xref: /linux/drivers/pci/pci.c (revision 68f715a820b02f965e2afc584a6cb542843cbc98)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3hot_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 /*
68  * Following exit from Conventional Reset, devices must be ready within 1 sec
69  * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
70  * Reset (PCIe r6.0 sec 5.8).
71  */
72 #define PCI_RESET_WAIT 1000 /* msec */
73 
74 /*
75  * Devices may extend the 1 sec period through Request Retry Status
76  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
77  * limit, but 60 sec ought to be enough for any device to become
78  * responsive.
79  */
80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81 
82 static void pci_dev_d3_sleep(struct pci_dev *dev)
83 {
84 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85 	unsigned int upper;
86 
87 	if (delay_ms) {
88 		/* Use a 20% upper bound, 1ms minimum */
89 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 		usleep_range(delay_ms * USEC_PER_MSEC,
91 			     (delay_ms + upper) * USEC_PER_MSEC);
92 	}
93 }
94 
95 bool pci_reset_supported(struct pci_dev *dev)
96 {
97 	return dev->reset_methods[0] != 0;
98 }
99 
100 #ifdef CONFIG_PCI_DOMAINS
101 int pci_domains_supported = 1;
102 #endif
103 
104 #define DEFAULT_CARDBUS_IO_SIZE		(256)
105 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109 
110 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
111 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
113 /* hpiosize=nn can override this */
114 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
115 /*
116  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118  * pci=hpmemsize=nnM overrides both
119  */
120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122 
123 #define DEFAULT_HOTPLUG_BUS_SIZE	1
124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125 
126 
127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 #elif defined CONFIG_PCIE_BUS_SAFE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136 #else
137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138 #endif
139 
140 /*
141  * The default CLS is used if arch didn't set CLS explicitly and not
142  * all pci devices agree on the same value.  Arch can override either
143  * the dfl or actual value as it sees fit.  Don't forget this is
144  * measured in 32-bit words, not bytes.
145  */
146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 u8 pci_cache_line_size;
148 
149 /*
150  * If we set up a device for bus mastering, we need to check the latency
151  * timer as certain BIOSes forget to set it properly.
152  */
153 unsigned int pcibios_max_latency = 255;
154 
155 /* If set, the PCIe ARI capability will not be used. */
156 static bool pcie_ari_disabled;
157 
158 /* If set, the PCIe ATS capability will not be used. */
159 static bool pcie_ats_disabled;
160 
161 /* If set, the PCI config space of each device is printed during boot. */
162 bool pci_early_dump;
163 
164 bool pci_ats_disabled(void)
165 {
166 	return pcie_ats_disabled;
167 }
168 EXPORT_SYMBOL_GPL(pci_ats_disabled);
169 
170 /* Disable bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_disable;
172 /* Force bridge_d3 for all PCIe ports */
173 static bool pci_bridge_d3_force;
174 
175 static int __init pcie_port_pm_setup(char *str)
176 {
177 	if (!strcmp(str, "off"))
178 		pci_bridge_d3_disable = true;
179 	else if (!strcmp(str, "force"))
180 		pci_bridge_d3_force = true;
181 	return 1;
182 }
183 __setup("pcie_port_pm=", pcie_port_pm_setup);
184 
185 /**
186  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187  * @bus: pointer to PCI bus structure to search
188  *
189  * Given a PCI bus, returns the highest PCI bus number present in the set
190  * including the given PCI bus and its list of child PCI buses.
191  */
192 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193 {
194 	struct pci_bus *tmp;
195 	unsigned char max, n;
196 
197 	max = bus->busn_res.end;
198 	list_for_each_entry(tmp, &bus->children, node) {
199 		n = pci_bus_max_busnr(tmp);
200 		if (n > max)
201 			max = n;
202 	}
203 	return max;
204 }
205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206 
207 /**
208  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209  * @pdev: the PCI device
210  *
211  * Returns error bits set in PCI_STATUS and clears them.
212  */
213 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214 {
215 	u16 status;
216 	int ret;
217 
218 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 	if (ret != PCIBIOS_SUCCESSFUL)
220 		return -EIO;
221 
222 	status &= PCI_STATUS_ERROR_BITS;
223 	if (status)
224 		pci_write_config_word(pdev, PCI_STATUS, status);
225 
226 	return status;
227 }
228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229 
230 #ifdef CONFIG_HAS_IOMEM
231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232 					    bool write_combine)
233 {
234 	struct resource *res = &pdev->resource[bar];
235 	resource_size_t start = res->start;
236 	resource_size_t size = resource_size(res);
237 
238 	/*
239 	 * Make sure the BAR is actually a memory resource, not an IO resource
240 	 */
241 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 		return NULL;
244 	}
245 
246 	if (write_combine)
247 		return ioremap_wc(start, size);
248 
249 	return ioremap(start, size);
250 }
251 
252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253 {
254 	return __pci_ioremap_resource(pdev, bar, false);
255 }
256 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257 
258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259 {
260 	return __pci_ioremap_resource(pdev, bar, true);
261 }
262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263 #endif
264 
265 /**
266  * pci_dev_str_match_path - test if a path string matches a device
267  * @dev: the PCI device to test
268  * @path: string to match the device against
269  * @endptr: pointer to the string after the match
270  *
271  * Test if a string (typically from a kernel parameter) formatted as a
272  * path of device/function addresses matches a PCI device. The string must
273  * be of the form:
274  *
275  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276  *
277  * A path for a device can be obtained using 'lspci -t'.  Using a path
278  * is more robust against bus renumbering than using only a single bus,
279  * device and function address.
280  *
281  * Returns 1 if the string matches the device, 0 if it does not and
282  * a negative error code if it fails to parse the string.
283  */
284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285 				  const char **endptr)
286 {
287 	int ret;
288 	unsigned int seg, bus, slot, func;
289 	char *wpath, *p;
290 	char end;
291 
292 	*endptr = strchrnul(path, ';');
293 
294 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295 	if (!wpath)
296 		return -ENOMEM;
297 
298 	while (1) {
299 		p = strrchr(wpath, '/');
300 		if (!p)
301 			break;
302 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303 		if (ret != 2) {
304 			ret = -EINVAL;
305 			goto free_and_exit;
306 		}
307 
308 		if (dev->devfn != PCI_DEVFN(slot, func)) {
309 			ret = 0;
310 			goto free_and_exit;
311 		}
312 
313 		/*
314 		 * Note: we don't need to get a reference to the upstream
315 		 * bridge because we hold a reference to the top level
316 		 * device which should hold a reference to the bridge,
317 		 * and so on.
318 		 */
319 		dev = pci_upstream_bridge(dev);
320 		if (!dev) {
321 			ret = 0;
322 			goto free_and_exit;
323 		}
324 
325 		*p = 0;
326 	}
327 
328 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329 		     &func, &end);
330 	if (ret != 4) {
331 		seg = 0;
332 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333 		if (ret != 3) {
334 			ret = -EINVAL;
335 			goto free_and_exit;
336 		}
337 	}
338 
339 	ret = (seg == pci_domain_nr(dev->bus) &&
340 	       bus == dev->bus->number &&
341 	       dev->devfn == PCI_DEVFN(slot, func));
342 
343 free_and_exit:
344 	kfree(wpath);
345 	return ret;
346 }
347 
348 /**
349  * pci_dev_str_match - test if a string matches a device
350  * @dev: the PCI device to test
351  * @p: string to match the device against
352  * @endptr: pointer to the string after the match
353  *
354  * Test if a string (typically from a kernel parameter) matches a specified
355  * PCI device. The string may be of one of the following formats:
356  *
357  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359  *
360  * The first format specifies a PCI bus/device/function address which
361  * may change if new hardware is inserted, if motherboard firmware changes,
362  * or due to changes caused in kernel parameters. If the domain is
363  * left unspecified, it is taken to be 0.  In order to be robust against
364  * bus renumbering issues, a path of PCI device/function numbers may be used
365  * to address the specific device.  The path for a device can be determined
366  * through the use of 'lspci -t'.
367  *
368  * The second format matches devices using IDs in the configuration
369  * space which may match multiple devices in the system. A value of 0
370  * for any field will match all devices. (Note: this differs from
371  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372  * legacy reasons and convenience so users don't have to specify
373  * FFFFFFFFs on the command line.)
374  *
375  * Returns 1 if the string matches the device, 0 if it does not and
376  * a negative error code if the string cannot be parsed.
377  */
378 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379 			     const char **endptr)
380 {
381 	int ret;
382 	int count;
383 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
384 
385 	if (strncmp(p, "pci:", 4) == 0) {
386 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 		p += 4;
388 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 			     &subsystem_vendor, &subsystem_device, &count);
390 		if (ret != 4) {
391 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392 			if (ret != 2)
393 				return -EINVAL;
394 
395 			subsystem_vendor = 0;
396 			subsystem_device = 0;
397 		}
398 
399 		p += count;
400 
401 		if ((!vendor || vendor == dev->vendor) &&
402 		    (!device || device == dev->device) &&
403 		    (!subsystem_vendor ||
404 			    subsystem_vendor == dev->subsystem_vendor) &&
405 		    (!subsystem_device ||
406 			    subsystem_device == dev->subsystem_device))
407 			goto found;
408 	} else {
409 		/*
410 		 * PCI Bus, Device, Function IDs are specified
411 		 * (optionally, may include a path of devfns following it)
412 		 */
413 		ret = pci_dev_str_match_path(dev, p, &p);
414 		if (ret < 0)
415 			return ret;
416 		else if (ret)
417 			goto found;
418 	}
419 
420 	*endptr = p;
421 	return 0;
422 
423 found:
424 	*endptr = p;
425 	return 1;
426 }
427 
428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 				  u8 pos, int cap, int *ttl)
430 {
431 	u8 id;
432 	u16 ent;
433 
434 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
435 
436 	while ((*ttl)--) {
437 		if (pos < 0x40)
438 			break;
439 		pos &= ~3;
440 		pci_bus_read_config_word(bus, devfn, pos, &ent);
441 
442 		id = ent & 0xff;
443 		if (id == 0xff)
444 			break;
445 		if (id == cap)
446 			return pos;
447 		pos = (ent >> 8);
448 	}
449 	return 0;
450 }
451 
452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453 			      u8 pos, int cap)
454 {
455 	int ttl = PCI_FIND_CAP_TTL;
456 
457 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
458 }
459 
460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461 {
462 	return __pci_find_next_cap(dev->bus, dev->devfn,
463 				   pos + PCI_CAP_LIST_NEXT, cap);
464 }
465 EXPORT_SYMBOL_GPL(pci_find_next_capability);
466 
467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 				    unsigned int devfn, u8 hdr_type)
469 {
470 	u16 status;
471 
472 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 	if (!(status & PCI_STATUS_CAP_LIST))
474 		return 0;
475 
476 	switch (hdr_type) {
477 	case PCI_HEADER_TYPE_NORMAL:
478 	case PCI_HEADER_TYPE_BRIDGE:
479 		return PCI_CAPABILITY_LIST;
480 	case PCI_HEADER_TYPE_CARDBUS:
481 		return PCI_CB_CAPABILITY_LIST;
482 	}
483 
484 	return 0;
485 }
486 
487 /**
488  * pci_find_capability - query for devices' capabilities
489  * @dev: PCI device to query
490  * @cap: capability code
491  *
492  * Tell if a device supports a given PCI capability.
493  * Returns the address of the requested capability structure within the
494  * device's PCI configuration space or 0 in case the device does not
495  * support it.  Possible values for @cap include:
496  *
497  *  %PCI_CAP_ID_PM           Power Management
498  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
499  *  %PCI_CAP_ID_VPD          Vital Product Data
500  *  %PCI_CAP_ID_SLOTID       Slot Identification
501  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
502  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
503  *  %PCI_CAP_ID_PCIX         PCI-X
504  *  %PCI_CAP_ID_EXP          PCI Express
505  */
506 u8 pci_find_capability(struct pci_dev *dev, int cap)
507 {
508 	u8 pos;
509 
510 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511 	if (pos)
512 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
513 
514 	return pos;
515 }
516 EXPORT_SYMBOL(pci_find_capability);
517 
518 /**
519  * pci_bus_find_capability - query for devices' capabilities
520  * @bus: the PCI bus to query
521  * @devfn: PCI device to query
522  * @cap: capability code
523  *
524  * Like pci_find_capability() but works for PCI devices that do not have a
525  * pci_dev structure set up yet.
526  *
527  * Returns the address of the requested capability structure within the
528  * device's PCI configuration space or 0 in case the device does not
529  * support it.
530  */
531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532 {
533 	u8 hdr_type, pos;
534 
535 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536 
537 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
538 	if (pos)
539 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
540 
541 	return pos;
542 }
543 EXPORT_SYMBOL(pci_bus_find_capability);
544 
545 /**
546  * pci_find_next_ext_capability - Find an extended capability
547  * @dev: PCI device to query
548  * @start: address at which to start looking (0 to start at beginning of list)
549  * @cap: capability code
550  *
551  * Returns the address of the next matching extended capability structure
552  * within the device's PCI configuration space or 0 if the device does
553  * not support it.  Some capabilities can occur several times, e.g., the
554  * vendor-specific capability, and this provides a way to find them all.
555  */
556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557 {
558 	u32 header;
559 	int ttl;
560 	u16 pos = PCI_CFG_SPACE_SIZE;
561 
562 	/* minimum 8 bytes per capability */
563 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564 
565 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566 		return 0;
567 
568 	if (start)
569 		pos = start;
570 
571 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
572 		return 0;
573 
574 	/*
575 	 * If we have no capabilities, this is indicated by cap ID,
576 	 * cap version and next pointer all being 0.
577 	 */
578 	if (header == 0)
579 		return 0;
580 
581 	while (ttl-- > 0) {
582 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583 			return pos;
584 
585 		pos = PCI_EXT_CAP_NEXT(header);
586 		if (pos < PCI_CFG_SPACE_SIZE)
587 			break;
588 
589 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
590 			break;
591 	}
592 
593 	return 0;
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596 
597 /**
598  * pci_find_ext_capability - Find an extended capability
599  * @dev: PCI device to query
600  * @cap: capability code
601  *
602  * Returns the address of the requested extended capability structure
603  * within the device's PCI configuration space or 0 if the device does
604  * not support it.  Possible values for @cap include:
605  *
606  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
607  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
608  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
609  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
610  */
611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612 {
613 	return pci_find_next_ext_capability(dev, 0, cap);
614 }
615 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616 
617 /**
618  * pci_get_dsn - Read and return the 8-byte Device Serial Number
619  * @dev: PCI device to query
620  *
621  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622  * Number.
623  *
624  * Returns the DSN, or zero if the capability does not exist.
625  */
626 u64 pci_get_dsn(struct pci_dev *dev)
627 {
628 	u32 dword;
629 	u64 dsn;
630 	int pos;
631 
632 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633 	if (!pos)
634 		return 0;
635 
636 	/*
637 	 * The Device Serial Number is two dwords offset 4 bytes from the
638 	 * capability position. The specification says that the first dword is
639 	 * the lower half, and the second dword is the upper half.
640 	 */
641 	pos += 4;
642 	pci_read_config_dword(dev, pos, &dword);
643 	dsn = (u64)dword;
644 	pci_read_config_dword(dev, pos + 4, &dword);
645 	dsn |= ((u64)dword) << 32;
646 
647 	return dsn;
648 }
649 EXPORT_SYMBOL_GPL(pci_get_dsn);
650 
651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652 {
653 	int rc, ttl = PCI_FIND_CAP_TTL;
654 	u8 cap, mask;
655 
656 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 		mask = HT_3BIT_CAP_MASK;
658 	else
659 		mask = HT_5BIT_CAP_MASK;
660 
661 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 				      PCI_CAP_ID_HT, &ttl);
663 	while (pos) {
664 		rc = pci_read_config_byte(dev, pos + 3, &cap);
665 		if (rc != PCIBIOS_SUCCESSFUL)
666 			return 0;
667 
668 		if ((cap & mask) == ht_cap)
669 			return pos;
670 
671 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 					      pos + PCI_CAP_LIST_NEXT,
673 					      PCI_CAP_ID_HT, &ttl);
674 	}
675 
676 	return 0;
677 }
678 
679 /**
680  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681  * @dev: PCI device to query
682  * @pos: Position from which to continue searching
683  * @ht_cap: HyperTransport capability code
684  *
685  * To be used in conjunction with pci_find_ht_capability() to search for
686  * all capabilities matching @ht_cap. @pos should always be a value returned
687  * from pci_find_ht_capability().
688  *
689  * NB. To be 100% safe against broken PCI devices, the caller should take
690  * steps to avoid an infinite loop.
691  */
692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693 {
694 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695 }
696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697 
698 /**
699  * pci_find_ht_capability - query a device's HyperTransport capabilities
700  * @dev: PCI device to query
701  * @ht_cap: HyperTransport capability code
702  *
703  * Tell if a device supports a given HyperTransport capability.
704  * Returns an address within the device's PCI configuration space
705  * or 0 in case the device does not support the request capability.
706  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707  * which has a HyperTransport capability matching @ht_cap.
708  */
709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710 {
711 	u8 pos;
712 
713 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714 	if (pos)
715 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716 
717 	return pos;
718 }
719 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720 
721 /**
722  * pci_find_vsec_capability - Find a vendor-specific extended capability
723  * @dev: PCI device to query
724  * @vendor: Vendor ID for which capability is defined
725  * @cap: Vendor-specific capability ID
726  *
727  * If @dev has Vendor ID @vendor, search for a VSEC capability with
728  * VSEC ID @cap. If found, return the capability offset in
729  * config space; otherwise return 0.
730  */
731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732 {
733 	u16 vsec = 0;
734 	u32 header;
735 	int ret;
736 
737 	if (vendor != dev->vendor)
738 		return 0;
739 
740 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
741 						     PCI_EXT_CAP_ID_VNDR))) {
742 		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
743 		if (ret != PCIBIOS_SUCCESSFUL)
744 			continue;
745 
746 		if (PCI_VNDR_HEADER_ID(header) == cap)
747 			return vsec;
748 	}
749 
750 	return 0;
751 }
752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
753 
754 /**
755  * pci_find_dvsec_capability - Find DVSEC for vendor
756  * @dev: PCI device to query
757  * @vendor: Vendor ID to match for the DVSEC
758  * @dvsec: Designated Vendor-specific capability ID
759  *
760  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
761  * offset in config space; otherwise return 0.
762  */
763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
764 {
765 	int pos;
766 
767 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
768 	if (!pos)
769 		return 0;
770 
771 	while (pos) {
772 		u16 v, id;
773 
774 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
775 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
776 		if (vendor == v && dvsec == id)
777 			return pos;
778 
779 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
780 	}
781 
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
785 
786 /**
787  * pci_find_parent_resource - return resource region of parent bus of given
788  *			      region
789  * @dev: PCI device structure contains resources to be searched
790  * @res: child resource record for which parent is sought
791  *
792  * For given resource region of given device, return the resource region of
793  * parent bus the given region is contained in.
794  */
795 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
796 					  struct resource *res)
797 {
798 	const struct pci_bus *bus = dev->bus;
799 	struct resource *r;
800 
801 	pci_bus_for_each_resource(bus, r) {
802 		if (!r)
803 			continue;
804 		if (resource_contains(r, res)) {
805 
806 			/*
807 			 * If the window is prefetchable but the BAR is
808 			 * not, the allocator made a mistake.
809 			 */
810 			if (r->flags & IORESOURCE_PREFETCH &&
811 			    !(res->flags & IORESOURCE_PREFETCH))
812 				return NULL;
813 
814 			/*
815 			 * If we're below a transparent bridge, there may
816 			 * be both a positively-decoded aperture and a
817 			 * subtractively-decoded region that contain the BAR.
818 			 * We want the positively-decoded one, so this depends
819 			 * on pci_bus_for_each_resource() giving us those
820 			 * first.
821 			 */
822 			return r;
823 		}
824 	}
825 	return NULL;
826 }
827 EXPORT_SYMBOL(pci_find_parent_resource);
828 
829 /**
830  * pci_find_resource - Return matching PCI device resource
831  * @dev: PCI device to query
832  * @res: Resource to look for
833  *
834  * Goes over standard PCI resources (BARs) and checks if the given resource
835  * is partially or fully contained in any of them. In that case the
836  * matching resource is returned, %NULL otherwise.
837  */
838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
839 {
840 	int i;
841 
842 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
843 		struct resource *r = &dev->resource[i];
844 
845 		if (r->start && resource_contains(r, res))
846 			return r;
847 	}
848 
849 	return NULL;
850 }
851 EXPORT_SYMBOL(pci_find_resource);
852 
853 /**
854  * pci_resource_name - Return the name of the PCI resource
855  * @dev: PCI device to query
856  * @i: index of the resource
857  *
858  * Return the standard PCI resource (BAR) name according to their index.
859  */
860 const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
861 {
862 	static const char * const bar_name[] = {
863 		"BAR 0",
864 		"BAR 1",
865 		"BAR 2",
866 		"BAR 3",
867 		"BAR 4",
868 		"BAR 5",
869 		"ROM",
870 #ifdef CONFIG_PCI_IOV
871 		"VF BAR 0",
872 		"VF BAR 1",
873 		"VF BAR 2",
874 		"VF BAR 3",
875 		"VF BAR 4",
876 		"VF BAR 5",
877 #endif
878 		"bridge window",	/* "io" included in %pR */
879 		"bridge window",	/* "mem" included in %pR */
880 		"bridge window",	/* "mem pref" included in %pR */
881 	};
882 	static const char * const cardbus_name[] = {
883 		"BAR 1",
884 		"unknown",
885 		"unknown",
886 		"unknown",
887 		"unknown",
888 		"unknown",
889 #ifdef CONFIG_PCI_IOV
890 		"unknown",
891 		"unknown",
892 		"unknown",
893 		"unknown",
894 		"unknown",
895 		"unknown",
896 #endif
897 		"CardBus bridge window 0",	/* I/O */
898 		"CardBus bridge window 1",	/* I/O */
899 		"CardBus bridge window 0",	/* mem */
900 		"CardBus bridge window 1",	/* mem */
901 	};
902 
903 	if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
904 	    i < ARRAY_SIZE(cardbus_name))
905 		return cardbus_name[i];
906 
907 	if (i < ARRAY_SIZE(bar_name))
908 		return bar_name[i];
909 
910 	return "unknown";
911 }
912 
913 /**
914  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
915  * @dev: the PCI device to operate on
916  * @pos: config space offset of status word
917  * @mask: mask of bit(s) to care about in status word
918  *
919  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
920  */
921 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
922 {
923 	int i;
924 
925 	/* Wait for Transaction Pending bit clean */
926 	for (i = 0; i < 4; i++) {
927 		u16 status;
928 		if (i)
929 			msleep((1 << (i - 1)) * 100);
930 
931 		pci_read_config_word(dev, pos, &status);
932 		if (!(status & mask))
933 			return 1;
934 	}
935 
936 	return 0;
937 }
938 
939 static int pci_acs_enable;
940 
941 /**
942  * pci_request_acs - ask for ACS to be enabled if supported
943  */
944 void pci_request_acs(void)
945 {
946 	pci_acs_enable = 1;
947 }
948 
949 static const char *disable_acs_redir_param;
950 
951 /**
952  * pci_disable_acs_redir - disable ACS redirect capabilities
953  * @dev: the PCI device
954  *
955  * For only devices specified in the disable_acs_redir parameter.
956  */
957 static void pci_disable_acs_redir(struct pci_dev *dev)
958 {
959 	int ret = 0;
960 	const char *p;
961 	int pos;
962 	u16 ctrl;
963 
964 	if (!disable_acs_redir_param)
965 		return;
966 
967 	p = disable_acs_redir_param;
968 	while (*p) {
969 		ret = pci_dev_str_match(dev, p, &p);
970 		if (ret < 0) {
971 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
972 				     disable_acs_redir_param);
973 
974 			break;
975 		} else if (ret == 1) {
976 			/* Found a match */
977 			break;
978 		}
979 
980 		if (*p != ';' && *p != ',') {
981 			/* End of param or invalid format */
982 			break;
983 		}
984 		p++;
985 	}
986 
987 	if (ret != 1)
988 		return;
989 
990 	if (!pci_dev_specific_disable_acs_redir(dev))
991 		return;
992 
993 	pos = dev->acs_cap;
994 	if (!pos) {
995 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
996 		return;
997 	}
998 
999 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1000 
1001 	/* P2P Request & Completion Redirect */
1002 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
1003 
1004 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1005 
1006 	pci_info(dev, "disabled ACS redirect\n");
1007 }
1008 
1009 /**
1010  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1011  * @dev: the PCI device
1012  */
1013 static void pci_std_enable_acs(struct pci_dev *dev)
1014 {
1015 	int pos;
1016 	u16 cap;
1017 	u16 ctrl;
1018 
1019 	pos = dev->acs_cap;
1020 	if (!pos)
1021 		return;
1022 
1023 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1024 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1025 
1026 	/* Source Validation */
1027 	ctrl |= (cap & PCI_ACS_SV);
1028 
1029 	/* P2P Request Redirect */
1030 	ctrl |= (cap & PCI_ACS_RR);
1031 
1032 	/* P2P Completion Redirect */
1033 	ctrl |= (cap & PCI_ACS_CR);
1034 
1035 	/* Upstream Forwarding */
1036 	ctrl |= (cap & PCI_ACS_UF);
1037 
1038 	/* Enable Translation Blocking for external devices and noats */
1039 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1040 		ctrl |= (cap & PCI_ACS_TB);
1041 
1042 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1043 }
1044 
1045 /**
1046  * pci_enable_acs - enable ACS if hardware support it
1047  * @dev: the PCI device
1048  */
1049 static void pci_enable_acs(struct pci_dev *dev)
1050 {
1051 	if (!pci_acs_enable)
1052 		goto disable_acs_redir;
1053 
1054 	if (!pci_dev_specific_enable_acs(dev))
1055 		goto disable_acs_redir;
1056 
1057 	pci_std_enable_acs(dev);
1058 
1059 disable_acs_redir:
1060 	/*
1061 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
1062 	 * enabled by the kernel because it may have been enabled by
1063 	 * platform firmware.  So if we are told to disable it, we should
1064 	 * always disable it after setting the kernel's default
1065 	 * preferences.
1066 	 */
1067 	pci_disable_acs_redir(dev);
1068 }
1069 
1070 /**
1071  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1072  * @dev: PCI device to have its BARs restored
1073  *
1074  * Restore the BAR values for a given device, so as to make it
1075  * accessible by its driver.
1076  */
1077 static void pci_restore_bars(struct pci_dev *dev)
1078 {
1079 	int i;
1080 
1081 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1082 		pci_update_resource(dev, i);
1083 }
1084 
1085 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1086 {
1087 	if (pci_use_mid_pm())
1088 		return true;
1089 
1090 	return acpi_pci_power_manageable(dev);
1091 }
1092 
1093 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1094 					       pci_power_t t)
1095 {
1096 	if (pci_use_mid_pm())
1097 		return mid_pci_set_power_state(dev, t);
1098 
1099 	return acpi_pci_set_power_state(dev, t);
1100 }
1101 
1102 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1103 {
1104 	if (pci_use_mid_pm())
1105 		return mid_pci_get_power_state(dev);
1106 
1107 	return acpi_pci_get_power_state(dev);
1108 }
1109 
1110 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1111 {
1112 	if (!pci_use_mid_pm())
1113 		acpi_pci_refresh_power_state(dev);
1114 }
1115 
1116 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1117 {
1118 	if (pci_use_mid_pm())
1119 		return PCI_POWER_ERROR;
1120 
1121 	return acpi_pci_choose_state(dev);
1122 }
1123 
1124 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1125 {
1126 	if (pci_use_mid_pm())
1127 		return PCI_POWER_ERROR;
1128 
1129 	return acpi_pci_wakeup(dev, enable);
1130 }
1131 
1132 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1133 {
1134 	if (pci_use_mid_pm())
1135 		return false;
1136 
1137 	return acpi_pci_need_resume(dev);
1138 }
1139 
1140 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1141 {
1142 	if (pci_use_mid_pm())
1143 		return false;
1144 
1145 	return acpi_pci_bridge_d3(dev);
1146 }
1147 
1148 /**
1149  * pci_update_current_state - Read power state of given device and cache it
1150  * @dev: PCI device to handle.
1151  * @state: State to cache in case the device doesn't have the PM capability
1152  *
1153  * The power state is read from the PMCSR register, which however is
1154  * inaccessible in D3cold.  The platform firmware is therefore queried first
1155  * to detect accessibility of the register.  In case the platform firmware
1156  * reports an incorrect state or the device isn't power manageable by the
1157  * platform at all, we try to detect D3cold by testing accessibility of the
1158  * vendor ID in config space.
1159  */
1160 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1161 {
1162 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1163 		dev->current_state = PCI_D3cold;
1164 	} else if (dev->pm_cap) {
1165 		u16 pmcsr;
1166 
1167 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1168 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1169 			dev->current_state = PCI_D3cold;
1170 			return;
1171 		}
1172 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1173 	} else {
1174 		dev->current_state = state;
1175 	}
1176 }
1177 
1178 /**
1179  * pci_refresh_power_state - Refresh the given device's power state data
1180  * @dev: Target PCI device.
1181  *
1182  * Ask the platform to refresh the devices power state information and invoke
1183  * pci_update_current_state() to update its current PCI power state.
1184  */
1185 void pci_refresh_power_state(struct pci_dev *dev)
1186 {
1187 	platform_pci_refresh_power_state(dev);
1188 	pci_update_current_state(dev, dev->current_state);
1189 }
1190 
1191 /**
1192  * pci_platform_power_transition - Use platform to change device power state
1193  * @dev: PCI device to handle.
1194  * @state: State to put the device into.
1195  */
1196 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1197 {
1198 	int error;
1199 
1200 	error = platform_pci_set_power_state(dev, state);
1201 	if (!error)
1202 		pci_update_current_state(dev, state);
1203 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1204 		dev->current_state = PCI_D0;
1205 
1206 	return error;
1207 }
1208 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1209 
1210 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1211 {
1212 	pm_request_resume(&pci_dev->dev);
1213 	return 0;
1214 }
1215 
1216 /**
1217  * pci_resume_bus - Walk given bus and runtime resume devices on it
1218  * @bus: Top bus of the subtree to walk.
1219  */
1220 void pci_resume_bus(struct pci_bus *bus)
1221 {
1222 	if (bus)
1223 		pci_walk_bus(bus, pci_resume_one, NULL);
1224 }
1225 
1226 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1227 {
1228 	int delay = 1;
1229 	bool retrain = false;
1230 	struct pci_dev *bridge;
1231 
1232 	if (pci_is_pcie(dev)) {
1233 		bridge = pci_upstream_bridge(dev);
1234 		if (bridge)
1235 			retrain = true;
1236 	}
1237 
1238 	/*
1239 	 * After reset, the device should not silently discard config
1240 	 * requests, but it may still indicate that it needs more time by
1241 	 * responding to them with CRS completions.  The Root Port will
1242 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1243 	 * the read (except when CRS SV is enabled and the read was for the
1244 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1245 	 *
1246 	 * Wait for the device to return a non-CRS completion.  Read the
1247 	 * Command register instead of Vendor ID so we don't have to
1248 	 * contend with the CRS SV value.
1249 	 */
1250 	for (;;) {
1251 		u32 id;
1252 
1253 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1254 		if (!PCI_POSSIBLE_ERROR(id))
1255 			break;
1256 
1257 		if (delay > timeout) {
1258 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1259 				 delay - 1, reset_type);
1260 			return -ENOTTY;
1261 		}
1262 
1263 		if (delay > PCI_RESET_WAIT) {
1264 			if (retrain) {
1265 				retrain = false;
1266 				if (pcie_failed_link_retrain(bridge)) {
1267 					delay = 1;
1268 					continue;
1269 				}
1270 			}
1271 			pci_info(dev, "not ready %dms after %s; waiting\n",
1272 				 delay - 1, reset_type);
1273 		}
1274 
1275 		msleep(delay);
1276 		delay *= 2;
1277 	}
1278 
1279 	if (delay > PCI_RESET_WAIT)
1280 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1281 			 reset_type);
1282 	else
1283 		pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1284 			reset_type);
1285 
1286 	return 0;
1287 }
1288 
1289 /**
1290  * pci_power_up - Put the given device into D0
1291  * @dev: PCI device to power up
1292  *
1293  * On success, return 0 or 1, depending on whether or not it is necessary to
1294  * restore the device's BARs subsequently (1 is returned in that case).
1295  *
1296  * On failure, return a negative error code.  Always return failure if @dev
1297  * lacks a Power Management Capability, even if the platform was able to
1298  * put the device in D0 via non-PCI means.
1299  */
1300 int pci_power_up(struct pci_dev *dev)
1301 {
1302 	bool need_restore;
1303 	pci_power_t state;
1304 	u16 pmcsr;
1305 
1306 	platform_pci_set_power_state(dev, PCI_D0);
1307 
1308 	if (!dev->pm_cap) {
1309 		state = platform_pci_get_power_state(dev);
1310 		if (state == PCI_UNKNOWN)
1311 			dev->current_state = PCI_D0;
1312 		else
1313 			dev->current_state = state;
1314 
1315 		return -EIO;
1316 	}
1317 
1318 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1319 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1320 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1321 			pci_power_name(dev->current_state));
1322 		dev->current_state = PCI_D3cold;
1323 		return -EIO;
1324 	}
1325 
1326 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1327 
1328 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1329 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1330 
1331 	if (state == PCI_D0)
1332 		goto end;
1333 
1334 	/*
1335 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1336 	 * PME_En, and sets PowerState to 0.
1337 	 */
1338 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1339 
1340 	/* Mandatory transition delays; see PCI PM 1.2. */
1341 	if (state == PCI_D3hot)
1342 		pci_dev_d3_sleep(dev);
1343 	else if (state == PCI_D2)
1344 		udelay(PCI_PM_D2_DELAY);
1345 
1346 end:
1347 	dev->current_state = PCI_D0;
1348 	if (need_restore)
1349 		return 1;
1350 
1351 	return 0;
1352 }
1353 
1354 /**
1355  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1356  * @dev: PCI device to power up
1357  *
1358  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1359  * to confirm the state change, restore its BARs if they might be lost and
1360  * reconfigure ASPM in accordance with the new power state.
1361  *
1362  * If pci_restore_state() is going to be called right after a power state change
1363  * to D0, it is more efficient to use pci_power_up() directly instead of this
1364  * function.
1365  */
1366 static int pci_set_full_power_state(struct pci_dev *dev)
1367 {
1368 	u16 pmcsr;
1369 	int ret;
1370 
1371 	ret = pci_power_up(dev);
1372 	if (ret < 0) {
1373 		if (dev->current_state == PCI_D0)
1374 			return 0;
1375 
1376 		return ret;
1377 	}
1378 
1379 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1380 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1381 	if (dev->current_state != PCI_D0) {
1382 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1383 				     pci_power_name(dev->current_state));
1384 	} else if (ret > 0) {
1385 		/*
1386 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1387 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1388 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1389 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1390 		 * For example, at least some versions of the 3c905B and the
1391 		 * 3c556B exhibit this behaviour.
1392 		 *
1393 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1394 		 * devices in a D3hot state at boot.  Consequently, we need to
1395 		 * restore at least the BARs so that the device will be
1396 		 * accessible to its driver.
1397 		 */
1398 		pci_restore_bars(dev);
1399 	}
1400 
1401 	if (dev->bus->self)
1402 		pcie_aspm_pm_state_change(dev->bus->self);
1403 
1404 	return 0;
1405 }
1406 
1407 /**
1408  * __pci_dev_set_current_state - Set current state of a PCI device
1409  * @dev: Device to handle
1410  * @data: pointer to state to be set
1411  */
1412 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1413 {
1414 	pci_power_t state = *(pci_power_t *)data;
1415 
1416 	dev->current_state = state;
1417 	return 0;
1418 }
1419 
1420 /**
1421  * pci_bus_set_current_state - Walk given bus and set current state of devices
1422  * @bus: Top bus of the subtree to walk.
1423  * @state: state to be set
1424  */
1425 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1426 {
1427 	if (bus)
1428 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1429 }
1430 
1431 /**
1432  * pci_set_low_power_state - Put a PCI device into a low-power state.
1433  * @dev: PCI device to handle.
1434  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1435  *
1436  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1437  *
1438  * RETURN VALUE:
1439  * -EINVAL if the requested state is invalid.
1440  * -EIO if device does not support PCI PM or its PM capabilities register has a
1441  * wrong version, or device doesn't support the requested state.
1442  * 0 if device already is in the requested state.
1443  * 0 if device's power state has been successfully changed.
1444  */
1445 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1446 {
1447 	u16 pmcsr;
1448 
1449 	if (!dev->pm_cap)
1450 		return -EIO;
1451 
1452 	/*
1453 	 * Validate transition: We can enter D0 from any state, but if
1454 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1455 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1456 	 * we'd have to go from D3 to D0, then to D1.
1457 	 */
1458 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1459 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1460 			pci_power_name(dev->current_state),
1461 			pci_power_name(state));
1462 		return -EINVAL;
1463 	}
1464 
1465 	/* Check if this device supports the desired state */
1466 	if ((state == PCI_D1 && !dev->d1_support)
1467 	   || (state == PCI_D2 && !dev->d2_support))
1468 		return -EIO;
1469 
1470 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1471 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1472 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1473 			pci_power_name(dev->current_state),
1474 			pci_power_name(state));
1475 		dev->current_state = PCI_D3cold;
1476 		return -EIO;
1477 	}
1478 
1479 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1480 	pmcsr |= state;
1481 
1482 	/* Enter specified state */
1483 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1484 
1485 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1486 	if (state == PCI_D3hot)
1487 		pci_dev_d3_sleep(dev);
1488 	else if (state == PCI_D2)
1489 		udelay(PCI_PM_D2_DELAY);
1490 
1491 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1492 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1493 	if (dev->current_state != state)
1494 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1495 				     pci_power_name(dev->current_state),
1496 				     pci_power_name(state));
1497 
1498 	if (dev->bus->self)
1499 		pcie_aspm_pm_state_change(dev->bus->self);
1500 
1501 	return 0;
1502 }
1503 
1504 /**
1505  * pci_set_power_state - Set the power state of a PCI device
1506  * @dev: PCI device to handle.
1507  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1508  *
1509  * Transition a device to a new power state, using the platform firmware and/or
1510  * the device's PCI PM registers.
1511  *
1512  * RETURN VALUE:
1513  * -EINVAL if the requested state is invalid.
1514  * -EIO if device does not support PCI PM or its PM capabilities register has a
1515  * wrong version, or device doesn't support the requested state.
1516  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1517  * 0 if device already is in the requested state.
1518  * 0 if the transition is to D3 but D3 is not supported.
1519  * 0 if device's power state has been successfully changed.
1520  */
1521 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1522 {
1523 	int error;
1524 
1525 	/* Bound the state we're entering */
1526 	if (state > PCI_D3cold)
1527 		state = PCI_D3cold;
1528 	else if (state < PCI_D0)
1529 		state = PCI_D0;
1530 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1531 
1532 		/*
1533 		 * If the device or the parent bridge do not support PCI
1534 		 * PM, ignore the request if we're doing anything other
1535 		 * than putting it into D0 (which would only happen on
1536 		 * boot).
1537 		 */
1538 		return 0;
1539 
1540 	/* Check if we're already there */
1541 	if (dev->current_state == state)
1542 		return 0;
1543 
1544 	if (state == PCI_D0)
1545 		return pci_set_full_power_state(dev);
1546 
1547 	/*
1548 	 * This device is quirked not to be put into D3, so don't put it in
1549 	 * D3
1550 	 */
1551 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1552 		return 0;
1553 
1554 	if (state == PCI_D3cold) {
1555 		/*
1556 		 * To put the device in D3cold, put it into D3hot in the native
1557 		 * way, then put it into D3cold using platform ops.
1558 		 */
1559 		error = pci_set_low_power_state(dev, PCI_D3hot);
1560 
1561 		if (pci_platform_power_transition(dev, PCI_D3cold))
1562 			return error;
1563 
1564 		/* Powering off a bridge may power off the whole hierarchy */
1565 		if (dev->current_state == PCI_D3cold)
1566 			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1567 	} else {
1568 		error = pci_set_low_power_state(dev, state);
1569 
1570 		if (pci_platform_power_transition(dev, state))
1571 			return error;
1572 	}
1573 
1574 	return 0;
1575 }
1576 EXPORT_SYMBOL(pci_set_power_state);
1577 
1578 #define PCI_EXP_SAVE_REGS	7
1579 
1580 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1581 						       u16 cap, bool extended)
1582 {
1583 	struct pci_cap_saved_state *tmp;
1584 
1585 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1586 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1587 			return tmp;
1588 	}
1589 	return NULL;
1590 }
1591 
1592 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1593 {
1594 	return _pci_find_saved_cap(dev, cap, false);
1595 }
1596 
1597 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1598 {
1599 	return _pci_find_saved_cap(dev, cap, true);
1600 }
1601 
1602 static int pci_save_pcie_state(struct pci_dev *dev)
1603 {
1604 	int i = 0;
1605 	struct pci_cap_saved_state *save_state;
1606 	u16 *cap;
1607 
1608 	if (!pci_is_pcie(dev))
1609 		return 0;
1610 
1611 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1612 	if (!save_state) {
1613 		pci_err(dev, "buffer not found in %s\n", __func__);
1614 		return -ENOMEM;
1615 	}
1616 
1617 	cap = (u16 *)&save_state->cap.data[0];
1618 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1619 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1620 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1621 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1622 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1623 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1624 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1625 
1626 	return 0;
1627 }
1628 
1629 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1630 {
1631 #ifdef CONFIG_PCIEASPM
1632 	struct pci_dev *bridge;
1633 	u32 ctl;
1634 
1635 	bridge = pci_upstream_bridge(dev);
1636 	if (bridge && bridge->ltr_path) {
1637 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1638 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1639 			pci_dbg(bridge, "re-enabling LTR\n");
1640 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1641 						 PCI_EXP_DEVCTL2_LTR_EN);
1642 		}
1643 	}
1644 #endif
1645 }
1646 
1647 static void pci_restore_pcie_state(struct pci_dev *dev)
1648 {
1649 	int i = 0;
1650 	struct pci_cap_saved_state *save_state;
1651 	u16 *cap;
1652 
1653 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1654 	if (!save_state)
1655 		return;
1656 
1657 	/*
1658 	 * Downstream ports reset the LTR enable bit when link goes down.
1659 	 * Check and re-configure the bit here before restoring device.
1660 	 * PCIe r5.0, sec 7.5.3.16.
1661 	 */
1662 	pci_bridge_reconfigure_ltr(dev);
1663 
1664 	cap = (u16 *)&save_state->cap.data[0];
1665 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1666 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1667 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1668 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1669 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1670 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1671 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1672 }
1673 
1674 static int pci_save_pcix_state(struct pci_dev *dev)
1675 {
1676 	int pos;
1677 	struct pci_cap_saved_state *save_state;
1678 
1679 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1680 	if (!pos)
1681 		return 0;
1682 
1683 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1684 	if (!save_state) {
1685 		pci_err(dev, "buffer not found in %s\n", __func__);
1686 		return -ENOMEM;
1687 	}
1688 
1689 	pci_read_config_word(dev, pos + PCI_X_CMD,
1690 			     (u16 *)save_state->cap.data);
1691 
1692 	return 0;
1693 }
1694 
1695 static void pci_restore_pcix_state(struct pci_dev *dev)
1696 {
1697 	int i = 0, pos;
1698 	struct pci_cap_saved_state *save_state;
1699 	u16 *cap;
1700 
1701 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1702 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1703 	if (!save_state || !pos)
1704 		return;
1705 	cap = (u16 *)&save_state->cap.data[0];
1706 
1707 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1708 }
1709 
1710 static void pci_save_ltr_state(struct pci_dev *dev)
1711 {
1712 	int ltr;
1713 	struct pci_cap_saved_state *save_state;
1714 	u32 *cap;
1715 
1716 	if (!pci_is_pcie(dev))
1717 		return;
1718 
1719 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1720 	if (!ltr)
1721 		return;
1722 
1723 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1724 	if (!save_state) {
1725 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1726 		return;
1727 	}
1728 
1729 	/* Some broken devices only support dword access to LTR */
1730 	cap = &save_state->cap.data[0];
1731 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1732 }
1733 
1734 static void pci_restore_ltr_state(struct pci_dev *dev)
1735 {
1736 	struct pci_cap_saved_state *save_state;
1737 	int ltr;
1738 	u32 *cap;
1739 
1740 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1741 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1742 	if (!save_state || !ltr)
1743 		return;
1744 
1745 	/* Some broken devices only support dword access to LTR */
1746 	cap = &save_state->cap.data[0];
1747 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1748 }
1749 
1750 /**
1751  * pci_save_state - save the PCI configuration space of a device before
1752  *		    suspending
1753  * @dev: PCI device that we're dealing with
1754  */
1755 int pci_save_state(struct pci_dev *dev)
1756 {
1757 	int i;
1758 	/* XXX: 100% dword access ok here? */
1759 	for (i = 0; i < 16; i++) {
1760 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1761 		pci_dbg(dev, "save config %#04x: %#010x\n",
1762 			i * 4, dev->saved_config_space[i]);
1763 	}
1764 	dev->state_saved = true;
1765 
1766 	i = pci_save_pcie_state(dev);
1767 	if (i != 0)
1768 		return i;
1769 
1770 	i = pci_save_pcix_state(dev);
1771 	if (i != 0)
1772 		return i;
1773 
1774 	pci_save_ltr_state(dev);
1775 	pci_save_dpc_state(dev);
1776 	pci_save_aer_state(dev);
1777 	pci_save_ptm_state(dev);
1778 	return pci_save_vc_state(dev);
1779 }
1780 EXPORT_SYMBOL(pci_save_state);
1781 
1782 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1783 				     u32 saved_val, int retry, bool force)
1784 {
1785 	u32 val;
1786 
1787 	pci_read_config_dword(pdev, offset, &val);
1788 	if (!force && val == saved_val)
1789 		return;
1790 
1791 	for (;;) {
1792 		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1793 			offset, val, saved_val);
1794 		pci_write_config_dword(pdev, offset, saved_val);
1795 		if (retry-- <= 0)
1796 			return;
1797 
1798 		pci_read_config_dword(pdev, offset, &val);
1799 		if (val == saved_val)
1800 			return;
1801 
1802 		mdelay(1);
1803 	}
1804 }
1805 
1806 static void pci_restore_config_space_range(struct pci_dev *pdev,
1807 					   int start, int end, int retry,
1808 					   bool force)
1809 {
1810 	int index;
1811 
1812 	for (index = end; index >= start; index--)
1813 		pci_restore_config_dword(pdev, 4 * index,
1814 					 pdev->saved_config_space[index],
1815 					 retry, force);
1816 }
1817 
1818 static void pci_restore_config_space(struct pci_dev *pdev)
1819 {
1820 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1821 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1822 		/* Restore BARs before the command register. */
1823 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1824 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1825 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1826 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1827 
1828 		/*
1829 		 * Force rewriting of prefetch registers to avoid S3 resume
1830 		 * issues on Intel PCI bridges that occur when these
1831 		 * registers are not explicitly written.
1832 		 */
1833 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1834 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1835 	} else {
1836 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1837 	}
1838 }
1839 
1840 static void pci_restore_rebar_state(struct pci_dev *pdev)
1841 {
1842 	unsigned int pos, nbars, i;
1843 	u32 ctrl;
1844 
1845 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1846 	if (!pos)
1847 		return;
1848 
1849 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1850 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1851 
1852 	for (i = 0; i < nbars; i++, pos += 8) {
1853 		struct resource *res;
1854 		int bar_idx, size;
1855 
1856 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1857 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1858 		res = pdev->resource + bar_idx;
1859 		size = pci_rebar_bytes_to_size(resource_size(res));
1860 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1861 		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1862 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1863 	}
1864 }
1865 
1866 /**
1867  * pci_restore_state - Restore the saved state of a PCI device
1868  * @dev: PCI device that we're dealing with
1869  */
1870 void pci_restore_state(struct pci_dev *dev)
1871 {
1872 	if (!dev->state_saved)
1873 		return;
1874 
1875 	/*
1876 	 * Restore max latencies (in the LTR capability) before enabling
1877 	 * LTR itself (in the PCIe capability).
1878 	 */
1879 	pci_restore_ltr_state(dev);
1880 
1881 	pci_restore_pcie_state(dev);
1882 	pci_restore_pasid_state(dev);
1883 	pci_restore_pri_state(dev);
1884 	pci_restore_ats_state(dev);
1885 	pci_restore_vc_state(dev);
1886 	pci_restore_rebar_state(dev);
1887 	pci_restore_dpc_state(dev);
1888 	pci_restore_ptm_state(dev);
1889 
1890 	pci_aer_clear_status(dev);
1891 	pci_restore_aer_state(dev);
1892 
1893 	pci_restore_config_space(dev);
1894 
1895 	pci_restore_pcix_state(dev);
1896 	pci_restore_msi_state(dev);
1897 
1898 	/* Restore ACS and IOV configuration state */
1899 	pci_enable_acs(dev);
1900 	pci_restore_iov_state(dev);
1901 
1902 	dev->state_saved = false;
1903 }
1904 EXPORT_SYMBOL(pci_restore_state);
1905 
1906 struct pci_saved_state {
1907 	u32 config_space[16];
1908 	struct pci_cap_saved_data cap[];
1909 };
1910 
1911 /**
1912  * pci_store_saved_state - Allocate and return an opaque struct containing
1913  *			   the device saved state.
1914  * @dev: PCI device that we're dealing with
1915  *
1916  * Return NULL if no state or error.
1917  */
1918 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1919 {
1920 	struct pci_saved_state *state;
1921 	struct pci_cap_saved_state *tmp;
1922 	struct pci_cap_saved_data *cap;
1923 	size_t size;
1924 
1925 	if (!dev->state_saved)
1926 		return NULL;
1927 
1928 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1929 
1930 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1931 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1932 
1933 	state = kzalloc(size, GFP_KERNEL);
1934 	if (!state)
1935 		return NULL;
1936 
1937 	memcpy(state->config_space, dev->saved_config_space,
1938 	       sizeof(state->config_space));
1939 
1940 	cap = state->cap;
1941 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1942 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1943 		memcpy(cap, &tmp->cap, len);
1944 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1945 	}
1946 	/* Empty cap_save terminates list */
1947 
1948 	return state;
1949 }
1950 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1951 
1952 /**
1953  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1954  * @dev: PCI device that we're dealing with
1955  * @state: Saved state returned from pci_store_saved_state()
1956  */
1957 int pci_load_saved_state(struct pci_dev *dev,
1958 			 struct pci_saved_state *state)
1959 {
1960 	struct pci_cap_saved_data *cap;
1961 
1962 	dev->state_saved = false;
1963 
1964 	if (!state)
1965 		return 0;
1966 
1967 	memcpy(dev->saved_config_space, state->config_space,
1968 	       sizeof(state->config_space));
1969 
1970 	cap = state->cap;
1971 	while (cap->size) {
1972 		struct pci_cap_saved_state *tmp;
1973 
1974 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1975 		if (!tmp || tmp->cap.size != cap->size)
1976 			return -EINVAL;
1977 
1978 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1979 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1980 		       sizeof(struct pci_cap_saved_data) + cap->size);
1981 	}
1982 
1983 	dev->state_saved = true;
1984 	return 0;
1985 }
1986 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1987 
1988 /**
1989  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1990  *				   and free the memory allocated for it.
1991  * @dev: PCI device that we're dealing with
1992  * @state: Pointer to saved state returned from pci_store_saved_state()
1993  */
1994 int pci_load_and_free_saved_state(struct pci_dev *dev,
1995 				  struct pci_saved_state **state)
1996 {
1997 	int ret = pci_load_saved_state(dev, *state);
1998 	kfree(*state);
1999 	*state = NULL;
2000 	return ret;
2001 }
2002 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2003 
2004 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2005 {
2006 	return pci_enable_resources(dev, bars);
2007 }
2008 
2009 static int do_pci_enable_device(struct pci_dev *dev, int bars)
2010 {
2011 	int err;
2012 	struct pci_dev *bridge;
2013 	u16 cmd;
2014 	u8 pin;
2015 
2016 	err = pci_set_power_state(dev, PCI_D0);
2017 	if (err < 0 && err != -EIO)
2018 		return err;
2019 
2020 	bridge = pci_upstream_bridge(dev);
2021 	if (bridge)
2022 		pcie_aspm_powersave_config_link(bridge);
2023 
2024 	err = pcibios_enable_device(dev, bars);
2025 	if (err < 0)
2026 		return err;
2027 	pci_fixup_device(pci_fixup_enable, dev);
2028 
2029 	if (dev->msi_enabled || dev->msix_enabled)
2030 		return 0;
2031 
2032 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2033 	if (pin) {
2034 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
2035 		if (cmd & PCI_COMMAND_INTX_DISABLE)
2036 			pci_write_config_word(dev, PCI_COMMAND,
2037 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
2038 	}
2039 
2040 	return 0;
2041 }
2042 
2043 /**
2044  * pci_reenable_device - Resume abandoned device
2045  * @dev: PCI device to be resumed
2046  *
2047  * NOTE: This function is a backend of pci_default_resume() and is not supposed
2048  * to be called by normal code, write proper resume handler and use it instead.
2049  */
2050 int pci_reenable_device(struct pci_dev *dev)
2051 {
2052 	if (pci_is_enabled(dev))
2053 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2054 	return 0;
2055 }
2056 EXPORT_SYMBOL(pci_reenable_device);
2057 
2058 static void pci_enable_bridge(struct pci_dev *dev)
2059 {
2060 	struct pci_dev *bridge;
2061 	int retval;
2062 
2063 	bridge = pci_upstream_bridge(dev);
2064 	if (bridge)
2065 		pci_enable_bridge(bridge);
2066 
2067 	if (pci_is_enabled(dev)) {
2068 		if (!dev->is_busmaster)
2069 			pci_set_master(dev);
2070 		return;
2071 	}
2072 
2073 	retval = pci_enable_device(dev);
2074 	if (retval)
2075 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2076 			retval);
2077 	pci_set_master(dev);
2078 }
2079 
2080 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2081 {
2082 	struct pci_dev *bridge;
2083 	int err;
2084 	int i, bars = 0;
2085 
2086 	/*
2087 	 * Power state could be unknown at this point, either due to a fresh
2088 	 * boot or a device removal call.  So get the current power state
2089 	 * so that things like MSI message writing will behave as expected
2090 	 * (e.g. if the device really is in D0 at enable time).
2091 	 */
2092 	pci_update_current_state(dev, dev->current_state);
2093 
2094 	if (atomic_inc_return(&dev->enable_cnt) > 1)
2095 		return 0;		/* already enabled */
2096 
2097 	bridge = pci_upstream_bridge(dev);
2098 	if (bridge)
2099 		pci_enable_bridge(bridge);
2100 
2101 	/* only skip sriov related */
2102 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2103 		if (dev->resource[i].flags & flags)
2104 			bars |= (1 << i);
2105 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2106 		if (dev->resource[i].flags & flags)
2107 			bars |= (1 << i);
2108 
2109 	err = do_pci_enable_device(dev, bars);
2110 	if (err < 0)
2111 		atomic_dec(&dev->enable_cnt);
2112 	return err;
2113 }
2114 
2115 /**
2116  * pci_enable_device_io - Initialize a device for use with IO space
2117  * @dev: PCI device to be initialized
2118  *
2119  * Initialize device before it's used by a driver. Ask low-level code
2120  * to enable I/O resources. Wake up the device if it was suspended.
2121  * Beware, this function can fail.
2122  */
2123 int pci_enable_device_io(struct pci_dev *dev)
2124 {
2125 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2126 }
2127 EXPORT_SYMBOL(pci_enable_device_io);
2128 
2129 /**
2130  * pci_enable_device_mem - Initialize a device for use with Memory space
2131  * @dev: PCI device to be initialized
2132  *
2133  * Initialize device before it's used by a driver. Ask low-level code
2134  * to enable Memory resources. Wake up the device if it was suspended.
2135  * Beware, this function can fail.
2136  */
2137 int pci_enable_device_mem(struct pci_dev *dev)
2138 {
2139 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2140 }
2141 EXPORT_SYMBOL(pci_enable_device_mem);
2142 
2143 /**
2144  * pci_enable_device - Initialize device before it's used by a driver.
2145  * @dev: PCI device to be initialized
2146  *
2147  * Initialize device before it's used by a driver. Ask low-level code
2148  * to enable I/O and memory. Wake up the device if it was suspended.
2149  * Beware, this function can fail.
2150  *
2151  * Note we don't actually enable the device many times if we call
2152  * this function repeatedly (we just increment the count).
2153  */
2154 int pci_enable_device(struct pci_dev *dev)
2155 {
2156 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2157 }
2158 EXPORT_SYMBOL(pci_enable_device);
2159 
2160 /*
2161  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2162  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2163  * there's no need to track it separately.  pci_devres is initialized
2164  * when a device is enabled using managed PCI device enable interface.
2165  */
2166 struct pci_devres {
2167 	unsigned int enabled:1;
2168 	unsigned int pinned:1;
2169 	unsigned int orig_intx:1;
2170 	unsigned int restore_intx:1;
2171 	unsigned int mwi:1;
2172 	u32 region_mask;
2173 };
2174 
2175 static void pcim_release(struct device *gendev, void *res)
2176 {
2177 	struct pci_dev *dev = to_pci_dev(gendev);
2178 	struct pci_devres *this = res;
2179 	int i;
2180 
2181 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2182 		if (this->region_mask & (1 << i))
2183 			pci_release_region(dev, i);
2184 
2185 	if (this->mwi)
2186 		pci_clear_mwi(dev);
2187 
2188 	if (this->restore_intx)
2189 		pci_intx(dev, this->orig_intx);
2190 
2191 	if (this->enabled && !this->pinned)
2192 		pci_disable_device(dev);
2193 }
2194 
2195 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2196 {
2197 	struct pci_devres *dr, *new_dr;
2198 
2199 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2200 	if (dr)
2201 		return dr;
2202 
2203 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2204 	if (!new_dr)
2205 		return NULL;
2206 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2207 }
2208 
2209 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2210 {
2211 	if (pci_is_managed(pdev))
2212 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2213 	return NULL;
2214 }
2215 
2216 /**
2217  * pcim_enable_device - Managed pci_enable_device()
2218  * @pdev: PCI device to be initialized
2219  *
2220  * Managed pci_enable_device().
2221  */
2222 int pcim_enable_device(struct pci_dev *pdev)
2223 {
2224 	struct pci_devres *dr;
2225 	int rc;
2226 
2227 	dr = get_pci_dr(pdev);
2228 	if (unlikely(!dr))
2229 		return -ENOMEM;
2230 	if (dr->enabled)
2231 		return 0;
2232 
2233 	rc = pci_enable_device(pdev);
2234 	if (!rc) {
2235 		pdev->is_managed = 1;
2236 		dr->enabled = 1;
2237 	}
2238 	return rc;
2239 }
2240 EXPORT_SYMBOL(pcim_enable_device);
2241 
2242 /**
2243  * pcim_pin_device - Pin managed PCI device
2244  * @pdev: PCI device to pin
2245  *
2246  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2247  * driver detach.  @pdev must have been enabled with
2248  * pcim_enable_device().
2249  */
2250 void pcim_pin_device(struct pci_dev *pdev)
2251 {
2252 	struct pci_devres *dr;
2253 
2254 	dr = find_pci_dr(pdev);
2255 	WARN_ON(!dr || !dr->enabled);
2256 	if (dr)
2257 		dr->pinned = 1;
2258 }
2259 EXPORT_SYMBOL(pcim_pin_device);
2260 
2261 /*
2262  * pcibios_device_add - provide arch specific hooks when adding device dev
2263  * @dev: the PCI device being added
2264  *
2265  * Permits the platform to provide architecture specific functionality when
2266  * devices are added. This is the default implementation. Architecture
2267  * implementations can override this.
2268  */
2269 int __weak pcibios_device_add(struct pci_dev *dev)
2270 {
2271 	return 0;
2272 }
2273 
2274 /**
2275  * pcibios_release_device - provide arch specific hooks when releasing
2276  *			    device dev
2277  * @dev: the PCI device being released
2278  *
2279  * Permits the platform to provide architecture specific functionality when
2280  * devices are released. This is the default implementation. Architecture
2281  * implementations can override this.
2282  */
2283 void __weak pcibios_release_device(struct pci_dev *dev) {}
2284 
2285 /**
2286  * pcibios_disable_device - disable arch specific PCI resources for device dev
2287  * @dev: the PCI device to disable
2288  *
2289  * Disables architecture specific PCI resources for the device. This
2290  * is the default implementation. Architecture implementations can
2291  * override this.
2292  */
2293 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2294 
2295 /**
2296  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2297  * @irq: ISA IRQ to penalize
2298  * @active: IRQ active or not
2299  *
2300  * Permits the platform to provide architecture-specific functionality when
2301  * penalizing ISA IRQs. This is the default implementation. Architecture
2302  * implementations can override this.
2303  */
2304 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2305 
2306 static void do_pci_disable_device(struct pci_dev *dev)
2307 {
2308 	u16 pci_command;
2309 
2310 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2311 	if (pci_command & PCI_COMMAND_MASTER) {
2312 		pci_command &= ~PCI_COMMAND_MASTER;
2313 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2314 	}
2315 
2316 	pcibios_disable_device(dev);
2317 }
2318 
2319 /**
2320  * pci_disable_enabled_device - Disable device without updating enable_cnt
2321  * @dev: PCI device to disable
2322  *
2323  * NOTE: This function is a backend of PCI power management routines and is
2324  * not supposed to be called drivers.
2325  */
2326 void pci_disable_enabled_device(struct pci_dev *dev)
2327 {
2328 	if (pci_is_enabled(dev))
2329 		do_pci_disable_device(dev);
2330 }
2331 
2332 /**
2333  * pci_disable_device - Disable PCI device after use
2334  * @dev: PCI device to be disabled
2335  *
2336  * Signal to the system that the PCI device is not in use by the system
2337  * anymore.  This only involves disabling PCI bus-mastering, if active.
2338  *
2339  * Note we don't actually disable the device until all callers of
2340  * pci_enable_device() have called pci_disable_device().
2341  */
2342 void pci_disable_device(struct pci_dev *dev)
2343 {
2344 	struct pci_devres *dr;
2345 
2346 	dr = find_pci_dr(dev);
2347 	if (dr)
2348 		dr->enabled = 0;
2349 
2350 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2351 		      "disabling already-disabled device");
2352 
2353 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2354 		return;
2355 
2356 	do_pci_disable_device(dev);
2357 
2358 	dev->is_busmaster = 0;
2359 }
2360 EXPORT_SYMBOL(pci_disable_device);
2361 
2362 /**
2363  * pcibios_set_pcie_reset_state - set reset state for device dev
2364  * @dev: the PCIe device reset
2365  * @state: Reset state to enter into
2366  *
2367  * Set the PCIe reset state for the device. This is the default
2368  * implementation. Architecture implementations can override this.
2369  */
2370 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2371 					enum pcie_reset_state state)
2372 {
2373 	return -EINVAL;
2374 }
2375 
2376 /**
2377  * pci_set_pcie_reset_state - set reset state for device dev
2378  * @dev: the PCIe device reset
2379  * @state: Reset state to enter into
2380  *
2381  * Sets the PCI reset state for the device.
2382  */
2383 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2384 {
2385 	return pcibios_set_pcie_reset_state(dev, state);
2386 }
2387 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2388 
2389 #ifdef CONFIG_PCIEAER
2390 void pcie_clear_device_status(struct pci_dev *dev)
2391 {
2392 	u16 sta;
2393 
2394 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2395 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2396 }
2397 #endif
2398 
2399 /**
2400  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2401  * @dev: PCIe root port or event collector.
2402  */
2403 void pcie_clear_root_pme_status(struct pci_dev *dev)
2404 {
2405 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2406 }
2407 
2408 /**
2409  * pci_check_pme_status - Check if given device has generated PME.
2410  * @dev: Device to check.
2411  *
2412  * Check the PME status of the device and if set, clear it and clear PME enable
2413  * (if set).  Return 'true' if PME status and PME enable were both set or
2414  * 'false' otherwise.
2415  */
2416 bool pci_check_pme_status(struct pci_dev *dev)
2417 {
2418 	int pmcsr_pos;
2419 	u16 pmcsr;
2420 	bool ret = false;
2421 
2422 	if (!dev->pm_cap)
2423 		return false;
2424 
2425 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2426 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2427 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2428 		return false;
2429 
2430 	/* Clear PME status. */
2431 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2432 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2433 		/* Disable PME to avoid interrupt flood. */
2434 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2435 		ret = true;
2436 	}
2437 
2438 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2439 
2440 	return ret;
2441 }
2442 
2443 /**
2444  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2445  * @dev: Device to handle.
2446  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2447  *
2448  * Check if @dev has generated PME and queue a resume request for it in that
2449  * case.
2450  */
2451 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2452 {
2453 	if (pme_poll_reset && dev->pme_poll)
2454 		dev->pme_poll = false;
2455 
2456 	if (pci_check_pme_status(dev)) {
2457 		pci_wakeup_event(dev);
2458 		pm_request_resume(&dev->dev);
2459 	}
2460 	return 0;
2461 }
2462 
2463 /**
2464  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2465  * @bus: Top bus of the subtree to walk.
2466  */
2467 void pci_pme_wakeup_bus(struct pci_bus *bus)
2468 {
2469 	if (bus)
2470 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2471 }
2472 
2473 
2474 /**
2475  * pci_pme_capable - check the capability of PCI device to generate PME#
2476  * @dev: PCI device to handle.
2477  * @state: PCI state from which device will issue PME#.
2478  */
2479 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2480 {
2481 	if (!dev->pm_cap)
2482 		return false;
2483 
2484 	return !!(dev->pme_support & (1 << state));
2485 }
2486 EXPORT_SYMBOL(pci_pme_capable);
2487 
2488 static void pci_pme_list_scan(struct work_struct *work)
2489 {
2490 	struct pci_pme_device *pme_dev, *n;
2491 
2492 	mutex_lock(&pci_pme_list_mutex);
2493 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2494 		struct pci_dev *pdev = pme_dev->dev;
2495 
2496 		if (pdev->pme_poll) {
2497 			struct pci_dev *bridge = pdev->bus->self;
2498 			struct device *dev = &pdev->dev;
2499 			int pm_status;
2500 
2501 			/*
2502 			 * If bridge is in low power state, the
2503 			 * configuration space of subordinate devices
2504 			 * may be not accessible
2505 			 */
2506 			if (bridge && bridge->current_state != PCI_D0)
2507 				continue;
2508 
2509 			/*
2510 			 * If the device is in a low power state it
2511 			 * should not be polled either.
2512 			 */
2513 			pm_status = pm_runtime_get_if_active(dev, true);
2514 			if (!pm_status)
2515 				continue;
2516 
2517 			if (pdev->current_state != PCI_D3cold)
2518 				pci_pme_wakeup(pdev, NULL);
2519 
2520 			if (pm_status > 0)
2521 				pm_runtime_put(dev);
2522 		} else {
2523 			list_del(&pme_dev->list);
2524 			kfree(pme_dev);
2525 		}
2526 	}
2527 	if (!list_empty(&pci_pme_list))
2528 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2529 				   msecs_to_jiffies(PME_TIMEOUT));
2530 	mutex_unlock(&pci_pme_list_mutex);
2531 }
2532 
2533 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2534 {
2535 	u16 pmcsr;
2536 
2537 	if (!dev->pme_support)
2538 		return;
2539 
2540 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2541 	/* Clear PME_Status by writing 1 to it and enable PME# */
2542 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2543 	if (!enable)
2544 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2545 
2546 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2547 }
2548 
2549 /**
2550  * pci_pme_restore - Restore PME configuration after config space restore.
2551  * @dev: PCI device to update.
2552  */
2553 void pci_pme_restore(struct pci_dev *dev)
2554 {
2555 	u16 pmcsr;
2556 
2557 	if (!dev->pme_support)
2558 		return;
2559 
2560 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2561 	if (dev->wakeup_prepared) {
2562 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2563 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2564 	} else {
2565 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2566 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2567 	}
2568 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2569 }
2570 
2571 /**
2572  * pci_pme_active - enable or disable PCI device's PME# function
2573  * @dev: PCI device to handle.
2574  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2575  *
2576  * The caller must verify that the device is capable of generating PME# before
2577  * calling this function with @enable equal to 'true'.
2578  */
2579 void pci_pme_active(struct pci_dev *dev, bool enable)
2580 {
2581 	__pci_pme_active(dev, enable);
2582 
2583 	/*
2584 	 * PCI (as opposed to PCIe) PME requires that the device have
2585 	 * its PME# line hooked up correctly. Not all hardware vendors
2586 	 * do this, so the PME never gets delivered and the device
2587 	 * remains asleep. The easiest way around this is to
2588 	 * periodically walk the list of suspended devices and check
2589 	 * whether any have their PME flag set. The assumption is that
2590 	 * we'll wake up often enough anyway that this won't be a huge
2591 	 * hit, and the power savings from the devices will still be a
2592 	 * win.
2593 	 *
2594 	 * Although PCIe uses in-band PME message instead of PME# line
2595 	 * to report PME, PME does not work for some PCIe devices in
2596 	 * reality.  For example, there are devices that set their PME
2597 	 * status bits, but don't really bother to send a PME message;
2598 	 * there are PCI Express Root Ports that don't bother to
2599 	 * trigger interrupts when they receive PME messages from the
2600 	 * devices below.  So PME poll is used for PCIe devices too.
2601 	 */
2602 
2603 	if (dev->pme_poll) {
2604 		struct pci_pme_device *pme_dev;
2605 		if (enable) {
2606 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2607 					  GFP_KERNEL);
2608 			if (!pme_dev) {
2609 				pci_warn(dev, "can't enable PME#\n");
2610 				return;
2611 			}
2612 			pme_dev->dev = dev;
2613 			mutex_lock(&pci_pme_list_mutex);
2614 			list_add(&pme_dev->list, &pci_pme_list);
2615 			if (list_is_singular(&pci_pme_list))
2616 				queue_delayed_work(system_freezable_wq,
2617 						   &pci_pme_work,
2618 						   msecs_to_jiffies(PME_TIMEOUT));
2619 			mutex_unlock(&pci_pme_list_mutex);
2620 		} else {
2621 			mutex_lock(&pci_pme_list_mutex);
2622 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2623 				if (pme_dev->dev == dev) {
2624 					list_del(&pme_dev->list);
2625 					kfree(pme_dev);
2626 					break;
2627 				}
2628 			}
2629 			mutex_unlock(&pci_pme_list_mutex);
2630 		}
2631 	}
2632 
2633 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2634 }
2635 EXPORT_SYMBOL(pci_pme_active);
2636 
2637 /**
2638  * __pci_enable_wake - enable PCI device as wakeup event source
2639  * @dev: PCI device affected
2640  * @state: PCI state from which device will issue wakeup events
2641  * @enable: True to enable event generation; false to disable
2642  *
2643  * This enables the device as a wakeup event source, or disables it.
2644  * When such events involves platform-specific hooks, those hooks are
2645  * called automatically by this routine.
2646  *
2647  * Devices with legacy power management (no standard PCI PM capabilities)
2648  * always require such platform hooks.
2649  *
2650  * RETURN VALUE:
2651  * 0 is returned on success
2652  * -EINVAL is returned if device is not supposed to wake up the system
2653  * Error code depending on the platform is returned if both the platform and
2654  * the native mechanism fail to enable the generation of wake-up events
2655  */
2656 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2657 {
2658 	int ret = 0;
2659 
2660 	/*
2661 	 * Bridges that are not power-manageable directly only signal
2662 	 * wakeup on behalf of subordinate devices which is set up
2663 	 * elsewhere, so skip them. However, bridges that are
2664 	 * power-manageable may signal wakeup for themselves (for example,
2665 	 * on a hotplug event) and they need to be covered here.
2666 	 */
2667 	if (!pci_power_manageable(dev))
2668 		return 0;
2669 
2670 	/* Don't do the same thing twice in a row for one device. */
2671 	if (!!enable == !!dev->wakeup_prepared)
2672 		return 0;
2673 
2674 	/*
2675 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2676 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2677 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2678 	 */
2679 
2680 	if (enable) {
2681 		int error;
2682 
2683 		/*
2684 		 * Enable PME signaling if the device can signal PME from
2685 		 * D3cold regardless of whether or not it can signal PME from
2686 		 * the current target state, because that will allow it to
2687 		 * signal PME when the hierarchy above it goes into D3cold and
2688 		 * the device itself ends up in D3cold as a result of that.
2689 		 */
2690 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2691 			pci_pme_active(dev, true);
2692 		else
2693 			ret = 1;
2694 		error = platform_pci_set_wakeup(dev, true);
2695 		if (ret)
2696 			ret = error;
2697 		if (!ret)
2698 			dev->wakeup_prepared = true;
2699 	} else {
2700 		platform_pci_set_wakeup(dev, false);
2701 		pci_pme_active(dev, false);
2702 		dev->wakeup_prepared = false;
2703 	}
2704 
2705 	return ret;
2706 }
2707 
2708 /**
2709  * pci_enable_wake - change wakeup settings for a PCI device
2710  * @pci_dev: Target device
2711  * @state: PCI state from which device will issue wakeup events
2712  * @enable: Whether or not to enable event generation
2713  *
2714  * If @enable is set, check device_may_wakeup() for the device before calling
2715  * __pci_enable_wake() for it.
2716  */
2717 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2718 {
2719 	if (enable && !device_may_wakeup(&pci_dev->dev))
2720 		return -EINVAL;
2721 
2722 	return __pci_enable_wake(pci_dev, state, enable);
2723 }
2724 EXPORT_SYMBOL(pci_enable_wake);
2725 
2726 /**
2727  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2728  * @dev: PCI device to prepare
2729  * @enable: True to enable wake-up event generation; false to disable
2730  *
2731  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2732  * and this function allows them to set that up cleanly - pci_enable_wake()
2733  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2734  * ordering constraints.
2735  *
2736  * This function only returns error code if the device is not allowed to wake
2737  * up the system from sleep or it is not capable of generating PME# from both
2738  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2739  */
2740 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2741 {
2742 	return pci_pme_capable(dev, PCI_D3cold) ?
2743 			pci_enable_wake(dev, PCI_D3cold, enable) :
2744 			pci_enable_wake(dev, PCI_D3hot, enable);
2745 }
2746 EXPORT_SYMBOL(pci_wake_from_d3);
2747 
2748 /**
2749  * pci_target_state - find an appropriate low power state for a given PCI dev
2750  * @dev: PCI device
2751  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2752  *
2753  * Use underlying platform code to find a supported low power state for @dev.
2754  * If the platform can't manage @dev, return the deepest state from which it
2755  * can generate wake events, based on any available PME info.
2756  */
2757 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2758 {
2759 	if (platform_pci_power_manageable(dev)) {
2760 		/*
2761 		 * Call the platform to find the target state for the device.
2762 		 */
2763 		pci_power_t state = platform_pci_choose_state(dev);
2764 
2765 		switch (state) {
2766 		case PCI_POWER_ERROR:
2767 		case PCI_UNKNOWN:
2768 			return PCI_D3hot;
2769 
2770 		case PCI_D1:
2771 		case PCI_D2:
2772 			if (pci_no_d1d2(dev))
2773 				return PCI_D3hot;
2774 		}
2775 
2776 		return state;
2777 	}
2778 
2779 	/*
2780 	 * If the device is in D3cold even though it's not power-manageable by
2781 	 * the platform, it may have been powered down by non-standard means.
2782 	 * Best to let it slumber.
2783 	 */
2784 	if (dev->current_state == PCI_D3cold)
2785 		return PCI_D3cold;
2786 	else if (!dev->pm_cap)
2787 		return PCI_D0;
2788 
2789 	if (wakeup && dev->pme_support) {
2790 		pci_power_t state = PCI_D3hot;
2791 
2792 		/*
2793 		 * Find the deepest state from which the device can generate
2794 		 * PME#.
2795 		 */
2796 		while (state && !(dev->pme_support & (1 << state)))
2797 			state--;
2798 
2799 		if (state)
2800 			return state;
2801 		else if (dev->pme_support & 1)
2802 			return PCI_D0;
2803 	}
2804 
2805 	return PCI_D3hot;
2806 }
2807 
2808 /**
2809  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2810  *			  into a sleep state
2811  * @dev: Device to handle.
2812  *
2813  * Choose the power state appropriate for the device depending on whether
2814  * it can wake up the system and/or is power manageable by the platform
2815  * (PCI_D3hot is the default) and put the device into that state.
2816  */
2817 int pci_prepare_to_sleep(struct pci_dev *dev)
2818 {
2819 	bool wakeup = device_may_wakeup(&dev->dev);
2820 	pci_power_t target_state = pci_target_state(dev, wakeup);
2821 	int error;
2822 
2823 	if (target_state == PCI_POWER_ERROR)
2824 		return -EIO;
2825 
2826 	pci_enable_wake(dev, target_state, wakeup);
2827 
2828 	error = pci_set_power_state(dev, target_state);
2829 
2830 	if (error)
2831 		pci_enable_wake(dev, target_state, false);
2832 
2833 	return error;
2834 }
2835 EXPORT_SYMBOL(pci_prepare_to_sleep);
2836 
2837 /**
2838  * pci_back_from_sleep - turn PCI device on during system-wide transition
2839  *			 into working state
2840  * @dev: Device to handle.
2841  *
2842  * Disable device's system wake-up capability and put it into D0.
2843  */
2844 int pci_back_from_sleep(struct pci_dev *dev)
2845 {
2846 	int ret = pci_set_power_state(dev, PCI_D0);
2847 
2848 	if (ret)
2849 		return ret;
2850 
2851 	pci_enable_wake(dev, PCI_D0, false);
2852 	return 0;
2853 }
2854 EXPORT_SYMBOL(pci_back_from_sleep);
2855 
2856 /**
2857  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2858  * @dev: PCI device being suspended.
2859  *
2860  * Prepare @dev to generate wake-up events at run time and put it into a low
2861  * power state.
2862  */
2863 int pci_finish_runtime_suspend(struct pci_dev *dev)
2864 {
2865 	pci_power_t target_state;
2866 	int error;
2867 
2868 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2869 	if (target_state == PCI_POWER_ERROR)
2870 		return -EIO;
2871 
2872 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2873 
2874 	error = pci_set_power_state(dev, target_state);
2875 
2876 	if (error)
2877 		pci_enable_wake(dev, target_state, false);
2878 
2879 	return error;
2880 }
2881 
2882 /**
2883  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2884  * @dev: Device to check.
2885  *
2886  * Return true if the device itself is capable of generating wake-up events
2887  * (through the platform or using the native PCIe PME) or if the device supports
2888  * PME and one of its upstream bridges can generate wake-up events.
2889  */
2890 bool pci_dev_run_wake(struct pci_dev *dev)
2891 {
2892 	struct pci_bus *bus = dev->bus;
2893 
2894 	if (!dev->pme_support)
2895 		return false;
2896 
2897 	/* PME-capable in principle, but not from the target power state */
2898 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2899 		return false;
2900 
2901 	if (device_can_wakeup(&dev->dev))
2902 		return true;
2903 
2904 	while (bus->parent) {
2905 		struct pci_dev *bridge = bus->self;
2906 
2907 		if (device_can_wakeup(&bridge->dev))
2908 			return true;
2909 
2910 		bus = bus->parent;
2911 	}
2912 
2913 	/* We have reached the root bus. */
2914 	if (bus->bridge)
2915 		return device_can_wakeup(bus->bridge);
2916 
2917 	return false;
2918 }
2919 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2920 
2921 /**
2922  * pci_dev_need_resume - Check if it is necessary to resume the device.
2923  * @pci_dev: Device to check.
2924  *
2925  * Return 'true' if the device is not runtime-suspended or it has to be
2926  * reconfigured due to wakeup settings difference between system and runtime
2927  * suspend, or the current power state of it is not suitable for the upcoming
2928  * (system-wide) transition.
2929  */
2930 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2931 {
2932 	struct device *dev = &pci_dev->dev;
2933 	pci_power_t target_state;
2934 
2935 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2936 		return true;
2937 
2938 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2939 
2940 	/*
2941 	 * If the earlier platform check has not triggered, D3cold is just power
2942 	 * removal on top of D3hot, so no need to resume the device in that
2943 	 * case.
2944 	 */
2945 	return target_state != pci_dev->current_state &&
2946 		target_state != PCI_D3cold &&
2947 		pci_dev->current_state != PCI_D3hot;
2948 }
2949 
2950 /**
2951  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2952  * @pci_dev: Device to check.
2953  *
2954  * If the device is suspended and it is not configured for system wakeup,
2955  * disable PME for it to prevent it from waking up the system unnecessarily.
2956  *
2957  * Note that if the device's power state is D3cold and the platform check in
2958  * pci_dev_need_resume() has not triggered, the device's configuration need not
2959  * be changed.
2960  */
2961 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2962 {
2963 	struct device *dev = &pci_dev->dev;
2964 
2965 	spin_lock_irq(&dev->power.lock);
2966 
2967 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2968 	    pci_dev->current_state < PCI_D3cold)
2969 		__pci_pme_active(pci_dev, false);
2970 
2971 	spin_unlock_irq(&dev->power.lock);
2972 }
2973 
2974 /**
2975  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2976  * @pci_dev: Device to handle.
2977  *
2978  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2979  * it might have been disabled during the prepare phase of system suspend if
2980  * the device was not configured for system wakeup.
2981  */
2982 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2983 {
2984 	struct device *dev = &pci_dev->dev;
2985 
2986 	if (!pci_dev_run_wake(pci_dev))
2987 		return;
2988 
2989 	spin_lock_irq(&dev->power.lock);
2990 
2991 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2992 		__pci_pme_active(pci_dev, true);
2993 
2994 	spin_unlock_irq(&dev->power.lock);
2995 }
2996 
2997 /**
2998  * pci_choose_state - Choose the power state of a PCI device.
2999  * @dev: Target PCI device.
3000  * @state: Target state for the whole system.
3001  *
3002  * Returns PCI power state suitable for @dev and @state.
3003  */
3004 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
3005 {
3006 	if (state.event == PM_EVENT_ON)
3007 		return PCI_D0;
3008 
3009 	return pci_target_state(dev, false);
3010 }
3011 EXPORT_SYMBOL(pci_choose_state);
3012 
3013 void pci_config_pm_runtime_get(struct pci_dev *pdev)
3014 {
3015 	struct device *dev = &pdev->dev;
3016 	struct device *parent = dev->parent;
3017 
3018 	if (parent)
3019 		pm_runtime_get_sync(parent);
3020 	pm_runtime_get_noresume(dev);
3021 	/*
3022 	 * pdev->current_state is set to PCI_D3cold during suspending,
3023 	 * so wait until suspending completes
3024 	 */
3025 	pm_runtime_barrier(dev);
3026 	/*
3027 	 * Only need to resume devices in D3cold, because config
3028 	 * registers are still accessible for devices suspended but
3029 	 * not in D3cold.
3030 	 */
3031 	if (pdev->current_state == PCI_D3cold)
3032 		pm_runtime_resume(dev);
3033 }
3034 
3035 void pci_config_pm_runtime_put(struct pci_dev *pdev)
3036 {
3037 	struct device *dev = &pdev->dev;
3038 	struct device *parent = dev->parent;
3039 
3040 	pm_runtime_put(dev);
3041 	if (parent)
3042 		pm_runtime_put_sync(parent);
3043 }
3044 
3045 static const struct dmi_system_id bridge_d3_blacklist[] = {
3046 #ifdef CONFIG_X86
3047 	{
3048 		/*
3049 		 * Gigabyte X299 root port is not marked as hotplug capable
3050 		 * which allows Linux to power manage it.  However, this
3051 		 * confuses the BIOS SMI handler so don't power manage root
3052 		 * ports on that system.
3053 		 */
3054 		.ident = "X299 DESIGNARE EX-CF",
3055 		.matches = {
3056 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
3057 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
3058 		},
3059 	},
3060 	{
3061 		/*
3062 		 * Downstream device is not accessible after putting a root port
3063 		 * into D3cold and back into D0 on Elo Continental Z2 board
3064 		 */
3065 		.ident = "Elo Continental Z2",
3066 		.matches = {
3067 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3068 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3069 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3070 		},
3071 	},
3072 #endif
3073 	{ }
3074 };
3075 
3076 /**
3077  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3078  * @bridge: Bridge to check
3079  *
3080  * This function checks if it is possible to move the bridge to D3.
3081  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3082  */
3083 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3084 {
3085 	if (!pci_is_pcie(bridge))
3086 		return false;
3087 
3088 	switch (pci_pcie_type(bridge)) {
3089 	case PCI_EXP_TYPE_ROOT_PORT:
3090 	case PCI_EXP_TYPE_UPSTREAM:
3091 	case PCI_EXP_TYPE_DOWNSTREAM:
3092 		if (pci_bridge_d3_disable)
3093 			return false;
3094 
3095 		/*
3096 		 * Hotplug ports handled by firmware in System Management Mode
3097 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3098 		 */
3099 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3100 			return false;
3101 
3102 		if (pci_bridge_d3_force)
3103 			return true;
3104 
3105 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3106 		if (bridge->is_thunderbolt)
3107 			return true;
3108 
3109 		/* Platform might know better if the bridge supports D3 */
3110 		if (platform_pci_bridge_d3(bridge))
3111 			return true;
3112 
3113 		/*
3114 		 * Hotplug ports handled natively by the OS were not validated
3115 		 * by vendors for runtime D3 at least until 2018 because there
3116 		 * was no OS support.
3117 		 */
3118 		if (bridge->is_hotplug_bridge)
3119 			return false;
3120 
3121 		if (dmi_check_system(bridge_d3_blacklist))
3122 			return false;
3123 
3124 		/*
3125 		 * It should be safe to put PCIe ports from 2015 or newer
3126 		 * to D3.
3127 		 */
3128 		if (dmi_get_bios_year() >= 2015)
3129 			return true;
3130 		break;
3131 	}
3132 
3133 	return false;
3134 }
3135 
3136 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3137 {
3138 	bool *d3cold_ok = data;
3139 
3140 	if (/* The device needs to be allowed to go D3cold ... */
3141 	    dev->no_d3cold || !dev->d3cold_allowed ||
3142 
3143 	    /* ... and if it is wakeup capable to do so from D3cold. */
3144 	    (device_may_wakeup(&dev->dev) &&
3145 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3146 
3147 	    /* If it is a bridge it must be allowed to go to D3. */
3148 	    !pci_power_manageable(dev))
3149 
3150 		*d3cold_ok = false;
3151 
3152 	return !*d3cold_ok;
3153 }
3154 
3155 /*
3156  * pci_bridge_d3_update - Update bridge D3 capabilities
3157  * @dev: PCI device which is changed
3158  *
3159  * Update upstream bridge PM capabilities accordingly depending on if the
3160  * device PM configuration was changed or the device is being removed.  The
3161  * change is also propagated upstream.
3162  */
3163 void pci_bridge_d3_update(struct pci_dev *dev)
3164 {
3165 	bool remove = !device_is_registered(&dev->dev);
3166 	struct pci_dev *bridge;
3167 	bool d3cold_ok = true;
3168 
3169 	bridge = pci_upstream_bridge(dev);
3170 	if (!bridge || !pci_bridge_d3_possible(bridge))
3171 		return;
3172 
3173 	/*
3174 	 * If D3 is currently allowed for the bridge, removing one of its
3175 	 * children won't change that.
3176 	 */
3177 	if (remove && bridge->bridge_d3)
3178 		return;
3179 
3180 	/*
3181 	 * If D3 is currently allowed for the bridge and a child is added or
3182 	 * changed, disallowance of D3 can only be caused by that child, so
3183 	 * we only need to check that single device, not any of its siblings.
3184 	 *
3185 	 * If D3 is currently not allowed for the bridge, checking the device
3186 	 * first may allow us to skip checking its siblings.
3187 	 */
3188 	if (!remove)
3189 		pci_dev_check_d3cold(dev, &d3cold_ok);
3190 
3191 	/*
3192 	 * If D3 is currently not allowed for the bridge, this may be caused
3193 	 * either by the device being changed/removed or any of its siblings,
3194 	 * so we need to go through all children to find out if one of them
3195 	 * continues to block D3.
3196 	 */
3197 	if (d3cold_ok && !bridge->bridge_d3)
3198 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3199 			     &d3cold_ok);
3200 
3201 	if (bridge->bridge_d3 != d3cold_ok) {
3202 		bridge->bridge_d3 = d3cold_ok;
3203 		/* Propagate change to upstream bridges */
3204 		pci_bridge_d3_update(bridge);
3205 	}
3206 }
3207 
3208 /**
3209  * pci_d3cold_enable - Enable D3cold for device
3210  * @dev: PCI device to handle
3211  *
3212  * This function can be used in drivers to enable D3cold from the device
3213  * they handle.  It also updates upstream PCI bridge PM capabilities
3214  * accordingly.
3215  */
3216 void pci_d3cold_enable(struct pci_dev *dev)
3217 {
3218 	if (dev->no_d3cold) {
3219 		dev->no_d3cold = false;
3220 		pci_bridge_d3_update(dev);
3221 	}
3222 }
3223 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3224 
3225 /**
3226  * pci_d3cold_disable - Disable D3cold for device
3227  * @dev: PCI device to handle
3228  *
3229  * This function can be used in drivers to disable D3cold from the device
3230  * they handle.  It also updates upstream PCI bridge PM capabilities
3231  * accordingly.
3232  */
3233 void pci_d3cold_disable(struct pci_dev *dev)
3234 {
3235 	if (!dev->no_d3cold) {
3236 		dev->no_d3cold = true;
3237 		pci_bridge_d3_update(dev);
3238 	}
3239 }
3240 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3241 
3242 /**
3243  * pci_pm_init - Initialize PM functions of given PCI device
3244  * @dev: PCI device to handle.
3245  */
3246 void pci_pm_init(struct pci_dev *dev)
3247 {
3248 	int pm;
3249 	u16 status;
3250 	u16 pmc;
3251 
3252 	pm_runtime_forbid(&dev->dev);
3253 	pm_runtime_set_active(&dev->dev);
3254 	pm_runtime_enable(&dev->dev);
3255 	device_enable_async_suspend(&dev->dev);
3256 	dev->wakeup_prepared = false;
3257 
3258 	dev->pm_cap = 0;
3259 	dev->pme_support = 0;
3260 
3261 	/* find PCI PM capability in list */
3262 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3263 	if (!pm)
3264 		return;
3265 	/* Check device's ability to generate PME# */
3266 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3267 
3268 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3269 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3270 			pmc & PCI_PM_CAP_VER_MASK);
3271 		return;
3272 	}
3273 
3274 	dev->pm_cap = pm;
3275 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3276 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3277 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3278 	dev->d3cold_allowed = true;
3279 
3280 	dev->d1_support = false;
3281 	dev->d2_support = false;
3282 	if (!pci_no_d1d2(dev)) {
3283 		if (pmc & PCI_PM_CAP_D1)
3284 			dev->d1_support = true;
3285 		if (pmc & PCI_PM_CAP_D2)
3286 			dev->d2_support = true;
3287 
3288 		if (dev->d1_support || dev->d2_support)
3289 			pci_info(dev, "supports%s%s\n",
3290 				   dev->d1_support ? " D1" : "",
3291 				   dev->d2_support ? " D2" : "");
3292 	}
3293 
3294 	pmc &= PCI_PM_CAP_PME_MASK;
3295 	if (pmc) {
3296 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3297 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3298 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3299 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3300 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3301 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3302 		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3303 		dev->pme_poll = true;
3304 		/*
3305 		 * Make device's PM flags reflect the wake-up capability, but
3306 		 * let the user space enable it to wake up the system as needed.
3307 		 */
3308 		device_set_wakeup_capable(&dev->dev, true);
3309 		/* Disable the PME# generation functionality */
3310 		pci_pme_active(dev, false);
3311 	}
3312 
3313 	pci_read_config_word(dev, PCI_STATUS, &status);
3314 	if (status & PCI_STATUS_IMM_READY)
3315 		dev->imm_ready = 1;
3316 }
3317 
3318 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3319 {
3320 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3321 
3322 	switch (prop) {
3323 	case PCI_EA_P_MEM:
3324 	case PCI_EA_P_VF_MEM:
3325 		flags |= IORESOURCE_MEM;
3326 		break;
3327 	case PCI_EA_P_MEM_PREFETCH:
3328 	case PCI_EA_P_VF_MEM_PREFETCH:
3329 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3330 		break;
3331 	case PCI_EA_P_IO:
3332 		flags |= IORESOURCE_IO;
3333 		break;
3334 	default:
3335 		return 0;
3336 	}
3337 
3338 	return flags;
3339 }
3340 
3341 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3342 					    u8 prop)
3343 {
3344 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3345 		return &dev->resource[bei];
3346 #ifdef CONFIG_PCI_IOV
3347 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3348 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3349 		return &dev->resource[PCI_IOV_RESOURCES +
3350 				      bei - PCI_EA_BEI_VF_BAR0];
3351 #endif
3352 	else if (bei == PCI_EA_BEI_ROM)
3353 		return &dev->resource[PCI_ROM_RESOURCE];
3354 	else
3355 		return NULL;
3356 }
3357 
3358 /* Read an Enhanced Allocation (EA) entry */
3359 static int pci_ea_read(struct pci_dev *dev, int offset)
3360 {
3361 	struct resource *res;
3362 	const char *res_name;
3363 	int ent_size, ent_offset = offset;
3364 	resource_size_t start, end;
3365 	unsigned long flags;
3366 	u32 dw0, bei, base, max_offset;
3367 	u8 prop;
3368 	bool support_64 = (sizeof(resource_size_t) >= 8);
3369 
3370 	pci_read_config_dword(dev, ent_offset, &dw0);
3371 	ent_offset += 4;
3372 
3373 	/* Entry size field indicates DWORDs after 1st */
3374 	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3375 
3376 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3377 		goto out;
3378 
3379 	bei = FIELD_GET(PCI_EA_BEI, dw0);
3380 	prop = FIELD_GET(PCI_EA_PP, dw0);
3381 
3382 	/*
3383 	 * If the Property is in the reserved range, try the Secondary
3384 	 * Property instead.
3385 	 */
3386 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3387 		prop = FIELD_GET(PCI_EA_SP, dw0);
3388 	if (prop > PCI_EA_P_BRIDGE_IO)
3389 		goto out;
3390 
3391 	res = pci_ea_get_resource(dev, bei, prop);
3392 	res_name = pci_resource_name(dev, bei);
3393 	if (!res) {
3394 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3395 		goto out;
3396 	}
3397 
3398 	flags = pci_ea_flags(dev, prop);
3399 	if (!flags) {
3400 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3401 		goto out;
3402 	}
3403 
3404 	/* Read Base */
3405 	pci_read_config_dword(dev, ent_offset, &base);
3406 	start = (base & PCI_EA_FIELD_MASK);
3407 	ent_offset += 4;
3408 
3409 	/* Read MaxOffset */
3410 	pci_read_config_dword(dev, ent_offset, &max_offset);
3411 	ent_offset += 4;
3412 
3413 	/* Read Base MSBs (if 64-bit entry) */
3414 	if (base & PCI_EA_IS_64) {
3415 		u32 base_upper;
3416 
3417 		pci_read_config_dword(dev, ent_offset, &base_upper);
3418 		ent_offset += 4;
3419 
3420 		flags |= IORESOURCE_MEM_64;
3421 
3422 		/* entry starts above 32-bit boundary, can't use */
3423 		if (!support_64 && base_upper)
3424 			goto out;
3425 
3426 		if (support_64)
3427 			start |= ((u64)base_upper << 32);
3428 	}
3429 
3430 	end = start + (max_offset | 0x03);
3431 
3432 	/* Read MaxOffset MSBs (if 64-bit entry) */
3433 	if (max_offset & PCI_EA_IS_64) {
3434 		u32 max_offset_upper;
3435 
3436 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3437 		ent_offset += 4;
3438 
3439 		flags |= IORESOURCE_MEM_64;
3440 
3441 		/* entry too big, can't use */
3442 		if (!support_64 && max_offset_upper)
3443 			goto out;
3444 
3445 		if (support_64)
3446 			end += ((u64)max_offset_upper << 32);
3447 	}
3448 
3449 	if (end < start) {
3450 		pci_err(dev, "EA Entry crosses address boundary\n");
3451 		goto out;
3452 	}
3453 
3454 	if (ent_size != ent_offset - offset) {
3455 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3456 			ent_size, ent_offset - offset);
3457 		goto out;
3458 	}
3459 
3460 	res->name = pci_name(dev);
3461 	res->start = start;
3462 	res->end = end;
3463 	res->flags = flags;
3464 
3465 	if (bei <= PCI_EA_BEI_BAR5)
3466 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3467 			 res_name, res, prop);
3468 	else if (bei == PCI_EA_BEI_ROM)
3469 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3470 			 res_name, res, prop);
3471 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3472 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3473 			 res_name, res, prop);
3474 	else
3475 		pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3476 			   bei, res, prop);
3477 
3478 out:
3479 	return offset + ent_size;
3480 }
3481 
3482 /* Enhanced Allocation Initialization */
3483 void pci_ea_init(struct pci_dev *dev)
3484 {
3485 	int ea;
3486 	u8 num_ent;
3487 	int offset;
3488 	int i;
3489 
3490 	/* find PCI EA capability in list */
3491 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3492 	if (!ea)
3493 		return;
3494 
3495 	/* determine the number of entries */
3496 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3497 					&num_ent);
3498 	num_ent &= PCI_EA_NUM_ENT_MASK;
3499 
3500 	offset = ea + PCI_EA_FIRST_ENT;
3501 
3502 	/* Skip DWORD 2 for type 1 functions */
3503 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3504 		offset += 4;
3505 
3506 	/* parse each EA entry */
3507 	for (i = 0; i < num_ent; ++i)
3508 		offset = pci_ea_read(dev, offset);
3509 }
3510 
3511 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3512 	struct pci_cap_saved_state *new_cap)
3513 {
3514 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3515 }
3516 
3517 /**
3518  * _pci_add_cap_save_buffer - allocate buffer for saving given
3519  *			      capability registers
3520  * @dev: the PCI device
3521  * @cap: the capability to allocate the buffer for
3522  * @extended: Standard or Extended capability ID
3523  * @size: requested size of the buffer
3524  */
3525 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3526 				    bool extended, unsigned int size)
3527 {
3528 	int pos;
3529 	struct pci_cap_saved_state *save_state;
3530 
3531 	if (extended)
3532 		pos = pci_find_ext_capability(dev, cap);
3533 	else
3534 		pos = pci_find_capability(dev, cap);
3535 
3536 	if (!pos)
3537 		return 0;
3538 
3539 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3540 	if (!save_state)
3541 		return -ENOMEM;
3542 
3543 	save_state->cap.cap_nr = cap;
3544 	save_state->cap.cap_extended = extended;
3545 	save_state->cap.size = size;
3546 	pci_add_saved_cap(dev, save_state);
3547 
3548 	return 0;
3549 }
3550 
3551 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3552 {
3553 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3554 }
3555 
3556 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3557 {
3558 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3559 }
3560 
3561 /**
3562  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3563  * @dev: the PCI device
3564  */
3565 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3566 {
3567 	int error;
3568 
3569 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3570 					PCI_EXP_SAVE_REGS * sizeof(u16));
3571 	if (error)
3572 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3573 
3574 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3575 	if (error)
3576 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3577 
3578 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3579 					    2 * sizeof(u16));
3580 	if (error)
3581 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3582 
3583 	pci_allocate_vc_save_buffers(dev);
3584 }
3585 
3586 void pci_free_cap_save_buffers(struct pci_dev *dev)
3587 {
3588 	struct pci_cap_saved_state *tmp;
3589 	struct hlist_node *n;
3590 
3591 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3592 		kfree(tmp);
3593 }
3594 
3595 /**
3596  * pci_configure_ari - enable or disable ARI forwarding
3597  * @dev: the PCI device
3598  *
3599  * If @dev and its upstream bridge both support ARI, enable ARI in the
3600  * bridge.  Otherwise, disable ARI in the bridge.
3601  */
3602 void pci_configure_ari(struct pci_dev *dev)
3603 {
3604 	u32 cap;
3605 	struct pci_dev *bridge;
3606 
3607 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3608 		return;
3609 
3610 	bridge = dev->bus->self;
3611 	if (!bridge)
3612 		return;
3613 
3614 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3615 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3616 		return;
3617 
3618 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3619 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3620 					 PCI_EXP_DEVCTL2_ARI);
3621 		bridge->ari_enabled = 1;
3622 	} else {
3623 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3624 					   PCI_EXP_DEVCTL2_ARI);
3625 		bridge->ari_enabled = 0;
3626 	}
3627 }
3628 
3629 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3630 {
3631 	int pos;
3632 	u16 cap, ctrl;
3633 
3634 	pos = pdev->acs_cap;
3635 	if (!pos)
3636 		return false;
3637 
3638 	/*
3639 	 * Except for egress control, capabilities are either required
3640 	 * or only required if controllable.  Features missing from the
3641 	 * capability field can therefore be assumed as hard-wired enabled.
3642 	 */
3643 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3644 	acs_flags &= (cap | PCI_ACS_EC);
3645 
3646 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3647 	return (ctrl & acs_flags) == acs_flags;
3648 }
3649 
3650 /**
3651  * pci_acs_enabled - test ACS against required flags for a given device
3652  * @pdev: device to test
3653  * @acs_flags: required PCI ACS flags
3654  *
3655  * Return true if the device supports the provided flags.  Automatically
3656  * filters out flags that are not implemented on multifunction devices.
3657  *
3658  * Note that this interface checks the effective ACS capabilities of the
3659  * device rather than the actual capabilities.  For instance, most single
3660  * function endpoints are not required to support ACS because they have no
3661  * opportunity for peer-to-peer access.  We therefore return 'true'
3662  * regardless of whether the device exposes an ACS capability.  This makes
3663  * it much easier for callers of this function to ignore the actual type
3664  * or topology of the device when testing ACS support.
3665  */
3666 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3667 {
3668 	int ret;
3669 
3670 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3671 	if (ret >= 0)
3672 		return ret > 0;
3673 
3674 	/*
3675 	 * Conventional PCI and PCI-X devices never support ACS, either
3676 	 * effectively or actually.  The shared bus topology implies that
3677 	 * any device on the bus can receive or snoop DMA.
3678 	 */
3679 	if (!pci_is_pcie(pdev))
3680 		return false;
3681 
3682 	switch (pci_pcie_type(pdev)) {
3683 	/*
3684 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3685 	 * but since their primary interface is PCI/X, we conservatively
3686 	 * handle them as we would a non-PCIe device.
3687 	 */
3688 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3689 	/*
3690 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3691 	 * applicable... must never implement an ACS Extended Capability...".
3692 	 * This seems arbitrary, but we take a conservative interpretation
3693 	 * of this statement.
3694 	 */
3695 	case PCI_EXP_TYPE_PCI_BRIDGE:
3696 	case PCI_EXP_TYPE_RC_EC:
3697 		return false;
3698 	/*
3699 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3700 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3701 	 * regardless of whether they are single- or multi-function devices.
3702 	 */
3703 	case PCI_EXP_TYPE_DOWNSTREAM:
3704 	case PCI_EXP_TYPE_ROOT_PORT:
3705 		return pci_acs_flags_enabled(pdev, acs_flags);
3706 	/*
3707 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3708 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3709 	 * capabilities, but only when they are part of a multifunction
3710 	 * device.  The footnote for section 6.12 indicates the specific
3711 	 * PCIe types included here.
3712 	 */
3713 	case PCI_EXP_TYPE_ENDPOINT:
3714 	case PCI_EXP_TYPE_UPSTREAM:
3715 	case PCI_EXP_TYPE_LEG_END:
3716 	case PCI_EXP_TYPE_RC_END:
3717 		if (!pdev->multifunction)
3718 			break;
3719 
3720 		return pci_acs_flags_enabled(pdev, acs_flags);
3721 	}
3722 
3723 	/*
3724 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3725 	 * to single function devices with the exception of downstream ports.
3726 	 */
3727 	return true;
3728 }
3729 
3730 /**
3731  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3732  * @start: starting downstream device
3733  * @end: ending upstream device or NULL to search to the root bus
3734  * @acs_flags: required flags
3735  *
3736  * Walk up a device tree from start to end testing PCI ACS support.  If
3737  * any step along the way does not support the required flags, return false.
3738  */
3739 bool pci_acs_path_enabled(struct pci_dev *start,
3740 			  struct pci_dev *end, u16 acs_flags)
3741 {
3742 	struct pci_dev *pdev, *parent = start;
3743 
3744 	do {
3745 		pdev = parent;
3746 
3747 		if (!pci_acs_enabled(pdev, acs_flags))
3748 			return false;
3749 
3750 		if (pci_is_root_bus(pdev->bus))
3751 			return (end == NULL);
3752 
3753 		parent = pdev->bus->self;
3754 	} while (pdev != end);
3755 
3756 	return true;
3757 }
3758 
3759 /**
3760  * pci_acs_init - Initialize ACS if hardware supports it
3761  * @dev: the PCI device
3762  */
3763 void pci_acs_init(struct pci_dev *dev)
3764 {
3765 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3766 
3767 	/*
3768 	 * Attempt to enable ACS regardless of capability because some Root
3769 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3770 	 * the standard ACS capability but still support ACS via those
3771 	 * quirks.
3772 	 */
3773 	pci_enable_acs(dev);
3774 }
3775 
3776 /**
3777  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3778  * @pdev: PCI device
3779  * @bar: BAR to find
3780  *
3781  * Helper to find the position of the ctrl register for a BAR.
3782  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3783  * Returns -ENOENT if no ctrl register for the BAR could be found.
3784  */
3785 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3786 {
3787 	unsigned int pos, nbars, i;
3788 	u32 ctrl;
3789 
3790 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3791 	if (!pos)
3792 		return -ENOTSUPP;
3793 
3794 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3795 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3796 
3797 	for (i = 0; i < nbars; i++, pos += 8) {
3798 		int bar_idx;
3799 
3800 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3801 		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3802 		if (bar_idx == bar)
3803 			return pos;
3804 	}
3805 
3806 	return -ENOENT;
3807 }
3808 
3809 /**
3810  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3811  * @pdev: PCI device
3812  * @bar: BAR to query
3813  *
3814  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3815  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3816  */
3817 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3818 {
3819 	int pos;
3820 	u32 cap;
3821 
3822 	pos = pci_rebar_find_pos(pdev, bar);
3823 	if (pos < 0)
3824 		return 0;
3825 
3826 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3827 	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3828 
3829 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3830 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3831 	    bar == 0 && cap == 0x700)
3832 		return 0x3f00;
3833 
3834 	return cap;
3835 }
3836 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3837 
3838 /**
3839  * pci_rebar_get_current_size - get the current size of a BAR
3840  * @pdev: PCI device
3841  * @bar: BAR to set size to
3842  *
3843  * Read the size of a BAR from the resizable BAR config.
3844  * Returns size if found or negative error code.
3845  */
3846 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3847 {
3848 	int pos;
3849 	u32 ctrl;
3850 
3851 	pos = pci_rebar_find_pos(pdev, bar);
3852 	if (pos < 0)
3853 		return pos;
3854 
3855 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3856 	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3857 }
3858 
3859 /**
3860  * pci_rebar_set_size - set a new size for a BAR
3861  * @pdev: PCI device
3862  * @bar: BAR to set size to
3863  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3864  *
3865  * Set the new size of a BAR as defined in the spec.
3866  * Returns zero if resizing was successful, error code otherwise.
3867  */
3868 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3869 {
3870 	int pos;
3871 	u32 ctrl;
3872 
3873 	pos = pci_rebar_find_pos(pdev, bar);
3874 	if (pos < 0)
3875 		return pos;
3876 
3877 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3878 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3879 	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3880 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3881 	return 0;
3882 }
3883 
3884 /**
3885  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3886  * @dev: the PCI device
3887  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3888  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3889  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3890  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3891  *
3892  * Return 0 if all upstream bridges support AtomicOp routing, egress
3893  * blocking is disabled on all upstream ports, and the root port supports
3894  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3895  * AtomicOp completion), or negative otherwise.
3896  */
3897 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3898 {
3899 	struct pci_bus *bus = dev->bus;
3900 	struct pci_dev *bridge;
3901 	u32 cap, ctl2;
3902 
3903 	/*
3904 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3905 	 * in Device Control 2 is reserved in VFs and the PF value applies
3906 	 * to all associated VFs.
3907 	 */
3908 	if (dev->is_virtfn)
3909 		return -EINVAL;
3910 
3911 	if (!pci_is_pcie(dev))
3912 		return -EINVAL;
3913 
3914 	/*
3915 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3916 	 * AtomicOp requesters.  For now, we only support endpoints as
3917 	 * requesters and root ports as completers.  No endpoints as
3918 	 * completers, and no peer-to-peer.
3919 	 */
3920 
3921 	switch (pci_pcie_type(dev)) {
3922 	case PCI_EXP_TYPE_ENDPOINT:
3923 	case PCI_EXP_TYPE_LEG_END:
3924 	case PCI_EXP_TYPE_RC_END:
3925 		break;
3926 	default:
3927 		return -EINVAL;
3928 	}
3929 
3930 	while (bus->parent) {
3931 		bridge = bus->self;
3932 
3933 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3934 
3935 		switch (pci_pcie_type(bridge)) {
3936 		/* Ensure switch ports support AtomicOp routing */
3937 		case PCI_EXP_TYPE_UPSTREAM:
3938 		case PCI_EXP_TYPE_DOWNSTREAM:
3939 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3940 				return -EINVAL;
3941 			break;
3942 
3943 		/* Ensure root port supports all the sizes we care about */
3944 		case PCI_EXP_TYPE_ROOT_PORT:
3945 			if ((cap & cap_mask) != cap_mask)
3946 				return -EINVAL;
3947 			break;
3948 		}
3949 
3950 		/* Ensure upstream ports don't block AtomicOps on egress */
3951 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3952 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3953 						   &ctl2);
3954 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3955 				return -EINVAL;
3956 		}
3957 
3958 		bus = bus->parent;
3959 	}
3960 
3961 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3962 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3963 	return 0;
3964 }
3965 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3966 
3967 /**
3968  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3969  * @dev: the PCI device
3970  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3971  *
3972  * Perform INTx swizzling for a device behind one level of bridge.  This is
3973  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3974  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3975  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3976  * the PCI Express Base Specification, Revision 2.1)
3977  */
3978 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3979 {
3980 	int slot;
3981 
3982 	if (pci_ari_enabled(dev->bus))
3983 		slot = 0;
3984 	else
3985 		slot = PCI_SLOT(dev->devfn);
3986 
3987 	return (((pin - 1) + slot) % 4) + 1;
3988 }
3989 
3990 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3991 {
3992 	u8 pin;
3993 
3994 	pin = dev->pin;
3995 	if (!pin)
3996 		return -1;
3997 
3998 	while (!pci_is_root_bus(dev->bus)) {
3999 		pin = pci_swizzle_interrupt_pin(dev, pin);
4000 		dev = dev->bus->self;
4001 	}
4002 	*bridge = dev;
4003 	return pin;
4004 }
4005 
4006 /**
4007  * pci_common_swizzle - swizzle INTx all the way to root bridge
4008  * @dev: the PCI device
4009  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
4010  *
4011  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
4012  * bridges all the way up to a PCI root bus.
4013  */
4014 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
4015 {
4016 	u8 pin = *pinp;
4017 
4018 	while (!pci_is_root_bus(dev->bus)) {
4019 		pin = pci_swizzle_interrupt_pin(dev, pin);
4020 		dev = dev->bus->self;
4021 	}
4022 	*pinp = pin;
4023 	return PCI_SLOT(dev->devfn);
4024 }
4025 EXPORT_SYMBOL_GPL(pci_common_swizzle);
4026 
4027 /**
4028  * pci_release_region - Release a PCI bar
4029  * @pdev: PCI device whose resources were previously reserved by
4030  *	  pci_request_region()
4031  * @bar: BAR to release
4032  *
4033  * Releases the PCI I/O and memory resources previously reserved by a
4034  * successful call to pci_request_region().  Call this function only
4035  * after all use of the PCI regions has ceased.
4036  */
4037 void pci_release_region(struct pci_dev *pdev, int bar)
4038 {
4039 	struct pci_devres *dr;
4040 
4041 	if (pci_resource_len(pdev, bar) == 0)
4042 		return;
4043 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
4044 		release_region(pci_resource_start(pdev, bar),
4045 				pci_resource_len(pdev, bar));
4046 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
4047 		release_mem_region(pci_resource_start(pdev, bar),
4048 				pci_resource_len(pdev, bar));
4049 
4050 	dr = find_pci_dr(pdev);
4051 	if (dr)
4052 		dr->region_mask &= ~(1 << bar);
4053 }
4054 EXPORT_SYMBOL(pci_release_region);
4055 
4056 /**
4057  * __pci_request_region - Reserved PCI I/O and memory resource
4058  * @pdev: PCI device whose resources are to be reserved
4059  * @bar: BAR to be reserved
4060  * @res_name: Name to be associated with resource.
4061  * @exclusive: whether the region access is exclusive or not
4062  *
4063  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4064  * being reserved by owner @res_name.  Do not access any
4065  * address inside the PCI regions unless this call returns
4066  * successfully.
4067  *
4068  * If @exclusive is set, then the region is marked so that userspace
4069  * is explicitly not allowed to map the resource via /dev/mem or
4070  * sysfs MMIO access.
4071  *
4072  * Returns 0 on success, or %EBUSY on error.  A warning
4073  * message is also printed on failure.
4074  */
4075 static int __pci_request_region(struct pci_dev *pdev, int bar,
4076 				const char *res_name, int exclusive)
4077 {
4078 	struct pci_devres *dr;
4079 
4080 	if (pci_resource_len(pdev, bar) == 0)
4081 		return 0;
4082 
4083 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4084 		if (!request_region(pci_resource_start(pdev, bar),
4085 			    pci_resource_len(pdev, bar), res_name))
4086 			goto err_out;
4087 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4088 		if (!__request_mem_region(pci_resource_start(pdev, bar),
4089 					pci_resource_len(pdev, bar), res_name,
4090 					exclusive))
4091 			goto err_out;
4092 	}
4093 
4094 	dr = find_pci_dr(pdev);
4095 	if (dr)
4096 		dr->region_mask |= 1 << bar;
4097 
4098 	return 0;
4099 
4100 err_out:
4101 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4102 		 &pdev->resource[bar]);
4103 	return -EBUSY;
4104 }
4105 
4106 /**
4107  * pci_request_region - Reserve PCI I/O and memory resource
4108  * @pdev: PCI device whose resources are to be reserved
4109  * @bar: BAR to be reserved
4110  * @res_name: Name to be associated with resource
4111  *
4112  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4113  * being reserved by owner @res_name.  Do not access any
4114  * address inside the PCI regions unless this call returns
4115  * successfully.
4116  *
4117  * Returns 0 on success, or %EBUSY on error.  A warning
4118  * message is also printed on failure.
4119  */
4120 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4121 {
4122 	return __pci_request_region(pdev, bar, res_name, 0);
4123 }
4124 EXPORT_SYMBOL(pci_request_region);
4125 
4126 /**
4127  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4128  * @pdev: PCI device whose resources were previously reserved
4129  * @bars: Bitmask of BARs to be released
4130  *
4131  * Release selected PCI I/O and memory resources previously reserved.
4132  * Call this function only after all use of the PCI regions has ceased.
4133  */
4134 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4135 {
4136 	int i;
4137 
4138 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4139 		if (bars & (1 << i))
4140 			pci_release_region(pdev, i);
4141 }
4142 EXPORT_SYMBOL(pci_release_selected_regions);
4143 
4144 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4145 					  const char *res_name, int excl)
4146 {
4147 	int i;
4148 
4149 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4150 		if (bars & (1 << i))
4151 			if (__pci_request_region(pdev, i, res_name, excl))
4152 				goto err_out;
4153 	return 0;
4154 
4155 err_out:
4156 	while (--i >= 0)
4157 		if (bars & (1 << i))
4158 			pci_release_region(pdev, i);
4159 
4160 	return -EBUSY;
4161 }
4162 
4163 
4164 /**
4165  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4166  * @pdev: PCI device whose resources are to be reserved
4167  * @bars: Bitmask of BARs to be requested
4168  * @res_name: Name to be associated with resource
4169  */
4170 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4171 				 const char *res_name)
4172 {
4173 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4174 }
4175 EXPORT_SYMBOL(pci_request_selected_regions);
4176 
4177 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4178 					   const char *res_name)
4179 {
4180 	return __pci_request_selected_regions(pdev, bars, res_name,
4181 			IORESOURCE_EXCLUSIVE);
4182 }
4183 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4184 
4185 /**
4186  * pci_release_regions - Release reserved PCI I/O and memory resources
4187  * @pdev: PCI device whose resources were previously reserved by
4188  *	  pci_request_regions()
4189  *
4190  * Releases all PCI I/O and memory resources previously reserved by a
4191  * successful call to pci_request_regions().  Call this function only
4192  * after all use of the PCI regions has ceased.
4193  */
4194 
4195 void pci_release_regions(struct pci_dev *pdev)
4196 {
4197 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4198 }
4199 EXPORT_SYMBOL(pci_release_regions);
4200 
4201 /**
4202  * pci_request_regions - Reserve PCI I/O and memory resources
4203  * @pdev: PCI device whose resources are to be reserved
4204  * @res_name: Name to be associated with resource.
4205  *
4206  * Mark all PCI regions associated with PCI device @pdev as
4207  * being reserved by owner @res_name.  Do not access any
4208  * address inside the PCI regions unless this call returns
4209  * successfully.
4210  *
4211  * Returns 0 on success, or %EBUSY on error.  A warning
4212  * message is also printed on failure.
4213  */
4214 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4215 {
4216 	return pci_request_selected_regions(pdev,
4217 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4218 }
4219 EXPORT_SYMBOL(pci_request_regions);
4220 
4221 /**
4222  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4223  * @pdev: PCI device whose resources are to be reserved
4224  * @res_name: Name to be associated with resource.
4225  *
4226  * Mark all PCI regions associated with PCI device @pdev as being reserved
4227  * by owner @res_name.  Do not access any address inside the PCI regions
4228  * unless this call returns successfully.
4229  *
4230  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4231  * and the sysfs MMIO access will not be allowed.
4232  *
4233  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4234  * printed on failure.
4235  */
4236 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4237 {
4238 	return pci_request_selected_regions_exclusive(pdev,
4239 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4240 }
4241 EXPORT_SYMBOL(pci_request_regions_exclusive);
4242 
4243 /*
4244  * Record the PCI IO range (expressed as CPU physical address + size).
4245  * Return a negative value if an error has occurred, zero otherwise
4246  */
4247 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4248 			resource_size_t	size)
4249 {
4250 	int ret = 0;
4251 #ifdef PCI_IOBASE
4252 	struct logic_pio_hwaddr *range;
4253 
4254 	if (!size || addr + size < addr)
4255 		return -EINVAL;
4256 
4257 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4258 	if (!range)
4259 		return -ENOMEM;
4260 
4261 	range->fwnode = fwnode;
4262 	range->size = size;
4263 	range->hw_start = addr;
4264 	range->flags = LOGIC_PIO_CPU_MMIO;
4265 
4266 	ret = logic_pio_register_range(range);
4267 	if (ret)
4268 		kfree(range);
4269 
4270 	/* Ignore duplicates due to deferred probing */
4271 	if (ret == -EEXIST)
4272 		ret = 0;
4273 #endif
4274 
4275 	return ret;
4276 }
4277 
4278 phys_addr_t pci_pio_to_address(unsigned long pio)
4279 {
4280 #ifdef PCI_IOBASE
4281 	if (pio < MMIO_UPPER_LIMIT)
4282 		return logic_pio_to_hwaddr(pio);
4283 #endif
4284 
4285 	return (phys_addr_t) OF_BAD_ADDR;
4286 }
4287 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4288 
4289 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4290 {
4291 #ifdef PCI_IOBASE
4292 	return logic_pio_trans_cpuaddr(address);
4293 #else
4294 	if (address > IO_SPACE_LIMIT)
4295 		return (unsigned long)-1;
4296 
4297 	return (unsigned long) address;
4298 #endif
4299 }
4300 
4301 /**
4302  * pci_remap_iospace - Remap the memory mapped I/O space
4303  * @res: Resource describing the I/O space
4304  * @phys_addr: physical address of range to be mapped
4305  *
4306  * Remap the memory mapped I/O space described by the @res and the CPU
4307  * physical address @phys_addr into virtual address space.  Only
4308  * architectures that have memory mapped IO functions defined (and the
4309  * PCI_IOBASE value defined) should call this function.
4310  */
4311 #ifndef pci_remap_iospace
4312 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4313 {
4314 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4315 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4316 
4317 	if (!(res->flags & IORESOURCE_IO))
4318 		return -EINVAL;
4319 
4320 	if (res->end > IO_SPACE_LIMIT)
4321 		return -EINVAL;
4322 
4323 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4324 				  pgprot_device(PAGE_KERNEL));
4325 #else
4326 	/*
4327 	 * This architecture does not have memory mapped I/O space,
4328 	 * so this function should never be called
4329 	 */
4330 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4331 	return -ENODEV;
4332 #endif
4333 }
4334 EXPORT_SYMBOL(pci_remap_iospace);
4335 #endif
4336 
4337 /**
4338  * pci_unmap_iospace - Unmap the memory mapped I/O space
4339  * @res: resource to be unmapped
4340  *
4341  * Unmap the CPU virtual address @res from virtual address space.  Only
4342  * architectures that have memory mapped IO functions defined (and the
4343  * PCI_IOBASE value defined) should call this function.
4344  */
4345 void pci_unmap_iospace(struct resource *res)
4346 {
4347 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4348 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4349 
4350 	vunmap_range(vaddr, vaddr + resource_size(res));
4351 #endif
4352 }
4353 EXPORT_SYMBOL(pci_unmap_iospace);
4354 
4355 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4356 {
4357 	struct resource **res = ptr;
4358 
4359 	pci_unmap_iospace(*res);
4360 }
4361 
4362 /**
4363  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4364  * @dev: Generic device to remap IO address for
4365  * @res: Resource describing the I/O space
4366  * @phys_addr: physical address of range to be mapped
4367  *
4368  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4369  * detach.
4370  */
4371 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4372 			   phys_addr_t phys_addr)
4373 {
4374 	const struct resource **ptr;
4375 	int error;
4376 
4377 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4378 	if (!ptr)
4379 		return -ENOMEM;
4380 
4381 	error = pci_remap_iospace(res, phys_addr);
4382 	if (error) {
4383 		devres_free(ptr);
4384 	} else	{
4385 		*ptr = res;
4386 		devres_add(dev, ptr);
4387 	}
4388 
4389 	return error;
4390 }
4391 EXPORT_SYMBOL(devm_pci_remap_iospace);
4392 
4393 /**
4394  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4395  * @dev: Generic device to remap IO address for
4396  * @offset: Resource address to map
4397  * @size: Size of map
4398  *
4399  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4400  * detach.
4401  */
4402 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4403 				      resource_size_t offset,
4404 				      resource_size_t size)
4405 {
4406 	void __iomem **ptr, *addr;
4407 
4408 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4409 	if (!ptr)
4410 		return NULL;
4411 
4412 	addr = pci_remap_cfgspace(offset, size);
4413 	if (addr) {
4414 		*ptr = addr;
4415 		devres_add(dev, ptr);
4416 	} else
4417 		devres_free(ptr);
4418 
4419 	return addr;
4420 }
4421 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4422 
4423 /**
4424  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4425  * @dev: generic device to handle the resource for
4426  * @res: configuration space resource to be handled
4427  *
4428  * Checks that a resource is a valid memory region, requests the memory
4429  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4430  * proper PCI configuration space memory attributes are guaranteed.
4431  *
4432  * All operations are managed and will be undone on driver detach.
4433  *
4434  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4435  * on failure. Usage example::
4436  *
4437  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4438  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4439  *	if (IS_ERR(base))
4440  *		return PTR_ERR(base);
4441  */
4442 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4443 					  struct resource *res)
4444 {
4445 	resource_size_t size;
4446 	const char *name;
4447 	void __iomem *dest_ptr;
4448 
4449 	BUG_ON(!dev);
4450 
4451 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4452 		dev_err(dev, "invalid resource\n");
4453 		return IOMEM_ERR_PTR(-EINVAL);
4454 	}
4455 
4456 	size = resource_size(res);
4457 
4458 	if (res->name)
4459 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4460 				      res->name);
4461 	else
4462 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4463 	if (!name)
4464 		return IOMEM_ERR_PTR(-ENOMEM);
4465 
4466 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4467 		dev_err(dev, "can't request region for resource %pR\n", res);
4468 		return IOMEM_ERR_PTR(-EBUSY);
4469 	}
4470 
4471 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4472 	if (!dest_ptr) {
4473 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4474 		devm_release_mem_region(dev, res->start, size);
4475 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4476 	}
4477 
4478 	return dest_ptr;
4479 }
4480 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4481 
4482 static void __pci_set_master(struct pci_dev *dev, bool enable)
4483 {
4484 	u16 old_cmd, cmd;
4485 
4486 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4487 	if (enable)
4488 		cmd = old_cmd | PCI_COMMAND_MASTER;
4489 	else
4490 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4491 	if (cmd != old_cmd) {
4492 		pci_dbg(dev, "%s bus mastering\n",
4493 			enable ? "enabling" : "disabling");
4494 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4495 	}
4496 	dev->is_busmaster = enable;
4497 }
4498 
4499 /**
4500  * pcibios_setup - process "pci=" kernel boot arguments
4501  * @str: string used to pass in "pci=" kernel boot arguments
4502  *
4503  * Process kernel boot arguments.  This is the default implementation.
4504  * Architecture specific implementations can override this as necessary.
4505  */
4506 char * __weak __init pcibios_setup(char *str)
4507 {
4508 	return str;
4509 }
4510 
4511 /**
4512  * pcibios_set_master - enable PCI bus-mastering for device dev
4513  * @dev: the PCI device to enable
4514  *
4515  * Enables PCI bus-mastering for the device.  This is the default
4516  * implementation.  Architecture specific implementations can override
4517  * this if necessary.
4518  */
4519 void __weak pcibios_set_master(struct pci_dev *dev)
4520 {
4521 	u8 lat;
4522 
4523 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4524 	if (pci_is_pcie(dev))
4525 		return;
4526 
4527 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4528 	if (lat < 16)
4529 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4530 	else if (lat > pcibios_max_latency)
4531 		lat = pcibios_max_latency;
4532 	else
4533 		return;
4534 
4535 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4536 }
4537 
4538 /**
4539  * pci_set_master - enables bus-mastering for device dev
4540  * @dev: the PCI device to enable
4541  *
4542  * Enables bus-mastering on the device and calls pcibios_set_master()
4543  * to do the needed arch specific settings.
4544  */
4545 void pci_set_master(struct pci_dev *dev)
4546 {
4547 	__pci_set_master(dev, true);
4548 	pcibios_set_master(dev);
4549 }
4550 EXPORT_SYMBOL(pci_set_master);
4551 
4552 /**
4553  * pci_clear_master - disables bus-mastering for device dev
4554  * @dev: the PCI device to disable
4555  */
4556 void pci_clear_master(struct pci_dev *dev)
4557 {
4558 	__pci_set_master(dev, false);
4559 }
4560 EXPORT_SYMBOL(pci_clear_master);
4561 
4562 /**
4563  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4564  * @dev: the PCI device for which MWI is to be enabled
4565  *
4566  * Helper function for pci_set_mwi.
4567  * Originally copied from drivers/net/acenic.c.
4568  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4569  *
4570  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4571  */
4572 int pci_set_cacheline_size(struct pci_dev *dev)
4573 {
4574 	u8 cacheline_size;
4575 
4576 	if (!pci_cache_line_size)
4577 		return -EINVAL;
4578 
4579 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4580 	   equal to or multiple of the right value. */
4581 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4582 	if (cacheline_size >= pci_cache_line_size &&
4583 	    (cacheline_size % pci_cache_line_size) == 0)
4584 		return 0;
4585 
4586 	/* Write the correct value. */
4587 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4588 	/* Read it back. */
4589 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4590 	if (cacheline_size == pci_cache_line_size)
4591 		return 0;
4592 
4593 	pci_dbg(dev, "cache line size of %d is not supported\n",
4594 		   pci_cache_line_size << 2);
4595 
4596 	return -EINVAL;
4597 }
4598 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4599 
4600 /**
4601  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4602  * @dev: the PCI device for which MWI is enabled
4603  *
4604  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4605  *
4606  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4607  */
4608 int pci_set_mwi(struct pci_dev *dev)
4609 {
4610 #ifdef PCI_DISABLE_MWI
4611 	return 0;
4612 #else
4613 	int rc;
4614 	u16 cmd;
4615 
4616 	rc = pci_set_cacheline_size(dev);
4617 	if (rc)
4618 		return rc;
4619 
4620 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4621 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4622 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4623 		cmd |= PCI_COMMAND_INVALIDATE;
4624 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4625 	}
4626 	return 0;
4627 #endif
4628 }
4629 EXPORT_SYMBOL(pci_set_mwi);
4630 
4631 /**
4632  * pcim_set_mwi - a device-managed pci_set_mwi()
4633  * @dev: the PCI device for which MWI is enabled
4634  *
4635  * Managed pci_set_mwi().
4636  *
4637  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4638  */
4639 int pcim_set_mwi(struct pci_dev *dev)
4640 {
4641 	struct pci_devres *dr;
4642 
4643 	dr = find_pci_dr(dev);
4644 	if (!dr)
4645 		return -ENOMEM;
4646 
4647 	dr->mwi = 1;
4648 	return pci_set_mwi(dev);
4649 }
4650 EXPORT_SYMBOL(pcim_set_mwi);
4651 
4652 /**
4653  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4654  * @dev: the PCI device for which MWI is enabled
4655  *
4656  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4657  * Callers are not required to check the return value.
4658  *
4659  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4660  */
4661 int pci_try_set_mwi(struct pci_dev *dev)
4662 {
4663 #ifdef PCI_DISABLE_MWI
4664 	return 0;
4665 #else
4666 	return pci_set_mwi(dev);
4667 #endif
4668 }
4669 EXPORT_SYMBOL(pci_try_set_mwi);
4670 
4671 /**
4672  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4673  * @dev: the PCI device to disable
4674  *
4675  * Disables PCI Memory-Write-Invalidate transaction on the device
4676  */
4677 void pci_clear_mwi(struct pci_dev *dev)
4678 {
4679 #ifndef PCI_DISABLE_MWI
4680 	u16 cmd;
4681 
4682 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4683 	if (cmd & PCI_COMMAND_INVALIDATE) {
4684 		cmd &= ~PCI_COMMAND_INVALIDATE;
4685 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4686 	}
4687 #endif
4688 }
4689 EXPORT_SYMBOL(pci_clear_mwi);
4690 
4691 /**
4692  * pci_disable_parity - disable parity checking for device
4693  * @dev: the PCI device to operate on
4694  *
4695  * Disable parity checking for device @dev
4696  */
4697 void pci_disable_parity(struct pci_dev *dev)
4698 {
4699 	u16 cmd;
4700 
4701 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4702 	if (cmd & PCI_COMMAND_PARITY) {
4703 		cmd &= ~PCI_COMMAND_PARITY;
4704 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4705 	}
4706 }
4707 
4708 /**
4709  * pci_intx - enables/disables PCI INTx for device dev
4710  * @pdev: the PCI device to operate on
4711  * @enable: boolean: whether to enable or disable PCI INTx
4712  *
4713  * Enables/disables PCI INTx for device @pdev
4714  */
4715 void pci_intx(struct pci_dev *pdev, int enable)
4716 {
4717 	u16 pci_command, new;
4718 
4719 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4720 
4721 	if (enable)
4722 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4723 	else
4724 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4725 
4726 	if (new != pci_command) {
4727 		struct pci_devres *dr;
4728 
4729 		pci_write_config_word(pdev, PCI_COMMAND, new);
4730 
4731 		dr = find_pci_dr(pdev);
4732 		if (dr && !dr->restore_intx) {
4733 			dr->restore_intx = 1;
4734 			dr->orig_intx = !enable;
4735 		}
4736 	}
4737 }
4738 EXPORT_SYMBOL_GPL(pci_intx);
4739 
4740 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4741 {
4742 	struct pci_bus *bus = dev->bus;
4743 	bool mask_updated = true;
4744 	u32 cmd_status_dword;
4745 	u16 origcmd, newcmd;
4746 	unsigned long flags;
4747 	bool irq_pending;
4748 
4749 	/*
4750 	 * We do a single dword read to retrieve both command and status.
4751 	 * Document assumptions that make this possible.
4752 	 */
4753 	BUILD_BUG_ON(PCI_COMMAND % 4);
4754 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4755 
4756 	raw_spin_lock_irqsave(&pci_lock, flags);
4757 
4758 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4759 
4760 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4761 
4762 	/*
4763 	 * Check interrupt status register to see whether our device
4764 	 * triggered the interrupt (when masking) or the next IRQ is
4765 	 * already pending (when unmasking).
4766 	 */
4767 	if (mask != irq_pending) {
4768 		mask_updated = false;
4769 		goto done;
4770 	}
4771 
4772 	origcmd = cmd_status_dword;
4773 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4774 	if (mask)
4775 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4776 	if (newcmd != origcmd)
4777 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4778 
4779 done:
4780 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4781 
4782 	return mask_updated;
4783 }
4784 
4785 /**
4786  * pci_check_and_mask_intx - mask INTx on pending interrupt
4787  * @dev: the PCI device to operate on
4788  *
4789  * Check if the device dev has its INTx line asserted, mask it and return
4790  * true in that case. False is returned if no interrupt was pending.
4791  */
4792 bool pci_check_and_mask_intx(struct pci_dev *dev)
4793 {
4794 	return pci_check_and_set_intx_mask(dev, true);
4795 }
4796 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4797 
4798 /**
4799  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4800  * @dev: the PCI device to operate on
4801  *
4802  * Check if the device dev has its INTx line asserted, unmask it if not and
4803  * return true. False is returned and the mask remains active if there was
4804  * still an interrupt pending.
4805  */
4806 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4807 {
4808 	return pci_check_and_set_intx_mask(dev, false);
4809 }
4810 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4811 
4812 /**
4813  * pci_wait_for_pending_transaction - wait for pending transaction
4814  * @dev: the PCI device to operate on
4815  *
4816  * Return 0 if transaction is pending 1 otherwise.
4817  */
4818 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4819 {
4820 	if (!pci_is_pcie(dev))
4821 		return 1;
4822 
4823 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4824 				    PCI_EXP_DEVSTA_TRPND);
4825 }
4826 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4827 
4828 /**
4829  * pcie_flr - initiate a PCIe function level reset
4830  * @dev: device to reset
4831  *
4832  * Initiate a function level reset unconditionally on @dev without
4833  * checking any flags and DEVCAP
4834  */
4835 int pcie_flr(struct pci_dev *dev)
4836 {
4837 	if (!pci_wait_for_pending_transaction(dev))
4838 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4839 
4840 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4841 
4842 	if (dev->imm_ready)
4843 		return 0;
4844 
4845 	/*
4846 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4847 	 * 100ms, but may silently discard requests while the FLR is in
4848 	 * progress.  Wait 100ms before trying to access the device.
4849 	 */
4850 	msleep(100);
4851 
4852 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4853 }
4854 EXPORT_SYMBOL_GPL(pcie_flr);
4855 
4856 /**
4857  * pcie_reset_flr - initiate a PCIe function level reset
4858  * @dev: device to reset
4859  * @probe: if true, return 0 if device can be reset this way
4860  *
4861  * Initiate a function level reset on @dev.
4862  */
4863 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4864 {
4865 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4866 		return -ENOTTY;
4867 
4868 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4869 		return -ENOTTY;
4870 
4871 	if (probe)
4872 		return 0;
4873 
4874 	return pcie_flr(dev);
4875 }
4876 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4877 
4878 static int pci_af_flr(struct pci_dev *dev, bool probe)
4879 {
4880 	int pos;
4881 	u8 cap;
4882 
4883 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4884 	if (!pos)
4885 		return -ENOTTY;
4886 
4887 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4888 		return -ENOTTY;
4889 
4890 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4891 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4892 		return -ENOTTY;
4893 
4894 	if (probe)
4895 		return 0;
4896 
4897 	/*
4898 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4899 	 * is used, so we use the control offset rather than status and shift
4900 	 * the test bit to match.
4901 	 */
4902 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4903 				 PCI_AF_STATUS_TP << 8))
4904 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4905 
4906 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4907 
4908 	if (dev->imm_ready)
4909 		return 0;
4910 
4911 	/*
4912 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4913 	 * updated 27 July 2006; a device must complete an FLR within
4914 	 * 100ms, but may silently discard requests while the FLR is in
4915 	 * progress.  Wait 100ms before trying to access the device.
4916 	 */
4917 	msleep(100);
4918 
4919 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4920 }
4921 
4922 /**
4923  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4924  * @dev: Device to reset.
4925  * @probe: if true, return 0 if the device can be reset this way.
4926  *
4927  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4928  * unset, it will be reinitialized internally when going from PCI_D3hot to
4929  * PCI_D0.  If that's the case and the device is not in a low-power state
4930  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4931  *
4932  * NOTE: This causes the caller to sleep for twice the device power transition
4933  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4934  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4935  * Moreover, only devices in D0 can be reset by this function.
4936  */
4937 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4938 {
4939 	u16 csr;
4940 
4941 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4942 		return -ENOTTY;
4943 
4944 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4945 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4946 		return -ENOTTY;
4947 
4948 	if (probe)
4949 		return 0;
4950 
4951 	if (dev->current_state != PCI_D0)
4952 		return -EINVAL;
4953 
4954 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4955 	csr |= PCI_D3hot;
4956 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4957 	pci_dev_d3_sleep(dev);
4958 
4959 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4960 	csr |= PCI_D0;
4961 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4962 	pci_dev_d3_sleep(dev);
4963 
4964 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4965 }
4966 
4967 /**
4968  * pcie_wait_for_link_status - Wait for link status change
4969  * @pdev: Device whose link to wait for.
4970  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4971  * @active: Waiting for active or inactive?
4972  *
4973  * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4974  * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4975  */
4976 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4977 				     bool use_lt, bool active)
4978 {
4979 	u16 lnksta_mask, lnksta_match;
4980 	unsigned long end_jiffies;
4981 	u16 lnksta;
4982 
4983 	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4984 	lnksta_match = active ? lnksta_mask : 0;
4985 
4986 	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4987 	do {
4988 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4989 		if ((lnksta & lnksta_mask) == lnksta_match)
4990 			return 0;
4991 		msleep(1);
4992 	} while (time_before(jiffies, end_jiffies));
4993 
4994 	return -ETIMEDOUT;
4995 }
4996 
4997 /**
4998  * pcie_retrain_link - Request a link retrain and wait for it to complete
4999  * @pdev: Device whose link to retrain.
5000  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
5001  *
5002  * Retrain completion status is retrieved from the Link Status Register
5003  * according to @use_lt.  It is not verified whether the use of the DLLLA
5004  * bit is valid.
5005  *
5006  * Return 0 if successful, or -ETIMEDOUT if training has not completed
5007  * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
5008  */
5009 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
5010 {
5011 	int rc;
5012 
5013 	/*
5014 	 * Ensure the updated LNKCTL parameters are used during link
5015 	 * training by checking that there is no ongoing link training to
5016 	 * avoid LTSSM race as recommended in Implementation Note at the
5017 	 * end of PCIe r6.0.1 sec 7.5.3.7.
5018 	 */
5019 	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
5020 	if (rc)
5021 		return rc;
5022 
5023 	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5024 	if (pdev->clear_retrain_link) {
5025 		/*
5026 		 * Due to an erratum in some devices the Retrain Link bit
5027 		 * needs to be cleared again manually to allow the link
5028 		 * training to succeed.
5029 		 */
5030 		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5031 	}
5032 
5033 	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
5034 }
5035 
5036 /**
5037  * pcie_wait_for_link_delay - Wait until link is active or inactive
5038  * @pdev: Bridge device
5039  * @active: waiting for active or inactive?
5040  * @delay: Delay to wait after link has become active (in ms)
5041  *
5042  * Use this to wait till link becomes active or inactive.
5043  */
5044 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
5045 				     int delay)
5046 {
5047 	int rc;
5048 
5049 	/*
5050 	 * Some controllers might not implement link active reporting. In this
5051 	 * case, we wait for 1000 ms + any delay requested by the caller.
5052 	 */
5053 	if (!pdev->link_active_reporting) {
5054 		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
5055 		return true;
5056 	}
5057 
5058 	/*
5059 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
5060 	 * after which we should expect an link active if the reset was
5061 	 * successful. If so, software must wait a minimum 100ms before sending
5062 	 * configuration requests to devices downstream this port.
5063 	 *
5064 	 * If the link fails to activate, either the device was physically
5065 	 * removed or the link is permanently failed.
5066 	 */
5067 	if (active)
5068 		msleep(20);
5069 	rc = pcie_wait_for_link_status(pdev, false, active);
5070 	if (active) {
5071 		if (rc)
5072 			rc = pcie_failed_link_retrain(pdev);
5073 		if (rc)
5074 			return false;
5075 
5076 		msleep(delay);
5077 		return true;
5078 	}
5079 
5080 	if (rc)
5081 		return false;
5082 
5083 	return true;
5084 }
5085 
5086 /**
5087  * pcie_wait_for_link - Wait until link is active or inactive
5088  * @pdev: Bridge device
5089  * @active: waiting for active or inactive?
5090  *
5091  * Use this to wait till link becomes active or inactive.
5092  */
5093 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5094 {
5095 	return pcie_wait_for_link_delay(pdev, active, 100);
5096 }
5097 
5098 /*
5099  * Find maximum D3cold delay required by all the devices on the bus.  The
5100  * spec says 100 ms, but firmware can lower it and we allow drivers to
5101  * increase it as well.
5102  *
5103  * Called with @pci_bus_sem locked for reading.
5104  */
5105 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5106 {
5107 	const struct pci_dev *pdev;
5108 	int min_delay = 100;
5109 	int max_delay = 0;
5110 
5111 	list_for_each_entry(pdev, &bus->devices, bus_list) {
5112 		if (pdev->d3cold_delay < min_delay)
5113 			min_delay = pdev->d3cold_delay;
5114 		if (pdev->d3cold_delay > max_delay)
5115 			max_delay = pdev->d3cold_delay;
5116 	}
5117 
5118 	return max(min_delay, max_delay);
5119 }
5120 
5121 /**
5122  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5123  * @dev: PCI bridge
5124  * @reset_type: reset type in human-readable form
5125  *
5126  * Handle necessary delays before access to the devices on the secondary
5127  * side of the bridge are permitted after D3cold to D0 transition
5128  * or Conventional Reset.
5129  *
5130  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5131  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5132  * 4.3.2.
5133  *
5134  * Return 0 on success or -ENOTTY if the first device on the secondary bus
5135  * failed to become accessible.
5136  */
5137 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5138 {
5139 	struct pci_dev *child;
5140 	int delay;
5141 
5142 	if (pci_dev_is_disconnected(dev))
5143 		return 0;
5144 
5145 	if (!pci_is_bridge(dev))
5146 		return 0;
5147 
5148 	down_read(&pci_bus_sem);
5149 
5150 	/*
5151 	 * We only deal with devices that are present currently on the bus.
5152 	 * For any hot-added devices the access delay is handled in pciehp
5153 	 * board_added(). In case of ACPI hotplug the firmware is expected
5154 	 * to configure the devices before OS is notified.
5155 	 */
5156 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5157 		up_read(&pci_bus_sem);
5158 		return 0;
5159 	}
5160 
5161 	/* Take d3cold_delay requirements into account */
5162 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5163 	if (!delay) {
5164 		up_read(&pci_bus_sem);
5165 		return 0;
5166 	}
5167 
5168 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5169 				 bus_list);
5170 	up_read(&pci_bus_sem);
5171 
5172 	/*
5173 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5174 	 * accessing the device after reset (that is 1000 ms + 100 ms).
5175 	 */
5176 	if (!pci_is_pcie(dev)) {
5177 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5178 		msleep(1000 + delay);
5179 		return 0;
5180 	}
5181 
5182 	/*
5183 	 * For PCIe downstream and root ports that do not support speeds
5184 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5185 	 * speeds (gen3) we need to wait first for the data link layer to
5186 	 * become active.
5187 	 *
5188 	 * However, 100 ms is the minimum and the PCIe spec says the
5189 	 * software must allow at least 1s before it can determine that the
5190 	 * device that did not respond is a broken device. Also device can
5191 	 * take longer than that to respond if it indicates so through Request
5192 	 * Retry Status completions.
5193 	 *
5194 	 * Therefore we wait for 100 ms and check for the device presence
5195 	 * until the timeout expires.
5196 	 */
5197 	if (!pcie_downstream_port(dev))
5198 		return 0;
5199 
5200 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5201 		u16 status;
5202 
5203 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5204 		msleep(delay);
5205 
5206 		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5207 			return 0;
5208 
5209 		/*
5210 		 * If the port supports active link reporting we now check
5211 		 * whether the link is active and if not bail out early with
5212 		 * the assumption that the device is not present anymore.
5213 		 */
5214 		if (!dev->link_active_reporting)
5215 			return -ENOTTY;
5216 
5217 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5218 		if (!(status & PCI_EXP_LNKSTA_DLLLA))
5219 			return -ENOTTY;
5220 
5221 		return pci_dev_wait(child, reset_type,
5222 				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5223 	}
5224 
5225 	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5226 		delay);
5227 	if (!pcie_wait_for_link_delay(dev, true, delay)) {
5228 		/* Did not train, no need to wait any further */
5229 		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5230 		return -ENOTTY;
5231 	}
5232 
5233 	return pci_dev_wait(child, reset_type,
5234 			    PCIE_RESET_READY_POLL_MS - delay);
5235 }
5236 
5237 void pci_reset_secondary_bus(struct pci_dev *dev)
5238 {
5239 	u16 ctrl;
5240 
5241 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5242 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5243 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5244 
5245 	/*
5246 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5247 	 * this to 2ms to ensure that we meet the minimum requirement.
5248 	 */
5249 	msleep(2);
5250 
5251 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5252 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5253 }
5254 
5255 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5256 {
5257 	pci_reset_secondary_bus(dev);
5258 }
5259 
5260 /**
5261  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5262  * @dev: Bridge device
5263  *
5264  * Use the bridge control register to assert reset on the secondary bus.
5265  * Devices on the secondary bus are left in power-on state.
5266  */
5267 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5268 {
5269 	pcibios_reset_secondary_bus(dev);
5270 
5271 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5272 }
5273 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5274 
5275 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5276 {
5277 	struct pci_dev *pdev;
5278 
5279 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5280 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5281 		return -ENOTTY;
5282 
5283 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5284 		if (pdev != dev)
5285 			return -ENOTTY;
5286 
5287 	if (probe)
5288 		return 0;
5289 
5290 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5291 }
5292 
5293 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5294 {
5295 	int rc = -ENOTTY;
5296 
5297 	if (!hotplug || !try_module_get(hotplug->owner))
5298 		return rc;
5299 
5300 	if (hotplug->ops->reset_slot)
5301 		rc = hotplug->ops->reset_slot(hotplug, probe);
5302 
5303 	module_put(hotplug->owner);
5304 
5305 	return rc;
5306 }
5307 
5308 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5309 {
5310 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5311 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5312 		return -ENOTTY;
5313 
5314 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5315 }
5316 
5317 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5318 {
5319 	int rc;
5320 
5321 	rc = pci_dev_reset_slot_function(dev, probe);
5322 	if (rc != -ENOTTY)
5323 		return rc;
5324 	return pci_parent_bus_reset(dev, probe);
5325 }
5326 
5327 void pci_dev_lock(struct pci_dev *dev)
5328 {
5329 	/* block PM suspend, driver probe, etc. */
5330 	device_lock(&dev->dev);
5331 	pci_cfg_access_lock(dev);
5332 }
5333 EXPORT_SYMBOL_GPL(pci_dev_lock);
5334 
5335 /* Return 1 on successful lock, 0 on contention */
5336 int pci_dev_trylock(struct pci_dev *dev)
5337 {
5338 	if (device_trylock(&dev->dev)) {
5339 		if (pci_cfg_access_trylock(dev))
5340 			return 1;
5341 		device_unlock(&dev->dev);
5342 	}
5343 
5344 	return 0;
5345 }
5346 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5347 
5348 void pci_dev_unlock(struct pci_dev *dev)
5349 {
5350 	pci_cfg_access_unlock(dev);
5351 	device_unlock(&dev->dev);
5352 }
5353 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5354 
5355 static void pci_dev_save_and_disable(struct pci_dev *dev)
5356 {
5357 	const struct pci_error_handlers *err_handler =
5358 			dev->driver ? dev->driver->err_handler : NULL;
5359 
5360 	/*
5361 	 * dev->driver->err_handler->reset_prepare() is protected against
5362 	 * races with ->remove() by the device lock, which must be held by
5363 	 * the caller.
5364 	 */
5365 	if (err_handler && err_handler->reset_prepare)
5366 		err_handler->reset_prepare(dev);
5367 
5368 	/*
5369 	 * Wake-up device prior to save.  PM registers default to D0 after
5370 	 * reset and a simple register restore doesn't reliably return
5371 	 * to a non-D0 state anyway.
5372 	 */
5373 	pci_set_power_state(dev, PCI_D0);
5374 
5375 	pci_save_state(dev);
5376 	/*
5377 	 * Disable the device by clearing the Command register, except for
5378 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5379 	 * BARs, but also prevents the device from being Bus Master, preventing
5380 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5381 	 * compliant devices, INTx-disable prevents legacy interrupts.
5382 	 */
5383 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5384 }
5385 
5386 static void pci_dev_restore(struct pci_dev *dev)
5387 {
5388 	const struct pci_error_handlers *err_handler =
5389 			dev->driver ? dev->driver->err_handler : NULL;
5390 
5391 	pci_restore_state(dev);
5392 
5393 	/*
5394 	 * dev->driver->err_handler->reset_done() is protected against
5395 	 * races with ->remove() by the device lock, which must be held by
5396 	 * the caller.
5397 	 */
5398 	if (err_handler && err_handler->reset_done)
5399 		err_handler->reset_done(dev);
5400 }
5401 
5402 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5403 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5404 	{ },
5405 	{ pci_dev_specific_reset, .name = "device_specific" },
5406 	{ pci_dev_acpi_reset, .name = "acpi" },
5407 	{ pcie_reset_flr, .name = "flr" },
5408 	{ pci_af_flr, .name = "af_flr" },
5409 	{ pci_pm_reset, .name = "pm" },
5410 	{ pci_reset_bus_function, .name = "bus" },
5411 };
5412 
5413 static ssize_t reset_method_show(struct device *dev,
5414 				 struct device_attribute *attr, char *buf)
5415 {
5416 	struct pci_dev *pdev = to_pci_dev(dev);
5417 	ssize_t len = 0;
5418 	int i, m;
5419 
5420 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5421 		m = pdev->reset_methods[i];
5422 		if (!m)
5423 			break;
5424 
5425 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5426 				     pci_reset_fn_methods[m].name);
5427 	}
5428 
5429 	if (len)
5430 		len += sysfs_emit_at(buf, len, "\n");
5431 
5432 	return len;
5433 }
5434 
5435 static int reset_method_lookup(const char *name)
5436 {
5437 	int m;
5438 
5439 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5440 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5441 			return m;
5442 	}
5443 
5444 	return 0;	/* not found */
5445 }
5446 
5447 static ssize_t reset_method_store(struct device *dev,
5448 				  struct device_attribute *attr,
5449 				  const char *buf, size_t count)
5450 {
5451 	struct pci_dev *pdev = to_pci_dev(dev);
5452 	char *options, *name;
5453 	int m, n;
5454 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5455 
5456 	if (sysfs_streq(buf, "")) {
5457 		pdev->reset_methods[0] = 0;
5458 		pci_warn(pdev, "All device reset methods disabled by user");
5459 		return count;
5460 	}
5461 
5462 	if (sysfs_streq(buf, "default")) {
5463 		pci_init_reset_methods(pdev);
5464 		return count;
5465 	}
5466 
5467 	options = kstrndup(buf, count, GFP_KERNEL);
5468 	if (!options)
5469 		return -ENOMEM;
5470 
5471 	n = 0;
5472 	while ((name = strsep(&options, " ")) != NULL) {
5473 		if (sysfs_streq(name, ""))
5474 			continue;
5475 
5476 		name = strim(name);
5477 
5478 		m = reset_method_lookup(name);
5479 		if (!m) {
5480 			pci_err(pdev, "Invalid reset method '%s'", name);
5481 			goto error;
5482 		}
5483 
5484 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5485 			pci_err(pdev, "Unsupported reset method '%s'", name);
5486 			goto error;
5487 		}
5488 
5489 		if (n == PCI_NUM_RESET_METHODS - 1) {
5490 			pci_err(pdev, "Too many reset methods\n");
5491 			goto error;
5492 		}
5493 
5494 		reset_methods[n++] = m;
5495 	}
5496 
5497 	reset_methods[n] = 0;
5498 
5499 	/* Warn if dev-specific supported but not highest priority */
5500 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5501 	    reset_methods[0] != 1)
5502 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5503 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5504 	kfree(options);
5505 	return count;
5506 
5507 error:
5508 	/* Leave previous methods unchanged */
5509 	kfree(options);
5510 	return -EINVAL;
5511 }
5512 static DEVICE_ATTR_RW(reset_method);
5513 
5514 static struct attribute *pci_dev_reset_method_attrs[] = {
5515 	&dev_attr_reset_method.attr,
5516 	NULL,
5517 };
5518 
5519 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5520 						    struct attribute *a, int n)
5521 {
5522 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5523 
5524 	if (!pci_reset_supported(pdev))
5525 		return 0;
5526 
5527 	return a->mode;
5528 }
5529 
5530 const struct attribute_group pci_dev_reset_method_attr_group = {
5531 	.attrs = pci_dev_reset_method_attrs,
5532 	.is_visible = pci_dev_reset_method_attr_is_visible,
5533 };
5534 
5535 /**
5536  * __pci_reset_function_locked - reset a PCI device function while holding
5537  * the @dev mutex lock.
5538  * @dev: PCI device to reset
5539  *
5540  * Some devices allow an individual function to be reset without affecting
5541  * other functions in the same device.  The PCI device must be responsive
5542  * to PCI config space in order to use this function.
5543  *
5544  * The device function is presumed to be unused and the caller is holding
5545  * the device mutex lock when this function is called.
5546  *
5547  * Resetting the device will make the contents of PCI configuration space
5548  * random, so any caller of this must be prepared to reinitialise the
5549  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5550  * etc.
5551  *
5552  * Returns 0 if the device function was successfully reset or negative if the
5553  * device doesn't support resetting a single function.
5554  */
5555 int __pci_reset_function_locked(struct pci_dev *dev)
5556 {
5557 	int i, m, rc;
5558 
5559 	might_sleep();
5560 
5561 	/*
5562 	 * A reset method returns -ENOTTY if it doesn't support this device and
5563 	 * we should try the next method.
5564 	 *
5565 	 * If it returns 0 (success), we're finished.  If it returns any other
5566 	 * error, we're also finished: this indicates that further reset
5567 	 * mechanisms might be broken on the device.
5568 	 */
5569 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5570 		m = dev->reset_methods[i];
5571 		if (!m)
5572 			return -ENOTTY;
5573 
5574 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5575 		if (!rc)
5576 			return 0;
5577 		if (rc != -ENOTTY)
5578 			return rc;
5579 	}
5580 
5581 	return -ENOTTY;
5582 }
5583 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5584 
5585 /**
5586  * pci_init_reset_methods - check whether device can be safely reset
5587  * and store supported reset mechanisms.
5588  * @dev: PCI device to check for reset mechanisms
5589  *
5590  * Some devices allow an individual function to be reset without affecting
5591  * other functions in the same device.  The PCI device must be in D0-D3hot
5592  * state.
5593  *
5594  * Stores reset mechanisms supported by device in reset_methods byte array
5595  * which is a member of struct pci_dev.
5596  */
5597 void pci_init_reset_methods(struct pci_dev *dev)
5598 {
5599 	int m, i, rc;
5600 
5601 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5602 
5603 	might_sleep();
5604 
5605 	i = 0;
5606 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5607 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5608 		if (!rc)
5609 			dev->reset_methods[i++] = m;
5610 		else if (rc != -ENOTTY)
5611 			break;
5612 	}
5613 
5614 	dev->reset_methods[i] = 0;
5615 }
5616 
5617 /**
5618  * pci_reset_function - quiesce and reset a PCI device function
5619  * @dev: PCI device to reset
5620  *
5621  * Some devices allow an individual function to be reset without affecting
5622  * other functions in the same device.  The PCI device must be responsive
5623  * to PCI config space in order to use this function.
5624  *
5625  * This function does not just reset the PCI portion of a device, but
5626  * clears all the state associated with the device.  This function differs
5627  * from __pci_reset_function_locked() in that it saves and restores device state
5628  * over the reset and takes the PCI device lock.
5629  *
5630  * Returns 0 if the device function was successfully reset or negative if the
5631  * device doesn't support resetting a single function.
5632  */
5633 int pci_reset_function(struct pci_dev *dev)
5634 {
5635 	int rc;
5636 
5637 	if (!pci_reset_supported(dev))
5638 		return -ENOTTY;
5639 
5640 	pci_dev_lock(dev);
5641 	pci_dev_save_and_disable(dev);
5642 
5643 	rc = __pci_reset_function_locked(dev);
5644 
5645 	pci_dev_restore(dev);
5646 	pci_dev_unlock(dev);
5647 
5648 	return rc;
5649 }
5650 EXPORT_SYMBOL_GPL(pci_reset_function);
5651 
5652 /**
5653  * pci_reset_function_locked - quiesce and reset a PCI device function
5654  * @dev: PCI device to reset
5655  *
5656  * Some devices allow an individual function to be reset without affecting
5657  * other functions in the same device.  The PCI device must be responsive
5658  * to PCI config space in order to use this function.
5659  *
5660  * This function does not just reset the PCI portion of a device, but
5661  * clears all the state associated with the device.  This function differs
5662  * from __pci_reset_function_locked() in that it saves and restores device state
5663  * over the reset.  It also differs from pci_reset_function() in that it
5664  * requires the PCI device lock to be held.
5665  *
5666  * Returns 0 if the device function was successfully reset or negative if the
5667  * device doesn't support resetting a single function.
5668  */
5669 int pci_reset_function_locked(struct pci_dev *dev)
5670 {
5671 	int rc;
5672 
5673 	if (!pci_reset_supported(dev))
5674 		return -ENOTTY;
5675 
5676 	pci_dev_save_and_disable(dev);
5677 
5678 	rc = __pci_reset_function_locked(dev);
5679 
5680 	pci_dev_restore(dev);
5681 
5682 	return rc;
5683 }
5684 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5685 
5686 /**
5687  * pci_try_reset_function - quiesce and reset a PCI device function
5688  * @dev: PCI device to reset
5689  *
5690  * Same as above, except return -EAGAIN if unable to lock device.
5691  */
5692 int pci_try_reset_function(struct pci_dev *dev)
5693 {
5694 	int rc;
5695 
5696 	if (!pci_reset_supported(dev))
5697 		return -ENOTTY;
5698 
5699 	if (!pci_dev_trylock(dev))
5700 		return -EAGAIN;
5701 
5702 	pci_dev_save_and_disable(dev);
5703 	rc = __pci_reset_function_locked(dev);
5704 	pci_dev_restore(dev);
5705 	pci_dev_unlock(dev);
5706 
5707 	return rc;
5708 }
5709 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5710 
5711 /* Do any devices on or below this bus prevent a bus reset? */
5712 static bool pci_bus_resettable(struct pci_bus *bus)
5713 {
5714 	struct pci_dev *dev;
5715 
5716 
5717 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5718 		return false;
5719 
5720 	list_for_each_entry(dev, &bus->devices, bus_list) {
5721 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5722 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5723 			return false;
5724 	}
5725 
5726 	return true;
5727 }
5728 
5729 /* Lock devices from the top of the tree down */
5730 static void pci_bus_lock(struct pci_bus *bus)
5731 {
5732 	struct pci_dev *dev;
5733 
5734 	list_for_each_entry(dev, &bus->devices, bus_list) {
5735 		pci_dev_lock(dev);
5736 		if (dev->subordinate)
5737 			pci_bus_lock(dev->subordinate);
5738 	}
5739 }
5740 
5741 /* Unlock devices from the bottom of the tree up */
5742 static void pci_bus_unlock(struct pci_bus *bus)
5743 {
5744 	struct pci_dev *dev;
5745 
5746 	list_for_each_entry(dev, &bus->devices, bus_list) {
5747 		if (dev->subordinate)
5748 			pci_bus_unlock(dev->subordinate);
5749 		pci_dev_unlock(dev);
5750 	}
5751 }
5752 
5753 /* Return 1 on successful lock, 0 on contention */
5754 static int pci_bus_trylock(struct pci_bus *bus)
5755 {
5756 	struct pci_dev *dev;
5757 
5758 	list_for_each_entry(dev, &bus->devices, bus_list) {
5759 		if (!pci_dev_trylock(dev))
5760 			goto unlock;
5761 		if (dev->subordinate) {
5762 			if (!pci_bus_trylock(dev->subordinate)) {
5763 				pci_dev_unlock(dev);
5764 				goto unlock;
5765 			}
5766 		}
5767 	}
5768 	return 1;
5769 
5770 unlock:
5771 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5772 		if (dev->subordinate)
5773 			pci_bus_unlock(dev->subordinate);
5774 		pci_dev_unlock(dev);
5775 	}
5776 	return 0;
5777 }
5778 
5779 /* Do any devices on or below this slot prevent a bus reset? */
5780 static bool pci_slot_resettable(struct pci_slot *slot)
5781 {
5782 	struct pci_dev *dev;
5783 
5784 	if (slot->bus->self &&
5785 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5786 		return false;
5787 
5788 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5789 		if (!dev->slot || dev->slot != slot)
5790 			continue;
5791 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5792 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5793 			return false;
5794 	}
5795 
5796 	return true;
5797 }
5798 
5799 /* Lock devices from the top of the tree down */
5800 static void pci_slot_lock(struct pci_slot *slot)
5801 {
5802 	struct pci_dev *dev;
5803 
5804 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5805 		if (!dev->slot || dev->slot != slot)
5806 			continue;
5807 		pci_dev_lock(dev);
5808 		if (dev->subordinate)
5809 			pci_bus_lock(dev->subordinate);
5810 	}
5811 }
5812 
5813 /* Unlock devices from the bottom of the tree up */
5814 static void pci_slot_unlock(struct pci_slot *slot)
5815 {
5816 	struct pci_dev *dev;
5817 
5818 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5819 		if (!dev->slot || dev->slot != slot)
5820 			continue;
5821 		if (dev->subordinate)
5822 			pci_bus_unlock(dev->subordinate);
5823 		pci_dev_unlock(dev);
5824 	}
5825 }
5826 
5827 /* Return 1 on successful lock, 0 on contention */
5828 static int pci_slot_trylock(struct pci_slot *slot)
5829 {
5830 	struct pci_dev *dev;
5831 
5832 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5833 		if (!dev->slot || dev->slot != slot)
5834 			continue;
5835 		if (!pci_dev_trylock(dev))
5836 			goto unlock;
5837 		if (dev->subordinate) {
5838 			if (!pci_bus_trylock(dev->subordinate)) {
5839 				pci_dev_unlock(dev);
5840 				goto unlock;
5841 			}
5842 		}
5843 	}
5844 	return 1;
5845 
5846 unlock:
5847 	list_for_each_entry_continue_reverse(dev,
5848 					     &slot->bus->devices, bus_list) {
5849 		if (!dev->slot || dev->slot != slot)
5850 			continue;
5851 		if (dev->subordinate)
5852 			pci_bus_unlock(dev->subordinate);
5853 		pci_dev_unlock(dev);
5854 	}
5855 	return 0;
5856 }
5857 
5858 /*
5859  * Save and disable devices from the top of the tree down while holding
5860  * the @dev mutex lock for the entire tree.
5861  */
5862 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5863 {
5864 	struct pci_dev *dev;
5865 
5866 	list_for_each_entry(dev, &bus->devices, bus_list) {
5867 		pci_dev_save_and_disable(dev);
5868 		if (dev->subordinate)
5869 			pci_bus_save_and_disable_locked(dev->subordinate);
5870 	}
5871 }
5872 
5873 /*
5874  * Restore devices from top of the tree down while holding @dev mutex lock
5875  * for the entire tree.  Parent bridges need to be restored before we can
5876  * get to subordinate devices.
5877  */
5878 static void pci_bus_restore_locked(struct pci_bus *bus)
5879 {
5880 	struct pci_dev *dev;
5881 
5882 	list_for_each_entry(dev, &bus->devices, bus_list) {
5883 		pci_dev_restore(dev);
5884 		if (dev->subordinate)
5885 			pci_bus_restore_locked(dev->subordinate);
5886 	}
5887 }
5888 
5889 /*
5890  * Save and disable devices from the top of the tree down while holding
5891  * the @dev mutex lock for the entire tree.
5892  */
5893 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5894 {
5895 	struct pci_dev *dev;
5896 
5897 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5898 		if (!dev->slot || dev->slot != slot)
5899 			continue;
5900 		pci_dev_save_and_disable(dev);
5901 		if (dev->subordinate)
5902 			pci_bus_save_and_disable_locked(dev->subordinate);
5903 	}
5904 }
5905 
5906 /*
5907  * Restore devices from top of the tree down while holding @dev mutex lock
5908  * for the entire tree.  Parent bridges need to be restored before we can
5909  * get to subordinate devices.
5910  */
5911 static void pci_slot_restore_locked(struct pci_slot *slot)
5912 {
5913 	struct pci_dev *dev;
5914 
5915 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5916 		if (!dev->slot || dev->slot != slot)
5917 			continue;
5918 		pci_dev_restore(dev);
5919 		if (dev->subordinate)
5920 			pci_bus_restore_locked(dev->subordinate);
5921 	}
5922 }
5923 
5924 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5925 {
5926 	int rc;
5927 
5928 	if (!slot || !pci_slot_resettable(slot))
5929 		return -ENOTTY;
5930 
5931 	if (!probe)
5932 		pci_slot_lock(slot);
5933 
5934 	might_sleep();
5935 
5936 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5937 
5938 	if (!probe)
5939 		pci_slot_unlock(slot);
5940 
5941 	return rc;
5942 }
5943 
5944 /**
5945  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5946  * @slot: PCI slot to probe
5947  *
5948  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5949  */
5950 int pci_probe_reset_slot(struct pci_slot *slot)
5951 {
5952 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5953 }
5954 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5955 
5956 /**
5957  * __pci_reset_slot - Try to reset a PCI slot
5958  * @slot: PCI slot to reset
5959  *
5960  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5961  * independent of other slots.  For instance, some slots may support slot power
5962  * control.  In the case of a 1:1 bus to slot architecture, this function may
5963  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5964  * Generally a slot reset should be attempted before a bus reset.  All of the
5965  * function of the slot and any subordinate buses behind the slot are reset
5966  * through this function.  PCI config space of all devices in the slot and
5967  * behind the slot is saved before and restored after reset.
5968  *
5969  * Same as above except return -EAGAIN if the slot cannot be locked
5970  */
5971 static int __pci_reset_slot(struct pci_slot *slot)
5972 {
5973 	int rc;
5974 
5975 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5976 	if (rc)
5977 		return rc;
5978 
5979 	if (pci_slot_trylock(slot)) {
5980 		pci_slot_save_and_disable_locked(slot);
5981 		might_sleep();
5982 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5983 		pci_slot_restore_locked(slot);
5984 		pci_slot_unlock(slot);
5985 	} else
5986 		rc = -EAGAIN;
5987 
5988 	return rc;
5989 }
5990 
5991 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5992 {
5993 	int ret;
5994 
5995 	if (!bus->self || !pci_bus_resettable(bus))
5996 		return -ENOTTY;
5997 
5998 	if (probe)
5999 		return 0;
6000 
6001 	pci_bus_lock(bus);
6002 
6003 	might_sleep();
6004 
6005 	ret = pci_bridge_secondary_bus_reset(bus->self);
6006 
6007 	pci_bus_unlock(bus);
6008 
6009 	return ret;
6010 }
6011 
6012 /**
6013  * pci_bus_error_reset - reset the bridge's subordinate bus
6014  * @bridge: The parent device that connects to the bus to reset
6015  *
6016  * This function will first try to reset the slots on this bus if the method is
6017  * available. If slot reset fails or is not available, this will fall back to a
6018  * secondary bus reset.
6019  */
6020 int pci_bus_error_reset(struct pci_dev *bridge)
6021 {
6022 	struct pci_bus *bus = bridge->subordinate;
6023 	struct pci_slot *slot;
6024 
6025 	if (!bus)
6026 		return -ENOTTY;
6027 
6028 	mutex_lock(&pci_slot_mutex);
6029 	if (list_empty(&bus->slots))
6030 		goto bus_reset;
6031 
6032 	list_for_each_entry(slot, &bus->slots, list)
6033 		if (pci_probe_reset_slot(slot))
6034 			goto bus_reset;
6035 
6036 	list_for_each_entry(slot, &bus->slots, list)
6037 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
6038 			goto bus_reset;
6039 
6040 	mutex_unlock(&pci_slot_mutex);
6041 	return 0;
6042 bus_reset:
6043 	mutex_unlock(&pci_slot_mutex);
6044 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
6045 }
6046 
6047 /**
6048  * pci_probe_reset_bus - probe whether a PCI bus can be reset
6049  * @bus: PCI bus to probe
6050  *
6051  * Return 0 if bus can be reset, negative if a bus reset is not supported.
6052  */
6053 int pci_probe_reset_bus(struct pci_bus *bus)
6054 {
6055 	return pci_bus_reset(bus, PCI_RESET_PROBE);
6056 }
6057 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
6058 
6059 /**
6060  * __pci_reset_bus - Try to reset a PCI bus
6061  * @bus: top level PCI bus to reset
6062  *
6063  * Same as above except return -EAGAIN if the bus cannot be locked
6064  */
6065 static int __pci_reset_bus(struct pci_bus *bus)
6066 {
6067 	int rc;
6068 
6069 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6070 	if (rc)
6071 		return rc;
6072 
6073 	if (pci_bus_trylock(bus)) {
6074 		pci_bus_save_and_disable_locked(bus);
6075 		might_sleep();
6076 		rc = pci_bridge_secondary_bus_reset(bus->self);
6077 		pci_bus_restore_locked(bus);
6078 		pci_bus_unlock(bus);
6079 	} else
6080 		rc = -EAGAIN;
6081 
6082 	return rc;
6083 }
6084 
6085 /**
6086  * pci_reset_bus - Try to reset a PCI bus
6087  * @pdev: top level PCI device to reset via slot/bus
6088  *
6089  * Same as above except return -EAGAIN if the bus cannot be locked
6090  */
6091 int pci_reset_bus(struct pci_dev *pdev)
6092 {
6093 	return (!pci_probe_reset_slot(pdev->slot)) ?
6094 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6095 }
6096 EXPORT_SYMBOL_GPL(pci_reset_bus);
6097 
6098 /**
6099  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6100  * @dev: PCI device to query
6101  *
6102  * Returns mmrbc: maximum designed memory read count in bytes or
6103  * appropriate error value.
6104  */
6105 int pcix_get_max_mmrbc(struct pci_dev *dev)
6106 {
6107 	int cap;
6108 	u32 stat;
6109 
6110 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6111 	if (!cap)
6112 		return -EINVAL;
6113 
6114 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6115 		return -EINVAL;
6116 
6117 	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
6118 }
6119 EXPORT_SYMBOL(pcix_get_max_mmrbc);
6120 
6121 /**
6122  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6123  * @dev: PCI device to query
6124  *
6125  * Returns mmrbc: maximum memory read count in bytes or appropriate error
6126  * value.
6127  */
6128 int pcix_get_mmrbc(struct pci_dev *dev)
6129 {
6130 	int cap;
6131 	u16 cmd;
6132 
6133 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6134 	if (!cap)
6135 		return -EINVAL;
6136 
6137 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6138 		return -EINVAL;
6139 
6140 	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6141 }
6142 EXPORT_SYMBOL(pcix_get_mmrbc);
6143 
6144 /**
6145  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6146  * @dev: PCI device to query
6147  * @mmrbc: maximum memory read count in bytes
6148  *    valid values are 512, 1024, 2048, 4096
6149  *
6150  * If possible sets maximum memory read byte count, some bridges have errata
6151  * that prevent this.
6152  */
6153 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6154 {
6155 	int cap;
6156 	u32 stat, v, o;
6157 	u16 cmd;
6158 
6159 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6160 		return -EINVAL;
6161 
6162 	v = ffs(mmrbc) - 10;
6163 
6164 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6165 	if (!cap)
6166 		return -EINVAL;
6167 
6168 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6169 		return -EINVAL;
6170 
6171 	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
6172 		return -E2BIG;
6173 
6174 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6175 		return -EINVAL;
6176 
6177 	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6178 	if (o != v) {
6179 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6180 			return -EIO;
6181 
6182 		cmd &= ~PCI_X_CMD_MAX_READ;
6183 		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6184 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6185 			return -EIO;
6186 	}
6187 	return 0;
6188 }
6189 EXPORT_SYMBOL(pcix_set_mmrbc);
6190 
6191 /**
6192  * pcie_get_readrq - get PCI Express read request size
6193  * @dev: PCI device to query
6194  *
6195  * Returns maximum memory read request in bytes or appropriate error value.
6196  */
6197 int pcie_get_readrq(struct pci_dev *dev)
6198 {
6199 	u16 ctl;
6200 
6201 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6202 
6203 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6204 }
6205 EXPORT_SYMBOL(pcie_get_readrq);
6206 
6207 /**
6208  * pcie_set_readrq - set PCI Express maximum memory read request
6209  * @dev: PCI device to query
6210  * @rq: maximum memory read count in bytes
6211  *    valid values are 128, 256, 512, 1024, 2048, 4096
6212  *
6213  * If possible sets maximum memory read request in bytes
6214  */
6215 int pcie_set_readrq(struct pci_dev *dev, int rq)
6216 {
6217 	u16 v;
6218 	int ret;
6219 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6220 
6221 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6222 		return -EINVAL;
6223 
6224 	/*
6225 	 * If using the "performance" PCIe config, we clamp the read rq
6226 	 * size to the max packet size to keep the host bridge from
6227 	 * generating requests larger than we can cope with.
6228 	 */
6229 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6230 		int mps = pcie_get_mps(dev);
6231 
6232 		if (mps < rq)
6233 			rq = mps;
6234 	}
6235 
6236 	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6237 
6238 	if (bridge->no_inc_mrrs) {
6239 		int max_mrrs = pcie_get_readrq(dev);
6240 
6241 		if (rq > max_mrrs) {
6242 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6243 			return -EINVAL;
6244 		}
6245 	}
6246 
6247 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6248 						  PCI_EXP_DEVCTL_READRQ, v);
6249 
6250 	return pcibios_err_to_errno(ret);
6251 }
6252 EXPORT_SYMBOL(pcie_set_readrq);
6253 
6254 /**
6255  * pcie_get_mps - get PCI Express maximum payload size
6256  * @dev: PCI device to query
6257  *
6258  * Returns maximum payload size in bytes
6259  */
6260 int pcie_get_mps(struct pci_dev *dev)
6261 {
6262 	u16 ctl;
6263 
6264 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6265 
6266 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6267 }
6268 EXPORT_SYMBOL(pcie_get_mps);
6269 
6270 /**
6271  * pcie_set_mps - set PCI Express maximum payload size
6272  * @dev: PCI device to query
6273  * @mps: maximum payload size in bytes
6274  *    valid values are 128, 256, 512, 1024, 2048, 4096
6275  *
6276  * If possible sets maximum payload size
6277  */
6278 int pcie_set_mps(struct pci_dev *dev, int mps)
6279 {
6280 	u16 v;
6281 	int ret;
6282 
6283 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6284 		return -EINVAL;
6285 
6286 	v = ffs(mps) - 8;
6287 	if (v > dev->pcie_mpss)
6288 		return -EINVAL;
6289 	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6290 
6291 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6292 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6293 
6294 	return pcibios_err_to_errno(ret);
6295 }
6296 EXPORT_SYMBOL(pcie_set_mps);
6297 
6298 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6299 {
6300 	return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6301 }
6302 
6303 int pcie_link_speed_mbps(struct pci_dev *pdev)
6304 {
6305 	u16 lnksta;
6306 	int err;
6307 
6308 	err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6309 	if (err)
6310 		return err;
6311 
6312 	switch (to_pcie_link_speed(lnksta)) {
6313 	case PCIE_SPEED_2_5GT:
6314 		return 2500;
6315 	case PCIE_SPEED_5_0GT:
6316 		return 5000;
6317 	case PCIE_SPEED_8_0GT:
6318 		return 8000;
6319 	case PCIE_SPEED_16_0GT:
6320 		return 16000;
6321 	case PCIE_SPEED_32_0GT:
6322 		return 32000;
6323 	case PCIE_SPEED_64_0GT:
6324 		return 64000;
6325 	default:
6326 		break;
6327 	}
6328 
6329 	return -EINVAL;
6330 }
6331 EXPORT_SYMBOL(pcie_link_speed_mbps);
6332 
6333 /**
6334  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6335  *			      device and its bandwidth limitation
6336  * @dev: PCI device to query
6337  * @limiting_dev: storage for device causing the bandwidth limitation
6338  * @speed: storage for speed of limiting device
6339  * @width: storage for width of limiting device
6340  *
6341  * Walk up the PCI device chain and find the point where the minimum
6342  * bandwidth is available.  Return the bandwidth available there and (if
6343  * limiting_dev, speed, and width pointers are supplied) information about
6344  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6345  * raw bandwidth.
6346  */
6347 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6348 			     enum pci_bus_speed *speed,
6349 			     enum pcie_link_width *width)
6350 {
6351 	u16 lnksta;
6352 	enum pci_bus_speed next_speed;
6353 	enum pcie_link_width next_width;
6354 	u32 bw, next_bw;
6355 
6356 	if (speed)
6357 		*speed = PCI_SPEED_UNKNOWN;
6358 	if (width)
6359 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6360 
6361 	bw = 0;
6362 
6363 	while (dev) {
6364 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6365 
6366 		next_speed = to_pcie_link_speed(lnksta);
6367 		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6368 
6369 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6370 
6371 		/* Check if current device limits the total bandwidth */
6372 		if (!bw || next_bw <= bw) {
6373 			bw = next_bw;
6374 
6375 			if (limiting_dev)
6376 				*limiting_dev = dev;
6377 			if (speed)
6378 				*speed = next_speed;
6379 			if (width)
6380 				*width = next_width;
6381 		}
6382 
6383 		dev = pci_upstream_bridge(dev);
6384 	}
6385 
6386 	return bw;
6387 }
6388 EXPORT_SYMBOL(pcie_bandwidth_available);
6389 
6390 /**
6391  * pcie_get_speed_cap - query for the PCI device's link speed capability
6392  * @dev: PCI device to query
6393  *
6394  * Query the PCI device speed capability.  Return the maximum link speed
6395  * supported by the device.
6396  */
6397 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6398 {
6399 	u32 lnkcap2, lnkcap;
6400 
6401 	/*
6402 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6403 	 * implementation note there recommends using the Supported Link
6404 	 * Speeds Vector in Link Capabilities 2 when supported.
6405 	 *
6406 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6407 	 * should use the Supported Link Speeds field in Link Capabilities,
6408 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6409 	 */
6410 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6411 
6412 	/* PCIe r3.0-compliant */
6413 	if (lnkcap2)
6414 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6415 
6416 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6417 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6418 		return PCIE_SPEED_5_0GT;
6419 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6420 		return PCIE_SPEED_2_5GT;
6421 
6422 	return PCI_SPEED_UNKNOWN;
6423 }
6424 EXPORT_SYMBOL(pcie_get_speed_cap);
6425 
6426 /**
6427  * pcie_get_width_cap - query for the PCI device's link width capability
6428  * @dev: PCI device to query
6429  *
6430  * Query the PCI device width capability.  Return the maximum link width
6431  * supported by the device.
6432  */
6433 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6434 {
6435 	u32 lnkcap;
6436 
6437 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6438 	if (lnkcap)
6439 		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6440 
6441 	return PCIE_LNK_WIDTH_UNKNOWN;
6442 }
6443 EXPORT_SYMBOL(pcie_get_width_cap);
6444 
6445 /**
6446  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6447  * @dev: PCI device
6448  * @speed: storage for link speed
6449  * @width: storage for link width
6450  *
6451  * Calculate a PCI device's link bandwidth by querying for its link speed
6452  * and width, multiplying them, and applying encoding overhead.  The result
6453  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6454  */
6455 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6456 			   enum pcie_link_width *width)
6457 {
6458 	*speed = pcie_get_speed_cap(dev);
6459 	*width = pcie_get_width_cap(dev);
6460 
6461 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6462 		return 0;
6463 
6464 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6465 }
6466 
6467 /**
6468  * __pcie_print_link_status - Report the PCI device's link speed and width
6469  * @dev: PCI device to query
6470  * @verbose: Print info even when enough bandwidth is available
6471  *
6472  * If the available bandwidth at the device is less than the device is
6473  * capable of, report the device's maximum possible bandwidth and the
6474  * upstream link that limits its performance.  If @verbose, always print
6475  * the available bandwidth, even if the device isn't constrained.
6476  */
6477 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6478 {
6479 	enum pcie_link_width width, width_cap;
6480 	enum pci_bus_speed speed, speed_cap;
6481 	struct pci_dev *limiting_dev = NULL;
6482 	u32 bw_avail, bw_cap;
6483 
6484 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6485 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6486 
6487 	if (bw_avail >= bw_cap && verbose)
6488 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6489 			 bw_cap / 1000, bw_cap % 1000,
6490 			 pci_speed_string(speed_cap), width_cap);
6491 	else if (bw_avail < bw_cap)
6492 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6493 			 bw_avail / 1000, bw_avail % 1000,
6494 			 pci_speed_string(speed), width,
6495 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6496 			 bw_cap / 1000, bw_cap % 1000,
6497 			 pci_speed_string(speed_cap), width_cap);
6498 }
6499 
6500 /**
6501  * pcie_print_link_status - Report the PCI device's link speed and width
6502  * @dev: PCI device to query
6503  *
6504  * Report the available bandwidth at the device.
6505  */
6506 void pcie_print_link_status(struct pci_dev *dev)
6507 {
6508 	__pcie_print_link_status(dev, true);
6509 }
6510 EXPORT_SYMBOL(pcie_print_link_status);
6511 
6512 /**
6513  * pci_select_bars - Make BAR mask from the type of resource
6514  * @dev: the PCI device for which BAR mask is made
6515  * @flags: resource type mask to be selected
6516  *
6517  * This helper routine makes bar mask from the type of resource.
6518  */
6519 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6520 {
6521 	int i, bars = 0;
6522 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6523 		if (pci_resource_flags(dev, i) & flags)
6524 			bars |= (1 << i);
6525 	return bars;
6526 }
6527 EXPORT_SYMBOL(pci_select_bars);
6528 
6529 /* Some architectures require additional programming to enable VGA */
6530 static arch_set_vga_state_t arch_set_vga_state;
6531 
6532 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6533 {
6534 	arch_set_vga_state = func;	/* NULL disables */
6535 }
6536 
6537 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6538 				  unsigned int command_bits, u32 flags)
6539 {
6540 	if (arch_set_vga_state)
6541 		return arch_set_vga_state(dev, decode, command_bits,
6542 						flags);
6543 	return 0;
6544 }
6545 
6546 /**
6547  * pci_set_vga_state - set VGA decode state on device and parents if requested
6548  * @dev: the PCI device
6549  * @decode: true = enable decoding, false = disable decoding
6550  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6551  * @flags: traverse ancestors and change bridges
6552  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6553  */
6554 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6555 		      unsigned int command_bits, u32 flags)
6556 {
6557 	struct pci_bus *bus;
6558 	struct pci_dev *bridge;
6559 	u16 cmd;
6560 	int rc;
6561 
6562 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6563 
6564 	/* ARCH specific VGA enables */
6565 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6566 	if (rc)
6567 		return rc;
6568 
6569 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6570 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6571 		if (decode)
6572 			cmd |= command_bits;
6573 		else
6574 			cmd &= ~command_bits;
6575 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6576 	}
6577 
6578 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6579 		return 0;
6580 
6581 	bus = dev->bus;
6582 	while (bus) {
6583 		bridge = bus->self;
6584 		if (bridge) {
6585 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6586 					     &cmd);
6587 			if (decode)
6588 				cmd |= PCI_BRIDGE_CTL_VGA;
6589 			else
6590 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6591 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6592 					      cmd);
6593 		}
6594 		bus = bus->parent;
6595 	}
6596 	return 0;
6597 }
6598 
6599 #ifdef CONFIG_ACPI
6600 bool pci_pr3_present(struct pci_dev *pdev)
6601 {
6602 	struct acpi_device *adev;
6603 
6604 	if (acpi_disabled)
6605 		return false;
6606 
6607 	adev = ACPI_COMPANION(&pdev->dev);
6608 	if (!adev)
6609 		return false;
6610 
6611 	return adev->power.flags.power_resources &&
6612 		acpi_has_method(adev->handle, "_PR3");
6613 }
6614 EXPORT_SYMBOL_GPL(pci_pr3_present);
6615 #endif
6616 
6617 /**
6618  * pci_add_dma_alias - Add a DMA devfn alias for a device
6619  * @dev: the PCI device for which alias is added
6620  * @devfn_from: alias slot and function
6621  * @nr_devfns: number of subsequent devfns to alias
6622  *
6623  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6624  * which is used to program permissible bus-devfn source addresses for DMA
6625  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6626  * and are useful for devices generating DMA requests beyond or different
6627  * from their logical bus-devfn.  Examples include device quirks where the
6628  * device simply uses the wrong devfn, as well as non-transparent bridges
6629  * where the alias may be a proxy for devices in another domain.
6630  *
6631  * IOMMU group creation is performed during device discovery or addition,
6632  * prior to any potential DMA mapping and therefore prior to driver probing
6633  * (especially for userspace assigned devices where IOMMU group definition
6634  * cannot be left as a userspace activity).  DMA aliases should therefore
6635  * be configured via quirks, such as the PCI fixup header quirk.
6636  */
6637 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6638 		       unsigned int nr_devfns)
6639 {
6640 	int devfn_to;
6641 
6642 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6643 	devfn_to = devfn_from + nr_devfns - 1;
6644 
6645 	if (!dev->dma_alias_mask)
6646 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6647 	if (!dev->dma_alias_mask) {
6648 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6649 		return;
6650 	}
6651 
6652 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6653 
6654 	if (nr_devfns == 1)
6655 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6656 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6657 	else if (nr_devfns > 1)
6658 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6659 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6660 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6661 }
6662 
6663 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6664 {
6665 	return (dev1->dma_alias_mask &&
6666 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6667 	       (dev2->dma_alias_mask &&
6668 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6669 	       pci_real_dma_dev(dev1) == dev2 ||
6670 	       pci_real_dma_dev(dev2) == dev1;
6671 }
6672 
6673 bool pci_device_is_present(struct pci_dev *pdev)
6674 {
6675 	u32 v;
6676 
6677 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6678 	pdev = pci_physfn(pdev);
6679 	if (pci_dev_is_disconnected(pdev))
6680 		return false;
6681 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6682 }
6683 EXPORT_SYMBOL_GPL(pci_device_is_present);
6684 
6685 void pci_ignore_hotplug(struct pci_dev *dev)
6686 {
6687 	struct pci_dev *bridge = dev->bus->self;
6688 
6689 	dev->ignore_hotplug = 1;
6690 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6691 	if (bridge)
6692 		bridge->ignore_hotplug = 1;
6693 }
6694 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6695 
6696 /**
6697  * pci_real_dma_dev - Get PCI DMA device for PCI device
6698  * @dev: the PCI device that may have a PCI DMA alias
6699  *
6700  * Permits the platform to provide architecture-specific functionality to
6701  * devices needing to alias DMA to another PCI device on another PCI bus. If
6702  * the PCI device is on the same bus, it is recommended to use
6703  * pci_add_dma_alias(). This is the default implementation. Architecture
6704  * implementations can override this.
6705  */
6706 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6707 {
6708 	return dev;
6709 }
6710 
6711 resource_size_t __weak pcibios_default_alignment(void)
6712 {
6713 	return 0;
6714 }
6715 
6716 /*
6717  * Arches that don't want to expose struct resource to userland as-is in
6718  * sysfs and /proc can implement their own pci_resource_to_user().
6719  */
6720 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6721 				 const struct resource *rsrc,
6722 				 resource_size_t *start, resource_size_t *end)
6723 {
6724 	*start = rsrc->start;
6725 	*end = rsrc->end;
6726 }
6727 
6728 static char *resource_alignment_param;
6729 static DEFINE_SPINLOCK(resource_alignment_lock);
6730 
6731 /**
6732  * pci_specified_resource_alignment - get resource alignment specified by user.
6733  * @dev: the PCI device to get
6734  * @resize: whether or not to change resources' size when reassigning alignment
6735  *
6736  * RETURNS: Resource alignment if it is specified.
6737  *          Zero if it is not specified.
6738  */
6739 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6740 							bool *resize)
6741 {
6742 	int align_order, count;
6743 	resource_size_t align = pcibios_default_alignment();
6744 	const char *p;
6745 	int ret;
6746 
6747 	spin_lock(&resource_alignment_lock);
6748 	p = resource_alignment_param;
6749 	if (!p || !*p)
6750 		goto out;
6751 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6752 		align = 0;
6753 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6754 		goto out;
6755 	}
6756 
6757 	while (*p) {
6758 		count = 0;
6759 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6760 		    p[count] == '@') {
6761 			p += count + 1;
6762 			if (align_order > 63) {
6763 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6764 				       align_order);
6765 				align_order = PAGE_SHIFT;
6766 			}
6767 		} else {
6768 			align_order = PAGE_SHIFT;
6769 		}
6770 
6771 		ret = pci_dev_str_match(dev, p, &p);
6772 		if (ret == 1) {
6773 			*resize = true;
6774 			align = 1ULL << align_order;
6775 			break;
6776 		} else if (ret < 0) {
6777 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6778 			       p);
6779 			break;
6780 		}
6781 
6782 		if (*p != ';' && *p != ',') {
6783 			/* End of param or invalid format */
6784 			break;
6785 		}
6786 		p++;
6787 	}
6788 out:
6789 	spin_unlock(&resource_alignment_lock);
6790 	return align;
6791 }
6792 
6793 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6794 					   resource_size_t align, bool resize)
6795 {
6796 	struct resource *r = &dev->resource[bar];
6797 	const char *r_name = pci_resource_name(dev, bar);
6798 	resource_size_t size;
6799 
6800 	if (!(r->flags & IORESOURCE_MEM))
6801 		return;
6802 
6803 	if (r->flags & IORESOURCE_PCI_FIXED) {
6804 		pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6805 			 r_name, r, (unsigned long long)align);
6806 		return;
6807 	}
6808 
6809 	size = resource_size(r);
6810 	if (size >= align)
6811 		return;
6812 
6813 	/*
6814 	 * Increase the alignment of the resource.  There are two ways we
6815 	 * can do this:
6816 	 *
6817 	 * 1) Increase the size of the resource.  BARs are aligned on their
6818 	 *    size, so when we reallocate space for this resource, we'll
6819 	 *    allocate it with the larger alignment.  This also prevents
6820 	 *    assignment of any other BARs inside the alignment region, so
6821 	 *    if we're requesting page alignment, this means no other BARs
6822 	 *    will share the page.
6823 	 *
6824 	 *    The disadvantage is that this makes the resource larger than
6825 	 *    the hardware BAR, which may break drivers that compute things
6826 	 *    based on the resource size, e.g., to find registers at a
6827 	 *    fixed offset before the end of the BAR.
6828 	 *
6829 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6830 	 *    set r->start to the desired alignment.  By itself this
6831 	 *    doesn't prevent other BARs being put inside the alignment
6832 	 *    region, but if we realign *every* resource of every device in
6833 	 *    the system, none of them will share an alignment region.
6834 	 *
6835 	 * When the user has requested alignment for only some devices via
6836 	 * the "pci=resource_alignment" argument, "resize" is true and we
6837 	 * use the first method.  Otherwise we assume we're aligning all
6838 	 * devices and we use the second.
6839 	 */
6840 
6841 	pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6842 		 r_name, r, (unsigned long long)align);
6843 
6844 	if (resize) {
6845 		r->start = 0;
6846 		r->end = align - 1;
6847 	} else {
6848 		r->flags &= ~IORESOURCE_SIZEALIGN;
6849 		r->flags |= IORESOURCE_STARTALIGN;
6850 		r->start = align;
6851 		r->end = r->start + size - 1;
6852 	}
6853 	r->flags |= IORESOURCE_UNSET;
6854 }
6855 
6856 /*
6857  * This function disables memory decoding and releases memory resources
6858  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6859  * It also rounds up size to specified alignment.
6860  * Later on, the kernel will assign page-aligned memory resource back
6861  * to the device.
6862  */
6863 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6864 {
6865 	int i;
6866 	struct resource *r;
6867 	resource_size_t align;
6868 	u16 command;
6869 	bool resize = false;
6870 
6871 	/*
6872 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6873 	 * 3.4.1.11.  Their resources are allocated from the space
6874 	 * described by the VF BARx register in the PF's SR-IOV capability.
6875 	 * We can't influence their alignment here.
6876 	 */
6877 	if (dev->is_virtfn)
6878 		return;
6879 
6880 	/* check if specified PCI is target device to reassign */
6881 	align = pci_specified_resource_alignment(dev, &resize);
6882 	if (!align)
6883 		return;
6884 
6885 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6886 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6887 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6888 		return;
6889 	}
6890 
6891 	pci_read_config_word(dev, PCI_COMMAND, &command);
6892 	command &= ~PCI_COMMAND_MEMORY;
6893 	pci_write_config_word(dev, PCI_COMMAND, command);
6894 
6895 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6896 		pci_request_resource_alignment(dev, i, align, resize);
6897 
6898 	/*
6899 	 * Need to disable bridge's resource window,
6900 	 * to enable the kernel to reassign new resource
6901 	 * window later on.
6902 	 */
6903 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6904 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6905 			r = &dev->resource[i];
6906 			if (!(r->flags & IORESOURCE_MEM))
6907 				continue;
6908 			r->flags |= IORESOURCE_UNSET;
6909 			r->end = resource_size(r) - 1;
6910 			r->start = 0;
6911 		}
6912 		pci_disable_bridge_window(dev);
6913 	}
6914 }
6915 
6916 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6917 {
6918 	size_t count = 0;
6919 
6920 	spin_lock(&resource_alignment_lock);
6921 	if (resource_alignment_param)
6922 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6923 	spin_unlock(&resource_alignment_lock);
6924 
6925 	return count;
6926 }
6927 
6928 static ssize_t resource_alignment_store(const struct bus_type *bus,
6929 					const char *buf, size_t count)
6930 {
6931 	char *param, *old, *end;
6932 
6933 	if (count >= (PAGE_SIZE - 1))
6934 		return -EINVAL;
6935 
6936 	param = kstrndup(buf, count, GFP_KERNEL);
6937 	if (!param)
6938 		return -ENOMEM;
6939 
6940 	end = strchr(param, '\n');
6941 	if (end)
6942 		*end = '\0';
6943 
6944 	spin_lock(&resource_alignment_lock);
6945 	old = resource_alignment_param;
6946 	if (strlen(param)) {
6947 		resource_alignment_param = param;
6948 	} else {
6949 		kfree(param);
6950 		resource_alignment_param = NULL;
6951 	}
6952 	spin_unlock(&resource_alignment_lock);
6953 
6954 	kfree(old);
6955 
6956 	return count;
6957 }
6958 
6959 static BUS_ATTR_RW(resource_alignment);
6960 
6961 static int __init pci_resource_alignment_sysfs_init(void)
6962 {
6963 	return bus_create_file(&pci_bus_type,
6964 					&bus_attr_resource_alignment);
6965 }
6966 late_initcall(pci_resource_alignment_sysfs_init);
6967 
6968 static void pci_no_domains(void)
6969 {
6970 #ifdef CONFIG_PCI_DOMAINS
6971 	pci_domains_supported = 0;
6972 #endif
6973 }
6974 
6975 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6976 static DEFINE_IDA(pci_domain_nr_static_ida);
6977 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6978 
6979 static void of_pci_reserve_static_domain_nr(void)
6980 {
6981 	struct device_node *np;
6982 	int domain_nr;
6983 
6984 	for_each_node_by_type(np, "pci") {
6985 		domain_nr = of_get_pci_domain_nr(np);
6986 		if (domain_nr < 0)
6987 			continue;
6988 		/*
6989 		 * Permanently allocate domain_nr in dynamic_ida
6990 		 * to prevent it from dynamic allocation.
6991 		 */
6992 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6993 				domain_nr, domain_nr, GFP_KERNEL);
6994 	}
6995 }
6996 
6997 static int of_pci_bus_find_domain_nr(struct device *parent)
6998 {
6999 	static bool static_domains_reserved = false;
7000 	int domain_nr;
7001 
7002 	/* On the first call scan device tree for static allocations. */
7003 	if (!static_domains_reserved) {
7004 		of_pci_reserve_static_domain_nr();
7005 		static_domains_reserved = true;
7006 	}
7007 
7008 	if (parent) {
7009 		/*
7010 		 * If domain is in DT, allocate it in static IDA.  This
7011 		 * prevents duplicate static allocations in case of errors
7012 		 * in DT.
7013 		 */
7014 		domain_nr = of_get_pci_domain_nr(parent->of_node);
7015 		if (domain_nr >= 0)
7016 			return ida_alloc_range(&pci_domain_nr_static_ida,
7017 					       domain_nr, domain_nr,
7018 					       GFP_KERNEL);
7019 	}
7020 
7021 	/*
7022 	 * If domain was not specified in DT, choose a free ID from dynamic
7023 	 * allocations. All domain numbers from DT are permanently in
7024 	 * dynamic allocations to prevent assigning them to other DT nodes
7025 	 * without static domain.
7026 	 */
7027 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
7028 }
7029 
7030 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
7031 {
7032 	if (bus->domain_nr < 0)
7033 		return;
7034 
7035 	/* Release domain from IDA where it was allocated. */
7036 	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
7037 		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
7038 	else
7039 		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
7040 }
7041 
7042 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
7043 {
7044 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
7045 			       acpi_pci_bus_find_domain_nr(bus);
7046 }
7047 
7048 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
7049 {
7050 	if (!acpi_disabled)
7051 		return;
7052 	of_pci_bus_release_domain_nr(bus, parent);
7053 }
7054 #endif
7055 
7056 /**
7057  * pci_ext_cfg_avail - can we access extended PCI config space?
7058  *
7059  * Returns 1 if we can access PCI extended config space (offsets
7060  * greater than 0xff). This is the default implementation. Architecture
7061  * implementations can override this.
7062  */
7063 int __weak pci_ext_cfg_avail(void)
7064 {
7065 	return 1;
7066 }
7067 
7068 void __weak pci_fixup_cardbus(struct pci_bus *bus)
7069 {
7070 }
7071 EXPORT_SYMBOL(pci_fixup_cardbus);
7072 
7073 static int __init pci_setup(char *str)
7074 {
7075 	while (str) {
7076 		char *k = strchr(str, ',');
7077 		if (k)
7078 			*k++ = 0;
7079 		if (*str && (str = pcibios_setup(str)) && *str) {
7080 			if (!strcmp(str, "nomsi")) {
7081 				pci_no_msi();
7082 			} else if (!strncmp(str, "noats", 5)) {
7083 				pr_info("PCIe: ATS is disabled\n");
7084 				pcie_ats_disabled = true;
7085 			} else if (!strcmp(str, "noaer")) {
7086 				pci_no_aer();
7087 			} else if (!strcmp(str, "earlydump")) {
7088 				pci_early_dump = true;
7089 			} else if (!strncmp(str, "realloc=", 8)) {
7090 				pci_realloc_get_opt(str + 8);
7091 			} else if (!strncmp(str, "realloc", 7)) {
7092 				pci_realloc_get_opt("on");
7093 			} else if (!strcmp(str, "nodomains")) {
7094 				pci_no_domains();
7095 			} else if (!strncmp(str, "noari", 5)) {
7096 				pcie_ari_disabled = true;
7097 			} else if (!strncmp(str, "cbiosize=", 9)) {
7098 				pci_cardbus_io_size = memparse(str + 9, &str);
7099 			} else if (!strncmp(str, "cbmemsize=", 10)) {
7100 				pci_cardbus_mem_size = memparse(str + 10, &str);
7101 			} else if (!strncmp(str, "resource_alignment=", 19)) {
7102 				resource_alignment_param = str + 19;
7103 			} else if (!strncmp(str, "ecrc=", 5)) {
7104 				pcie_ecrc_get_policy(str + 5);
7105 			} else if (!strncmp(str, "hpiosize=", 9)) {
7106 				pci_hotplug_io_size = memparse(str + 9, &str);
7107 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
7108 				pci_hotplug_mmio_size = memparse(str + 11, &str);
7109 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7110 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7111 			} else if (!strncmp(str, "hpmemsize=", 10)) {
7112 				pci_hotplug_mmio_size = memparse(str + 10, &str);
7113 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7114 			} else if (!strncmp(str, "hpbussize=", 10)) {
7115 				pci_hotplug_bus_size =
7116 					simple_strtoul(str + 10, &str, 0);
7117 				if (pci_hotplug_bus_size > 0xff)
7118 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7119 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7120 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
7121 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
7122 				pcie_bus_config = PCIE_BUS_SAFE;
7123 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
7124 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
7125 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7126 				pcie_bus_config = PCIE_BUS_PEER2PEER;
7127 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
7128 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7129 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
7130 				disable_acs_redir_param = str + 18;
7131 			} else {
7132 				pr_err("PCI: Unknown option `%s'\n", str);
7133 			}
7134 		}
7135 		str = k;
7136 	}
7137 	return 0;
7138 }
7139 early_param("pci", pci_setup);
7140 
7141 /*
7142  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7143  * in pci_setup(), above, to point to data in the __initdata section which
7144  * will be freed after the init sequence is complete. We can't allocate memory
7145  * in pci_setup() because some architectures do not have any memory allocation
7146  * service available during an early_param() call. So we allocate memory and
7147  * copy the variable here before the init section is freed.
7148  *
7149  */
7150 static int __init pci_realloc_setup_params(void)
7151 {
7152 	resource_alignment_param = kstrdup(resource_alignment_param,
7153 					   GFP_KERNEL);
7154 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7155 
7156 	return 0;
7157 }
7158 pure_initcall(pci_realloc_setup_params);
7159