
4422 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4423 	if (cmd != old_cmd) {
4424 		pci_dbg(dev, "%s bus mastering\n",
4425 			enable ? "enabling" : "disabling");
4426 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4427 	}
4428 	dev->is_busmaster = enable;
4429 }
4430 
4431 /**
4432  * pcibios_setup - process "pci=" kernel boot arguments
4433  * @str: string used to pass in "pci=" kernel boot arguments
4434  *
4435  * Process kernel boot arguments.  This is the default implementation.
4436  * Architecture specific implementations can override this as necessary.
4437  */
4438 char * __weak __init pcibios_setup(char *str)
4439 {
4440 	return str;
4441 }
4442 
4443 /**
4444  * pcibios_set_master - enable PCI bus-mastering for device dev
4445  * @dev: the PCI device to enable
4446  *
4447  * Enables PCI bus-mastering for the device.  This is the default
4448  * implementation.  Architecture specific implementations can override
4449  * this if necessary.
4450  */
4451 void __weak pcibios_set_master(struct pci_dev *dev)
4452 {
4453 	u8 lat;
4454 
4455 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4456 	if (pci_is_pcie(dev))
4457 		return;
4458 
4459 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4460 	if (lat < 16)
4461 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4462 	else if (lat > pcibios_max_latency)
4463 		lat = pcibios_max_latency;
4464 	else
4465 		return;
4466 
4467 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4468 }
4469 
4470 /**
4471  * pci_set_master - enables bus-mastering for device dev
4472  * @dev: the PCI device to enable
4473  *
4474  * Enables bus-mastering on the device and calls pcibios_set_master()
4475  * to do the needed arch specific settings.
4476  */
4477 void pci_set_master(struct pci_dev *dev)
4478 {
4479 	__pci_set_master(dev, true);
4480 	pcibios_set_master(dev);
4481 }
4482 EXPORT_SYMBOL(pci_set_master);
4483 
4484 /**
4485  * pci_clear_master - disables bus-mastering for device dev
4486  * @dev: the PCI device to disable
4487  */
4488 void pci_clear_master(struct pci_dev *dev)
4489 {
4490 	__pci_set_master(dev, false);
4491 }
4492 EXPORT_SYMBOL(pci_clear_master);
4493 
4494 /**
4495  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4496  * @dev: the PCI device for which MWI is to be enabled
4497  *
4498  * Helper function for pci_set_mwi.
4499  * Originally copied from drivers/net/acenic.c.
4500  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4501  *
4502  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4503  */
4504 int pci_set_cacheline_size(struct pci_dev *dev)
4505 {
4506 	u8 cacheline_size;
4507 
4508 	if (!pci_cache_line_size)
4509 		return -EINVAL;
4510 
4511 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4512 	   equal to or multiple of the right value. */
4513 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4514 	if (cacheline_size >= pci_cache_line_size &&
4515 	    (cacheline_size % pci_cache_line_size) == 0)
4516 		return 0;
4517 
4518 	/* Write the correct value. */
4519 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4520 	/* Read it back. */
4521 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4522 	if (cacheline_size == pci_cache_line_size)
4523 		return 0;
4524 
4525 	pci_dbg(dev, "cache line size of %d is not supported\n",
4526 		   pci_cache_line_size << 2);
4527 
4528 	return -EINVAL;
4529 }
4530 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4531 
4532 /**
4533  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4534  * @dev: the PCI device for which MWI is enabled
4535  *
4536  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4537  *
4538  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4539  */
4540 int pci_set_mwi(struct pci_dev *dev)
4541 {
4542 #ifdef PCI_DISABLE_MWI
4543 	return 0;
4544 #else
4545 	int rc;
4546 	u16 cmd;
4547 
4548 	rc = pci_set_cacheline_size(dev);
4549 	if (rc)
4550 		return rc;
4551 
4552 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4553 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4554 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4555 		cmd |= PCI_COMMAND_INVALIDATE;
4556 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4557 	}
4558 	return 0;
4559 #endif
4560 }
4561 EXPORT_SYMBOL(pci_set_mwi);
4562 
4563 /**
4564  * pcim_set_mwi - a device-managed pci_set_mwi()
4565  * @dev: the PCI device for which MWI is enabled
4566  *
4567  * Managed pci_set_mwi().
4568  *
4569  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4570  */
4571 int pcim_set_mwi(struct pci_dev *dev)
4572 {
4573 	struct pci_devres *dr;
4574 
4575 	dr = find_pci_dr(dev);
4576 	if (!dr)
4577 		return -ENOMEM;
4578 
4579 	dr->mwi = 1;
4580 	return pci_set_mwi(dev);
4581 }
4582 EXPORT_SYMBOL(pcim_set_mwi);
4583 
4584 /**
4585  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4586  * @dev: the PCI device for which MWI is enabled
4587  *
4588  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4589  * Callers are not required to check the return value.
4590  *
4591  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4592  */
4593 int pci_try_set_mwi(struct pci_dev *dev)
4594 {
4595 #ifdef PCI_DISABLE_MWI
4596 	return 0;
4597 #else
4598 	return pci_set_mwi(dev);
4599 #endif
4600 }
4601 EXPORT_SYMBOL(pci_try_set_mwi);
4602 
4603 /**
4604  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4605  * @dev: the PCI device to disable
4606  *
4607  * Disables PCI Memory-Write-Invalidate transaction on the device
4608  */
4609 void pci_clear_mwi(struct pci_dev *dev)
4610 {
4611 #ifndef PCI_DISABLE_MWI
4612 	u16 cmd;
4613 
4614 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4615 	if (cmd & PCI_COMMAND_INVALIDATE) {
4616 		cmd &= ~PCI_COMMAND_INVALIDATE;
4617 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4618 	}
4619 #endif
4620 }
4621 EXPORT_SYMBOL(pci_clear_mwi);
4622 
4623 /**
4624  * pci_disable_parity - disable parity checking for device
4625  * @dev: the PCI device to operate on
4626  *
4627  * Disable parity checking for device @dev
4628  */
4629 void pci_disable_parity(struct pci_dev *dev)
4630 {
4631 	u16 cmd;
4632 
4633 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4634 	if (cmd & PCI_COMMAND_PARITY) {
4635 		cmd &= ~PCI_COMMAND_PARITY;
4636 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4637 	}
4638 }
4639 
4640 /**
4641  * pci_intx - enables/disables PCI INTx for device dev
4642  * @pdev: the PCI device to operate on
4643  * @enable: boolean: whether to enable or disable PCI INTx
4644  *
4645  * Enables/disables PCI INTx for device @pdev
4646  */
4647 void pci_intx(struct pci_dev *pdev, int enable)
4648 {
4649 	u16 pci_command, new;
4650 
4651 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4652 
4653 	if (enable)
4654 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4655 	else
4656 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4657 
4658 	if (new != pci_command) {
4659 		struct pci_devres *dr;
4660 
4661 		pci_write_config_word(pdev, PCI_COMMAND, new);
4662 
4663 		dr = find_pci_dr(pdev);
4664 		if (dr && !dr->restore_intx) {
4665 			dr->restore_intx = 1;
4666 			dr->orig_intx = !enable;
4667 		}
4668 	}
4669 }
4670 EXPORT_SYMBOL_GPL(pci_intx);
4671 
4672 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4673 {
4674 	struct pci_bus *bus = dev->bus;
4675 	bool mask_updated = true;
4676 	u32 cmd_status_dword;
4677 	u16 origcmd, newcmd;
4678 	unsigned long flags;
4679 	bool irq_pending;
4680 
4681 	/*
4682 	 * We do a single dword read to retrieve both command and status.
4683 	 * Document assumptions that make this possible.
4684 	 */
4685 	BUILD_BUG_ON(PCI_COMMAND % 4);
4686 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4687 
4688 	raw_spin_lock_irqsave(&pci_lock, flags);
4689 
4690 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4691 
4692 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4693 
4694 	/*
4695 	 * Check interrupt status register to see whether our device
4696 	 * triggered the interrupt (when masking) or the next IRQ is
4697 	 * already pending (when unmasking).
4698 	 */
4699 	if (mask != irq_pending) {
4700 		mask_updated = false;
4701 		goto done;
4702 	}
4703 
4704 	origcmd = cmd_status_dword;
4705 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4706 	if (mask)
4707 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4708 	if (newcmd != origcmd)
4709 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4710 
4711 done:
4712 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4713 
4714 	return mask_updated;
4715 }
4716 
4717 /**
4718  * pci_check_and_mask_intx - mask INTx on pending interrupt
4719  * @dev: the PCI device to operate on
4720  *
4721  * Check if the device dev has its INTx line asserted, mask it and return
4722  * true in that case. False is returned if no interrupt was pending.
4723  */
4724 bool pci_check_and_mask_intx(struct pci_dev *dev)
4725 {
4726 	return pci_check_and_set_intx_mask(dev, true);
4727 }
4728 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4729 
4730 /**
4731  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4732  * @dev: the PCI device to operate on
4733  *
4734  * Check if the device dev has its INTx line asserted, unmask it if not and
4735  * return true. False is returned and the mask remains active if there was
4736  * still an interrupt pending.
4737  */
4738 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4739 {
4740 	return pci_check_and_set_intx_mask(dev, false);
4741 }
4742 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4743 
4744 /**
4745  * pci_wait_for_pending_transaction - wait for pending transaction
4746  * @dev: the PCI device to operate on
4747  *
4748  * Return 0 if transaction is pending 1 otherwise.
4749  */
4750 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4751 {
4752 	if (!pci_is_pcie(dev))
4753 		return 1;
4754 
4755 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4756 				    PCI_EXP_DEVSTA_TRPND);
4757 }
4758 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4759 
4760 /**
4761  * pcie_flr - initiate a PCIe function level reset
4762  * @dev: device to reset
4763  *
4764  * Initiate a function level reset unconditionally on @dev without
4765  * checking any flags and DEVCAP
4766  */
4767 int pcie_flr(struct pci_dev *dev)
4768 {
4769 	if (!pci_wait_for_pending_transaction(dev))
4770 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4771 
4772 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4773 
4774 	if (dev->imm_ready)
4775 		return 0;
4776 
4777 	/*
4778 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4779 	 * 100ms, but may silently discard requests while the FLR is in
4780 	 * progress.  Wait 100ms before trying to access the device.
4781 	 */
4782 	msleep(100);
4783 
4784 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4785 }
4786 EXPORT_SYMBOL_GPL(pcie_flr);
4787 
4788 /**
4789  * pcie_reset_flr - initiate a PCIe function level reset
4790  * @dev: device to reset
4791  * @probe: if true, return 0 if device can be reset this way
4792  *
4793  * Initiate a function level reset on @dev.
4794  */
4795 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4796 {
4797 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4798 		return -ENOTTY;
4799 
4800 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4801 		return -ENOTTY;
4802 
4803 	if (probe)
4804 		return 0;
4805 
4806 	return pcie_flr(dev);
4807 }
4808 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4809 
4810 static int pci_af_flr(struct pci_dev *dev, bool probe)
4811 {
4812 	int pos;
4813 	u8 cap;
4814 
4815 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4816 	if (!pos)
4817 		return -ENOTTY;
4818 
4819 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4820 		return -ENOTTY;
4821 
4822 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4823 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4824 		return -ENOTTY;
4825 
4826 	if (probe)
4827 		return 0;
4828 
4829 	/*
4830 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4831 	 * is used, so we use the control offset rather than status and shift
4832 	 * the test bit to match.
4833 	 */
4834 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4835 				 PCI_AF_STATUS_TP << 8))
4836 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4837 
4838 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4839 
4840 	if (dev->imm_ready)
4841 		return 0;
4842 
4843 	/*
4844 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4845 	 * updated 27 July 2006; a device must complete an FLR within
4846 	 * 100ms, but may silently discard requests while the FLR is in
4847 	 * progress.  Wait 100ms before trying to access the device.
4848 	 */
4849 	msleep(100);
4850 
4851 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4852 }
4853 
4854 /**
4855  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4856  * @dev: Device to reset.
4857  * @probe: if true, return 0 if the device can be reset this way.
4858  *
4859  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4860  * unset, it will be reinitialized internally when going from PCI_D3hot to
4861  * PCI_D0.  If that's the case and the device is not in a low-power state
4862  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4863  *
4864  * NOTE: This causes the caller to sleep for twice the device power transition
4865  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4866  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4867  * Moreover, only devices in D0 can be reset by this function.
4868  */
4869 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4870 {
4871 	u16 csr;
4872 
4873 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4874 		return -ENOTTY;
4875 
4876 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4877 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4878 		return -ENOTTY;
4879 
4880 	if (probe)
4881 		return 0;
4882 
4883 	if (dev->current_state != PCI_D0)
4884 		return -EINVAL;
4885 
4886 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4887 	csr |= PCI_D3hot;
4888 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4889 	pci_dev_d3_sleep(dev);
4890 
4891 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4892 	csr |= PCI_D0;
4893 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4894 	pci_dev_d3_sleep(dev);
4895 
4896 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4897 }
4898 
4899 /**
4900  * pcie_wait_for_link_status - Wait for link status change
4901  * @pdev: Device whose link to wait for.
4902  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4903  * @active: Waiting for active or inactive?
4904  *
4905  * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4906  * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4907  */
4908 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4909 				     bool use_lt, bool active)
4910 {
4911 	u16 lnksta_mask, lnksta_match;
4912 	unsigned long end_jiffies;
4913 	u16 lnksta;
4914 
4915 	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4916 	lnksta_match = active ? lnksta_mask : 0;
4917 
4918 	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4919 	do {
4920 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4921 		if ((lnksta & lnksta_mask) == lnksta_match)
4922 			return 0;
4923 		msleep(1);
4924 	} while (time_before(jiffies, end_jiffies));
4925 
4926 	return -ETIMEDOUT;
4927 }
4928 
4929 /**
4930  * pcie_retrain_link - Request a link retrain and wait for it to complete
4931  * @pdev: Device whose link to retrain.
4932  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4933  *
4934  * Retrain completion status is retrieved from the Link Status Register
4935  * according to @use_lt.  It is not verified whether the use of the DLLLA
4936  * bit is valid.
4937  *
4938  * Return 0 if successful, or -ETIMEDOUT if training has not completed
4939  * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4940  */
4941 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4942 {
4943 	int rc;
4944 
4945 	/*
4946 	 * Ensure the updated LNKCTL parameters are used during link
4947 	 * training by checking that there is no ongoing link training to
4948 	 * avoid LTSSM race as recommended in Implementation Note at the
4949 	 * end of PCIe r6.0.1 sec 7.5.3.7.
4950 	 */
4951 	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4952 	if (rc)
4953 		return rc;
4954 
4955 	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4956 	if (pdev->clear_retrain_link) {
4957 		/*
4958 		 * Due to an erratum in some devices the Retrain Link bit
4959 		 * needs to be cleared again manually to allow the link
4960 		 * training to succeed.
4961 		 */
4962 		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4963 	}
4964 
4965 	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4966 }
4967 
4968 /**
4969  * pcie_wait_for_link_delay - Wait until link is active or inactive
4970  * @pdev: Bridge device
4971  * @active: waiting for active or inactive?
4972  * @delay: Delay to wait after link has become active (in ms)
4973  *
4974  * Use this to wait till link becomes active or inactive.
4975  */
4976 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4977 				     int delay)
4978 {
4979 	int rc;
4980 
4981 	/*
4982 	 * Some controllers might not implement link active reporting. In this
4983 	 * case, we wait for 1000 ms + any delay requested by the caller.
4984 	 */
4985 	if (!pdev->link_active_reporting) {
4986 		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4987 		return true;
4988 	}
4989 
4990 	/*
4991 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4992 	 * after which we should expect an link active if the reset was
4993 	 * successful. If so, software must wait a minimum 100ms before sending
4994 	 * configuration requests to devices downstream this port.
4995 	 *
4996 	 * If the link fails to activate, either the device was physically
4997 	 * removed or the link is permanently failed.
4998 	 */
4999 	if (active)
5000 		msleep(20);
5001 	rc = pcie_wait_for_link_status(pdev, false, active);
5002 	if (active) {
5003 		if (rc)
5004 			rc = pcie_failed_link_retrain(pdev);
5005 		if (rc)
5006 			return false;
5007 
5008 		msleep(delay);
5009 		return true;
5010 	}
5011 
5012 	if (rc)
5013 		return false;
5014 
5015 	return true;
5016 }
5017 
5018 /**
5019  * pcie_wait_for_link - Wait until link is active or inactive
5020  * @pdev: Bridge device
5021  * @active: waiting for active or inactive?
5022  *
5023  * Use this to wait till link becomes active or inactive.
5024  */
5025 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5026 {
5027 	return pcie_wait_for_link_delay(pdev, active, 100);
5028 }
5029 
5030 /*
5031  * Find maximum D3cold delay required by all the devices on the bus.  The
5032  * spec says 100 ms, but firmware can lower it and we allow drivers to
5033  * increase it as well.
5034  *
5035  * Called with @pci_bus_sem locked for reading.
5036  */
5037 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5038 {
5039 	const struct pci_dev *pdev;
5040 	int min_delay = 100;
5041 	int max_delay = 0;
5042 
5043 	list_for_each_entry(pdev, &bus->devices, bus_list) {
5044 		if (pdev->d3cold_delay < min_delay)
5045 			min_delay = pdev->d3cold_delay;
5046 		if (pdev->d3cold_delay > max_delay)
5047 			max_delay = pdev->d3cold_delay;
5048 	}
5049 
5050 	return max(min_delay, max_delay);
5051 }
5052 
5053 /**
5054  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5055  * @dev: PCI bridge
5056  * @reset_type: reset type in human-readable form
5057  *
5058  * Handle necessary delays before access to the devices on the secondary
5059  * side of the bridge are permitted after D3cold to D0 transition
5060  * or Conventional Reset.
5061  *
5062  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5063  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5064  * 4.3.2.
5065  *
5066  * Return 0 on success or -ENOTTY if the first device on the secondary bus
5067  * failed to become accessible.
5068  */
5069 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5070 {
5071 	struct pci_dev *child;
5072 	int delay;
5073 
5074 	if (pci_dev_is_disconnected(dev))
5075 		return 0;
5076 
5077 	if (!pci_is_bridge(dev))
5078 		return 0;
5079 
5080 	down_read(&pci_bus_sem);
5081 
5082 	/*
5083 	 * We only deal with devices that are present currently on the bus.
5084 	 * For any hot-added devices the access delay is handled in pciehp
5085 	 * board_added(). In case of ACPI hotplug the firmware is expected
5086 	 * to configure the devices before OS is notified.
5087 	 */
5088 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5089 		up_read(&pci_bus_sem);
5090 		return 0;
5091 	}
5092 
5093 	/* Take d3cold_delay requirements into account */
5094 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5095 	if (!delay) {
5096 		up_read(&pci_bus_sem);
5097 		return 0;
5098 	}
5099 
5100 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5101 				 bus_list);
5102 	up_read(&pci_bus_sem);
5103 
5104 	/*
5105 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5106 	 * accessing the device after reset (that is 1000 ms + 100 ms).
5107 	 */
5108 	if (!pci_is_pcie(dev)) {
5109 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5110 		msleep(1000 + delay);
5111 		return 0;
5112 	}
5113 
5114 	/*
5115 	 * For PCIe downstream and root ports that do not support speeds
5116 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5117 	 * speeds (gen3) we need to wait first for the data link layer to
5118 	 * become active.
5119 	 *
5120 	 * However, 100 ms is the minimum and the PCIe spec says the
5121 	 * software must allow at least 1s before it can determine that the
5122 	 * device that did not respond is a broken device. Also device can
5123 	 * take longer than that to respond if it indicates so through Request
5124 	 * Retry Status completions.
5125 	 *
5126 	 * Therefore we wait for 100 ms and check for the device presence
5127 	 * until the timeout expires.
5128 	 */
5129 	if (!pcie_downstream_port(dev))
5130 		return 0;
5131 
5132 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5133 		u16 status;
5134 
5135 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5136 		msleep(delay);
5137 
5138 		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5139 			return 0;
5140 
5141 		/*
5142 		 * If the port supports active link reporting we now check
5143 		 * whether the link is active and if not bail out early with
5144 		 * the assumption that the device is not present anymore.
5145 		 */
5146 		if (!dev->link_active_reporting)
5147 			return -ENOTTY;
5148 
5149 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5150 		if (!(status & PCI_EXP_LNKSTA_DLLLA))
5151 			return -ENOTTY;
5152 
5153 		return pci_dev_wait(child, reset_type,
5154 				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5155 	}
5156 
5157 	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5158 		delay);
5159 	if (!pcie_wait_for_link_delay(dev, true, delay)) {
5160 		/* Did not train, no need to wait any further */
5161 		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5162 		return -ENOTTY;
5163 	}
5164 
5165 	return pci_dev_wait(child, reset_type,
5166 			    PCIE_RESET_READY_POLL_MS - delay);
5167 }
5168 
5169 void pci_reset_secondary_bus(struct pci_dev *dev)
5170 {
5171 	u16 ctrl;
5172 
5173 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5174 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5175 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5176 
5177 	/*
5178 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5179 	 * this to 2ms to ensure that we meet the minimum requirement.
5180 	 */
5181 	msleep(2);
5182 
5183 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5184 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5185 }
5186 
5187 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5188 {
5189 	pci_reset_secondary_bus(dev);
5190 }
5191 
5192 /**
5193  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5194  * @dev: Bridge device
5195  *
5196  * Use the bridge control register to assert reset on the secondary bus.
5197  * Devices on the secondary bus are left in power-on state.
5198  */
5199 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5200 {
5201 	pcibios_reset_secondary_bus(dev);
5202 
5203 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5204 }
5205 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5206 
5207 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5208 {
5209 	struct pci_dev *pdev;
5210 
5211 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5212 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5213 		return -ENOTTY;
5214 
5215 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5216 		if (pdev != dev)
5217 			return -ENOTTY;
5218 
5219 	if (probe)
5220 		return 0;
5221 
5222 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5223 }
5224 
5225 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5226 {
5227 	int rc = -ENOTTY;
5228 
5229 	if (!hotplug || !try_module_get(hotplug->owner))
5230 		return rc;
5231 
5232 	if (hotplug->ops->reset_slot)
5233 		rc = hotplug->ops->reset_slot(hotplug, probe);
5234 
5235 	module_put(hotplug->owner);
5236 
5237 	return rc;
5238 }
5239 
5240 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5241 {
5242 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5243 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5244 		return -ENOTTY;
5245 
5246 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5247 }
5248 
5249 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5250 {
5251 	int rc;
5252 
5253 	rc = pci_dev_reset_slot_function(dev, probe);
5254 	if (rc != -ENOTTY)
5255 		return rc;
5256 	return pci_parent_bus_reset(dev, probe);
5257 }
5258 
5259 void pci_dev_lock(struct pci_dev *dev)
5260 {
5261 	/* block PM suspend, driver probe, etc. */
5262 	device_lock(&dev->dev);
5263 	pci_cfg_access_lock(dev);
5264 }
5265 EXPORT_SYMBOL_GPL(pci_dev_lock);
5266 
5267 /* Return 1 on successful lock, 0 on contention */
5268 int pci_dev_trylock(struct pci_dev *dev)
5269 {
5270 	if (device_trylock(&dev->dev)) {
5271 		if (pci_cfg_access_trylock(dev))
5272 			return 1;
5273 		device_unlock(&dev->dev);
5274 	}
5275 
5276 	return 0;
5277 }
5278 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5279 
5280 void pci_dev_unlock(struct pci_dev *dev)
5281 {
5282 	pci_cfg_access_unlock(dev);
5283 	device_unlock(&dev->dev);
5284 }
5285 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5286 
5287 static void pci_dev_save_and_disable(struct pci_dev *dev)
5288 {
5289 	const struct pci_error_handlers *err_handler =
5290 			dev->driver ? dev->driver->err_handler : NULL;
5291 
5292 	/*
5293 	 * dev->driver->err_handler->reset_prepare() is protected against
5294 	 * races with ->remove() by the device lock, which must be held by
5295 	 * the caller.
5296 	 */
5297 	if (err_handler && err_handler->reset_prepare)
5298 		err_handler->reset_prepare(dev);
5299 
5300 	/*
5301 	 * Wake-up device prior to save.  PM registers default to D0 after
5302 	 * reset and a simple register restore doesn't reliably return
5303 	 * to a non-D0 state anyway.
5304 	 */
5305 	pci_set_power_state(dev, PCI_D0);
5306 
5307 	pci_save_state(dev);
5308 	/*
5309 	 * Disable the device by clearing the Command register, except for
5310 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5311 	 * BARs, but also prevents the device from being Bus Master, preventing
5312 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5313 	 * compliant devices, INTx-disable prevents legacy interrupts.
5314 	 */
5315 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5316 }
5317 
5318 static void pci_dev_restore(struct pci_dev *dev)
5319 {
5320 	const struct pci_error_handlers *err_handler =
5321 			dev->driver ? dev->driver->err_handler : NULL;
5322 
5323 	pci_restore_state(dev);
5324 
5325 	/*
5326 	 * dev->driver->err_handler->reset_done() is protected against
5327 	 * races with ->remove() by the device lock, which must be held by
5328 	 * the caller.
5329 	 */
5330 	if (err_handler && err_handler->reset_done)
5331 		err_handler->reset_done(dev);
5332 }
5333 
5334 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5335 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5336 	{ },
5337 	{ pci_dev_specific_reset, .name = "device_specific" },
5338 	{ pci_dev_acpi_reset, .name = "acpi" },
5339 	{ pcie_reset_flr, .name = "flr" },
5340 	{ pci_af_flr, .name = "af_flr" },
5341 	{ pci_pm_reset, .name = "pm" },
5342 	{ pci_reset_bus_function, .name = "bus" },
5343 };
5344 
5345 static ssize_t reset_method_show(struct device *dev,
5346 				 struct device_attribute *attr, char *buf)
5347 {
5348 	struct pci_dev *pdev = to_pci_dev(dev);
5349 	ssize_t len = 0;
5350 	int i, m;
5351 
5352 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5353 		m = pdev->reset_methods[i];
5354 		if (!m)
5355 			break;
5356 
5357 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5358 				     pci_reset_fn_methods[m].name);
5359 	}
5360 
5361 	if (len)
5362 		len += sysfs_emit_at(buf, len, "\n");
5363 
5364 	return len;
5365 }
5366 
5367 static int reset_method_lookup(const char *name)
5368 {
5369 	int m;
5370 
5371 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5372 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5373 			return m;
5374 	}
5375 
5376 	return 0;	/* not found */
5377 }
5378 
5379 static ssize_t reset_method_store(struct device *dev,
5380 				  struct device_attribute *attr,
5381 				  const char *buf, size_t count)
5382 {
5383 	struct pci_dev *pdev = to_pci_dev(dev);
5384 	char *options, *name;
5385 	int m, n;
5386 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5387 
5388 	if (sysfs_streq(buf, "")) {
5389 		pdev->reset_methods[0] = 0;
5390 		pci_warn(pdev, "All device reset methods disabled by user");
5391 		return count;
5392 	}
5393 
5394 	if (sysfs_streq(buf, "default")) {
5395 		pci_init_reset_methods(pdev);
5396 		return count;
5397 	}
5398 
5399 	options = kstrndup(buf, count, GFP_KERNEL);
5400 	if (!options)
5401 		return -ENOMEM;
5402 
5403 	n = 0;
5404 	while ((name = strsep(&options, " ")) != NULL) {
5405 		if (sysfs_streq(name, ""))
5406 			continue;
5407 
5408 		name = strim(name);
5409 
5410 		m = reset_method_lookup(name);
5411 		if (!m) {
5412 			pci_err(pdev, "Invalid reset method '%s'", name);
5413 			goto error;
5414 		}
5415 
5416 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5417 			pci_err(pdev, "Unsupported reset method '%s'", name);
5418 			goto error;
5419 		}
5420 
5421 		if (n == PCI_NUM_RESET_METHODS - 1) {
5422 			pci_err(pdev, "Too many reset methods\n");
5423 			goto error;
5424 		}
5425 
5426 		reset_methods[n++] = m;
5427 	}
5428 
5429 	reset_methods[n] = 0;
5430 
5431 	/* Warn if dev-specific supported but not highest priority */
5432 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5433 	    reset_methods[0] != 1)
5434 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5435 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5436 	kfree(options);
5437 	return count;
5438 
5439 error:
5440 	/* Leave previous methods unchanged */
5441 	kfree(options);
5442 	return -EINVAL;
5443 }
5444 static DEVICE_ATTR_RW(reset_method);
5445 
5446 static struct attribute *pci_dev_reset_method_attrs[] = {
5447 	&dev_attr_reset_method.attr,
5448 	NULL,
5449 };
5450 
5451 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5452 						    struct attribute *a, int n)
5453 {
5454 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5455 
5456 	if (!pci_reset_supported(pdev))
5457 		return 0;
5458 
5459 	return a->mode;
5460 }
5461 
5462 const struct attribute_group pci_dev_reset_method_attr_group = {
5463 	.attrs = pci_dev_reset_method_attrs,
5464 	.is_visible = pci_dev_reset_method_attr_is_visible,
5465 };
5466 
5467 /**
5468  * __pci_reset_function_locked - reset a PCI device function while holding
5469  * the @dev mutex lock.
5470  * @dev: PCI device to reset
5471  *
5472  * Some devices allow an individual function to be reset without affecting
5473  * other functions in the same device.  The PCI device must be responsive
5474  * to PCI config space in order to use this function.
5475  *
5476  * The device function is presumed to be unused and the caller is holding
5477  * the device mutex lock when this function is called.
5478  *
5479  * Resetting the device will make the contents of PCI configuration space
5480  * random, so any caller of this must be prepared to reinitialise the
5481  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5482  * etc.
5483  *
5484  * Returns 0 if the device function was successfully reset or negative if the
5485  * device doesn't support resetting a single function.
5486  */
5487 int __pci_reset_function_locked(struct pci_dev *dev)
5488 {
5489 	int i, m, rc;
5490 
5491 	might_sleep();
5492 
5493 	/*
5494 	 * A reset method returns -ENOTTY if it doesn't support this device and
5495 	 * we should try the next method.
5496 	 *
5497 	 * If it returns 0 (success), we're finished.  If it returns any other
5498 	 * error, we're also finished: this indicates that further reset
5499 	 * mechanisms might be broken on the device.
5500 	 */
5501 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5502 		m = dev->reset_methods[i];
5503 		if (!m)
5504 			return -ENOTTY;
5505 
5506 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5507 		if (!rc)
5508 			return 0;
5509 		if (rc != -ENOTTY)
5510 			return rc;
5511 	}
5512 
5513 	return -ENOTTY;
5514 }
5515 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5516 
5517 /**
5518  * pci_init_reset_methods - check whether device can be safely reset
5519  * and store supported reset mechanisms.
5520  * @dev: PCI device to check for reset mechanisms
5521  *
5522  * Some devices allow an individual function to be reset without affecting
5523  * other functions in the same device.  The PCI device must be in D0-D3hot
5524  * state.
5525  *
5526  * Stores reset mechanisms supported by device in reset_methods byte array
5527  * which is a member of struct pci_dev.
5528  */
5529 void pci_init_reset_methods(struct pci_dev *dev)
5530 {
5531 	int m, i, rc;
5532 
5533 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5534 
5535 	might_sleep();
5536 
5537 	i = 0;
5538 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5539 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5540 		if (!rc)
5541 			dev->reset_methods[i++] = m;
5542 		else if (rc != -ENOTTY)
5543 			break;
5544 	}
5545 
5546 	dev->reset_methods[i] = 0;
5547 }
5548 
5549 /**
5550  * pci_reset_function - quiesce and reset a PCI device function
5551  * @dev: PCI device to reset
5552  *
5553  * Some devices allow an individual function to be reset without affecting
5554  * other functions in the same device.  The PCI device must be responsive
5555  * to PCI config space in order to use this function.
5556  *
5557  * This function does not just reset the PCI portion of a device, but
5558  * clears all the state associated with the device.  This function differs
5559  * from __pci_reset_function_locked() in that it saves and restores device state
5560  * over the reset and takes the PCI device lock.
5561  *
5562  * Returns 0 if the device function was successfully reset or negative if the
5563  * device doesn't support resetting a single function.
5564  */
5565 int pci_reset_function(struct pci_dev *dev)
5566 {
5567 	int rc;
5568 
5569 	if (!pci_reset_supported(dev))
5570 		return -ENOTTY;
5571 
5572 	pci_dev_lock(dev);
5573 	pci_dev_save_and_disable(dev);
5574 
5575 	rc = __pci_reset_function_locked(dev);
5576 
5577 	pci_dev_restore(dev);
5578 	pci_dev_unlock(dev);
5579 
5580 	return rc;
5581 }
5582 EXPORT_SYMBOL_GPL(pci_reset_function);
5583 
5584 /**
5585  * pci_reset_function_locked - quiesce and reset a PCI device function
5586  * @dev: PCI device to reset
5587  *
5588  * Some devices allow an individual function to be reset without affecting
5589  * other functions in the same device.  The PCI device must be responsive
5590  * to PCI config space in order to use this function.
5591  *
5592  * This function does not just reset the PCI portion of a device, but
5593  * clears all the state associated with the device.  This function differs
5594  * from __pci_reset_function_locked() in that it saves and restores device state
5595  * over the reset.  It also differs from pci_reset_function() in that it
5596  * requires the PCI device lock to be held.
5597  *
5598  * Returns 0 if the device function was successfully reset or negative if the
5599  * device doesn't support resetting a single function.
5600  */
5601 int pci_reset_function_locked(struct pci_dev *dev)
5602 {
5603 	int rc;
5604 
5605 	if (!pci_reset_supported(dev))
5606 		return -ENOTTY;
5607 
5608 	pci_dev_save_and_disable(dev);
5609 
5610 	rc = __pci_reset_function_locked(dev);
5611 
5612 	pci_dev_restore(dev);
5613 
5614 	return rc;
5615 }
5616 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5617 
5618 /**
5619  * pci_try_reset_function - quiesce and reset a PCI device function
5620  * @dev: PCI device to reset
5621  *
5622  * Same as above, except return -EAGAIN if unable to lock device.
5623  */
5624 int pci_try_reset_function(struct pci_dev *dev)
5625 {
5626 	int rc;
5627 
5628 	if (!pci_reset_supported(dev))
5629 		return -ENOTTY;
5630 
5631 	if (!pci_dev_trylock(dev))
5632 		return -EAGAIN;
5633 
5634 	pci_dev_save_and_disable(dev);
5635 	rc = __pci_reset_function_locked(dev);
5636 	pci_dev_restore(dev);
5637 	pci_dev_unlock(dev);
5638 
5639 	return rc;
5640 }
5641 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5642 
5643 /* Do any devices on or below this bus prevent a bus reset? */
5644 static bool pci_bus_resettable(struct pci_bus *bus)
5645 {
5646 	struct pci_dev *dev;
5647 
5648 
5649 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5650 		return false;
5651 
5652 	list_for_each_entry(dev, &bus->devices, bus_list) {
5653 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5654 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5655 			return false;
5656 	}
5657 
5658 	return true;
5659 }
5660 
5661 /* Lock devices from the top of the tree down */
5662 static void pci_bus_lock(struct pci_bus *bus)
5663 {
5664 	struct pci_dev *dev;
5665 
5666 	list_for_each_entry(dev, &bus->devices, bus_list) {
5667 		pci_dev_lock(dev);
5668 		if (dev->subordinate)
5669 			pci_bus_lock(dev->subordinate);
5670 	}
5671 }
5672 
5673 /* Unlock devices from the bottom of the tree up */
5674 static void pci_bus_unlock(struct pci_bus *bus)
5675 {
5676 	struct pci_dev *dev;
5677 
5678 	list_for_each_entry(dev, &bus->devices, bus_list) {
5679 		if (dev->subordinate)
5680 			pci_bus_unlock(dev->subordinate);
5681 		pci_dev_unlock(dev);
5682 	}
5683 }
5684 
5685 /* Return 1 on successful lock, 0 on contention */
5686 static int pci_bus_trylock(struct pci_bus *bus)
5687 {
5688 	struct pci_dev *dev;
5689 
5690 	list_for_each_entry(dev, &bus->devices, bus_list) {
5691 		if (!pci_dev_trylock(dev))
5692 			goto unlock;
5693 		if (dev->subordinate) {
5694 			if (!pci_bus_trylock(dev->subordinate)) {
5695 				pci_dev_unlock(dev);
5696 				goto unlock;
5697 			}
5698 		}
5699 	}
5700 	return 1;
5701 
5702 unlock:
5703 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5704 		if (dev->subordinate)
5705 			pci_bus_unlock(dev->subordinate);
5706 		pci_dev_unlock(dev);
5707 	}
5708 	return 0;
5709 }
5710 
5711 /* Do any devices on or below this slot prevent a bus reset? */
5712 static bool pci_slot_resettable(struct pci_slot *slot)
5713 {
5714 	struct pci_dev *dev;
5715 
5716 	if (slot->bus->self &&
5717 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5718 		return false;
5719 
5720 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5721 		if (!dev->slot || dev->slot != slot)
5722 			continue;
5723 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5724 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5725 			return false;
5726 	}
5727 
5728 	return true;
5729 }
5730 
5731 /* Lock devices from the top of the tree down */
5732 static void pci_slot_lock(struct pci_slot *slot)
5733 {
5734 	struct pci_dev *dev;
5735 
5736 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5737 		if (!dev->slot || dev->slot != slot)
5738 			continue;
5739 		pci_dev_lock(dev);
5740 		if (dev->subordinate)
5741 			pci_bus_lock(dev->subordinate);
5742 	}
5743 }
5744 
5745 /* Unlock devices from the bottom of the tree up */
5746 static void pci_slot_unlock(struct pci_slot *slot)
5747 {
5748 	struct pci_dev *dev;
5749 
5750 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5751 		if (!dev->slot || dev->slot != slot)
5752 			continue;
5753 		if (dev->subordinate)
5754 			pci_bus_unlock(dev->subordinate);
5755 		pci_dev_unlock(dev);
5756 	}
5757 }
5758 
5759 /* Return 1 on successful lock, 0 on contention */
5760 static int pci_slot_trylock(struct pci_slot *slot)
5761 {
5762 	struct pci_dev *dev;
5763 
5764 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5765 		if (!dev->slot || dev->slot != slot)
5766 			continue;
5767 		if (!pci_dev_trylock(dev))
5768 			goto unlock;
5769 		if (dev->subordinate) {
5770 			if (!pci_bus_trylock(dev->subordinate)) {
5771 				pci_dev_unlock(dev);
5772 				goto unlock;
5773 			}
5774 		}
5775 	}
5776 	return 1;
5777 
5778 unlock:
5779 	list_for_each_entry_continue_reverse(dev,
5780 					     &slot->bus->devices, bus_list) {
5781 		if (!dev->slot || dev->slot != slot)
5782 			continue;
5783 		if (dev->subordinate)
5784 			pci_bus_unlock(dev->subordinate);
5785 		pci_dev_unlock(dev);
5786 	}
5787 	return 0;
5788 }
5789 
5790 /*
5791  * Save and disable devices from the top of the tree down while holding
5792  * the @dev mutex lock for the entire tree.
5793  */
5794 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5795 {
5796 	struct pci_dev *dev;
5797 
5798 	list_for_each_entry(dev, &bus->devices, bus_list) {
5799 		pci_dev_save_and_disable(dev);
5800 		if (dev->subordinate)
5801 			pci_bus_save_and_disable_locked(dev->subordinate);
5802 	}
5803 }
5804 
5805 /*
5806  * Restore devices from top of the tree down while holding @dev mutex lock
5807  * for the entire tree.  Parent bridges need to be restored before we can
5808  * get to subordinate devices.
5809  */
5810 static void pci_bus_restore_locked(struct pci_bus *bus)
5811 {
5812 	struct pci_dev *dev;
5813 
5814 	list_for_each_entry(dev, &bus->devices, bus_list) {
5815 		pci_dev_restore(dev);
5816 		if (dev->subordinate)
5817 			pci_bus_restore_locked(dev->subordinate);
5818 	}
5819 }
5820 
5821 /*
5822  * Save and disable devices from the top of the tree down while holding
5823  * the @dev mutex lock for the entire tree.
5824  */
5825 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5826 {
5827 	struct pci_dev *dev;
5828 
5829 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5830 		if (!dev->slot || dev->slot != slot)
5831 			continue;
5832 		pci_dev_save_and_disable(dev);
5833 		if (dev->subordinate)
5834 			pci_bus_save_and_disable_locked(dev->subordinate);
5835 	}
5836 }
5837 
5838 /*
5839  * Restore devices from top of the tree down while holding @dev mutex lock
5840  * for the entire tree.  Parent bridges need to be restored before we can
5841  * get to subordinate devices.
5842  */
5843 static void pci_slot_restore_locked(struct pci_slot *slot)
5844 {
5845 	struct pci_dev *dev;
5846 
5847 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5848 		if (!dev->slot || dev->slot != slot)
5849 			continue;
5850 		pci_dev_restore(dev);
5851 		if (dev->subordinate)
5852 			pci_bus_restore_locked(dev->subordinate);
5853 	}
5854 }
5855 
5856 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5857 {
5858 	int rc;
5859 
5860 	if (!slot || !pci_slot_resettable(slot))
5861 		return -ENOTTY;
5862 
5863 	if (!probe)
5864 		pci_slot_lock(slot);
5865 
5866 	might_sleep();
5867 
5868 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5869 
5870 	if (!probe)
5871 		pci_slot_unlock(slot);
5872 
5873 	return rc;
5874 }
5875 
5876 /**
5877  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5878  * @slot: PCI slot to probe
5879  *
5880  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5881  */
5882 int pci_probe_reset_slot(struct pci_slot *slot)
5883 {
5884 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5885 }
5886 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5887 
5888 /**
5889  * __pci_reset_slot - Try to reset a PCI slot
5890  * @slot: PCI slot to reset
5891  *
5892  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5893  * independent of other slots.  For instance, some slots may support slot power
5894  * control.  In the case of a 1:1 bus to slot architecture, this function may
5895  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5896  * Generally a slot reset should be attempted before a bus reset.  All of the
5897  * function of the slot and any subordinate buses behind the slot are reset
5898  * through this function.  PCI config space of all devices in the slot and
5899  * behind the slot is saved before and restored after reset.
5900  *
5901  * Same as above except return -EAGAIN if the slot cannot be locked
5902  */
5903 static int __pci_reset_slot(struct pci_slot *slot)
5904 {
5905 	int rc;
5906 
5907 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5908 	if (rc)
5909 		return rc;
5910 
5911 	if (pci_slot_trylock(slot)) {
5912 		pci_slot_save_and_disable_locked(slot);
5913 		might_sleep();
5914 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5915 		pci_slot_restore_locked(slot);
5916 		pci_slot_unlock(slot);
5917 	} else
5918 		rc = -EAGAIN;
5919 
5920 	return rc;
5921 }
5922 
5923 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5924 {
5925 	int ret;
5926 
5927 	if (!bus->self || !pci_bus_resettable(bus))
5928 		return -ENOTTY;
5929 
5930 	if (probe)
5931 		return 0;
5932 
5933 	pci_bus_lock(bus);
5934 
5935 	might_sleep();
5936 
5937 	ret = pci_bridge_secondary_bus_reset(bus->self);
5938 
5939 	pci_bus_unlock(bus);
5940 
5941 	return ret;
5942 }
5943 
5944 /**
5945  * pci_bus_error_reset - reset the bridge's subordinate bus
5946  * @bridge: The parent device that connects to the bus to reset
5947  *
5948  * This function will first try to reset the slots on this bus if the method is
5949  * available. If slot reset fails or is not available, this will fall back to a
5950  * secondary bus reset.
5951  */
5952 int pci_bus_error_reset(struct pci_dev *bridge)
5953 {
5954 	struct pci_bus *bus = bridge->subordinate;
5955 	struct pci_slot *slot;
5956 
5957 	if (!bus)
5958 		return -ENOTTY;
5959 
5960 	mutex_lock(&pci_slot_mutex);
5961 	if (list_empty(&bus->slots))
5962 		goto bus_reset;
5963 
5964 	list_for_each_entry(slot, &bus->slots, list)
5965 		if (pci_probe_reset_slot(slot))
5966 			goto bus_reset;
5967 
5968 	list_for_each_entry(slot, &bus->slots, list)
5969 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5970 			goto bus_reset;
5971 
5972 	mutex_unlock(&pci_slot_mutex);
5973 	return 0;
5974 bus_reset:
5975 	mutex_unlock(&pci_slot_mutex);
5976 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5977 }
5978 
5979 /**
5980  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5981  * @bus: PCI bus to probe
5982  *
5983  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5984  */
5985 int pci_probe_reset_bus(struct pci_bus *bus)
5986 {
5987 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5988 }
5989 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5990 
5991 /**
5992  * __pci_reset_bus - Try to reset a PCI bus
5993  * @bus: top level PCI bus to reset
5994  *
5995  * Same as above except return -EAGAIN if the bus cannot be locked
5996  */
5997 static int __pci_reset_bus(struct pci_bus *bus)
5998 {
5999 	int rc;
6000 
6001 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6002 	if (rc)
6003 		return rc;
6004 
6005 	if (pci_bus_trylock(bus)) {
6006 		pci_bus_save_and_disable_locked(bus);
6007 		might_sleep();
6008 		rc = pci_bridge_secondary_bus_reset(bus->self);
6009 		pci_bus_restore_locked(bus);
6010 		pci_bus_unlock(bus);
6011 	} else
6012 		rc = -EAGAIN;
6013 
6014 	return rc;
6015 }
6016 
6017 /**
6018  * pci_reset_bus - Try to reset a PCI bus
6019  * @pdev: top level PCI device to reset via slot/bus
6020  *
6021  * Same as above except return -EAGAIN if the bus cannot be locked
6022  */
6023 int pci_reset_bus(struct pci_dev *pdev)
6024 {
6025 	return (!pci_probe_reset_slot(pdev->slot)) ?
6026 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6027 }
6028 EXPORT_SYMBOL_GPL(pci_reset_bus);
6029 
6030 /**
6031  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6032  * @dev: PCI device to query
6033  *
6034  * Returns mmrbc: maximum designed memory read count in bytes or
6035  * appropriate error value.
6036  */
6037 int pcix_get_max_mmrbc(struct pci_dev *dev)
6038 {
6039 	int cap;
6040 	u32 stat;
6041 
6042 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6043 	if (!cap)
6044 		return -EINVAL;
6045 
6046 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6047 		return -EINVAL;
6048 
6049 	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
6050 }
6051 EXPORT_SYMBOL(pcix_get_max_mmrbc);
6052 
6053 /**
6054  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6055  * @dev: PCI device to query
6056  *
6057  * Returns mmrbc: maximum memory read count in bytes or appropriate error
6058  * value.
6059  */
6060 int pcix_get_mmrbc(struct pci_dev *dev)
6061 {
6062 	int cap;
6063 	u16 cmd;
6064 
6065 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6066 	if (!cap)
6067 		return -EINVAL;
6068 
6069 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6070 		return -EINVAL;
6071 
6072 	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6073 }
6074 EXPORT_SYMBOL(pcix_get_mmrbc);
6075 
6076 /**
6077  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6078  * @dev: PCI device to query
6079  * @mmrbc: maximum memory read count in bytes
6080  *    valid values are 512, 1024, 2048, 4096
6081  *
6082  * If possible sets maximum memory read byte count, some bridges have errata
6083  * that prevent this.
6084  */
6085 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6086 {
6087 	int cap;
6088 	u32 stat, v, o;
6089 	u16 cmd;
6090 
6091 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6092 		return -EINVAL;
6093 
6094 	v = ffs(mmrbc) - 10;
6095 
6096 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6097 	if (!cap)
6098 		return -EINVAL;
6099 
6100 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6101 		return -EINVAL;
6102 
6103 	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
6104 		return -E2BIG;
6105 
6106 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6107 		return -EINVAL;
6108 
6109 	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6110 	if (o != v) {
6111 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6112 			return -EIO;
6113 
6114 		cmd &= ~PCI_X_CMD_MAX_READ;
6115 		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6116 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6117 			return -EIO;
6118 	}
6119 	return 0;
6120 }
6121 EXPORT_SYMBOL(pcix_set_mmrbc);
6122 
6123 /**
6124  * pcie_get_readrq - get PCI Express read request size
6125  * @dev: PCI device to query
6126  *
6127  * Returns maximum memory read request in bytes or appropriate error value.
6128  */
6129 int pcie_get_readrq(struct pci_dev *dev)
6130 {
6131 	u16 ctl;
6132 
6133 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6134 
6135 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6136 }
6137 EXPORT_SYMBOL(pcie_get_readrq);
6138 
6139 /**
6140  * pcie_set_readrq - set PCI Express maximum memory read request
6141  * @dev: PCI device to query
6142  * @rq: maximum memory read count in bytes
6143  *    valid values are 128, 256, 512, 1024, 2048, 4096
6144  *
6145  * If possible sets maximum memory read request in bytes
6146  */
6147 int pcie_set_readrq(struct pci_dev *dev, int rq)
6148 {
6149 	u16 v;
6150 	int ret;
6151 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6152 
6153 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6154 		return -EINVAL;
6155 
6156 	/*
6157 	 * If using the "performance" PCIe config, we clamp the read rq
6158 	 * size to the max packet size to keep the host bridge from
6159 	 * generating requests larger than we can cope with.
6160 	 */
6161 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6162 		int mps = pcie_get_mps(dev);
6163 
6164 		if (mps < rq)
6165 			rq = mps;
6166 	}
6167 
6168 	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6169 
6170 	if (bridge->no_inc_mrrs) {
6171 		int max_mrrs = pcie_get_readrq(dev);
6172 
6173 		if (rq > max_mrrs) {
6174 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6175 			return -EINVAL;
6176 		}
6177 	}
6178 
6179 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6180 						  PCI_EXP_DEVCTL_READRQ, v);
6181 
6182 	return pcibios_err_to_errno(ret);
6183 }
6184 EXPORT_SYMBOL(pcie_set_readrq);
6185 
6186 /**
6187  * pcie_get_mps - get PCI Express maximum payload size
6188  * @dev: PCI device to query
6189  *
6190  * Returns maximum payload size in bytes
6191  */
6192 int pcie_get_mps(struct pci_dev *dev)
6193 {
6194 	u16 ctl;
6195 
6196 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6197 
6198 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6199 }
6200 EXPORT_SYMBOL(pcie_get_mps);
6201 
6202 /**
6203  * pcie_set_mps - set PCI Express maximum payload size
6204  * @dev: PCI device to query
6205  * @mps: maximum payload size in bytes
6206  *    valid values are 128, 256, 512, 1024, 2048, 4096
6207  *
6208  * If possible sets maximum payload size
6209  */
6210 int pcie_set_mps(struct pci_dev *dev, int mps)
6211 {
6212 	u16 v;
6213 	int ret;
6214 
6215 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6216 		return -EINVAL;
6217 
6218 	v = ffs(mps) - 8;
6219 	if (v > dev->pcie_mpss)
6220 		return -EINVAL;
6221 	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6222 
6223 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6224 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6225 
6226 	return pcibios_err_to_errno(ret);
6227 }
6228 EXPORT_SYMBOL(pcie_set_mps);
6229 
6230 /**
6231  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6232  *			      device and its bandwidth limitation
6233  * @dev: PCI device to query
6234  * @limiting_dev: storage for device causing the bandwidth limitation
6235  * @speed: storage for speed of limiting device
6236  * @width: storage for width of limiting device
6237  *
6238  * Walk up the PCI device chain and find the point where the minimum
6239  * bandwidth is available.  Return the bandwidth available there and (if
6240  * limiting_dev, speed, and width pointers are supplied) information about
6241  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6242  * raw bandwidth.
6243  */
6244 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6245 			     enum pci_bus_speed *speed,
6246 			     enum pcie_link_width *width)
6247 {
6248 	u16 lnksta;
6249 	enum pci_bus_speed next_speed;
6250 	enum pcie_link_width next_width;
6251 	u32 bw, next_bw;
6252 
6253 	if (speed)
6254 		*speed = PCI_SPEED_UNKNOWN;
6255 	if (width)
6256 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6257 
6258 	bw = 0;
6259 
6260 	while (dev) {
6261 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6262 
6263 		next_speed = pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS,
6264 						       lnksta)];
6265 		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6266 
6267 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6268 
6269 		/* Check if current device limits the total bandwidth */
6270 		if (!bw || next_bw <= bw) {
6271 			bw = next_bw;
6272 
6273 			if (limiting_dev)
6274 				*limiting_dev = dev;
6275 			if (speed)
6276 				*speed = next_speed;
6277 			if (width)
6278 				*width = next_width;
6279 		}
6280 
6281 		dev = pci_upstream_bridge(dev);
6282 	}
6283 
6284 	return bw;
6285 }
6286 EXPORT_SYMBOL(pcie_bandwidth_available);
6287 
6288 /**
6289  * pcie_get_speed_cap - query for the PCI device's link speed capability
6290  * @dev: PCI device to query
6291  *
6292  * Query the PCI device speed capability.  Return the maximum link speed
6293  * supported by the device.
6294  */
6295 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6296 {
6297 	u32 lnkcap2, lnkcap;
6298 
6299 	/*
6300 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6301 	 * implementation note there recommends using the Supported Link
6302 	 * Speeds Vector in Link Capabilities 2 when supported.
6303 	 *
6304 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6305 	 * should use the Supported Link Speeds field in Link Capabilities,
6306 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6307 	 */
6308 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6309 
6310 	/* PCIe r3.0-compliant */
6311 	if (lnkcap2)
6312 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6313 
6314 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6315 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6316 		return PCIE_SPEED_5_0GT;
6317 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6318 		return PCIE_SPEED_2_5GT;
6319 
6320 	return PCI_SPEED_UNKNOWN;
6321 }
6322 EXPORT_SYMBOL(pcie_get_speed_cap);
6323 
6324 /**
6325  * pcie_get_width_cap - query for the PCI device's link width capability
6326  * @dev: PCI device to query
6327  *
6328  * Query the PCI device width capability.  Return the maximum link width
6329  * supported by the device.
6330  */
6331 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6332 {
6333 	u32 lnkcap;
6334 
6335 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6336 	if (lnkcap)
6337 		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6338 
6339 	return PCIE_LNK_WIDTH_UNKNOWN;
6340 }
6341 EXPORT_SYMBOL(pcie_get_width_cap);
6342 
6343 /**
6344  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6345  * @dev: PCI device
6346  * @speed: storage for link speed
6347  * @width: storage for link width
6348  *
6349  * Calculate a PCI device's link bandwidth by querying for its link speed
6350  * and width, multiplying them, and applying encoding overhead.  The result
6351  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6352  */
6353 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6354 			   enum pcie_link_width *width)
6355 {
6356 	*speed = pcie_get_speed_cap(dev);
6357 	*width = pcie_get_width_cap(dev);
6358 
6359 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6360 		return 0;
6361 
6362 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6363 }
6364 
6365 /**
6366  * __pcie_print_link_status - Report the PCI device's link speed and width
6367  * @dev: PCI device to query
6368  * @verbose: Print info even when enough bandwidth is available
6369  *
6370  * If the available bandwidth at the device is less than the device is
6371  * capable of, report the device's maximum possible bandwidth and the
6372  * upstream link that limits its performance.  If @verbose, always print
6373  * the available bandwidth, even if the device isn't constrained.
6374  */
6375 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6376 {
6377 	enum pcie_link_width width, width_cap;
6378 	enum pci_bus_speed speed, speed_cap;
6379 	struct pci_dev *limiting_dev = NULL;
6380 	u32 bw_avail, bw_cap;
6381 
6382 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6383 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6384 
6385 	if (bw_avail >= bw_cap && verbose)
6386 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6387 			 bw_cap / 1000, bw_cap % 1000,
6388 			 pci_speed_string(speed_cap), width_cap);
6389 	else if (bw_avail < bw_cap)
6390 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6391 			 bw_avail / 1000, bw_avail % 1000,
6392 			 pci_speed_string(speed), width,
6393 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6394 			 bw_cap / 1000, bw_cap % 1000,
6395 			 pci_speed_string(speed_cap), width_cap);
6396 }
6397 
6398 /**
6399  * pcie_print_link_status - Report the PCI device's link speed and width
6400  * @dev: PCI device to query
6401  *
6402  * Report the available bandwidth at the device.
6403  */
6404 void pcie_print_link_status(struct pci_dev *dev)
6405 {
6406 	__pcie_print_link_status(dev, true);
6407 }
6408 EXPORT_SYMBOL(pcie_print_link_status);
6409 
6410 /**
6411  * pci_select_bars - Make BAR mask from the type of resource
6412  * @dev: the PCI device for which BAR mask is made
6413  * @flags: resource type mask to be selected
6414  *
6415  * This helper routine makes bar mask from the type of resource.
6416  */
6417 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6418 {
6419 	int i, bars = 0;
6420 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6421 		if (pci_resource_flags(dev, i) & flags)
6422 			bars |= (1 << i);
6423 	return bars;
6424 }
6425 EXPORT_SYMBOL(pci_select_bars);
6426 
6427 /* Some architectures require additional programming to enable VGA */
6428 static arch_set_vga_state_t arch_set_vga_state;
6429 
6430 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6431 {
6432 	arch_set_vga_state = func;	/* NULL disables */
6433 }
6434 
6435 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6436 				  unsigned int command_bits, u32 flags)
6437 {
6438 	if (arch_set_vga_state)
6439 		return arch_set_vga_state(dev, decode, command_bits,
6440 						flags);
6441 	return 0;
6442 }
6443 
6444 /**
6445  * pci_set_vga_state - set VGA decode state on device and parents if requested
6446  * @dev: the PCI device
6447  * @decode: true = enable decoding, false = disable decoding
6448  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6449  * @flags: traverse ancestors and change bridges
6450  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6451  */
6452 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6453 		      unsigned int command_bits, u32 flags)
6454 {
6455 	struct pci_bus *bus;
6456 	struct pci_dev *bridge;
6457 	u16 cmd;
6458 	int rc;
6459 
6460 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6461 
6462 	/* ARCH specific VGA enables */
6463 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6464 	if (rc)
6465 		return rc;
6466 
6467 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6468 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6469 		if (decode)
6470 			cmd |= command_bits;
6471 		else
6472 			cmd &= ~command_bits;
6473 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6474 	}
6475 
6476 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6477 		return 0;
6478 
6479 	bus = dev->bus;
6480 	while (bus) {
6481 		bridge = bus->self;
6482 		if (bridge) {
6483 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6484 					     &cmd);
6485 			if (decode)
6486 				cmd |= PCI_BRIDGE_CTL_VGA;
6487 			else
6488 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6489 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6490 					      cmd);
6491 		}
6492 		bus = bus->parent;
6493 	}
6494 	return 0;
6495 }
6496 
6497 #ifdef CONFIG_ACPI
6498 bool pci_pr3_present(struct pci_dev *pdev)
6499 {
6500 	struct acpi_device *adev;
6501 
6502 	if (acpi_disabled)
6503 		return false;
6504 
6505 	adev = ACPI_COMPANION(&pdev->dev);
6506 	if (!adev)
6507 		return false;
6508 
6509 	return adev->power.flags.power_resources &&
6510 		acpi_has_method(adev->handle, "_PR3");
6511 }
6512 EXPORT_SYMBOL_GPL(pci_pr3_present);
6513 #endif
6514 
6515 /**
6516  * pci_add_dma_alias - Add a DMA devfn alias for a device
6517  * @dev: the PCI device for which alias is added
6518  * @devfn_from: alias slot and function
6519  * @nr_devfns: number of subsequent devfns to alias
6520  *
6521  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6522  * which is used to program permissible bus-devfn source addresses for DMA
6523  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6524  * and are useful for devices generating DMA requests beyond or different
6525  * from their logical bus-devfn.  Examples include device quirks where the
6526  * device simply uses the wrong devfn, as well as non-transparent bridges
6527  * where the alias may be a proxy for devices in another domain.
6528  *
6529  * IOMMU group creation is performed during device discovery or addition,
6530  * prior to any potential DMA mapping and therefore prior to driver probing
6531  * (especially for userspace assigned devices where IOMMU group definition
6532  * cannot be left as a userspace activity).  DMA aliases should therefore
6533  * be configured via quirks, such as the PCI fixup header quirk.
6534  */
6535 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6536 		       unsigned int nr_devfns)
6537 {
6538 	int devfn_to;
6539 
6540 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6541 	devfn_to = devfn_from + nr_devfns - 1;
6542 
6543 	if (!dev->dma_alias_mask)
6544 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6545 	if (!dev->dma_alias_mask) {
6546 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6547 		return;
6548 	}
6549 
6550 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6551 
6552 	if (nr_devfns == 1)
6553 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6554 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6555 	else if (nr_devfns > 1)
6556 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6557 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6558 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6559 }
6560 
6561 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6562 {
6563 	return (dev1->dma_alias_mask &&
6564 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6565 	       (dev2->dma_alias_mask &&
6566 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6567 	       pci_real_dma_dev(dev1) == dev2 ||
6568 	       pci_real_dma_dev(dev2) == dev1;
6569 }
6570 
6571 bool pci_device_is_present(struct pci_dev *pdev)
6572 {
6573 	u32 v;
6574 
6575 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6576 	pdev = pci_physfn(pdev);
6577 	if (pci_dev_is_disconnected(pdev))
6578 		return false;
6579 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6580 }
6581 EXPORT_SYMBOL_GPL(pci_device_is_present);
6582 
6583 void pci_ignore_hotplug(struct pci_dev *dev)
6584 {
6585 	struct pci_dev *bridge = dev->bus->self;
6586 
6587 	dev->ignore_hotplug = 1;
6588 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6589 	if (bridge)
6590 		bridge->ignore_hotplug = 1;
6591 }
6592 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6593 
6594 /**
6595  * pci_real_dma_dev - Get PCI DMA device for PCI device
6596  * @dev: the PCI device that may have a PCI DMA alias
6597  *
6598  * Permits the platform to provide architecture-specific functionality to
6599  * devices needing to alias DMA to another PCI device on another PCI bus. If
6600  * the PCI device is on the same bus, it is recommended to use
6601  * pci_add_dma_alias(). This is the default implementation. Architecture
6602  * implementations can override this.
6603  */
6604 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6605 {
6606 	return dev;
6607 }
6608 
6609 resource_size_t __weak pcibios_default_alignment(void)
6610 {
6611 	return 0;
6612 }
6613 
6614 /*
6615  * Arches that don't want to expose struct resource to userland as-is in
6616  * sysfs and /proc can implement their own pci_resource_to_user().
6617  */
6618 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6619 				 const struct resource *rsrc,
6620 				 resource_size_t *start, resource_size_t *end)
6621 {
6622 	*start = rsrc->start;
6623 	*end = rsrc->end;
6624 }
6625 
6626 static char *resource_alignment_param;
6627 static DEFINE_SPINLOCK(resource_alignment_lock);
6628 
6629 /**
6630  * pci_specified_resource_alignment - get resource alignment specified by user.
6631  * @dev: the PCI device to get
6632  * @resize: whether or not to change resources' size when reassigning alignment
6633  *
6634  * RETURNS: Resource alignment if it is specified.
6635  *          Zero if it is not specified.
6636  */
6637 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6638 							bool *resize)
6639 {
6640 	int align_order, count;
6641 	resource_size_t align = pcibios_default_alignment();
6642 	const char *p;
6643 	int ret;
6644 
6645 	spin_lock(&resource_alignment_lock);
6646 	p = resource_alignment_param;
6647 	if (!p || !*p)
6648 		goto out;
6649 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6650 		align = 0;
6651 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6652 		goto out;
6653 	}
6654 
6655 	while (*p) {
6656 		count = 0;
6657 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6658 		    p[count] == '@') {
6659 			p += count + 1;
6660 			if (align_order > 63) {
6661 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6662 				       align_order);
6663 				align_order = PAGE_SHIFT;
6664 			}
6665 		} else {
6666 			align_order = PAGE_SHIFT;
6667 		}
6668 
6669 		ret = pci_dev_str_match(dev, p, &p);
6670 		if (ret == 1) {
6671 			*resize = true;
6672 			align = 1ULL << align_order;
6673 			break;
6674 		} else if (ret < 0) {
6675 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6676 			       p);
6677 			break;
6678 		}
6679 
6680 		if (*p != ';' && *p != ',') {
6681 			/* End of param or invalid format */
6682 			break;
6683 		}
6684 		p++;
6685 	}
6686 out:
6687 	spin_unlock(&resource_alignment_lock);
6688 	return align;
6689 }
6690 
6691 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6692 					   resource_size_t align, bool resize)
6693 {
6694 	struct resource *r = &dev->resource[bar];
6695 	resource_size_t size;
6696 
6697 	if (!(r->flags & IORESOURCE_MEM))
6698 		return;
6699 
6700 	if (r->flags & IORESOURCE_PCI_FIXED) {
6701 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6702 			 bar, r, (unsigned long long)align);
6703 		return;
6704 	}
6705 
6706 	size = resource_size(r);
6707 	if (size >= align)
6708 		return;
6709 
6710 	/*
6711 	 * Increase the alignment of the resource.  There are two ways we
6712 	 * can do this:
6713 	 *
6714 	 * 1) Increase the size of the resource.  BARs are aligned on their
6715 	 *    size, so when we reallocate space for this resource, we'll
6716 	 *    allocate it with the larger alignment.  This also prevents
6717 	 *    assignment of any other BARs inside the alignment region, so
6718 	 *    if we're requesting page alignment, this means no other BARs
6719 	 *    will share the page.
6720 	 *
6721 	 *    The disadvantage is that this makes the resource larger than
6722 	 *    the hardware BAR, which may break drivers that compute things
6723 	 *    based on the resource size, e.g., to find registers at a
6724 	 *    fixed offset before the end of the BAR.
6725 	 *
6726 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6727 	 *    set r->start to the desired alignment.  By itself this
6728 	 *    doesn't prevent other BARs being put inside the alignment
6729 	 *    region, but if we realign *every* resource of every device in
6730 	 *    the system, none of them will share an alignment region.
6731 	 *
6732 	 * When the user has requested alignment for only some devices via
6733 	 * the "pci=resource_alignment" argument, "resize" is true and we
6734 	 * use the first method.  Otherwise we assume we're aligning all
6735 	 * devices and we use the second.
6736 	 */
6737 
6738 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6739 		 bar, r, (unsigned long long)align);
6740 
6741 	if (resize) {
6742 		r->start = 0;
6743 		r->end = align - 1;
6744 	} else {
6745 		r->flags &= ~IORESOURCE_SIZEALIGN;
6746 		r->flags |= IORESOURCE_STARTALIGN;
6747 		r->start = align;
6748 		r->end = r->start + size - 1;
6749 	}
6750 	r->flags |= IORESOURCE_UNSET;
6751 }
6752 
6753 /*
6754  * This function disables memory decoding and releases memory resources
6755  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6756  * It also rounds up size to specified alignment.
6757  * Later on, the kernel will assign page-aligned memory resource back
6758  * to the device.
6759  */
6760 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6761 {
6762 	int i;
6763 	struct resource *r;
6764 	resource_size_t align;
6765 	u16 command;
6766 	bool resize = false;
6767 
6768 	/*
6769 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6770 	 * 3.4.1.11.  Their resources are allocated from the space
6771 	 * described by the VF BARx register in the PF's SR-IOV capability.
6772 	 * We can't influence their alignment here.
6773 	 */
6774 	if (dev->is_virtfn)
6775 		return;
6776 
6777 	/* check if specified PCI is target device to reassign */
6778 	align = pci_specified_resource_alignment(dev, &resize);
6779 	if (!align)
6780 		return;
6781 
6782 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6783 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6784 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6785 		return;
6786 	}
6787 
6788 	pci_read_config_word(dev, PCI_COMMAND, &command);
6789 	command &= ~PCI_COMMAND_MEMORY;
6790 	pci_write_config_word(dev, PCI_COMMAND, command);
6791 
6792 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6793 		pci_request_resource_alignment(dev, i, align, resize);
6794 
6795 	/*
6796 	 * Need to disable bridge's resource window,
6797 	 * to enable the kernel to reassign new resource
6798 	 * window later on.
6799 	 */
6800 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6801 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6802 			r = &dev->resource[i];
6803 			if (!(r->flags & IORESOURCE_MEM))
6804 				continue;
6805 			r->flags |= IORESOURCE_UNSET;
6806 			r->end = resource_size(r) - 1;
6807 			r->start = 0;
6808 		}
6809 		pci_disable_bridge_window(dev);
6810 	}
6811 }
6812 
6813 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6814 {
6815 	size_t count = 0;
6816 
6817 	spin_lock(&resource_alignment_lock);
6818 	if (resource_alignment_param)
6819 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6820 	spin_unlock(&resource_alignment_lock);
6821 
6822 	return count;
6823 }
6824 
6825 static ssize_t resource_alignment_store(const struct bus_type *bus,
6826 					const char *buf, size_t count)
6827 {
6828 	char *param, *old, *end;
6829 
6830 	if (count >= (PAGE_SIZE - 1))
6831 		return -EINVAL;
6832 
6833 	param = kstrndup(buf, count, GFP_KERNEL);
6834 	if (!param)
6835 		return -ENOMEM;
6836 
6837 	end = strchr(param, '\n');
6838 	if (end)
6839 		*end = '\0';
6840 
6841 	spin_lock(&resource_alignment_lock);
6842 	old = resource_alignment_param;
6843 	if (strlen(param)) {
6844 		resource_alignment_param = param;
6845 	} else {
6846 		kfree(param);
6847 		resource_alignment_param = NULL;
6848 	}
6849 	spin_unlock(&resource_alignment_lock);
6850 
6851 	kfree(old);
6852 
6853 	return count;
6854 }
6855 
6856 static BUS_ATTR_RW(resource_alignment);
6857 
6858 static int __init pci_resource_alignment_sysfs_init(void)
6859 {
6860 	return bus_create_file(&pci_bus_type,
6861 					&bus_attr_resource_alignment);
6862 }
6863 late_initcall(pci_resource_alignment_sysfs_init);
6864 
6865 static void pci_no_domains(void)
6866 {
6867 #ifdef CONFIG_PCI_DOMAINS
6868 	pci_domains_supported = 0;
6869 #endif
6870 }
6871 
6872 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6873 static DEFINE_IDA(pci_domain_nr_static_ida);
6874 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6875 
6876 static void of_pci_reserve_static_domain_nr(void)
6877 {
6878 	struct device_node *np;
6879 	int domain_nr;
6880 
6881 	for_each_node_by_type(np, "pci") {
6882 		domain_nr = of_get_pci_domain_nr(np);
6883 		if (domain_nr < 0)
6884 			continue;
6885 		/*
6886 		 * Permanently allocate domain_nr in dynamic_ida
6887 		 * to prevent it from dynamic allocation.
6888 		 */
6889 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6890 				domain_nr, domain_nr, GFP_KERNEL);
6891 	}
6892 }
6893 
6894 static int of_pci_bus_find_domain_nr(struct device *parent)
6895 {
6896 	static bool static_domains_reserved = false;
6897 	int domain_nr;
6898 
6899 	/* On the first call scan device tree for static allocations. */
6900 	if (!static_domains_reserved) {
6901 		of_pci_reserve_static_domain_nr();
6902 		static_domains_reserved = true;
6903 	}
6904 
6905 	if (parent) {
6906 		/*
6907 		 * If domain is in DT, allocate it in static IDA.  This
6908 		 * prevents duplicate static allocations in case of errors
6909 		 * in DT.
6910 		 */
6911 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6912 		if (domain_nr >= 0)
6913 			return ida_alloc_range(&pci_domain_nr_static_ida,
6914 					       domain_nr, domain_nr,
6915 					       GFP_KERNEL);
6916 	}
6917 
6918 	/*
6919 	 * If domain was not specified in DT, choose a free ID from dynamic
6920 	 * allocations. All domain numbers from DT are permanently in
6921 	 * dynamic allocations to prevent assigning them to other DT nodes
6922 	 * without static domain.
6923 	 */
6924 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6925 }
6926 
6927 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6928 {
6929 	if (bus->domain_nr < 0)
6930 		return;
6931 
6932 	/* Release domain from IDA where it was allocated. */
6933 	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6934 		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6935 	else
6936 		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6937 }
6938 
6939 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6940 {
6941 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6942 			       acpi_pci_bus_find_domain_nr(bus);
6943 }
6944 
6945 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6946 {
6947 	if (!acpi_disabled)
6948 		return;
6949 	of_pci_bus_release_domain_nr(bus, parent);
6950 }
6951 #endif
6952 
6953 /**
6954  * pci_ext_cfg_avail - can we access extended PCI config space?
6955  *
6956  * Returns 1 if we can access PCI extended config space (offsets
6957  * greater than 0xff). This is the default implementation. Architecture
6958  * implementations can override this.
6959  */
6960 int __weak pci_ext_cfg_avail(void)
6961 {
6962 	return 1;
6963 }
6964 
6965 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6966 {
6967 }
6968 EXPORT_SYMBOL(pci_fixup_cardbus);
6969 
6970 static int __init pci_setup(char *str)
6971 {
6972 	while (str) {
6973 		char *k = strchr(str, ',');
6974 		if (k)
6975 			*k++ = 0;
6976 		if (*str && (str = pcibios_setup(str)) && *str) {
6977 			if (!strcmp(str, "nomsi")) {
6978 				pci_no_msi();
6979 			} else if (!strncmp(str, "noats", 5)) {
6980 				pr_info("PCIe: ATS is disabled\n");
6981 				pcie_ats_disabled = true;
6982 			} else if (!strcmp(str, "noaer")) {
6983 				pci_no_aer();
6984 			} else if (!strcmp(str, "earlydump")) {
6985 				pci_early_dump = true;
6986 			} else if (!strncmp(str, "realloc=", 8)) {
6987 				pci_realloc_get_opt(str + 8);
6988 			} else if (!strncmp(str, "realloc", 7)) {
6989 				pci_realloc_get_opt("on");
6990 			} else if (!strcmp(str, "nodomains")) {
6991 				pci_no_domains();
6992 			} else if (!strncmp(str, "noari", 5)) {
6993 				pcie_ari_disabled = true;
6994 			} else if (!strncmp(str, "cbiosize=", 9)) {
6995 				pci_cardbus_io_size = memparse(str + 9, &str);
6996 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6997 				pci_cardbus_mem_size = memparse(str + 10, &str);
6998 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6999 				resource_alignment_param = str + 19;
7000 			} else if (!strncmp(str, "ecrc=", 5)) {
7001 				pcie_ecrc_get_policy(str + 5);
7002 			} else if (!strncmp(str, "hpiosize=", 9)) {
7003 				pci_hotplug_io_size = memparse(str + 9, &str);
7004 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
7005 				pci_hotplug_mmio_size = memparse(str + 11, &str);
7006 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7007 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7008 			} else if (!strncmp(str, "hpmemsize=", 10)) {
7009 				pci_hotplug_mmio_size = memparse(str + 10, &str);
7010 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7011 			} else if (!strncmp(str, "hpbussize=", 10)) {
7012 				pci_hotplug_bus_size =
7013 					simple_strtoul(str + 10, &str, 0);
7014 				if (pci_hotplug_bus_size > 0xff)
7015 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7016 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7017 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
7018 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
7019 				pcie_bus_config = PCIE_BUS_SAFE;
7020 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
7021 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
7022 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7023 				pcie_bus_config = PCIE_BUS_PEER2PEER;
7024 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
7025 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7026 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
7027 				disable_acs_redir_param = str + 18;
7028 			} else {
7029 				pr_err("PCI: Unknown option `%s'\n", str);
7030 			}
7031 		}
7032 		str = k;
7033 	}
7034 	return 0;
7035 }
7036 early_param("pci", pci_setup);
7037 
7038 /*
7039  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7040  * in pci_setup(), above, to point to data in the __initdata section which
7041  * will be freed after the init sequence is complete. We can't allocate memory
7042  * in pci_setup() because some architectures do not have any memory allocation
7043  * service available during an early_param() call. So we allocate memory and
7044  * copy the variable here before the init section is freed.
7045  *
7046  */
7047 static int __init pci_realloc_setup_params(void)
7048 {
7049 	resource_alignment_param = kstrdup(resource_alignment_param,
7050 					   GFP_KERNEL);
7051 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7052 
7053 	return 0;
7054 }
7055 pure_initcall(pci_realloc_setup_params);
7056