xref: /linux/drivers/pci/pci.c (revision 70ab9ec9166db90ab8980aff4f7083512ecddd1f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3hot_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 /*
68  * Following exit from Conventional Reset, devices must be ready within 1 sec
69  * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
70  * Reset (PCIe r6.0 sec 5.8).
71  */
72 #define PCI_RESET_WAIT 1000 /* msec */
73 
74 /*
75  * Devices may extend the 1 sec period through Request Retry Status
76  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
77  * limit, but 60 sec ought to be enough for any device to become
78  * responsive.
79  */
80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81 
82 static void pci_dev_d3_sleep(struct pci_dev *dev)
83 {
84 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85 	unsigned int upper;
86 
87 	if (delay_ms) {
88 		/* Use a 20% upper bound, 1ms minimum */
89 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 		usleep_range(delay_ms * USEC_PER_MSEC,
91 			     (delay_ms + upper) * USEC_PER_MSEC);
92 	}
93 }
94 
95 bool pci_reset_supported(struct pci_dev *dev)
96 {
97 	return dev->reset_methods[0] != 0;
98 }
99 
100 #ifdef CONFIG_PCI_DOMAINS
101 int pci_domains_supported = 1;
102 #endif
103 
104 #define DEFAULT_CARDBUS_IO_SIZE		(256)
105 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109 
110 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
111 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
113 /* hpiosize=nn can override this */
114 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
115 /*
116  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118  * pci=hpmemsize=nnM overrides both
119  */
120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122 
123 #define DEFAULT_HOTPLUG_BUS_SIZE	1
124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125 
126 
127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 #elif defined CONFIG_PCIE_BUS_SAFE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136 #else
137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138 #endif
139 
140 /*
141  * The default CLS is used if arch didn't set CLS explicitly and not
142  * all pci devices agree on the same value.  Arch can override either
143  * the dfl or actual value as it sees fit.  Don't forget this is
144  * measured in 32-bit words, not bytes.
145  */
146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 u8 pci_cache_line_size;
148 
149 /*
150  * If we set up a device for bus mastering, we need to check the latency
151  * timer as certain BIOSes forget to set it properly.
152  */
153 unsigned int pcibios_max_latency = 255;
154 
155 /* If set, the PCIe ARI capability will not be used. */
156 static bool pcie_ari_disabled;
157 
158 /* If set, the PCIe ATS capability will not be used. */
159 static bool pcie_ats_disabled;
160 
161 /* If set, the PCI config space of each device is printed during boot. */
162 bool pci_early_dump;
163 
164 bool pci_ats_disabled(void)
165 {
166 	return pcie_ats_disabled;
167 }
168 EXPORT_SYMBOL_GPL(pci_ats_disabled);
169 
170 /* Disable bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_disable;
172 /* Force bridge_d3 for all PCIe ports */
173 static bool pci_bridge_d3_force;
174 
175 static int __init pcie_port_pm_setup(char *str)
176 {
177 	if (!strcmp(str, "off"))
178 		pci_bridge_d3_disable = true;
179 	else if (!strcmp(str, "force"))
180 		pci_bridge_d3_force = true;
181 	return 1;
182 }
183 __setup("pcie_port_pm=", pcie_port_pm_setup);
184 
185 /**
186  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187  * @bus: pointer to PCI bus structure to search
188  *
189  * Given a PCI bus, returns the highest PCI bus number present in the set
190  * including the given PCI bus and its list of child PCI buses.
191  */
192 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193 {
194 	struct pci_bus *tmp;
195 	unsigned char max, n;
196 
197 	max = bus->busn_res.end;
198 	list_for_each_entry(tmp, &bus->children, node) {
199 		n = pci_bus_max_busnr(tmp);
200 		if (n > max)
201 			max = n;
202 	}
203 	return max;
204 }
205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206 
207 /**
208  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209  * @pdev: the PCI device
210  *
211  * Returns error bits set in PCI_STATUS and clears them.
212  */
213 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214 {
215 	u16 status;
216 	int ret;
217 
218 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 	if (ret != PCIBIOS_SUCCESSFUL)
220 		return -EIO;
221 
222 	status &= PCI_STATUS_ERROR_BITS;
223 	if (status)
224 		pci_write_config_word(pdev, PCI_STATUS, status);
225 
226 	return status;
227 }
228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229 
230 #ifdef CONFIG_HAS_IOMEM
231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232 					    bool write_combine)
233 {
234 	struct resource *res = &pdev->resource[bar];
235 	resource_size_t start = res->start;
236 	resource_size_t size = resource_size(res);
237 
238 	/*
239 	 * Make sure the BAR is actually a memory resource, not an IO resource
240 	 */
241 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 		return NULL;
244 	}
245 
246 	if (write_combine)
247 		return ioremap_wc(start, size);
248 
249 	return ioremap(start, size);
250 }
251 
252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253 {
254 	return __pci_ioremap_resource(pdev, bar, false);
255 }
256 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257 
258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259 {
260 	return __pci_ioremap_resource(pdev, bar, true);
261 }
262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263 #endif
264 
265 /**
266  * pci_dev_str_match_path - test if a path string matches a device
267  * @dev: the PCI device to test
268  * @path: string to match the device against
269  * @endptr: pointer to the string after the match
270  *
271  * Test if a string (typically from a kernel parameter) formatted as a
272  * path of device/function addresses matches a PCI device. The string must
273  * be of the form:
274  *
275  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276  *
277  * A path for a device can be obtained using 'lspci -t'.  Using a path
278  * is more robust against bus renumbering than using only a single bus,
279  * device and function address.
280  *
281  * Returns 1 if the string matches the device, 0 if it does not and
282  * a negative error code if it fails to parse the string.
283  */
284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285 				  const char **endptr)
286 {
287 	int ret;
288 	unsigned int seg, bus, slot, func;
289 	char *wpath, *p;
290 	char end;
291 
292 	*endptr = strchrnul(path, ';');
293 
294 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295 	if (!wpath)
296 		return -ENOMEM;
297 
298 	while (1) {
299 		p = strrchr(wpath, '/');
300 		if (!p)
301 			break;
302 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303 		if (ret != 2) {
304 			ret = -EINVAL;
305 			goto free_and_exit;
306 		}
307 
308 		if (dev->devfn != PCI_DEVFN(slot, func)) {
309 			ret = 0;
310 			goto free_and_exit;
311 		}
312 
313 		/*
314 		 * Note: we don't need to get a reference to the upstream
315 		 * bridge because we hold a reference to the top level
316 		 * device which should hold a reference to the bridge,
317 		 * and so on.
318 		 */
319 		dev = pci_upstream_bridge(dev);
320 		if (!dev) {
321 			ret = 0;
322 			goto free_and_exit;
323 		}
324 
325 		*p = 0;
326 	}
327 
328 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329 		     &func, &end);
330 	if (ret != 4) {
331 		seg = 0;
332 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333 		if (ret != 3) {
334 			ret = -EINVAL;
335 			goto free_and_exit;
336 		}
337 	}
338 
339 	ret = (seg == pci_domain_nr(dev->bus) &&
340 	       bus == dev->bus->number &&
341 	       dev->devfn == PCI_DEVFN(slot, func));
342 
343 free_and_exit:
344 	kfree(wpath);
345 	return ret;
346 }
347 
348 /**
349  * pci_dev_str_match - test if a string matches a device
350  * @dev: the PCI device to test
351  * @p: string to match the device against
352  * @endptr: pointer to the string after the match
353  *
354  * Test if a string (typically from a kernel parameter) matches a specified
355  * PCI device. The string may be of one of the following formats:
356  *
357  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359  *
360  * The first format specifies a PCI bus/device/function address which
361  * may change if new hardware is inserted, if motherboard firmware changes,
362  * or due to changes caused in kernel parameters. If the domain is
363  * left unspecified, it is taken to be 0.  In order to be robust against
364  * bus renumbering issues, a path of PCI device/function numbers may be used
365  * to address the specific device.  The path for a device can be determined
366  * through the use of 'lspci -t'.
367  *
368  * The second format matches devices using IDs in the configuration
369  * space which may match multiple devices in the system. A value of 0
370  * for any field will match all devices. (Note: this differs from
371  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372  * legacy reasons and convenience so users don't have to specify
373  * FFFFFFFFs on the command line.)
374  *
375  * Returns 1 if the string matches the device, 0 if it does not and
376  * a negative error code if the string cannot be parsed.
377  */
378 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379 			     const char **endptr)
380 {
381 	int ret;
382 	int count;
383 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
384 
385 	if (strncmp(p, "pci:", 4) == 0) {
386 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 		p += 4;
388 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 			     &subsystem_vendor, &subsystem_device, &count);
390 		if (ret != 4) {
391 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392 			if (ret != 2)
393 				return -EINVAL;
394 
395 			subsystem_vendor = 0;
396 			subsystem_device = 0;
397 		}
398 
399 		p += count;
400 
401 		if ((!vendor || vendor == dev->vendor) &&
402 		    (!device || device == dev->device) &&
403 		    (!subsystem_vendor ||
404 			    subsystem_vendor == dev->subsystem_vendor) &&
405 		    (!subsystem_device ||
406 			    subsystem_device == dev->subsystem_device))
407 			goto found;
408 	} else {
409 		/*
410 		 * PCI Bus, Device, Function IDs are specified
411 		 * (optionally, may include a path of devfns following it)
412 		 */
413 		ret = pci_dev_str_match_path(dev, p, &p);
414 		if (ret < 0)
415 			return ret;
416 		else if (ret)
417 			goto found;
418 	}
419 
420 	*endptr = p;
421 	return 0;
422 
423 found:
424 	*endptr = p;
425 	return 1;
426 }
427 
428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 				  u8 pos, int cap, int *ttl)
430 {
431 	u8 id;
432 	u16 ent;
433 
434 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
435 
436 	while ((*ttl)--) {
437 		if (pos < 0x40)
438 			break;
439 		pos &= ~3;
440 		pci_bus_read_config_word(bus, devfn, pos, &ent);
441 
442 		id = ent & 0xff;
443 		if (id == 0xff)
444 			break;
445 		if (id == cap)
446 			return pos;
447 		pos = (ent >> 8);
448 	}
449 	return 0;
450 }
451 
452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453 			      u8 pos, int cap)
454 {
455 	int ttl = PCI_FIND_CAP_TTL;
456 
457 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
458 }
459 
460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461 {
462 	return __pci_find_next_cap(dev->bus, dev->devfn,
463 				   pos + PCI_CAP_LIST_NEXT, cap);
464 }
465 EXPORT_SYMBOL_GPL(pci_find_next_capability);
466 
467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 				    unsigned int devfn, u8 hdr_type)
469 {
470 	u16 status;
471 
472 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 	if (!(status & PCI_STATUS_CAP_LIST))
474 		return 0;
475 
476 	switch (hdr_type) {
477 	case PCI_HEADER_TYPE_NORMAL:
478 	case PCI_HEADER_TYPE_BRIDGE:
479 		return PCI_CAPABILITY_LIST;
480 	case PCI_HEADER_TYPE_CARDBUS:
481 		return PCI_CB_CAPABILITY_LIST;
482 	}
483 
484 	return 0;
485 }
486 
487 /**
488  * pci_find_capability - query for devices' capabilities
489  * @dev: PCI device to query
490  * @cap: capability code
491  *
492  * Tell if a device supports a given PCI capability.
493  * Returns the address of the requested capability structure within the
494  * device's PCI configuration space or 0 in case the device does not
495  * support it.  Possible values for @cap include:
496  *
497  *  %PCI_CAP_ID_PM           Power Management
498  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
499  *  %PCI_CAP_ID_VPD          Vital Product Data
500  *  %PCI_CAP_ID_SLOTID       Slot Identification
501  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
502  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
503  *  %PCI_CAP_ID_PCIX         PCI-X
504  *  %PCI_CAP_ID_EXP          PCI Express
505  */
506 u8 pci_find_capability(struct pci_dev *dev, int cap)
507 {
508 	u8 pos;
509 
510 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511 	if (pos)
512 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
513 
514 	return pos;
515 }
516 EXPORT_SYMBOL(pci_find_capability);
517 
518 /**
519  * pci_bus_find_capability - query for devices' capabilities
520  * @bus: the PCI bus to query
521  * @devfn: PCI device to query
522  * @cap: capability code
523  *
524  * Like pci_find_capability() but works for PCI devices that do not have a
525  * pci_dev structure set up yet.
526  *
527  * Returns the address of the requested capability structure within the
528  * device's PCI configuration space or 0 in case the device does not
529  * support it.
530  */
531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532 {
533 	u8 hdr_type, pos;
534 
535 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536 
537 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
538 	if (pos)
539 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
540 
541 	return pos;
542 }
543 EXPORT_SYMBOL(pci_bus_find_capability);
544 
545 /**
546  * pci_find_next_ext_capability - Find an extended capability
547  * @dev: PCI device to query
548  * @start: address at which to start looking (0 to start at beginning of list)
549  * @cap: capability code
550  *
551  * Returns the address of the next matching extended capability structure
552  * within the device's PCI configuration space or 0 if the device does
553  * not support it.  Some capabilities can occur several times, e.g., the
554  * vendor-specific capability, and this provides a way to find them all.
555  */
556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557 {
558 	u32 header;
559 	int ttl;
560 	u16 pos = PCI_CFG_SPACE_SIZE;
561 
562 	/* minimum 8 bytes per capability */
563 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564 
565 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566 		return 0;
567 
568 	if (start)
569 		pos = start;
570 
571 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
572 		return 0;
573 
574 	/*
575 	 * If we have no capabilities, this is indicated by cap ID,
576 	 * cap version and next pointer all being 0.
577 	 */
578 	if (header == 0)
579 		return 0;
580 
581 	while (ttl-- > 0) {
582 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583 			return pos;
584 
585 		pos = PCI_EXT_CAP_NEXT(header);
586 		if (pos < PCI_CFG_SPACE_SIZE)
587 			break;
588 
589 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
590 			break;
591 	}
592 
593 	return 0;
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596 
597 /**
598  * pci_find_ext_capability - Find an extended capability
599  * @dev: PCI device to query
600  * @cap: capability code
601  *
602  * Returns the address of the requested extended capability structure
603  * within the device's PCI configuration space or 0 if the device does
604  * not support it.  Possible values for @cap include:
605  *
606  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
607  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
608  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
609  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
610  */
611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612 {
613 	return pci_find_next_ext_capability(dev, 0, cap);
614 }
615 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616 
617 /**
618  * pci_get_dsn - Read and return the 8-byte Device Serial Number
619  * @dev: PCI device to query
620  *
621  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622  * Number.
623  *
624  * Returns the DSN, or zero if the capability does not exist.
625  */
626 u64 pci_get_dsn(struct pci_dev *dev)
627 {
628 	u32 dword;
629 	u64 dsn;
630 	int pos;
631 
632 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633 	if (!pos)
634 		return 0;
635 
636 	/*
637 	 * The Device Serial Number is two dwords offset 4 bytes from the
638 	 * capability position. The specification says that the first dword is
639 	 * the lower half, and the second dword is the upper half.
640 	 */
641 	pos += 4;
642 	pci_read_config_dword(dev, pos, &dword);
643 	dsn = (u64)dword;
644 	pci_read_config_dword(dev, pos + 4, &dword);
645 	dsn |= ((u64)dword) << 32;
646 
647 	return dsn;
648 }
649 EXPORT_SYMBOL_GPL(pci_get_dsn);
650 
651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652 {
653 	int rc, ttl = PCI_FIND_CAP_TTL;
654 	u8 cap, mask;
655 
656 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 		mask = HT_3BIT_CAP_MASK;
658 	else
659 		mask = HT_5BIT_CAP_MASK;
660 
661 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 				      PCI_CAP_ID_HT, &ttl);
663 	while (pos) {
664 		rc = pci_read_config_byte(dev, pos + 3, &cap);
665 		if (rc != PCIBIOS_SUCCESSFUL)
666 			return 0;
667 
668 		if ((cap & mask) == ht_cap)
669 			return pos;
670 
671 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 					      pos + PCI_CAP_LIST_NEXT,
673 					      PCI_CAP_ID_HT, &ttl);
674 	}
675 
676 	return 0;
677 }
678 
679 /**
680  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681  * @dev: PCI device to query
682  * @pos: Position from which to continue searching
683  * @ht_cap: HyperTransport capability code
684  *
685  * To be used in conjunction with pci_find_ht_capability() to search for
686  * all capabilities matching @ht_cap. @pos should always be a value returned
687  * from pci_find_ht_capability().
688  *
689  * NB. To be 100% safe against broken PCI devices, the caller should take
690  * steps to avoid an infinite loop.
691  */
692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693 {
694 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695 }
696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697 
698 /**
699  * pci_find_ht_capability - query a device's HyperTransport capabilities
700  * @dev: PCI device to query
701  * @ht_cap: HyperTransport capability code
702  *
703  * Tell if a device supports a given HyperTransport capability.
704  * Returns an address within the device's PCI configuration space
705  * or 0 in case the device does not support the request capability.
706  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707  * which has a HyperTransport capability matching @ht_cap.
708  */
709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710 {
711 	u8 pos;
712 
713 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714 	if (pos)
715 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716 
717 	return pos;
718 }
719 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720 
721 /**
722  * pci_find_vsec_capability - Find a vendor-specific extended capability
723  * @dev: PCI device to query
724  * @vendor: Vendor ID for which capability is defined
725  * @cap: Vendor-specific capability ID
726  *
727  * If @dev has Vendor ID @vendor, search for a VSEC capability with
728  * VSEC ID @cap. If found, return the capability offset in
729  * config space; otherwise return 0.
730  */
731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732 {
733 	u16 vsec = 0;
734 	u32 header;
735 	int ret;
736 
737 	if (vendor != dev->vendor)
738 		return 0;
739 
740 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
741 						     PCI_EXT_CAP_ID_VNDR))) {
742 		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
743 		if (ret != PCIBIOS_SUCCESSFUL)
744 			continue;
745 
746 		if (PCI_VNDR_HEADER_ID(header) == cap)
747 			return vsec;
748 	}
749 
750 	return 0;
751 }
752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
753 
754 /**
755  * pci_find_dvsec_capability - Find DVSEC for vendor
756  * @dev: PCI device to query
757  * @vendor: Vendor ID to match for the DVSEC
758  * @dvsec: Designated Vendor-specific capability ID
759  *
760  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
761  * offset in config space; otherwise return 0.
762  */
763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
764 {
765 	int pos;
766 
767 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
768 	if (!pos)
769 		return 0;
770 
771 	while (pos) {
772 		u16 v, id;
773 
774 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
775 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
776 		if (vendor == v && dvsec == id)
777 			return pos;
778 
779 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
780 	}
781 
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
785 
786 /**
787  * pci_find_parent_resource - return resource region of parent bus of given
788  *			      region
789  * @dev: PCI device structure contains resources to be searched
790  * @res: child resource record for which parent is sought
791  *
792  * For given resource region of given device, return the resource region of
793  * parent bus the given region is contained in.
794  */
795 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
796 					  struct resource *res)
797 {
798 	const struct pci_bus *bus = dev->bus;
799 	struct resource *r;
800 
801 	pci_bus_for_each_resource(bus, r) {
802 		if (!r)
803 			continue;
804 		if (resource_contains(r, res)) {
805 
806 			/*
807 			 * If the window is prefetchable but the BAR is
808 			 * not, the allocator made a mistake.
809 			 */
810 			if (r->flags & IORESOURCE_PREFETCH &&
811 			    !(res->flags & IORESOURCE_PREFETCH))
812 				return NULL;
813 
814 			/*
815 			 * If we're below a transparent bridge, there may
816 			 * be both a positively-decoded aperture and a
817 			 * subtractively-decoded region that contain the BAR.
818 			 * We want the positively-decoded one, so this depends
819 			 * on pci_bus_for_each_resource() giving us those
820 			 * first.
821 			 */
822 			return r;
823 		}
824 	}
825 	return NULL;
826 }
827 EXPORT_SYMBOL(pci_find_parent_resource);
828 
829 /**
830  * pci_find_resource - Return matching PCI device resource
831  * @dev: PCI device to query
832  * @res: Resource to look for
833  *
834  * Goes over standard PCI resources (BARs) and checks if the given resource
835  * is partially or fully contained in any of them. In that case the
836  * matching resource is returned, %NULL otherwise.
837  */
838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
839 {
840 	int i;
841 
842 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
843 		struct resource *r = &dev->resource[i];
844 
845 		if (r->start && resource_contains(r, res))
846 			return r;
847 	}
848 
849 	return NULL;
850 }
851 EXPORT_SYMBOL(pci_find_resource);
852 
853 /**
854  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
855  * @dev: the PCI device to operate on
856  * @pos: config space offset of status word
857  * @mask: mask of bit(s) to care about in status word
858  *
859  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
860  */
861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
862 {
863 	int i;
864 
865 	/* Wait for Transaction Pending bit clean */
866 	for (i = 0; i < 4; i++) {
867 		u16 status;
868 		if (i)
869 			msleep((1 << (i - 1)) * 100);
870 
871 		pci_read_config_word(dev, pos, &status);
872 		if (!(status & mask))
873 			return 1;
874 	}
875 
876 	return 0;
877 }
878 
879 static int pci_acs_enable;
880 
881 /**
882  * pci_request_acs - ask for ACS to be enabled if supported
883  */
884 void pci_request_acs(void)
885 {
886 	pci_acs_enable = 1;
887 }
888 
889 static const char *disable_acs_redir_param;
890 
891 /**
892  * pci_disable_acs_redir - disable ACS redirect capabilities
893  * @dev: the PCI device
894  *
895  * For only devices specified in the disable_acs_redir parameter.
896  */
897 static void pci_disable_acs_redir(struct pci_dev *dev)
898 {
899 	int ret = 0;
900 	const char *p;
901 	int pos;
902 	u16 ctrl;
903 
904 	if (!disable_acs_redir_param)
905 		return;
906 
907 	p = disable_acs_redir_param;
908 	while (*p) {
909 		ret = pci_dev_str_match(dev, p, &p);
910 		if (ret < 0) {
911 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
912 				     disable_acs_redir_param);
913 
914 			break;
915 		} else if (ret == 1) {
916 			/* Found a match */
917 			break;
918 		}
919 
920 		if (*p != ';' && *p != ',') {
921 			/* End of param or invalid format */
922 			break;
923 		}
924 		p++;
925 	}
926 
927 	if (ret != 1)
928 		return;
929 
930 	if (!pci_dev_specific_disable_acs_redir(dev))
931 		return;
932 
933 	pos = dev->acs_cap;
934 	if (!pos) {
935 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
936 		return;
937 	}
938 
939 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
940 
941 	/* P2P Request & Completion Redirect */
942 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
943 
944 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
945 
946 	pci_info(dev, "disabled ACS redirect\n");
947 }
948 
949 /**
950  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
951  * @dev: the PCI device
952  */
953 static void pci_std_enable_acs(struct pci_dev *dev)
954 {
955 	int pos;
956 	u16 cap;
957 	u16 ctrl;
958 
959 	pos = dev->acs_cap;
960 	if (!pos)
961 		return;
962 
963 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
964 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
965 
966 	/* Source Validation */
967 	ctrl |= (cap & PCI_ACS_SV);
968 
969 	/* P2P Request Redirect */
970 	ctrl |= (cap & PCI_ACS_RR);
971 
972 	/* P2P Completion Redirect */
973 	ctrl |= (cap & PCI_ACS_CR);
974 
975 	/* Upstream Forwarding */
976 	ctrl |= (cap & PCI_ACS_UF);
977 
978 	/* Enable Translation Blocking for external devices and noats */
979 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
980 		ctrl |= (cap & PCI_ACS_TB);
981 
982 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
983 }
984 
985 /**
986  * pci_enable_acs - enable ACS if hardware support it
987  * @dev: the PCI device
988  */
989 static void pci_enable_acs(struct pci_dev *dev)
990 {
991 	if (!pci_acs_enable)
992 		goto disable_acs_redir;
993 
994 	if (!pci_dev_specific_enable_acs(dev))
995 		goto disable_acs_redir;
996 
997 	pci_std_enable_acs(dev);
998 
999 disable_acs_redir:
1000 	/*
1001 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
1002 	 * enabled by the kernel because it may have been enabled by
1003 	 * platform firmware.  So if we are told to disable it, we should
1004 	 * always disable it after setting the kernel's default
1005 	 * preferences.
1006 	 */
1007 	pci_disable_acs_redir(dev);
1008 }
1009 
1010 /**
1011  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1012  * @dev: PCI device to have its BARs restored
1013  *
1014  * Restore the BAR values for a given device, so as to make it
1015  * accessible by its driver.
1016  */
1017 static void pci_restore_bars(struct pci_dev *dev)
1018 {
1019 	int i;
1020 
1021 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1022 		pci_update_resource(dev, i);
1023 }
1024 
1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1026 {
1027 	if (pci_use_mid_pm())
1028 		return true;
1029 
1030 	return acpi_pci_power_manageable(dev);
1031 }
1032 
1033 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1034 					       pci_power_t t)
1035 {
1036 	if (pci_use_mid_pm())
1037 		return mid_pci_set_power_state(dev, t);
1038 
1039 	return acpi_pci_set_power_state(dev, t);
1040 }
1041 
1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1043 {
1044 	if (pci_use_mid_pm())
1045 		return mid_pci_get_power_state(dev);
1046 
1047 	return acpi_pci_get_power_state(dev);
1048 }
1049 
1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1051 {
1052 	if (!pci_use_mid_pm())
1053 		acpi_pci_refresh_power_state(dev);
1054 }
1055 
1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1057 {
1058 	if (pci_use_mid_pm())
1059 		return PCI_POWER_ERROR;
1060 
1061 	return acpi_pci_choose_state(dev);
1062 }
1063 
1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1065 {
1066 	if (pci_use_mid_pm())
1067 		return PCI_POWER_ERROR;
1068 
1069 	return acpi_pci_wakeup(dev, enable);
1070 }
1071 
1072 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1073 {
1074 	if (pci_use_mid_pm())
1075 		return false;
1076 
1077 	return acpi_pci_need_resume(dev);
1078 }
1079 
1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1081 {
1082 	if (pci_use_mid_pm())
1083 		return false;
1084 
1085 	return acpi_pci_bridge_d3(dev);
1086 }
1087 
1088 /**
1089  * pci_update_current_state - Read power state of given device and cache it
1090  * @dev: PCI device to handle.
1091  * @state: State to cache in case the device doesn't have the PM capability
1092  *
1093  * The power state is read from the PMCSR register, which however is
1094  * inaccessible in D3cold.  The platform firmware is therefore queried first
1095  * to detect accessibility of the register.  In case the platform firmware
1096  * reports an incorrect state or the device isn't power manageable by the
1097  * platform at all, we try to detect D3cold by testing accessibility of the
1098  * vendor ID in config space.
1099  */
1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1101 {
1102 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1103 		dev->current_state = PCI_D3cold;
1104 	} else if (dev->pm_cap) {
1105 		u16 pmcsr;
1106 
1107 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1108 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1109 			dev->current_state = PCI_D3cold;
1110 			return;
1111 		}
1112 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1113 	} else {
1114 		dev->current_state = state;
1115 	}
1116 }
1117 
1118 /**
1119  * pci_refresh_power_state - Refresh the given device's power state data
1120  * @dev: Target PCI device.
1121  *
1122  * Ask the platform to refresh the devices power state information and invoke
1123  * pci_update_current_state() to update its current PCI power state.
1124  */
1125 void pci_refresh_power_state(struct pci_dev *dev)
1126 {
1127 	platform_pci_refresh_power_state(dev);
1128 	pci_update_current_state(dev, dev->current_state);
1129 }
1130 
1131 /**
1132  * pci_platform_power_transition - Use platform to change device power state
1133  * @dev: PCI device to handle.
1134  * @state: State to put the device into.
1135  */
1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1137 {
1138 	int error;
1139 
1140 	error = platform_pci_set_power_state(dev, state);
1141 	if (!error)
1142 		pci_update_current_state(dev, state);
1143 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1144 		dev->current_state = PCI_D0;
1145 
1146 	return error;
1147 }
1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1149 
1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1151 {
1152 	pm_request_resume(&pci_dev->dev);
1153 	return 0;
1154 }
1155 
1156 /**
1157  * pci_resume_bus - Walk given bus and runtime resume devices on it
1158  * @bus: Top bus of the subtree to walk.
1159  */
1160 void pci_resume_bus(struct pci_bus *bus)
1161 {
1162 	if (bus)
1163 		pci_walk_bus(bus, pci_resume_one, NULL);
1164 }
1165 
1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1167 {
1168 	int delay = 1;
1169 	bool retrain = false;
1170 	struct pci_dev *bridge;
1171 
1172 	if (pci_is_pcie(dev)) {
1173 		bridge = pci_upstream_bridge(dev);
1174 		if (bridge)
1175 			retrain = true;
1176 	}
1177 
1178 	/*
1179 	 * After reset, the device should not silently discard config
1180 	 * requests, but it may still indicate that it needs more time by
1181 	 * responding to them with CRS completions.  The Root Port will
1182 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1183 	 * the read (except when CRS SV is enabled and the read was for the
1184 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1185 	 *
1186 	 * Wait for the device to return a non-CRS completion.  Read the
1187 	 * Command register instead of Vendor ID so we don't have to
1188 	 * contend with the CRS SV value.
1189 	 */
1190 	for (;;) {
1191 		u32 id;
1192 
1193 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1194 		if (!PCI_POSSIBLE_ERROR(id))
1195 			break;
1196 
1197 		if (delay > timeout) {
1198 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1199 				 delay - 1, reset_type);
1200 			return -ENOTTY;
1201 		}
1202 
1203 		if (delay > PCI_RESET_WAIT) {
1204 			if (retrain) {
1205 				retrain = false;
1206 				if (pcie_failed_link_retrain(bridge)) {
1207 					delay = 1;
1208 					continue;
1209 				}
1210 			}
1211 			pci_info(dev, "not ready %dms after %s; waiting\n",
1212 				 delay - 1, reset_type);
1213 		}
1214 
1215 		msleep(delay);
1216 		delay *= 2;
1217 	}
1218 
1219 	if (delay > PCI_RESET_WAIT)
1220 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1221 			 reset_type);
1222 
1223 	return 0;
1224 }
1225 
1226 /**
1227  * pci_power_up - Put the given device into D0
1228  * @dev: PCI device to power up
1229  *
1230  * On success, return 0 or 1, depending on whether or not it is necessary to
1231  * restore the device's BARs subsequently (1 is returned in that case).
1232  *
1233  * On failure, return a negative error code.  Always return failure if @dev
1234  * lacks a Power Management Capability, even if the platform was able to
1235  * put the device in D0 via non-PCI means.
1236  */
1237 int pci_power_up(struct pci_dev *dev)
1238 {
1239 	bool need_restore;
1240 	pci_power_t state;
1241 	u16 pmcsr;
1242 
1243 	platform_pci_set_power_state(dev, PCI_D0);
1244 
1245 	if (!dev->pm_cap) {
1246 		state = platform_pci_get_power_state(dev);
1247 		if (state == PCI_UNKNOWN)
1248 			dev->current_state = PCI_D0;
1249 		else
1250 			dev->current_state = state;
1251 
1252 		return -EIO;
1253 	}
1254 
1255 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1256 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1257 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1258 			pci_power_name(dev->current_state));
1259 		dev->current_state = PCI_D3cold;
1260 		return -EIO;
1261 	}
1262 
1263 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1264 
1265 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1266 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1267 
1268 	if (state == PCI_D0)
1269 		goto end;
1270 
1271 	/*
1272 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1273 	 * PME_En, and sets PowerState to 0.
1274 	 */
1275 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1276 
1277 	/* Mandatory transition delays; see PCI PM 1.2. */
1278 	if (state == PCI_D3hot)
1279 		pci_dev_d3_sleep(dev);
1280 	else if (state == PCI_D2)
1281 		udelay(PCI_PM_D2_DELAY);
1282 
1283 end:
1284 	dev->current_state = PCI_D0;
1285 	if (need_restore)
1286 		return 1;
1287 
1288 	return 0;
1289 }
1290 
1291 /**
1292  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1293  * @dev: PCI device to power up
1294  *
1295  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1296  * to confirm the state change, restore its BARs if they might be lost and
1297  * reconfigure ASPM in accordance with the new power state.
1298  *
1299  * If pci_restore_state() is going to be called right after a power state change
1300  * to D0, it is more efficient to use pci_power_up() directly instead of this
1301  * function.
1302  */
1303 static int pci_set_full_power_state(struct pci_dev *dev)
1304 {
1305 	u16 pmcsr;
1306 	int ret;
1307 
1308 	ret = pci_power_up(dev);
1309 	if (ret < 0) {
1310 		if (dev->current_state == PCI_D0)
1311 			return 0;
1312 
1313 		return ret;
1314 	}
1315 
1316 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1317 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1318 	if (dev->current_state != PCI_D0) {
1319 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1320 				     pci_power_name(dev->current_state));
1321 	} else if (ret > 0) {
1322 		/*
1323 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1324 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1325 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1326 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1327 		 * For example, at least some versions of the 3c905B and the
1328 		 * 3c556B exhibit this behaviour.
1329 		 *
1330 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1331 		 * devices in a D3hot state at boot.  Consequently, we need to
1332 		 * restore at least the BARs so that the device will be
1333 		 * accessible to its driver.
1334 		 */
1335 		pci_restore_bars(dev);
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 /**
1342  * __pci_dev_set_current_state - Set current state of a PCI device
1343  * @dev: Device to handle
1344  * @data: pointer to state to be set
1345  */
1346 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1347 {
1348 	pci_power_t state = *(pci_power_t *)data;
1349 
1350 	dev->current_state = state;
1351 	return 0;
1352 }
1353 
1354 /**
1355  * pci_bus_set_current_state - Walk given bus and set current state of devices
1356  * @bus: Top bus of the subtree to walk.
1357  * @state: state to be set
1358  */
1359 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1360 {
1361 	if (bus)
1362 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1363 }
1364 
1365 /**
1366  * pci_set_low_power_state - Put a PCI device into a low-power state.
1367  * @dev: PCI device to handle.
1368  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1369  *
1370  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1371  *
1372  * RETURN VALUE:
1373  * -EINVAL if the requested state is invalid.
1374  * -EIO if device does not support PCI PM or its PM capabilities register has a
1375  * wrong version, or device doesn't support the requested state.
1376  * 0 if device already is in the requested state.
1377  * 0 if device's power state has been successfully changed.
1378  */
1379 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1380 {
1381 	u16 pmcsr;
1382 
1383 	if (!dev->pm_cap)
1384 		return -EIO;
1385 
1386 	/*
1387 	 * Validate transition: We can enter D0 from any state, but if
1388 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1389 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1390 	 * we'd have to go from D3 to D0, then to D1.
1391 	 */
1392 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1393 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1394 			pci_power_name(dev->current_state),
1395 			pci_power_name(state));
1396 		return -EINVAL;
1397 	}
1398 
1399 	/* Check if this device supports the desired state */
1400 	if ((state == PCI_D1 && !dev->d1_support)
1401 	   || (state == PCI_D2 && !dev->d2_support))
1402 		return -EIO;
1403 
1404 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1405 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1406 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1407 			pci_power_name(dev->current_state),
1408 			pci_power_name(state));
1409 		dev->current_state = PCI_D3cold;
1410 		return -EIO;
1411 	}
1412 
1413 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1414 	pmcsr |= state;
1415 
1416 	/* Enter specified state */
1417 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1418 
1419 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1420 	if (state == PCI_D3hot)
1421 		pci_dev_d3_sleep(dev);
1422 	else if (state == PCI_D2)
1423 		udelay(PCI_PM_D2_DELAY);
1424 
1425 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1426 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1427 	if (dev->current_state != state)
1428 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1429 				     pci_power_name(dev->current_state),
1430 				     pci_power_name(state));
1431 
1432 	return 0;
1433 }
1434 
1435 /**
1436  * pci_set_power_state - Set the power state of a PCI device
1437  * @dev: PCI device to handle.
1438  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1439  *
1440  * Transition a device to a new power state, using the platform firmware and/or
1441  * the device's PCI PM registers.
1442  *
1443  * RETURN VALUE:
1444  * -EINVAL if the requested state is invalid.
1445  * -EIO if device does not support PCI PM or its PM capabilities register has a
1446  * wrong version, or device doesn't support the requested state.
1447  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1448  * 0 if device already is in the requested state.
1449  * 0 if the transition is to D3 but D3 is not supported.
1450  * 0 if device's power state has been successfully changed.
1451  */
1452 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1453 {
1454 	int error;
1455 
1456 	/* Bound the state we're entering */
1457 	if (state > PCI_D3cold)
1458 		state = PCI_D3cold;
1459 	else if (state < PCI_D0)
1460 		state = PCI_D0;
1461 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1462 
1463 		/*
1464 		 * If the device or the parent bridge do not support PCI
1465 		 * PM, ignore the request if we're doing anything other
1466 		 * than putting it into D0 (which would only happen on
1467 		 * boot).
1468 		 */
1469 		return 0;
1470 
1471 	/* Check if we're already there */
1472 	if (dev->current_state == state)
1473 		return 0;
1474 
1475 	if (state == PCI_D0)
1476 		return pci_set_full_power_state(dev);
1477 
1478 	/*
1479 	 * This device is quirked not to be put into D3, so don't put it in
1480 	 * D3
1481 	 */
1482 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1483 		return 0;
1484 
1485 	if (state == PCI_D3cold) {
1486 		/*
1487 		 * To put the device in D3cold, put it into D3hot in the native
1488 		 * way, then put it into D3cold using platform ops.
1489 		 */
1490 		error = pci_set_low_power_state(dev, PCI_D3hot);
1491 
1492 		if (pci_platform_power_transition(dev, PCI_D3cold))
1493 			return error;
1494 
1495 		/* Powering off a bridge may power off the whole hierarchy */
1496 		if (dev->current_state == PCI_D3cold)
1497 			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1498 	} else {
1499 		error = pci_set_low_power_state(dev, state);
1500 
1501 		if (pci_platform_power_transition(dev, state))
1502 			return error;
1503 	}
1504 
1505 	return 0;
1506 }
1507 EXPORT_SYMBOL(pci_set_power_state);
1508 
1509 #define PCI_EXP_SAVE_REGS	7
1510 
1511 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1512 						       u16 cap, bool extended)
1513 {
1514 	struct pci_cap_saved_state *tmp;
1515 
1516 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1517 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1518 			return tmp;
1519 	}
1520 	return NULL;
1521 }
1522 
1523 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1524 {
1525 	return _pci_find_saved_cap(dev, cap, false);
1526 }
1527 
1528 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1529 {
1530 	return _pci_find_saved_cap(dev, cap, true);
1531 }
1532 
1533 static int pci_save_pcie_state(struct pci_dev *dev)
1534 {
1535 	int i = 0;
1536 	struct pci_cap_saved_state *save_state;
1537 	u16 *cap;
1538 
1539 	if (!pci_is_pcie(dev))
1540 		return 0;
1541 
1542 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1543 	if (!save_state) {
1544 		pci_err(dev, "buffer not found in %s\n", __func__);
1545 		return -ENOMEM;
1546 	}
1547 
1548 	cap = (u16 *)&save_state->cap.data[0];
1549 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1550 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1551 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1552 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1553 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1554 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1555 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1556 
1557 	return 0;
1558 }
1559 
1560 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1561 {
1562 #ifdef CONFIG_PCIEASPM
1563 	struct pci_dev *bridge;
1564 	u32 ctl;
1565 
1566 	bridge = pci_upstream_bridge(dev);
1567 	if (bridge && bridge->ltr_path) {
1568 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1569 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1570 			pci_dbg(bridge, "re-enabling LTR\n");
1571 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1572 						 PCI_EXP_DEVCTL2_LTR_EN);
1573 		}
1574 	}
1575 #endif
1576 }
1577 
1578 static void pci_restore_pcie_state(struct pci_dev *dev)
1579 {
1580 	int i = 0;
1581 	struct pci_cap_saved_state *save_state;
1582 	u16 *cap;
1583 
1584 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1585 	if (!save_state)
1586 		return;
1587 
1588 	/*
1589 	 * Downstream ports reset the LTR enable bit when link goes down.
1590 	 * Check and re-configure the bit here before restoring device.
1591 	 * PCIe r5.0, sec 7.5.3.16.
1592 	 */
1593 	pci_bridge_reconfigure_ltr(dev);
1594 
1595 	cap = (u16 *)&save_state->cap.data[0];
1596 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1597 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1598 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1599 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1600 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1601 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1602 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1603 }
1604 
1605 static int pci_save_pcix_state(struct pci_dev *dev)
1606 {
1607 	int pos;
1608 	struct pci_cap_saved_state *save_state;
1609 
1610 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1611 	if (!pos)
1612 		return 0;
1613 
1614 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1615 	if (!save_state) {
1616 		pci_err(dev, "buffer not found in %s\n", __func__);
1617 		return -ENOMEM;
1618 	}
1619 
1620 	pci_read_config_word(dev, pos + PCI_X_CMD,
1621 			     (u16 *)save_state->cap.data);
1622 
1623 	return 0;
1624 }
1625 
1626 static void pci_restore_pcix_state(struct pci_dev *dev)
1627 {
1628 	int i = 0, pos;
1629 	struct pci_cap_saved_state *save_state;
1630 	u16 *cap;
1631 
1632 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1633 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1634 	if (!save_state || !pos)
1635 		return;
1636 	cap = (u16 *)&save_state->cap.data[0];
1637 
1638 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1639 }
1640 
1641 static void pci_save_ltr_state(struct pci_dev *dev)
1642 {
1643 	int ltr;
1644 	struct pci_cap_saved_state *save_state;
1645 	u32 *cap;
1646 
1647 	if (!pci_is_pcie(dev))
1648 		return;
1649 
1650 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1651 	if (!ltr)
1652 		return;
1653 
1654 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1655 	if (!save_state) {
1656 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1657 		return;
1658 	}
1659 
1660 	/* Some broken devices only support dword access to LTR */
1661 	cap = &save_state->cap.data[0];
1662 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1663 }
1664 
1665 static void pci_restore_ltr_state(struct pci_dev *dev)
1666 {
1667 	struct pci_cap_saved_state *save_state;
1668 	int ltr;
1669 	u32 *cap;
1670 
1671 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1672 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1673 	if (!save_state || !ltr)
1674 		return;
1675 
1676 	/* Some broken devices only support dword access to LTR */
1677 	cap = &save_state->cap.data[0];
1678 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1679 }
1680 
1681 /**
1682  * pci_save_state - save the PCI configuration space of a device before
1683  *		    suspending
1684  * @dev: PCI device that we're dealing with
1685  */
1686 int pci_save_state(struct pci_dev *dev)
1687 {
1688 	int i;
1689 	/* XXX: 100% dword access ok here? */
1690 	for (i = 0; i < 16; i++) {
1691 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1692 		pci_dbg(dev, "save config %#04x: %#010x\n",
1693 			i * 4, dev->saved_config_space[i]);
1694 	}
1695 	dev->state_saved = true;
1696 
1697 	i = pci_save_pcie_state(dev);
1698 	if (i != 0)
1699 		return i;
1700 
1701 	i = pci_save_pcix_state(dev);
1702 	if (i != 0)
1703 		return i;
1704 
1705 	pci_save_ltr_state(dev);
1706 	pci_save_dpc_state(dev);
1707 	pci_save_aer_state(dev);
1708 	pci_save_ptm_state(dev);
1709 	return pci_save_vc_state(dev);
1710 }
1711 EXPORT_SYMBOL(pci_save_state);
1712 
1713 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1714 				     u32 saved_val, int retry, bool force)
1715 {
1716 	u32 val;
1717 
1718 	pci_read_config_dword(pdev, offset, &val);
1719 	if (!force && val == saved_val)
1720 		return;
1721 
1722 	for (;;) {
1723 		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1724 			offset, val, saved_val);
1725 		pci_write_config_dword(pdev, offset, saved_val);
1726 		if (retry-- <= 0)
1727 			return;
1728 
1729 		pci_read_config_dword(pdev, offset, &val);
1730 		if (val == saved_val)
1731 			return;
1732 
1733 		mdelay(1);
1734 	}
1735 }
1736 
1737 static void pci_restore_config_space_range(struct pci_dev *pdev,
1738 					   int start, int end, int retry,
1739 					   bool force)
1740 {
1741 	int index;
1742 
1743 	for (index = end; index >= start; index--)
1744 		pci_restore_config_dword(pdev, 4 * index,
1745 					 pdev->saved_config_space[index],
1746 					 retry, force);
1747 }
1748 
1749 static void pci_restore_config_space(struct pci_dev *pdev)
1750 {
1751 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1752 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1753 		/* Restore BARs before the command register. */
1754 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1755 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1756 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1757 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1758 
1759 		/*
1760 		 * Force rewriting of prefetch registers to avoid S3 resume
1761 		 * issues on Intel PCI bridges that occur when these
1762 		 * registers are not explicitly written.
1763 		 */
1764 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1765 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1766 	} else {
1767 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1768 	}
1769 }
1770 
1771 static void pci_restore_rebar_state(struct pci_dev *pdev)
1772 {
1773 	unsigned int pos, nbars, i;
1774 	u32 ctrl;
1775 
1776 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1777 	if (!pos)
1778 		return;
1779 
1780 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1781 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1782 
1783 	for (i = 0; i < nbars; i++, pos += 8) {
1784 		struct resource *res;
1785 		int bar_idx, size;
1786 
1787 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1788 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1789 		res = pdev->resource + bar_idx;
1790 		size = pci_rebar_bytes_to_size(resource_size(res));
1791 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1792 		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1793 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1794 	}
1795 }
1796 
1797 /**
1798  * pci_restore_state - Restore the saved state of a PCI device
1799  * @dev: PCI device that we're dealing with
1800  */
1801 void pci_restore_state(struct pci_dev *dev)
1802 {
1803 	if (!dev->state_saved)
1804 		return;
1805 
1806 	/*
1807 	 * Restore max latencies (in the LTR capability) before enabling
1808 	 * LTR itself (in the PCIe capability).
1809 	 */
1810 	pci_restore_ltr_state(dev);
1811 
1812 	pci_restore_pcie_state(dev);
1813 	pci_restore_pasid_state(dev);
1814 	pci_restore_pri_state(dev);
1815 	pci_restore_ats_state(dev);
1816 	pci_restore_vc_state(dev);
1817 	pci_restore_rebar_state(dev);
1818 	pci_restore_dpc_state(dev);
1819 	pci_restore_ptm_state(dev);
1820 
1821 	pci_aer_clear_status(dev);
1822 	pci_restore_aer_state(dev);
1823 
1824 	pci_restore_config_space(dev);
1825 
1826 	pci_restore_pcix_state(dev);
1827 	pci_restore_msi_state(dev);
1828 
1829 	/* Restore ACS and IOV configuration state */
1830 	pci_enable_acs(dev);
1831 	pci_restore_iov_state(dev);
1832 
1833 	dev->state_saved = false;
1834 }
1835 EXPORT_SYMBOL(pci_restore_state);
1836 
1837 struct pci_saved_state {
1838 	u32 config_space[16];
1839 	struct pci_cap_saved_data cap[];
1840 };
1841 
1842 /**
1843  * pci_store_saved_state - Allocate and return an opaque struct containing
1844  *			   the device saved state.
1845  * @dev: PCI device that we're dealing with
1846  *
1847  * Return NULL if no state or error.
1848  */
1849 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1850 {
1851 	struct pci_saved_state *state;
1852 	struct pci_cap_saved_state *tmp;
1853 	struct pci_cap_saved_data *cap;
1854 	size_t size;
1855 
1856 	if (!dev->state_saved)
1857 		return NULL;
1858 
1859 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1860 
1861 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1862 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1863 
1864 	state = kzalloc(size, GFP_KERNEL);
1865 	if (!state)
1866 		return NULL;
1867 
1868 	memcpy(state->config_space, dev->saved_config_space,
1869 	       sizeof(state->config_space));
1870 
1871 	cap = state->cap;
1872 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1873 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1874 		memcpy(cap, &tmp->cap, len);
1875 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1876 	}
1877 	/* Empty cap_save terminates list */
1878 
1879 	return state;
1880 }
1881 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1882 
1883 /**
1884  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1885  * @dev: PCI device that we're dealing with
1886  * @state: Saved state returned from pci_store_saved_state()
1887  */
1888 int pci_load_saved_state(struct pci_dev *dev,
1889 			 struct pci_saved_state *state)
1890 {
1891 	struct pci_cap_saved_data *cap;
1892 
1893 	dev->state_saved = false;
1894 
1895 	if (!state)
1896 		return 0;
1897 
1898 	memcpy(dev->saved_config_space, state->config_space,
1899 	       sizeof(state->config_space));
1900 
1901 	cap = state->cap;
1902 	while (cap->size) {
1903 		struct pci_cap_saved_state *tmp;
1904 
1905 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1906 		if (!tmp || tmp->cap.size != cap->size)
1907 			return -EINVAL;
1908 
1909 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1910 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1911 		       sizeof(struct pci_cap_saved_data) + cap->size);
1912 	}
1913 
1914 	dev->state_saved = true;
1915 	return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1918 
1919 /**
1920  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1921  *				   and free the memory allocated for it.
1922  * @dev: PCI device that we're dealing with
1923  * @state: Pointer to saved state returned from pci_store_saved_state()
1924  */
1925 int pci_load_and_free_saved_state(struct pci_dev *dev,
1926 				  struct pci_saved_state **state)
1927 {
1928 	int ret = pci_load_saved_state(dev, *state);
1929 	kfree(*state);
1930 	*state = NULL;
1931 	return ret;
1932 }
1933 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1934 
1935 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1936 {
1937 	return pci_enable_resources(dev, bars);
1938 }
1939 
1940 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1941 {
1942 	int err;
1943 	struct pci_dev *bridge;
1944 	u16 cmd;
1945 	u8 pin;
1946 
1947 	err = pci_set_power_state(dev, PCI_D0);
1948 	if (err < 0 && err != -EIO)
1949 		return err;
1950 
1951 	bridge = pci_upstream_bridge(dev);
1952 	if (bridge)
1953 		pcie_aspm_powersave_config_link(bridge);
1954 
1955 	err = pcibios_enable_device(dev, bars);
1956 	if (err < 0)
1957 		return err;
1958 	pci_fixup_device(pci_fixup_enable, dev);
1959 
1960 	if (dev->msi_enabled || dev->msix_enabled)
1961 		return 0;
1962 
1963 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1964 	if (pin) {
1965 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1966 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1967 			pci_write_config_word(dev, PCI_COMMAND,
1968 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1969 	}
1970 
1971 	return 0;
1972 }
1973 
1974 /**
1975  * pci_reenable_device - Resume abandoned device
1976  * @dev: PCI device to be resumed
1977  *
1978  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1979  * to be called by normal code, write proper resume handler and use it instead.
1980  */
1981 int pci_reenable_device(struct pci_dev *dev)
1982 {
1983 	if (pci_is_enabled(dev))
1984 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1985 	return 0;
1986 }
1987 EXPORT_SYMBOL(pci_reenable_device);
1988 
1989 static void pci_enable_bridge(struct pci_dev *dev)
1990 {
1991 	struct pci_dev *bridge;
1992 	int retval;
1993 
1994 	bridge = pci_upstream_bridge(dev);
1995 	if (bridge)
1996 		pci_enable_bridge(bridge);
1997 
1998 	if (pci_is_enabled(dev)) {
1999 		if (!dev->is_busmaster)
2000 			pci_set_master(dev);
2001 		return;
2002 	}
2003 
2004 	retval = pci_enable_device(dev);
2005 	if (retval)
2006 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2007 			retval);
2008 	pci_set_master(dev);
2009 }
2010 
2011 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2012 {
2013 	struct pci_dev *bridge;
2014 	int err;
2015 	int i, bars = 0;
2016 
2017 	/*
2018 	 * Power state could be unknown at this point, either due to a fresh
2019 	 * boot or a device removal call.  So get the current power state
2020 	 * so that things like MSI message writing will behave as expected
2021 	 * (e.g. if the device really is in D0 at enable time).
2022 	 */
2023 	pci_update_current_state(dev, dev->current_state);
2024 
2025 	if (atomic_inc_return(&dev->enable_cnt) > 1)
2026 		return 0;		/* already enabled */
2027 
2028 	bridge = pci_upstream_bridge(dev);
2029 	if (bridge)
2030 		pci_enable_bridge(bridge);
2031 
2032 	/* only skip sriov related */
2033 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2034 		if (dev->resource[i].flags & flags)
2035 			bars |= (1 << i);
2036 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2037 		if (dev->resource[i].flags & flags)
2038 			bars |= (1 << i);
2039 
2040 	err = do_pci_enable_device(dev, bars);
2041 	if (err < 0)
2042 		atomic_dec(&dev->enable_cnt);
2043 	return err;
2044 }
2045 
2046 /**
2047  * pci_enable_device_io - Initialize a device for use with IO space
2048  * @dev: PCI device to be initialized
2049  *
2050  * Initialize device before it's used by a driver. Ask low-level code
2051  * to enable I/O resources. Wake up the device if it was suspended.
2052  * Beware, this function can fail.
2053  */
2054 int pci_enable_device_io(struct pci_dev *dev)
2055 {
2056 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2057 }
2058 EXPORT_SYMBOL(pci_enable_device_io);
2059 
2060 /**
2061  * pci_enable_device_mem - Initialize a device for use with Memory space
2062  * @dev: PCI device to be initialized
2063  *
2064  * Initialize device before it's used by a driver. Ask low-level code
2065  * to enable Memory resources. Wake up the device if it was suspended.
2066  * Beware, this function can fail.
2067  */
2068 int pci_enable_device_mem(struct pci_dev *dev)
2069 {
2070 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2071 }
2072 EXPORT_SYMBOL(pci_enable_device_mem);
2073 
2074 /**
2075  * pci_enable_device - Initialize device before it's used by a driver.
2076  * @dev: PCI device to be initialized
2077  *
2078  * Initialize device before it's used by a driver. Ask low-level code
2079  * to enable I/O and memory. Wake up the device if it was suspended.
2080  * Beware, this function can fail.
2081  *
2082  * Note we don't actually enable the device many times if we call
2083  * this function repeatedly (we just increment the count).
2084  */
2085 int pci_enable_device(struct pci_dev *dev)
2086 {
2087 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2088 }
2089 EXPORT_SYMBOL(pci_enable_device);
2090 
2091 /*
2092  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2093  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2094  * there's no need to track it separately.  pci_devres is initialized
2095  * when a device is enabled using managed PCI device enable interface.
2096  */
2097 struct pci_devres {
2098 	unsigned int enabled:1;
2099 	unsigned int pinned:1;
2100 	unsigned int orig_intx:1;
2101 	unsigned int restore_intx:1;
2102 	unsigned int mwi:1;
2103 	u32 region_mask;
2104 };
2105 
2106 static void pcim_release(struct device *gendev, void *res)
2107 {
2108 	struct pci_dev *dev = to_pci_dev(gendev);
2109 	struct pci_devres *this = res;
2110 	int i;
2111 
2112 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2113 		if (this->region_mask & (1 << i))
2114 			pci_release_region(dev, i);
2115 
2116 	if (this->mwi)
2117 		pci_clear_mwi(dev);
2118 
2119 	if (this->restore_intx)
2120 		pci_intx(dev, this->orig_intx);
2121 
2122 	if (this->enabled && !this->pinned)
2123 		pci_disable_device(dev);
2124 }
2125 
2126 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2127 {
2128 	struct pci_devres *dr, *new_dr;
2129 
2130 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2131 	if (dr)
2132 		return dr;
2133 
2134 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2135 	if (!new_dr)
2136 		return NULL;
2137 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2138 }
2139 
2140 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2141 {
2142 	if (pci_is_managed(pdev))
2143 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2144 	return NULL;
2145 }
2146 
2147 /**
2148  * pcim_enable_device - Managed pci_enable_device()
2149  * @pdev: PCI device to be initialized
2150  *
2151  * Managed pci_enable_device().
2152  */
2153 int pcim_enable_device(struct pci_dev *pdev)
2154 {
2155 	struct pci_devres *dr;
2156 	int rc;
2157 
2158 	dr = get_pci_dr(pdev);
2159 	if (unlikely(!dr))
2160 		return -ENOMEM;
2161 	if (dr->enabled)
2162 		return 0;
2163 
2164 	rc = pci_enable_device(pdev);
2165 	if (!rc) {
2166 		pdev->is_managed = 1;
2167 		dr->enabled = 1;
2168 	}
2169 	return rc;
2170 }
2171 EXPORT_SYMBOL(pcim_enable_device);
2172 
2173 /**
2174  * pcim_pin_device - Pin managed PCI device
2175  * @pdev: PCI device to pin
2176  *
2177  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2178  * driver detach.  @pdev must have been enabled with
2179  * pcim_enable_device().
2180  */
2181 void pcim_pin_device(struct pci_dev *pdev)
2182 {
2183 	struct pci_devres *dr;
2184 
2185 	dr = find_pci_dr(pdev);
2186 	WARN_ON(!dr || !dr->enabled);
2187 	if (dr)
2188 		dr->pinned = 1;
2189 }
2190 EXPORT_SYMBOL(pcim_pin_device);
2191 
2192 /*
2193  * pcibios_device_add - provide arch specific hooks when adding device dev
2194  * @dev: the PCI device being added
2195  *
2196  * Permits the platform to provide architecture specific functionality when
2197  * devices are added. This is the default implementation. Architecture
2198  * implementations can override this.
2199  */
2200 int __weak pcibios_device_add(struct pci_dev *dev)
2201 {
2202 	return 0;
2203 }
2204 
2205 /**
2206  * pcibios_release_device - provide arch specific hooks when releasing
2207  *			    device dev
2208  * @dev: the PCI device being released
2209  *
2210  * Permits the platform to provide architecture specific functionality when
2211  * devices are released. This is the default implementation. Architecture
2212  * implementations can override this.
2213  */
2214 void __weak pcibios_release_device(struct pci_dev *dev) {}
2215 
2216 /**
2217  * pcibios_disable_device - disable arch specific PCI resources for device dev
2218  * @dev: the PCI device to disable
2219  *
2220  * Disables architecture specific PCI resources for the device. This
2221  * is the default implementation. Architecture implementations can
2222  * override this.
2223  */
2224 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2225 
2226 /**
2227  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2228  * @irq: ISA IRQ to penalize
2229  * @active: IRQ active or not
2230  *
2231  * Permits the platform to provide architecture-specific functionality when
2232  * penalizing ISA IRQs. This is the default implementation. Architecture
2233  * implementations can override this.
2234  */
2235 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2236 
2237 static void do_pci_disable_device(struct pci_dev *dev)
2238 {
2239 	u16 pci_command;
2240 
2241 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2242 	if (pci_command & PCI_COMMAND_MASTER) {
2243 		pci_command &= ~PCI_COMMAND_MASTER;
2244 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2245 	}
2246 
2247 	pcibios_disable_device(dev);
2248 }
2249 
2250 /**
2251  * pci_disable_enabled_device - Disable device without updating enable_cnt
2252  * @dev: PCI device to disable
2253  *
2254  * NOTE: This function is a backend of PCI power management routines and is
2255  * not supposed to be called drivers.
2256  */
2257 void pci_disable_enabled_device(struct pci_dev *dev)
2258 {
2259 	if (pci_is_enabled(dev))
2260 		do_pci_disable_device(dev);
2261 }
2262 
2263 /**
2264  * pci_disable_device - Disable PCI device after use
2265  * @dev: PCI device to be disabled
2266  *
2267  * Signal to the system that the PCI device is not in use by the system
2268  * anymore.  This only involves disabling PCI bus-mastering, if active.
2269  *
2270  * Note we don't actually disable the device until all callers of
2271  * pci_enable_device() have called pci_disable_device().
2272  */
2273 void pci_disable_device(struct pci_dev *dev)
2274 {
2275 	struct pci_devres *dr;
2276 
2277 	dr = find_pci_dr(dev);
2278 	if (dr)
2279 		dr->enabled = 0;
2280 
2281 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2282 		      "disabling already-disabled device");
2283 
2284 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2285 		return;
2286 
2287 	do_pci_disable_device(dev);
2288 
2289 	dev->is_busmaster = 0;
2290 }
2291 EXPORT_SYMBOL(pci_disable_device);
2292 
2293 /**
2294  * pcibios_set_pcie_reset_state - set reset state for device dev
2295  * @dev: the PCIe device reset
2296  * @state: Reset state to enter into
2297  *
2298  * Set the PCIe reset state for the device. This is the default
2299  * implementation. Architecture implementations can override this.
2300  */
2301 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2302 					enum pcie_reset_state state)
2303 {
2304 	return -EINVAL;
2305 }
2306 
2307 /**
2308  * pci_set_pcie_reset_state - set reset state for device dev
2309  * @dev: the PCIe device reset
2310  * @state: Reset state to enter into
2311  *
2312  * Sets the PCI reset state for the device.
2313  */
2314 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2315 {
2316 	return pcibios_set_pcie_reset_state(dev, state);
2317 }
2318 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2319 
2320 #ifdef CONFIG_PCIEAER
2321 void pcie_clear_device_status(struct pci_dev *dev)
2322 {
2323 	u16 sta;
2324 
2325 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2326 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2327 }
2328 #endif
2329 
2330 /**
2331  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2332  * @dev: PCIe root port or event collector.
2333  */
2334 void pcie_clear_root_pme_status(struct pci_dev *dev)
2335 {
2336 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2337 }
2338 
2339 /**
2340  * pci_check_pme_status - Check if given device has generated PME.
2341  * @dev: Device to check.
2342  *
2343  * Check the PME status of the device and if set, clear it and clear PME enable
2344  * (if set).  Return 'true' if PME status and PME enable were both set or
2345  * 'false' otherwise.
2346  */
2347 bool pci_check_pme_status(struct pci_dev *dev)
2348 {
2349 	int pmcsr_pos;
2350 	u16 pmcsr;
2351 	bool ret = false;
2352 
2353 	if (!dev->pm_cap)
2354 		return false;
2355 
2356 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2357 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2358 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2359 		return false;
2360 
2361 	/* Clear PME status. */
2362 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2363 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2364 		/* Disable PME to avoid interrupt flood. */
2365 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2366 		ret = true;
2367 	}
2368 
2369 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2370 
2371 	return ret;
2372 }
2373 
2374 /**
2375  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2376  * @dev: Device to handle.
2377  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2378  *
2379  * Check if @dev has generated PME and queue a resume request for it in that
2380  * case.
2381  */
2382 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2383 {
2384 	if (pme_poll_reset && dev->pme_poll)
2385 		dev->pme_poll = false;
2386 
2387 	if (pci_check_pme_status(dev)) {
2388 		pci_wakeup_event(dev);
2389 		pm_request_resume(&dev->dev);
2390 	}
2391 	return 0;
2392 }
2393 
2394 /**
2395  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2396  * @bus: Top bus of the subtree to walk.
2397  */
2398 void pci_pme_wakeup_bus(struct pci_bus *bus)
2399 {
2400 	if (bus)
2401 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2402 }
2403 
2404 
2405 /**
2406  * pci_pme_capable - check the capability of PCI device to generate PME#
2407  * @dev: PCI device to handle.
2408  * @state: PCI state from which device will issue PME#.
2409  */
2410 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2411 {
2412 	if (!dev->pm_cap)
2413 		return false;
2414 
2415 	return !!(dev->pme_support & (1 << state));
2416 }
2417 EXPORT_SYMBOL(pci_pme_capable);
2418 
2419 static void pci_pme_list_scan(struct work_struct *work)
2420 {
2421 	struct pci_pme_device *pme_dev, *n;
2422 
2423 	mutex_lock(&pci_pme_list_mutex);
2424 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2425 		struct pci_dev *pdev = pme_dev->dev;
2426 
2427 		if (pdev->pme_poll) {
2428 			struct pci_dev *bridge = pdev->bus->self;
2429 			struct device *dev = &pdev->dev;
2430 			int pm_status;
2431 
2432 			/*
2433 			 * If bridge is in low power state, the
2434 			 * configuration space of subordinate devices
2435 			 * may be not accessible
2436 			 */
2437 			if (bridge && bridge->current_state != PCI_D0)
2438 				continue;
2439 
2440 			/*
2441 			 * If the device is in a low power state it
2442 			 * should not be polled either.
2443 			 */
2444 			pm_status = pm_runtime_get_if_active(dev, true);
2445 			if (!pm_status)
2446 				continue;
2447 
2448 			if (pdev->current_state != PCI_D3cold)
2449 				pci_pme_wakeup(pdev, NULL);
2450 
2451 			if (pm_status > 0)
2452 				pm_runtime_put(dev);
2453 		} else {
2454 			list_del(&pme_dev->list);
2455 			kfree(pme_dev);
2456 		}
2457 	}
2458 	if (!list_empty(&pci_pme_list))
2459 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2460 				   msecs_to_jiffies(PME_TIMEOUT));
2461 	mutex_unlock(&pci_pme_list_mutex);
2462 }
2463 
2464 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2465 {
2466 	u16 pmcsr;
2467 
2468 	if (!dev->pme_support)
2469 		return;
2470 
2471 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2472 	/* Clear PME_Status by writing 1 to it and enable PME# */
2473 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2474 	if (!enable)
2475 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2476 
2477 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2478 }
2479 
2480 /**
2481  * pci_pme_restore - Restore PME configuration after config space restore.
2482  * @dev: PCI device to update.
2483  */
2484 void pci_pme_restore(struct pci_dev *dev)
2485 {
2486 	u16 pmcsr;
2487 
2488 	if (!dev->pme_support)
2489 		return;
2490 
2491 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2492 	if (dev->wakeup_prepared) {
2493 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2494 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2495 	} else {
2496 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2497 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2498 	}
2499 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2500 }
2501 
2502 /**
2503  * pci_pme_active - enable or disable PCI device's PME# function
2504  * @dev: PCI device to handle.
2505  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2506  *
2507  * The caller must verify that the device is capable of generating PME# before
2508  * calling this function with @enable equal to 'true'.
2509  */
2510 void pci_pme_active(struct pci_dev *dev, bool enable)
2511 {
2512 	__pci_pme_active(dev, enable);
2513 
2514 	/*
2515 	 * PCI (as opposed to PCIe) PME requires that the device have
2516 	 * its PME# line hooked up correctly. Not all hardware vendors
2517 	 * do this, so the PME never gets delivered and the device
2518 	 * remains asleep. The easiest way around this is to
2519 	 * periodically walk the list of suspended devices and check
2520 	 * whether any have their PME flag set. The assumption is that
2521 	 * we'll wake up often enough anyway that this won't be a huge
2522 	 * hit, and the power savings from the devices will still be a
2523 	 * win.
2524 	 *
2525 	 * Although PCIe uses in-band PME message instead of PME# line
2526 	 * to report PME, PME does not work for some PCIe devices in
2527 	 * reality.  For example, there are devices that set their PME
2528 	 * status bits, but don't really bother to send a PME message;
2529 	 * there are PCI Express Root Ports that don't bother to
2530 	 * trigger interrupts when they receive PME messages from the
2531 	 * devices below.  So PME poll is used for PCIe devices too.
2532 	 */
2533 
2534 	if (dev->pme_poll) {
2535 		struct pci_pme_device *pme_dev;
2536 		if (enable) {
2537 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2538 					  GFP_KERNEL);
2539 			if (!pme_dev) {
2540 				pci_warn(dev, "can't enable PME#\n");
2541 				return;
2542 			}
2543 			pme_dev->dev = dev;
2544 			mutex_lock(&pci_pme_list_mutex);
2545 			list_add(&pme_dev->list, &pci_pme_list);
2546 			if (list_is_singular(&pci_pme_list))
2547 				queue_delayed_work(system_freezable_wq,
2548 						   &pci_pme_work,
2549 						   msecs_to_jiffies(PME_TIMEOUT));
2550 			mutex_unlock(&pci_pme_list_mutex);
2551 		} else {
2552 			mutex_lock(&pci_pme_list_mutex);
2553 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2554 				if (pme_dev->dev == dev) {
2555 					list_del(&pme_dev->list);
2556 					kfree(pme_dev);
2557 					break;
2558 				}
2559 			}
2560 			mutex_unlock(&pci_pme_list_mutex);
2561 		}
2562 	}
2563 
2564 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2565 }
2566 EXPORT_SYMBOL(pci_pme_active);
2567 
2568 /**
2569  * __pci_enable_wake - enable PCI device as wakeup event source
2570  * @dev: PCI device affected
2571  * @state: PCI state from which device will issue wakeup events
2572  * @enable: True to enable event generation; false to disable
2573  *
2574  * This enables the device as a wakeup event source, or disables it.
2575  * When such events involves platform-specific hooks, those hooks are
2576  * called automatically by this routine.
2577  *
2578  * Devices with legacy power management (no standard PCI PM capabilities)
2579  * always require such platform hooks.
2580  *
2581  * RETURN VALUE:
2582  * 0 is returned on success
2583  * -EINVAL is returned if device is not supposed to wake up the system
2584  * Error code depending on the platform is returned if both the platform and
2585  * the native mechanism fail to enable the generation of wake-up events
2586  */
2587 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2588 {
2589 	int ret = 0;
2590 
2591 	/*
2592 	 * Bridges that are not power-manageable directly only signal
2593 	 * wakeup on behalf of subordinate devices which is set up
2594 	 * elsewhere, so skip them. However, bridges that are
2595 	 * power-manageable may signal wakeup for themselves (for example,
2596 	 * on a hotplug event) and they need to be covered here.
2597 	 */
2598 	if (!pci_power_manageable(dev))
2599 		return 0;
2600 
2601 	/* Don't do the same thing twice in a row for one device. */
2602 	if (!!enable == !!dev->wakeup_prepared)
2603 		return 0;
2604 
2605 	/*
2606 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2607 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2608 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2609 	 */
2610 
2611 	if (enable) {
2612 		int error;
2613 
2614 		/*
2615 		 * Enable PME signaling if the device can signal PME from
2616 		 * D3cold regardless of whether or not it can signal PME from
2617 		 * the current target state, because that will allow it to
2618 		 * signal PME when the hierarchy above it goes into D3cold and
2619 		 * the device itself ends up in D3cold as a result of that.
2620 		 */
2621 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2622 			pci_pme_active(dev, true);
2623 		else
2624 			ret = 1;
2625 		error = platform_pci_set_wakeup(dev, true);
2626 		if (ret)
2627 			ret = error;
2628 		if (!ret)
2629 			dev->wakeup_prepared = true;
2630 	} else {
2631 		platform_pci_set_wakeup(dev, false);
2632 		pci_pme_active(dev, false);
2633 		dev->wakeup_prepared = false;
2634 	}
2635 
2636 	return ret;
2637 }
2638 
2639 /**
2640  * pci_enable_wake - change wakeup settings for a PCI device
2641  * @pci_dev: Target device
2642  * @state: PCI state from which device will issue wakeup events
2643  * @enable: Whether or not to enable event generation
2644  *
2645  * If @enable is set, check device_may_wakeup() for the device before calling
2646  * __pci_enable_wake() for it.
2647  */
2648 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2649 {
2650 	if (enable && !device_may_wakeup(&pci_dev->dev))
2651 		return -EINVAL;
2652 
2653 	return __pci_enable_wake(pci_dev, state, enable);
2654 }
2655 EXPORT_SYMBOL(pci_enable_wake);
2656 
2657 /**
2658  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2659  * @dev: PCI device to prepare
2660  * @enable: True to enable wake-up event generation; false to disable
2661  *
2662  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2663  * and this function allows them to set that up cleanly - pci_enable_wake()
2664  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2665  * ordering constraints.
2666  *
2667  * This function only returns error code if the device is not allowed to wake
2668  * up the system from sleep or it is not capable of generating PME# from both
2669  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2670  */
2671 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2672 {
2673 	return pci_pme_capable(dev, PCI_D3cold) ?
2674 			pci_enable_wake(dev, PCI_D3cold, enable) :
2675 			pci_enable_wake(dev, PCI_D3hot, enable);
2676 }
2677 EXPORT_SYMBOL(pci_wake_from_d3);
2678 
2679 /**
2680  * pci_target_state - find an appropriate low power state for a given PCI dev
2681  * @dev: PCI device
2682  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2683  *
2684  * Use underlying platform code to find a supported low power state for @dev.
2685  * If the platform can't manage @dev, return the deepest state from which it
2686  * can generate wake events, based on any available PME info.
2687  */
2688 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2689 {
2690 	if (platform_pci_power_manageable(dev)) {
2691 		/*
2692 		 * Call the platform to find the target state for the device.
2693 		 */
2694 		pci_power_t state = platform_pci_choose_state(dev);
2695 
2696 		switch (state) {
2697 		case PCI_POWER_ERROR:
2698 		case PCI_UNKNOWN:
2699 			return PCI_D3hot;
2700 
2701 		case PCI_D1:
2702 		case PCI_D2:
2703 			if (pci_no_d1d2(dev))
2704 				return PCI_D3hot;
2705 		}
2706 
2707 		return state;
2708 	}
2709 
2710 	/*
2711 	 * If the device is in D3cold even though it's not power-manageable by
2712 	 * the platform, it may have been powered down by non-standard means.
2713 	 * Best to let it slumber.
2714 	 */
2715 	if (dev->current_state == PCI_D3cold)
2716 		return PCI_D3cold;
2717 	else if (!dev->pm_cap)
2718 		return PCI_D0;
2719 
2720 	if (wakeup && dev->pme_support) {
2721 		pci_power_t state = PCI_D3hot;
2722 
2723 		/*
2724 		 * Find the deepest state from which the device can generate
2725 		 * PME#.
2726 		 */
2727 		while (state && !(dev->pme_support & (1 << state)))
2728 			state--;
2729 
2730 		if (state)
2731 			return state;
2732 		else if (dev->pme_support & 1)
2733 			return PCI_D0;
2734 	}
2735 
2736 	return PCI_D3hot;
2737 }
2738 
2739 /**
2740  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2741  *			  into a sleep state
2742  * @dev: Device to handle.
2743  *
2744  * Choose the power state appropriate for the device depending on whether
2745  * it can wake up the system and/or is power manageable by the platform
2746  * (PCI_D3hot is the default) and put the device into that state.
2747  */
2748 int pci_prepare_to_sleep(struct pci_dev *dev)
2749 {
2750 	bool wakeup = device_may_wakeup(&dev->dev);
2751 	pci_power_t target_state = pci_target_state(dev, wakeup);
2752 	int error;
2753 
2754 	if (target_state == PCI_POWER_ERROR)
2755 		return -EIO;
2756 
2757 	pci_enable_wake(dev, target_state, wakeup);
2758 
2759 	error = pci_set_power_state(dev, target_state);
2760 
2761 	if (error)
2762 		pci_enable_wake(dev, target_state, false);
2763 
2764 	return error;
2765 }
2766 EXPORT_SYMBOL(pci_prepare_to_sleep);
2767 
2768 /**
2769  * pci_back_from_sleep - turn PCI device on during system-wide transition
2770  *			 into working state
2771  * @dev: Device to handle.
2772  *
2773  * Disable device's system wake-up capability and put it into D0.
2774  */
2775 int pci_back_from_sleep(struct pci_dev *dev)
2776 {
2777 	int ret = pci_set_power_state(dev, PCI_D0);
2778 
2779 	if (ret)
2780 		return ret;
2781 
2782 	pci_enable_wake(dev, PCI_D0, false);
2783 	return 0;
2784 }
2785 EXPORT_SYMBOL(pci_back_from_sleep);
2786 
2787 /**
2788  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2789  * @dev: PCI device being suspended.
2790  *
2791  * Prepare @dev to generate wake-up events at run time and put it into a low
2792  * power state.
2793  */
2794 int pci_finish_runtime_suspend(struct pci_dev *dev)
2795 {
2796 	pci_power_t target_state;
2797 	int error;
2798 
2799 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2800 	if (target_state == PCI_POWER_ERROR)
2801 		return -EIO;
2802 
2803 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2804 
2805 	error = pci_set_power_state(dev, target_state);
2806 
2807 	if (error)
2808 		pci_enable_wake(dev, target_state, false);
2809 
2810 	return error;
2811 }
2812 
2813 /**
2814  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2815  * @dev: Device to check.
2816  *
2817  * Return true if the device itself is capable of generating wake-up events
2818  * (through the platform or using the native PCIe PME) or if the device supports
2819  * PME and one of its upstream bridges can generate wake-up events.
2820  */
2821 bool pci_dev_run_wake(struct pci_dev *dev)
2822 {
2823 	struct pci_bus *bus = dev->bus;
2824 
2825 	if (!dev->pme_support)
2826 		return false;
2827 
2828 	/* PME-capable in principle, but not from the target power state */
2829 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2830 		return false;
2831 
2832 	if (device_can_wakeup(&dev->dev))
2833 		return true;
2834 
2835 	while (bus->parent) {
2836 		struct pci_dev *bridge = bus->self;
2837 
2838 		if (device_can_wakeup(&bridge->dev))
2839 			return true;
2840 
2841 		bus = bus->parent;
2842 	}
2843 
2844 	/* We have reached the root bus. */
2845 	if (bus->bridge)
2846 		return device_can_wakeup(bus->bridge);
2847 
2848 	return false;
2849 }
2850 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2851 
2852 /**
2853  * pci_dev_need_resume - Check if it is necessary to resume the device.
2854  * @pci_dev: Device to check.
2855  *
2856  * Return 'true' if the device is not runtime-suspended or it has to be
2857  * reconfigured due to wakeup settings difference between system and runtime
2858  * suspend, or the current power state of it is not suitable for the upcoming
2859  * (system-wide) transition.
2860  */
2861 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2862 {
2863 	struct device *dev = &pci_dev->dev;
2864 	pci_power_t target_state;
2865 
2866 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2867 		return true;
2868 
2869 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2870 
2871 	/*
2872 	 * If the earlier platform check has not triggered, D3cold is just power
2873 	 * removal on top of D3hot, so no need to resume the device in that
2874 	 * case.
2875 	 */
2876 	return target_state != pci_dev->current_state &&
2877 		target_state != PCI_D3cold &&
2878 		pci_dev->current_state != PCI_D3hot;
2879 }
2880 
2881 /**
2882  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2883  * @pci_dev: Device to check.
2884  *
2885  * If the device is suspended and it is not configured for system wakeup,
2886  * disable PME for it to prevent it from waking up the system unnecessarily.
2887  *
2888  * Note that if the device's power state is D3cold and the platform check in
2889  * pci_dev_need_resume() has not triggered, the device's configuration need not
2890  * be changed.
2891  */
2892 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2893 {
2894 	struct device *dev = &pci_dev->dev;
2895 
2896 	spin_lock_irq(&dev->power.lock);
2897 
2898 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2899 	    pci_dev->current_state < PCI_D3cold)
2900 		__pci_pme_active(pci_dev, false);
2901 
2902 	spin_unlock_irq(&dev->power.lock);
2903 }
2904 
2905 /**
2906  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2907  * @pci_dev: Device to handle.
2908  *
2909  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2910  * it might have been disabled during the prepare phase of system suspend if
2911  * the device was not configured for system wakeup.
2912  */
2913 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2914 {
2915 	struct device *dev = &pci_dev->dev;
2916 
2917 	if (!pci_dev_run_wake(pci_dev))
2918 		return;
2919 
2920 	spin_lock_irq(&dev->power.lock);
2921 
2922 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2923 		__pci_pme_active(pci_dev, true);
2924 
2925 	spin_unlock_irq(&dev->power.lock);
2926 }
2927 
2928 /**
2929  * pci_choose_state - Choose the power state of a PCI device.
2930  * @dev: Target PCI device.
2931  * @state: Target state for the whole system.
2932  *
2933  * Returns PCI power state suitable for @dev and @state.
2934  */
2935 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2936 {
2937 	if (state.event == PM_EVENT_ON)
2938 		return PCI_D0;
2939 
2940 	return pci_target_state(dev, false);
2941 }
2942 EXPORT_SYMBOL(pci_choose_state);
2943 
2944 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2945 {
2946 	struct device *dev = &pdev->dev;
2947 	struct device *parent = dev->parent;
2948 
2949 	if (parent)
2950 		pm_runtime_get_sync(parent);
2951 	pm_runtime_get_noresume(dev);
2952 	/*
2953 	 * pdev->current_state is set to PCI_D3cold during suspending,
2954 	 * so wait until suspending completes
2955 	 */
2956 	pm_runtime_barrier(dev);
2957 	/*
2958 	 * Only need to resume devices in D3cold, because config
2959 	 * registers are still accessible for devices suspended but
2960 	 * not in D3cold.
2961 	 */
2962 	if (pdev->current_state == PCI_D3cold)
2963 		pm_runtime_resume(dev);
2964 }
2965 
2966 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2967 {
2968 	struct device *dev = &pdev->dev;
2969 	struct device *parent = dev->parent;
2970 
2971 	pm_runtime_put(dev);
2972 	if (parent)
2973 		pm_runtime_put_sync(parent);
2974 }
2975 
2976 static const struct dmi_system_id bridge_d3_blacklist[] = {
2977 #ifdef CONFIG_X86
2978 	{
2979 		/*
2980 		 * Gigabyte X299 root port is not marked as hotplug capable
2981 		 * which allows Linux to power manage it.  However, this
2982 		 * confuses the BIOS SMI handler so don't power manage root
2983 		 * ports on that system.
2984 		 */
2985 		.ident = "X299 DESIGNARE EX-CF",
2986 		.matches = {
2987 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2988 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2989 		},
2990 	},
2991 	{
2992 		/*
2993 		 * Downstream device is not accessible after putting a root port
2994 		 * into D3cold and back into D0 on Elo Continental Z2 board
2995 		 */
2996 		.ident = "Elo Continental Z2",
2997 		.matches = {
2998 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2999 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3000 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3001 		},
3002 	},
3003 #endif
3004 	{ }
3005 };
3006 
3007 /**
3008  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3009  * @bridge: Bridge to check
3010  *
3011  * This function checks if it is possible to move the bridge to D3.
3012  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3013  */
3014 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3015 {
3016 	if (!pci_is_pcie(bridge))
3017 		return false;
3018 
3019 	switch (pci_pcie_type(bridge)) {
3020 	case PCI_EXP_TYPE_ROOT_PORT:
3021 	case PCI_EXP_TYPE_UPSTREAM:
3022 	case PCI_EXP_TYPE_DOWNSTREAM:
3023 		if (pci_bridge_d3_disable)
3024 			return false;
3025 
3026 		/*
3027 		 * Hotplug ports handled by firmware in System Management Mode
3028 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3029 		 */
3030 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3031 			return false;
3032 
3033 		if (pci_bridge_d3_force)
3034 			return true;
3035 
3036 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3037 		if (bridge->is_thunderbolt)
3038 			return true;
3039 
3040 		/* Platform might know better if the bridge supports D3 */
3041 		if (platform_pci_bridge_d3(bridge))
3042 			return true;
3043 
3044 		/*
3045 		 * Hotplug ports handled natively by the OS were not validated
3046 		 * by vendors for runtime D3 at least until 2018 because there
3047 		 * was no OS support.
3048 		 */
3049 		if (bridge->is_hotplug_bridge)
3050 			return false;
3051 
3052 		if (dmi_check_system(bridge_d3_blacklist))
3053 			return false;
3054 
3055 		/*
3056 		 * It should be safe to put PCIe ports from 2015 or newer
3057 		 * to D3.
3058 		 */
3059 		if (dmi_get_bios_year() >= 2015)
3060 			return true;
3061 		break;
3062 	}
3063 
3064 	return false;
3065 }
3066 
3067 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3068 {
3069 	bool *d3cold_ok = data;
3070 
3071 	if (/* The device needs to be allowed to go D3cold ... */
3072 	    dev->no_d3cold || !dev->d3cold_allowed ||
3073 
3074 	    /* ... and if it is wakeup capable to do so from D3cold. */
3075 	    (device_may_wakeup(&dev->dev) &&
3076 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3077 
3078 	    /* If it is a bridge it must be allowed to go to D3. */
3079 	    !pci_power_manageable(dev))
3080 
3081 		*d3cold_ok = false;
3082 
3083 	return !*d3cold_ok;
3084 }
3085 
3086 /*
3087  * pci_bridge_d3_update - Update bridge D3 capabilities
3088  * @dev: PCI device which is changed
3089  *
3090  * Update upstream bridge PM capabilities accordingly depending on if the
3091  * device PM configuration was changed or the device is being removed.  The
3092  * change is also propagated upstream.
3093  */
3094 void pci_bridge_d3_update(struct pci_dev *dev)
3095 {
3096 	bool remove = !device_is_registered(&dev->dev);
3097 	struct pci_dev *bridge;
3098 	bool d3cold_ok = true;
3099 
3100 	bridge = pci_upstream_bridge(dev);
3101 	if (!bridge || !pci_bridge_d3_possible(bridge))
3102 		return;
3103 
3104 	/*
3105 	 * If D3 is currently allowed for the bridge, removing one of its
3106 	 * children won't change that.
3107 	 */
3108 	if (remove && bridge->bridge_d3)
3109 		return;
3110 
3111 	/*
3112 	 * If D3 is currently allowed for the bridge and a child is added or
3113 	 * changed, disallowance of D3 can only be caused by that child, so
3114 	 * we only need to check that single device, not any of its siblings.
3115 	 *
3116 	 * If D3 is currently not allowed for the bridge, checking the device
3117 	 * first may allow us to skip checking its siblings.
3118 	 */
3119 	if (!remove)
3120 		pci_dev_check_d3cold(dev, &d3cold_ok);
3121 
3122 	/*
3123 	 * If D3 is currently not allowed for the bridge, this may be caused
3124 	 * either by the device being changed/removed or any of its siblings,
3125 	 * so we need to go through all children to find out if one of them
3126 	 * continues to block D3.
3127 	 */
3128 	if (d3cold_ok && !bridge->bridge_d3)
3129 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3130 			     &d3cold_ok);
3131 
3132 	if (bridge->bridge_d3 != d3cold_ok) {
3133 		bridge->bridge_d3 = d3cold_ok;
3134 		/* Propagate change to upstream bridges */
3135 		pci_bridge_d3_update(bridge);
3136 	}
3137 }
3138 
3139 /**
3140  * pci_d3cold_enable - Enable D3cold for device
3141  * @dev: PCI device to handle
3142  *
3143  * This function can be used in drivers to enable D3cold from the device
3144  * they handle.  It also updates upstream PCI bridge PM capabilities
3145  * accordingly.
3146  */
3147 void pci_d3cold_enable(struct pci_dev *dev)
3148 {
3149 	if (dev->no_d3cold) {
3150 		dev->no_d3cold = false;
3151 		pci_bridge_d3_update(dev);
3152 	}
3153 }
3154 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3155 
3156 /**
3157  * pci_d3cold_disable - Disable D3cold for device
3158  * @dev: PCI device to handle
3159  *
3160  * This function can be used in drivers to disable D3cold from the device
3161  * they handle.  It also updates upstream PCI bridge PM capabilities
3162  * accordingly.
3163  */
3164 void pci_d3cold_disable(struct pci_dev *dev)
3165 {
3166 	if (!dev->no_d3cold) {
3167 		dev->no_d3cold = true;
3168 		pci_bridge_d3_update(dev);
3169 	}
3170 }
3171 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3172 
3173 /**
3174  * pci_pm_init - Initialize PM functions of given PCI device
3175  * @dev: PCI device to handle.
3176  */
3177 void pci_pm_init(struct pci_dev *dev)
3178 {
3179 	int pm;
3180 	u16 status;
3181 	u16 pmc;
3182 
3183 	pm_runtime_forbid(&dev->dev);
3184 	pm_runtime_set_active(&dev->dev);
3185 	pm_runtime_enable(&dev->dev);
3186 	device_enable_async_suspend(&dev->dev);
3187 	dev->wakeup_prepared = false;
3188 
3189 	dev->pm_cap = 0;
3190 	dev->pme_support = 0;
3191 
3192 	/* find PCI PM capability in list */
3193 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3194 	if (!pm)
3195 		return;
3196 	/* Check device's ability to generate PME# */
3197 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3198 
3199 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3200 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3201 			pmc & PCI_PM_CAP_VER_MASK);
3202 		return;
3203 	}
3204 
3205 	dev->pm_cap = pm;
3206 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3207 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3208 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3209 	dev->d3cold_allowed = true;
3210 
3211 	dev->d1_support = false;
3212 	dev->d2_support = false;
3213 	if (!pci_no_d1d2(dev)) {
3214 		if (pmc & PCI_PM_CAP_D1)
3215 			dev->d1_support = true;
3216 		if (pmc & PCI_PM_CAP_D2)
3217 			dev->d2_support = true;
3218 
3219 		if (dev->d1_support || dev->d2_support)
3220 			pci_info(dev, "supports%s%s\n",
3221 				   dev->d1_support ? " D1" : "",
3222 				   dev->d2_support ? " D2" : "");
3223 	}
3224 
3225 	pmc &= PCI_PM_CAP_PME_MASK;
3226 	if (pmc) {
3227 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3228 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3229 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3230 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3231 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3232 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3233 		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3234 		dev->pme_poll = true;
3235 		/*
3236 		 * Make device's PM flags reflect the wake-up capability, but
3237 		 * let the user space enable it to wake up the system as needed.
3238 		 */
3239 		device_set_wakeup_capable(&dev->dev, true);
3240 		/* Disable the PME# generation functionality */
3241 		pci_pme_active(dev, false);
3242 	}
3243 
3244 	pci_read_config_word(dev, PCI_STATUS, &status);
3245 	if (status & PCI_STATUS_IMM_READY)
3246 		dev->imm_ready = 1;
3247 }
3248 
3249 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3250 {
3251 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3252 
3253 	switch (prop) {
3254 	case PCI_EA_P_MEM:
3255 	case PCI_EA_P_VF_MEM:
3256 		flags |= IORESOURCE_MEM;
3257 		break;
3258 	case PCI_EA_P_MEM_PREFETCH:
3259 	case PCI_EA_P_VF_MEM_PREFETCH:
3260 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3261 		break;
3262 	case PCI_EA_P_IO:
3263 		flags |= IORESOURCE_IO;
3264 		break;
3265 	default:
3266 		return 0;
3267 	}
3268 
3269 	return flags;
3270 }
3271 
3272 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3273 					    u8 prop)
3274 {
3275 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3276 		return &dev->resource[bei];
3277 #ifdef CONFIG_PCI_IOV
3278 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3279 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3280 		return &dev->resource[PCI_IOV_RESOURCES +
3281 				      bei - PCI_EA_BEI_VF_BAR0];
3282 #endif
3283 	else if (bei == PCI_EA_BEI_ROM)
3284 		return &dev->resource[PCI_ROM_RESOURCE];
3285 	else
3286 		return NULL;
3287 }
3288 
3289 /* Read an Enhanced Allocation (EA) entry */
3290 static int pci_ea_read(struct pci_dev *dev, int offset)
3291 {
3292 	struct resource *res;
3293 	int ent_size, ent_offset = offset;
3294 	resource_size_t start, end;
3295 	unsigned long flags;
3296 	u32 dw0, bei, base, max_offset;
3297 	u8 prop;
3298 	bool support_64 = (sizeof(resource_size_t) >= 8);
3299 
3300 	pci_read_config_dword(dev, ent_offset, &dw0);
3301 	ent_offset += 4;
3302 
3303 	/* Entry size field indicates DWORDs after 1st */
3304 	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3305 
3306 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3307 		goto out;
3308 
3309 	bei = FIELD_GET(PCI_EA_BEI, dw0);
3310 	prop = FIELD_GET(PCI_EA_PP, dw0);
3311 
3312 	/*
3313 	 * If the Property is in the reserved range, try the Secondary
3314 	 * Property instead.
3315 	 */
3316 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3317 		prop = FIELD_GET(PCI_EA_SP, dw0);
3318 	if (prop > PCI_EA_P_BRIDGE_IO)
3319 		goto out;
3320 
3321 	res = pci_ea_get_resource(dev, bei, prop);
3322 	if (!res) {
3323 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3324 		goto out;
3325 	}
3326 
3327 	flags = pci_ea_flags(dev, prop);
3328 	if (!flags) {
3329 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3330 		goto out;
3331 	}
3332 
3333 	/* Read Base */
3334 	pci_read_config_dword(dev, ent_offset, &base);
3335 	start = (base & PCI_EA_FIELD_MASK);
3336 	ent_offset += 4;
3337 
3338 	/* Read MaxOffset */
3339 	pci_read_config_dword(dev, ent_offset, &max_offset);
3340 	ent_offset += 4;
3341 
3342 	/* Read Base MSBs (if 64-bit entry) */
3343 	if (base & PCI_EA_IS_64) {
3344 		u32 base_upper;
3345 
3346 		pci_read_config_dword(dev, ent_offset, &base_upper);
3347 		ent_offset += 4;
3348 
3349 		flags |= IORESOURCE_MEM_64;
3350 
3351 		/* entry starts above 32-bit boundary, can't use */
3352 		if (!support_64 && base_upper)
3353 			goto out;
3354 
3355 		if (support_64)
3356 			start |= ((u64)base_upper << 32);
3357 	}
3358 
3359 	end = start + (max_offset | 0x03);
3360 
3361 	/* Read MaxOffset MSBs (if 64-bit entry) */
3362 	if (max_offset & PCI_EA_IS_64) {
3363 		u32 max_offset_upper;
3364 
3365 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3366 		ent_offset += 4;
3367 
3368 		flags |= IORESOURCE_MEM_64;
3369 
3370 		/* entry too big, can't use */
3371 		if (!support_64 && max_offset_upper)
3372 			goto out;
3373 
3374 		if (support_64)
3375 			end += ((u64)max_offset_upper << 32);
3376 	}
3377 
3378 	if (end < start) {
3379 		pci_err(dev, "EA Entry crosses address boundary\n");
3380 		goto out;
3381 	}
3382 
3383 	if (ent_size != ent_offset - offset) {
3384 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3385 			ent_size, ent_offset - offset);
3386 		goto out;
3387 	}
3388 
3389 	res->name = pci_name(dev);
3390 	res->start = start;
3391 	res->end = end;
3392 	res->flags = flags;
3393 
3394 	if (bei <= PCI_EA_BEI_BAR5)
3395 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3396 			   bei, res, prop);
3397 	else if (bei == PCI_EA_BEI_ROM)
3398 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3399 			   res, prop);
3400 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3401 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3402 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3403 	else
3404 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3405 			   bei, res, prop);
3406 
3407 out:
3408 	return offset + ent_size;
3409 }
3410 
3411 /* Enhanced Allocation Initialization */
3412 void pci_ea_init(struct pci_dev *dev)
3413 {
3414 	int ea;
3415 	u8 num_ent;
3416 	int offset;
3417 	int i;
3418 
3419 	/* find PCI EA capability in list */
3420 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3421 	if (!ea)
3422 		return;
3423 
3424 	/* determine the number of entries */
3425 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3426 					&num_ent);
3427 	num_ent &= PCI_EA_NUM_ENT_MASK;
3428 
3429 	offset = ea + PCI_EA_FIRST_ENT;
3430 
3431 	/* Skip DWORD 2 for type 1 functions */
3432 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3433 		offset += 4;
3434 
3435 	/* parse each EA entry */
3436 	for (i = 0; i < num_ent; ++i)
3437 		offset = pci_ea_read(dev, offset);
3438 }
3439 
3440 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3441 	struct pci_cap_saved_state *new_cap)
3442 {
3443 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3444 }
3445 
3446 /**
3447  * _pci_add_cap_save_buffer - allocate buffer for saving given
3448  *			      capability registers
3449  * @dev: the PCI device
3450  * @cap: the capability to allocate the buffer for
3451  * @extended: Standard or Extended capability ID
3452  * @size: requested size of the buffer
3453  */
3454 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3455 				    bool extended, unsigned int size)
3456 {
3457 	int pos;
3458 	struct pci_cap_saved_state *save_state;
3459 
3460 	if (extended)
3461 		pos = pci_find_ext_capability(dev, cap);
3462 	else
3463 		pos = pci_find_capability(dev, cap);
3464 
3465 	if (!pos)
3466 		return 0;
3467 
3468 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3469 	if (!save_state)
3470 		return -ENOMEM;
3471 
3472 	save_state->cap.cap_nr = cap;
3473 	save_state->cap.cap_extended = extended;
3474 	save_state->cap.size = size;
3475 	pci_add_saved_cap(dev, save_state);
3476 
3477 	return 0;
3478 }
3479 
3480 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3481 {
3482 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3483 }
3484 
3485 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3486 {
3487 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3488 }
3489 
3490 /**
3491  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3492  * @dev: the PCI device
3493  */
3494 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3495 {
3496 	int error;
3497 
3498 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3499 					PCI_EXP_SAVE_REGS * sizeof(u16));
3500 	if (error)
3501 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3502 
3503 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3504 	if (error)
3505 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3506 
3507 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3508 					    2 * sizeof(u16));
3509 	if (error)
3510 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3511 
3512 	pci_allocate_vc_save_buffers(dev);
3513 }
3514 
3515 void pci_free_cap_save_buffers(struct pci_dev *dev)
3516 {
3517 	struct pci_cap_saved_state *tmp;
3518 	struct hlist_node *n;
3519 
3520 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3521 		kfree(tmp);
3522 }
3523 
3524 /**
3525  * pci_configure_ari - enable or disable ARI forwarding
3526  * @dev: the PCI device
3527  *
3528  * If @dev and its upstream bridge both support ARI, enable ARI in the
3529  * bridge.  Otherwise, disable ARI in the bridge.
3530  */
3531 void pci_configure_ari(struct pci_dev *dev)
3532 {
3533 	u32 cap;
3534 	struct pci_dev *bridge;
3535 
3536 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3537 		return;
3538 
3539 	bridge = dev->bus->self;
3540 	if (!bridge)
3541 		return;
3542 
3543 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3544 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3545 		return;
3546 
3547 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3548 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3549 					 PCI_EXP_DEVCTL2_ARI);
3550 		bridge->ari_enabled = 1;
3551 	} else {
3552 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3553 					   PCI_EXP_DEVCTL2_ARI);
3554 		bridge->ari_enabled = 0;
3555 	}
3556 }
3557 
3558 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3559 {
3560 	int pos;
3561 	u16 cap, ctrl;
3562 
3563 	pos = pdev->acs_cap;
3564 	if (!pos)
3565 		return false;
3566 
3567 	/*
3568 	 * Except for egress control, capabilities are either required
3569 	 * or only required if controllable.  Features missing from the
3570 	 * capability field can therefore be assumed as hard-wired enabled.
3571 	 */
3572 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3573 	acs_flags &= (cap | PCI_ACS_EC);
3574 
3575 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3576 	return (ctrl & acs_flags) == acs_flags;
3577 }
3578 
3579 /**
3580  * pci_acs_enabled - test ACS against required flags for a given device
3581  * @pdev: device to test
3582  * @acs_flags: required PCI ACS flags
3583  *
3584  * Return true if the device supports the provided flags.  Automatically
3585  * filters out flags that are not implemented on multifunction devices.
3586  *
3587  * Note that this interface checks the effective ACS capabilities of the
3588  * device rather than the actual capabilities.  For instance, most single
3589  * function endpoints are not required to support ACS because they have no
3590  * opportunity for peer-to-peer access.  We therefore return 'true'
3591  * regardless of whether the device exposes an ACS capability.  This makes
3592  * it much easier for callers of this function to ignore the actual type
3593  * or topology of the device when testing ACS support.
3594  */
3595 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3596 {
3597 	int ret;
3598 
3599 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3600 	if (ret >= 0)
3601 		return ret > 0;
3602 
3603 	/*
3604 	 * Conventional PCI and PCI-X devices never support ACS, either
3605 	 * effectively or actually.  The shared bus topology implies that
3606 	 * any device on the bus can receive or snoop DMA.
3607 	 */
3608 	if (!pci_is_pcie(pdev))
3609 		return false;
3610 
3611 	switch (pci_pcie_type(pdev)) {
3612 	/*
3613 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3614 	 * but since their primary interface is PCI/X, we conservatively
3615 	 * handle them as we would a non-PCIe device.
3616 	 */
3617 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3618 	/*
3619 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3620 	 * applicable... must never implement an ACS Extended Capability...".
3621 	 * This seems arbitrary, but we take a conservative interpretation
3622 	 * of this statement.
3623 	 */
3624 	case PCI_EXP_TYPE_PCI_BRIDGE:
3625 	case PCI_EXP_TYPE_RC_EC:
3626 		return false;
3627 	/*
3628 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3629 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3630 	 * regardless of whether they are single- or multi-function devices.
3631 	 */
3632 	case PCI_EXP_TYPE_DOWNSTREAM:
3633 	case PCI_EXP_TYPE_ROOT_PORT:
3634 		return pci_acs_flags_enabled(pdev, acs_flags);
3635 	/*
3636 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3637 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3638 	 * capabilities, but only when they are part of a multifunction
3639 	 * device.  The footnote for section 6.12 indicates the specific
3640 	 * PCIe types included here.
3641 	 */
3642 	case PCI_EXP_TYPE_ENDPOINT:
3643 	case PCI_EXP_TYPE_UPSTREAM:
3644 	case PCI_EXP_TYPE_LEG_END:
3645 	case PCI_EXP_TYPE_RC_END:
3646 		if (!pdev->multifunction)
3647 			break;
3648 
3649 		return pci_acs_flags_enabled(pdev, acs_flags);
3650 	}
3651 
3652 	/*
3653 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3654 	 * to single function devices with the exception of downstream ports.
3655 	 */
3656 	return true;
3657 }
3658 
3659 /**
3660  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3661  * @start: starting downstream device
3662  * @end: ending upstream device or NULL to search to the root bus
3663  * @acs_flags: required flags
3664  *
3665  * Walk up a device tree from start to end testing PCI ACS support.  If
3666  * any step along the way does not support the required flags, return false.
3667  */
3668 bool pci_acs_path_enabled(struct pci_dev *start,
3669 			  struct pci_dev *end, u16 acs_flags)
3670 {
3671 	struct pci_dev *pdev, *parent = start;
3672 
3673 	do {
3674 		pdev = parent;
3675 
3676 		if (!pci_acs_enabled(pdev, acs_flags))
3677 			return false;
3678 
3679 		if (pci_is_root_bus(pdev->bus))
3680 			return (end == NULL);
3681 
3682 		parent = pdev->bus->self;
3683 	} while (pdev != end);
3684 
3685 	return true;
3686 }
3687 
3688 /**
3689  * pci_acs_init - Initialize ACS if hardware supports it
3690  * @dev: the PCI device
3691  */
3692 void pci_acs_init(struct pci_dev *dev)
3693 {
3694 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3695 
3696 	/*
3697 	 * Attempt to enable ACS regardless of capability because some Root
3698 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3699 	 * the standard ACS capability but still support ACS via those
3700 	 * quirks.
3701 	 */
3702 	pci_enable_acs(dev);
3703 }
3704 
3705 /**
3706  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3707  * @pdev: PCI device
3708  * @bar: BAR to find
3709  *
3710  * Helper to find the position of the ctrl register for a BAR.
3711  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3712  * Returns -ENOENT if no ctrl register for the BAR could be found.
3713  */
3714 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3715 {
3716 	unsigned int pos, nbars, i;
3717 	u32 ctrl;
3718 
3719 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3720 	if (!pos)
3721 		return -ENOTSUPP;
3722 
3723 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3724 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3725 
3726 	for (i = 0; i < nbars; i++, pos += 8) {
3727 		int bar_idx;
3728 
3729 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3730 		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3731 		if (bar_idx == bar)
3732 			return pos;
3733 	}
3734 
3735 	return -ENOENT;
3736 }
3737 
3738 /**
3739  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3740  * @pdev: PCI device
3741  * @bar: BAR to query
3742  *
3743  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3744  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3745  */
3746 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3747 {
3748 	int pos;
3749 	u32 cap;
3750 
3751 	pos = pci_rebar_find_pos(pdev, bar);
3752 	if (pos < 0)
3753 		return 0;
3754 
3755 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3756 	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3757 
3758 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3759 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3760 	    bar == 0 && cap == 0x700)
3761 		return 0x3f00;
3762 
3763 	return cap;
3764 }
3765 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3766 
3767 /**
3768  * pci_rebar_get_current_size - get the current size of a BAR
3769  * @pdev: PCI device
3770  * @bar: BAR to set size to
3771  *
3772  * Read the size of a BAR from the resizable BAR config.
3773  * Returns size if found or negative error code.
3774  */
3775 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3776 {
3777 	int pos;
3778 	u32 ctrl;
3779 
3780 	pos = pci_rebar_find_pos(pdev, bar);
3781 	if (pos < 0)
3782 		return pos;
3783 
3784 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3785 	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3786 }
3787 
3788 /**
3789  * pci_rebar_set_size - set a new size for a BAR
3790  * @pdev: PCI device
3791  * @bar: BAR to set size to
3792  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3793  *
3794  * Set the new size of a BAR as defined in the spec.
3795  * Returns zero if resizing was successful, error code otherwise.
3796  */
3797 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3798 {
3799 	int pos;
3800 	u32 ctrl;
3801 
3802 	pos = pci_rebar_find_pos(pdev, bar);
3803 	if (pos < 0)
3804 		return pos;
3805 
3806 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3807 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3808 	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3809 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3810 	return 0;
3811 }
3812 
3813 /**
3814  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3815  * @dev: the PCI device
3816  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3817  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3818  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3819  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3820  *
3821  * Return 0 if all upstream bridges support AtomicOp routing, egress
3822  * blocking is disabled on all upstream ports, and the root port supports
3823  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3824  * AtomicOp completion), or negative otherwise.
3825  */
3826 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3827 {
3828 	struct pci_bus *bus = dev->bus;
3829 	struct pci_dev *bridge;
3830 	u32 cap, ctl2;
3831 
3832 	/*
3833 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3834 	 * in Device Control 2 is reserved in VFs and the PF value applies
3835 	 * to all associated VFs.
3836 	 */
3837 	if (dev->is_virtfn)
3838 		return -EINVAL;
3839 
3840 	if (!pci_is_pcie(dev))
3841 		return -EINVAL;
3842 
3843 	/*
3844 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3845 	 * AtomicOp requesters.  For now, we only support endpoints as
3846 	 * requesters and root ports as completers.  No endpoints as
3847 	 * completers, and no peer-to-peer.
3848 	 */
3849 
3850 	switch (pci_pcie_type(dev)) {
3851 	case PCI_EXP_TYPE_ENDPOINT:
3852 	case PCI_EXP_TYPE_LEG_END:
3853 	case PCI_EXP_TYPE_RC_END:
3854 		break;
3855 	default:
3856 		return -EINVAL;
3857 	}
3858 
3859 	while (bus->parent) {
3860 		bridge = bus->self;
3861 
3862 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3863 
3864 		switch (pci_pcie_type(bridge)) {
3865 		/* Ensure switch ports support AtomicOp routing */
3866 		case PCI_EXP_TYPE_UPSTREAM:
3867 		case PCI_EXP_TYPE_DOWNSTREAM:
3868 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3869 				return -EINVAL;
3870 			break;
3871 
3872 		/* Ensure root port supports all the sizes we care about */
3873 		case PCI_EXP_TYPE_ROOT_PORT:
3874 			if ((cap & cap_mask) != cap_mask)
3875 				return -EINVAL;
3876 			break;
3877 		}
3878 
3879 		/* Ensure upstream ports don't block AtomicOps on egress */
3880 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3881 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3882 						   &ctl2);
3883 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3884 				return -EINVAL;
3885 		}
3886 
3887 		bus = bus->parent;
3888 	}
3889 
3890 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3891 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3892 	return 0;
3893 }
3894 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3895 
3896 /**
3897  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3898  * @dev: the PCI device
3899  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3900  *
3901  * Perform INTx swizzling for a device behind one level of bridge.  This is
3902  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3903  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3904  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3905  * the PCI Express Base Specification, Revision 2.1)
3906  */
3907 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3908 {
3909 	int slot;
3910 
3911 	if (pci_ari_enabled(dev->bus))
3912 		slot = 0;
3913 	else
3914 		slot = PCI_SLOT(dev->devfn);
3915 
3916 	return (((pin - 1) + slot) % 4) + 1;
3917 }
3918 
3919 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3920 {
3921 	u8 pin;
3922 
3923 	pin = dev->pin;
3924 	if (!pin)
3925 		return -1;
3926 
3927 	while (!pci_is_root_bus(dev->bus)) {
3928 		pin = pci_swizzle_interrupt_pin(dev, pin);
3929 		dev = dev->bus->self;
3930 	}
3931 	*bridge = dev;
3932 	return pin;
3933 }
3934 
3935 /**
3936  * pci_common_swizzle - swizzle INTx all the way to root bridge
3937  * @dev: the PCI device
3938  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3939  *
3940  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3941  * bridges all the way up to a PCI root bus.
3942  */
3943 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3944 {
3945 	u8 pin = *pinp;
3946 
3947 	while (!pci_is_root_bus(dev->bus)) {
3948 		pin = pci_swizzle_interrupt_pin(dev, pin);
3949 		dev = dev->bus->self;
3950 	}
3951 	*pinp = pin;
3952 	return PCI_SLOT(dev->devfn);
3953 }
3954 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3955 
3956 /**
3957  * pci_release_region - Release a PCI bar
3958  * @pdev: PCI device whose resources were previously reserved by
3959  *	  pci_request_region()
3960  * @bar: BAR to release
3961  *
3962  * Releases the PCI I/O and memory resources previously reserved by a
3963  * successful call to pci_request_region().  Call this function only
3964  * after all use of the PCI regions has ceased.
3965  */
3966 void pci_release_region(struct pci_dev *pdev, int bar)
3967 {
3968 	struct pci_devres *dr;
3969 
3970 	if (pci_resource_len(pdev, bar) == 0)
3971 		return;
3972 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3973 		release_region(pci_resource_start(pdev, bar),
3974 				pci_resource_len(pdev, bar));
3975 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3976 		release_mem_region(pci_resource_start(pdev, bar),
3977 				pci_resource_len(pdev, bar));
3978 
3979 	dr = find_pci_dr(pdev);
3980 	if (dr)
3981 		dr->region_mask &= ~(1 << bar);
3982 }
3983 EXPORT_SYMBOL(pci_release_region);
3984 
3985 /**
3986  * __pci_request_region - Reserved PCI I/O and memory resource
3987  * @pdev: PCI device whose resources are to be reserved
3988  * @bar: BAR to be reserved
3989  * @res_name: Name to be associated with resource.
3990  * @exclusive: whether the region access is exclusive or not
3991  *
3992  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3993  * being reserved by owner @res_name.  Do not access any
3994  * address inside the PCI regions unless this call returns
3995  * successfully.
3996  *
3997  * If @exclusive is set, then the region is marked so that userspace
3998  * is explicitly not allowed to map the resource via /dev/mem or
3999  * sysfs MMIO access.
4000  *
4001  * Returns 0 on success, or %EBUSY on error.  A warning
4002  * message is also printed on failure.
4003  */
4004 static int __pci_request_region(struct pci_dev *pdev, int bar,
4005 				const char *res_name, int exclusive)
4006 {
4007 	struct pci_devres *dr;
4008 
4009 	if (pci_resource_len(pdev, bar) == 0)
4010 		return 0;
4011 
4012 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4013 		if (!request_region(pci_resource_start(pdev, bar),
4014 			    pci_resource_len(pdev, bar), res_name))
4015 			goto err_out;
4016 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4017 		if (!__request_mem_region(pci_resource_start(pdev, bar),
4018 					pci_resource_len(pdev, bar), res_name,
4019 					exclusive))
4020 			goto err_out;
4021 	}
4022 
4023 	dr = find_pci_dr(pdev);
4024 	if (dr)
4025 		dr->region_mask |= 1 << bar;
4026 
4027 	return 0;
4028 
4029 err_out:
4030 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4031 		 &pdev->resource[bar]);
4032 	return -EBUSY;
4033 }
4034 
4035 /**
4036  * pci_request_region - Reserve PCI I/O and memory resource
4037  * @pdev: PCI device whose resources are to be reserved
4038  * @bar: BAR to be reserved
4039  * @res_name: Name to be associated with resource
4040  *
4041  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4042  * being reserved by owner @res_name.  Do not access any
4043  * address inside the PCI regions unless this call returns
4044  * successfully.
4045  *
4046  * Returns 0 on success, or %EBUSY on error.  A warning
4047  * message is also printed on failure.
4048  */
4049 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4050 {
4051 	return __pci_request_region(pdev, bar, res_name, 0);
4052 }
4053 EXPORT_SYMBOL(pci_request_region);
4054 
4055 /**
4056  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4057  * @pdev: PCI device whose resources were previously reserved
4058  * @bars: Bitmask of BARs to be released
4059  *
4060  * Release selected PCI I/O and memory resources previously reserved.
4061  * Call this function only after all use of the PCI regions has ceased.
4062  */
4063 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4064 {
4065 	int i;
4066 
4067 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4068 		if (bars & (1 << i))
4069 			pci_release_region(pdev, i);
4070 }
4071 EXPORT_SYMBOL(pci_release_selected_regions);
4072 
4073 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4074 					  const char *res_name, int excl)
4075 {
4076 	int i;
4077 
4078 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4079 		if (bars & (1 << i))
4080 			if (__pci_request_region(pdev, i, res_name, excl))
4081 				goto err_out;
4082 	return 0;
4083 
4084 err_out:
4085 	while (--i >= 0)
4086 		if (bars & (1 << i))
4087 			pci_release_region(pdev, i);
4088 
4089 	return -EBUSY;
4090 }
4091 
4092 
4093 /**
4094  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4095  * @pdev: PCI device whose resources are to be reserved
4096  * @bars: Bitmask of BARs to be requested
4097  * @res_name: Name to be associated with resource
4098  */
4099 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4100 				 const char *res_name)
4101 {
4102 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4103 }
4104 EXPORT_SYMBOL(pci_request_selected_regions);
4105 
4106 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4107 					   const char *res_name)
4108 {
4109 	return __pci_request_selected_regions(pdev, bars, res_name,
4110 			IORESOURCE_EXCLUSIVE);
4111 }
4112 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4113 
4114 /**
4115  * pci_release_regions - Release reserved PCI I/O and memory resources
4116  * @pdev: PCI device whose resources were previously reserved by
4117  *	  pci_request_regions()
4118  *
4119  * Releases all PCI I/O and memory resources previously reserved by a
4120  * successful call to pci_request_regions().  Call this function only
4121  * after all use of the PCI regions has ceased.
4122  */
4123 
4124 void pci_release_regions(struct pci_dev *pdev)
4125 {
4126 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4127 }
4128 EXPORT_SYMBOL(pci_release_regions);
4129 
4130 /**
4131  * pci_request_regions - Reserve PCI I/O and memory resources
4132  * @pdev: PCI device whose resources are to be reserved
4133  * @res_name: Name to be associated with resource.
4134  *
4135  * Mark all PCI regions associated with PCI device @pdev as
4136  * being reserved by owner @res_name.  Do not access any
4137  * address inside the PCI regions unless this call returns
4138  * successfully.
4139  *
4140  * Returns 0 on success, or %EBUSY on error.  A warning
4141  * message is also printed on failure.
4142  */
4143 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4144 {
4145 	return pci_request_selected_regions(pdev,
4146 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4147 }
4148 EXPORT_SYMBOL(pci_request_regions);
4149 
4150 /**
4151  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4152  * @pdev: PCI device whose resources are to be reserved
4153  * @res_name: Name to be associated with resource.
4154  *
4155  * Mark all PCI regions associated with PCI device @pdev as being reserved
4156  * by owner @res_name.  Do not access any address inside the PCI regions
4157  * unless this call returns successfully.
4158  *
4159  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4160  * and the sysfs MMIO access will not be allowed.
4161  *
4162  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4163  * printed on failure.
4164  */
4165 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4166 {
4167 	return pci_request_selected_regions_exclusive(pdev,
4168 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4169 }
4170 EXPORT_SYMBOL(pci_request_regions_exclusive);
4171 
4172 /*
4173  * Record the PCI IO range (expressed as CPU physical address + size).
4174  * Return a negative value if an error has occurred, zero otherwise
4175  */
4176 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4177 			resource_size_t	size)
4178 {
4179 	int ret = 0;
4180 #ifdef PCI_IOBASE
4181 	struct logic_pio_hwaddr *range;
4182 
4183 	if (!size || addr + size < addr)
4184 		return -EINVAL;
4185 
4186 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4187 	if (!range)
4188 		return -ENOMEM;
4189 
4190 	range->fwnode = fwnode;
4191 	range->size = size;
4192 	range->hw_start = addr;
4193 	range->flags = LOGIC_PIO_CPU_MMIO;
4194 
4195 	ret = logic_pio_register_range(range);
4196 	if (ret)
4197 		kfree(range);
4198 
4199 	/* Ignore duplicates due to deferred probing */
4200 	if (ret == -EEXIST)
4201 		ret = 0;
4202 #endif
4203 
4204 	return ret;
4205 }
4206 
4207 phys_addr_t pci_pio_to_address(unsigned long pio)
4208 {
4209 #ifdef PCI_IOBASE
4210 	if (pio < MMIO_UPPER_LIMIT)
4211 		return logic_pio_to_hwaddr(pio);
4212 #endif
4213 
4214 	return (phys_addr_t) OF_BAD_ADDR;
4215 }
4216 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4217 
4218 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4219 {
4220 #ifdef PCI_IOBASE
4221 	return logic_pio_trans_cpuaddr(address);
4222 #else
4223 	if (address > IO_SPACE_LIMIT)
4224 		return (unsigned long)-1;
4225 
4226 	return (unsigned long) address;
4227 #endif
4228 }
4229 
4230 /**
4231  * pci_remap_iospace - Remap the memory mapped I/O space
4232  * @res: Resource describing the I/O space
4233  * @phys_addr: physical address of range to be mapped
4234  *
4235  * Remap the memory mapped I/O space described by the @res and the CPU
4236  * physical address @phys_addr into virtual address space.  Only
4237  * architectures that have memory mapped IO functions defined (and the
4238  * PCI_IOBASE value defined) should call this function.
4239  */
4240 #ifndef pci_remap_iospace
4241 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4242 {
4243 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4244 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4245 
4246 	if (!(res->flags & IORESOURCE_IO))
4247 		return -EINVAL;
4248 
4249 	if (res->end > IO_SPACE_LIMIT)
4250 		return -EINVAL;
4251 
4252 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4253 				  pgprot_device(PAGE_KERNEL));
4254 #else
4255 	/*
4256 	 * This architecture does not have memory mapped I/O space,
4257 	 * so this function should never be called
4258 	 */
4259 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4260 	return -ENODEV;
4261 #endif
4262 }
4263 EXPORT_SYMBOL(pci_remap_iospace);
4264 #endif
4265 
4266 /**
4267  * pci_unmap_iospace - Unmap the memory mapped I/O space
4268  * @res: resource to be unmapped
4269  *
4270  * Unmap the CPU virtual address @res from virtual address space.  Only
4271  * architectures that have memory mapped IO functions defined (and the
4272  * PCI_IOBASE value defined) should call this function.
4273  */
4274 void pci_unmap_iospace(struct resource *res)
4275 {
4276 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4277 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4278 
4279 	vunmap_range(vaddr, vaddr + resource_size(res));
4280 #endif
4281 }
4282 EXPORT_SYMBOL(pci_unmap_iospace);
4283 
4284 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4285 {
4286 	struct resource **res = ptr;
4287 
4288 	pci_unmap_iospace(*res);
4289 }
4290 
4291 /**
4292  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4293  * @dev: Generic device to remap IO address for
4294  * @res: Resource describing the I/O space
4295  * @phys_addr: physical address of range to be mapped
4296  *
4297  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4298  * detach.
4299  */
4300 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4301 			   phys_addr_t phys_addr)
4302 {
4303 	const struct resource **ptr;
4304 	int error;
4305 
4306 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4307 	if (!ptr)
4308 		return -ENOMEM;
4309 
4310 	error = pci_remap_iospace(res, phys_addr);
4311 	if (error) {
4312 		devres_free(ptr);
4313 	} else	{
4314 		*ptr = res;
4315 		devres_add(dev, ptr);
4316 	}
4317 
4318 	return error;
4319 }
4320 EXPORT_SYMBOL(devm_pci_remap_iospace);
4321 
4322 /**
4323  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4324  * @dev: Generic device to remap IO address for
4325  * @offset: Resource address to map
4326  * @size: Size of map
4327  *
4328  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4329  * detach.
4330  */
4331 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4332 				      resource_size_t offset,
4333 				      resource_size_t size)
4334 {
4335 	void __iomem **ptr, *addr;
4336 
4337 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4338 	if (!ptr)
4339 		return NULL;
4340 
4341 	addr = pci_remap_cfgspace(offset, size);
4342 	if (addr) {
4343 		*ptr = addr;
4344 		devres_add(dev, ptr);
4345 	} else
4346 		devres_free(ptr);
4347 
4348 	return addr;
4349 }
4350 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4351 
4352 /**
4353  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4354  * @dev: generic device to handle the resource for
4355  * @res: configuration space resource to be handled
4356  *
4357  * Checks that a resource is a valid memory region, requests the memory
4358  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4359  * proper PCI configuration space memory attributes are guaranteed.
4360  *
4361  * All operations are managed and will be undone on driver detach.
4362  *
4363  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4364  * on failure. Usage example::
4365  *
4366  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4367  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4368  *	if (IS_ERR(base))
4369  *		return PTR_ERR(base);
4370  */
4371 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4372 					  struct resource *res)
4373 {
4374 	resource_size_t size;
4375 	const char *name;
4376 	void __iomem *dest_ptr;
4377 
4378 	BUG_ON(!dev);
4379 
4380 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4381 		dev_err(dev, "invalid resource\n");
4382 		return IOMEM_ERR_PTR(-EINVAL);
4383 	}
4384 
4385 	size = resource_size(res);
4386 
4387 	if (res->name)
4388 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4389 				      res->name);
4390 	else
4391 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4392 	if (!name)
4393 		return IOMEM_ERR_PTR(-ENOMEM);
4394 
4395 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4396 		dev_err(dev, "can't request region for resource %pR\n", res);
4397 		return IOMEM_ERR_PTR(-EBUSY);
4398 	}
4399 
4400 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4401 	if (!dest_ptr) {
4402 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4403 		devm_release_mem_region(dev, res->start, size);
4404 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4405 	}
4406 
4407 	return dest_ptr;
4408 }
4409 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4410 
4411 static void __pci_set_master(struct pci_dev *dev, bool enable)
4412 {
4413 	u16 old_cmd, cmd;
4414 
4415 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4416 	if (enable)
4417 		cmd = old_cmd | PCI_COMMAND_MASTER;
4418 	else
4419 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4420 	if (cmd != old_cmd) {
4421 		pci_dbg(dev, "%s bus mastering\n",
4422 			enable ? "enabling" : "disabling");
4423 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4424 	}
4425 	dev->is_busmaster = enable;
4426 }
4427 
4428 /**
4429  * pcibios_setup - process "pci=" kernel boot arguments
4430  * @str: string used to pass in "pci=" kernel boot arguments
4431  *
4432  * Process kernel boot arguments.  This is the default implementation.
4433  * Architecture specific implementations can override this as necessary.
4434  */
4435 char * __weak __init pcibios_setup(char *str)
4436 {
4437 	return str;
4438 }
4439 
4440 /**
4441  * pcibios_set_master - enable PCI bus-mastering for device dev
4442  * @dev: the PCI device to enable
4443  *
4444  * Enables PCI bus-mastering for the device.  This is the default
4445  * implementation.  Architecture specific implementations can override
4446  * this if necessary.
4447  */
4448 void __weak pcibios_set_master(struct pci_dev *dev)
4449 {
4450 	u8 lat;
4451 
4452 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4453 	if (pci_is_pcie(dev))
4454 		return;
4455 
4456 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4457 	if (lat < 16)
4458 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4459 	else if (lat > pcibios_max_latency)
4460 		lat = pcibios_max_latency;
4461 	else
4462 		return;
4463 
4464 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4465 }
4466 
4467 /**
4468  * pci_set_master - enables bus-mastering for device dev
4469  * @dev: the PCI device to enable
4470  *
4471  * Enables bus-mastering on the device and calls pcibios_set_master()
4472  * to do the needed arch specific settings.
4473  */
4474 void pci_set_master(struct pci_dev *dev)
4475 {
4476 	__pci_set_master(dev, true);
4477 	pcibios_set_master(dev);
4478 }
4479 EXPORT_SYMBOL(pci_set_master);
4480 
4481 /**
4482  * pci_clear_master - disables bus-mastering for device dev
4483  * @dev: the PCI device to disable
4484  */
4485 void pci_clear_master(struct pci_dev *dev)
4486 {
4487 	__pci_set_master(dev, false);
4488 }
4489 EXPORT_SYMBOL(pci_clear_master);
4490 
4491 /**
4492  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4493  * @dev: the PCI device for which MWI is to be enabled
4494  *
4495  * Helper function for pci_set_mwi.
4496  * Originally copied from drivers/net/acenic.c.
4497  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4498  *
4499  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4500  */
4501 int pci_set_cacheline_size(struct pci_dev *dev)
4502 {
4503 	u8 cacheline_size;
4504 
4505 	if (!pci_cache_line_size)
4506 		return -EINVAL;
4507 
4508 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4509 	   equal to or multiple of the right value. */
4510 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4511 	if (cacheline_size >= pci_cache_line_size &&
4512 	    (cacheline_size % pci_cache_line_size) == 0)
4513 		return 0;
4514 
4515 	/* Write the correct value. */
4516 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4517 	/* Read it back. */
4518 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4519 	if (cacheline_size == pci_cache_line_size)
4520 		return 0;
4521 
4522 	pci_dbg(dev, "cache line size of %d is not supported\n",
4523 		   pci_cache_line_size << 2);
4524 
4525 	return -EINVAL;
4526 }
4527 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4528 
4529 /**
4530  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4531  * @dev: the PCI device for which MWI is enabled
4532  *
4533  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4534  *
4535  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4536  */
4537 int pci_set_mwi(struct pci_dev *dev)
4538 {
4539 #ifdef PCI_DISABLE_MWI
4540 	return 0;
4541 #else
4542 	int rc;
4543 	u16 cmd;
4544 
4545 	rc = pci_set_cacheline_size(dev);
4546 	if (rc)
4547 		return rc;
4548 
4549 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4550 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4551 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4552 		cmd |= PCI_COMMAND_INVALIDATE;
4553 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4554 	}
4555 	return 0;
4556 #endif
4557 }
4558 EXPORT_SYMBOL(pci_set_mwi);
4559 
4560 /**
4561  * pcim_set_mwi - a device-managed pci_set_mwi()
4562  * @dev: the PCI device for which MWI is enabled
4563  *
4564  * Managed pci_set_mwi().
4565  *
4566  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4567  */
4568 int pcim_set_mwi(struct pci_dev *dev)
4569 {
4570 	struct pci_devres *dr;
4571 
4572 	dr = find_pci_dr(dev);
4573 	if (!dr)
4574 		return -ENOMEM;
4575 
4576 	dr->mwi = 1;
4577 	return pci_set_mwi(dev);
4578 }
4579 EXPORT_SYMBOL(pcim_set_mwi);
4580 
4581 /**
4582  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4583  * @dev: the PCI device for which MWI is enabled
4584  *
4585  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4586  * Callers are not required to check the return value.
4587  *
4588  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4589  */
4590 int pci_try_set_mwi(struct pci_dev *dev)
4591 {
4592 #ifdef PCI_DISABLE_MWI
4593 	return 0;
4594 #else
4595 	return pci_set_mwi(dev);
4596 #endif
4597 }
4598 EXPORT_SYMBOL(pci_try_set_mwi);
4599 
4600 /**
4601  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4602  * @dev: the PCI device to disable
4603  *
4604  * Disables PCI Memory-Write-Invalidate transaction on the device
4605  */
4606 void pci_clear_mwi(struct pci_dev *dev)
4607 {
4608 #ifndef PCI_DISABLE_MWI
4609 	u16 cmd;
4610 
4611 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4612 	if (cmd & PCI_COMMAND_INVALIDATE) {
4613 		cmd &= ~PCI_COMMAND_INVALIDATE;
4614 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4615 	}
4616 #endif
4617 }
4618 EXPORT_SYMBOL(pci_clear_mwi);
4619 
4620 /**
4621  * pci_disable_parity - disable parity checking for device
4622  * @dev: the PCI device to operate on
4623  *
4624  * Disable parity checking for device @dev
4625  */
4626 void pci_disable_parity(struct pci_dev *dev)
4627 {
4628 	u16 cmd;
4629 
4630 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4631 	if (cmd & PCI_COMMAND_PARITY) {
4632 		cmd &= ~PCI_COMMAND_PARITY;
4633 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4634 	}
4635 }
4636 
4637 /**
4638  * pci_intx - enables/disables PCI INTx for device dev
4639  * @pdev: the PCI device to operate on
4640  * @enable: boolean: whether to enable or disable PCI INTx
4641  *
4642  * Enables/disables PCI INTx for device @pdev
4643  */
4644 void pci_intx(struct pci_dev *pdev, int enable)
4645 {
4646 	u16 pci_command, new;
4647 
4648 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4649 
4650 	if (enable)
4651 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4652 	else
4653 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4654 
4655 	if (new != pci_command) {
4656 		struct pci_devres *dr;
4657 
4658 		pci_write_config_word(pdev, PCI_COMMAND, new);
4659 
4660 		dr = find_pci_dr(pdev);
4661 		if (dr && !dr->restore_intx) {
4662 			dr->restore_intx = 1;
4663 			dr->orig_intx = !enable;
4664 		}
4665 	}
4666 }
4667 EXPORT_SYMBOL_GPL(pci_intx);
4668 
4669 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4670 {
4671 	struct pci_bus *bus = dev->bus;
4672 	bool mask_updated = true;
4673 	u32 cmd_status_dword;
4674 	u16 origcmd, newcmd;
4675 	unsigned long flags;
4676 	bool irq_pending;
4677 
4678 	/*
4679 	 * We do a single dword read to retrieve both command and status.
4680 	 * Document assumptions that make this possible.
4681 	 */
4682 	BUILD_BUG_ON(PCI_COMMAND % 4);
4683 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4684 
4685 	raw_spin_lock_irqsave(&pci_lock, flags);
4686 
4687 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4688 
4689 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4690 
4691 	/*
4692 	 * Check interrupt status register to see whether our device
4693 	 * triggered the interrupt (when masking) or the next IRQ is
4694 	 * already pending (when unmasking).
4695 	 */
4696 	if (mask != irq_pending) {
4697 		mask_updated = false;
4698 		goto done;
4699 	}
4700 
4701 	origcmd = cmd_status_dword;
4702 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4703 	if (mask)
4704 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4705 	if (newcmd != origcmd)
4706 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4707 
4708 done:
4709 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4710 
4711 	return mask_updated;
4712 }
4713 
4714 /**
4715  * pci_check_and_mask_intx - mask INTx on pending interrupt
4716  * @dev: the PCI device to operate on
4717  *
4718  * Check if the device dev has its INTx line asserted, mask it and return
4719  * true in that case. False is returned if no interrupt was pending.
4720  */
4721 bool pci_check_and_mask_intx(struct pci_dev *dev)
4722 {
4723 	return pci_check_and_set_intx_mask(dev, true);
4724 }
4725 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4726 
4727 /**
4728  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4729  * @dev: the PCI device to operate on
4730  *
4731  * Check if the device dev has its INTx line asserted, unmask it if not and
4732  * return true. False is returned and the mask remains active if there was
4733  * still an interrupt pending.
4734  */
4735 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4736 {
4737 	return pci_check_and_set_intx_mask(dev, false);
4738 }
4739 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4740 
4741 /**
4742  * pci_wait_for_pending_transaction - wait for pending transaction
4743  * @dev: the PCI device to operate on
4744  *
4745  * Return 0 if transaction is pending 1 otherwise.
4746  */
4747 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4748 {
4749 	if (!pci_is_pcie(dev))
4750 		return 1;
4751 
4752 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4753 				    PCI_EXP_DEVSTA_TRPND);
4754 }
4755 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4756 
4757 /**
4758  * pcie_flr - initiate a PCIe function level reset
4759  * @dev: device to reset
4760  *
4761  * Initiate a function level reset unconditionally on @dev without
4762  * checking any flags and DEVCAP
4763  */
4764 int pcie_flr(struct pci_dev *dev)
4765 {
4766 	if (!pci_wait_for_pending_transaction(dev))
4767 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4768 
4769 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4770 
4771 	if (dev->imm_ready)
4772 		return 0;
4773 
4774 	/*
4775 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4776 	 * 100ms, but may silently discard requests while the FLR is in
4777 	 * progress.  Wait 100ms before trying to access the device.
4778 	 */
4779 	msleep(100);
4780 
4781 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4782 }
4783 EXPORT_SYMBOL_GPL(pcie_flr);
4784 
4785 /**
4786  * pcie_reset_flr - initiate a PCIe function level reset
4787  * @dev: device to reset
4788  * @probe: if true, return 0 if device can be reset this way
4789  *
4790  * Initiate a function level reset on @dev.
4791  */
4792 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4793 {
4794 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4795 		return -ENOTTY;
4796 
4797 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4798 		return -ENOTTY;
4799 
4800 	if (probe)
4801 		return 0;
4802 
4803 	return pcie_flr(dev);
4804 }
4805 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4806 
4807 static int pci_af_flr(struct pci_dev *dev, bool probe)
4808 {
4809 	int pos;
4810 	u8 cap;
4811 
4812 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4813 	if (!pos)
4814 		return -ENOTTY;
4815 
4816 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4817 		return -ENOTTY;
4818 
4819 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4820 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4821 		return -ENOTTY;
4822 
4823 	if (probe)
4824 		return 0;
4825 
4826 	/*
4827 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4828 	 * is used, so we use the control offset rather than status and shift
4829 	 * the test bit to match.
4830 	 */
4831 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4832 				 PCI_AF_STATUS_TP << 8))
4833 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4834 
4835 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4836 
4837 	if (dev->imm_ready)
4838 		return 0;
4839 
4840 	/*
4841 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4842 	 * updated 27 July 2006; a device must complete an FLR within
4843 	 * 100ms, but may silently discard requests while the FLR is in
4844 	 * progress.  Wait 100ms before trying to access the device.
4845 	 */
4846 	msleep(100);
4847 
4848 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4849 }
4850 
4851 /**
4852  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4853  * @dev: Device to reset.
4854  * @probe: if true, return 0 if the device can be reset this way.
4855  *
4856  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4857  * unset, it will be reinitialized internally when going from PCI_D3hot to
4858  * PCI_D0.  If that's the case and the device is not in a low-power state
4859  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4860  *
4861  * NOTE: This causes the caller to sleep for twice the device power transition
4862  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4863  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4864  * Moreover, only devices in D0 can be reset by this function.
4865  */
4866 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4867 {
4868 	u16 csr;
4869 
4870 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4871 		return -ENOTTY;
4872 
4873 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4874 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4875 		return -ENOTTY;
4876 
4877 	if (probe)
4878 		return 0;
4879 
4880 	if (dev->current_state != PCI_D0)
4881 		return -EINVAL;
4882 
4883 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4884 	csr |= PCI_D3hot;
4885 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4886 	pci_dev_d3_sleep(dev);
4887 
4888 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4889 	csr |= PCI_D0;
4890 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4891 	pci_dev_d3_sleep(dev);
4892 
4893 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4894 }
4895 
4896 /**
4897  * pcie_wait_for_link_status - Wait for link status change
4898  * @pdev: Device whose link to wait for.
4899  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4900  * @active: Waiting for active or inactive?
4901  *
4902  * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4903  * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4904  */
4905 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4906 				     bool use_lt, bool active)
4907 {
4908 	u16 lnksta_mask, lnksta_match;
4909 	unsigned long end_jiffies;
4910 	u16 lnksta;
4911 
4912 	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4913 	lnksta_match = active ? lnksta_mask : 0;
4914 
4915 	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4916 	do {
4917 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4918 		if ((lnksta & lnksta_mask) == lnksta_match)
4919 			return 0;
4920 		msleep(1);
4921 	} while (time_before(jiffies, end_jiffies));
4922 
4923 	return -ETIMEDOUT;
4924 }
4925 
4926 /**
4927  * pcie_retrain_link - Request a link retrain and wait for it to complete
4928  * @pdev: Device whose link to retrain.
4929  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4930  *
4931  * Retrain completion status is retrieved from the Link Status Register
4932  * according to @use_lt.  It is not verified whether the use of the DLLLA
4933  * bit is valid.
4934  *
4935  * Return 0 if successful, or -ETIMEDOUT if training has not completed
4936  * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4937  */
4938 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4939 {
4940 	int rc;
4941 
4942 	/*
4943 	 * Ensure the updated LNKCTL parameters are used during link
4944 	 * training by checking that there is no ongoing link training to
4945 	 * avoid LTSSM race as recommended in Implementation Note at the
4946 	 * end of PCIe r6.0.1 sec 7.5.3.7.
4947 	 */
4948 	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4949 	if (rc)
4950 		return rc;
4951 
4952 	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4953 	if (pdev->clear_retrain_link) {
4954 		/*
4955 		 * Due to an erratum in some devices the Retrain Link bit
4956 		 * needs to be cleared again manually to allow the link
4957 		 * training to succeed.
4958 		 */
4959 		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4960 	}
4961 
4962 	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4963 }
4964 
4965 /**
4966  * pcie_wait_for_link_delay - Wait until link is active or inactive
4967  * @pdev: Bridge device
4968  * @active: waiting for active or inactive?
4969  * @delay: Delay to wait after link has become active (in ms)
4970  *
4971  * Use this to wait till link becomes active or inactive.
4972  */
4973 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4974 				     int delay)
4975 {
4976 	int rc;
4977 
4978 	/*
4979 	 * Some controllers might not implement link active reporting. In this
4980 	 * case, we wait for 1000 ms + any delay requested by the caller.
4981 	 */
4982 	if (!pdev->link_active_reporting) {
4983 		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4984 		return true;
4985 	}
4986 
4987 	/*
4988 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4989 	 * after which we should expect an link active if the reset was
4990 	 * successful. If so, software must wait a minimum 100ms before sending
4991 	 * configuration requests to devices downstream this port.
4992 	 *
4993 	 * If the link fails to activate, either the device was physically
4994 	 * removed or the link is permanently failed.
4995 	 */
4996 	if (active)
4997 		msleep(20);
4998 	rc = pcie_wait_for_link_status(pdev, false, active);
4999 	if (active) {
5000 		if (rc)
5001 			rc = pcie_failed_link_retrain(pdev);
5002 		if (rc)
5003 			return false;
5004 
5005 		msleep(delay);
5006 		return true;
5007 	}
5008 
5009 	if (rc)
5010 		return false;
5011 
5012 	return true;
5013 }
5014 
5015 /**
5016  * pcie_wait_for_link - Wait until link is active or inactive
5017  * @pdev: Bridge device
5018  * @active: waiting for active or inactive?
5019  *
5020  * Use this to wait till link becomes active or inactive.
5021  */
5022 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5023 {
5024 	return pcie_wait_for_link_delay(pdev, active, 100);
5025 }
5026 
5027 /*
5028  * Find maximum D3cold delay required by all the devices on the bus.  The
5029  * spec says 100 ms, but firmware can lower it and we allow drivers to
5030  * increase it as well.
5031  *
5032  * Called with @pci_bus_sem locked for reading.
5033  */
5034 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5035 {
5036 	const struct pci_dev *pdev;
5037 	int min_delay = 100;
5038 	int max_delay = 0;
5039 
5040 	list_for_each_entry(pdev, &bus->devices, bus_list) {
5041 		if (pdev->d3cold_delay < min_delay)
5042 			min_delay = pdev->d3cold_delay;
5043 		if (pdev->d3cold_delay > max_delay)
5044 			max_delay = pdev->d3cold_delay;
5045 	}
5046 
5047 	return max(min_delay, max_delay);
5048 }
5049 
5050 /**
5051  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5052  * @dev: PCI bridge
5053  * @reset_type: reset type in human-readable form
5054  *
5055  * Handle necessary delays before access to the devices on the secondary
5056  * side of the bridge are permitted after D3cold to D0 transition
5057  * or Conventional Reset.
5058  *
5059  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5060  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5061  * 4.3.2.
5062  *
5063  * Return 0 on success or -ENOTTY if the first device on the secondary bus
5064  * failed to become accessible.
5065  */
5066 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5067 {
5068 	struct pci_dev *child;
5069 	int delay;
5070 
5071 	if (pci_dev_is_disconnected(dev))
5072 		return 0;
5073 
5074 	if (!pci_is_bridge(dev))
5075 		return 0;
5076 
5077 	down_read(&pci_bus_sem);
5078 
5079 	/*
5080 	 * We only deal with devices that are present currently on the bus.
5081 	 * For any hot-added devices the access delay is handled in pciehp
5082 	 * board_added(). In case of ACPI hotplug the firmware is expected
5083 	 * to configure the devices before OS is notified.
5084 	 */
5085 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5086 		up_read(&pci_bus_sem);
5087 		return 0;
5088 	}
5089 
5090 	/* Take d3cold_delay requirements into account */
5091 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5092 	if (!delay) {
5093 		up_read(&pci_bus_sem);
5094 		return 0;
5095 	}
5096 
5097 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5098 				 bus_list);
5099 	up_read(&pci_bus_sem);
5100 
5101 	/*
5102 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5103 	 * accessing the device after reset (that is 1000 ms + 100 ms).
5104 	 */
5105 	if (!pci_is_pcie(dev)) {
5106 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5107 		msleep(1000 + delay);
5108 		return 0;
5109 	}
5110 
5111 	/*
5112 	 * For PCIe downstream and root ports that do not support speeds
5113 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5114 	 * speeds (gen3) we need to wait first for the data link layer to
5115 	 * become active.
5116 	 *
5117 	 * However, 100 ms is the minimum and the PCIe spec says the
5118 	 * software must allow at least 1s before it can determine that the
5119 	 * device that did not respond is a broken device. Also device can
5120 	 * take longer than that to respond if it indicates so through Request
5121 	 * Retry Status completions.
5122 	 *
5123 	 * Therefore we wait for 100 ms and check for the device presence
5124 	 * until the timeout expires.
5125 	 */
5126 	if (!pcie_downstream_port(dev))
5127 		return 0;
5128 
5129 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5130 		u16 status;
5131 
5132 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5133 		msleep(delay);
5134 
5135 		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5136 			return 0;
5137 
5138 		/*
5139 		 * If the port supports active link reporting we now check
5140 		 * whether the link is active and if not bail out early with
5141 		 * the assumption that the device is not present anymore.
5142 		 */
5143 		if (!dev->link_active_reporting)
5144 			return -ENOTTY;
5145 
5146 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5147 		if (!(status & PCI_EXP_LNKSTA_DLLLA))
5148 			return -ENOTTY;
5149 
5150 		return pci_dev_wait(child, reset_type,
5151 				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5152 	}
5153 
5154 	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5155 		delay);
5156 	if (!pcie_wait_for_link_delay(dev, true, delay)) {
5157 		/* Did not train, no need to wait any further */
5158 		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5159 		return -ENOTTY;
5160 	}
5161 
5162 	return pci_dev_wait(child, reset_type,
5163 			    PCIE_RESET_READY_POLL_MS - delay);
5164 }
5165 
5166 void pci_reset_secondary_bus(struct pci_dev *dev)
5167 {
5168 	u16 ctrl;
5169 
5170 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5171 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5172 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5173 
5174 	/*
5175 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5176 	 * this to 2ms to ensure that we meet the minimum requirement.
5177 	 */
5178 	msleep(2);
5179 
5180 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5181 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5182 }
5183 
5184 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5185 {
5186 	pci_reset_secondary_bus(dev);
5187 }
5188 
5189 /**
5190  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5191  * @dev: Bridge device
5192  *
5193  * Use the bridge control register to assert reset on the secondary bus.
5194  * Devices on the secondary bus are left in power-on state.
5195  */
5196 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5197 {
5198 	pcibios_reset_secondary_bus(dev);
5199 
5200 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5201 }
5202 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5203 
5204 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5205 {
5206 	struct pci_dev *pdev;
5207 
5208 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5209 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5210 		return -ENOTTY;
5211 
5212 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5213 		if (pdev != dev)
5214 			return -ENOTTY;
5215 
5216 	if (probe)
5217 		return 0;
5218 
5219 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5220 }
5221 
5222 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5223 {
5224 	int rc = -ENOTTY;
5225 
5226 	if (!hotplug || !try_module_get(hotplug->owner))
5227 		return rc;
5228 
5229 	if (hotplug->ops->reset_slot)
5230 		rc = hotplug->ops->reset_slot(hotplug, probe);
5231 
5232 	module_put(hotplug->owner);
5233 
5234 	return rc;
5235 }
5236 
5237 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5238 {
5239 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5240 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5241 		return -ENOTTY;
5242 
5243 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5244 }
5245 
5246 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5247 {
5248 	int rc;
5249 
5250 	rc = pci_dev_reset_slot_function(dev, probe);
5251 	if (rc != -ENOTTY)
5252 		return rc;
5253 	return pci_parent_bus_reset(dev, probe);
5254 }
5255 
5256 void pci_dev_lock(struct pci_dev *dev)
5257 {
5258 	/* block PM suspend, driver probe, etc. */
5259 	device_lock(&dev->dev);
5260 	pci_cfg_access_lock(dev);
5261 }
5262 EXPORT_SYMBOL_GPL(pci_dev_lock);
5263 
5264 /* Return 1 on successful lock, 0 on contention */
5265 int pci_dev_trylock(struct pci_dev *dev)
5266 {
5267 	if (device_trylock(&dev->dev)) {
5268 		if (pci_cfg_access_trylock(dev))
5269 			return 1;
5270 		device_unlock(&dev->dev);
5271 	}
5272 
5273 	return 0;
5274 }
5275 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5276 
5277 void pci_dev_unlock(struct pci_dev *dev)
5278 {
5279 	pci_cfg_access_unlock(dev);
5280 	device_unlock(&dev->dev);
5281 }
5282 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5283 
5284 static void pci_dev_save_and_disable(struct pci_dev *dev)
5285 {
5286 	const struct pci_error_handlers *err_handler =
5287 			dev->driver ? dev->driver->err_handler : NULL;
5288 
5289 	/*
5290 	 * dev->driver->err_handler->reset_prepare() is protected against
5291 	 * races with ->remove() by the device lock, which must be held by
5292 	 * the caller.
5293 	 */
5294 	if (err_handler && err_handler->reset_prepare)
5295 		err_handler->reset_prepare(dev);
5296 
5297 	/*
5298 	 * Wake-up device prior to save.  PM registers default to D0 after
5299 	 * reset and a simple register restore doesn't reliably return
5300 	 * to a non-D0 state anyway.
5301 	 */
5302 	pci_set_power_state(dev, PCI_D0);
5303 
5304 	pci_save_state(dev);
5305 	/*
5306 	 * Disable the device by clearing the Command register, except for
5307 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5308 	 * BARs, but also prevents the device from being Bus Master, preventing
5309 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5310 	 * compliant devices, INTx-disable prevents legacy interrupts.
5311 	 */
5312 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5313 }
5314 
5315 static void pci_dev_restore(struct pci_dev *dev)
5316 {
5317 	const struct pci_error_handlers *err_handler =
5318 			dev->driver ? dev->driver->err_handler : NULL;
5319 
5320 	pci_restore_state(dev);
5321 
5322 	/*
5323 	 * dev->driver->err_handler->reset_done() is protected against
5324 	 * races with ->remove() by the device lock, which must be held by
5325 	 * the caller.
5326 	 */
5327 	if (err_handler && err_handler->reset_done)
5328 		err_handler->reset_done(dev);
5329 }
5330 
5331 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5332 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5333 	{ },
5334 	{ pci_dev_specific_reset, .name = "device_specific" },
5335 	{ pci_dev_acpi_reset, .name = "acpi" },
5336 	{ pcie_reset_flr, .name = "flr" },
5337 	{ pci_af_flr, .name = "af_flr" },
5338 	{ pci_pm_reset, .name = "pm" },
5339 	{ pci_reset_bus_function, .name = "bus" },
5340 };
5341 
5342 static ssize_t reset_method_show(struct device *dev,
5343 				 struct device_attribute *attr, char *buf)
5344 {
5345 	struct pci_dev *pdev = to_pci_dev(dev);
5346 	ssize_t len = 0;
5347 	int i, m;
5348 
5349 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5350 		m = pdev->reset_methods[i];
5351 		if (!m)
5352 			break;
5353 
5354 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5355 				     pci_reset_fn_methods[m].name);
5356 	}
5357 
5358 	if (len)
5359 		len += sysfs_emit_at(buf, len, "\n");
5360 
5361 	return len;
5362 }
5363 
5364 static int reset_method_lookup(const char *name)
5365 {
5366 	int m;
5367 
5368 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5369 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5370 			return m;
5371 	}
5372 
5373 	return 0;	/* not found */
5374 }
5375 
5376 static ssize_t reset_method_store(struct device *dev,
5377 				  struct device_attribute *attr,
5378 				  const char *buf, size_t count)
5379 {
5380 	struct pci_dev *pdev = to_pci_dev(dev);
5381 	char *options, *name;
5382 	int m, n;
5383 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5384 
5385 	if (sysfs_streq(buf, "")) {
5386 		pdev->reset_methods[0] = 0;
5387 		pci_warn(pdev, "All device reset methods disabled by user");
5388 		return count;
5389 	}
5390 
5391 	if (sysfs_streq(buf, "default")) {
5392 		pci_init_reset_methods(pdev);
5393 		return count;
5394 	}
5395 
5396 	options = kstrndup(buf, count, GFP_KERNEL);
5397 	if (!options)
5398 		return -ENOMEM;
5399 
5400 	n = 0;
5401 	while ((name = strsep(&options, " ")) != NULL) {
5402 		if (sysfs_streq(name, ""))
5403 			continue;
5404 
5405 		name = strim(name);
5406 
5407 		m = reset_method_lookup(name);
5408 		if (!m) {
5409 			pci_err(pdev, "Invalid reset method '%s'", name);
5410 			goto error;
5411 		}
5412 
5413 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5414 			pci_err(pdev, "Unsupported reset method '%s'", name);
5415 			goto error;
5416 		}
5417 
5418 		if (n == PCI_NUM_RESET_METHODS - 1) {
5419 			pci_err(pdev, "Too many reset methods\n");
5420 			goto error;
5421 		}
5422 
5423 		reset_methods[n++] = m;
5424 	}
5425 
5426 	reset_methods[n] = 0;
5427 
5428 	/* Warn if dev-specific supported but not highest priority */
5429 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5430 	    reset_methods[0] != 1)
5431 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5432 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5433 	kfree(options);
5434 	return count;
5435 
5436 error:
5437 	/* Leave previous methods unchanged */
5438 	kfree(options);
5439 	return -EINVAL;
5440 }
5441 static DEVICE_ATTR_RW(reset_method);
5442 
5443 static struct attribute *pci_dev_reset_method_attrs[] = {
5444 	&dev_attr_reset_method.attr,
5445 	NULL,
5446 };
5447 
5448 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5449 						    struct attribute *a, int n)
5450 {
5451 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5452 
5453 	if (!pci_reset_supported(pdev))
5454 		return 0;
5455 
5456 	return a->mode;
5457 }
5458 
5459 const struct attribute_group pci_dev_reset_method_attr_group = {
5460 	.attrs = pci_dev_reset_method_attrs,
5461 	.is_visible = pci_dev_reset_method_attr_is_visible,
5462 };
5463 
5464 /**
5465  * __pci_reset_function_locked - reset a PCI device function while holding
5466  * the @dev mutex lock.
5467  * @dev: PCI device to reset
5468  *
5469  * Some devices allow an individual function to be reset without affecting
5470  * other functions in the same device.  The PCI device must be responsive
5471  * to PCI config space in order to use this function.
5472  *
5473  * The device function is presumed to be unused and the caller is holding
5474  * the device mutex lock when this function is called.
5475  *
5476  * Resetting the device will make the contents of PCI configuration space
5477  * random, so any caller of this must be prepared to reinitialise the
5478  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5479  * etc.
5480  *
5481  * Returns 0 if the device function was successfully reset or negative if the
5482  * device doesn't support resetting a single function.
5483  */
5484 int __pci_reset_function_locked(struct pci_dev *dev)
5485 {
5486 	int i, m, rc;
5487 
5488 	might_sleep();
5489 
5490 	/*
5491 	 * A reset method returns -ENOTTY if it doesn't support this device and
5492 	 * we should try the next method.
5493 	 *
5494 	 * If it returns 0 (success), we're finished.  If it returns any other
5495 	 * error, we're also finished: this indicates that further reset
5496 	 * mechanisms might be broken on the device.
5497 	 */
5498 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5499 		m = dev->reset_methods[i];
5500 		if (!m)
5501 			return -ENOTTY;
5502 
5503 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5504 		if (!rc)
5505 			return 0;
5506 		if (rc != -ENOTTY)
5507 			return rc;
5508 	}
5509 
5510 	return -ENOTTY;
5511 }
5512 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5513 
5514 /**
5515  * pci_init_reset_methods - check whether device can be safely reset
5516  * and store supported reset mechanisms.
5517  * @dev: PCI device to check for reset mechanisms
5518  *
5519  * Some devices allow an individual function to be reset without affecting
5520  * other functions in the same device.  The PCI device must be in D0-D3hot
5521  * state.
5522  *
5523  * Stores reset mechanisms supported by device in reset_methods byte array
5524  * which is a member of struct pci_dev.
5525  */
5526 void pci_init_reset_methods(struct pci_dev *dev)
5527 {
5528 	int m, i, rc;
5529 
5530 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5531 
5532 	might_sleep();
5533 
5534 	i = 0;
5535 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5536 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5537 		if (!rc)
5538 			dev->reset_methods[i++] = m;
5539 		else if (rc != -ENOTTY)
5540 			break;
5541 	}
5542 
5543 	dev->reset_methods[i] = 0;
5544 }
5545 
5546 /**
5547  * pci_reset_function - quiesce and reset a PCI device function
5548  * @dev: PCI device to reset
5549  *
5550  * Some devices allow an individual function to be reset without affecting
5551  * other functions in the same device.  The PCI device must be responsive
5552  * to PCI config space in order to use this function.
5553  *
5554  * This function does not just reset the PCI portion of a device, but
5555  * clears all the state associated with the device.  This function differs
5556  * from __pci_reset_function_locked() in that it saves and restores device state
5557  * over the reset and takes the PCI device lock.
5558  *
5559  * Returns 0 if the device function was successfully reset or negative if the
5560  * device doesn't support resetting a single function.
5561  */
5562 int pci_reset_function(struct pci_dev *dev)
5563 {
5564 	int rc;
5565 
5566 	if (!pci_reset_supported(dev))
5567 		return -ENOTTY;
5568 
5569 	pci_dev_lock(dev);
5570 	pci_dev_save_and_disable(dev);
5571 
5572 	rc = __pci_reset_function_locked(dev);
5573 
5574 	pci_dev_restore(dev);
5575 	pci_dev_unlock(dev);
5576 
5577 	return rc;
5578 }
5579 EXPORT_SYMBOL_GPL(pci_reset_function);
5580 
5581 /**
5582  * pci_reset_function_locked - quiesce and reset a PCI device function
5583  * @dev: PCI device to reset
5584  *
5585  * Some devices allow an individual function to be reset without affecting
5586  * other functions in the same device.  The PCI device must be responsive
5587  * to PCI config space in order to use this function.
5588  *
5589  * This function does not just reset the PCI portion of a device, but
5590  * clears all the state associated with the device.  This function differs
5591  * from __pci_reset_function_locked() in that it saves and restores device state
5592  * over the reset.  It also differs from pci_reset_function() in that it
5593  * requires the PCI device lock to be held.
5594  *
5595  * Returns 0 if the device function was successfully reset or negative if the
5596  * device doesn't support resetting a single function.
5597  */
5598 int pci_reset_function_locked(struct pci_dev *dev)
5599 {
5600 	int rc;
5601 
5602 	if (!pci_reset_supported(dev))
5603 		return -ENOTTY;
5604 
5605 	pci_dev_save_and_disable(dev);
5606 
5607 	rc = __pci_reset_function_locked(dev);
5608 
5609 	pci_dev_restore(dev);
5610 
5611 	return rc;
5612 }
5613 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5614 
5615 /**
5616  * pci_try_reset_function - quiesce and reset a PCI device function
5617  * @dev: PCI device to reset
5618  *
5619  * Same as above, except return -EAGAIN if unable to lock device.
5620  */
5621 int pci_try_reset_function(struct pci_dev *dev)
5622 {
5623 	int rc;
5624 
5625 	if (!pci_reset_supported(dev))
5626 		return -ENOTTY;
5627 
5628 	if (!pci_dev_trylock(dev))
5629 		return -EAGAIN;
5630 
5631 	pci_dev_save_and_disable(dev);
5632 	rc = __pci_reset_function_locked(dev);
5633 	pci_dev_restore(dev);
5634 	pci_dev_unlock(dev);
5635 
5636 	return rc;
5637 }
5638 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5639 
5640 /* Do any devices on or below this bus prevent a bus reset? */
5641 static bool pci_bus_resettable(struct pci_bus *bus)
5642 {
5643 	struct pci_dev *dev;
5644 
5645 
5646 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5647 		return false;
5648 
5649 	list_for_each_entry(dev, &bus->devices, bus_list) {
5650 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5651 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5652 			return false;
5653 	}
5654 
5655 	return true;
5656 }
5657 
5658 /* Lock devices from the top of the tree down */
5659 static void pci_bus_lock(struct pci_bus *bus)
5660 {
5661 	struct pci_dev *dev;
5662 
5663 	list_for_each_entry(dev, &bus->devices, bus_list) {
5664 		pci_dev_lock(dev);
5665 		if (dev->subordinate)
5666 			pci_bus_lock(dev->subordinate);
5667 	}
5668 }
5669 
5670 /* Unlock devices from the bottom of the tree up */
5671 static void pci_bus_unlock(struct pci_bus *bus)
5672 {
5673 	struct pci_dev *dev;
5674 
5675 	list_for_each_entry(dev, &bus->devices, bus_list) {
5676 		if (dev->subordinate)
5677 			pci_bus_unlock(dev->subordinate);
5678 		pci_dev_unlock(dev);
5679 	}
5680 }
5681 
5682 /* Return 1 on successful lock, 0 on contention */
5683 static int pci_bus_trylock(struct pci_bus *bus)
5684 {
5685 	struct pci_dev *dev;
5686 
5687 	list_for_each_entry(dev, &bus->devices, bus_list) {
5688 		if (!pci_dev_trylock(dev))
5689 			goto unlock;
5690 		if (dev->subordinate) {
5691 			if (!pci_bus_trylock(dev->subordinate)) {
5692 				pci_dev_unlock(dev);
5693 				goto unlock;
5694 			}
5695 		}
5696 	}
5697 	return 1;
5698 
5699 unlock:
5700 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5701 		if (dev->subordinate)
5702 			pci_bus_unlock(dev->subordinate);
5703 		pci_dev_unlock(dev);
5704 	}
5705 	return 0;
5706 }
5707 
5708 /* Do any devices on or below this slot prevent a bus reset? */
5709 static bool pci_slot_resettable(struct pci_slot *slot)
5710 {
5711 	struct pci_dev *dev;
5712 
5713 	if (slot->bus->self &&
5714 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5715 		return false;
5716 
5717 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5718 		if (!dev->slot || dev->slot != slot)
5719 			continue;
5720 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5721 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5722 			return false;
5723 	}
5724 
5725 	return true;
5726 }
5727 
5728 /* Lock devices from the top of the tree down */
5729 static void pci_slot_lock(struct pci_slot *slot)
5730 {
5731 	struct pci_dev *dev;
5732 
5733 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5734 		if (!dev->slot || dev->slot != slot)
5735 			continue;
5736 		pci_dev_lock(dev);
5737 		if (dev->subordinate)
5738 			pci_bus_lock(dev->subordinate);
5739 	}
5740 }
5741 
5742 /* Unlock devices from the bottom of the tree up */
5743 static void pci_slot_unlock(struct pci_slot *slot)
5744 {
5745 	struct pci_dev *dev;
5746 
5747 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5748 		if (!dev->slot || dev->slot != slot)
5749 			continue;
5750 		if (dev->subordinate)
5751 			pci_bus_unlock(dev->subordinate);
5752 		pci_dev_unlock(dev);
5753 	}
5754 }
5755 
5756 /* Return 1 on successful lock, 0 on contention */
5757 static int pci_slot_trylock(struct pci_slot *slot)
5758 {
5759 	struct pci_dev *dev;
5760 
5761 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5762 		if (!dev->slot || dev->slot != slot)
5763 			continue;
5764 		if (!pci_dev_trylock(dev))
5765 			goto unlock;
5766 		if (dev->subordinate) {
5767 			if (!pci_bus_trylock(dev->subordinate)) {
5768 				pci_dev_unlock(dev);
5769 				goto unlock;
5770 			}
5771 		}
5772 	}
5773 	return 1;
5774 
5775 unlock:
5776 	list_for_each_entry_continue_reverse(dev,
5777 					     &slot->bus->devices, bus_list) {
5778 		if (!dev->slot || dev->slot != slot)
5779 			continue;
5780 		if (dev->subordinate)
5781 			pci_bus_unlock(dev->subordinate);
5782 		pci_dev_unlock(dev);
5783 	}
5784 	return 0;
5785 }
5786 
5787 /*
5788  * Save and disable devices from the top of the tree down while holding
5789  * the @dev mutex lock for the entire tree.
5790  */
5791 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5792 {
5793 	struct pci_dev *dev;
5794 
5795 	list_for_each_entry(dev, &bus->devices, bus_list) {
5796 		pci_dev_save_and_disable(dev);
5797 		if (dev->subordinate)
5798 			pci_bus_save_and_disable_locked(dev->subordinate);
5799 	}
5800 }
5801 
5802 /*
5803  * Restore devices from top of the tree down while holding @dev mutex lock
5804  * for the entire tree.  Parent bridges need to be restored before we can
5805  * get to subordinate devices.
5806  */
5807 static void pci_bus_restore_locked(struct pci_bus *bus)
5808 {
5809 	struct pci_dev *dev;
5810 
5811 	list_for_each_entry(dev, &bus->devices, bus_list) {
5812 		pci_dev_restore(dev);
5813 		if (dev->subordinate)
5814 			pci_bus_restore_locked(dev->subordinate);
5815 	}
5816 }
5817 
5818 /*
5819  * Save and disable devices from the top of the tree down while holding
5820  * the @dev mutex lock for the entire tree.
5821  */
5822 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5823 {
5824 	struct pci_dev *dev;
5825 
5826 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5827 		if (!dev->slot || dev->slot != slot)
5828 			continue;
5829 		pci_dev_save_and_disable(dev);
5830 		if (dev->subordinate)
5831 			pci_bus_save_and_disable_locked(dev->subordinate);
5832 	}
5833 }
5834 
5835 /*
5836  * Restore devices from top of the tree down while holding @dev mutex lock
5837  * for the entire tree.  Parent bridges need to be restored before we can
5838  * get to subordinate devices.
5839  */
5840 static void pci_slot_restore_locked(struct pci_slot *slot)
5841 {
5842 	struct pci_dev *dev;
5843 
5844 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5845 		if (!dev->slot || dev->slot != slot)
5846 			continue;
5847 		pci_dev_restore(dev);
5848 		if (dev->subordinate)
5849 			pci_bus_restore_locked(dev->subordinate);
5850 	}
5851 }
5852 
5853 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5854 {
5855 	int rc;
5856 
5857 	if (!slot || !pci_slot_resettable(slot))
5858 		return -ENOTTY;
5859 
5860 	if (!probe)
5861 		pci_slot_lock(slot);
5862 
5863 	might_sleep();
5864 
5865 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5866 
5867 	if (!probe)
5868 		pci_slot_unlock(slot);
5869 
5870 	return rc;
5871 }
5872 
5873 /**
5874  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5875  * @slot: PCI slot to probe
5876  *
5877  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5878  */
5879 int pci_probe_reset_slot(struct pci_slot *slot)
5880 {
5881 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5882 }
5883 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5884 
5885 /**
5886  * __pci_reset_slot - Try to reset a PCI slot
5887  * @slot: PCI slot to reset
5888  *
5889  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5890  * independent of other slots.  For instance, some slots may support slot power
5891  * control.  In the case of a 1:1 bus to slot architecture, this function may
5892  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5893  * Generally a slot reset should be attempted before a bus reset.  All of the
5894  * function of the slot and any subordinate buses behind the slot are reset
5895  * through this function.  PCI config space of all devices in the slot and
5896  * behind the slot is saved before and restored after reset.
5897  *
5898  * Same as above except return -EAGAIN if the slot cannot be locked
5899  */
5900 static int __pci_reset_slot(struct pci_slot *slot)
5901 {
5902 	int rc;
5903 
5904 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5905 	if (rc)
5906 		return rc;
5907 
5908 	if (pci_slot_trylock(slot)) {
5909 		pci_slot_save_and_disable_locked(slot);
5910 		might_sleep();
5911 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5912 		pci_slot_restore_locked(slot);
5913 		pci_slot_unlock(slot);
5914 	} else
5915 		rc = -EAGAIN;
5916 
5917 	return rc;
5918 }
5919 
5920 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5921 {
5922 	int ret;
5923 
5924 	if (!bus->self || !pci_bus_resettable(bus))
5925 		return -ENOTTY;
5926 
5927 	if (probe)
5928 		return 0;
5929 
5930 	pci_bus_lock(bus);
5931 
5932 	might_sleep();
5933 
5934 	ret = pci_bridge_secondary_bus_reset(bus->self);
5935 
5936 	pci_bus_unlock(bus);
5937 
5938 	return ret;
5939 }
5940 
5941 /**
5942  * pci_bus_error_reset - reset the bridge's subordinate bus
5943  * @bridge: The parent device that connects to the bus to reset
5944  *
5945  * This function will first try to reset the slots on this bus if the method is
5946  * available. If slot reset fails or is not available, this will fall back to a
5947  * secondary bus reset.
5948  */
5949 int pci_bus_error_reset(struct pci_dev *bridge)
5950 {
5951 	struct pci_bus *bus = bridge->subordinate;
5952 	struct pci_slot *slot;
5953 
5954 	if (!bus)
5955 		return -ENOTTY;
5956 
5957 	mutex_lock(&pci_slot_mutex);
5958 	if (list_empty(&bus->slots))
5959 		goto bus_reset;
5960 
5961 	list_for_each_entry(slot, &bus->slots, list)
5962 		if (pci_probe_reset_slot(slot))
5963 			goto bus_reset;
5964 
5965 	list_for_each_entry(slot, &bus->slots, list)
5966 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5967 			goto bus_reset;
5968 
5969 	mutex_unlock(&pci_slot_mutex);
5970 	return 0;
5971 bus_reset:
5972 	mutex_unlock(&pci_slot_mutex);
5973 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5974 }
5975 
5976 /**
5977  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5978  * @bus: PCI bus to probe
5979  *
5980  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5981  */
5982 int pci_probe_reset_bus(struct pci_bus *bus)
5983 {
5984 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5985 }
5986 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5987 
5988 /**
5989  * __pci_reset_bus - Try to reset a PCI bus
5990  * @bus: top level PCI bus to reset
5991  *
5992  * Same as above except return -EAGAIN if the bus cannot be locked
5993  */
5994 static int __pci_reset_bus(struct pci_bus *bus)
5995 {
5996 	int rc;
5997 
5998 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5999 	if (rc)
6000 		return rc;
6001 
6002 	if (pci_bus_trylock(bus)) {
6003 		pci_bus_save_and_disable_locked(bus);
6004 		might_sleep();
6005 		rc = pci_bridge_secondary_bus_reset(bus->self);
6006 		pci_bus_restore_locked(bus);
6007 		pci_bus_unlock(bus);
6008 	} else
6009 		rc = -EAGAIN;
6010 
6011 	return rc;
6012 }
6013 
6014 /**
6015  * pci_reset_bus - Try to reset a PCI bus
6016  * @pdev: top level PCI device to reset via slot/bus
6017  *
6018  * Same as above except return -EAGAIN if the bus cannot be locked
6019  */
6020 int pci_reset_bus(struct pci_dev *pdev)
6021 {
6022 	return (!pci_probe_reset_slot(pdev->slot)) ?
6023 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6024 }
6025 EXPORT_SYMBOL_GPL(pci_reset_bus);
6026 
6027 /**
6028  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6029  * @dev: PCI device to query
6030  *
6031  * Returns mmrbc: maximum designed memory read count in bytes or
6032  * appropriate error value.
6033  */
6034 int pcix_get_max_mmrbc(struct pci_dev *dev)
6035 {
6036 	int cap;
6037 	u32 stat;
6038 
6039 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6040 	if (!cap)
6041 		return -EINVAL;
6042 
6043 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6044 		return -EINVAL;
6045 
6046 	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
6047 }
6048 EXPORT_SYMBOL(pcix_get_max_mmrbc);
6049 
6050 /**
6051  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6052  * @dev: PCI device to query
6053  *
6054  * Returns mmrbc: maximum memory read count in bytes or appropriate error
6055  * value.
6056  */
6057 int pcix_get_mmrbc(struct pci_dev *dev)
6058 {
6059 	int cap;
6060 	u16 cmd;
6061 
6062 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6063 	if (!cap)
6064 		return -EINVAL;
6065 
6066 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6067 		return -EINVAL;
6068 
6069 	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6070 }
6071 EXPORT_SYMBOL(pcix_get_mmrbc);
6072 
6073 /**
6074  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6075  * @dev: PCI device to query
6076  * @mmrbc: maximum memory read count in bytes
6077  *    valid values are 512, 1024, 2048, 4096
6078  *
6079  * If possible sets maximum memory read byte count, some bridges have errata
6080  * that prevent this.
6081  */
6082 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6083 {
6084 	int cap;
6085 	u32 stat, v, o;
6086 	u16 cmd;
6087 
6088 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6089 		return -EINVAL;
6090 
6091 	v = ffs(mmrbc) - 10;
6092 
6093 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6094 	if (!cap)
6095 		return -EINVAL;
6096 
6097 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6098 		return -EINVAL;
6099 
6100 	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
6101 		return -E2BIG;
6102 
6103 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6104 		return -EINVAL;
6105 
6106 	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6107 	if (o != v) {
6108 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6109 			return -EIO;
6110 
6111 		cmd &= ~PCI_X_CMD_MAX_READ;
6112 		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6113 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6114 			return -EIO;
6115 	}
6116 	return 0;
6117 }
6118 EXPORT_SYMBOL(pcix_set_mmrbc);
6119 
6120 /**
6121  * pcie_get_readrq - get PCI Express read request size
6122  * @dev: PCI device to query
6123  *
6124  * Returns maximum memory read request in bytes or appropriate error value.
6125  */
6126 int pcie_get_readrq(struct pci_dev *dev)
6127 {
6128 	u16 ctl;
6129 
6130 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6131 
6132 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6133 }
6134 EXPORT_SYMBOL(pcie_get_readrq);
6135 
6136 /**
6137  * pcie_set_readrq - set PCI Express maximum memory read request
6138  * @dev: PCI device to query
6139  * @rq: maximum memory read count in bytes
6140  *    valid values are 128, 256, 512, 1024, 2048, 4096
6141  *
6142  * If possible sets maximum memory read request in bytes
6143  */
6144 int pcie_set_readrq(struct pci_dev *dev, int rq)
6145 {
6146 	u16 v;
6147 	int ret;
6148 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6149 
6150 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6151 		return -EINVAL;
6152 
6153 	/*
6154 	 * If using the "performance" PCIe config, we clamp the read rq
6155 	 * size to the max packet size to keep the host bridge from
6156 	 * generating requests larger than we can cope with.
6157 	 */
6158 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6159 		int mps = pcie_get_mps(dev);
6160 
6161 		if (mps < rq)
6162 			rq = mps;
6163 	}
6164 
6165 	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6166 
6167 	if (bridge->no_inc_mrrs) {
6168 		int max_mrrs = pcie_get_readrq(dev);
6169 
6170 		if (rq > max_mrrs) {
6171 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6172 			return -EINVAL;
6173 		}
6174 	}
6175 
6176 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6177 						  PCI_EXP_DEVCTL_READRQ, v);
6178 
6179 	return pcibios_err_to_errno(ret);
6180 }
6181 EXPORT_SYMBOL(pcie_set_readrq);
6182 
6183 /**
6184  * pcie_get_mps - get PCI Express maximum payload size
6185  * @dev: PCI device to query
6186  *
6187  * Returns maximum payload size in bytes
6188  */
6189 int pcie_get_mps(struct pci_dev *dev)
6190 {
6191 	u16 ctl;
6192 
6193 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6194 
6195 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6196 }
6197 EXPORT_SYMBOL(pcie_get_mps);
6198 
6199 /**
6200  * pcie_set_mps - set PCI Express maximum payload size
6201  * @dev: PCI device to query
6202  * @mps: maximum payload size in bytes
6203  *    valid values are 128, 256, 512, 1024, 2048, 4096
6204  *
6205  * If possible sets maximum payload size
6206  */
6207 int pcie_set_mps(struct pci_dev *dev, int mps)
6208 {
6209 	u16 v;
6210 	int ret;
6211 
6212 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6213 		return -EINVAL;
6214 
6215 	v = ffs(mps) - 8;
6216 	if (v > dev->pcie_mpss)
6217 		return -EINVAL;
6218 	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6219 
6220 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6221 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6222 
6223 	return pcibios_err_to_errno(ret);
6224 }
6225 EXPORT_SYMBOL(pcie_set_mps);
6226 
6227 /**
6228  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6229  *			      device and its bandwidth limitation
6230  * @dev: PCI device to query
6231  * @limiting_dev: storage for device causing the bandwidth limitation
6232  * @speed: storage for speed of limiting device
6233  * @width: storage for width of limiting device
6234  *
6235  * Walk up the PCI device chain and find the point where the minimum
6236  * bandwidth is available.  Return the bandwidth available there and (if
6237  * limiting_dev, speed, and width pointers are supplied) information about
6238  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6239  * raw bandwidth.
6240  */
6241 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6242 			     enum pci_bus_speed *speed,
6243 			     enum pcie_link_width *width)
6244 {
6245 	u16 lnksta;
6246 	enum pci_bus_speed next_speed;
6247 	enum pcie_link_width next_width;
6248 	u32 bw, next_bw;
6249 
6250 	if (speed)
6251 		*speed = PCI_SPEED_UNKNOWN;
6252 	if (width)
6253 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6254 
6255 	bw = 0;
6256 
6257 	while (dev) {
6258 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6259 
6260 		next_speed = pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS,
6261 						       lnksta)];
6262 		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6263 
6264 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6265 
6266 		/* Check if current device limits the total bandwidth */
6267 		if (!bw || next_bw <= bw) {
6268 			bw = next_bw;
6269 
6270 			if (limiting_dev)
6271 				*limiting_dev = dev;
6272 			if (speed)
6273 				*speed = next_speed;
6274 			if (width)
6275 				*width = next_width;
6276 		}
6277 
6278 		dev = pci_upstream_bridge(dev);
6279 	}
6280 
6281 	return bw;
6282 }
6283 EXPORT_SYMBOL(pcie_bandwidth_available);
6284 
6285 /**
6286  * pcie_get_speed_cap - query for the PCI device's link speed capability
6287  * @dev: PCI device to query
6288  *
6289  * Query the PCI device speed capability.  Return the maximum link speed
6290  * supported by the device.
6291  */
6292 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6293 {
6294 	u32 lnkcap2, lnkcap;
6295 
6296 	/*
6297 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6298 	 * implementation note there recommends using the Supported Link
6299 	 * Speeds Vector in Link Capabilities 2 when supported.
6300 	 *
6301 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6302 	 * should use the Supported Link Speeds field in Link Capabilities,
6303 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6304 	 */
6305 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6306 
6307 	/* PCIe r3.0-compliant */
6308 	if (lnkcap2)
6309 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6310 
6311 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6312 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6313 		return PCIE_SPEED_5_0GT;
6314 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6315 		return PCIE_SPEED_2_5GT;
6316 
6317 	return PCI_SPEED_UNKNOWN;
6318 }
6319 EXPORT_SYMBOL(pcie_get_speed_cap);
6320 
6321 /**
6322  * pcie_get_width_cap - query for the PCI device's link width capability
6323  * @dev: PCI device to query
6324  *
6325  * Query the PCI device width capability.  Return the maximum link width
6326  * supported by the device.
6327  */
6328 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6329 {
6330 	u32 lnkcap;
6331 
6332 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6333 	if (lnkcap)
6334 		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6335 
6336 	return PCIE_LNK_WIDTH_UNKNOWN;
6337 }
6338 EXPORT_SYMBOL(pcie_get_width_cap);
6339 
6340 /**
6341  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6342  * @dev: PCI device
6343  * @speed: storage for link speed
6344  * @width: storage for link width
6345  *
6346  * Calculate a PCI device's link bandwidth by querying for its link speed
6347  * and width, multiplying them, and applying encoding overhead.  The result
6348  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6349  */
6350 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6351 			   enum pcie_link_width *width)
6352 {
6353 	*speed = pcie_get_speed_cap(dev);
6354 	*width = pcie_get_width_cap(dev);
6355 
6356 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6357 		return 0;
6358 
6359 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6360 }
6361 
6362 /**
6363  * __pcie_print_link_status - Report the PCI device's link speed and width
6364  * @dev: PCI device to query
6365  * @verbose: Print info even when enough bandwidth is available
6366  *
6367  * If the available bandwidth at the device is less than the device is
6368  * capable of, report the device's maximum possible bandwidth and the
6369  * upstream link that limits its performance.  If @verbose, always print
6370  * the available bandwidth, even if the device isn't constrained.
6371  */
6372 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6373 {
6374 	enum pcie_link_width width, width_cap;
6375 	enum pci_bus_speed speed, speed_cap;
6376 	struct pci_dev *limiting_dev = NULL;
6377 	u32 bw_avail, bw_cap;
6378 
6379 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6380 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6381 
6382 	if (bw_avail >= bw_cap && verbose)
6383 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6384 			 bw_cap / 1000, bw_cap % 1000,
6385 			 pci_speed_string(speed_cap), width_cap);
6386 	else if (bw_avail < bw_cap)
6387 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6388 			 bw_avail / 1000, bw_avail % 1000,
6389 			 pci_speed_string(speed), width,
6390 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6391 			 bw_cap / 1000, bw_cap % 1000,
6392 			 pci_speed_string(speed_cap), width_cap);
6393 }
6394 
6395 /**
6396  * pcie_print_link_status - Report the PCI device's link speed and width
6397  * @dev: PCI device to query
6398  *
6399  * Report the available bandwidth at the device.
6400  */
6401 void pcie_print_link_status(struct pci_dev *dev)
6402 {
6403 	__pcie_print_link_status(dev, true);
6404 }
6405 EXPORT_SYMBOL(pcie_print_link_status);
6406 
6407 /**
6408  * pci_select_bars - Make BAR mask from the type of resource
6409  * @dev: the PCI device for which BAR mask is made
6410  * @flags: resource type mask to be selected
6411  *
6412  * This helper routine makes bar mask from the type of resource.
6413  */
6414 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6415 {
6416 	int i, bars = 0;
6417 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6418 		if (pci_resource_flags(dev, i) & flags)
6419 			bars |= (1 << i);
6420 	return bars;
6421 }
6422 EXPORT_SYMBOL(pci_select_bars);
6423 
6424 /* Some architectures require additional programming to enable VGA */
6425 static arch_set_vga_state_t arch_set_vga_state;
6426 
6427 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6428 {
6429 	arch_set_vga_state = func;	/* NULL disables */
6430 }
6431 
6432 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6433 				  unsigned int command_bits, u32 flags)
6434 {
6435 	if (arch_set_vga_state)
6436 		return arch_set_vga_state(dev, decode, command_bits,
6437 						flags);
6438 	return 0;
6439 }
6440 
6441 /**
6442  * pci_set_vga_state - set VGA decode state on device and parents if requested
6443  * @dev: the PCI device
6444  * @decode: true = enable decoding, false = disable decoding
6445  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6446  * @flags: traverse ancestors and change bridges
6447  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6448  */
6449 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6450 		      unsigned int command_bits, u32 flags)
6451 {
6452 	struct pci_bus *bus;
6453 	struct pci_dev *bridge;
6454 	u16 cmd;
6455 	int rc;
6456 
6457 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6458 
6459 	/* ARCH specific VGA enables */
6460 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6461 	if (rc)
6462 		return rc;
6463 
6464 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6465 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6466 		if (decode)
6467 			cmd |= command_bits;
6468 		else
6469 			cmd &= ~command_bits;
6470 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6471 	}
6472 
6473 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6474 		return 0;
6475 
6476 	bus = dev->bus;
6477 	while (bus) {
6478 		bridge = bus->self;
6479 		if (bridge) {
6480 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6481 					     &cmd);
6482 			if (decode)
6483 				cmd |= PCI_BRIDGE_CTL_VGA;
6484 			else
6485 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6486 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6487 					      cmd);
6488 		}
6489 		bus = bus->parent;
6490 	}
6491 	return 0;
6492 }
6493 
6494 #ifdef CONFIG_ACPI
6495 bool pci_pr3_present(struct pci_dev *pdev)
6496 {
6497 	struct acpi_device *adev;
6498 
6499 	if (acpi_disabled)
6500 		return false;
6501 
6502 	adev = ACPI_COMPANION(&pdev->dev);
6503 	if (!adev)
6504 		return false;
6505 
6506 	return adev->power.flags.power_resources &&
6507 		acpi_has_method(adev->handle, "_PR3");
6508 }
6509 EXPORT_SYMBOL_GPL(pci_pr3_present);
6510 #endif
6511 
6512 /**
6513  * pci_add_dma_alias - Add a DMA devfn alias for a device
6514  * @dev: the PCI device for which alias is added
6515  * @devfn_from: alias slot and function
6516  * @nr_devfns: number of subsequent devfns to alias
6517  *
6518  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6519  * which is used to program permissible bus-devfn source addresses for DMA
6520  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6521  * and are useful for devices generating DMA requests beyond or different
6522  * from their logical bus-devfn.  Examples include device quirks where the
6523  * device simply uses the wrong devfn, as well as non-transparent bridges
6524  * where the alias may be a proxy for devices in another domain.
6525  *
6526  * IOMMU group creation is performed during device discovery or addition,
6527  * prior to any potential DMA mapping and therefore prior to driver probing
6528  * (especially for userspace assigned devices where IOMMU group definition
6529  * cannot be left as a userspace activity).  DMA aliases should therefore
6530  * be configured via quirks, such as the PCI fixup header quirk.
6531  */
6532 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6533 		       unsigned int nr_devfns)
6534 {
6535 	int devfn_to;
6536 
6537 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6538 	devfn_to = devfn_from + nr_devfns - 1;
6539 
6540 	if (!dev->dma_alias_mask)
6541 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6542 	if (!dev->dma_alias_mask) {
6543 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6544 		return;
6545 	}
6546 
6547 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6548 
6549 	if (nr_devfns == 1)
6550 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6551 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6552 	else if (nr_devfns > 1)
6553 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6554 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6555 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6556 }
6557 
6558 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6559 {
6560 	return (dev1->dma_alias_mask &&
6561 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6562 	       (dev2->dma_alias_mask &&
6563 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6564 	       pci_real_dma_dev(dev1) == dev2 ||
6565 	       pci_real_dma_dev(dev2) == dev1;
6566 }
6567 
6568 bool pci_device_is_present(struct pci_dev *pdev)
6569 {
6570 	u32 v;
6571 
6572 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6573 	pdev = pci_physfn(pdev);
6574 	if (pci_dev_is_disconnected(pdev))
6575 		return false;
6576 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6577 }
6578 EXPORT_SYMBOL_GPL(pci_device_is_present);
6579 
6580 void pci_ignore_hotplug(struct pci_dev *dev)
6581 {
6582 	struct pci_dev *bridge = dev->bus->self;
6583 
6584 	dev->ignore_hotplug = 1;
6585 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6586 	if (bridge)
6587 		bridge->ignore_hotplug = 1;
6588 }
6589 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6590 
6591 /**
6592  * pci_real_dma_dev - Get PCI DMA device for PCI device
6593  * @dev: the PCI device that may have a PCI DMA alias
6594  *
6595  * Permits the platform to provide architecture-specific functionality to
6596  * devices needing to alias DMA to another PCI device on another PCI bus. If
6597  * the PCI device is on the same bus, it is recommended to use
6598  * pci_add_dma_alias(). This is the default implementation. Architecture
6599  * implementations can override this.
6600  */
6601 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6602 {
6603 	return dev;
6604 }
6605 
6606 resource_size_t __weak pcibios_default_alignment(void)
6607 {
6608 	return 0;
6609 }
6610 
6611 /*
6612  * Arches that don't want to expose struct resource to userland as-is in
6613  * sysfs and /proc can implement their own pci_resource_to_user().
6614  */
6615 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6616 				 const struct resource *rsrc,
6617 				 resource_size_t *start, resource_size_t *end)
6618 {
6619 	*start = rsrc->start;
6620 	*end = rsrc->end;
6621 }
6622 
6623 static char *resource_alignment_param;
6624 static DEFINE_SPINLOCK(resource_alignment_lock);
6625 
6626 /**
6627  * pci_specified_resource_alignment - get resource alignment specified by user.
6628  * @dev: the PCI device to get
6629  * @resize: whether or not to change resources' size when reassigning alignment
6630  *
6631  * RETURNS: Resource alignment if it is specified.
6632  *          Zero if it is not specified.
6633  */
6634 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6635 							bool *resize)
6636 {
6637 	int align_order, count;
6638 	resource_size_t align = pcibios_default_alignment();
6639 	const char *p;
6640 	int ret;
6641 
6642 	spin_lock(&resource_alignment_lock);
6643 	p = resource_alignment_param;
6644 	if (!p || !*p)
6645 		goto out;
6646 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6647 		align = 0;
6648 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6649 		goto out;
6650 	}
6651 
6652 	while (*p) {
6653 		count = 0;
6654 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6655 		    p[count] == '@') {
6656 			p += count + 1;
6657 			if (align_order > 63) {
6658 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6659 				       align_order);
6660 				align_order = PAGE_SHIFT;
6661 			}
6662 		} else {
6663 			align_order = PAGE_SHIFT;
6664 		}
6665 
6666 		ret = pci_dev_str_match(dev, p, &p);
6667 		if (ret == 1) {
6668 			*resize = true;
6669 			align = 1ULL << align_order;
6670 			break;
6671 		} else if (ret < 0) {
6672 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6673 			       p);
6674 			break;
6675 		}
6676 
6677 		if (*p != ';' && *p != ',') {
6678 			/* End of param or invalid format */
6679 			break;
6680 		}
6681 		p++;
6682 	}
6683 out:
6684 	spin_unlock(&resource_alignment_lock);
6685 	return align;
6686 }
6687 
6688 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6689 					   resource_size_t align, bool resize)
6690 {
6691 	struct resource *r = &dev->resource[bar];
6692 	resource_size_t size;
6693 
6694 	if (!(r->flags & IORESOURCE_MEM))
6695 		return;
6696 
6697 	if (r->flags & IORESOURCE_PCI_FIXED) {
6698 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6699 			 bar, r, (unsigned long long)align);
6700 		return;
6701 	}
6702 
6703 	size = resource_size(r);
6704 	if (size >= align)
6705 		return;
6706 
6707 	/*
6708 	 * Increase the alignment of the resource.  There are two ways we
6709 	 * can do this:
6710 	 *
6711 	 * 1) Increase the size of the resource.  BARs are aligned on their
6712 	 *    size, so when we reallocate space for this resource, we'll
6713 	 *    allocate it with the larger alignment.  This also prevents
6714 	 *    assignment of any other BARs inside the alignment region, so
6715 	 *    if we're requesting page alignment, this means no other BARs
6716 	 *    will share the page.
6717 	 *
6718 	 *    The disadvantage is that this makes the resource larger than
6719 	 *    the hardware BAR, which may break drivers that compute things
6720 	 *    based on the resource size, e.g., to find registers at a
6721 	 *    fixed offset before the end of the BAR.
6722 	 *
6723 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6724 	 *    set r->start to the desired alignment.  By itself this
6725 	 *    doesn't prevent other BARs being put inside the alignment
6726 	 *    region, but if we realign *every* resource of every device in
6727 	 *    the system, none of them will share an alignment region.
6728 	 *
6729 	 * When the user has requested alignment for only some devices via
6730 	 * the "pci=resource_alignment" argument, "resize" is true and we
6731 	 * use the first method.  Otherwise we assume we're aligning all
6732 	 * devices and we use the second.
6733 	 */
6734 
6735 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6736 		 bar, r, (unsigned long long)align);
6737 
6738 	if (resize) {
6739 		r->start = 0;
6740 		r->end = align - 1;
6741 	} else {
6742 		r->flags &= ~IORESOURCE_SIZEALIGN;
6743 		r->flags |= IORESOURCE_STARTALIGN;
6744 		r->start = align;
6745 		r->end = r->start + size - 1;
6746 	}
6747 	r->flags |= IORESOURCE_UNSET;
6748 }
6749 
6750 /*
6751  * This function disables memory decoding and releases memory resources
6752  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6753  * It also rounds up size to specified alignment.
6754  * Later on, the kernel will assign page-aligned memory resource back
6755  * to the device.
6756  */
6757 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6758 {
6759 	int i;
6760 	struct resource *r;
6761 	resource_size_t align;
6762 	u16 command;
6763 	bool resize = false;
6764 
6765 	/*
6766 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6767 	 * 3.4.1.11.  Their resources are allocated from the space
6768 	 * described by the VF BARx register in the PF's SR-IOV capability.
6769 	 * We can't influence their alignment here.
6770 	 */
6771 	if (dev->is_virtfn)
6772 		return;
6773 
6774 	/* check if specified PCI is target device to reassign */
6775 	align = pci_specified_resource_alignment(dev, &resize);
6776 	if (!align)
6777 		return;
6778 
6779 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6780 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6781 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6782 		return;
6783 	}
6784 
6785 	pci_read_config_word(dev, PCI_COMMAND, &command);
6786 	command &= ~PCI_COMMAND_MEMORY;
6787 	pci_write_config_word(dev, PCI_COMMAND, command);
6788 
6789 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6790 		pci_request_resource_alignment(dev, i, align, resize);
6791 
6792 	/*
6793 	 * Need to disable bridge's resource window,
6794 	 * to enable the kernel to reassign new resource
6795 	 * window later on.
6796 	 */
6797 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6798 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6799 			r = &dev->resource[i];
6800 			if (!(r->flags & IORESOURCE_MEM))
6801 				continue;
6802 			r->flags |= IORESOURCE_UNSET;
6803 			r->end = resource_size(r) - 1;
6804 			r->start = 0;
6805 		}
6806 		pci_disable_bridge_window(dev);
6807 	}
6808 }
6809 
6810 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6811 {
6812 	size_t count = 0;
6813 
6814 	spin_lock(&resource_alignment_lock);
6815 	if (resource_alignment_param)
6816 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6817 	spin_unlock(&resource_alignment_lock);
6818 
6819 	return count;
6820 }
6821 
6822 static ssize_t resource_alignment_store(const struct bus_type *bus,
6823 					const char *buf, size_t count)
6824 {
6825 	char *param, *old, *end;
6826 
6827 	if (count >= (PAGE_SIZE - 1))
6828 		return -EINVAL;
6829 
6830 	param = kstrndup(buf, count, GFP_KERNEL);
6831 	if (!param)
6832 		return -ENOMEM;
6833 
6834 	end = strchr(param, '\n');
6835 	if (end)
6836 		*end = '\0';
6837 
6838 	spin_lock(&resource_alignment_lock);
6839 	old = resource_alignment_param;
6840 	if (strlen(param)) {
6841 		resource_alignment_param = param;
6842 	} else {
6843 		kfree(param);
6844 		resource_alignment_param = NULL;
6845 	}
6846 	spin_unlock(&resource_alignment_lock);
6847 
6848 	kfree(old);
6849 
6850 	return count;
6851 }
6852 
6853 static BUS_ATTR_RW(resource_alignment);
6854 
6855 static int __init pci_resource_alignment_sysfs_init(void)
6856 {
6857 	return bus_create_file(&pci_bus_type,
6858 					&bus_attr_resource_alignment);
6859 }
6860 late_initcall(pci_resource_alignment_sysfs_init);
6861 
6862 static void pci_no_domains(void)
6863 {
6864 #ifdef CONFIG_PCI_DOMAINS
6865 	pci_domains_supported = 0;
6866 #endif
6867 }
6868 
6869 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6870 static DEFINE_IDA(pci_domain_nr_static_ida);
6871 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6872 
6873 static void of_pci_reserve_static_domain_nr(void)
6874 {
6875 	struct device_node *np;
6876 	int domain_nr;
6877 
6878 	for_each_node_by_type(np, "pci") {
6879 		domain_nr = of_get_pci_domain_nr(np);
6880 		if (domain_nr < 0)
6881 			continue;
6882 		/*
6883 		 * Permanently allocate domain_nr in dynamic_ida
6884 		 * to prevent it from dynamic allocation.
6885 		 */
6886 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6887 				domain_nr, domain_nr, GFP_KERNEL);
6888 	}
6889 }
6890 
6891 static int of_pci_bus_find_domain_nr(struct device *parent)
6892 {
6893 	static bool static_domains_reserved = false;
6894 	int domain_nr;
6895 
6896 	/* On the first call scan device tree for static allocations. */
6897 	if (!static_domains_reserved) {
6898 		of_pci_reserve_static_domain_nr();
6899 		static_domains_reserved = true;
6900 	}
6901 
6902 	if (parent) {
6903 		/*
6904 		 * If domain is in DT, allocate it in static IDA.  This
6905 		 * prevents duplicate static allocations in case of errors
6906 		 * in DT.
6907 		 */
6908 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6909 		if (domain_nr >= 0)
6910 			return ida_alloc_range(&pci_domain_nr_static_ida,
6911 					       domain_nr, domain_nr,
6912 					       GFP_KERNEL);
6913 	}
6914 
6915 	/*
6916 	 * If domain was not specified in DT, choose a free ID from dynamic
6917 	 * allocations. All domain numbers from DT are permanently in
6918 	 * dynamic allocations to prevent assigning them to other DT nodes
6919 	 * without static domain.
6920 	 */
6921 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6922 }
6923 
6924 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6925 {
6926 	if (bus->domain_nr < 0)
6927 		return;
6928 
6929 	/* Release domain from IDA where it was allocated. */
6930 	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6931 		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6932 	else
6933 		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6934 }
6935 
6936 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6937 {
6938 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6939 			       acpi_pci_bus_find_domain_nr(bus);
6940 }
6941 
6942 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6943 {
6944 	if (!acpi_disabled)
6945 		return;
6946 	of_pci_bus_release_domain_nr(bus, parent);
6947 }
6948 #endif
6949 
6950 /**
6951  * pci_ext_cfg_avail - can we access extended PCI config space?
6952  *
6953  * Returns 1 if we can access PCI extended config space (offsets
6954  * greater than 0xff). This is the default implementation. Architecture
6955  * implementations can override this.
6956  */
6957 int __weak pci_ext_cfg_avail(void)
6958 {
6959 	return 1;
6960 }
6961 
6962 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6963 {
6964 }
6965 EXPORT_SYMBOL(pci_fixup_cardbus);
6966 
6967 static int __init pci_setup(char *str)
6968 {
6969 	while (str) {
6970 		char *k = strchr(str, ',');
6971 		if (k)
6972 			*k++ = 0;
6973 		if (*str && (str = pcibios_setup(str)) && *str) {
6974 			if (!strcmp(str, "nomsi")) {
6975 				pci_no_msi();
6976 			} else if (!strncmp(str, "noats", 5)) {
6977 				pr_info("PCIe: ATS is disabled\n");
6978 				pcie_ats_disabled = true;
6979 			} else if (!strcmp(str, "noaer")) {
6980 				pci_no_aer();
6981 			} else if (!strcmp(str, "earlydump")) {
6982 				pci_early_dump = true;
6983 			} else if (!strncmp(str, "realloc=", 8)) {
6984 				pci_realloc_get_opt(str + 8);
6985 			} else if (!strncmp(str, "realloc", 7)) {
6986 				pci_realloc_get_opt("on");
6987 			} else if (!strcmp(str, "nodomains")) {
6988 				pci_no_domains();
6989 			} else if (!strncmp(str, "noari", 5)) {
6990 				pcie_ari_disabled = true;
6991 			} else if (!strncmp(str, "cbiosize=", 9)) {
6992 				pci_cardbus_io_size = memparse(str + 9, &str);
6993 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6994 				pci_cardbus_mem_size = memparse(str + 10, &str);
6995 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6996 				resource_alignment_param = str + 19;
6997 			} else if (!strncmp(str, "ecrc=", 5)) {
6998 				pcie_ecrc_get_policy(str + 5);
6999 			} else if (!strncmp(str, "hpiosize=", 9)) {
7000 				pci_hotplug_io_size = memparse(str + 9, &str);
7001 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
7002 				pci_hotplug_mmio_size = memparse(str + 11, &str);
7003 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7004 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7005 			} else if (!strncmp(str, "hpmemsize=", 10)) {
7006 				pci_hotplug_mmio_size = memparse(str + 10, &str);
7007 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7008 			} else if (!strncmp(str, "hpbussize=", 10)) {
7009 				pci_hotplug_bus_size =
7010 					simple_strtoul(str + 10, &str, 0);
7011 				if (pci_hotplug_bus_size > 0xff)
7012 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7013 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7014 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
7015 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
7016 				pcie_bus_config = PCIE_BUS_SAFE;
7017 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
7018 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
7019 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7020 				pcie_bus_config = PCIE_BUS_PEER2PEER;
7021 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
7022 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7023 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
7024 				disable_acs_redir_param = str + 18;
7025 			} else {
7026 				pr_err("PCI: Unknown option `%s'\n", str);
7027 			}
7028 		}
7029 		str = k;
7030 	}
7031 	return 0;
7032 }
7033 early_param("pci", pci_setup);
7034 
7035 /*
7036  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7037  * in pci_setup(), above, to point to data in the __initdata section which
7038  * will be freed after the init sequence is complete. We can't allocate memory
7039  * in pci_setup() because some architectures do not have any memory allocation
7040  * service available during an early_param() call. So we allocate memory and
7041  * copy the variable here before the init section is freed.
7042  *
7043  */
7044 static int __init pci_realloc_setup_params(void)
7045 {
7046 	resource_alignment_param = kstrdup(resource_alignment_param,
7047 					   GFP_KERNEL);
7048 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7049 
7050 	return 0;
7051 }
7052 pure_initcall(pci_realloc_setup_params);
7053