1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/device.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/pci_hotplug.h> 29 #include <linux/vmalloc.h> 30 #include <asm/dma.h> 31 #include <linux/aer.h> 32 #include <linux/bitfield.h> 33 #include "pci.h" 34 35 DEFINE_MUTEX(pci_slot_mutex); 36 37 const char *pci_power_names[] = { 38 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 39 }; 40 EXPORT_SYMBOL_GPL(pci_power_names); 41 42 #ifdef CONFIG_X86_32 43 int isa_dma_bridge_buggy; 44 EXPORT_SYMBOL(isa_dma_bridge_buggy); 45 #endif 46 47 int pci_pci_problems; 48 EXPORT_SYMBOL(pci_pci_problems); 49 50 unsigned int pci_pm_d3hot_delay; 51 52 static void pci_pme_list_scan(struct work_struct *work); 53 54 static LIST_HEAD(pci_pme_list); 55 static DEFINE_MUTEX(pci_pme_list_mutex); 56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 57 58 struct pci_pme_device { 59 struct list_head list; 60 struct pci_dev *dev; 61 }; 62 63 #define PME_TIMEOUT 1000 /* How long between PME checks */ 64 65 /* 66 * Following exit from Conventional Reset, devices must be ready within 1 sec 67 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 68 * Reset (PCIe r6.0 sec 5.8). 69 */ 70 #define PCI_RESET_WAIT 1000 /* msec */ 71 72 /* 73 * Devices may extend the 1 sec period through Request Retry Status 74 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 75 * limit, but 60 sec ought to be enough for any device to become 76 * responsive. 77 */ 78 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 79 80 static void pci_dev_d3_sleep(struct pci_dev *dev) 81 { 82 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 83 unsigned int upper; 84 85 if (delay_ms) { 86 /* Use a 20% upper bound, 1ms minimum */ 87 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 88 usleep_range(delay_ms * USEC_PER_MSEC, 89 (delay_ms + upper) * USEC_PER_MSEC); 90 } 91 } 92 93 bool pci_reset_supported(struct pci_dev *dev) 94 { 95 return dev->reset_methods[0] != 0; 96 } 97 98 #ifdef CONFIG_PCI_DOMAINS 99 int pci_domains_supported = 1; 100 #endif 101 102 #define DEFAULT_CARDBUS_IO_SIZE (256) 103 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 104 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 105 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 106 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 107 108 #define DEFAULT_HOTPLUG_IO_SIZE (256) 109 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 110 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 111 /* hpiosize=nn can override this */ 112 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 113 /* 114 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 115 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 116 * pci=hpmemsize=nnM overrides both 117 */ 118 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 119 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 120 121 #define DEFAULT_HOTPLUG_BUS_SIZE 1 122 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 123 124 125 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 126 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 127 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 128 #elif defined CONFIG_PCIE_BUS_SAFE 129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 130 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 132 #elif defined CONFIG_PCIE_BUS_PEER2PEER 133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 134 #else 135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 136 #endif 137 138 /* 139 * The default CLS is used if arch didn't set CLS explicitly and not 140 * all pci devices agree on the same value. Arch can override either 141 * the dfl or actual value as it sees fit. Don't forget this is 142 * measured in 32-bit words, not bytes. 143 */ 144 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2; 145 u8 pci_cache_line_size __ro_after_init ; 146 147 /* 148 * If we set up a device for bus mastering, we need to check the latency 149 * timer as certain BIOSes forget to set it properly. 150 */ 151 unsigned int pcibios_max_latency = 255; 152 153 /* If set, the PCIe ARI capability will not be used. */ 154 static bool pcie_ari_disabled; 155 156 /* If set, the PCIe ATS capability will not be used. */ 157 static bool pcie_ats_disabled; 158 159 /* If set, the PCI config space of each device is printed during boot. */ 160 bool pci_early_dump; 161 162 bool pci_ats_disabled(void) 163 { 164 return pcie_ats_disabled; 165 } 166 EXPORT_SYMBOL_GPL(pci_ats_disabled); 167 168 /* Disable bridge_d3 for all PCIe ports */ 169 static bool pci_bridge_d3_disable; 170 /* Force bridge_d3 for all PCIe ports */ 171 static bool pci_bridge_d3_force; 172 173 static int __init pcie_port_pm_setup(char *str) 174 { 175 if (!strcmp(str, "off")) 176 pci_bridge_d3_disable = true; 177 else if (!strcmp(str, "force")) 178 pci_bridge_d3_force = true; 179 return 1; 180 } 181 __setup("pcie_port_pm=", pcie_port_pm_setup); 182 183 /** 184 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 185 * @bus: pointer to PCI bus structure to search 186 * 187 * Given a PCI bus, returns the highest PCI bus number present in the set 188 * including the given PCI bus and its list of child PCI buses. 189 */ 190 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 191 { 192 struct pci_bus *tmp; 193 unsigned char max, n; 194 195 max = bus->busn_res.end; 196 list_for_each_entry(tmp, &bus->children, node) { 197 n = pci_bus_max_busnr(tmp); 198 if (n > max) 199 max = n; 200 } 201 return max; 202 } 203 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 204 205 /** 206 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 207 * @pdev: the PCI device 208 * 209 * Returns error bits set in PCI_STATUS and clears them. 210 */ 211 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 212 { 213 u16 status; 214 int ret; 215 216 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 217 if (ret != PCIBIOS_SUCCESSFUL) 218 return -EIO; 219 220 status &= PCI_STATUS_ERROR_BITS; 221 if (status) 222 pci_write_config_word(pdev, PCI_STATUS, status); 223 224 return status; 225 } 226 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 227 228 #ifdef CONFIG_HAS_IOMEM 229 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 230 bool write_combine) 231 { 232 struct resource *res = &pdev->resource[bar]; 233 resource_size_t start = res->start; 234 resource_size_t size = resource_size(res); 235 236 /* 237 * Make sure the BAR is actually a memory resource, not an IO resource 238 */ 239 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 240 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 241 return NULL; 242 } 243 244 if (write_combine) 245 return ioremap_wc(start, size); 246 247 return ioremap(start, size); 248 } 249 250 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 251 { 252 return __pci_ioremap_resource(pdev, bar, false); 253 } 254 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 255 256 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 257 { 258 return __pci_ioremap_resource(pdev, bar, true); 259 } 260 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 261 #endif 262 263 /** 264 * pci_dev_str_match_path - test if a path string matches a device 265 * @dev: the PCI device to test 266 * @path: string to match the device against 267 * @endptr: pointer to the string after the match 268 * 269 * Test if a string (typically from a kernel parameter) formatted as a 270 * path of device/function addresses matches a PCI device. The string must 271 * be of the form: 272 * 273 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 274 * 275 * A path for a device can be obtained using 'lspci -t'. Using a path 276 * is more robust against bus renumbering than using only a single bus, 277 * device and function address. 278 * 279 * Returns 1 if the string matches the device, 0 if it does not and 280 * a negative error code if it fails to parse the string. 281 */ 282 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 283 const char **endptr) 284 { 285 int ret; 286 unsigned int seg, bus, slot, func; 287 char *wpath, *p; 288 char end; 289 290 *endptr = strchrnul(path, ';'); 291 292 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 293 if (!wpath) 294 return -ENOMEM; 295 296 while (1) { 297 p = strrchr(wpath, '/'); 298 if (!p) 299 break; 300 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 301 if (ret != 2) { 302 ret = -EINVAL; 303 goto free_and_exit; 304 } 305 306 if (dev->devfn != PCI_DEVFN(slot, func)) { 307 ret = 0; 308 goto free_and_exit; 309 } 310 311 /* 312 * Note: we don't need to get a reference to the upstream 313 * bridge because we hold a reference to the top level 314 * device which should hold a reference to the bridge, 315 * and so on. 316 */ 317 dev = pci_upstream_bridge(dev); 318 if (!dev) { 319 ret = 0; 320 goto free_and_exit; 321 } 322 323 *p = 0; 324 } 325 326 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 327 &func, &end); 328 if (ret != 4) { 329 seg = 0; 330 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 331 if (ret != 3) { 332 ret = -EINVAL; 333 goto free_and_exit; 334 } 335 } 336 337 ret = (seg == pci_domain_nr(dev->bus) && 338 bus == dev->bus->number && 339 dev->devfn == PCI_DEVFN(slot, func)); 340 341 free_and_exit: 342 kfree(wpath); 343 return ret; 344 } 345 346 /** 347 * pci_dev_str_match - test if a string matches a device 348 * @dev: the PCI device to test 349 * @p: string to match the device against 350 * @endptr: pointer to the string after the match 351 * 352 * Test if a string (typically from a kernel parameter) matches a specified 353 * PCI device. The string may be of one of the following formats: 354 * 355 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 356 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 357 * 358 * The first format specifies a PCI bus/device/function address which 359 * may change if new hardware is inserted, if motherboard firmware changes, 360 * or due to changes caused in kernel parameters. If the domain is 361 * left unspecified, it is taken to be 0. In order to be robust against 362 * bus renumbering issues, a path of PCI device/function numbers may be used 363 * to address the specific device. The path for a device can be determined 364 * through the use of 'lspci -t'. 365 * 366 * The second format matches devices using IDs in the configuration 367 * space which may match multiple devices in the system. A value of 0 368 * for any field will match all devices. (Note: this differs from 369 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 370 * legacy reasons and convenience so users don't have to specify 371 * FFFFFFFFs on the command line.) 372 * 373 * Returns 1 if the string matches the device, 0 if it does not and 374 * a negative error code if the string cannot be parsed. 375 */ 376 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 377 const char **endptr) 378 { 379 int ret; 380 int count; 381 unsigned short vendor, device, subsystem_vendor, subsystem_device; 382 383 if (strncmp(p, "pci:", 4) == 0) { 384 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 385 p += 4; 386 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 387 &subsystem_vendor, &subsystem_device, &count); 388 if (ret != 4) { 389 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 390 if (ret != 2) 391 return -EINVAL; 392 393 subsystem_vendor = 0; 394 subsystem_device = 0; 395 } 396 397 p += count; 398 399 if ((!vendor || vendor == dev->vendor) && 400 (!device || device == dev->device) && 401 (!subsystem_vendor || 402 subsystem_vendor == dev->subsystem_vendor) && 403 (!subsystem_device || 404 subsystem_device == dev->subsystem_device)) 405 goto found; 406 } else { 407 /* 408 * PCI Bus, Device, Function IDs are specified 409 * (optionally, may include a path of devfns following it) 410 */ 411 ret = pci_dev_str_match_path(dev, p, &p); 412 if (ret < 0) 413 return ret; 414 else if (ret) 415 goto found; 416 } 417 418 *endptr = p; 419 return 0; 420 421 found: 422 *endptr = p; 423 return 1; 424 } 425 426 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 427 u8 pos, int cap) 428 { 429 return PCI_FIND_NEXT_CAP(pci_bus_read_config, pos, cap, bus, devfn); 430 } 431 432 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 433 { 434 return __pci_find_next_cap(dev->bus, dev->devfn, 435 pos + PCI_CAP_LIST_NEXT, cap); 436 } 437 EXPORT_SYMBOL_GPL(pci_find_next_capability); 438 439 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 440 unsigned int devfn, u8 hdr_type) 441 { 442 u16 status; 443 444 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 445 if (!(status & PCI_STATUS_CAP_LIST)) 446 return 0; 447 448 switch (hdr_type) { 449 case PCI_HEADER_TYPE_NORMAL: 450 case PCI_HEADER_TYPE_BRIDGE: 451 return PCI_CAPABILITY_LIST; 452 case PCI_HEADER_TYPE_CARDBUS: 453 return PCI_CB_CAPABILITY_LIST; 454 } 455 456 return 0; 457 } 458 459 /** 460 * pci_find_capability - query for devices' capabilities 461 * @dev: PCI device to query 462 * @cap: capability code 463 * 464 * Tell if a device supports a given PCI capability. 465 * Returns the address of the requested capability structure within the 466 * device's PCI configuration space or 0 in case the device does not 467 * support it. Possible values for @cap include: 468 * 469 * %PCI_CAP_ID_PM Power Management 470 * %PCI_CAP_ID_AGP Accelerated Graphics Port 471 * %PCI_CAP_ID_VPD Vital Product Data 472 * %PCI_CAP_ID_SLOTID Slot Identification 473 * %PCI_CAP_ID_MSI Message Signalled Interrupts 474 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 475 * %PCI_CAP_ID_PCIX PCI-X 476 * %PCI_CAP_ID_EXP PCI Express 477 */ 478 u8 pci_find_capability(struct pci_dev *dev, int cap) 479 { 480 u8 pos; 481 482 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 483 if (pos) 484 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 485 486 return pos; 487 } 488 EXPORT_SYMBOL(pci_find_capability); 489 490 /** 491 * pci_bus_find_capability - query for devices' capabilities 492 * @bus: the PCI bus to query 493 * @devfn: PCI device to query 494 * @cap: capability code 495 * 496 * Like pci_find_capability() but works for PCI devices that do not have a 497 * pci_dev structure set up yet. 498 * 499 * Returns the address of the requested capability structure within the 500 * device's PCI configuration space or 0 in case the device does not 501 * support it. 502 */ 503 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 504 { 505 u8 hdr_type, pos; 506 507 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 508 509 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK); 510 if (pos) 511 pos = __pci_find_next_cap(bus, devfn, pos, cap); 512 513 return pos; 514 } 515 EXPORT_SYMBOL(pci_bus_find_capability); 516 517 /** 518 * pci_find_next_ext_capability - Find an extended capability 519 * @dev: PCI device to query 520 * @start: address at which to start looking (0 to start at beginning of list) 521 * @cap: capability code 522 * 523 * Returns the address of the next matching extended capability structure 524 * within the device's PCI configuration space or 0 if the device does 525 * not support it. Some capabilities can occur several times, e.g., the 526 * vendor-specific capability, and this provides a way to find them all. 527 */ 528 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 529 { 530 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 531 return 0; 532 533 return PCI_FIND_NEXT_EXT_CAP(pci_bus_read_config, start, cap, 534 dev->bus, dev->devfn); 535 } 536 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 537 538 /** 539 * pci_find_ext_capability - Find an extended capability 540 * @dev: PCI device to query 541 * @cap: capability code 542 * 543 * Returns the address of the requested extended capability structure 544 * within the device's PCI configuration space or 0 if the device does 545 * not support it. Possible values for @cap include: 546 * 547 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 548 * %PCI_EXT_CAP_ID_VC Virtual Channel 549 * %PCI_EXT_CAP_ID_DSN Device Serial Number 550 * %PCI_EXT_CAP_ID_PWR Power Budgeting 551 */ 552 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 553 { 554 return pci_find_next_ext_capability(dev, 0, cap); 555 } 556 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 557 558 /** 559 * pci_get_dsn - Read and return the 8-byte Device Serial Number 560 * @dev: PCI device to query 561 * 562 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 563 * Number. 564 * 565 * Returns the DSN, or zero if the capability does not exist. 566 */ 567 u64 pci_get_dsn(struct pci_dev *dev) 568 { 569 u32 dword; 570 u64 dsn; 571 int pos; 572 573 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 574 if (!pos) 575 return 0; 576 577 /* 578 * The Device Serial Number is two dwords offset 4 bytes from the 579 * capability position. The specification says that the first dword is 580 * the lower half, and the second dword is the upper half. 581 */ 582 pos += 4; 583 pci_read_config_dword(dev, pos, &dword); 584 dsn = (u64)dword; 585 pci_read_config_dword(dev, pos + 4, &dword); 586 dsn |= ((u64)dword) << 32; 587 588 return dsn; 589 } 590 EXPORT_SYMBOL_GPL(pci_get_dsn); 591 592 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 593 { 594 int rc; 595 u8 cap, mask; 596 597 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 598 mask = HT_3BIT_CAP_MASK; 599 else 600 mask = HT_5BIT_CAP_MASK; 601 602 pos = PCI_FIND_NEXT_CAP(pci_bus_read_config, pos, 603 PCI_CAP_ID_HT, dev->bus, dev->devfn); 604 while (pos) { 605 rc = pci_read_config_byte(dev, pos + 3, &cap); 606 if (rc != PCIBIOS_SUCCESSFUL) 607 return 0; 608 609 if ((cap & mask) == ht_cap) 610 return pos; 611 612 pos = PCI_FIND_NEXT_CAP(pci_bus_read_config, 613 pos + PCI_CAP_LIST_NEXT, 614 PCI_CAP_ID_HT, dev->bus, 615 dev->devfn); 616 } 617 618 return 0; 619 } 620 621 /** 622 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 623 * @dev: PCI device to query 624 * @pos: Position from which to continue searching 625 * @ht_cap: HyperTransport capability code 626 * 627 * To be used in conjunction with pci_find_ht_capability() to search for 628 * all capabilities matching @ht_cap. @pos should always be a value returned 629 * from pci_find_ht_capability(). 630 * 631 * NB. To be 100% safe against broken PCI devices, the caller should take 632 * steps to avoid an infinite loop. 633 */ 634 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 635 { 636 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 637 } 638 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 639 640 /** 641 * pci_find_ht_capability - query a device's HyperTransport capabilities 642 * @dev: PCI device to query 643 * @ht_cap: HyperTransport capability code 644 * 645 * Tell if a device supports a given HyperTransport capability. 646 * Returns an address within the device's PCI configuration space 647 * or 0 in case the device does not support the request capability. 648 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 649 * which has a HyperTransport capability matching @ht_cap. 650 */ 651 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 652 { 653 u8 pos; 654 655 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 656 if (pos) 657 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 658 659 return pos; 660 } 661 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 662 663 /** 664 * pci_find_vsec_capability - Find a vendor-specific extended capability 665 * @dev: PCI device to query 666 * @vendor: Vendor ID for which capability is defined 667 * @cap: Vendor-specific capability ID 668 * 669 * If @dev has Vendor ID @vendor, search for a VSEC capability with 670 * VSEC ID @cap. If found, return the capability offset in 671 * config space; otherwise return 0. 672 */ 673 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 674 { 675 u16 vsec = 0; 676 u32 header; 677 int ret; 678 679 if (vendor != dev->vendor) 680 return 0; 681 682 while ((vsec = pci_find_next_ext_capability(dev, vsec, 683 PCI_EXT_CAP_ID_VNDR))) { 684 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 685 if (ret != PCIBIOS_SUCCESSFUL) 686 continue; 687 688 if (PCI_VNDR_HEADER_ID(header) == cap) 689 return vsec; 690 } 691 692 return 0; 693 } 694 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 695 696 /** 697 * pci_find_dvsec_capability - Find DVSEC for vendor 698 * @dev: PCI device to query 699 * @vendor: Vendor ID to match for the DVSEC 700 * @dvsec: Designated Vendor-specific capability ID 701 * 702 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 703 * offset in config space; otherwise return 0. 704 */ 705 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 706 { 707 int pos; 708 709 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 710 if (!pos) 711 return 0; 712 713 while (pos) { 714 u16 v, id; 715 716 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 717 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 718 if (vendor == v && dvsec == id) 719 return pos; 720 721 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 722 } 723 724 return 0; 725 } 726 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 727 728 /** 729 * pci_find_parent_resource - return resource region of parent bus of given 730 * region 731 * @dev: PCI device structure contains resources to be searched 732 * @res: child resource record for which parent is sought 733 * 734 * For given resource region of given device, return the resource region of 735 * parent bus the given region is contained in. 736 */ 737 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 738 struct resource *res) 739 { 740 const struct pci_bus *bus = dev->bus; 741 struct resource *r; 742 743 pci_bus_for_each_resource(bus, r) { 744 if (!r) 745 continue; 746 if (resource_contains(r, res)) { 747 748 /* 749 * If the window is prefetchable but the BAR is 750 * not, the allocator made a mistake. 751 */ 752 if (r->flags & IORESOURCE_PREFETCH && 753 !(res->flags & IORESOURCE_PREFETCH)) 754 return NULL; 755 756 /* 757 * If we're below a transparent bridge, there may 758 * be both a positively-decoded aperture and a 759 * subtractively-decoded region that contain the BAR. 760 * We want the positively-decoded one, so this depends 761 * on pci_bus_for_each_resource() giving us those 762 * first. 763 */ 764 return r; 765 } 766 } 767 return NULL; 768 } 769 EXPORT_SYMBOL(pci_find_parent_resource); 770 771 /** 772 * pci_find_resource - Return matching PCI device resource 773 * @dev: PCI device to query 774 * @res: Resource to look for 775 * 776 * Goes over standard PCI resources (BARs) and checks if the given resource 777 * is partially or fully contained in any of them. In that case the 778 * matching resource is returned, %NULL otherwise. 779 */ 780 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 781 { 782 int i; 783 784 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 785 struct resource *r = &dev->resource[i]; 786 787 if (r->start && resource_contains(r, res)) 788 return r; 789 } 790 791 return NULL; 792 } 793 EXPORT_SYMBOL(pci_find_resource); 794 795 /** 796 * pci_resource_name - Return the name of the PCI resource 797 * @dev: PCI device to query 798 * @i: index of the resource 799 * 800 * Return the standard PCI resource (BAR) name according to their index. 801 */ 802 const char *pci_resource_name(struct pci_dev *dev, unsigned int i) 803 { 804 static const char * const bar_name[] = { 805 "BAR 0", 806 "BAR 1", 807 "BAR 2", 808 "BAR 3", 809 "BAR 4", 810 "BAR 5", 811 "ROM", 812 #ifdef CONFIG_PCI_IOV 813 "VF BAR 0", 814 "VF BAR 1", 815 "VF BAR 2", 816 "VF BAR 3", 817 "VF BAR 4", 818 "VF BAR 5", 819 #endif 820 "bridge window", /* "io" included in %pR */ 821 "bridge window", /* "mem" included in %pR */ 822 "bridge window", /* "mem pref" included in %pR */ 823 }; 824 static const char * const cardbus_name[] = { 825 "BAR 1", 826 "unknown", 827 "unknown", 828 "unknown", 829 "unknown", 830 "unknown", 831 #ifdef CONFIG_PCI_IOV 832 "unknown", 833 "unknown", 834 "unknown", 835 "unknown", 836 "unknown", 837 "unknown", 838 #endif 839 "CardBus bridge window 0", /* I/O */ 840 "CardBus bridge window 1", /* I/O */ 841 "CardBus bridge window 0", /* mem */ 842 "CardBus bridge window 1", /* mem */ 843 }; 844 845 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS && 846 i < ARRAY_SIZE(cardbus_name)) 847 return cardbus_name[i]; 848 849 if (i < ARRAY_SIZE(bar_name)) 850 return bar_name[i]; 851 852 return "unknown"; 853 } 854 855 /** 856 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 857 * @dev: the PCI device to operate on 858 * @pos: config space offset of status word 859 * @mask: mask of bit(s) to care about in status word 860 * 861 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 862 */ 863 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 864 { 865 int i; 866 867 /* Wait for Transaction Pending bit clean */ 868 for (i = 0; i < 4; i++) { 869 u16 status; 870 if (i) 871 msleep((1 << (i - 1)) * 100); 872 873 pci_read_config_word(dev, pos, &status); 874 if (!(status & mask)) 875 return 1; 876 } 877 878 return 0; 879 } 880 881 static int pci_acs_enable; 882 883 /** 884 * pci_request_acs - ask for ACS to be enabled if supported 885 */ 886 void pci_request_acs(void) 887 { 888 pci_acs_enable = 1; 889 } 890 891 static const char *disable_acs_redir_param; 892 static const char *config_acs_param; 893 894 struct pci_acs { 895 u16 cap; 896 u16 ctrl; 897 u16 fw_ctrl; 898 }; 899 900 static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps, 901 const char *p, const u16 acs_mask, const u16 acs_flags) 902 { 903 u16 flags = acs_flags; 904 u16 mask = acs_mask; 905 char *delimit; 906 int ret = 0; 907 908 if (!p) 909 return; 910 911 while (*p) { 912 if (!acs_mask) { 913 /* Check for ACS flags */ 914 delimit = strstr(p, "@"); 915 if (delimit) { 916 int end; 917 u32 shift = 0; 918 919 end = delimit - p - 1; 920 mask = 0; 921 flags = 0; 922 923 while (end > -1) { 924 if (*(p + end) == '0') { 925 mask |= 1 << shift; 926 shift++; 927 end--; 928 } else if (*(p + end) == '1') { 929 mask |= 1 << shift; 930 flags |= 1 << shift; 931 shift++; 932 end--; 933 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) { 934 shift++; 935 end--; 936 } else { 937 pci_err(dev, "Invalid ACS flags... Ignoring\n"); 938 return; 939 } 940 } 941 p = delimit + 1; 942 } else { 943 pci_err(dev, "ACS Flags missing\n"); 944 return; 945 } 946 } 947 948 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR | 949 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) { 950 pci_err(dev, "Invalid ACS flags specified\n"); 951 return; 952 } 953 954 ret = pci_dev_str_match(dev, p, &p); 955 if (ret < 0) { 956 pr_info_once("PCI: Can't parse ACS command line parameter\n"); 957 break; 958 } else if (ret == 1) { 959 /* Found a match */ 960 break; 961 } 962 963 if (*p != ';' && *p != ',') { 964 /* End of param or invalid format */ 965 break; 966 } 967 p++; 968 } 969 970 if (ret != 1) 971 return; 972 973 if (!pci_dev_specific_disable_acs_redir(dev)) 974 return; 975 976 pci_dbg(dev, "ACS mask = %#06x\n", mask); 977 pci_dbg(dev, "ACS flags = %#06x\n", flags); 978 pci_dbg(dev, "ACS control = %#06x\n", caps->ctrl); 979 pci_dbg(dev, "ACS fw_ctrl = %#06x\n", caps->fw_ctrl); 980 981 /* 982 * For mask bits that are 0, copy them from the firmware setting 983 * and apply flags for all the mask bits that are 1. 984 */ 985 caps->ctrl = (caps->fw_ctrl & ~mask) | (flags & mask); 986 987 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl); 988 } 989 990 /** 991 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 992 * @dev: the PCI device 993 * @caps: default ACS controls 994 */ 995 static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps) 996 { 997 /* Source Validation */ 998 caps->ctrl |= (caps->cap & PCI_ACS_SV); 999 1000 /* P2P Request Redirect */ 1001 caps->ctrl |= (caps->cap & PCI_ACS_RR); 1002 1003 /* P2P Completion Redirect */ 1004 caps->ctrl |= (caps->cap & PCI_ACS_CR); 1005 1006 /* Upstream Forwarding */ 1007 caps->ctrl |= (caps->cap & PCI_ACS_UF); 1008 1009 /* Enable Translation Blocking for external devices and noats */ 1010 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 1011 caps->ctrl |= (caps->cap & PCI_ACS_TB); 1012 } 1013 1014 /** 1015 * pci_enable_acs - enable ACS if hardware support it 1016 * @dev: the PCI device 1017 */ 1018 static void pci_enable_acs(struct pci_dev *dev) 1019 { 1020 struct pci_acs caps; 1021 bool enable_acs = false; 1022 int pos; 1023 1024 /* If an iommu is present we start with kernel default caps */ 1025 if (pci_acs_enable) { 1026 if (pci_dev_specific_enable_acs(dev)) 1027 enable_acs = true; 1028 } 1029 1030 pos = dev->acs_cap; 1031 if (!pos) 1032 return; 1033 1034 pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap); 1035 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl); 1036 caps.fw_ctrl = caps.ctrl; 1037 1038 if (enable_acs) 1039 pci_std_enable_acs(dev, &caps); 1040 1041 /* 1042 * Always apply caps from the command line, even if there is no iommu. 1043 * Trust that the admin has a reason to change the ACS settings. 1044 */ 1045 __pci_config_acs(dev, &caps, disable_acs_redir_param, 1046 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC, 1047 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)); 1048 __pci_config_acs(dev, &caps, config_acs_param, 0, 0); 1049 1050 pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl); 1051 } 1052 1053 /** 1054 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1055 * @dev: PCI device to have its BARs restored 1056 * 1057 * Restore the BAR values for a given device, so as to make it 1058 * accessible by its driver. 1059 */ 1060 static void pci_restore_bars(struct pci_dev *dev) 1061 { 1062 int i; 1063 1064 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1065 pci_update_resource(dev, i); 1066 } 1067 1068 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1069 { 1070 if (pci_use_mid_pm()) 1071 return true; 1072 1073 return acpi_pci_power_manageable(dev); 1074 } 1075 1076 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1077 pci_power_t t) 1078 { 1079 if (pci_use_mid_pm()) 1080 return mid_pci_set_power_state(dev, t); 1081 1082 return acpi_pci_set_power_state(dev, t); 1083 } 1084 1085 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1086 { 1087 if (pci_use_mid_pm()) 1088 return mid_pci_get_power_state(dev); 1089 1090 return acpi_pci_get_power_state(dev); 1091 } 1092 1093 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1094 { 1095 if (!pci_use_mid_pm()) 1096 acpi_pci_refresh_power_state(dev); 1097 } 1098 1099 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1100 { 1101 if (pci_use_mid_pm()) 1102 return PCI_POWER_ERROR; 1103 1104 return acpi_pci_choose_state(dev); 1105 } 1106 1107 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1108 { 1109 if (pci_use_mid_pm()) 1110 return PCI_POWER_ERROR; 1111 1112 return acpi_pci_wakeup(dev, enable); 1113 } 1114 1115 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1116 { 1117 if (pci_use_mid_pm()) 1118 return false; 1119 1120 return acpi_pci_need_resume(dev); 1121 } 1122 1123 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1124 { 1125 if (pci_use_mid_pm()) 1126 return false; 1127 1128 return acpi_pci_bridge_d3(dev); 1129 } 1130 1131 /** 1132 * pci_update_current_state - Read power state of given device and cache it 1133 * @dev: PCI device to handle. 1134 * @state: State to cache in case the device doesn't have the PM capability 1135 * 1136 * The power state is read from the PMCSR register, which however is 1137 * inaccessible in D3cold. The platform firmware is therefore queried first 1138 * to detect accessibility of the register. In case the platform firmware 1139 * reports an incorrect state or the device isn't power manageable by the 1140 * platform at all, we try to detect D3cold by testing accessibility of the 1141 * vendor ID in config space. 1142 */ 1143 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1144 { 1145 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1146 dev->current_state = PCI_D3cold; 1147 } else if (dev->pm_cap) { 1148 u16 pmcsr; 1149 1150 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1151 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1152 dev->current_state = PCI_D3cold; 1153 return; 1154 } 1155 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1156 } else { 1157 dev->current_state = state; 1158 } 1159 } 1160 1161 /** 1162 * pci_refresh_power_state - Refresh the given device's power state data 1163 * @dev: Target PCI device. 1164 * 1165 * Ask the platform to refresh the devices power state information and invoke 1166 * pci_update_current_state() to update its current PCI power state. 1167 */ 1168 void pci_refresh_power_state(struct pci_dev *dev) 1169 { 1170 platform_pci_refresh_power_state(dev); 1171 pci_update_current_state(dev, dev->current_state); 1172 } 1173 1174 /** 1175 * pci_platform_power_transition - Use platform to change device power state 1176 * @dev: PCI device to handle. 1177 * @state: State to put the device into. 1178 */ 1179 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1180 { 1181 int error; 1182 1183 error = platform_pci_set_power_state(dev, state); 1184 if (!error) 1185 pci_update_current_state(dev, state); 1186 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1187 dev->current_state = PCI_D0; 1188 1189 return error; 1190 } 1191 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1192 1193 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1194 { 1195 pm_request_resume(&pci_dev->dev); 1196 return 0; 1197 } 1198 1199 /** 1200 * pci_resume_bus - Walk given bus and runtime resume devices on it 1201 * @bus: Top bus of the subtree to walk. 1202 */ 1203 void pci_resume_bus(struct pci_bus *bus) 1204 { 1205 if (bus) 1206 pci_walk_bus(bus, pci_resume_one, NULL); 1207 } 1208 1209 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1210 { 1211 int delay = 1; 1212 bool retrain = false; 1213 struct pci_dev *root, *bridge; 1214 1215 root = pcie_find_root_port(dev); 1216 1217 if (pci_is_pcie(dev)) { 1218 bridge = pci_upstream_bridge(dev); 1219 if (bridge) 1220 retrain = true; 1221 } 1222 1223 /* 1224 * The caller has already waited long enough after a reset that the 1225 * device should respond to config requests, but it may respond 1226 * with Request Retry Status (RRS) if it needs more time to 1227 * initialize. 1228 * 1229 * If the device is below a Root Port with Configuration RRS 1230 * Software Visibility enabled, reading the Vendor ID returns a 1231 * special data value if the device responded with RRS. Read the 1232 * Vendor ID until we get non-RRS status. 1233 * 1234 * If there's no Root Port or Configuration RRS Software Visibility 1235 * is not enabled, the device may still respond with RRS, but 1236 * hardware may retry the config request. If no retries receive 1237 * Successful Completion, hardware generally synthesizes ~0 1238 * (PCI_ERROR_RESPONSE) data to complete the read. Reading Vendor 1239 * ID for VFs and non-existent devices also returns ~0, so read the 1240 * Command register until it returns something other than ~0. 1241 */ 1242 for (;;) { 1243 u32 id; 1244 1245 if (pci_dev_is_disconnected(dev)) { 1246 pci_dbg(dev, "disconnected; not waiting\n"); 1247 return -ENOTTY; 1248 } 1249 1250 if (root && root->config_rrs_sv) { 1251 pci_read_config_dword(dev, PCI_VENDOR_ID, &id); 1252 if (!pci_bus_rrs_vendor_id(id)) 1253 break; 1254 } else { 1255 pci_read_config_dword(dev, PCI_COMMAND, &id); 1256 if (!PCI_POSSIBLE_ERROR(id)) 1257 break; 1258 } 1259 1260 if (delay > timeout) { 1261 pci_warn(dev, "not ready %dms after %s; giving up\n", 1262 delay - 1, reset_type); 1263 return -ENOTTY; 1264 } 1265 1266 if (delay > PCI_RESET_WAIT) { 1267 if (retrain) { 1268 retrain = false; 1269 if (pcie_failed_link_retrain(bridge) == 0) { 1270 delay = 1; 1271 continue; 1272 } 1273 } 1274 pci_info(dev, "not ready %dms after %s; waiting\n", 1275 delay - 1, reset_type); 1276 } 1277 1278 msleep(delay); 1279 delay *= 2; 1280 } 1281 1282 if (delay > PCI_RESET_WAIT) 1283 pci_info(dev, "ready %dms after %s\n", delay - 1, 1284 reset_type); 1285 else 1286 pci_dbg(dev, "ready %dms after %s\n", delay - 1, 1287 reset_type); 1288 1289 return 0; 1290 } 1291 1292 /** 1293 * pci_power_up - Put the given device into D0 1294 * @dev: PCI device to power up 1295 * 1296 * On success, return 0 or 1, depending on whether or not it is necessary to 1297 * restore the device's BARs subsequently (1 is returned in that case). 1298 * 1299 * On failure, return a negative error code. Always return failure if @dev 1300 * lacks a Power Management Capability, even if the platform was able to 1301 * put the device in D0 via non-PCI means. 1302 */ 1303 int pci_power_up(struct pci_dev *dev) 1304 { 1305 bool need_restore; 1306 pci_power_t state; 1307 u16 pmcsr; 1308 1309 platform_pci_set_power_state(dev, PCI_D0); 1310 1311 if (!dev->pm_cap) { 1312 state = platform_pci_get_power_state(dev); 1313 if (state == PCI_UNKNOWN) 1314 dev->current_state = PCI_D0; 1315 else 1316 dev->current_state = state; 1317 1318 return -EIO; 1319 } 1320 1321 if (pci_dev_is_disconnected(dev)) { 1322 dev->current_state = PCI_D3cold; 1323 return -EIO; 1324 } 1325 1326 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1327 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1328 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1329 pci_power_name(dev->current_state)); 1330 dev->current_state = PCI_D3cold; 1331 return -EIO; 1332 } 1333 1334 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1335 1336 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1337 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1338 1339 if (state == PCI_D0) 1340 goto end; 1341 1342 /* 1343 * Force the entire word to 0. This doesn't affect PME_Status, disables 1344 * PME_En, and sets PowerState to 0. 1345 */ 1346 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1347 1348 /* Mandatory transition delays; see PCI PM 1.2. */ 1349 if (state == PCI_D3hot) 1350 pci_dev_d3_sleep(dev); 1351 else if (state == PCI_D2) 1352 udelay(PCI_PM_D2_DELAY); 1353 1354 end: 1355 dev->current_state = PCI_D0; 1356 if (need_restore) 1357 return 1; 1358 1359 return 0; 1360 } 1361 1362 /** 1363 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1364 * @dev: PCI device to power up 1365 * @locked: whether pci_bus_sem is held 1366 * 1367 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1368 * to confirm the state change, restore its BARs if they might be lost and 1369 * reconfigure ASPM in accordance with the new power state. 1370 * 1371 * If pci_restore_state() is going to be called right after a power state change 1372 * to D0, it is more efficient to use pci_power_up() directly instead of this 1373 * function. 1374 */ 1375 static int pci_set_full_power_state(struct pci_dev *dev, bool locked) 1376 { 1377 u16 pmcsr; 1378 int ret; 1379 1380 ret = pci_power_up(dev); 1381 if (ret < 0) { 1382 if (dev->current_state == PCI_D0) 1383 return 0; 1384 1385 return ret; 1386 } 1387 1388 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1389 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1390 if (dev->current_state != PCI_D0) { 1391 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1392 pci_power_name(dev->current_state)); 1393 } else if (ret > 0) { 1394 /* 1395 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1396 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1397 * from D3hot to D0 _may_ perform an internal reset, thereby 1398 * going to "D0 Uninitialized" rather than "D0 Initialized". 1399 * For example, at least some versions of the 3c905B and the 1400 * 3c556B exhibit this behaviour. 1401 * 1402 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1403 * devices in a D3hot state at boot. Consequently, we need to 1404 * restore at least the BARs so that the device will be 1405 * accessible to its driver. 1406 */ 1407 pci_restore_bars(dev); 1408 } 1409 1410 if (dev->bus->self) 1411 pcie_aspm_pm_state_change(dev->bus->self, locked); 1412 1413 return 0; 1414 } 1415 1416 /** 1417 * __pci_dev_set_current_state - Set current state of a PCI device 1418 * @dev: Device to handle 1419 * @data: pointer to state to be set 1420 */ 1421 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1422 { 1423 pci_power_t state = *(pci_power_t *)data; 1424 1425 dev->current_state = state; 1426 return 0; 1427 } 1428 1429 /** 1430 * pci_bus_set_current_state - Walk given bus and set current state of devices 1431 * @bus: Top bus of the subtree to walk. 1432 * @state: state to be set 1433 */ 1434 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1435 { 1436 if (bus) 1437 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1438 } 1439 1440 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked) 1441 { 1442 if (!bus) 1443 return; 1444 1445 if (locked) 1446 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state); 1447 else 1448 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1449 } 1450 1451 /** 1452 * pci_set_low_power_state - Put a PCI device into a low-power state. 1453 * @dev: PCI device to handle. 1454 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1455 * @locked: whether pci_bus_sem is held 1456 * 1457 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1458 * 1459 * RETURN VALUE: 1460 * -EINVAL if the requested state is invalid. 1461 * -EIO if device does not support PCI PM or its PM capabilities register has a 1462 * wrong version, or device doesn't support the requested state. 1463 * 0 if device already is in the requested state. 1464 * 0 if device's power state has been successfully changed. 1465 */ 1466 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1467 { 1468 u16 pmcsr; 1469 1470 if (!dev->pm_cap) 1471 return -EIO; 1472 1473 /* 1474 * Validate transition: We can enter D0 from any state, but if 1475 * we're already in a low-power state, we can only go deeper. E.g., 1476 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1477 * we'd have to go from D3 to D0, then to D1. 1478 */ 1479 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1480 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1481 pci_power_name(dev->current_state), 1482 pci_power_name(state)); 1483 return -EINVAL; 1484 } 1485 1486 /* Check if this device supports the desired state */ 1487 if ((state == PCI_D1 && !dev->d1_support) 1488 || (state == PCI_D2 && !dev->d2_support)) 1489 return -EIO; 1490 1491 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1492 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1493 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1494 pci_power_name(dev->current_state), 1495 pci_power_name(state)); 1496 dev->current_state = PCI_D3cold; 1497 return -EIO; 1498 } 1499 1500 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1501 pmcsr |= state; 1502 1503 /* Enter specified state */ 1504 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1505 1506 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1507 if (state == PCI_D3hot) 1508 pci_dev_d3_sleep(dev); 1509 else if (state == PCI_D2) 1510 udelay(PCI_PM_D2_DELAY); 1511 1512 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1513 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1514 if (dev->current_state != state) 1515 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1516 pci_power_name(dev->current_state), 1517 pci_power_name(state)); 1518 1519 if (dev->bus->self) 1520 pcie_aspm_pm_state_change(dev->bus->self, locked); 1521 1522 return 0; 1523 } 1524 1525 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1526 { 1527 int error; 1528 1529 /* Bound the state we're entering */ 1530 if (state > PCI_D3cold) 1531 state = PCI_D3cold; 1532 else if (state < PCI_D0) 1533 state = PCI_D0; 1534 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1535 1536 /* 1537 * If the device or the parent bridge do not support PCI 1538 * PM, ignore the request if we're doing anything other 1539 * than putting it into D0 (which would only happen on 1540 * boot). 1541 */ 1542 return 0; 1543 1544 /* Check if we're already there */ 1545 if (dev->current_state == state) 1546 return 0; 1547 1548 if (state == PCI_D0) 1549 return pci_set_full_power_state(dev, locked); 1550 1551 /* 1552 * This device is quirked not to be put into D3, so don't put it in 1553 * D3 1554 */ 1555 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1556 return 0; 1557 1558 if (state == PCI_D3cold) { 1559 /* 1560 * To put the device in D3cold, put it into D3hot in the native 1561 * way, then put it into D3cold using platform ops. 1562 */ 1563 error = pci_set_low_power_state(dev, PCI_D3hot, locked); 1564 1565 if (pci_platform_power_transition(dev, PCI_D3cold)) 1566 return error; 1567 1568 /* Powering off a bridge may power off the whole hierarchy */ 1569 if (dev->current_state == PCI_D3cold) 1570 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked); 1571 } else { 1572 error = pci_set_low_power_state(dev, state, locked); 1573 1574 if (pci_platform_power_transition(dev, state)) 1575 return error; 1576 } 1577 1578 return 0; 1579 } 1580 1581 /** 1582 * pci_set_power_state - Set the power state of a PCI device 1583 * @dev: PCI device to handle. 1584 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1585 * 1586 * Transition a device to a new power state, using the platform firmware and/or 1587 * the device's PCI PM registers. 1588 * 1589 * RETURN VALUE: 1590 * -EINVAL if the requested state is invalid. 1591 * -EIO if device does not support PCI PM or its PM capabilities register has a 1592 * wrong version, or device doesn't support the requested state. 1593 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1594 * 0 if device already is in the requested state. 1595 * 0 if the transition is to D3 but D3 is not supported. 1596 * 0 if device's power state has been successfully changed. 1597 */ 1598 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1599 { 1600 return __pci_set_power_state(dev, state, false); 1601 } 1602 EXPORT_SYMBOL(pci_set_power_state); 1603 1604 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state) 1605 { 1606 lockdep_assert_held(&pci_bus_sem); 1607 1608 return __pci_set_power_state(dev, state, true); 1609 } 1610 EXPORT_SYMBOL(pci_set_power_state_locked); 1611 1612 #define PCI_EXP_SAVE_REGS 7 1613 1614 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1615 u16 cap, bool extended) 1616 { 1617 struct pci_cap_saved_state *tmp; 1618 1619 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1620 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1621 return tmp; 1622 } 1623 return NULL; 1624 } 1625 1626 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1627 { 1628 return _pci_find_saved_cap(dev, cap, false); 1629 } 1630 1631 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1632 { 1633 return _pci_find_saved_cap(dev, cap, true); 1634 } 1635 1636 static int pci_save_pcie_state(struct pci_dev *dev) 1637 { 1638 int i = 0; 1639 struct pci_cap_saved_state *save_state; 1640 u16 *cap; 1641 1642 if (!pci_is_pcie(dev)) 1643 return 0; 1644 1645 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1646 if (!save_state) { 1647 pci_err(dev, "buffer not found in %s\n", __func__); 1648 return -ENOMEM; 1649 } 1650 1651 cap = (u16 *)&save_state->cap.data[0]; 1652 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1653 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1654 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1655 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1656 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1657 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1658 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1659 1660 pci_save_aspm_l1ss_state(dev); 1661 pci_save_ltr_state(dev); 1662 1663 return 0; 1664 } 1665 1666 static void pci_restore_pcie_state(struct pci_dev *dev) 1667 { 1668 int i = 0; 1669 struct pci_cap_saved_state *save_state; 1670 u16 *cap; 1671 1672 /* 1673 * Restore max latencies (in the LTR capability) before enabling 1674 * LTR itself in PCI_EXP_DEVCTL2. 1675 */ 1676 pci_restore_ltr_state(dev); 1677 pci_restore_aspm_l1ss_state(dev); 1678 1679 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1680 if (!save_state) 1681 return; 1682 1683 /* 1684 * Downstream ports reset the LTR enable bit when link goes down. 1685 * Check and re-configure the bit here before restoring device. 1686 * PCIe r5.0, sec 7.5.3.16. 1687 */ 1688 pci_bridge_reconfigure_ltr(dev); 1689 1690 cap = (u16 *)&save_state->cap.data[0]; 1691 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1692 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1693 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1694 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1695 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1696 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1697 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1698 } 1699 1700 static int pci_save_pcix_state(struct pci_dev *dev) 1701 { 1702 int pos; 1703 struct pci_cap_saved_state *save_state; 1704 1705 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1706 if (!pos) 1707 return 0; 1708 1709 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1710 if (!save_state) { 1711 pci_err(dev, "buffer not found in %s\n", __func__); 1712 return -ENOMEM; 1713 } 1714 1715 pci_read_config_word(dev, pos + PCI_X_CMD, 1716 (u16 *)save_state->cap.data); 1717 1718 return 0; 1719 } 1720 1721 static void pci_restore_pcix_state(struct pci_dev *dev) 1722 { 1723 int i = 0, pos; 1724 struct pci_cap_saved_state *save_state; 1725 u16 *cap; 1726 1727 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1728 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1729 if (!save_state || !pos) 1730 return; 1731 cap = (u16 *)&save_state->cap.data[0]; 1732 1733 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1734 } 1735 1736 /** 1737 * pci_save_state - save the PCI configuration space of a device before 1738 * suspending 1739 * @dev: PCI device that we're dealing with 1740 */ 1741 int pci_save_state(struct pci_dev *dev) 1742 { 1743 int i; 1744 /* XXX: 100% dword access ok here? */ 1745 for (i = 0; i < 16; i++) { 1746 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1747 pci_dbg(dev, "save config %#04x: %#010x\n", 1748 i * 4, dev->saved_config_space[i]); 1749 } 1750 dev->state_saved = true; 1751 1752 i = pci_save_pcie_state(dev); 1753 if (i != 0) 1754 return i; 1755 1756 i = pci_save_pcix_state(dev); 1757 if (i != 0) 1758 return i; 1759 1760 pci_save_dpc_state(dev); 1761 pci_save_aer_state(dev); 1762 pci_save_ptm_state(dev); 1763 pci_save_tph_state(dev); 1764 return pci_save_vc_state(dev); 1765 } 1766 EXPORT_SYMBOL(pci_save_state); 1767 1768 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1769 u32 saved_val, int retry, bool force) 1770 { 1771 u32 val; 1772 1773 pci_read_config_dword(pdev, offset, &val); 1774 if (!force && val == saved_val) 1775 return; 1776 1777 for (;;) { 1778 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1779 offset, val, saved_val); 1780 pci_write_config_dword(pdev, offset, saved_val); 1781 if (retry-- <= 0) 1782 return; 1783 1784 pci_read_config_dword(pdev, offset, &val); 1785 if (val == saved_val) 1786 return; 1787 1788 mdelay(1); 1789 } 1790 } 1791 1792 static void pci_restore_config_space_range(struct pci_dev *pdev, 1793 int start, int end, int retry, 1794 bool force) 1795 { 1796 int index; 1797 1798 for (index = end; index >= start; index--) 1799 pci_restore_config_dword(pdev, 4 * index, 1800 pdev->saved_config_space[index], 1801 retry, force); 1802 } 1803 1804 static void pci_restore_config_space(struct pci_dev *pdev) 1805 { 1806 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1807 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1808 /* Restore BARs before the command register. */ 1809 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1810 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1811 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1812 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1813 1814 /* 1815 * Force rewriting of prefetch registers to avoid S3 resume 1816 * issues on Intel PCI bridges that occur when these 1817 * registers are not explicitly written. 1818 */ 1819 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1820 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1821 } else { 1822 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1823 } 1824 } 1825 1826 static void pci_restore_rebar_state(struct pci_dev *pdev) 1827 { 1828 unsigned int pos, nbars, i; 1829 u32 ctrl; 1830 1831 pos = pdev->rebar_cap; 1832 if (!pos) 1833 return; 1834 1835 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1836 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 1837 1838 for (i = 0; i < nbars; i++, pos += 8) { 1839 struct resource *res; 1840 int bar_idx, size; 1841 1842 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1843 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1844 res = pci_resource_n(pdev, bar_idx); 1845 size = pci_rebar_bytes_to_size(resource_size(res)); 1846 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1847 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 1848 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1849 } 1850 } 1851 1852 /** 1853 * pci_restore_state - Restore the saved state of a PCI device 1854 * @dev: PCI device that we're dealing with 1855 */ 1856 void pci_restore_state(struct pci_dev *dev) 1857 { 1858 if (!dev->state_saved) 1859 return; 1860 1861 pci_restore_pcie_state(dev); 1862 pci_restore_pasid_state(dev); 1863 pci_restore_pri_state(dev); 1864 pci_restore_ats_state(dev); 1865 pci_restore_vc_state(dev); 1866 pci_restore_rebar_state(dev); 1867 pci_restore_dpc_state(dev); 1868 pci_restore_ptm_state(dev); 1869 pci_restore_tph_state(dev); 1870 1871 pci_aer_clear_status(dev); 1872 pci_restore_aer_state(dev); 1873 1874 pci_restore_config_space(dev); 1875 1876 pci_restore_pcix_state(dev); 1877 pci_restore_msi_state(dev); 1878 1879 /* Restore ACS and IOV configuration state */ 1880 pci_enable_acs(dev); 1881 pci_restore_iov_state(dev); 1882 1883 dev->state_saved = false; 1884 } 1885 EXPORT_SYMBOL(pci_restore_state); 1886 1887 struct pci_saved_state { 1888 u32 config_space[16]; 1889 struct pci_cap_saved_data cap[]; 1890 }; 1891 1892 /** 1893 * pci_store_saved_state - Allocate and return an opaque struct containing 1894 * the device saved state. 1895 * @dev: PCI device that we're dealing with 1896 * 1897 * Return NULL if no state or error. 1898 */ 1899 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1900 { 1901 struct pci_saved_state *state; 1902 struct pci_cap_saved_state *tmp; 1903 struct pci_cap_saved_data *cap; 1904 size_t size; 1905 1906 if (!dev->state_saved) 1907 return NULL; 1908 1909 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1910 1911 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1912 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1913 1914 state = kzalloc(size, GFP_KERNEL); 1915 if (!state) 1916 return NULL; 1917 1918 memcpy(state->config_space, dev->saved_config_space, 1919 sizeof(state->config_space)); 1920 1921 cap = state->cap; 1922 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1923 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1924 memcpy(cap, &tmp->cap, len); 1925 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1926 } 1927 /* Empty cap_save terminates list */ 1928 1929 return state; 1930 } 1931 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1932 1933 /** 1934 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1935 * @dev: PCI device that we're dealing with 1936 * @state: Saved state returned from pci_store_saved_state() 1937 */ 1938 int pci_load_saved_state(struct pci_dev *dev, 1939 struct pci_saved_state *state) 1940 { 1941 struct pci_cap_saved_data *cap; 1942 1943 dev->state_saved = false; 1944 1945 if (!state) 1946 return 0; 1947 1948 memcpy(dev->saved_config_space, state->config_space, 1949 sizeof(state->config_space)); 1950 1951 cap = state->cap; 1952 while (cap->size) { 1953 struct pci_cap_saved_state *tmp; 1954 1955 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1956 if (!tmp || tmp->cap.size != cap->size) 1957 return -EINVAL; 1958 1959 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1960 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1961 sizeof(struct pci_cap_saved_data) + cap->size); 1962 } 1963 1964 dev->state_saved = true; 1965 return 0; 1966 } 1967 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1968 1969 /** 1970 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1971 * and free the memory allocated for it. 1972 * @dev: PCI device that we're dealing with 1973 * @state: Pointer to saved state returned from pci_store_saved_state() 1974 */ 1975 int pci_load_and_free_saved_state(struct pci_dev *dev, 1976 struct pci_saved_state **state) 1977 { 1978 int ret = pci_load_saved_state(dev, *state); 1979 kfree(*state); 1980 *state = NULL; 1981 return ret; 1982 } 1983 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1984 1985 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1986 { 1987 return pci_enable_resources(dev, bars); 1988 } 1989 1990 static int pci_host_bridge_enable_device(struct pci_dev *dev) 1991 { 1992 struct pci_host_bridge *host_bridge = pci_find_host_bridge(dev->bus); 1993 int err; 1994 1995 if (host_bridge && host_bridge->enable_device) { 1996 err = host_bridge->enable_device(host_bridge, dev); 1997 if (err) 1998 return err; 1999 } 2000 2001 return 0; 2002 } 2003 2004 static void pci_host_bridge_disable_device(struct pci_dev *dev) 2005 { 2006 struct pci_host_bridge *host_bridge = pci_find_host_bridge(dev->bus); 2007 2008 if (host_bridge && host_bridge->disable_device) 2009 host_bridge->disable_device(host_bridge, dev); 2010 } 2011 2012 static int do_pci_enable_device(struct pci_dev *dev, int bars) 2013 { 2014 int err; 2015 struct pci_dev *bridge; 2016 u16 cmd; 2017 u8 pin; 2018 2019 err = pci_set_power_state(dev, PCI_D0); 2020 if (err < 0 && err != -EIO) 2021 return err; 2022 2023 bridge = pci_upstream_bridge(dev); 2024 if (bridge) 2025 pcie_aspm_powersave_config_link(bridge); 2026 2027 err = pci_host_bridge_enable_device(dev); 2028 if (err) 2029 return err; 2030 2031 err = pcibios_enable_device(dev, bars); 2032 if (err < 0) 2033 goto err_enable; 2034 pci_fixup_device(pci_fixup_enable, dev); 2035 2036 if (dev->msi_enabled || dev->msix_enabled) 2037 return 0; 2038 2039 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 2040 if (pin) { 2041 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2042 if (cmd & PCI_COMMAND_INTX_DISABLE) 2043 pci_write_config_word(dev, PCI_COMMAND, 2044 cmd & ~PCI_COMMAND_INTX_DISABLE); 2045 } 2046 2047 return 0; 2048 2049 err_enable: 2050 pci_host_bridge_disable_device(dev); 2051 2052 return err; 2053 2054 } 2055 2056 /** 2057 * pci_reenable_device - Resume abandoned device 2058 * @dev: PCI device to be resumed 2059 * 2060 * NOTE: This function is a backend of pci_default_resume() and is not supposed 2061 * to be called by normal code, write proper resume handler and use it instead. 2062 */ 2063 int pci_reenable_device(struct pci_dev *dev) 2064 { 2065 if (pci_is_enabled(dev)) 2066 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 2067 return 0; 2068 } 2069 EXPORT_SYMBOL(pci_reenable_device); 2070 2071 static void pci_enable_bridge(struct pci_dev *dev) 2072 { 2073 struct pci_dev *bridge; 2074 int retval; 2075 2076 bridge = pci_upstream_bridge(dev); 2077 if (bridge) 2078 pci_enable_bridge(bridge); 2079 2080 if (pci_is_enabled(dev)) { 2081 if (!dev->is_busmaster) 2082 pci_set_master(dev); 2083 return; 2084 } 2085 2086 retval = pci_enable_device(dev); 2087 if (retval) 2088 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2089 retval); 2090 pci_set_master(dev); 2091 } 2092 2093 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2094 { 2095 struct pci_dev *bridge; 2096 int err; 2097 int i, bars = 0; 2098 2099 /* 2100 * Power state could be unknown at this point, either due to a fresh 2101 * boot or a device removal call. So get the current power state 2102 * so that things like MSI message writing will behave as expected 2103 * (e.g. if the device really is in D0 at enable time). 2104 */ 2105 pci_update_current_state(dev, dev->current_state); 2106 2107 if (atomic_inc_return(&dev->enable_cnt) > 1) 2108 return 0; /* already enabled */ 2109 2110 bridge = pci_upstream_bridge(dev); 2111 if (bridge) 2112 pci_enable_bridge(bridge); 2113 2114 /* only skip sriov related */ 2115 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2116 if (dev->resource[i].flags & flags) 2117 bars |= (1 << i); 2118 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2119 if (dev->resource[i].flags & flags) 2120 bars |= (1 << i); 2121 2122 err = do_pci_enable_device(dev, bars); 2123 if (err < 0) 2124 atomic_dec(&dev->enable_cnt); 2125 return err; 2126 } 2127 2128 /** 2129 * pci_enable_device_mem - Initialize a device for use with Memory space 2130 * @dev: PCI device to be initialized 2131 * 2132 * Initialize device before it's used by a driver. Ask low-level code 2133 * to enable Memory resources. Wake up the device if it was suspended. 2134 * Beware, this function can fail. 2135 */ 2136 int pci_enable_device_mem(struct pci_dev *dev) 2137 { 2138 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2139 } 2140 EXPORT_SYMBOL(pci_enable_device_mem); 2141 2142 /** 2143 * pci_enable_device - Initialize device before it's used by a driver. 2144 * @dev: PCI device to be initialized 2145 * 2146 * Initialize device before it's used by a driver. Ask low-level code 2147 * to enable I/O and memory. Wake up the device if it was suspended. 2148 * Beware, this function can fail. 2149 * 2150 * Note we don't actually enable the device many times if we call 2151 * this function repeatedly (we just increment the count). 2152 */ 2153 int pci_enable_device(struct pci_dev *dev) 2154 { 2155 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2156 } 2157 EXPORT_SYMBOL(pci_enable_device); 2158 2159 /* 2160 * pcibios_device_add - provide arch specific hooks when adding device dev 2161 * @dev: the PCI device being added 2162 * 2163 * Permits the platform to provide architecture specific functionality when 2164 * devices are added. This is the default implementation. Architecture 2165 * implementations can override this. 2166 */ 2167 int __weak pcibios_device_add(struct pci_dev *dev) 2168 { 2169 return 0; 2170 } 2171 2172 /** 2173 * pcibios_release_device - provide arch specific hooks when releasing 2174 * device dev 2175 * @dev: the PCI device being released 2176 * 2177 * Permits the platform to provide architecture specific functionality when 2178 * devices are released. This is the default implementation. Architecture 2179 * implementations can override this. 2180 */ 2181 void __weak pcibios_release_device(struct pci_dev *dev) {} 2182 2183 /** 2184 * pcibios_disable_device - disable arch specific PCI resources for device dev 2185 * @dev: the PCI device to disable 2186 * 2187 * Disables architecture specific PCI resources for the device. This 2188 * is the default implementation. Architecture implementations can 2189 * override this. 2190 */ 2191 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2192 2193 static void do_pci_disable_device(struct pci_dev *dev) 2194 { 2195 u16 pci_command; 2196 2197 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2198 if (pci_command & PCI_COMMAND_MASTER) { 2199 pci_command &= ~PCI_COMMAND_MASTER; 2200 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2201 } 2202 2203 pcibios_disable_device(dev); 2204 } 2205 2206 /** 2207 * pci_disable_enabled_device - Disable device without updating enable_cnt 2208 * @dev: PCI device to disable 2209 * 2210 * NOTE: This function is a backend of PCI power management routines and is 2211 * not supposed to be called drivers. 2212 */ 2213 void pci_disable_enabled_device(struct pci_dev *dev) 2214 { 2215 if (pci_is_enabled(dev)) 2216 do_pci_disable_device(dev); 2217 } 2218 2219 /** 2220 * pci_disable_device - Disable PCI device after use 2221 * @dev: PCI device to be disabled 2222 * 2223 * Signal to the system that the PCI device is not in use by the system 2224 * anymore. This only involves disabling PCI bus-mastering, if active. 2225 * 2226 * Note we don't actually disable the device until all callers of 2227 * pci_enable_device() have called pci_disable_device(). 2228 */ 2229 void pci_disable_device(struct pci_dev *dev) 2230 { 2231 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2232 "disabling already-disabled device"); 2233 2234 if (atomic_dec_return(&dev->enable_cnt) != 0) 2235 return; 2236 2237 pci_host_bridge_disable_device(dev); 2238 2239 do_pci_disable_device(dev); 2240 2241 dev->is_busmaster = 0; 2242 } 2243 EXPORT_SYMBOL(pci_disable_device); 2244 2245 /** 2246 * pcibios_set_pcie_reset_state - set reset state for device dev 2247 * @dev: the PCIe device reset 2248 * @state: Reset state to enter into 2249 * 2250 * Set the PCIe reset state for the device. This is the default 2251 * implementation. Architecture implementations can override this. 2252 */ 2253 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2254 enum pcie_reset_state state) 2255 { 2256 return -EINVAL; 2257 } 2258 2259 /** 2260 * pci_set_pcie_reset_state - set reset state for device dev 2261 * @dev: the PCIe device reset 2262 * @state: Reset state to enter into 2263 * 2264 * Sets the PCI reset state for the device. 2265 */ 2266 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2267 { 2268 return pcibios_set_pcie_reset_state(dev, state); 2269 } 2270 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2271 2272 #ifdef CONFIG_PCIEAER 2273 void pcie_clear_device_status(struct pci_dev *dev) 2274 { 2275 u16 sta; 2276 2277 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2278 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2279 } 2280 #endif 2281 2282 /** 2283 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2284 * @dev: PCIe root port or event collector. 2285 */ 2286 void pcie_clear_root_pme_status(struct pci_dev *dev) 2287 { 2288 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2289 } 2290 2291 /** 2292 * pci_check_pme_status - Check if given device has generated PME. 2293 * @dev: Device to check. 2294 * 2295 * Check the PME status of the device and if set, clear it and clear PME enable 2296 * (if set). Return 'true' if PME status and PME enable were both set or 2297 * 'false' otherwise. 2298 */ 2299 bool pci_check_pme_status(struct pci_dev *dev) 2300 { 2301 int pmcsr_pos; 2302 u16 pmcsr; 2303 bool ret = false; 2304 2305 if (!dev->pm_cap) 2306 return false; 2307 2308 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2309 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2310 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2311 return false; 2312 2313 /* Clear PME status. */ 2314 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2315 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2316 /* Disable PME to avoid interrupt flood. */ 2317 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2318 ret = true; 2319 } 2320 2321 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2322 2323 return ret; 2324 } 2325 2326 /** 2327 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2328 * @dev: Device to handle. 2329 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2330 * 2331 * Check if @dev has generated PME and queue a resume request for it in that 2332 * case. 2333 */ 2334 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2335 { 2336 if (pme_poll_reset && dev->pme_poll) 2337 dev->pme_poll = false; 2338 2339 if (pci_check_pme_status(dev)) { 2340 pci_wakeup_event(dev); 2341 pm_request_resume(&dev->dev); 2342 } 2343 return 0; 2344 } 2345 2346 /** 2347 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2348 * @bus: Top bus of the subtree to walk. 2349 */ 2350 void pci_pme_wakeup_bus(struct pci_bus *bus) 2351 { 2352 if (bus) 2353 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2354 } 2355 2356 2357 /** 2358 * pci_pme_capable - check the capability of PCI device to generate PME# 2359 * @dev: PCI device to handle. 2360 * @state: PCI state from which device will issue PME#. 2361 */ 2362 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2363 { 2364 if (!dev->pm_cap) 2365 return false; 2366 2367 return !!(dev->pme_support & (1 << state)); 2368 } 2369 EXPORT_SYMBOL(pci_pme_capable); 2370 2371 static void pci_pme_list_scan(struct work_struct *work) 2372 { 2373 struct pci_pme_device *pme_dev, *n; 2374 2375 mutex_lock(&pci_pme_list_mutex); 2376 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2377 struct pci_dev *pdev = pme_dev->dev; 2378 2379 if (pdev->pme_poll) { 2380 struct pci_dev *bridge = pdev->bus->self; 2381 struct device *dev = &pdev->dev; 2382 struct device *bdev = bridge ? &bridge->dev : NULL; 2383 int bref = 0; 2384 2385 /* 2386 * If we have a bridge, it should be in an active/D0 2387 * state or the configuration space of subordinate 2388 * devices may not be accessible or stable over the 2389 * course of the call. 2390 */ 2391 if (bdev) { 2392 bref = pm_runtime_get_if_active(bdev); 2393 if (!bref) 2394 continue; 2395 2396 if (bridge->current_state != PCI_D0) 2397 goto put_bridge; 2398 } 2399 2400 /* 2401 * The device itself should be suspended but config 2402 * space must be accessible, therefore it cannot be in 2403 * D3cold. 2404 */ 2405 if (pm_runtime_suspended(dev) && 2406 pdev->current_state != PCI_D3cold) 2407 pci_pme_wakeup(pdev, NULL); 2408 2409 put_bridge: 2410 if (bref > 0) 2411 pm_runtime_put(bdev); 2412 } else { 2413 list_del(&pme_dev->list); 2414 kfree(pme_dev); 2415 } 2416 } 2417 if (!list_empty(&pci_pme_list)) 2418 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2419 msecs_to_jiffies(PME_TIMEOUT)); 2420 mutex_unlock(&pci_pme_list_mutex); 2421 } 2422 2423 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2424 { 2425 u16 pmcsr; 2426 2427 if (!dev->pme_support) 2428 return; 2429 2430 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2431 /* Clear PME_Status by writing 1 to it and enable PME# */ 2432 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2433 if (!enable) 2434 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2435 2436 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2437 } 2438 2439 /** 2440 * pci_pme_restore - Restore PME configuration after config space restore. 2441 * @dev: PCI device to update. 2442 */ 2443 void pci_pme_restore(struct pci_dev *dev) 2444 { 2445 u16 pmcsr; 2446 2447 if (!dev->pme_support) 2448 return; 2449 2450 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2451 if (dev->wakeup_prepared) { 2452 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2453 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2454 } else { 2455 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2456 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2457 } 2458 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2459 } 2460 2461 /** 2462 * pci_pme_active - enable or disable PCI device's PME# function 2463 * @dev: PCI device to handle. 2464 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2465 * 2466 * The caller must verify that the device is capable of generating PME# before 2467 * calling this function with @enable equal to 'true'. 2468 */ 2469 void pci_pme_active(struct pci_dev *dev, bool enable) 2470 { 2471 __pci_pme_active(dev, enable); 2472 2473 /* 2474 * PCI (as opposed to PCIe) PME requires that the device have 2475 * its PME# line hooked up correctly. Not all hardware vendors 2476 * do this, so the PME never gets delivered and the device 2477 * remains asleep. The easiest way around this is to 2478 * periodically walk the list of suspended devices and check 2479 * whether any have their PME flag set. The assumption is that 2480 * we'll wake up often enough anyway that this won't be a huge 2481 * hit, and the power savings from the devices will still be a 2482 * win. 2483 * 2484 * Although PCIe uses in-band PME message instead of PME# line 2485 * to report PME, PME does not work for some PCIe devices in 2486 * reality. For example, there are devices that set their PME 2487 * status bits, but don't really bother to send a PME message; 2488 * there are PCI Express Root Ports that don't bother to 2489 * trigger interrupts when they receive PME messages from the 2490 * devices below. So PME poll is used for PCIe devices too. 2491 */ 2492 2493 if (dev->pme_poll) { 2494 struct pci_pme_device *pme_dev; 2495 if (enable) { 2496 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2497 GFP_KERNEL); 2498 if (!pme_dev) { 2499 pci_warn(dev, "can't enable PME#\n"); 2500 return; 2501 } 2502 pme_dev->dev = dev; 2503 mutex_lock(&pci_pme_list_mutex); 2504 list_add(&pme_dev->list, &pci_pme_list); 2505 if (list_is_singular(&pci_pme_list)) 2506 queue_delayed_work(system_freezable_wq, 2507 &pci_pme_work, 2508 msecs_to_jiffies(PME_TIMEOUT)); 2509 mutex_unlock(&pci_pme_list_mutex); 2510 } else { 2511 mutex_lock(&pci_pme_list_mutex); 2512 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2513 if (pme_dev->dev == dev) { 2514 list_del(&pme_dev->list); 2515 kfree(pme_dev); 2516 break; 2517 } 2518 } 2519 mutex_unlock(&pci_pme_list_mutex); 2520 } 2521 } 2522 2523 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2524 } 2525 EXPORT_SYMBOL(pci_pme_active); 2526 2527 /** 2528 * __pci_enable_wake - enable PCI device as wakeup event source 2529 * @dev: PCI device affected 2530 * @state: PCI state from which device will issue wakeup events 2531 * @enable: True to enable event generation; false to disable 2532 * 2533 * This enables the device as a wakeup event source, or disables it. 2534 * When such events involves platform-specific hooks, those hooks are 2535 * called automatically by this routine. 2536 * 2537 * Devices with legacy power management (no standard PCI PM capabilities) 2538 * always require such platform hooks. 2539 * 2540 * RETURN VALUE: 2541 * 0 is returned on success 2542 * -EINVAL is returned if device is not supposed to wake up the system 2543 * Error code depending on the platform is returned if both the platform and 2544 * the native mechanism fail to enable the generation of wake-up events 2545 */ 2546 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2547 { 2548 int ret = 0; 2549 2550 /* 2551 * Bridges that are not power-manageable directly only signal 2552 * wakeup on behalf of subordinate devices which is set up 2553 * elsewhere, so skip them. However, bridges that are 2554 * power-manageable may signal wakeup for themselves (for example, 2555 * on a hotplug event) and they need to be covered here. 2556 */ 2557 if (!pci_power_manageable(dev)) 2558 return 0; 2559 2560 /* Don't do the same thing twice in a row for one device. */ 2561 if (!!enable == !!dev->wakeup_prepared) 2562 return 0; 2563 2564 /* 2565 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2566 * Anderson we should be doing PME# wake enable followed by ACPI wake 2567 * enable. To disable wake-up we call the platform first, for symmetry. 2568 */ 2569 2570 if (enable) { 2571 int error; 2572 2573 /* 2574 * Enable PME signaling if the device can signal PME from 2575 * D3cold regardless of whether or not it can signal PME from 2576 * the current target state, because that will allow it to 2577 * signal PME when the hierarchy above it goes into D3cold and 2578 * the device itself ends up in D3cold as a result of that. 2579 */ 2580 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2581 pci_pme_active(dev, true); 2582 else 2583 ret = 1; 2584 error = platform_pci_set_wakeup(dev, true); 2585 if (ret) 2586 ret = error; 2587 if (!ret) 2588 dev->wakeup_prepared = true; 2589 } else { 2590 platform_pci_set_wakeup(dev, false); 2591 pci_pme_active(dev, false); 2592 dev->wakeup_prepared = false; 2593 } 2594 2595 return ret; 2596 } 2597 2598 /** 2599 * pci_enable_wake - change wakeup settings for a PCI device 2600 * @pci_dev: Target device 2601 * @state: PCI state from which device will issue wakeup events 2602 * @enable: Whether or not to enable event generation 2603 * 2604 * If @enable is set, check device_may_wakeup() for the device before calling 2605 * __pci_enable_wake() for it. 2606 */ 2607 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2608 { 2609 if (enable && !device_may_wakeup(&pci_dev->dev)) 2610 return -EINVAL; 2611 2612 return __pci_enable_wake(pci_dev, state, enable); 2613 } 2614 EXPORT_SYMBOL(pci_enable_wake); 2615 2616 /** 2617 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2618 * @dev: PCI device to prepare 2619 * @enable: True to enable wake-up event generation; false to disable 2620 * 2621 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2622 * and this function allows them to set that up cleanly - pci_enable_wake() 2623 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2624 * ordering constraints. 2625 * 2626 * This function only returns error code if the device is not allowed to wake 2627 * up the system from sleep or it is not capable of generating PME# from both 2628 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2629 */ 2630 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2631 { 2632 return pci_pme_capable(dev, PCI_D3cold) ? 2633 pci_enable_wake(dev, PCI_D3cold, enable) : 2634 pci_enable_wake(dev, PCI_D3hot, enable); 2635 } 2636 EXPORT_SYMBOL(pci_wake_from_d3); 2637 2638 /** 2639 * pci_target_state - find an appropriate low power state for a given PCI dev 2640 * @dev: PCI device 2641 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2642 * 2643 * Use underlying platform code to find a supported low power state for @dev. 2644 * If the platform can't manage @dev, return the deepest state from which it 2645 * can generate wake events, based on any available PME info. 2646 */ 2647 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2648 { 2649 if (platform_pci_power_manageable(dev)) { 2650 /* 2651 * Call the platform to find the target state for the device. 2652 */ 2653 pci_power_t state = platform_pci_choose_state(dev); 2654 2655 switch (state) { 2656 case PCI_POWER_ERROR: 2657 case PCI_UNKNOWN: 2658 return PCI_D3hot; 2659 2660 case PCI_D1: 2661 case PCI_D2: 2662 if (pci_no_d1d2(dev)) 2663 return PCI_D3hot; 2664 } 2665 2666 return state; 2667 } 2668 2669 /* 2670 * If the device is in D3cold even though it's not power-manageable by 2671 * the platform, it may have been powered down by non-standard means. 2672 * Best to let it slumber. 2673 */ 2674 if (dev->current_state == PCI_D3cold) 2675 return PCI_D3cold; 2676 else if (!dev->pm_cap) 2677 return PCI_D0; 2678 2679 if (wakeup && dev->pme_support) { 2680 pci_power_t state = PCI_D3hot; 2681 2682 /* 2683 * Find the deepest state from which the device can generate 2684 * PME#. 2685 */ 2686 while (state && !(dev->pme_support & (1 << state))) 2687 state--; 2688 2689 if (state) 2690 return state; 2691 else if (dev->pme_support & 1) 2692 return PCI_D0; 2693 } 2694 2695 return PCI_D3hot; 2696 } 2697 2698 /** 2699 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2700 * into a sleep state 2701 * @dev: Device to handle. 2702 * 2703 * Choose the power state appropriate for the device depending on whether 2704 * it can wake up the system and/or is power manageable by the platform 2705 * (PCI_D3hot is the default) and put the device into that state. 2706 */ 2707 int pci_prepare_to_sleep(struct pci_dev *dev) 2708 { 2709 bool wakeup = device_may_wakeup(&dev->dev); 2710 pci_power_t target_state = pci_target_state(dev, wakeup); 2711 int error; 2712 2713 if (target_state == PCI_POWER_ERROR) 2714 return -EIO; 2715 2716 pci_enable_wake(dev, target_state, wakeup); 2717 2718 error = pci_set_power_state(dev, target_state); 2719 2720 if (error) 2721 pci_enable_wake(dev, target_state, false); 2722 2723 return error; 2724 } 2725 EXPORT_SYMBOL(pci_prepare_to_sleep); 2726 2727 /** 2728 * pci_back_from_sleep - turn PCI device on during system-wide transition 2729 * into working state 2730 * @dev: Device to handle. 2731 * 2732 * Disable device's system wake-up capability and put it into D0. 2733 */ 2734 int pci_back_from_sleep(struct pci_dev *dev) 2735 { 2736 int ret = pci_set_power_state(dev, PCI_D0); 2737 2738 if (ret) 2739 return ret; 2740 2741 pci_enable_wake(dev, PCI_D0, false); 2742 return 0; 2743 } 2744 EXPORT_SYMBOL(pci_back_from_sleep); 2745 2746 /** 2747 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2748 * @dev: PCI device being suspended. 2749 * 2750 * Prepare @dev to generate wake-up events at run time and put it into a low 2751 * power state. 2752 */ 2753 int pci_finish_runtime_suspend(struct pci_dev *dev) 2754 { 2755 pci_power_t target_state; 2756 int error; 2757 2758 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2759 if (target_state == PCI_POWER_ERROR) 2760 return -EIO; 2761 2762 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2763 2764 error = pci_set_power_state(dev, target_state); 2765 2766 if (error) 2767 pci_enable_wake(dev, target_state, false); 2768 2769 return error; 2770 } 2771 2772 /** 2773 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2774 * @dev: Device to check. 2775 * 2776 * Return true if the device itself is capable of generating wake-up events 2777 * (through the platform or using the native PCIe PME) or if the device supports 2778 * PME and one of its upstream bridges can generate wake-up events. 2779 */ 2780 bool pci_dev_run_wake(struct pci_dev *dev) 2781 { 2782 struct pci_bus *bus = dev->bus; 2783 2784 if (!dev->pme_support) 2785 return false; 2786 2787 /* PME-capable in principle, but not from the target power state */ 2788 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2789 return false; 2790 2791 if (device_can_wakeup(&dev->dev)) 2792 return true; 2793 2794 while (bus->parent) { 2795 struct pci_dev *bridge = bus->self; 2796 2797 if (device_can_wakeup(&bridge->dev)) 2798 return true; 2799 2800 bus = bus->parent; 2801 } 2802 2803 /* We have reached the root bus. */ 2804 if (bus->bridge) 2805 return device_can_wakeup(bus->bridge); 2806 2807 return false; 2808 } 2809 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2810 2811 /** 2812 * pci_dev_need_resume - Check if it is necessary to resume the device. 2813 * @pci_dev: Device to check. 2814 * 2815 * Return 'true' if the device is not runtime-suspended or it has to be 2816 * reconfigured due to wakeup settings difference between system and runtime 2817 * suspend, or the current power state of it is not suitable for the upcoming 2818 * (system-wide) transition. 2819 */ 2820 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2821 { 2822 struct device *dev = &pci_dev->dev; 2823 pci_power_t target_state; 2824 2825 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2826 return true; 2827 2828 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2829 2830 /* 2831 * If the earlier platform check has not triggered, D3cold is just power 2832 * removal on top of D3hot, so no need to resume the device in that 2833 * case. 2834 */ 2835 return target_state != pci_dev->current_state && 2836 target_state != PCI_D3cold && 2837 pci_dev->current_state != PCI_D3hot; 2838 } 2839 2840 /** 2841 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2842 * @pci_dev: Device to check. 2843 * 2844 * If the device is suspended and it is not configured for system wakeup, 2845 * disable PME for it to prevent it from waking up the system unnecessarily. 2846 * 2847 * Note that if the device's power state is D3cold and the platform check in 2848 * pci_dev_need_resume() has not triggered, the device's configuration need not 2849 * be changed. 2850 */ 2851 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2852 { 2853 struct device *dev = &pci_dev->dev; 2854 2855 spin_lock_irq(&dev->power.lock); 2856 2857 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2858 pci_dev->current_state < PCI_D3cold) 2859 __pci_pme_active(pci_dev, false); 2860 2861 spin_unlock_irq(&dev->power.lock); 2862 } 2863 2864 /** 2865 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2866 * @pci_dev: Device to handle. 2867 * 2868 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2869 * it might have been disabled during the prepare phase of system suspend if 2870 * the device was not configured for system wakeup. 2871 */ 2872 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2873 { 2874 struct device *dev = &pci_dev->dev; 2875 2876 if (!pci_dev_run_wake(pci_dev)) 2877 return; 2878 2879 spin_lock_irq(&dev->power.lock); 2880 2881 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2882 __pci_pme_active(pci_dev, true); 2883 2884 spin_unlock_irq(&dev->power.lock); 2885 } 2886 2887 /** 2888 * pci_choose_state - Choose the power state of a PCI device. 2889 * @dev: Target PCI device. 2890 * @state: Target state for the whole system. 2891 * 2892 * Returns PCI power state suitable for @dev and @state. 2893 */ 2894 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2895 { 2896 if (state.event == PM_EVENT_ON) 2897 return PCI_D0; 2898 2899 return pci_target_state(dev, false); 2900 } 2901 EXPORT_SYMBOL(pci_choose_state); 2902 2903 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2904 { 2905 struct device *dev = &pdev->dev; 2906 struct device *parent = dev->parent; 2907 2908 if (parent) 2909 pm_runtime_get_sync(parent); 2910 pm_runtime_get_noresume(dev); 2911 /* 2912 * pdev->current_state is set to PCI_D3cold during suspending, 2913 * so wait until suspending completes 2914 */ 2915 pm_runtime_barrier(dev); 2916 /* 2917 * Only need to resume devices in D3cold, because config 2918 * registers are still accessible for devices suspended but 2919 * not in D3cold. 2920 */ 2921 if (pdev->current_state == PCI_D3cold) 2922 pm_runtime_resume(dev); 2923 } 2924 2925 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2926 { 2927 struct device *dev = &pdev->dev; 2928 struct device *parent = dev->parent; 2929 2930 pm_runtime_put(dev); 2931 if (parent) 2932 pm_runtime_put_sync(parent); 2933 } 2934 2935 static const struct dmi_system_id bridge_d3_blacklist[] = { 2936 #ifdef CONFIG_X86 2937 { 2938 /* 2939 * Gigabyte X299 root port is not marked as hotplug capable 2940 * which allows Linux to power manage it. However, this 2941 * confuses the BIOS SMI handler so don't power manage root 2942 * ports on that system. 2943 */ 2944 .ident = "X299 DESIGNARE EX-CF", 2945 .matches = { 2946 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2947 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2948 }, 2949 }, 2950 { 2951 /* 2952 * Downstream device is not accessible after putting a root port 2953 * into D3cold and back into D0 on Elo Continental Z2 board 2954 */ 2955 .ident = "Elo Continental Z2", 2956 .matches = { 2957 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 2958 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 2959 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 2960 }, 2961 }, 2962 { 2963 /* 2964 * Changing power state of root port dGPU is connected fails 2965 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229 2966 */ 2967 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972", 2968 .matches = { 2969 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"), 2970 DMI_MATCH(DMI_BOARD_NAME, "1972"), 2971 DMI_MATCH(DMI_BOARD_VERSION, "95.33"), 2972 }, 2973 }, 2974 #endif 2975 { } 2976 }; 2977 2978 /** 2979 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2980 * @bridge: Bridge to check 2981 * 2982 * Currently we only allow D3 for some PCIe ports and for Thunderbolt. 2983 * 2984 * Return: Whether it is possible to move the bridge to D3. 2985 * 2986 * The return value is guaranteed to be constant across the entire lifetime 2987 * of the bridge, including its hot-removal. 2988 */ 2989 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2990 { 2991 if (!pci_is_pcie(bridge)) 2992 return false; 2993 2994 switch (pci_pcie_type(bridge)) { 2995 case PCI_EXP_TYPE_ROOT_PORT: 2996 case PCI_EXP_TYPE_UPSTREAM: 2997 case PCI_EXP_TYPE_DOWNSTREAM: 2998 if (pci_bridge_d3_disable) 2999 return false; 3000 3001 /* 3002 * Hotplug ports handled by platform firmware may not be put 3003 * into D3 by the OS, e.g. ACPI slots ... 3004 */ 3005 if (bridge->is_hotplug_bridge && !bridge->is_pciehp) 3006 return false; 3007 3008 /* ... or PCIe hotplug ports not handled natively by the OS. */ 3009 if (bridge->is_pciehp && !pciehp_is_native(bridge)) 3010 return false; 3011 3012 if (pci_bridge_d3_force) 3013 return true; 3014 3015 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3016 if (bridge->is_thunderbolt) 3017 return true; 3018 3019 /* Platform might know better if the bridge supports D3 */ 3020 if (platform_pci_bridge_d3(bridge)) 3021 return true; 3022 3023 /* 3024 * Hotplug ports handled natively by the OS were not validated 3025 * by vendors for runtime D3 at least until 2018 because there 3026 * was no OS support. 3027 */ 3028 if (bridge->is_pciehp) 3029 return false; 3030 3031 if (dmi_check_system(bridge_d3_blacklist)) 3032 return false; 3033 3034 /* 3035 * Out of caution, we only allow PCIe ports from 2015 or newer 3036 * into D3 on x86. 3037 */ 3038 if (!IS_ENABLED(CONFIG_X86) || dmi_get_bios_year() >= 2015) 3039 return true; 3040 break; 3041 } 3042 3043 return false; 3044 } 3045 3046 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3047 { 3048 bool *d3cold_ok = data; 3049 3050 if (/* The device needs to be allowed to go D3cold ... */ 3051 dev->no_d3cold || !dev->d3cold_allowed || 3052 3053 /* ... and if it is wakeup capable to do so from D3cold. */ 3054 (device_may_wakeup(&dev->dev) && 3055 !pci_pme_capable(dev, PCI_D3cold)) || 3056 3057 /* If it is a bridge it must be allowed to go to D3. */ 3058 !pci_power_manageable(dev)) 3059 3060 *d3cold_ok = false; 3061 3062 return !*d3cold_ok; 3063 } 3064 3065 /* 3066 * pci_bridge_d3_update - Update bridge D3 capabilities 3067 * @dev: PCI device which is changed 3068 * 3069 * Update upstream bridge PM capabilities accordingly depending on if the 3070 * device PM configuration was changed or the device is being removed. The 3071 * change is also propagated upstream. 3072 */ 3073 void pci_bridge_d3_update(struct pci_dev *dev) 3074 { 3075 bool remove = !device_is_registered(&dev->dev); 3076 struct pci_dev *bridge; 3077 bool d3cold_ok = true; 3078 3079 bridge = pci_upstream_bridge(dev); 3080 if (!bridge || !pci_bridge_d3_possible(bridge)) 3081 return; 3082 3083 /* 3084 * If D3 is currently allowed for the bridge, removing one of its 3085 * children won't change that. 3086 */ 3087 if (remove && bridge->bridge_d3) 3088 return; 3089 3090 /* 3091 * If D3 is currently allowed for the bridge and a child is added or 3092 * changed, disallowance of D3 can only be caused by that child, so 3093 * we only need to check that single device, not any of its siblings. 3094 * 3095 * If D3 is currently not allowed for the bridge, checking the device 3096 * first may allow us to skip checking its siblings. 3097 */ 3098 if (!remove) 3099 pci_dev_check_d3cold(dev, &d3cold_ok); 3100 3101 /* 3102 * If D3 is currently not allowed for the bridge, this may be caused 3103 * either by the device being changed/removed or any of its siblings, 3104 * so we need to go through all children to find out if one of them 3105 * continues to block D3. 3106 */ 3107 if (d3cold_ok && !bridge->bridge_d3) 3108 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3109 &d3cold_ok); 3110 3111 if (bridge->bridge_d3 != d3cold_ok) { 3112 bridge->bridge_d3 = d3cold_ok; 3113 /* Propagate change to upstream bridges */ 3114 pci_bridge_d3_update(bridge); 3115 } 3116 } 3117 3118 /** 3119 * pci_d3cold_enable - Enable D3cold for device 3120 * @dev: PCI device to handle 3121 * 3122 * This function can be used in drivers to enable D3cold from the device 3123 * they handle. It also updates upstream PCI bridge PM capabilities 3124 * accordingly. 3125 */ 3126 void pci_d3cold_enable(struct pci_dev *dev) 3127 { 3128 if (dev->no_d3cold) { 3129 dev->no_d3cold = false; 3130 pci_bridge_d3_update(dev); 3131 } 3132 } 3133 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3134 3135 /** 3136 * pci_d3cold_disable - Disable D3cold for device 3137 * @dev: PCI device to handle 3138 * 3139 * This function can be used in drivers to disable D3cold from the device 3140 * they handle. It also updates upstream PCI bridge PM capabilities 3141 * accordingly. 3142 */ 3143 void pci_d3cold_disable(struct pci_dev *dev) 3144 { 3145 if (!dev->no_d3cold) { 3146 dev->no_d3cold = true; 3147 pci_bridge_d3_update(dev); 3148 } 3149 } 3150 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3151 3152 void pci_pm_power_up_and_verify_state(struct pci_dev *pci_dev) 3153 { 3154 pci_power_up(pci_dev); 3155 pci_update_current_state(pci_dev, PCI_D0); 3156 } 3157 3158 /** 3159 * pci_pm_init - Initialize PM functions of given PCI device 3160 * @dev: PCI device to handle. 3161 */ 3162 void pci_pm_init(struct pci_dev *dev) 3163 { 3164 int pm; 3165 u16 pmc; 3166 3167 device_enable_async_suspend(&dev->dev); 3168 dev->wakeup_prepared = false; 3169 3170 dev->pm_cap = 0; 3171 dev->pme_support = 0; 3172 3173 /* find PCI PM capability in list */ 3174 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3175 if (!pm) 3176 goto poweron; 3177 /* Check device's ability to generate PME# */ 3178 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3179 3180 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3181 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3182 pmc & PCI_PM_CAP_VER_MASK); 3183 goto poweron; 3184 } 3185 3186 dev->pm_cap = pm; 3187 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3188 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3189 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3190 dev->d3cold_allowed = true; 3191 3192 dev->d1_support = false; 3193 dev->d2_support = false; 3194 if (!pci_no_d1d2(dev)) { 3195 if (pmc & PCI_PM_CAP_D1) 3196 dev->d1_support = true; 3197 if (pmc & PCI_PM_CAP_D2) 3198 dev->d2_support = true; 3199 3200 if (dev->d1_support || dev->d2_support) 3201 pci_info(dev, "supports%s%s\n", 3202 dev->d1_support ? " D1" : "", 3203 dev->d2_support ? " D2" : ""); 3204 } 3205 3206 pmc &= PCI_PM_CAP_PME_MASK; 3207 if (pmc) { 3208 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3209 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3210 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3211 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3212 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3213 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3214 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc); 3215 dev->pme_poll = true; 3216 /* 3217 * Make device's PM flags reflect the wake-up capability, but 3218 * let the user space enable it to wake up the system as needed. 3219 */ 3220 device_set_wakeup_capable(&dev->dev, true); 3221 /* Disable the PME# generation functionality */ 3222 pci_pme_active(dev, false); 3223 } 3224 3225 poweron: 3226 pci_pm_power_up_and_verify_state(dev); 3227 pm_runtime_forbid(&dev->dev); 3228 pm_runtime_set_active(&dev->dev); 3229 pm_runtime_enable(&dev->dev); 3230 } 3231 3232 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3233 { 3234 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3235 3236 switch (prop) { 3237 case PCI_EA_P_MEM: 3238 case PCI_EA_P_VF_MEM: 3239 flags |= IORESOURCE_MEM; 3240 break; 3241 case PCI_EA_P_MEM_PREFETCH: 3242 case PCI_EA_P_VF_MEM_PREFETCH: 3243 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3244 break; 3245 case PCI_EA_P_IO: 3246 flags |= IORESOURCE_IO; 3247 break; 3248 default: 3249 return 0; 3250 } 3251 3252 return flags; 3253 } 3254 3255 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3256 u8 prop) 3257 { 3258 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3259 return &dev->resource[bei]; 3260 #ifdef CONFIG_PCI_IOV 3261 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3262 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3263 return &dev->resource[PCI_IOV_RESOURCES + 3264 bei - PCI_EA_BEI_VF_BAR0]; 3265 #endif 3266 else if (bei == PCI_EA_BEI_ROM) 3267 return &dev->resource[PCI_ROM_RESOURCE]; 3268 else 3269 return NULL; 3270 } 3271 3272 /* Read an Enhanced Allocation (EA) entry */ 3273 static int pci_ea_read(struct pci_dev *dev, int offset) 3274 { 3275 struct resource *res; 3276 const char *res_name; 3277 int ent_size, ent_offset = offset; 3278 resource_size_t start, end; 3279 unsigned long flags; 3280 u32 dw0, bei, base, max_offset; 3281 u8 prop; 3282 bool support_64 = (sizeof(resource_size_t) >= 8); 3283 3284 pci_read_config_dword(dev, ent_offset, &dw0); 3285 ent_offset += 4; 3286 3287 /* Entry size field indicates DWORDs after 1st */ 3288 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2; 3289 3290 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3291 goto out; 3292 3293 bei = FIELD_GET(PCI_EA_BEI, dw0); 3294 prop = FIELD_GET(PCI_EA_PP, dw0); 3295 3296 /* 3297 * If the Property is in the reserved range, try the Secondary 3298 * Property instead. 3299 */ 3300 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3301 prop = FIELD_GET(PCI_EA_SP, dw0); 3302 if (prop > PCI_EA_P_BRIDGE_IO) 3303 goto out; 3304 3305 res = pci_ea_get_resource(dev, bei, prop); 3306 res_name = pci_resource_name(dev, bei); 3307 if (!res) { 3308 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3309 goto out; 3310 } 3311 3312 flags = pci_ea_flags(dev, prop); 3313 if (!flags) { 3314 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3315 goto out; 3316 } 3317 3318 /* Read Base */ 3319 pci_read_config_dword(dev, ent_offset, &base); 3320 start = (base & PCI_EA_FIELD_MASK); 3321 ent_offset += 4; 3322 3323 /* Read MaxOffset */ 3324 pci_read_config_dword(dev, ent_offset, &max_offset); 3325 ent_offset += 4; 3326 3327 /* Read Base MSBs (if 64-bit entry) */ 3328 if (base & PCI_EA_IS_64) { 3329 u32 base_upper; 3330 3331 pci_read_config_dword(dev, ent_offset, &base_upper); 3332 ent_offset += 4; 3333 3334 flags |= IORESOURCE_MEM_64; 3335 3336 /* entry starts above 32-bit boundary, can't use */ 3337 if (!support_64 && base_upper) 3338 goto out; 3339 3340 if (support_64) 3341 start |= ((u64)base_upper << 32); 3342 } 3343 3344 end = start + (max_offset | 0x03); 3345 3346 /* Read MaxOffset MSBs (if 64-bit entry) */ 3347 if (max_offset & PCI_EA_IS_64) { 3348 u32 max_offset_upper; 3349 3350 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3351 ent_offset += 4; 3352 3353 flags |= IORESOURCE_MEM_64; 3354 3355 /* entry too big, can't use */ 3356 if (!support_64 && max_offset_upper) 3357 goto out; 3358 3359 if (support_64) 3360 end += ((u64)max_offset_upper << 32); 3361 } 3362 3363 if (end < start) { 3364 pci_err(dev, "EA Entry crosses address boundary\n"); 3365 goto out; 3366 } 3367 3368 if (ent_size != ent_offset - offset) { 3369 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3370 ent_size, ent_offset - offset); 3371 goto out; 3372 } 3373 3374 res->name = pci_name(dev); 3375 res->start = start; 3376 res->end = end; 3377 res->flags = flags; 3378 3379 if (bei <= PCI_EA_BEI_BAR5) 3380 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3381 res_name, res, prop); 3382 else if (bei == PCI_EA_BEI_ROM) 3383 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3384 res_name, res, prop); 3385 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3386 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3387 res_name, res, prop); 3388 else 3389 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n", 3390 bei, res, prop); 3391 3392 out: 3393 return offset + ent_size; 3394 } 3395 3396 /* Enhanced Allocation Initialization */ 3397 void pci_ea_init(struct pci_dev *dev) 3398 { 3399 int ea; 3400 u8 num_ent; 3401 int offset; 3402 int i; 3403 3404 /* find PCI EA capability in list */ 3405 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3406 if (!ea) 3407 return; 3408 3409 /* determine the number of entries */ 3410 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3411 &num_ent); 3412 num_ent &= PCI_EA_NUM_ENT_MASK; 3413 3414 offset = ea + PCI_EA_FIRST_ENT; 3415 3416 /* Skip DWORD 2 for type 1 functions */ 3417 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3418 offset += 4; 3419 3420 /* parse each EA entry */ 3421 for (i = 0; i < num_ent; ++i) 3422 offset = pci_ea_read(dev, offset); 3423 } 3424 3425 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3426 struct pci_cap_saved_state *new_cap) 3427 { 3428 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3429 } 3430 3431 /** 3432 * _pci_add_cap_save_buffer - allocate buffer for saving given 3433 * capability registers 3434 * @dev: the PCI device 3435 * @cap: the capability to allocate the buffer for 3436 * @extended: Standard or Extended capability ID 3437 * @size: requested size of the buffer 3438 */ 3439 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3440 bool extended, unsigned int size) 3441 { 3442 int pos; 3443 struct pci_cap_saved_state *save_state; 3444 3445 if (extended) 3446 pos = pci_find_ext_capability(dev, cap); 3447 else 3448 pos = pci_find_capability(dev, cap); 3449 3450 if (!pos) 3451 return 0; 3452 3453 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3454 if (!save_state) 3455 return -ENOMEM; 3456 3457 save_state->cap.cap_nr = cap; 3458 save_state->cap.cap_extended = extended; 3459 save_state->cap.size = size; 3460 pci_add_saved_cap(dev, save_state); 3461 3462 return 0; 3463 } 3464 3465 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3466 { 3467 return _pci_add_cap_save_buffer(dev, cap, false, size); 3468 } 3469 3470 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3471 { 3472 return _pci_add_cap_save_buffer(dev, cap, true, size); 3473 } 3474 3475 /** 3476 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3477 * @dev: the PCI device 3478 */ 3479 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3480 { 3481 int error; 3482 3483 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3484 PCI_EXP_SAVE_REGS * sizeof(u16)); 3485 if (error) 3486 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3487 3488 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3489 if (error) 3490 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3491 3492 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3493 2 * sizeof(u16)); 3494 if (error) 3495 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3496 3497 pci_allocate_vc_save_buffers(dev); 3498 } 3499 3500 void pci_free_cap_save_buffers(struct pci_dev *dev) 3501 { 3502 struct pci_cap_saved_state *tmp; 3503 struct hlist_node *n; 3504 3505 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3506 kfree(tmp); 3507 } 3508 3509 /** 3510 * pci_configure_ari - enable or disable ARI forwarding 3511 * @dev: the PCI device 3512 * 3513 * If @dev and its upstream bridge both support ARI, enable ARI in the 3514 * bridge. Otherwise, disable ARI in the bridge. 3515 */ 3516 void pci_configure_ari(struct pci_dev *dev) 3517 { 3518 u32 cap; 3519 struct pci_dev *bridge; 3520 3521 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3522 return; 3523 3524 bridge = dev->bus->self; 3525 if (!bridge) 3526 return; 3527 3528 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3529 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3530 return; 3531 3532 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3533 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3534 PCI_EXP_DEVCTL2_ARI); 3535 bridge->ari_enabled = 1; 3536 } else { 3537 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3538 PCI_EXP_DEVCTL2_ARI); 3539 bridge->ari_enabled = 0; 3540 } 3541 } 3542 3543 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3544 { 3545 int pos; 3546 u16 cap, ctrl; 3547 3548 pos = pdev->acs_cap; 3549 if (!pos) 3550 return false; 3551 3552 /* 3553 * Except for egress control, capabilities are either required 3554 * or only required if controllable. Features missing from the 3555 * capability field can therefore be assumed as hard-wired enabled. 3556 */ 3557 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3558 acs_flags &= (cap | PCI_ACS_EC); 3559 3560 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3561 return (ctrl & acs_flags) == acs_flags; 3562 } 3563 3564 /** 3565 * pci_acs_enabled - test ACS against required flags for a given device 3566 * @pdev: device to test 3567 * @acs_flags: required PCI ACS flags 3568 * 3569 * Return true if the device supports the provided flags. Automatically 3570 * filters out flags that are not implemented on multifunction devices. 3571 * 3572 * Note that this interface checks the effective ACS capabilities of the 3573 * device rather than the actual capabilities. For instance, most single 3574 * function endpoints are not required to support ACS because they have no 3575 * opportunity for peer-to-peer access. We therefore return 'true' 3576 * regardless of whether the device exposes an ACS capability. This makes 3577 * it much easier for callers of this function to ignore the actual type 3578 * or topology of the device when testing ACS support. 3579 */ 3580 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3581 { 3582 int ret; 3583 3584 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3585 if (ret >= 0) 3586 return ret > 0; 3587 3588 /* 3589 * Conventional PCI and PCI-X devices never support ACS, either 3590 * effectively or actually. The shared bus topology implies that 3591 * any device on the bus can receive or snoop DMA. 3592 */ 3593 if (!pci_is_pcie(pdev)) 3594 return false; 3595 3596 switch (pci_pcie_type(pdev)) { 3597 /* 3598 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3599 * but since their primary interface is PCI/X, we conservatively 3600 * handle them as we would a non-PCIe device. 3601 */ 3602 case PCI_EXP_TYPE_PCIE_BRIDGE: 3603 /* 3604 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3605 * applicable... must never implement an ACS Extended Capability...". 3606 * This seems arbitrary, but we take a conservative interpretation 3607 * of this statement. 3608 */ 3609 case PCI_EXP_TYPE_PCI_BRIDGE: 3610 case PCI_EXP_TYPE_RC_EC: 3611 return false; 3612 /* 3613 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3614 * implement ACS in order to indicate their peer-to-peer capabilities, 3615 * regardless of whether they are single- or multi-function devices. 3616 */ 3617 case PCI_EXP_TYPE_DOWNSTREAM: 3618 case PCI_EXP_TYPE_ROOT_PORT: 3619 return pci_acs_flags_enabled(pdev, acs_flags); 3620 /* 3621 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3622 * implemented by the remaining PCIe types to indicate peer-to-peer 3623 * capabilities, but only when they are part of a multifunction 3624 * device. The footnote for section 6.12 indicates the specific 3625 * PCIe types included here. 3626 */ 3627 case PCI_EXP_TYPE_ENDPOINT: 3628 case PCI_EXP_TYPE_UPSTREAM: 3629 case PCI_EXP_TYPE_LEG_END: 3630 case PCI_EXP_TYPE_RC_END: 3631 if (!pdev->multifunction) 3632 break; 3633 3634 return pci_acs_flags_enabled(pdev, acs_flags); 3635 } 3636 3637 /* 3638 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3639 * to single function devices with the exception of downstream ports. 3640 */ 3641 return true; 3642 } 3643 3644 /** 3645 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3646 * @start: starting downstream device 3647 * @end: ending upstream device or NULL to search to the root bus 3648 * @acs_flags: required flags 3649 * 3650 * Walk up a device tree from start to end testing PCI ACS support. If 3651 * any step along the way does not support the required flags, return false. 3652 */ 3653 bool pci_acs_path_enabled(struct pci_dev *start, 3654 struct pci_dev *end, u16 acs_flags) 3655 { 3656 struct pci_dev *pdev, *parent = start; 3657 3658 do { 3659 pdev = parent; 3660 3661 if (!pci_acs_enabled(pdev, acs_flags)) 3662 return false; 3663 3664 if (pci_is_root_bus(pdev->bus)) 3665 return (end == NULL); 3666 3667 parent = pdev->bus->self; 3668 } while (pdev != end); 3669 3670 return true; 3671 } 3672 3673 /** 3674 * pci_acs_init - Initialize ACS if hardware supports it 3675 * @dev: the PCI device 3676 */ 3677 void pci_acs_init(struct pci_dev *dev) 3678 { 3679 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3680 3681 /* 3682 * Attempt to enable ACS regardless of capability because some Root 3683 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3684 * the standard ACS capability but still support ACS via those 3685 * quirks. 3686 */ 3687 pci_enable_acs(dev); 3688 } 3689 3690 void pci_rebar_init(struct pci_dev *pdev) 3691 { 3692 pdev->rebar_cap = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3693 } 3694 3695 /** 3696 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3697 * @pdev: PCI device 3698 * @bar: BAR to find 3699 * 3700 * Helper to find the position of the ctrl register for a BAR. 3701 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3702 * Returns -ENOENT if no ctrl register for the BAR could be found. 3703 */ 3704 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3705 { 3706 unsigned int pos, nbars, i; 3707 u32 ctrl; 3708 3709 if (pci_resource_is_iov(bar)) { 3710 pos = pci_iov_vf_rebar_cap(pdev); 3711 bar = pci_resource_num_to_vf_bar(bar); 3712 } else { 3713 pos = pdev->rebar_cap; 3714 } 3715 3716 if (!pos) 3717 return -ENOTSUPP; 3718 3719 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3720 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 3721 3722 for (i = 0; i < nbars; i++, pos += 8) { 3723 int bar_idx; 3724 3725 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3726 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl); 3727 if (bar_idx == bar) 3728 return pos; 3729 } 3730 3731 return -ENOENT; 3732 } 3733 3734 /** 3735 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3736 * @pdev: PCI device 3737 * @bar: BAR to query 3738 * 3739 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3740 * (bit 0=1MB, bit 31=128TB). Returns 0 if BAR isn't resizable. 3741 */ 3742 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3743 { 3744 int pos; 3745 u32 cap; 3746 3747 pos = pci_rebar_find_pos(pdev, bar); 3748 if (pos < 0) 3749 return 0; 3750 3751 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3752 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3753 3754 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3755 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3756 bar == 0 && cap == 0x700) 3757 return 0x3f00; 3758 3759 return cap; 3760 } 3761 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3762 3763 /** 3764 * pci_rebar_get_current_size - get the current size of a BAR 3765 * @pdev: PCI device 3766 * @bar: BAR to set size to 3767 * 3768 * Read the size of a BAR from the resizable BAR config. 3769 * Returns size if found or negative error code. 3770 */ 3771 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3772 { 3773 int pos; 3774 u32 ctrl; 3775 3776 pos = pci_rebar_find_pos(pdev, bar); 3777 if (pos < 0) 3778 return pos; 3779 3780 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3781 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl); 3782 } 3783 3784 /** 3785 * pci_rebar_set_size - set a new size for a BAR 3786 * @pdev: PCI device 3787 * @bar: BAR to set size to 3788 * @size: new size as defined in the spec (0=1MB, 31=128TB) 3789 * 3790 * Set the new size of a BAR as defined in the spec. 3791 * Returns zero if resizing was successful, error code otherwise. 3792 */ 3793 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3794 { 3795 int pos; 3796 u32 ctrl; 3797 3798 pos = pci_rebar_find_pos(pdev, bar); 3799 if (pos < 0) 3800 return pos; 3801 3802 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3803 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3804 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 3805 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3806 return 0; 3807 } 3808 3809 /** 3810 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3811 * @dev: the PCI device 3812 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3813 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3814 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3815 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3816 * 3817 * Return 0 if all upstream bridges support AtomicOp routing, egress 3818 * blocking is disabled on all upstream ports, and the root port supports 3819 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3820 * AtomicOp completion), or negative otherwise. 3821 */ 3822 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3823 { 3824 struct pci_bus *bus = dev->bus; 3825 struct pci_dev *bridge; 3826 u32 cap, ctl2; 3827 3828 /* 3829 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3830 * in Device Control 2 is reserved in VFs and the PF value applies 3831 * to all associated VFs. 3832 */ 3833 if (dev->is_virtfn) 3834 return -EINVAL; 3835 3836 if (!pci_is_pcie(dev)) 3837 return -EINVAL; 3838 3839 /* 3840 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3841 * AtomicOp requesters. For now, we only support endpoints as 3842 * requesters and root ports as completers. No endpoints as 3843 * completers, and no peer-to-peer. 3844 */ 3845 3846 switch (pci_pcie_type(dev)) { 3847 case PCI_EXP_TYPE_ENDPOINT: 3848 case PCI_EXP_TYPE_LEG_END: 3849 case PCI_EXP_TYPE_RC_END: 3850 break; 3851 default: 3852 return -EINVAL; 3853 } 3854 3855 while (bus->parent) { 3856 bridge = bus->self; 3857 3858 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3859 3860 switch (pci_pcie_type(bridge)) { 3861 /* Ensure switch ports support AtomicOp routing */ 3862 case PCI_EXP_TYPE_UPSTREAM: 3863 case PCI_EXP_TYPE_DOWNSTREAM: 3864 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3865 return -EINVAL; 3866 break; 3867 3868 /* Ensure root port supports all the sizes we care about */ 3869 case PCI_EXP_TYPE_ROOT_PORT: 3870 if ((cap & cap_mask) != cap_mask) 3871 return -EINVAL; 3872 break; 3873 } 3874 3875 /* Ensure upstream ports don't block AtomicOps on egress */ 3876 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3877 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3878 &ctl2); 3879 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3880 return -EINVAL; 3881 } 3882 3883 bus = bus->parent; 3884 } 3885 3886 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3887 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3888 return 0; 3889 } 3890 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3891 3892 /** 3893 * pci_release_region - Release a PCI bar 3894 * @pdev: PCI device whose resources were previously reserved by 3895 * pci_request_region() 3896 * @bar: BAR to release 3897 * 3898 * Releases the PCI I/O and memory resources previously reserved by a 3899 * successful call to pci_request_region(). Call this function only 3900 * after all use of the PCI regions has ceased. 3901 */ 3902 void pci_release_region(struct pci_dev *pdev, int bar) 3903 { 3904 if (!pci_bar_index_is_valid(bar)) 3905 return; 3906 3907 if (pci_resource_len(pdev, bar) == 0) 3908 return; 3909 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3910 release_region(pci_resource_start(pdev, bar), 3911 pci_resource_len(pdev, bar)); 3912 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3913 release_mem_region(pci_resource_start(pdev, bar), 3914 pci_resource_len(pdev, bar)); 3915 } 3916 EXPORT_SYMBOL(pci_release_region); 3917 3918 /** 3919 * __pci_request_region - Reserved PCI I/O and memory resource 3920 * @pdev: PCI device whose resources are to be reserved 3921 * @bar: BAR to be reserved 3922 * @name: name of the driver requesting the resource 3923 * @exclusive: whether the region access is exclusive or not 3924 * 3925 * Returns: 0 on success, negative error code on failure. 3926 * 3927 * Mark the PCI region associated with PCI device @pdev BAR @bar as being 3928 * reserved by owner @name. Do not access any address inside the PCI regions 3929 * unless this call returns successfully. 3930 * 3931 * If @exclusive is set, then the region is marked so that userspace 3932 * is explicitly not allowed to map the resource via /dev/mem or 3933 * sysfs MMIO access. 3934 * 3935 * Returns 0 on success, or %EBUSY on error. A warning 3936 * message is also printed on failure. 3937 */ 3938 static int __pci_request_region(struct pci_dev *pdev, int bar, 3939 const char *name, int exclusive) 3940 { 3941 if (!pci_bar_index_is_valid(bar)) 3942 return -EINVAL; 3943 3944 if (pci_resource_len(pdev, bar) == 0) 3945 return 0; 3946 3947 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3948 if (!request_region(pci_resource_start(pdev, bar), 3949 pci_resource_len(pdev, bar), name)) 3950 goto err_out; 3951 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3952 if (!__request_mem_region(pci_resource_start(pdev, bar), 3953 pci_resource_len(pdev, bar), name, 3954 exclusive)) 3955 goto err_out; 3956 } 3957 3958 return 0; 3959 3960 err_out: 3961 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3962 &pdev->resource[bar]); 3963 return -EBUSY; 3964 } 3965 3966 /** 3967 * pci_request_region - Reserve PCI I/O and memory resource 3968 * @pdev: PCI device whose resources are to be reserved 3969 * @bar: BAR to be reserved 3970 * @name: name of the driver requesting the resource 3971 * 3972 * Returns: 0 on success, negative error code on failure. 3973 * 3974 * Mark the PCI region associated with PCI device @pdev BAR @bar as being 3975 * reserved by owner @name. Do not access any address inside the PCI regions 3976 * unless this call returns successfully. 3977 * 3978 * Returns 0 on success, or %EBUSY on error. A warning 3979 * message is also printed on failure. 3980 */ 3981 int pci_request_region(struct pci_dev *pdev, int bar, const char *name) 3982 { 3983 return __pci_request_region(pdev, bar, name, 0); 3984 } 3985 EXPORT_SYMBOL(pci_request_region); 3986 3987 /** 3988 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3989 * @pdev: PCI device whose resources were previously reserved 3990 * @bars: Bitmask of BARs to be released 3991 * 3992 * Release selected PCI I/O and memory resources previously reserved. 3993 * Call this function only after all use of the PCI regions has ceased. 3994 */ 3995 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3996 { 3997 int i; 3998 3999 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4000 if (bars & (1 << i)) 4001 pci_release_region(pdev, i); 4002 } 4003 EXPORT_SYMBOL(pci_release_selected_regions); 4004 4005 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4006 const char *name, int excl) 4007 { 4008 int i; 4009 4010 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4011 if (bars & (1 << i)) 4012 if (__pci_request_region(pdev, i, name, excl)) 4013 goto err_out; 4014 return 0; 4015 4016 err_out: 4017 while (--i >= 0) 4018 if (bars & (1 << i)) 4019 pci_release_region(pdev, i); 4020 4021 return -EBUSY; 4022 } 4023 4024 4025 /** 4026 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4027 * @pdev: PCI device whose resources are to be reserved 4028 * @bars: Bitmask of BARs to be requested 4029 * @name: Name of the driver requesting the resources 4030 * 4031 * Returns: 0 on success, negative error code on failure. 4032 */ 4033 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4034 const char *name) 4035 { 4036 return __pci_request_selected_regions(pdev, bars, name, 0); 4037 } 4038 EXPORT_SYMBOL(pci_request_selected_regions); 4039 4040 /** 4041 * pci_request_selected_regions_exclusive - Request regions exclusively 4042 * @pdev: PCI device to request regions from 4043 * @bars: bit mask of BARs to request 4044 * @name: name of the driver requesting the resources 4045 * 4046 * Returns: 0 on success, negative error code on failure. 4047 */ 4048 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4049 const char *name) 4050 { 4051 return __pci_request_selected_regions(pdev, bars, name, 4052 IORESOURCE_EXCLUSIVE); 4053 } 4054 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4055 4056 /** 4057 * pci_release_regions - Release reserved PCI I/O and memory resources 4058 * @pdev: PCI device whose resources were previously reserved by 4059 * pci_request_regions() 4060 * 4061 * Releases all PCI I/O and memory resources previously reserved by a 4062 * successful call to pci_request_regions(). Call this function only 4063 * after all use of the PCI regions has ceased. 4064 */ 4065 void pci_release_regions(struct pci_dev *pdev) 4066 { 4067 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4068 } 4069 EXPORT_SYMBOL(pci_release_regions); 4070 4071 /** 4072 * pci_request_regions - Reserve PCI I/O and memory resources 4073 * @pdev: PCI device whose resources are to be reserved 4074 * @name: name of the driver requesting the resources 4075 * 4076 * Mark all PCI regions associated with PCI device @pdev as being reserved by 4077 * owner @name. Do not access any address inside the PCI regions unless this 4078 * call returns successfully. 4079 * 4080 * Returns 0 on success, or %EBUSY on error. A warning 4081 * message is also printed on failure. 4082 */ 4083 int pci_request_regions(struct pci_dev *pdev, const char *name) 4084 { 4085 return pci_request_selected_regions(pdev, 4086 ((1 << PCI_STD_NUM_BARS) - 1), name); 4087 } 4088 EXPORT_SYMBOL(pci_request_regions); 4089 4090 /** 4091 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4092 * @pdev: PCI device whose resources are to be reserved 4093 * @name: name of the driver requesting the resources 4094 * 4095 * Returns: 0 on success, negative error code on failure. 4096 * 4097 * Mark all PCI regions associated with PCI device @pdev as being reserved 4098 * by owner @name. Do not access any address inside the PCI regions 4099 * unless this call returns successfully. 4100 * 4101 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4102 * and the sysfs MMIO access will not be allowed. 4103 * 4104 * Returns 0 on success, or %EBUSY on error. A warning message is also 4105 * printed on failure. 4106 */ 4107 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *name) 4108 { 4109 return pci_request_selected_regions_exclusive(pdev, 4110 ((1 << PCI_STD_NUM_BARS) - 1), name); 4111 } 4112 EXPORT_SYMBOL(pci_request_regions_exclusive); 4113 4114 /* 4115 * Record the PCI IO range (expressed as CPU physical address + size). 4116 * Return a negative value if an error has occurred, zero otherwise 4117 */ 4118 int pci_register_io_range(const struct fwnode_handle *fwnode, phys_addr_t addr, 4119 resource_size_t size) 4120 { 4121 int ret = 0; 4122 #ifdef PCI_IOBASE 4123 struct logic_pio_hwaddr *range; 4124 4125 if (!size || addr + size < addr) 4126 return -EINVAL; 4127 4128 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4129 if (!range) 4130 return -ENOMEM; 4131 4132 range->fwnode = fwnode; 4133 range->size = size; 4134 range->hw_start = addr; 4135 range->flags = LOGIC_PIO_CPU_MMIO; 4136 4137 ret = logic_pio_register_range(range); 4138 if (ret) 4139 kfree(range); 4140 4141 /* Ignore duplicates due to deferred probing */ 4142 if (ret == -EEXIST) 4143 ret = 0; 4144 #endif 4145 4146 return ret; 4147 } 4148 4149 phys_addr_t pci_pio_to_address(unsigned long pio) 4150 { 4151 #ifdef PCI_IOBASE 4152 if (pio < MMIO_UPPER_LIMIT) 4153 return logic_pio_to_hwaddr(pio); 4154 #endif 4155 4156 return (phys_addr_t) OF_BAD_ADDR; 4157 } 4158 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4159 4160 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4161 { 4162 #ifdef PCI_IOBASE 4163 return logic_pio_trans_cpuaddr(address); 4164 #else 4165 if (address > IO_SPACE_LIMIT) 4166 return (unsigned long)-1; 4167 4168 return (unsigned long) address; 4169 #endif 4170 } 4171 4172 /** 4173 * pci_remap_iospace - Remap the memory mapped I/O space 4174 * @res: Resource describing the I/O space 4175 * @phys_addr: physical address of range to be mapped 4176 * 4177 * Remap the memory mapped I/O space described by the @res and the CPU 4178 * physical address @phys_addr into virtual address space. Only 4179 * architectures that have memory mapped IO functions defined (and the 4180 * PCI_IOBASE value defined) should call this function. 4181 */ 4182 #ifndef pci_remap_iospace 4183 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4184 { 4185 #if defined(PCI_IOBASE) 4186 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4187 4188 if (!(res->flags & IORESOURCE_IO)) 4189 return -EINVAL; 4190 4191 if (res->end > IO_SPACE_LIMIT) 4192 return -EINVAL; 4193 4194 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4195 pgprot_device(PAGE_KERNEL)); 4196 #else 4197 /* 4198 * This architecture does not have memory mapped I/O space, 4199 * so this function should never be called 4200 */ 4201 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4202 return -ENODEV; 4203 #endif 4204 } 4205 EXPORT_SYMBOL(pci_remap_iospace); 4206 #endif 4207 4208 /** 4209 * pci_unmap_iospace - Unmap the memory mapped I/O space 4210 * @res: resource to be unmapped 4211 * 4212 * Unmap the CPU virtual address @res from virtual address space. Only 4213 * architectures that have memory mapped IO functions defined (and the 4214 * PCI_IOBASE value defined) should call this function. 4215 */ 4216 void pci_unmap_iospace(struct resource *res) 4217 { 4218 #if defined(PCI_IOBASE) 4219 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4220 4221 vunmap_range(vaddr, vaddr + resource_size(res)); 4222 #endif 4223 } 4224 EXPORT_SYMBOL(pci_unmap_iospace); 4225 4226 static void __pci_set_master(struct pci_dev *dev, bool enable) 4227 { 4228 u16 old_cmd, cmd; 4229 4230 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4231 if (enable) 4232 cmd = old_cmd | PCI_COMMAND_MASTER; 4233 else 4234 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4235 if (cmd != old_cmd) { 4236 pci_dbg(dev, "%s bus mastering\n", 4237 enable ? "enabling" : "disabling"); 4238 pci_write_config_word(dev, PCI_COMMAND, cmd); 4239 } 4240 dev->is_busmaster = enable; 4241 } 4242 4243 /** 4244 * pcibios_setup - process "pci=" kernel boot arguments 4245 * @str: string used to pass in "pci=" kernel boot arguments 4246 * 4247 * Process kernel boot arguments. This is the default implementation. 4248 * Architecture specific implementations can override this as necessary. 4249 */ 4250 char * __weak __init pcibios_setup(char *str) 4251 { 4252 return str; 4253 } 4254 4255 /** 4256 * pcibios_set_master - enable PCI bus-mastering for device dev 4257 * @dev: the PCI device to enable 4258 * 4259 * Enables PCI bus-mastering for the device. This is the default 4260 * implementation. Architecture specific implementations can override 4261 * this if necessary. 4262 */ 4263 void __weak pcibios_set_master(struct pci_dev *dev) 4264 { 4265 u8 lat; 4266 4267 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4268 if (pci_is_pcie(dev)) 4269 return; 4270 4271 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4272 if (lat < 16) 4273 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4274 else if (lat > pcibios_max_latency) 4275 lat = pcibios_max_latency; 4276 else 4277 return; 4278 4279 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4280 } 4281 4282 /** 4283 * pci_set_master - enables bus-mastering for device dev 4284 * @dev: the PCI device to enable 4285 * 4286 * Enables bus-mastering on the device and calls pcibios_set_master() 4287 * to do the needed arch specific settings. 4288 */ 4289 void pci_set_master(struct pci_dev *dev) 4290 { 4291 __pci_set_master(dev, true); 4292 pcibios_set_master(dev); 4293 } 4294 EXPORT_SYMBOL(pci_set_master); 4295 4296 /** 4297 * pci_clear_master - disables bus-mastering for device dev 4298 * @dev: the PCI device to disable 4299 */ 4300 void pci_clear_master(struct pci_dev *dev) 4301 { 4302 __pci_set_master(dev, false); 4303 } 4304 EXPORT_SYMBOL(pci_clear_master); 4305 4306 /** 4307 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4308 * @dev: the PCI device for which MWI is to be enabled 4309 * 4310 * Helper function for pci_set_mwi. 4311 * Originally copied from drivers/net/acenic.c. 4312 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4313 * 4314 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4315 */ 4316 int pci_set_cacheline_size(struct pci_dev *dev) 4317 { 4318 u8 cacheline_size; 4319 4320 if (!pci_cache_line_size) 4321 return -EINVAL; 4322 4323 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4324 equal to or multiple of the right value. */ 4325 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4326 if (cacheline_size >= pci_cache_line_size && 4327 (cacheline_size % pci_cache_line_size) == 0) 4328 return 0; 4329 4330 /* Write the correct value. */ 4331 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4332 /* Read it back. */ 4333 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4334 if (cacheline_size == pci_cache_line_size) 4335 return 0; 4336 4337 pci_dbg(dev, "cache line size of %d is not supported\n", 4338 pci_cache_line_size << 2); 4339 4340 return -EINVAL; 4341 } 4342 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4343 4344 /** 4345 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4346 * @dev: the PCI device for which MWI is enabled 4347 * 4348 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4349 * 4350 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4351 */ 4352 int pci_set_mwi(struct pci_dev *dev) 4353 { 4354 #ifdef PCI_DISABLE_MWI 4355 return 0; 4356 #else 4357 int rc; 4358 u16 cmd; 4359 4360 rc = pci_set_cacheline_size(dev); 4361 if (rc) 4362 return rc; 4363 4364 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4365 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4366 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4367 cmd |= PCI_COMMAND_INVALIDATE; 4368 pci_write_config_word(dev, PCI_COMMAND, cmd); 4369 } 4370 return 0; 4371 #endif 4372 } 4373 EXPORT_SYMBOL(pci_set_mwi); 4374 4375 /** 4376 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4377 * @dev: the PCI device for which MWI is enabled 4378 * 4379 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4380 * Callers are not required to check the return value. 4381 * 4382 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4383 */ 4384 int pci_try_set_mwi(struct pci_dev *dev) 4385 { 4386 #ifdef PCI_DISABLE_MWI 4387 return 0; 4388 #else 4389 return pci_set_mwi(dev); 4390 #endif 4391 } 4392 EXPORT_SYMBOL(pci_try_set_mwi); 4393 4394 /** 4395 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4396 * @dev: the PCI device to disable 4397 * 4398 * Disables PCI Memory-Write-Invalidate transaction on the device 4399 */ 4400 void pci_clear_mwi(struct pci_dev *dev) 4401 { 4402 #ifndef PCI_DISABLE_MWI 4403 u16 cmd; 4404 4405 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4406 if (cmd & PCI_COMMAND_INVALIDATE) { 4407 cmd &= ~PCI_COMMAND_INVALIDATE; 4408 pci_write_config_word(dev, PCI_COMMAND, cmd); 4409 } 4410 #endif 4411 } 4412 EXPORT_SYMBOL(pci_clear_mwi); 4413 4414 /** 4415 * pci_disable_parity - disable parity checking for device 4416 * @dev: the PCI device to operate on 4417 * 4418 * Disable parity checking for device @dev 4419 */ 4420 void pci_disable_parity(struct pci_dev *dev) 4421 { 4422 u16 cmd; 4423 4424 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4425 if (cmd & PCI_COMMAND_PARITY) { 4426 cmd &= ~PCI_COMMAND_PARITY; 4427 pci_write_config_word(dev, PCI_COMMAND, cmd); 4428 } 4429 } 4430 4431 /** 4432 * pci_intx - enables/disables PCI INTx for device dev 4433 * @pdev: the PCI device to operate on 4434 * @enable: boolean: whether to enable or disable PCI INTx 4435 * 4436 * Enables/disables PCI INTx for device @pdev 4437 */ 4438 void pci_intx(struct pci_dev *pdev, int enable) 4439 { 4440 u16 pci_command, new; 4441 4442 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4443 4444 if (enable) 4445 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4446 else 4447 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4448 4449 if (new == pci_command) 4450 return; 4451 4452 pci_write_config_word(pdev, PCI_COMMAND, new); 4453 } 4454 EXPORT_SYMBOL_GPL(pci_intx); 4455 4456 /** 4457 * pci_wait_for_pending_transaction - wait for pending transaction 4458 * @dev: the PCI device to operate on 4459 * 4460 * Return 0 if transaction is pending 1 otherwise. 4461 */ 4462 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4463 { 4464 if (!pci_is_pcie(dev)) 4465 return 1; 4466 4467 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4468 PCI_EXP_DEVSTA_TRPND); 4469 } 4470 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4471 4472 /** 4473 * pcie_flr - initiate a PCIe function level reset 4474 * @dev: device to reset 4475 * 4476 * Initiate a function level reset unconditionally on @dev without 4477 * checking any flags and DEVCAP 4478 */ 4479 int pcie_flr(struct pci_dev *dev) 4480 { 4481 if (!pci_wait_for_pending_transaction(dev)) 4482 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4483 4484 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4485 4486 if (dev->imm_ready) 4487 return 0; 4488 4489 /* 4490 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4491 * 100ms, but may silently discard requests while the FLR is in 4492 * progress. Wait 100ms before trying to access the device. 4493 */ 4494 msleep(100); 4495 4496 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4497 } 4498 EXPORT_SYMBOL_GPL(pcie_flr); 4499 4500 /** 4501 * pcie_reset_flr - initiate a PCIe function level reset 4502 * @dev: device to reset 4503 * @probe: if true, return 0 if device can be reset this way 4504 * 4505 * Initiate a function level reset on @dev. 4506 */ 4507 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4508 { 4509 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4510 return -ENOTTY; 4511 4512 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4513 return -ENOTTY; 4514 4515 if (probe) 4516 return 0; 4517 4518 return pcie_flr(dev); 4519 } 4520 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4521 4522 static int pci_af_flr(struct pci_dev *dev, bool probe) 4523 { 4524 int pos; 4525 u8 cap; 4526 4527 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4528 if (!pos) 4529 return -ENOTTY; 4530 4531 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4532 return -ENOTTY; 4533 4534 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4535 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4536 return -ENOTTY; 4537 4538 if (probe) 4539 return 0; 4540 4541 /* 4542 * Wait for Transaction Pending bit to clear. A word-aligned test 4543 * is used, so we use the control offset rather than status and shift 4544 * the test bit to match. 4545 */ 4546 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4547 PCI_AF_STATUS_TP << 8)) 4548 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4549 4550 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4551 4552 if (dev->imm_ready) 4553 return 0; 4554 4555 /* 4556 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4557 * updated 27 July 2006; a device must complete an FLR within 4558 * 100ms, but may silently discard requests while the FLR is in 4559 * progress. Wait 100ms before trying to access the device. 4560 */ 4561 msleep(100); 4562 4563 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4564 } 4565 4566 /** 4567 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4568 * @dev: Device to reset. 4569 * @probe: if true, return 0 if the device can be reset this way. 4570 * 4571 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4572 * unset, it will be reinitialized internally when going from PCI_D3hot to 4573 * PCI_D0. If that's the case and the device is not in a low-power state 4574 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4575 * 4576 * NOTE: This causes the caller to sleep for twice the device power transition 4577 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4578 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4579 * Moreover, only devices in D0 can be reset by this function. 4580 */ 4581 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4582 { 4583 u16 csr; 4584 4585 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4586 return -ENOTTY; 4587 4588 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4589 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4590 return -ENOTTY; 4591 4592 if (probe) 4593 return 0; 4594 4595 if (dev->current_state != PCI_D0) 4596 return -EINVAL; 4597 4598 csr &= ~PCI_PM_CTRL_STATE_MASK; 4599 csr |= PCI_D3hot; 4600 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4601 pci_dev_d3_sleep(dev); 4602 4603 csr &= ~PCI_PM_CTRL_STATE_MASK; 4604 csr |= PCI_D0; 4605 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4606 pci_dev_d3_sleep(dev); 4607 4608 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4609 } 4610 4611 /** 4612 * pcie_wait_for_link_status - Wait for link status change 4613 * @pdev: Device whose link to wait for. 4614 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4615 * @active: Waiting for active or inactive? 4616 * 4617 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4618 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4619 */ 4620 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4621 bool use_lt, bool active) 4622 { 4623 u16 lnksta_mask, lnksta_match; 4624 unsigned long end_jiffies; 4625 u16 lnksta; 4626 4627 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4628 lnksta_match = active ? lnksta_mask : 0; 4629 4630 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4631 do { 4632 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4633 if ((lnksta & lnksta_mask) == lnksta_match) 4634 return 0; 4635 msleep(1); 4636 } while (time_before(jiffies, end_jiffies)); 4637 4638 return -ETIMEDOUT; 4639 } 4640 4641 /** 4642 * pcie_retrain_link - Request a link retrain and wait for it to complete 4643 * @pdev: Device whose link to retrain. 4644 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 4645 * 4646 * Trigger retraining of the PCIe Link and wait for the completion of the 4647 * retraining. As link retraining is known to asserts LBMS and may change 4648 * the Link Speed, LBMS is cleared after the retraining and the Link Speed 4649 * of the subordinate bus is updated. 4650 * 4651 * Retrain completion status is retrieved from the Link Status Register 4652 * according to @use_lt. It is not verified whether the use of the DLLLA 4653 * bit is valid. 4654 * 4655 * Return 0 if successful, or -ETIMEDOUT if training has not completed 4656 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4657 */ 4658 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 4659 { 4660 int rc; 4661 4662 /* 4663 * Ensure the updated LNKCTL parameters are used during link 4664 * training by checking that there is no ongoing link training that 4665 * may have started before link parameters were changed, so as to 4666 * avoid LTSSM race as recommended in Implementation Note at the end 4667 * of PCIe r6.1 sec 7.5.3.7. 4668 */ 4669 rc = pcie_wait_for_link_status(pdev, true, false); 4670 if (rc) 4671 return rc; 4672 4673 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4674 if (pdev->clear_retrain_link) { 4675 /* 4676 * Due to an erratum in some devices the Retrain Link bit 4677 * needs to be cleared again manually to allow the link 4678 * training to succeed. 4679 */ 4680 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4681 } 4682 4683 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4684 4685 /* 4686 * Clear LBMS after a manual retrain so that the bit can be used 4687 * to track link speed or width changes made by hardware itself 4688 * in attempt to correct unreliable link operation. 4689 */ 4690 pcie_reset_lbms(pdev); 4691 4692 /* 4693 * Ensure the Link Speed updates after retraining in case the Link 4694 * Speed was changed because of the retraining. While the bwctrl's 4695 * IRQ handler normally picks up the new Link Speed, clearing LBMS 4696 * races with the IRQ handler reading the Link Status register and 4697 * can result in the handler returning early without updating the 4698 * Link Speed. 4699 */ 4700 if (pdev->subordinate) 4701 pcie_update_link_speed(pdev->subordinate); 4702 4703 return rc; 4704 } 4705 4706 /** 4707 * pcie_wait_for_link_delay - Wait until link is active or inactive 4708 * @pdev: Bridge device 4709 * @active: waiting for active or inactive? 4710 * @delay: Delay to wait after link has become active (in ms) 4711 * 4712 * Use this to wait till link becomes active or inactive. 4713 */ 4714 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4715 int delay) 4716 { 4717 int rc; 4718 4719 /* 4720 * Some controllers might not implement link active reporting. In this 4721 * case, we wait for 1000 ms + any delay requested by the caller. 4722 */ 4723 if (!pdev->link_active_reporting) { 4724 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 4725 return true; 4726 } 4727 4728 /* 4729 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4730 * after which we should expect the link to be active if the reset was 4731 * successful. If so, software must wait a minimum 100ms before sending 4732 * configuration requests to devices downstream this port. 4733 * 4734 * If the link fails to activate, either the device was physically 4735 * removed or the link is permanently failed. 4736 */ 4737 if (active) 4738 msleep(20); 4739 rc = pcie_wait_for_link_status(pdev, false, active); 4740 if (active) { 4741 if (rc) 4742 rc = pcie_failed_link_retrain(pdev); 4743 if (rc) 4744 return false; 4745 4746 msleep(delay); 4747 return true; 4748 } 4749 4750 if (rc) 4751 return false; 4752 4753 return true; 4754 } 4755 4756 /** 4757 * pcie_wait_for_link - Wait until link is active or inactive 4758 * @pdev: Bridge device 4759 * @active: waiting for active or inactive? 4760 * 4761 * Use this to wait till link becomes active or inactive. 4762 */ 4763 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4764 { 4765 return pcie_wait_for_link_delay(pdev, active, 100); 4766 } 4767 4768 /* 4769 * Find maximum D3cold delay required by all the devices on the bus. The 4770 * spec says 100 ms, but firmware can lower it and we allow drivers to 4771 * increase it as well. 4772 * 4773 * Called with @pci_bus_sem locked for reading. 4774 */ 4775 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4776 { 4777 const struct pci_dev *pdev; 4778 int min_delay = 100; 4779 int max_delay = 0; 4780 4781 list_for_each_entry(pdev, &bus->devices, bus_list) { 4782 if (pdev->d3cold_delay < min_delay) 4783 min_delay = pdev->d3cold_delay; 4784 if (pdev->d3cold_delay > max_delay) 4785 max_delay = pdev->d3cold_delay; 4786 } 4787 4788 return max(min_delay, max_delay); 4789 } 4790 4791 /** 4792 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4793 * @dev: PCI bridge 4794 * @reset_type: reset type in human-readable form 4795 * 4796 * Handle necessary delays before access to the devices on the secondary 4797 * side of the bridge are permitted after D3cold to D0 transition 4798 * or Conventional Reset. 4799 * 4800 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4801 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4802 * 4.3.2. 4803 * 4804 * Return 0 on success or -ENOTTY if the first device on the secondary bus 4805 * failed to become accessible. 4806 */ 4807 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 4808 { 4809 struct pci_dev *child __free(pci_dev_put) = NULL; 4810 int delay; 4811 4812 if (pci_dev_is_disconnected(dev)) 4813 return 0; 4814 4815 if (!pci_is_bridge(dev)) 4816 return 0; 4817 4818 down_read(&pci_bus_sem); 4819 4820 /* 4821 * We only deal with devices that are present currently on the bus. 4822 * For any hot-added devices the access delay is handled in pciehp 4823 * board_added(). In case of ACPI hotplug the firmware is expected 4824 * to configure the devices before OS is notified. 4825 */ 4826 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4827 up_read(&pci_bus_sem); 4828 return 0; 4829 } 4830 4831 /* Take d3cold_delay requirements into account */ 4832 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4833 if (!delay) { 4834 up_read(&pci_bus_sem); 4835 return 0; 4836 } 4837 4838 child = pci_dev_get(list_first_entry(&dev->subordinate->devices, 4839 struct pci_dev, bus_list)); 4840 up_read(&pci_bus_sem); 4841 4842 /* 4843 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4844 * accessing the device after reset (that is 1000 ms + 100 ms). 4845 */ 4846 if (!pci_is_pcie(dev)) { 4847 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4848 msleep(1000 + delay); 4849 return 0; 4850 } 4851 4852 /* 4853 * For PCIe downstream and root ports that do not support speeds 4854 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4855 * speeds (gen3) we need to wait first for the data link layer to 4856 * become active. 4857 * 4858 * However, 100 ms is the minimum and the PCIe spec says the 4859 * software must allow at least 1s before it can determine that the 4860 * device that did not respond is a broken device. Also device can 4861 * take longer than that to respond if it indicates so through Request 4862 * Retry Status completions. 4863 * 4864 * Therefore we wait for 100 ms and check for the device presence 4865 * until the timeout expires. 4866 */ 4867 if (!pcie_downstream_port(dev)) 4868 return 0; 4869 4870 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4871 u16 status; 4872 4873 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4874 msleep(delay); 4875 4876 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 4877 return 0; 4878 4879 /* 4880 * If the port supports active link reporting we now check 4881 * whether the link is active and if not bail out early with 4882 * the assumption that the device is not present anymore. 4883 */ 4884 if (!dev->link_active_reporting) 4885 return -ENOTTY; 4886 4887 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 4888 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 4889 return -ENOTTY; 4890 4891 return pci_dev_wait(child, reset_type, 4892 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 4893 } 4894 4895 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4896 delay); 4897 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4898 /* Did not train, no need to wait any further */ 4899 pci_info(dev, "Data Link Layer Link Active not set in %d msec\n", delay); 4900 return -ENOTTY; 4901 } 4902 4903 return pci_dev_wait(child, reset_type, 4904 PCIE_RESET_READY_POLL_MS - delay); 4905 } 4906 4907 void pci_reset_secondary_bus(struct pci_dev *dev) 4908 { 4909 u16 ctrl; 4910 4911 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4912 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4913 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4914 4915 /* 4916 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4917 * this to 2ms to ensure that we meet the minimum requirement. 4918 */ 4919 msleep(2); 4920 4921 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4922 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4923 } 4924 4925 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4926 { 4927 pci_reset_secondary_bus(dev); 4928 } 4929 4930 /** 4931 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4932 * @dev: Bridge device 4933 * 4934 * Use the bridge control register to assert reset on the secondary bus. 4935 * Devices on the secondary bus are left in power-on state. 4936 */ 4937 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4938 { 4939 if (!dev->block_cfg_access) 4940 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n", 4941 __builtin_return_address(0)); 4942 pcibios_reset_secondary_bus(dev); 4943 4944 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 4945 } 4946 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4947 4948 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 4949 { 4950 struct pci_dev *pdev; 4951 4952 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4953 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4954 return -ENOTTY; 4955 4956 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4957 if (pdev != dev) 4958 return -ENOTTY; 4959 4960 if (probe) 4961 return 0; 4962 4963 return pci_bridge_secondary_bus_reset(dev->bus->self); 4964 } 4965 4966 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 4967 { 4968 int rc = -ENOTTY; 4969 4970 if (!hotplug || !try_module_get(hotplug->owner)) 4971 return rc; 4972 4973 if (hotplug->ops->reset_slot) 4974 rc = hotplug->ops->reset_slot(hotplug, probe); 4975 4976 module_put(hotplug->owner); 4977 4978 return rc; 4979 } 4980 4981 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 4982 { 4983 if (dev->multifunction || dev->subordinate || !dev->slot || 4984 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4985 return -ENOTTY; 4986 4987 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4988 } 4989 4990 static u16 cxl_port_dvsec(struct pci_dev *dev) 4991 { 4992 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL, 4993 PCI_DVSEC_CXL_PORT); 4994 } 4995 4996 static bool cxl_sbr_masked(struct pci_dev *dev) 4997 { 4998 u16 dvsec, reg; 4999 int rc; 5000 5001 dvsec = cxl_port_dvsec(dev); 5002 if (!dvsec) 5003 return false; 5004 5005 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®); 5006 if (rc || PCI_POSSIBLE_ERROR(reg)) 5007 return false; 5008 5009 /* 5010 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR 5011 * bit in Bridge Control has no effect. When 1, the Port generates 5012 * hot reset when the SBR bit is set to 1. 5013 */ 5014 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) 5015 return false; 5016 5017 return true; 5018 } 5019 5020 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5021 { 5022 struct pci_dev *bridge = pci_upstream_bridge(dev); 5023 int rc; 5024 5025 /* 5026 * If "dev" is below a CXL port that has SBR control masked, SBR 5027 * won't do anything, so return error. 5028 */ 5029 if (bridge && cxl_sbr_masked(bridge)) { 5030 if (probe) 5031 return 0; 5032 5033 return -ENOTTY; 5034 } 5035 5036 rc = pci_dev_reset_slot_function(dev, probe); 5037 if (rc != -ENOTTY) 5038 return rc; 5039 return pci_parent_bus_reset(dev, probe); 5040 } 5041 5042 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe) 5043 { 5044 struct pci_dev *bridge; 5045 u16 dvsec, reg, val; 5046 int rc; 5047 5048 bridge = pci_upstream_bridge(dev); 5049 if (!bridge) 5050 return -ENOTTY; 5051 5052 dvsec = cxl_port_dvsec(bridge); 5053 if (!dvsec) 5054 return -ENOTTY; 5055 5056 if (probe) 5057 return 0; 5058 5059 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®); 5060 if (rc) 5061 return -ENOTTY; 5062 5063 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) { 5064 val = reg; 5065 } else { 5066 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR; 5067 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, 5068 val); 5069 } 5070 5071 rc = pci_reset_bus_function(dev, probe); 5072 5073 if (reg != val) 5074 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, 5075 reg); 5076 5077 return rc; 5078 } 5079 5080 void pci_dev_lock(struct pci_dev *dev) 5081 { 5082 /* block PM suspend, driver probe, etc. */ 5083 device_lock(&dev->dev); 5084 pci_cfg_access_lock(dev); 5085 } 5086 EXPORT_SYMBOL_GPL(pci_dev_lock); 5087 5088 /* Return 1 on successful lock, 0 on contention */ 5089 int pci_dev_trylock(struct pci_dev *dev) 5090 { 5091 if (device_trylock(&dev->dev)) { 5092 if (pci_cfg_access_trylock(dev)) 5093 return 1; 5094 device_unlock(&dev->dev); 5095 } 5096 5097 return 0; 5098 } 5099 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5100 5101 void pci_dev_unlock(struct pci_dev *dev) 5102 { 5103 pci_cfg_access_unlock(dev); 5104 device_unlock(&dev->dev); 5105 } 5106 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5107 5108 static void pci_dev_save_and_disable(struct pci_dev *dev) 5109 { 5110 const struct pci_error_handlers *err_handler = 5111 dev->driver ? dev->driver->err_handler : NULL; 5112 5113 /* 5114 * dev->driver->err_handler->reset_prepare() is protected against 5115 * races with ->remove() by the device lock, which must be held by 5116 * the caller. 5117 */ 5118 if (err_handler && err_handler->reset_prepare) 5119 err_handler->reset_prepare(dev); 5120 else if (dev->driver) 5121 pci_warn(dev, "resetting"); 5122 5123 /* 5124 * Wake-up device prior to save. PM registers default to D0 after 5125 * reset and a simple register restore doesn't reliably return 5126 * to a non-D0 state anyway. 5127 */ 5128 pci_set_power_state(dev, PCI_D0); 5129 5130 pci_save_state(dev); 5131 /* 5132 * Disable the device by clearing the Command register, except for 5133 * INTx-disable which is set. This not only disables MMIO and I/O port 5134 * BARs, but also prevents the device from being Bus Master, preventing 5135 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5136 * compliant devices, INTx-disable prevents legacy interrupts. 5137 */ 5138 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5139 } 5140 5141 static void pci_dev_restore(struct pci_dev *dev) 5142 { 5143 const struct pci_error_handlers *err_handler = 5144 dev->driver ? dev->driver->err_handler : NULL; 5145 5146 pci_restore_state(dev); 5147 5148 /* 5149 * dev->driver->err_handler->reset_done() is protected against 5150 * races with ->remove() by the device lock, which must be held by 5151 * the caller. 5152 */ 5153 if (err_handler && err_handler->reset_done) 5154 err_handler->reset_done(dev); 5155 else if (dev->driver) 5156 pci_warn(dev, "reset done"); 5157 } 5158 5159 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5160 const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5161 { }, 5162 { pci_dev_specific_reset, .name = "device_specific" }, 5163 { pci_dev_acpi_reset, .name = "acpi" }, 5164 { pcie_reset_flr, .name = "flr" }, 5165 { pci_af_flr, .name = "af_flr" }, 5166 { pci_pm_reset, .name = "pm" }, 5167 { pci_reset_bus_function, .name = "bus" }, 5168 { cxl_reset_bus_function, .name = "cxl_bus" }, 5169 }; 5170 5171 /** 5172 * __pci_reset_function_locked - reset a PCI device function while holding 5173 * the @dev mutex lock. 5174 * @dev: PCI device to reset 5175 * 5176 * Some devices allow an individual function to be reset without affecting 5177 * other functions in the same device. The PCI device must be responsive 5178 * to PCI config space in order to use this function. 5179 * 5180 * The device function is presumed to be unused and the caller is holding 5181 * the device mutex lock when this function is called. 5182 * 5183 * Resetting the device will make the contents of PCI configuration space 5184 * random, so any caller of this must be prepared to reinitialise the 5185 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5186 * etc. 5187 * 5188 * Returns 0 if the device function was successfully reset or negative if the 5189 * device doesn't support resetting a single function. 5190 */ 5191 int __pci_reset_function_locked(struct pci_dev *dev) 5192 { 5193 int i, m, rc; 5194 const struct pci_reset_fn_method *method; 5195 5196 might_sleep(); 5197 5198 /* 5199 * A reset method returns -ENOTTY if it doesn't support this device and 5200 * we should try the next method. 5201 * 5202 * If it returns 0 (success), we're finished. If it returns any other 5203 * error, we're also finished: this indicates that further reset 5204 * mechanisms might be broken on the device. 5205 */ 5206 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5207 m = dev->reset_methods[i]; 5208 if (!m) 5209 return -ENOTTY; 5210 5211 method = &pci_reset_fn_methods[m]; 5212 pci_dbg(dev, "reset via %s\n", method->name); 5213 rc = method->reset_fn(dev, PCI_RESET_DO_RESET); 5214 if (!rc) 5215 return 0; 5216 5217 pci_dbg(dev, "%s failed with %d\n", method->name, rc); 5218 if (rc != -ENOTTY) 5219 return rc; 5220 } 5221 5222 return -ENOTTY; 5223 } 5224 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5225 5226 /** 5227 * pci_init_reset_methods - check whether device can be safely reset 5228 * and store supported reset mechanisms. 5229 * @dev: PCI device to check for reset mechanisms 5230 * 5231 * Some devices allow an individual function to be reset without affecting 5232 * other functions in the same device. The PCI device must be in D0-D3hot 5233 * state. 5234 * 5235 * Stores reset mechanisms supported by device in reset_methods byte array 5236 * which is a member of struct pci_dev. 5237 */ 5238 void pci_init_reset_methods(struct pci_dev *dev) 5239 { 5240 int m, i, rc; 5241 5242 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5243 5244 might_sleep(); 5245 5246 i = 0; 5247 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5248 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5249 if (!rc) 5250 dev->reset_methods[i++] = m; 5251 else if (rc != -ENOTTY) 5252 break; 5253 } 5254 5255 dev->reset_methods[i] = 0; 5256 } 5257 5258 /** 5259 * pci_reset_function - quiesce and reset a PCI device function 5260 * @dev: PCI device to reset 5261 * 5262 * Some devices allow an individual function to be reset without affecting 5263 * other functions in the same device. The PCI device must be responsive 5264 * to PCI config space in order to use this function. 5265 * 5266 * This function does not just reset the PCI portion of a device, but 5267 * clears all the state associated with the device. This function differs 5268 * from __pci_reset_function_locked() in that it saves and restores device state 5269 * over the reset and takes the PCI device lock. 5270 * 5271 * Returns 0 if the device function was successfully reset or negative if the 5272 * device doesn't support resetting a single function. 5273 */ 5274 int pci_reset_function(struct pci_dev *dev) 5275 { 5276 struct pci_dev *bridge; 5277 int rc; 5278 5279 if (!pci_reset_supported(dev)) 5280 return -ENOTTY; 5281 5282 /* 5283 * If there's no upstream bridge, no locking is needed since there is 5284 * no upstream bridge configuration to hold consistent. 5285 */ 5286 bridge = pci_upstream_bridge(dev); 5287 if (bridge) 5288 pci_dev_lock(bridge); 5289 5290 pci_dev_lock(dev); 5291 pci_dev_save_and_disable(dev); 5292 5293 rc = __pci_reset_function_locked(dev); 5294 5295 pci_dev_restore(dev); 5296 pci_dev_unlock(dev); 5297 5298 if (bridge) 5299 pci_dev_unlock(bridge); 5300 5301 return rc; 5302 } 5303 EXPORT_SYMBOL_GPL(pci_reset_function); 5304 5305 /** 5306 * pci_reset_function_locked - quiesce and reset a PCI device function 5307 * @dev: PCI device to reset 5308 * 5309 * Some devices allow an individual function to be reset without affecting 5310 * other functions in the same device. The PCI device must be responsive 5311 * to PCI config space in order to use this function. 5312 * 5313 * This function does not just reset the PCI portion of a device, but 5314 * clears all the state associated with the device. This function differs 5315 * from __pci_reset_function_locked() in that it saves and restores device state 5316 * over the reset. It also differs from pci_reset_function() in that it 5317 * requires the PCI device lock to be held. 5318 * 5319 * Returns 0 if the device function was successfully reset or negative if the 5320 * device doesn't support resetting a single function. 5321 */ 5322 int pci_reset_function_locked(struct pci_dev *dev) 5323 { 5324 int rc; 5325 5326 if (!pci_reset_supported(dev)) 5327 return -ENOTTY; 5328 5329 pci_dev_save_and_disable(dev); 5330 5331 rc = __pci_reset_function_locked(dev); 5332 5333 pci_dev_restore(dev); 5334 5335 return rc; 5336 } 5337 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5338 5339 /** 5340 * pci_try_reset_function - quiesce and reset a PCI device function 5341 * @dev: PCI device to reset 5342 * 5343 * Same as above, except return -EAGAIN if unable to lock device. 5344 */ 5345 int pci_try_reset_function(struct pci_dev *dev) 5346 { 5347 int rc; 5348 5349 if (!pci_reset_supported(dev)) 5350 return -ENOTTY; 5351 5352 if (!pci_dev_trylock(dev)) 5353 return -EAGAIN; 5354 5355 pci_dev_save_and_disable(dev); 5356 rc = __pci_reset_function_locked(dev); 5357 pci_dev_restore(dev); 5358 pci_dev_unlock(dev); 5359 5360 return rc; 5361 } 5362 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5363 5364 /* Do any devices on or below this bus prevent a bus reset? */ 5365 static bool pci_bus_resettable(struct pci_bus *bus) 5366 { 5367 struct pci_dev *dev; 5368 5369 5370 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5371 return false; 5372 5373 list_for_each_entry(dev, &bus->devices, bus_list) { 5374 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5375 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5376 return false; 5377 } 5378 5379 return true; 5380 } 5381 5382 /* Lock devices from the top of the tree down */ 5383 static void pci_bus_lock(struct pci_bus *bus) 5384 { 5385 struct pci_dev *dev; 5386 5387 pci_dev_lock(bus->self); 5388 list_for_each_entry(dev, &bus->devices, bus_list) { 5389 if (dev->subordinate) 5390 pci_bus_lock(dev->subordinate); 5391 else 5392 pci_dev_lock(dev); 5393 } 5394 } 5395 5396 /* Unlock devices from the bottom of the tree up */ 5397 static void pci_bus_unlock(struct pci_bus *bus) 5398 { 5399 struct pci_dev *dev; 5400 5401 list_for_each_entry(dev, &bus->devices, bus_list) { 5402 if (dev->subordinate) 5403 pci_bus_unlock(dev->subordinate); 5404 else 5405 pci_dev_unlock(dev); 5406 } 5407 pci_dev_unlock(bus->self); 5408 } 5409 5410 /* Return 1 on successful lock, 0 on contention */ 5411 static int pci_bus_trylock(struct pci_bus *bus) 5412 { 5413 struct pci_dev *dev; 5414 5415 if (!pci_dev_trylock(bus->self)) 5416 return 0; 5417 5418 list_for_each_entry(dev, &bus->devices, bus_list) { 5419 if (dev->subordinate) { 5420 if (!pci_bus_trylock(dev->subordinate)) 5421 goto unlock; 5422 } else if (!pci_dev_trylock(dev)) 5423 goto unlock; 5424 } 5425 return 1; 5426 5427 unlock: 5428 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5429 if (dev->subordinate) 5430 pci_bus_unlock(dev->subordinate); 5431 else 5432 pci_dev_unlock(dev); 5433 } 5434 pci_dev_unlock(bus->self); 5435 return 0; 5436 } 5437 5438 /* Do any devices on or below this slot prevent a bus reset? */ 5439 static bool pci_slot_resettable(struct pci_slot *slot) 5440 { 5441 struct pci_dev *dev; 5442 5443 if (slot->bus->self && 5444 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5445 return false; 5446 5447 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5448 if (!dev->slot || dev->slot != slot) 5449 continue; 5450 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5451 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5452 return false; 5453 } 5454 5455 return true; 5456 } 5457 5458 /* Lock devices from the top of the tree down */ 5459 static void pci_slot_lock(struct pci_slot *slot) 5460 { 5461 struct pci_dev *dev; 5462 5463 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5464 if (!dev->slot || dev->slot != slot) 5465 continue; 5466 if (dev->subordinate) 5467 pci_bus_lock(dev->subordinate); 5468 else 5469 pci_dev_lock(dev); 5470 } 5471 } 5472 5473 /* Unlock devices from the bottom of the tree up */ 5474 static void pci_slot_unlock(struct pci_slot *slot) 5475 { 5476 struct pci_dev *dev; 5477 5478 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5479 if (!dev->slot || dev->slot != slot) 5480 continue; 5481 if (dev->subordinate) 5482 pci_bus_unlock(dev->subordinate); 5483 else 5484 pci_dev_unlock(dev); 5485 } 5486 } 5487 5488 /* Return 1 on successful lock, 0 on contention */ 5489 static int pci_slot_trylock(struct pci_slot *slot) 5490 { 5491 struct pci_dev *dev; 5492 5493 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5494 if (!dev->slot || dev->slot != slot) 5495 continue; 5496 if (dev->subordinate) { 5497 if (!pci_bus_trylock(dev->subordinate)) { 5498 pci_dev_unlock(dev); 5499 goto unlock; 5500 } 5501 } else if (!pci_dev_trylock(dev)) 5502 goto unlock; 5503 } 5504 return 1; 5505 5506 unlock: 5507 list_for_each_entry_continue_reverse(dev, 5508 &slot->bus->devices, bus_list) { 5509 if (!dev->slot || dev->slot != slot) 5510 continue; 5511 if (dev->subordinate) 5512 pci_bus_unlock(dev->subordinate); 5513 else 5514 pci_dev_unlock(dev); 5515 } 5516 return 0; 5517 } 5518 5519 /* 5520 * Save and disable devices from the top of the tree down while holding 5521 * the @dev mutex lock for the entire tree. 5522 */ 5523 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5524 { 5525 struct pci_dev *dev; 5526 5527 list_for_each_entry(dev, &bus->devices, bus_list) { 5528 pci_dev_save_and_disable(dev); 5529 if (dev->subordinate) 5530 pci_bus_save_and_disable_locked(dev->subordinate); 5531 } 5532 } 5533 5534 /* 5535 * Restore devices from top of the tree down while holding @dev mutex lock 5536 * for the entire tree. Parent bridges need to be restored before we can 5537 * get to subordinate devices. 5538 */ 5539 static void pci_bus_restore_locked(struct pci_bus *bus) 5540 { 5541 struct pci_dev *dev; 5542 5543 list_for_each_entry(dev, &bus->devices, bus_list) { 5544 pci_dev_restore(dev); 5545 if (dev->subordinate) { 5546 pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5547 pci_bus_restore_locked(dev->subordinate); 5548 } 5549 } 5550 } 5551 5552 /* 5553 * Save and disable devices from the top of the tree down while holding 5554 * the @dev mutex lock for the entire tree. 5555 */ 5556 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5557 { 5558 struct pci_dev *dev; 5559 5560 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5561 if (!dev->slot || dev->slot != slot) 5562 continue; 5563 pci_dev_save_and_disable(dev); 5564 if (dev->subordinate) 5565 pci_bus_save_and_disable_locked(dev->subordinate); 5566 } 5567 } 5568 5569 /* 5570 * Restore devices from top of the tree down while holding @dev mutex lock 5571 * for the entire tree. Parent bridges need to be restored before we can 5572 * get to subordinate devices. 5573 */ 5574 static void pci_slot_restore_locked(struct pci_slot *slot) 5575 { 5576 struct pci_dev *dev; 5577 5578 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5579 if (!dev->slot || dev->slot != slot) 5580 continue; 5581 pci_dev_restore(dev); 5582 if (dev->subordinate) { 5583 pci_bridge_wait_for_secondary_bus(dev, "slot reset"); 5584 pci_bus_restore_locked(dev->subordinate); 5585 } 5586 } 5587 } 5588 5589 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5590 { 5591 int rc; 5592 5593 if (!slot || !pci_slot_resettable(slot)) 5594 return -ENOTTY; 5595 5596 if (!probe) 5597 pci_slot_lock(slot); 5598 5599 might_sleep(); 5600 5601 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5602 5603 if (!probe) 5604 pci_slot_unlock(slot); 5605 5606 return rc; 5607 } 5608 5609 /** 5610 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5611 * @slot: PCI slot to probe 5612 * 5613 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5614 */ 5615 int pci_probe_reset_slot(struct pci_slot *slot) 5616 { 5617 return pci_slot_reset(slot, PCI_RESET_PROBE); 5618 } 5619 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5620 5621 /** 5622 * __pci_reset_slot - Try to reset a PCI slot 5623 * @slot: PCI slot to reset 5624 * 5625 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5626 * independent of other slots. For instance, some slots may support slot power 5627 * control. In the case of a 1:1 bus to slot architecture, this function may 5628 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5629 * Generally a slot reset should be attempted before a bus reset. All of the 5630 * function of the slot and any subordinate buses behind the slot are reset 5631 * through this function. PCI config space of all devices in the slot and 5632 * behind the slot is saved before and restored after reset. 5633 * 5634 * Same as above except return -EAGAIN if the slot cannot be locked 5635 */ 5636 static int __pci_reset_slot(struct pci_slot *slot) 5637 { 5638 int rc; 5639 5640 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5641 if (rc) 5642 return rc; 5643 5644 if (pci_slot_trylock(slot)) { 5645 pci_slot_save_and_disable_locked(slot); 5646 might_sleep(); 5647 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5648 pci_slot_restore_locked(slot); 5649 pci_slot_unlock(slot); 5650 } else 5651 rc = -EAGAIN; 5652 5653 return rc; 5654 } 5655 5656 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5657 { 5658 int ret; 5659 5660 if (!bus->self || !pci_bus_resettable(bus)) 5661 return -ENOTTY; 5662 5663 if (probe) 5664 return 0; 5665 5666 pci_bus_lock(bus); 5667 5668 might_sleep(); 5669 5670 ret = pci_bridge_secondary_bus_reset(bus->self); 5671 5672 pci_bus_unlock(bus); 5673 5674 return ret; 5675 } 5676 5677 /** 5678 * pci_bus_error_reset - reset the bridge's subordinate bus 5679 * @bridge: The parent device that connects to the bus to reset 5680 * 5681 * This function will first try to reset the slots on this bus if the method is 5682 * available. If slot reset fails or is not available, this will fall back to a 5683 * secondary bus reset. 5684 */ 5685 int pci_bus_error_reset(struct pci_dev *bridge) 5686 { 5687 struct pci_bus *bus = bridge->subordinate; 5688 struct pci_slot *slot; 5689 5690 if (!bus) 5691 return -ENOTTY; 5692 5693 mutex_lock(&pci_slot_mutex); 5694 if (list_empty(&bus->slots)) 5695 goto bus_reset; 5696 5697 list_for_each_entry(slot, &bus->slots, list) 5698 if (pci_probe_reset_slot(slot)) 5699 goto bus_reset; 5700 5701 list_for_each_entry(slot, &bus->slots, list) 5702 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5703 goto bus_reset; 5704 5705 mutex_unlock(&pci_slot_mutex); 5706 return 0; 5707 bus_reset: 5708 mutex_unlock(&pci_slot_mutex); 5709 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5710 } 5711 5712 /** 5713 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5714 * @bus: PCI bus to probe 5715 * 5716 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5717 */ 5718 int pci_probe_reset_bus(struct pci_bus *bus) 5719 { 5720 return pci_bus_reset(bus, PCI_RESET_PROBE); 5721 } 5722 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5723 5724 /** 5725 * __pci_reset_bus - Try to reset a PCI bus 5726 * @bus: top level PCI bus to reset 5727 * 5728 * Same as above except return -EAGAIN if the bus cannot be locked 5729 */ 5730 int __pci_reset_bus(struct pci_bus *bus) 5731 { 5732 int rc; 5733 5734 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5735 if (rc) 5736 return rc; 5737 5738 if (pci_bus_trylock(bus)) { 5739 pci_bus_save_and_disable_locked(bus); 5740 might_sleep(); 5741 rc = pci_bridge_secondary_bus_reset(bus->self); 5742 pci_bus_restore_locked(bus); 5743 pci_bus_unlock(bus); 5744 } else 5745 rc = -EAGAIN; 5746 5747 return rc; 5748 } 5749 5750 /** 5751 * pci_reset_bus - Try to reset a PCI bus 5752 * @pdev: top level PCI device to reset via slot/bus 5753 * 5754 * Same as above except return -EAGAIN if the bus cannot be locked 5755 */ 5756 int pci_reset_bus(struct pci_dev *pdev) 5757 { 5758 return (!pci_probe_reset_slot(pdev->slot)) ? 5759 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5760 } 5761 EXPORT_SYMBOL_GPL(pci_reset_bus); 5762 5763 /** 5764 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5765 * @dev: PCI device to query 5766 * 5767 * Returns mmrbc: maximum designed memory read count in bytes or 5768 * appropriate error value. 5769 */ 5770 int pcix_get_max_mmrbc(struct pci_dev *dev) 5771 { 5772 int cap; 5773 u32 stat; 5774 5775 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5776 if (!cap) 5777 return -EINVAL; 5778 5779 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5780 return -EINVAL; 5781 5782 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat); 5783 } 5784 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5785 5786 /** 5787 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5788 * @dev: PCI device to query 5789 * 5790 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5791 * value. 5792 */ 5793 int pcix_get_mmrbc(struct pci_dev *dev) 5794 { 5795 int cap; 5796 u16 cmd; 5797 5798 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5799 if (!cap) 5800 return -EINVAL; 5801 5802 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5803 return -EINVAL; 5804 5805 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 5806 } 5807 EXPORT_SYMBOL(pcix_get_mmrbc); 5808 5809 /** 5810 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5811 * @dev: PCI device to query 5812 * @mmrbc: maximum memory read count in bytes 5813 * valid values are 512, 1024, 2048, 4096 5814 * 5815 * If possible sets maximum memory read byte count, some bridges have errata 5816 * that prevent this. 5817 */ 5818 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5819 { 5820 int cap; 5821 u32 stat, v, o; 5822 u16 cmd; 5823 5824 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5825 return -EINVAL; 5826 5827 v = ffs(mmrbc) - 10; 5828 5829 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5830 if (!cap) 5831 return -EINVAL; 5832 5833 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5834 return -EINVAL; 5835 5836 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat)) 5837 return -E2BIG; 5838 5839 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5840 return -EINVAL; 5841 5842 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 5843 if (o != v) { 5844 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5845 return -EIO; 5846 5847 cmd &= ~PCI_X_CMD_MAX_READ; 5848 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v); 5849 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5850 return -EIO; 5851 } 5852 return 0; 5853 } 5854 EXPORT_SYMBOL(pcix_set_mmrbc); 5855 5856 /** 5857 * pcie_get_readrq - get PCI Express read request size 5858 * @dev: PCI device to query 5859 * 5860 * Returns maximum memory read request in bytes or appropriate error value. 5861 */ 5862 int pcie_get_readrq(struct pci_dev *dev) 5863 { 5864 u16 ctl; 5865 5866 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5867 5868 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl); 5869 } 5870 EXPORT_SYMBOL(pcie_get_readrq); 5871 5872 /** 5873 * pcie_set_readrq - set PCI Express maximum memory read request 5874 * @dev: PCI device to query 5875 * @rq: maximum memory read count in bytes 5876 * valid values are 128, 256, 512, 1024, 2048, 4096 5877 * 5878 * If possible sets maximum memory read request in bytes 5879 */ 5880 int pcie_set_readrq(struct pci_dev *dev, int rq) 5881 { 5882 u16 v; 5883 int ret; 5884 unsigned int firstbit; 5885 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 5886 5887 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5888 return -EINVAL; 5889 5890 /* 5891 * If using the "performance" PCIe config, we clamp the read rq 5892 * size to the max packet size to keep the host bridge from 5893 * generating requests larger than we can cope with. 5894 */ 5895 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5896 int mps = pcie_get_mps(dev); 5897 5898 if (mps < rq) 5899 rq = mps; 5900 } 5901 5902 firstbit = ffs(rq); 5903 if (firstbit < 8) 5904 return -EINVAL; 5905 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, firstbit - 8); 5906 5907 if (bridge->no_inc_mrrs) { 5908 int max_mrrs = pcie_get_readrq(dev); 5909 5910 if (rq > max_mrrs) { 5911 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 5912 return -EINVAL; 5913 } 5914 } 5915 5916 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5917 PCI_EXP_DEVCTL_READRQ, v); 5918 5919 return pcibios_err_to_errno(ret); 5920 } 5921 EXPORT_SYMBOL(pcie_set_readrq); 5922 5923 /** 5924 * pcie_get_mps - get PCI Express maximum payload size 5925 * @dev: PCI device to query 5926 * 5927 * Returns maximum payload size in bytes 5928 */ 5929 int pcie_get_mps(struct pci_dev *dev) 5930 { 5931 u16 ctl; 5932 5933 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5934 5935 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl); 5936 } 5937 EXPORT_SYMBOL(pcie_get_mps); 5938 5939 /** 5940 * pcie_set_mps - set PCI Express maximum payload size 5941 * @dev: PCI device to query 5942 * @mps: maximum payload size in bytes 5943 * valid values are 128, 256, 512, 1024, 2048, 4096 5944 * 5945 * If possible sets maximum payload size 5946 */ 5947 int pcie_set_mps(struct pci_dev *dev, int mps) 5948 { 5949 u16 v; 5950 int ret; 5951 5952 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5953 return -EINVAL; 5954 5955 v = ffs(mps) - 8; 5956 if (v > dev->pcie_mpss) 5957 return -EINVAL; 5958 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v); 5959 5960 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5961 PCI_EXP_DEVCTL_PAYLOAD, v); 5962 5963 return pcibios_err_to_errno(ret); 5964 } 5965 EXPORT_SYMBOL(pcie_set_mps); 5966 5967 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta) 5968 { 5969 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)]; 5970 } 5971 5972 int pcie_link_speed_mbps(struct pci_dev *pdev) 5973 { 5974 u16 lnksta; 5975 int err; 5976 5977 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 5978 if (err) 5979 return err; 5980 5981 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta)); 5982 } 5983 EXPORT_SYMBOL(pcie_link_speed_mbps); 5984 5985 /** 5986 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5987 * device and its bandwidth limitation 5988 * @dev: PCI device to query 5989 * @limiting_dev: storage for device causing the bandwidth limitation 5990 * @speed: storage for speed of limiting device 5991 * @width: storage for width of limiting device 5992 * 5993 * Walk up the PCI device chain and find the point where the minimum 5994 * bandwidth is available. Return the bandwidth available there and (if 5995 * limiting_dev, speed, and width pointers are supplied) information about 5996 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5997 * raw bandwidth. 5998 */ 5999 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6000 enum pci_bus_speed *speed, 6001 enum pcie_link_width *width) 6002 { 6003 u16 lnksta; 6004 enum pci_bus_speed next_speed; 6005 enum pcie_link_width next_width; 6006 u32 bw, next_bw; 6007 6008 if (speed) 6009 *speed = PCI_SPEED_UNKNOWN; 6010 if (width) 6011 *width = PCIE_LNK_WIDTH_UNKNOWN; 6012 6013 bw = 0; 6014 6015 while (dev) { 6016 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6017 6018 next_speed = to_pcie_link_speed(lnksta); 6019 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6020 6021 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6022 6023 /* Check if current device limits the total bandwidth */ 6024 if (!bw || next_bw <= bw) { 6025 bw = next_bw; 6026 6027 if (limiting_dev) 6028 *limiting_dev = dev; 6029 if (speed) 6030 *speed = next_speed; 6031 if (width) 6032 *width = next_width; 6033 } 6034 6035 dev = pci_upstream_bridge(dev); 6036 } 6037 6038 return bw; 6039 } 6040 EXPORT_SYMBOL(pcie_bandwidth_available); 6041 6042 /** 6043 * pcie_get_supported_speeds - query Supported Link Speed Vector 6044 * @dev: PCI device to query 6045 * 6046 * Query @dev supported link speeds. 6047 * 6048 * Implementation Note in PCIe r6.0 sec 7.5.3.18 recommends determining 6049 * supported link speeds using the Supported Link Speeds Vector in the Link 6050 * Capabilities 2 Register (when available). 6051 * 6052 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. 6053 * 6054 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, Supported Link 6055 * Speeds field in Link Capabilities is used and only 2.5 GT/s and 5.0 GT/s 6056 * speeds were defined. 6057 * 6058 * For @dev without Supported Link Speed Vector, the field is synthesized 6059 * from the Max Link Speed field in the Link Capabilities Register. 6060 * 6061 * Return: Supported Link Speeds Vector (+ reserved 0 at LSB). 6062 */ 6063 u8 pcie_get_supported_speeds(struct pci_dev *dev) 6064 { 6065 u32 lnkcap2, lnkcap; 6066 u8 speeds; 6067 6068 /* 6069 * Speeds retain the reserved 0 at LSB before PCIe Supported Link 6070 * Speeds Vector to allow using SLS Vector bit defines directly. 6071 */ 6072 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6073 speeds = lnkcap2 & PCI_EXP_LNKCAP2_SLS; 6074 6075 /* Ignore speeds higher than Max Link Speed */ 6076 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6077 speeds &= GENMASK(lnkcap & PCI_EXP_LNKCAP_SLS, 0); 6078 6079 /* PCIe r3.0-compliant */ 6080 if (speeds) 6081 return speeds; 6082 6083 /* Synthesize from the Max Link Speed field */ 6084 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6085 speeds = PCI_EXP_LNKCAP2_SLS_5_0GB | PCI_EXP_LNKCAP2_SLS_2_5GB; 6086 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6087 speeds = PCI_EXP_LNKCAP2_SLS_2_5GB; 6088 6089 return speeds; 6090 } 6091 6092 /** 6093 * pcie_get_speed_cap - query for the PCI device's link speed capability 6094 * @dev: PCI device to query 6095 * 6096 * Query the PCI device speed capability. 6097 * 6098 * Return: the maximum link speed supported by the device. 6099 */ 6100 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6101 { 6102 return PCIE_LNKCAP2_SLS2SPEED(dev->supported_speeds); 6103 } 6104 EXPORT_SYMBOL(pcie_get_speed_cap); 6105 6106 /** 6107 * pcie_get_width_cap - query for the PCI device's link width capability 6108 * @dev: PCI device to query 6109 * 6110 * Query the PCI device width capability. Return the maximum link width 6111 * supported by the device. 6112 */ 6113 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6114 { 6115 u32 lnkcap; 6116 6117 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6118 if (lnkcap) 6119 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6120 6121 return PCIE_LNK_WIDTH_UNKNOWN; 6122 } 6123 EXPORT_SYMBOL(pcie_get_width_cap); 6124 6125 /** 6126 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6127 * @dev: PCI device 6128 * @speed: storage for link speed 6129 * @width: storage for link width 6130 * 6131 * Calculate a PCI device's link bandwidth by querying for its link speed 6132 * and width, multiplying them, and applying encoding overhead. The result 6133 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6134 */ 6135 static u32 pcie_bandwidth_capable(struct pci_dev *dev, 6136 enum pci_bus_speed *speed, 6137 enum pcie_link_width *width) 6138 { 6139 *speed = pcie_get_speed_cap(dev); 6140 *width = pcie_get_width_cap(dev); 6141 6142 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6143 return 0; 6144 6145 return *width * PCIE_SPEED2MBS_ENC(*speed); 6146 } 6147 6148 /** 6149 * __pcie_print_link_status - Report the PCI device's link speed and width 6150 * @dev: PCI device to query 6151 * @verbose: Print info even when enough bandwidth is available 6152 * 6153 * If the available bandwidth at the device is less than the device is 6154 * capable of, report the device's maximum possible bandwidth and the 6155 * upstream link that limits its performance. If @verbose, always print 6156 * the available bandwidth, even if the device isn't constrained. 6157 */ 6158 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6159 { 6160 enum pcie_link_width width, width_cap; 6161 enum pci_bus_speed speed, speed_cap; 6162 struct pci_dev *limiting_dev = NULL; 6163 u32 bw_avail, bw_cap; 6164 char *flit_mode = ""; 6165 6166 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6167 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6168 6169 if (dev->bus && dev->bus->flit_mode) 6170 flit_mode = ", in Flit mode"; 6171 6172 if (bw_avail >= bw_cap && verbose) 6173 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)%s\n", 6174 bw_cap / 1000, bw_cap % 1000, 6175 pci_speed_string(speed_cap), width_cap, flit_mode); 6176 else if (bw_avail < bw_cap) 6177 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)%s\n", 6178 bw_avail / 1000, bw_avail % 1000, 6179 pci_speed_string(speed), width, 6180 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6181 bw_cap / 1000, bw_cap % 1000, 6182 pci_speed_string(speed_cap), width_cap, flit_mode); 6183 } 6184 6185 /** 6186 * pcie_print_link_status - Report the PCI device's link speed and width 6187 * @dev: PCI device to query 6188 * 6189 * Report the available bandwidth at the device. 6190 */ 6191 void pcie_print_link_status(struct pci_dev *dev) 6192 { 6193 __pcie_print_link_status(dev, true); 6194 } 6195 EXPORT_SYMBOL(pcie_print_link_status); 6196 6197 /** 6198 * pci_select_bars - Make BAR mask from the type of resource 6199 * @dev: the PCI device for which BAR mask is made 6200 * @flags: resource type mask to be selected 6201 * 6202 * This helper routine makes bar mask from the type of resource. 6203 */ 6204 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6205 { 6206 int i, bars = 0; 6207 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6208 if (pci_resource_flags(dev, i) & flags) 6209 bars |= (1 << i); 6210 return bars; 6211 } 6212 EXPORT_SYMBOL(pci_select_bars); 6213 6214 /* Some architectures require additional programming to enable VGA */ 6215 static arch_set_vga_state_t arch_set_vga_state; 6216 6217 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6218 { 6219 arch_set_vga_state = func; /* NULL disables */ 6220 } 6221 6222 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6223 unsigned int command_bits, u32 flags) 6224 { 6225 if (arch_set_vga_state) 6226 return arch_set_vga_state(dev, decode, command_bits, 6227 flags); 6228 return 0; 6229 } 6230 6231 /** 6232 * pci_set_vga_state - set VGA decode state on device and parents if requested 6233 * @dev: the PCI device 6234 * @decode: true = enable decoding, false = disable decoding 6235 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6236 * @flags: traverse ancestors and change bridges 6237 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6238 */ 6239 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6240 unsigned int command_bits, u32 flags) 6241 { 6242 struct pci_bus *bus; 6243 struct pci_dev *bridge; 6244 u16 cmd; 6245 int rc; 6246 6247 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6248 6249 /* ARCH specific VGA enables */ 6250 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6251 if (rc) 6252 return rc; 6253 6254 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6255 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6256 if (decode) 6257 cmd |= command_bits; 6258 else 6259 cmd &= ~command_bits; 6260 pci_write_config_word(dev, PCI_COMMAND, cmd); 6261 } 6262 6263 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6264 return 0; 6265 6266 bus = dev->bus; 6267 while (bus) { 6268 bridge = bus->self; 6269 if (bridge) { 6270 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6271 &cmd); 6272 if (decode) 6273 cmd |= PCI_BRIDGE_CTL_VGA; 6274 else 6275 cmd &= ~PCI_BRIDGE_CTL_VGA; 6276 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6277 cmd); 6278 } 6279 bus = bus->parent; 6280 } 6281 return 0; 6282 } 6283 6284 #ifdef CONFIG_ACPI 6285 bool pci_pr3_present(struct pci_dev *pdev) 6286 { 6287 struct acpi_device *adev; 6288 6289 if (acpi_disabled) 6290 return false; 6291 6292 adev = ACPI_COMPANION(&pdev->dev); 6293 if (!adev) 6294 return false; 6295 6296 return adev->power.flags.power_resources && 6297 acpi_has_method(adev->handle, "_PR3"); 6298 } 6299 EXPORT_SYMBOL_GPL(pci_pr3_present); 6300 #endif 6301 6302 /** 6303 * pci_add_dma_alias - Add a DMA devfn alias for a device 6304 * @dev: the PCI device for which alias is added 6305 * @devfn_from: alias slot and function 6306 * @nr_devfns: number of subsequent devfns to alias 6307 * 6308 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6309 * which is used to program permissible bus-devfn source addresses for DMA 6310 * requests in an IOMMU. These aliases factor into IOMMU group creation 6311 * and are useful for devices generating DMA requests beyond or different 6312 * from their logical bus-devfn. Examples include device quirks where the 6313 * device simply uses the wrong devfn, as well as non-transparent bridges 6314 * where the alias may be a proxy for devices in another domain. 6315 * 6316 * IOMMU group creation is performed during device discovery or addition, 6317 * prior to any potential DMA mapping and therefore prior to driver probing 6318 * (especially for userspace assigned devices where IOMMU group definition 6319 * cannot be left as a userspace activity). DMA aliases should therefore 6320 * be configured via quirks, such as the PCI fixup header quirk. 6321 */ 6322 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6323 unsigned int nr_devfns) 6324 { 6325 int devfn_to; 6326 6327 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6328 devfn_to = devfn_from + nr_devfns - 1; 6329 6330 if (!dev->dma_alias_mask) 6331 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6332 if (!dev->dma_alias_mask) { 6333 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6334 return; 6335 } 6336 6337 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6338 6339 if (nr_devfns == 1) 6340 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6341 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6342 else if (nr_devfns > 1) 6343 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6344 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6345 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6346 } 6347 6348 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6349 { 6350 return (dev1->dma_alias_mask && 6351 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6352 (dev2->dma_alias_mask && 6353 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6354 pci_real_dma_dev(dev1) == dev2 || 6355 pci_real_dma_dev(dev2) == dev1; 6356 } 6357 6358 bool pci_device_is_present(struct pci_dev *pdev) 6359 { 6360 u32 v; 6361 6362 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6363 pdev = pci_physfn(pdev); 6364 if (pci_dev_is_disconnected(pdev)) 6365 return false; 6366 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6367 } 6368 EXPORT_SYMBOL_GPL(pci_device_is_present); 6369 6370 void pci_ignore_hotplug(struct pci_dev *dev) 6371 { 6372 struct pci_dev *bridge = dev->bus->self; 6373 6374 dev->ignore_hotplug = 1; 6375 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6376 if (bridge) 6377 bridge->ignore_hotplug = 1; 6378 } 6379 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6380 6381 /** 6382 * pci_real_dma_dev - Get PCI DMA device for PCI device 6383 * @dev: the PCI device that may have a PCI DMA alias 6384 * 6385 * Permits the platform to provide architecture-specific functionality to 6386 * devices needing to alias DMA to another PCI device on another PCI bus. If 6387 * the PCI device is on the same bus, it is recommended to use 6388 * pci_add_dma_alias(). This is the default implementation. Architecture 6389 * implementations can override this. 6390 */ 6391 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6392 { 6393 return dev; 6394 } 6395 6396 resource_size_t __weak pcibios_default_alignment(void) 6397 { 6398 return 0; 6399 } 6400 6401 /* 6402 * Arches that don't want to expose struct resource to userland as-is in 6403 * sysfs and /proc can implement their own pci_resource_to_user(). 6404 */ 6405 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6406 const struct resource *rsrc, 6407 resource_size_t *start, resource_size_t *end) 6408 { 6409 *start = rsrc->start; 6410 *end = rsrc->end; 6411 } 6412 6413 static char *resource_alignment_param; 6414 static DEFINE_SPINLOCK(resource_alignment_lock); 6415 6416 /** 6417 * pci_specified_resource_alignment - get resource alignment specified by user. 6418 * @dev: the PCI device to get 6419 * @resize: whether or not to change resources' size when reassigning alignment 6420 * 6421 * RETURNS: Resource alignment if it is specified. 6422 * Zero if it is not specified. 6423 */ 6424 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6425 bool *resize) 6426 { 6427 int align_order, count; 6428 resource_size_t align = pcibios_default_alignment(); 6429 const char *p; 6430 int ret; 6431 6432 spin_lock(&resource_alignment_lock); 6433 p = resource_alignment_param; 6434 if (!p || !*p) 6435 goto out; 6436 if (pci_has_flag(PCI_PROBE_ONLY)) { 6437 align = 0; 6438 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6439 goto out; 6440 } 6441 6442 while (*p) { 6443 count = 0; 6444 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6445 p[count] == '@') { 6446 p += count + 1; 6447 if (align_order > 63) { 6448 pr_err("PCI: Invalid requested alignment (order %d)\n", 6449 align_order); 6450 align_order = PAGE_SHIFT; 6451 } 6452 } else { 6453 align_order = PAGE_SHIFT; 6454 } 6455 6456 ret = pci_dev_str_match(dev, p, &p); 6457 if (ret == 1) { 6458 *resize = true; 6459 align = 1ULL << align_order; 6460 break; 6461 } else if (ret < 0) { 6462 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6463 p); 6464 break; 6465 } 6466 6467 if (*p != ';' && *p != ',') { 6468 /* End of param or invalid format */ 6469 break; 6470 } 6471 p++; 6472 } 6473 out: 6474 spin_unlock(&resource_alignment_lock); 6475 return align; 6476 } 6477 6478 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6479 resource_size_t align, bool resize) 6480 { 6481 struct resource *r = &dev->resource[bar]; 6482 const char *r_name = pci_resource_name(dev, bar); 6483 resource_size_t size; 6484 6485 if (!(r->flags & IORESOURCE_MEM)) 6486 return; 6487 6488 if (r->flags & IORESOURCE_PCI_FIXED) { 6489 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n", 6490 r_name, r, (unsigned long long)align); 6491 return; 6492 } 6493 6494 size = resource_size(r); 6495 if (size >= align) 6496 return; 6497 6498 /* 6499 * Increase the alignment of the resource. There are two ways we 6500 * can do this: 6501 * 6502 * 1) Increase the size of the resource. BARs are aligned on their 6503 * size, so when we reallocate space for this resource, we'll 6504 * allocate it with the larger alignment. This also prevents 6505 * assignment of any other BARs inside the alignment region, so 6506 * if we're requesting page alignment, this means no other BARs 6507 * will share the page. 6508 * 6509 * The disadvantage is that this makes the resource larger than 6510 * the hardware BAR, which may break drivers that compute things 6511 * based on the resource size, e.g., to find registers at a 6512 * fixed offset before the end of the BAR. 6513 * 6514 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6515 * set r->start to the desired alignment. By itself this 6516 * doesn't prevent other BARs being put inside the alignment 6517 * region, but if we realign *every* resource of every device in 6518 * the system, none of them will share an alignment region. 6519 * 6520 * When the user has requested alignment for only some devices via 6521 * the "pci=resource_alignment" argument, "resize" is true and we 6522 * use the first method. Otherwise we assume we're aligning all 6523 * devices and we use the second. 6524 */ 6525 6526 pci_info(dev, "%s %pR: requesting alignment to %#llx\n", 6527 r_name, r, (unsigned long long)align); 6528 6529 if (resize) { 6530 r->start = 0; 6531 r->end = align - 1; 6532 } else { 6533 r->flags &= ~IORESOURCE_SIZEALIGN; 6534 r->flags |= IORESOURCE_STARTALIGN; 6535 resource_set_range(r, align, size); 6536 } 6537 r->flags |= IORESOURCE_UNSET; 6538 } 6539 6540 /* 6541 * This function disables memory decoding and releases memory resources 6542 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6543 * It also rounds up size to specified alignment. 6544 * Later on, the kernel will assign page-aligned memory resource back 6545 * to the device. 6546 */ 6547 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6548 { 6549 int i; 6550 struct resource *r; 6551 resource_size_t align; 6552 u16 command; 6553 bool resize = false; 6554 6555 /* 6556 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6557 * 3.4.1.11. Their resources are allocated from the space 6558 * described by the VF BARx register in the PF's SR-IOV capability. 6559 * We can't influence their alignment here. 6560 */ 6561 if (dev->is_virtfn) 6562 return; 6563 6564 /* check if specified PCI is target device to reassign */ 6565 align = pci_specified_resource_alignment(dev, &resize); 6566 if (!align) 6567 return; 6568 6569 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6570 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6571 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6572 return; 6573 } 6574 6575 pci_read_config_word(dev, PCI_COMMAND, &command); 6576 command &= ~PCI_COMMAND_MEMORY; 6577 pci_write_config_word(dev, PCI_COMMAND, command); 6578 6579 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6580 pci_request_resource_alignment(dev, i, align, resize); 6581 6582 /* 6583 * Need to disable bridge's resource window, 6584 * to enable the kernel to reassign new resource 6585 * window later on. 6586 */ 6587 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6588 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6589 r = &dev->resource[i]; 6590 if (!(r->flags & IORESOURCE_MEM)) 6591 continue; 6592 r->flags |= IORESOURCE_UNSET; 6593 r->end = resource_size(r) - 1; 6594 r->start = 0; 6595 } 6596 pci_disable_bridge_window(dev); 6597 } 6598 } 6599 6600 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6601 { 6602 size_t count = 0; 6603 6604 spin_lock(&resource_alignment_lock); 6605 if (resource_alignment_param) 6606 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6607 spin_unlock(&resource_alignment_lock); 6608 6609 return count; 6610 } 6611 6612 static ssize_t resource_alignment_store(const struct bus_type *bus, 6613 const char *buf, size_t count) 6614 { 6615 char *param, *old, *end; 6616 6617 if (count >= (PAGE_SIZE - 1)) 6618 return -EINVAL; 6619 6620 param = kstrndup(buf, count, GFP_KERNEL); 6621 if (!param) 6622 return -ENOMEM; 6623 6624 end = strchr(param, '\n'); 6625 if (end) 6626 *end = '\0'; 6627 6628 spin_lock(&resource_alignment_lock); 6629 old = resource_alignment_param; 6630 if (strlen(param)) { 6631 resource_alignment_param = param; 6632 } else { 6633 kfree(param); 6634 resource_alignment_param = NULL; 6635 } 6636 spin_unlock(&resource_alignment_lock); 6637 6638 kfree(old); 6639 6640 return count; 6641 } 6642 6643 static BUS_ATTR_RW(resource_alignment); 6644 6645 static int __init pci_resource_alignment_sysfs_init(void) 6646 { 6647 return bus_create_file(&pci_bus_type, 6648 &bus_attr_resource_alignment); 6649 } 6650 late_initcall(pci_resource_alignment_sysfs_init); 6651 6652 static void pci_no_domains(void) 6653 { 6654 #ifdef CONFIG_PCI_DOMAINS 6655 pci_domains_supported = 0; 6656 #endif 6657 } 6658 6659 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6660 static DEFINE_IDA(pci_domain_nr_static_ida); 6661 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6662 6663 static void of_pci_reserve_static_domain_nr(void) 6664 { 6665 struct device_node *np; 6666 int domain_nr; 6667 6668 for_each_node_by_type(np, "pci") { 6669 domain_nr = of_get_pci_domain_nr(np); 6670 if (domain_nr < 0) 6671 continue; 6672 /* 6673 * Permanently allocate domain_nr in dynamic_ida 6674 * to prevent it from dynamic allocation. 6675 */ 6676 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6677 domain_nr, domain_nr, GFP_KERNEL); 6678 } 6679 } 6680 6681 static int of_pci_bus_find_domain_nr(struct device *parent) 6682 { 6683 static bool static_domains_reserved = false; 6684 int domain_nr; 6685 6686 /* On the first call scan device tree for static allocations. */ 6687 if (!static_domains_reserved) { 6688 of_pci_reserve_static_domain_nr(); 6689 static_domains_reserved = true; 6690 } 6691 6692 if (parent) { 6693 /* 6694 * If domain is in DT, allocate it in static IDA. This 6695 * prevents duplicate static allocations in case of errors 6696 * in DT. 6697 */ 6698 domain_nr = of_get_pci_domain_nr(parent->of_node); 6699 if (domain_nr >= 0) 6700 return ida_alloc_range(&pci_domain_nr_static_ida, 6701 domain_nr, domain_nr, 6702 GFP_KERNEL); 6703 } 6704 6705 /* 6706 * If domain was not specified in DT, choose a free ID from dynamic 6707 * allocations. All domain numbers from DT are permanently in 6708 * dynamic allocations to prevent assigning them to other DT nodes 6709 * without static domain. 6710 */ 6711 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6712 } 6713 6714 static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr) 6715 { 6716 if (domain_nr < 0) 6717 return; 6718 6719 /* Release domain from IDA where it was allocated. */ 6720 if (of_get_pci_domain_nr(parent->of_node) == domain_nr) 6721 ida_free(&pci_domain_nr_static_ida, domain_nr); 6722 else 6723 ida_free(&pci_domain_nr_dynamic_ida, domain_nr); 6724 } 6725 6726 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6727 { 6728 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6729 acpi_pci_bus_find_domain_nr(bus); 6730 } 6731 6732 void pci_bus_release_domain_nr(struct device *parent, int domain_nr) 6733 { 6734 if (!acpi_disabled) 6735 return; 6736 of_pci_bus_release_domain_nr(parent, domain_nr); 6737 } 6738 #endif 6739 6740 /** 6741 * pci_ext_cfg_avail - can we access extended PCI config space? 6742 * 6743 * Returns 1 if we can access PCI extended config space (offsets 6744 * greater than 0xff). This is the default implementation. Architecture 6745 * implementations can override this. 6746 */ 6747 int __weak pci_ext_cfg_avail(void) 6748 { 6749 return 1; 6750 } 6751 6752 static int __init pci_setup(char *str) 6753 { 6754 while (str) { 6755 char *k = strchr(str, ','); 6756 if (k) 6757 *k++ = 0; 6758 if (*str && (str = pcibios_setup(str)) && *str) { 6759 if (!strcmp(str, "nomsi")) { 6760 pci_no_msi(); 6761 } else if (!strncmp(str, "noats", 5)) { 6762 pr_info("PCIe: ATS is disabled\n"); 6763 pcie_ats_disabled = true; 6764 } else if (!strcmp(str, "noaer")) { 6765 pci_no_aer(); 6766 } else if (!strcmp(str, "earlydump")) { 6767 pci_early_dump = true; 6768 } else if (!strncmp(str, "realloc=", 8)) { 6769 pci_realloc_get_opt(str + 8); 6770 } else if (!strncmp(str, "realloc", 7)) { 6771 pci_realloc_get_opt("on"); 6772 } else if (!strcmp(str, "nodomains")) { 6773 pci_no_domains(); 6774 } else if (!strncmp(str, "noari", 5)) { 6775 pcie_ari_disabled = true; 6776 } else if (!strncmp(str, "notph", 5)) { 6777 pci_no_tph(); 6778 } else if (!strncmp(str, "cbiosize=", 9)) { 6779 pci_cardbus_io_size = memparse(str + 9, &str); 6780 } else if (!strncmp(str, "cbmemsize=", 10)) { 6781 pci_cardbus_mem_size = memparse(str + 10, &str); 6782 } else if (!strncmp(str, "resource_alignment=", 19)) { 6783 resource_alignment_param = str + 19; 6784 } else if (!strncmp(str, "ecrc=", 5)) { 6785 pcie_ecrc_get_policy(str + 5); 6786 } else if (!strncmp(str, "hpiosize=", 9)) { 6787 pci_hotplug_io_size = memparse(str + 9, &str); 6788 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6789 pci_hotplug_mmio_size = memparse(str + 11, &str); 6790 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6791 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6792 } else if (!strncmp(str, "hpmemsize=", 10)) { 6793 pci_hotplug_mmio_size = memparse(str + 10, &str); 6794 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6795 } else if (!strncmp(str, "hpbussize=", 10)) { 6796 pci_hotplug_bus_size = 6797 simple_strtoul(str + 10, &str, 0); 6798 if (pci_hotplug_bus_size > 0xff) 6799 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6800 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6801 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6802 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6803 pcie_bus_config = PCIE_BUS_SAFE; 6804 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6805 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6806 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6807 pcie_bus_config = PCIE_BUS_PEER2PEER; 6808 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6809 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6810 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6811 disable_acs_redir_param = str + 18; 6812 } else if (!strncmp(str, "config_acs=", 11)) { 6813 config_acs_param = str + 11; 6814 } else { 6815 pr_err("PCI: Unknown option `%s'\n", str); 6816 } 6817 } 6818 str = k; 6819 } 6820 return 0; 6821 } 6822 early_param("pci", pci_setup); 6823 6824 /* 6825 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6826 * in pci_setup(), above, to point to data in the __initdata section which 6827 * will be freed after the init sequence is complete. We can't allocate memory 6828 * in pci_setup() because some architectures do not have any memory allocation 6829 * service available during an early_param() call. So we allocate memory and 6830 * copy the variable here before the init section is freed. 6831 * 6832 */ 6833 static int __init pci_realloc_setup_params(void) 6834 { 6835 resource_alignment_param = kstrdup(resource_alignment_param, 6836 GFP_KERNEL); 6837 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6838 config_acs_param = kstrdup(config_acs_param, GFP_KERNEL); 6839 6840 return 0; 6841 } 6842 pure_initcall(pci_realloc_setup_params); 6843