1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 #ifdef CONFIG_X86_32 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 #endif 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3hot_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 static void pci_dev_d3_sleep(struct pci_dev *dev) 68 { 69 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 70 unsigned int upper; 71 72 if (delay_ms) { 73 /* Use a 20% upper bound, 1ms minimum */ 74 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 75 usleep_range(delay_ms * USEC_PER_MSEC, 76 (delay_ms + upper) * USEC_PER_MSEC); 77 } 78 } 79 80 bool pci_reset_supported(struct pci_dev *dev) 81 { 82 return dev->reset_methods[0] != 0; 83 } 84 85 #ifdef CONFIG_PCI_DOMAINS 86 int pci_domains_supported = 1; 87 #endif 88 89 #define DEFAULT_CARDBUS_IO_SIZE (256) 90 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 91 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 92 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 93 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 94 95 #define DEFAULT_HOTPLUG_IO_SIZE (256) 96 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 97 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 98 /* hpiosize=nn can override this */ 99 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 100 /* 101 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 102 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 103 * pci=hpmemsize=nnM overrides both 104 */ 105 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 106 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 107 108 #define DEFAULT_HOTPLUG_BUS_SIZE 1 109 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 110 111 112 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 113 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 115 #elif defined CONFIG_PCIE_BUS_SAFE 116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 117 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 119 #elif defined CONFIG_PCIE_BUS_PEER2PEER 120 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 121 #else 122 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 123 #endif 124 125 /* 126 * The default CLS is used if arch didn't set CLS explicitly and not 127 * all pci devices agree on the same value. Arch can override either 128 * the dfl or actual value as it sees fit. Don't forget this is 129 * measured in 32-bit words, not bytes. 130 */ 131 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 132 u8 pci_cache_line_size; 133 134 /* 135 * If we set up a device for bus mastering, we need to check the latency 136 * timer as certain BIOSes forget to set it properly. 137 */ 138 unsigned int pcibios_max_latency = 255; 139 140 /* If set, the PCIe ARI capability will not be used. */ 141 static bool pcie_ari_disabled; 142 143 /* If set, the PCIe ATS capability will not be used. */ 144 static bool pcie_ats_disabled; 145 146 /* If set, the PCI config space of each device is printed during boot. */ 147 bool pci_early_dump; 148 149 bool pci_ats_disabled(void) 150 { 151 return pcie_ats_disabled; 152 } 153 EXPORT_SYMBOL_GPL(pci_ats_disabled); 154 155 /* Disable bridge_d3 for all PCIe ports */ 156 static bool pci_bridge_d3_disable; 157 /* Force bridge_d3 for all PCIe ports */ 158 static bool pci_bridge_d3_force; 159 160 static int __init pcie_port_pm_setup(char *str) 161 { 162 if (!strcmp(str, "off")) 163 pci_bridge_d3_disable = true; 164 else if (!strcmp(str, "force")) 165 pci_bridge_d3_force = true; 166 return 1; 167 } 168 __setup("pcie_port_pm=", pcie_port_pm_setup); 169 170 /* Time to wait after a reset for device to become responsive */ 171 #define PCIE_RESET_READY_POLL_MS 60000 172 173 /** 174 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 175 * @bus: pointer to PCI bus structure to search 176 * 177 * Given a PCI bus, returns the highest PCI bus number present in the set 178 * including the given PCI bus and its list of child PCI buses. 179 */ 180 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 181 { 182 struct pci_bus *tmp; 183 unsigned char max, n; 184 185 max = bus->busn_res.end; 186 list_for_each_entry(tmp, &bus->children, node) { 187 n = pci_bus_max_busnr(tmp); 188 if (n > max) 189 max = n; 190 } 191 return max; 192 } 193 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 194 195 /** 196 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 197 * @pdev: the PCI device 198 * 199 * Returns error bits set in PCI_STATUS and clears them. 200 */ 201 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 202 { 203 u16 status; 204 int ret; 205 206 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 207 if (ret != PCIBIOS_SUCCESSFUL) 208 return -EIO; 209 210 status &= PCI_STATUS_ERROR_BITS; 211 if (status) 212 pci_write_config_word(pdev, PCI_STATUS, status); 213 214 return status; 215 } 216 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 217 218 #ifdef CONFIG_HAS_IOMEM 219 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 220 bool write_combine) 221 { 222 struct resource *res = &pdev->resource[bar]; 223 resource_size_t start = res->start; 224 resource_size_t size = resource_size(res); 225 226 /* 227 * Make sure the BAR is actually a memory resource, not an IO resource 228 */ 229 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 230 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 231 return NULL; 232 } 233 234 if (write_combine) 235 return ioremap_wc(start, size); 236 237 return ioremap(start, size); 238 } 239 240 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 241 { 242 return __pci_ioremap_resource(pdev, bar, false); 243 } 244 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 245 246 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 247 { 248 return __pci_ioremap_resource(pdev, bar, true); 249 } 250 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 251 #endif 252 253 /** 254 * pci_dev_str_match_path - test if a path string matches a device 255 * @dev: the PCI device to test 256 * @path: string to match the device against 257 * @endptr: pointer to the string after the match 258 * 259 * Test if a string (typically from a kernel parameter) formatted as a 260 * path of device/function addresses matches a PCI device. The string must 261 * be of the form: 262 * 263 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 264 * 265 * A path for a device can be obtained using 'lspci -t'. Using a path 266 * is more robust against bus renumbering than using only a single bus, 267 * device and function address. 268 * 269 * Returns 1 if the string matches the device, 0 if it does not and 270 * a negative error code if it fails to parse the string. 271 */ 272 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 273 const char **endptr) 274 { 275 int ret; 276 unsigned int seg, bus, slot, func; 277 char *wpath, *p; 278 char end; 279 280 *endptr = strchrnul(path, ';'); 281 282 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 283 if (!wpath) 284 return -ENOMEM; 285 286 while (1) { 287 p = strrchr(wpath, '/'); 288 if (!p) 289 break; 290 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 291 if (ret != 2) { 292 ret = -EINVAL; 293 goto free_and_exit; 294 } 295 296 if (dev->devfn != PCI_DEVFN(slot, func)) { 297 ret = 0; 298 goto free_and_exit; 299 } 300 301 /* 302 * Note: we don't need to get a reference to the upstream 303 * bridge because we hold a reference to the top level 304 * device which should hold a reference to the bridge, 305 * and so on. 306 */ 307 dev = pci_upstream_bridge(dev); 308 if (!dev) { 309 ret = 0; 310 goto free_and_exit; 311 } 312 313 *p = 0; 314 } 315 316 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 317 &func, &end); 318 if (ret != 4) { 319 seg = 0; 320 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 321 if (ret != 3) { 322 ret = -EINVAL; 323 goto free_and_exit; 324 } 325 } 326 327 ret = (seg == pci_domain_nr(dev->bus) && 328 bus == dev->bus->number && 329 dev->devfn == PCI_DEVFN(slot, func)); 330 331 free_and_exit: 332 kfree(wpath); 333 return ret; 334 } 335 336 /** 337 * pci_dev_str_match - test if a string matches a device 338 * @dev: the PCI device to test 339 * @p: string to match the device against 340 * @endptr: pointer to the string after the match 341 * 342 * Test if a string (typically from a kernel parameter) matches a specified 343 * PCI device. The string may be of one of the following formats: 344 * 345 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 346 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 347 * 348 * The first format specifies a PCI bus/device/function address which 349 * may change if new hardware is inserted, if motherboard firmware changes, 350 * or due to changes caused in kernel parameters. If the domain is 351 * left unspecified, it is taken to be 0. In order to be robust against 352 * bus renumbering issues, a path of PCI device/function numbers may be used 353 * to address the specific device. The path for a device can be determined 354 * through the use of 'lspci -t'. 355 * 356 * The second format matches devices using IDs in the configuration 357 * space which may match multiple devices in the system. A value of 0 358 * for any field will match all devices. (Note: this differs from 359 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 360 * legacy reasons and convenience so users don't have to specify 361 * FFFFFFFFs on the command line.) 362 * 363 * Returns 1 if the string matches the device, 0 if it does not and 364 * a negative error code if the string cannot be parsed. 365 */ 366 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 367 const char **endptr) 368 { 369 int ret; 370 int count; 371 unsigned short vendor, device, subsystem_vendor, subsystem_device; 372 373 if (strncmp(p, "pci:", 4) == 0) { 374 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 375 p += 4; 376 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 377 &subsystem_vendor, &subsystem_device, &count); 378 if (ret != 4) { 379 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 380 if (ret != 2) 381 return -EINVAL; 382 383 subsystem_vendor = 0; 384 subsystem_device = 0; 385 } 386 387 p += count; 388 389 if ((!vendor || vendor == dev->vendor) && 390 (!device || device == dev->device) && 391 (!subsystem_vendor || 392 subsystem_vendor == dev->subsystem_vendor) && 393 (!subsystem_device || 394 subsystem_device == dev->subsystem_device)) 395 goto found; 396 } else { 397 /* 398 * PCI Bus, Device, Function IDs are specified 399 * (optionally, may include a path of devfns following it) 400 */ 401 ret = pci_dev_str_match_path(dev, p, &p); 402 if (ret < 0) 403 return ret; 404 else if (ret) 405 goto found; 406 } 407 408 *endptr = p; 409 return 0; 410 411 found: 412 *endptr = p; 413 return 1; 414 } 415 416 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 417 u8 pos, int cap, int *ttl) 418 { 419 u8 id; 420 u16 ent; 421 422 pci_bus_read_config_byte(bus, devfn, pos, &pos); 423 424 while ((*ttl)--) { 425 if (pos < 0x40) 426 break; 427 pos &= ~3; 428 pci_bus_read_config_word(bus, devfn, pos, &ent); 429 430 id = ent & 0xff; 431 if (id == 0xff) 432 break; 433 if (id == cap) 434 return pos; 435 pos = (ent >> 8); 436 } 437 return 0; 438 } 439 440 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 441 u8 pos, int cap) 442 { 443 int ttl = PCI_FIND_CAP_TTL; 444 445 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 446 } 447 448 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 449 { 450 return __pci_find_next_cap(dev->bus, dev->devfn, 451 pos + PCI_CAP_LIST_NEXT, cap); 452 } 453 EXPORT_SYMBOL_GPL(pci_find_next_capability); 454 455 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 456 unsigned int devfn, u8 hdr_type) 457 { 458 u16 status; 459 460 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 461 if (!(status & PCI_STATUS_CAP_LIST)) 462 return 0; 463 464 switch (hdr_type) { 465 case PCI_HEADER_TYPE_NORMAL: 466 case PCI_HEADER_TYPE_BRIDGE: 467 return PCI_CAPABILITY_LIST; 468 case PCI_HEADER_TYPE_CARDBUS: 469 return PCI_CB_CAPABILITY_LIST; 470 } 471 472 return 0; 473 } 474 475 /** 476 * pci_find_capability - query for devices' capabilities 477 * @dev: PCI device to query 478 * @cap: capability code 479 * 480 * Tell if a device supports a given PCI capability. 481 * Returns the address of the requested capability structure within the 482 * device's PCI configuration space or 0 in case the device does not 483 * support it. Possible values for @cap include: 484 * 485 * %PCI_CAP_ID_PM Power Management 486 * %PCI_CAP_ID_AGP Accelerated Graphics Port 487 * %PCI_CAP_ID_VPD Vital Product Data 488 * %PCI_CAP_ID_SLOTID Slot Identification 489 * %PCI_CAP_ID_MSI Message Signalled Interrupts 490 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 491 * %PCI_CAP_ID_PCIX PCI-X 492 * %PCI_CAP_ID_EXP PCI Express 493 */ 494 u8 pci_find_capability(struct pci_dev *dev, int cap) 495 { 496 u8 pos; 497 498 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 499 if (pos) 500 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 501 502 return pos; 503 } 504 EXPORT_SYMBOL(pci_find_capability); 505 506 /** 507 * pci_bus_find_capability - query for devices' capabilities 508 * @bus: the PCI bus to query 509 * @devfn: PCI device to query 510 * @cap: capability code 511 * 512 * Like pci_find_capability() but works for PCI devices that do not have a 513 * pci_dev structure set up yet. 514 * 515 * Returns the address of the requested capability structure within the 516 * device's PCI configuration space or 0 in case the device does not 517 * support it. 518 */ 519 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 520 { 521 u8 hdr_type, pos; 522 523 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 524 525 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 526 if (pos) 527 pos = __pci_find_next_cap(bus, devfn, pos, cap); 528 529 return pos; 530 } 531 EXPORT_SYMBOL(pci_bus_find_capability); 532 533 /** 534 * pci_find_next_ext_capability - Find an extended capability 535 * @dev: PCI device to query 536 * @start: address at which to start looking (0 to start at beginning of list) 537 * @cap: capability code 538 * 539 * Returns the address of the next matching extended capability structure 540 * within the device's PCI configuration space or 0 if the device does 541 * not support it. Some capabilities can occur several times, e.g., the 542 * vendor-specific capability, and this provides a way to find them all. 543 */ 544 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 545 { 546 u32 header; 547 int ttl; 548 u16 pos = PCI_CFG_SPACE_SIZE; 549 550 /* minimum 8 bytes per capability */ 551 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 552 553 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 554 return 0; 555 556 if (start) 557 pos = start; 558 559 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 560 return 0; 561 562 /* 563 * If we have no capabilities, this is indicated by cap ID, 564 * cap version and next pointer all being 0. 565 */ 566 if (header == 0) 567 return 0; 568 569 while (ttl-- > 0) { 570 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 571 return pos; 572 573 pos = PCI_EXT_CAP_NEXT(header); 574 if (pos < PCI_CFG_SPACE_SIZE) 575 break; 576 577 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 578 break; 579 } 580 581 return 0; 582 } 583 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 584 585 /** 586 * pci_find_ext_capability - Find an extended capability 587 * @dev: PCI device to query 588 * @cap: capability code 589 * 590 * Returns the address of the requested extended capability structure 591 * within the device's PCI configuration space or 0 if the device does 592 * not support it. Possible values for @cap include: 593 * 594 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 595 * %PCI_EXT_CAP_ID_VC Virtual Channel 596 * %PCI_EXT_CAP_ID_DSN Device Serial Number 597 * %PCI_EXT_CAP_ID_PWR Power Budgeting 598 */ 599 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 600 { 601 return pci_find_next_ext_capability(dev, 0, cap); 602 } 603 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 604 605 /** 606 * pci_get_dsn - Read and return the 8-byte Device Serial Number 607 * @dev: PCI device to query 608 * 609 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 610 * Number. 611 * 612 * Returns the DSN, or zero if the capability does not exist. 613 */ 614 u64 pci_get_dsn(struct pci_dev *dev) 615 { 616 u32 dword; 617 u64 dsn; 618 int pos; 619 620 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 621 if (!pos) 622 return 0; 623 624 /* 625 * The Device Serial Number is two dwords offset 4 bytes from the 626 * capability position. The specification says that the first dword is 627 * the lower half, and the second dword is the upper half. 628 */ 629 pos += 4; 630 pci_read_config_dword(dev, pos, &dword); 631 dsn = (u64)dword; 632 pci_read_config_dword(dev, pos + 4, &dword); 633 dsn |= ((u64)dword) << 32; 634 635 return dsn; 636 } 637 EXPORT_SYMBOL_GPL(pci_get_dsn); 638 639 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 640 { 641 int rc, ttl = PCI_FIND_CAP_TTL; 642 u8 cap, mask; 643 644 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 645 mask = HT_3BIT_CAP_MASK; 646 else 647 mask = HT_5BIT_CAP_MASK; 648 649 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 650 PCI_CAP_ID_HT, &ttl); 651 while (pos) { 652 rc = pci_read_config_byte(dev, pos + 3, &cap); 653 if (rc != PCIBIOS_SUCCESSFUL) 654 return 0; 655 656 if ((cap & mask) == ht_cap) 657 return pos; 658 659 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 660 pos + PCI_CAP_LIST_NEXT, 661 PCI_CAP_ID_HT, &ttl); 662 } 663 664 return 0; 665 } 666 667 /** 668 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 669 * @dev: PCI device to query 670 * @pos: Position from which to continue searching 671 * @ht_cap: HyperTransport capability code 672 * 673 * To be used in conjunction with pci_find_ht_capability() to search for 674 * all capabilities matching @ht_cap. @pos should always be a value returned 675 * from pci_find_ht_capability(). 676 * 677 * NB. To be 100% safe against broken PCI devices, the caller should take 678 * steps to avoid an infinite loop. 679 */ 680 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 681 { 682 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 683 } 684 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 685 686 /** 687 * pci_find_ht_capability - query a device's HyperTransport capabilities 688 * @dev: PCI device to query 689 * @ht_cap: HyperTransport capability code 690 * 691 * Tell if a device supports a given HyperTransport capability. 692 * Returns an address within the device's PCI configuration space 693 * or 0 in case the device does not support the request capability. 694 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 695 * which has a HyperTransport capability matching @ht_cap. 696 */ 697 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 698 { 699 u8 pos; 700 701 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 702 if (pos) 703 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 704 705 return pos; 706 } 707 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 708 709 /** 710 * pci_find_vsec_capability - Find a vendor-specific extended capability 711 * @dev: PCI device to query 712 * @vendor: Vendor ID for which capability is defined 713 * @cap: Vendor-specific capability ID 714 * 715 * If @dev has Vendor ID @vendor, search for a VSEC capability with 716 * VSEC ID @cap. If found, return the capability offset in 717 * config space; otherwise return 0. 718 */ 719 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 720 { 721 u16 vsec = 0; 722 u32 header; 723 724 if (vendor != dev->vendor) 725 return 0; 726 727 while ((vsec = pci_find_next_ext_capability(dev, vsec, 728 PCI_EXT_CAP_ID_VNDR))) { 729 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, 730 &header) == PCIBIOS_SUCCESSFUL && 731 PCI_VNDR_HEADER_ID(header) == cap) 732 return vsec; 733 } 734 735 return 0; 736 } 737 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 738 739 /** 740 * pci_find_dvsec_capability - Find DVSEC for vendor 741 * @dev: PCI device to query 742 * @vendor: Vendor ID to match for the DVSEC 743 * @dvsec: Designated Vendor-specific capability ID 744 * 745 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 746 * offset in config space; otherwise return 0. 747 */ 748 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 749 { 750 int pos; 751 752 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 753 if (!pos) 754 return 0; 755 756 while (pos) { 757 u16 v, id; 758 759 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 760 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 761 if (vendor == v && dvsec == id) 762 return pos; 763 764 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 765 } 766 767 return 0; 768 } 769 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 770 771 /** 772 * pci_find_parent_resource - return resource region of parent bus of given 773 * region 774 * @dev: PCI device structure contains resources to be searched 775 * @res: child resource record for which parent is sought 776 * 777 * For given resource region of given device, return the resource region of 778 * parent bus the given region is contained in. 779 */ 780 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 781 struct resource *res) 782 { 783 const struct pci_bus *bus = dev->bus; 784 struct resource *r; 785 int i; 786 787 pci_bus_for_each_resource(bus, r, i) { 788 if (!r) 789 continue; 790 if (resource_contains(r, res)) { 791 792 /* 793 * If the window is prefetchable but the BAR is 794 * not, the allocator made a mistake. 795 */ 796 if (r->flags & IORESOURCE_PREFETCH && 797 !(res->flags & IORESOURCE_PREFETCH)) 798 return NULL; 799 800 /* 801 * If we're below a transparent bridge, there may 802 * be both a positively-decoded aperture and a 803 * subtractively-decoded region that contain the BAR. 804 * We want the positively-decoded one, so this depends 805 * on pci_bus_for_each_resource() giving us those 806 * first. 807 */ 808 return r; 809 } 810 } 811 return NULL; 812 } 813 EXPORT_SYMBOL(pci_find_parent_resource); 814 815 /** 816 * pci_find_resource - Return matching PCI device resource 817 * @dev: PCI device to query 818 * @res: Resource to look for 819 * 820 * Goes over standard PCI resources (BARs) and checks if the given resource 821 * is partially or fully contained in any of them. In that case the 822 * matching resource is returned, %NULL otherwise. 823 */ 824 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 825 { 826 int i; 827 828 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 829 struct resource *r = &dev->resource[i]; 830 831 if (r->start && resource_contains(r, res)) 832 return r; 833 } 834 835 return NULL; 836 } 837 EXPORT_SYMBOL(pci_find_resource); 838 839 /** 840 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 841 * @dev: the PCI device to operate on 842 * @pos: config space offset of status word 843 * @mask: mask of bit(s) to care about in status word 844 * 845 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 846 */ 847 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 848 { 849 int i; 850 851 /* Wait for Transaction Pending bit clean */ 852 for (i = 0; i < 4; i++) { 853 u16 status; 854 if (i) 855 msleep((1 << (i - 1)) * 100); 856 857 pci_read_config_word(dev, pos, &status); 858 if (!(status & mask)) 859 return 1; 860 } 861 862 return 0; 863 } 864 865 static int pci_acs_enable; 866 867 /** 868 * pci_request_acs - ask for ACS to be enabled if supported 869 */ 870 void pci_request_acs(void) 871 { 872 pci_acs_enable = 1; 873 } 874 875 static const char *disable_acs_redir_param; 876 877 /** 878 * pci_disable_acs_redir - disable ACS redirect capabilities 879 * @dev: the PCI device 880 * 881 * For only devices specified in the disable_acs_redir parameter. 882 */ 883 static void pci_disable_acs_redir(struct pci_dev *dev) 884 { 885 int ret = 0; 886 const char *p; 887 int pos; 888 u16 ctrl; 889 890 if (!disable_acs_redir_param) 891 return; 892 893 p = disable_acs_redir_param; 894 while (*p) { 895 ret = pci_dev_str_match(dev, p, &p); 896 if (ret < 0) { 897 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 898 disable_acs_redir_param); 899 900 break; 901 } else if (ret == 1) { 902 /* Found a match */ 903 break; 904 } 905 906 if (*p != ';' && *p != ',') { 907 /* End of param or invalid format */ 908 break; 909 } 910 p++; 911 } 912 913 if (ret != 1) 914 return; 915 916 if (!pci_dev_specific_disable_acs_redir(dev)) 917 return; 918 919 pos = dev->acs_cap; 920 if (!pos) { 921 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 922 return; 923 } 924 925 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 926 927 /* P2P Request & Completion Redirect */ 928 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 929 930 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 931 932 pci_info(dev, "disabled ACS redirect\n"); 933 } 934 935 /** 936 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 937 * @dev: the PCI device 938 */ 939 static void pci_std_enable_acs(struct pci_dev *dev) 940 { 941 int pos; 942 u16 cap; 943 u16 ctrl; 944 945 pos = dev->acs_cap; 946 if (!pos) 947 return; 948 949 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 950 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 951 952 /* Source Validation */ 953 ctrl |= (cap & PCI_ACS_SV); 954 955 /* P2P Request Redirect */ 956 ctrl |= (cap & PCI_ACS_RR); 957 958 /* P2P Completion Redirect */ 959 ctrl |= (cap & PCI_ACS_CR); 960 961 /* Upstream Forwarding */ 962 ctrl |= (cap & PCI_ACS_UF); 963 964 /* Enable Translation Blocking for external devices and noats */ 965 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 966 ctrl |= (cap & PCI_ACS_TB); 967 968 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 969 } 970 971 /** 972 * pci_enable_acs - enable ACS if hardware support it 973 * @dev: the PCI device 974 */ 975 static void pci_enable_acs(struct pci_dev *dev) 976 { 977 if (!pci_acs_enable) 978 goto disable_acs_redir; 979 980 if (!pci_dev_specific_enable_acs(dev)) 981 goto disable_acs_redir; 982 983 pci_std_enable_acs(dev); 984 985 disable_acs_redir: 986 /* 987 * Note: pci_disable_acs_redir() must be called even if ACS was not 988 * enabled by the kernel because it may have been enabled by 989 * platform firmware. So if we are told to disable it, we should 990 * always disable it after setting the kernel's default 991 * preferences. 992 */ 993 pci_disable_acs_redir(dev); 994 } 995 996 /** 997 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 998 * @dev: PCI device to have its BARs restored 999 * 1000 * Restore the BAR values for a given device, so as to make it 1001 * accessible by its driver. 1002 */ 1003 static void pci_restore_bars(struct pci_dev *dev) 1004 { 1005 int i; 1006 1007 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1008 pci_update_resource(dev, i); 1009 } 1010 1011 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1012 { 1013 if (pci_use_mid_pm()) 1014 return true; 1015 1016 return acpi_pci_power_manageable(dev); 1017 } 1018 1019 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1020 pci_power_t t) 1021 { 1022 if (pci_use_mid_pm()) 1023 return mid_pci_set_power_state(dev, t); 1024 1025 return acpi_pci_set_power_state(dev, t); 1026 } 1027 1028 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1029 { 1030 if (pci_use_mid_pm()) 1031 return mid_pci_get_power_state(dev); 1032 1033 return acpi_pci_get_power_state(dev); 1034 } 1035 1036 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1037 { 1038 if (!pci_use_mid_pm()) 1039 acpi_pci_refresh_power_state(dev); 1040 } 1041 1042 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1043 { 1044 if (pci_use_mid_pm()) 1045 return PCI_POWER_ERROR; 1046 1047 return acpi_pci_choose_state(dev); 1048 } 1049 1050 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1051 { 1052 if (pci_use_mid_pm()) 1053 return PCI_POWER_ERROR; 1054 1055 return acpi_pci_wakeup(dev, enable); 1056 } 1057 1058 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1059 { 1060 if (pci_use_mid_pm()) 1061 return false; 1062 1063 return acpi_pci_need_resume(dev); 1064 } 1065 1066 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1067 { 1068 if (pci_use_mid_pm()) 1069 return false; 1070 1071 return acpi_pci_bridge_d3(dev); 1072 } 1073 1074 /** 1075 * pci_update_current_state - Read power state of given device and cache it 1076 * @dev: PCI device to handle. 1077 * @state: State to cache in case the device doesn't have the PM capability 1078 * 1079 * The power state is read from the PMCSR register, which however is 1080 * inaccessible in D3cold. The platform firmware is therefore queried first 1081 * to detect accessibility of the register. In case the platform firmware 1082 * reports an incorrect state or the device isn't power manageable by the 1083 * platform at all, we try to detect D3cold by testing accessibility of the 1084 * vendor ID in config space. 1085 */ 1086 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1087 { 1088 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1089 dev->current_state = PCI_D3cold; 1090 } else if (dev->pm_cap) { 1091 u16 pmcsr; 1092 1093 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1094 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1095 dev->current_state = PCI_D3cold; 1096 return; 1097 } 1098 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1099 } else { 1100 dev->current_state = state; 1101 } 1102 } 1103 1104 /** 1105 * pci_refresh_power_state - Refresh the given device's power state data 1106 * @dev: Target PCI device. 1107 * 1108 * Ask the platform to refresh the devices power state information and invoke 1109 * pci_update_current_state() to update its current PCI power state. 1110 */ 1111 void pci_refresh_power_state(struct pci_dev *dev) 1112 { 1113 platform_pci_refresh_power_state(dev); 1114 pci_update_current_state(dev, dev->current_state); 1115 } 1116 1117 /** 1118 * pci_platform_power_transition - Use platform to change device power state 1119 * @dev: PCI device to handle. 1120 * @state: State to put the device into. 1121 */ 1122 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1123 { 1124 int error; 1125 1126 error = platform_pci_set_power_state(dev, state); 1127 if (!error) 1128 pci_update_current_state(dev, state); 1129 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1130 dev->current_state = PCI_D0; 1131 1132 return error; 1133 } 1134 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1135 1136 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1137 { 1138 pm_request_resume(&pci_dev->dev); 1139 return 0; 1140 } 1141 1142 /** 1143 * pci_resume_bus - Walk given bus and runtime resume devices on it 1144 * @bus: Top bus of the subtree to walk. 1145 */ 1146 void pci_resume_bus(struct pci_bus *bus) 1147 { 1148 if (bus) 1149 pci_walk_bus(bus, pci_resume_one, NULL); 1150 } 1151 1152 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1153 { 1154 int delay = 1; 1155 u32 id; 1156 1157 /* 1158 * After reset, the device should not silently discard config 1159 * requests, but it may still indicate that it needs more time by 1160 * responding to them with CRS completions. The Root Port will 1161 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1162 * the read (except when CRS SV is enabled and the read was for the 1163 * Vendor ID; in that case it synthesizes 0x0001 data). 1164 * 1165 * Wait for the device to return a non-CRS completion. Read the 1166 * Command register instead of Vendor ID so we don't have to 1167 * contend with the CRS SV value. 1168 */ 1169 pci_read_config_dword(dev, PCI_COMMAND, &id); 1170 while (PCI_POSSIBLE_ERROR(id)) { 1171 if (delay > timeout) { 1172 pci_warn(dev, "not ready %dms after %s; giving up\n", 1173 delay - 1, reset_type); 1174 return -ENOTTY; 1175 } 1176 1177 if (delay > 1000) 1178 pci_info(dev, "not ready %dms after %s; waiting\n", 1179 delay - 1, reset_type); 1180 1181 msleep(delay); 1182 delay *= 2; 1183 pci_read_config_dword(dev, PCI_COMMAND, &id); 1184 } 1185 1186 if (delay > 1000) 1187 pci_info(dev, "ready %dms after %s\n", delay - 1, 1188 reset_type); 1189 1190 return 0; 1191 } 1192 1193 /** 1194 * pci_power_up - Put the given device into D0 1195 * @dev: PCI device to power up 1196 * 1197 * On success, return 0 or 1, depending on whether or not it is necessary to 1198 * restore the device's BARs subsequently (1 is returned in that case). 1199 */ 1200 int pci_power_up(struct pci_dev *dev) 1201 { 1202 bool need_restore; 1203 pci_power_t state; 1204 u16 pmcsr; 1205 1206 platform_pci_set_power_state(dev, PCI_D0); 1207 1208 if (!dev->pm_cap) { 1209 state = platform_pci_get_power_state(dev); 1210 if (state == PCI_UNKNOWN) 1211 dev->current_state = PCI_D0; 1212 else 1213 dev->current_state = state; 1214 1215 if (state == PCI_D0) 1216 return 0; 1217 1218 return -EIO; 1219 } 1220 1221 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1222 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1223 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1224 pci_power_name(dev->current_state)); 1225 dev->current_state = PCI_D3cold; 1226 return -EIO; 1227 } 1228 1229 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1230 1231 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1232 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1233 1234 if (state == PCI_D0) 1235 goto end; 1236 1237 /* 1238 * Force the entire word to 0. This doesn't affect PME_Status, disables 1239 * PME_En, and sets PowerState to 0. 1240 */ 1241 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1242 1243 /* Mandatory transition delays; see PCI PM 1.2. */ 1244 if (state == PCI_D3hot) 1245 pci_dev_d3_sleep(dev); 1246 else if (state == PCI_D2) 1247 udelay(PCI_PM_D2_DELAY); 1248 1249 end: 1250 dev->current_state = PCI_D0; 1251 if (need_restore) 1252 return 1; 1253 1254 return 0; 1255 } 1256 1257 /** 1258 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1259 * @dev: PCI device to power up 1260 * 1261 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1262 * to confirm the state change, restore its BARs if they might be lost and 1263 * reconfigure ASPM in acordance with the new power state. 1264 * 1265 * If pci_restore_state() is going to be called right after a power state change 1266 * to D0, it is more efficient to use pci_power_up() directly instead of this 1267 * function. 1268 */ 1269 static int pci_set_full_power_state(struct pci_dev *dev) 1270 { 1271 u16 pmcsr; 1272 int ret; 1273 1274 ret = pci_power_up(dev); 1275 if (ret < 0) 1276 return ret; 1277 1278 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1279 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1280 if (dev->current_state != PCI_D0) { 1281 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1282 pci_power_name(dev->current_state)); 1283 } else if (ret > 0) { 1284 /* 1285 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1286 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1287 * from D3hot to D0 _may_ perform an internal reset, thereby 1288 * going to "D0 Uninitialized" rather than "D0 Initialized". 1289 * For example, at least some versions of the 3c905B and the 1290 * 3c556B exhibit this behaviour. 1291 * 1292 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1293 * devices in a D3hot state at boot. Consequently, we need to 1294 * restore at least the BARs so that the device will be 1295 * accessible to its driver. 1296 */ 1297 pci_restore_bars(dev); 1298 } 1299 1300 return 0; 1301 } 1302 1303 /** 1304 * __pci_dev_set_current_state - Set current state of a PCI device 1305 * @dev: Device to handle 1306 * @data: pointer to state to be set 1307 */ 1308 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1309 { 1310 pci_power_t state = *(pci_power_t *)data; 1311 1312 dev->current_state = state; 1313 return 0; 1314 } 1315 1316 /** 1317 * pci_bus_set_current_state - Walk given bus and set current state of devices 1318 * @bus: Top bus of the subtree to walk. 1319 * @state: state to be set 1320 */ 1321 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1322 { 1323 if (bus) 1324 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1325 } 1326 1327 /** 1328 * pci_set_low_power_state - Put a PCI device into a low-power state. 1329 * @dev: PCI device to handle. 1330 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1331 * 1332 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1333 * 1334 * RETURN VALUE: 1335 * -EINVAL if the requested state is invalid. 1336 * -EIO if device does not support PCI PM or its PM capabilities register has a 1337 * wrong version, or device doesn't support the requested state. 1338 * 0 if device already is in the requested state. 1339 * 0 if device's power state has been successfully changed. 1340 */ 1341 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state) 1342 { 1343 u16 pmcsr; 1344 1345 if (!dev->pm_cap) 1346 return -EIO; 1347 1348 /* 1349 * Validate transition: We can enter D0 from any state, but if 1350 * we're already in a low-power state, we can only go deeper. E.g., 1351 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1352 * we'd have to go from D3 to D0, then to D1. 1353 */ 1354 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1355 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1356 pci_power_name(dev->current_state), 1357 pci_power_name(state)); 1358 return -EINVAL; 1359 } 1360 1361 /* Check if this device supports the desired state */ 1362 if ((state == PCI_D1 && !dev->d1_support) 1363 || (state == PCI_D2 && !dev->d2_support)) 1364 return -EIO; 1365 1366 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1367 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1368 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1369 pci_power_name(dev->current_state), 1370 pci_power_name(state)); 1371 dev->current_state = PCI_D3cold; 1372 return -EIO; 1373 } 1374 1375 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1376 pmcsr |= state; 1377 1378 /* Enter specified state */ 1379 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1380 1381 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1382 if (state == PCI_D3hot) 1383 pci_dev_d3_sleep(dev); 1384 else if (state == PCI_D2) 1385 udelay(PCI_PM_D2_DELAY); 1386 1387 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1388 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1389 if (dev->current_state != state) 1390 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1391 pci_power_name(dev->current_state), 1392 pci_power_name(state)); 1393 1394 return 0; 1395 } 1396 1397 /** 1398 * pci_set_power_state - Set the power state of a PCI device 1399 * @dev: PCI device to handle. 1400 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1401 * 1402 * Transition a device to a new power state, using the platform firmware and/or 1403 * the device's PCI PM registers. 1404 * 1405 * RETURN VALUE: 1406 * -EINVAL if the requested state is invalid. 1407 * -EIO if device does not support PCI PM or its PM capabilities register has a 1408 * wrong version, or device doesn't support the requested state. 1409 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1410 * 0 if device already is in the requested state. 1411 * 0 if the transition is to D3 but D3 is not supported. 1412 * 0 if device's power state has been successfully changed. 1413 */ 1414 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1415 { 1416 int error; 1417 1418 /* Bound the state we're entering */ 1419 if (state > PCI_D3cold) 1420 state = PCI_D3cold; 1421 else if (state < PCI_D0) 1422 state = PCI_D0; 1423 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1424 1425 /* 1426 * If the device or the parent bridge do not support PCI 1427 * PM, ignore the request if we're doing anything other 1428 * than putting it into D0 (which would only happen on 1429 * boot). 1430 */ 1431 return 0; 1432 1433 /* Check if we're already there */ 1434 if (dev->current_state == state) 1435 return 0; 1436 1437 if (state == PCI_D0) 1438 return pci_set_full_power_state(dev); 1439 1440 /* 1441 * This device is quirked not to be put into D3, so don't put it in 1442 * D3 1443 */ 1444 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1445 return 0; 1446 1447 if (state == PCI_D3cold) { 1448 /* 1449 * To put the device in D3cold, put it into D3hot in the native 1450 * way, then put it into D3cold using platform ops. 1451 */ 1452 error = pci_set_low_power_state(dev, PCI_D3hot); 1453 1454 if (pci_platform_power_transition(dev, PCI_D3cold)) 1455 return error; 1456 1457 /* Powering off a bridge may power off the whole hierarchy */ 1458 if (dev->current_state == PCI_D3cold) 1459 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1460 } else { 1461 error = pci_set_low_power_state(dev, state); 1462 1463 if (pci_platform_power_transition(dev, state)) 1464 return error; 1465 } 1466 1467 return 0; 1468 } 1469 EXPORT_SYMBOL(pci_set_power_state); 1470 1471 #define PCI_EXP_SAVE_REGS 7 1472 1473 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1474 u16 cap, bool extended) 1475 { 1476 struct pci_cap_saved_state *tmp; 1477 1478 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1479 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1480 return tmp; 1481 } 1482 return NULL; 1483 } 1484 1485 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1486 { 1487 return _pci_find_saved_cap(dev, cap, false); 1488 } 1489 1490 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1491 { 1492 return _pci_find_saved_cap(dev, cap, true); 1493 } 1494 1495 static int pci_save_pcie_state(struct pci_dev *dev) 1496 { 1497 int i = 0; 1498 struct pci_cap_saved_state *save_state; 1499 u16 *cap; 1500 1501 if (!pci_is_pcie(dev)) 1502 return 0; 1503 1504 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1505 if (!save_state) { 1506 pci_err(dev, "buffer not found in %s\n", __func__); 1507 return -ENOMEM; 1508 } 1509 1510 cap = (u16 *)&save_state->cap.data[0]; 1511 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1512 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1513 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1514 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1515 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1516 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1517 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1518 1519 return 0; 1520 } 1521 1522 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1523 { 1524 #ifdef CONFIG_PCIEASPM 1525 struct pci_dev *bridge; 1526 u32 ctl; 1527 1528 bridge = pci_upstream_bridge(dev); 1529 if (bridge && bridge->ltr_path) { 1530 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1531 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1532 pci_dbg(bridge, "re-enabling LTR\n"); 1533 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1534 PCI_EXP_DEVCTL2_LTR_EN); 1535 } 1536 } 1537 #endif 1538 } 1539 1540 static void pci_restore_pcie_state(struct pci_dev *dev) 1541 { 1542 int i = 0; 1543 struct pci_cap_saved_state *save_state; 1544 u16 *cap; 1545 1546 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1547 if (!save_state) 1548 return; 1549 1550 /* 1551 * Downstream ports reset the LTR enable bit when link goes down. 1552 * Check and re-configure the bit here before restoring device. 1553 * PCIe r5.0, sec 7.5.3.16. 1554 */ 1555 pci_bridge_reconfigure_ltr(dev); 1556 1557 cap = (u16 *)&save_state->cap.data[0]; 1558 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1559 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1560 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1561 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1562 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1563 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1564 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1565 } 1566 1567 static int pci_save_pcix_state(struct pci_dev *dev) 1568 { 1569 int pos; 1570 struct pci_cap_saved_state *save_state; 1571 1572 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1573 if (!pos) 1574 return 0; 1575 1576 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1577 if (!save_state) { 1578 pci_err(dev, "buffer not found in %s\n", __func__); 1579 return -ENOMEM; 1580 } 1581 1582 pci_read_config_word(dev, pos + PCI_X_CMD, 1583 (u16 *)save_state->cap.data); 1584 1585 return 0; 1586 } 1587 1588 static void pci_restore_pcix_state(struct pci_dev *dev) 1589 { 1590 int i = 0, pos; 1591 struct pci_cap_saved_state *save_state; 1592 u16 *cap; 1593 1594 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1595 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1596 if (!save_state || !pos) 1597 return; 1598 cap = (u16 *)&save_state->cap.data[0]; 1599 1600 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1601 } 1602 1603 static void pci_save_ltr_state(struct pci_dev *dev) 1604 { 1605 int ltr; 1606 struct pci_cap_saved_state *save_state; 1607 u32 *cap; 1608 1609 if (!pci_is_pcie(dev)) 1610 return; 1611 1612 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1613 if (!ltr) 1614 return; 1615 1616 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1617 if (!save_state) { 1618 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1619 return; 1620 } 1621 1622 /* Some broken devices only support dword access to LTR */ 1623 cap = &save_state->cap.data[0]; 1624 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap); 1625 } 1626 1627 static void pci_restore_ltr_state(struct pci_dev *dev) 1628 { 1629 struct pci_cap_saved_state *save_state; 1630 int ltr; 1631 u32 *cap; 1632 1633 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1634 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1635 if (!save_state || !ltr) 1636 return; 1637 1638 /* Some broken devices only support dword access to LTR */ 1639 cap = &save_state->cap.data[0]; 1640 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap); 1641 } 1642 1643 /** 1644 * pci_save_state - save the PCI configuration space of a device before 1645 * suspending 1646 * @dev: PCI device that we're dealing with 1647 */ 1648 int pci_save_state(struct pci_dev *dev) 1649 { 1650 int i; 1651 /* XXX: 100% dword access ok here? */ 1652 for (i = 0; i < 16; i++) { 1653 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1654 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1655 i * 4, dev->saved_config_space[i]); 1656 } 1657 dev->state_saved = true; 1658 1659 i = pci_save_pcie_state(dev); 1660 if (i != 0) 1661 return i; 1662 1663 i = pci_save_pcix_state(dev); 1664 if (i != 0) 1665 return i; 1666 1667 pci_save_ltr_state(dev); 1668 pci_save_aspm_l1ss_state(dev); 1669 pci_save_dpc_state(dev); 1670 pci_save_aer_state(dev); 1671 pci_save_ptm_state(dev); 1672 return pci_save_vc_state(dev); 1673 } 1674 EXPORT_SYMBOL(pci_save_state); 1675 1676 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1677 u32 saved_val, int retry, bool force) 1678 { 1679 u32 val; 1680 1681 pci_read_config_dword(pdev, offset, &val); 1682 if (!force && val == saved_val) 1683 return; 1684 1685 for (;;) { 1686 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1687 offset, val, saved_val); 1688 pci_write_config_dword(pdev, offset, saved_val); 1689 if (retry-- <= 0) 1690 return; 1691 1692 pci_read_config_dword(pdev, offset, &val); 1693 if (val == saved_val) 1694 return; 1695 1696 mdelay(1); 1697 } 1698 } 1699 1700 static void pci_restore_config_space_range(struct pci_dev *pdev, 1701 int start, int end, int retry, 1702 bool force) 1703 { 1704 int index; 1705 1706 for (index = end; index >= start; index--) 1707 pci_restore_config_dword(pdev, 4 * index, 1708 pdev->saved_config_space[index], 1709 retry, force); 1710 } 1711 1712 static void pci_restore_config_space(struct pci_dev *pdev) 1713 { 1714 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1715 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1716 /* Restore BARs before the command register. */ 1717 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1718 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1719 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1720 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1721 1722 /* 1723 * Force rewriting of prefetch registers to avoid S3 resume 1724 * issues on Intel PCI bridges that occur when these 1725 * registers are not explicitly written. 1726 */ 1727 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1728 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1729 } else { 1730 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1731 } 1732 } 1733 1734 static void pci_restore_rebar_state(struct pci_dev *pdev) 1735 { 1736 unsigned int pos, nbars, i; 1737 u32 ctrl; 1738 1739 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1740 if (!pos) 1741 return; 1742 1743 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1744 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1745 PCI_REBAR_CTRL_NBAR_SHIFT; 1746 1747 for (i = 0; i < nbars; i++, pos += 8) { 1748 struct resource *res; 1749 int bar_idx, size; 1750 1751 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1752 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1753 res = pdev->resource + bar_idx; 1754 size = pci_rebar_bytes_to_size(resource_size(res)); 1755 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1756 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1757 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1758 } 1759 } 1760 1761 /** 1762 * pci_restore_state - Restore the saved state of a PCI device 1763 * @dev: PCI device that we're dealing with 1764 */ 1765 void pci_restore_state(struct pci_dev *dev) 1766 { 1767 if (!dev->state_saved) 1768 return; 1769 1770 /* 1771 * Restore max latencies (in the LTR capability) before enabling 1772 * LTR itself (in the PCIe capability). 1773 */ 1774 pci_restore_ltr_state(dev); 1775 pci_restore_aspm_l1ss_state(dev); 1776 1777 pci_restore_pcie_state(dev); 1778 pci_restore_pasid_state(dev); 1779 pci_restore_pri_state(dev); 1780 pci_restore_ats_state(dev); 1781 pci_restore_vc_state(dev); 1782 pci_restore_rebar_state(dev); 1783 pci_restore_dpc_state(dev); 1784 pci_restore_ptm_state(dev); 1785 1786 pci_aer_clear_status(dev); 1787 pci_restore_aer_state(dev); 1788 1789 pci_restore_config_space(dev); 1790 1791 pci_restore_pcix_state(dev); 1792 pci_restore_msi_state(dev); 1793 1794 /* Restore ACS and IOV configuration state */ 1795 pci_enable_acs(dev); 1796 pci_restore_iov_state(dev); 1797 1798 dev->state_saved = false; 1799 } 1800 EXPORT_SYMBOL(pci_restore_state); 1801 1802 struct pci_saved_state { 1803 u32 config_space[16]; 1804 struct pci_cap_saved_data cap[]; 1805 }; 1806 1807 /** 1808 * pci_store_saved_state - Allocate and return an opaque struct containing 1809 * the device saved state. 1810 * @dev: PCI device that we're dealing with 1811 * 1812 * Return NULL if no state or error. 1813 */ 1814 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1815 { 1816 struct pci_saved_state *state; 1817 struct pci_cap_saved_state *tmp; 1818 struct pci_cap_saved_data *cap; 1819 size_t size; 1820 1821 if (!dev->state_saved) 1822 return NULL; 1823 1824 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1825 1826 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1827 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1828 1829 state = kzalloc(size, GFP_KERNEL); 1830 if (!state) 1831 return NULL; 1832 1833 memcpy(state->config_space, dev->saved_config_space, 1834 sizeof(state->config_space)); 1835 1836 cap = state->cap; 1837 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1838 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1839 memcpy(cap, &tmp->cap, len); 1840 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1841 } 1842 /* Empty cap_save terminates list */ 1843 1844 return state; 1845 } 1846 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1847 1848 /** 1849 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1850 * @dev: PCI device that we're dealing with 1851 * @state: Saved state returned from pci_store_saved_state() 1852 */ 1853 int pci_load_saved_state(struct pci_dev *dev, 1854 struct pci_saved_state *state) 1855 { 1856 struct pci_cap_saved_data *cap; 1857 1858 dev->state_saved = false; 1859 1860 if (!state) 1861 return 0; 1862 1863 memcpy(dev->saved_config_space, state->config_space, 1864 sizeof(state->config_space)); 1865 1866 cap = state->cap; 1867 while (cap->size) { 1868 struct pci_cap_saved_state *tmp; 1869 1870 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1871 if (!tmp || tmp->cap.size != cap->size) 1872 return -EINVAL; 1873 1874 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1875 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1876 sizeof(struct pci_cap_saved_data) + cap->size); 1877 } 1878 1879 dev->state_saved = true; 1880 return 0; 1881 } 1882 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1883 1884 /** 1885 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1886 * and free the memory allocated for it. 1887 * @dev: PCI device that we're dealing with 1888 * @state: Pointer to saved state returned from pci_store_saved_state() 1889 */ 1890 int pci_load_and_free_saved_state(struct pci_dev *dev, 1891 struct pci_saved_state **state) 1892 { 1893 int ret = pci_load_saved_state(dev, *state); 1894 kfree(*state); 1895 *state = NULL; 1896 return ret; 1897 } 1898 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1899 1900 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1901 { 1902 return pci_enable_resources(dev, bars); 1903 } 1904 1905 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1906 { 1907 int err; 1908 struct pci_dev *bridge; 1909 u16 cmd; 1910 u8 pin; 1911 1912 err = pci_set_power_state(dev, PCI_D0); 1913 if (err < 0 && err != -EIO) 1914 return err; 1915 1916 bridge = pci_upstream_bridge(dev); 1917 if (bridge) 1918 pcie_aspm_powersave_config_link(bridge); 1919 1920 err = pcibios_enable_device(dev, bars); 1921 if (err < 0) 1922 return err; 1923 pci_fixup_device(pci_fixup_enable, dev); 1924 1925 if (dev->msi_enabled || dev->msix_enabled) 1926 return 0; 1927 1928 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1929 if (pin) { 1930 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1931 if (cmd & PCI_COMMAND_INTX_DISABLE) 1932 pci_write_config_word(dev, PCI_COMMAND, 1933 cmd & ~PCI_COMMAND_INTX_DISABLE); 1934 } 1935 1936 return 0; 1937 } 1938 1939 /** 1940 * pci_reenable_device - Resume abandoned device 1941 * @dev: PCI device to be resumed 1942 * 1943 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1944 * to be called by normal code, write proper resume handler and use it instead. 1945 */ 1946 int pci_reenable_device(struct pci_dev *dev) 1947 { 1948 if (pci_is_enabled(dev)) 1949 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1950 return 0; 1951 } 1952 EXPORT_SYMBOL(pci_reenable_device); 1953 1954 static void pci_enable_bridge(struct pci_dev *dev) 1955 { 1956 struct pci_dev *bridge; 1957 int retval; 1958 1959 bridge = pci_upstream_bridge(dev); 1960 if (bridge) 1961 pci_enable_bridge(bridge); 1962 1963 if (pci_is_enabled(dev)) { 1964 if (!dev->is_busmaster) 1965 pci_set_master(dev); 1966 return; 1967 } 1968 1969 retval = pci_enable_device(dev); 1970 if (retval) 1971 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1972 retval); 1973 pci_set_master(dev); 1974 } 1975 1976 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1977 { 1978 struct pci_dev *bridge; 1979 int err; 1980 int i, bars = 0; 1981 1982 /* 1983 * Power state could be unknown at this point, either due to a fresh 1984 * boot or a device removal call. So get the current power state 1985 * so that things like MSI message writing will behave as expected 1986 * (e.g. if the device really is in D0 at enable time). 1987 */ 1988 pci_update_current_state(dev, dev->current_state); 1989 1990 if (atomic_inc_return(&dev->enable_cnt) > 1) 1991 return 0; /* already enabled */ 1992 1993 bridge = pci_upstream_bridge(dev); 1994 if (bridge) 1995 pci_enable_bridge(bridge); 1996 1997 /* only skip sriov related */ 1998 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1999 if (dev->resource[i].flags & flags) 2000 bars |= (1 << i); 2001 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2002 if (dev->resource[i].flags & flags) 2003 bars |= (1 << i); 2004 2005 err = do_pci_enable_device(dev, bars); 2006 if (err < 0) 2007 atomic_dec(&dev->enable_cnt); 2008 return err; 2009 } 2010 2011 /** 2012 * pci_enable_device_io - Initialize a device for use with IO space 2013 * @dev: PCI device to be initialized 2014 * 2015 * Initialize device before it's used by a driver. Ask low-level code 2016 * to enable I/O resources. Wake up the device if it was suspended. 2017 * Beware, this function can fail. 2018 */ 2019 int pci_enable_device_io(struct pci_dev *dev) 2020 { 2021 return pci_enable_device_flags(dev, IORESOURCE_IO); 2022 } 2023 EXPORT_SYMBOL(pci_enable_device_io); 2024 2025 /** 2026 * pci_enable_device_mem - Initialize a device for use with Memory space 2027 * @dev: PCI device to be initialized 2028 * 2029 * Initialize device before it's used by a driver. Ask low-level code 2030 * to enable Memory resources. Wake up the device if it was suspended. 2031 * Beware, this function can fail. 2032 */ 2033 int pci_enable_device_mem(struct pci_dev *dev) 2034 { 2035 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2036 } 2037 EXPORT_SYMBOL(pci_enable_device_mem); 2038 2039 /** 2040 * pci_enable_device - Initialize device before it's used by a driver. 2041 * @dev: PCI device to be initialized 2042 * 2043 * Initialize device before it's used by a driver. Ask low-level code 2044 * to enable I/O and memory. Wake up the device if it was suspended. 2045 * Beware, this function can fail. 2046 * 2047 * Note we don't actually enable the device many times if we call 2048 * this function repeatedly (we just increment the count). 2049 */ 2050 int pci_enable_device(struct pci_dev *dev) 2051 { 2052 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2053 } 2054 EXPORT_SYMBOL(pci_enable_device); 2055 2056 /* 2057 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2058 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2059 * there's no need to track it separately. pci_devres is initialized 2060 * when a device is enabled using managed PCI device enable interface. 2061 */ 2062 struct pci_devres { 2063 unsigned int enabled:1; 2064 unsigned int pinned:1; 2065 unsigned int orig_intx:1; 2066 unsigned int restore_intx:1; 2067 unsigned int mwi:1; 2068 u32 region_mask; 2069 }; 2070 2071 static void pcim_release(struct device *gendev, void *res) 2072 { 2073 struct pci_dev *dev = to_pci_dev(gendev); 2074 struct pci_devres *this = res; 2075 int i; 2076 2077 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2078 if (this->region_mask & (1 << i)) 2079 pci_release_region(dev, i); 2080 2081 if (this->mwi) 2082 pci_clear_mwi(dev); 2083 2084 if (this->restore_intx) 2085 pci_intx(dev, this->orig_intx); 2086 2087 if (this->enabled && !this->pinned) 2088 pci_disable_device(dev); 2089 } 2090 2091 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2092 { 2093 struct pci_devres *dr, *new_dr; 2094 2095 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2096 if (dr) 2097 return dr; 2098 2099 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2100 if (!new_dr) 2101 return NULL; 2102 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2103 } 2104 2105 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2106 { 2107 if (pci_is_managed(pdev)) 2108 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2109 return NULL; 2110 } 2111 2112 /** 2113 * pcim_enable_device - Managed pci_enable_device() 2114 * @pdev: PCI device to be initialized 2115 * 2116 * Managed pci_enable_device(). 2117 */ 2118 int pcim_enable_device(struct pci_dev *pdev) 2119 { 2120 struct pci_devres *dr; 2121 int rc; 2122 2123 dr = get_pci_dr(pdev); 2124 if (unlikely(!dr)) 2125 return -ENOMEM; 2126 if (dr->enabled) 2127 return 0; 2128 2129 rc = pci_enable_device(pdev); 2130 if (!rc) { 2131 pdev->is_managed = 1; 2132 dr->enabled = 1; 2133 } 2134 return rc; 2135 } 2136 EXPORT_SYMBOL(pcim_enable_device); 2137 2138 /** 2139 * pcim_pin_device - Pin managed PCI device 2140 * @pdev: PCI device to pin 2141 * 2142 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2143 * driver detach. @pdev must have been enabled with 2144 * pcim_enable_device(). 2145 */ 2146 void pcim_pin_device(struct pci_dev *pdev) 2147 { 2148 struct pci_devres *dr; 2149 2150 dr = find_pci_dr(pdev); 2151 WARN_ON(!dr || !dr->enabled); 2152 if (dr) 2153 dr->pinned = 1; 2154 } 2155 EXPORT_SYMBOL(pcim_pin_device); 2156 2157 /* 2158 * pcibios_device_add - provide arch specific hooks when adding device dev 2159 * @dev: the PCI device being added 2160 * 2161 * Permits the platform to provide architecture specific functionality when 2162 * devices are added. This is the default implementation. Architecture 2163 * implementations can override this. 2164 */ 2165 int __weak pcibios_device_add(struct pci_dev *dev) 2166 { 2167 return 0; 2168 } 2169 2170 /** 2171 * pcibios_release_device - provide arch specific hooks when releasing 2172 * device dev 2173 * @dev: the PCI device being released 2174 * 2175 * Permits the platform to provide architecture specific functionality when 2176 * devices are released. This is the default implementation. Architecture 2177 * implementations can override this. 2178 */ 2179 void __weak pcibios_release_device(struct pci_dev *dev) {} 2180 2181 /** 2182 * pcibios_disable_device - disable arch specific PCI resources for device dev 2183 * @dev: the PCI device to disable 2184 * 2185 * Disables architecture specific PCI resources for the device. This 2186 * is the default implementation. Architecture implementations can 2187 * override this. 2188 */ 2189 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2190 2191 /** 2192 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2193 * @irq: ISA IRQ to penalize 2194 * @active: IRQ active or not 2195 * 2196 * Permits the platform to provide architecture-specific functionality when 2197 * penalizing ISA IRQs. This is the default implementation. Architecture 2198 * implementations can override this. 2199 */ 2200 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2201 2202 static void do_pci_disable_device(struct pci_dev *dev) 2203 { 2204 u16 pci_command; 2205 2206 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2207 if (pci_command & PCI_COMMAND_MASTER) { 2208 pci_command &= ~PCI_COMMAND_MASTER; 2209 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2210 } 2211 2212 pcibios_disable_device(dev); 2213 } 2214 2215 /** 2216 * pci_disable_enabled_device - Disable device without updating enable_cnt 2217 * @dev: PCI device to disable 2218 * 2219 * NOTE: This function is a backend of PCI power management routines and is 2220 * not supposed to be called drivers. 2221 */ 2222 void pci_disable_enabled_device(struct pci_dev *dev) 2223 { 2224 if (pci_is_enabled(dev)) 2225 do_pci_disable_device(dev); 2226 } 2227 2228 /** 2229 * pci_disable_device - Disable PCI device after use 2230 * @dev: PCI device to be disabled 2231 * 2232 * Signal to the system that the PCI device is not in use by the system 2233 * anymore. This only involves disabling PCI bus-mastering, if active. 2234 * 2235 * Note we don't actually disable the device until all callers of 2236 * pci_enable_device() have called pci_disable_device(). 2237 */ 2238 void pci_disable_device(struct pci_dev *dev) 2239 { 2240 struct pci_devres *dr; 2241 2242 dr = find_pci_dr(dev); 2243 if (dr) 2244 dr->enabled = 0; 2245 2246 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2247 "disabling already-disabled device"); 2248 2249 if (atomic_dec_return(&dev->enable_cnt) != 0) 2250 return; 2251 2252 do_pci_disable_device(dev); 2253 2254 dev->is_busmaster = 0; 2255 } 2256 EXPORT_SYMBOL(pci_disable_device); 2257 2258 /** 2259 * pcibios_set_pcie_reset_state - set reset state for device dev 2260 * @dev: the PCIe device reset 2261 * @state: Reset state to enter into 2262 * 2263 * Set the PCIe reset state for the device. This is the default 2264 * implementation. Architecture implementations can override this. 2265 */ 2266 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2267 enum pcie_reset_state state) 2268 { 2269 return -EINVAL; 2270 } 2271 2272 /** 2273 * pci_set_pcie_reset_state - set reset state for device dev 2274 * @dev: the PCIe device reset 2275 * @state: Reset state to enter into 2276 * 2277 * Sets the PCI reset state for the device. 2278 */ 2279 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2280 { 2281 return pcibios_set_pcie_reset_state(dev, state); 2282 } 2283 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2284 2285 #ifdef CONFIG_PCIEAER 2286 void pcie_clear_device_status(struct pci_dev *dev) 2287 { 2288 u16 sta; 2289 2290 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2291 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2292 } 2293 #endif 2294 2295 /** 2296 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2297 * @dev: PCIe root port or event collector. 2298 */ 2299 void pcie_clear_root_pme_status(struct pci_dev *dev) 2300 { 2301 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2302 } 2303 2304 /** 2305 * pci_check_pme_status - Check if given device has generated PME. 2306 * @dev: Device to check. 2307 * 2308 * Check the PME status of the device and if set, clear it and clear PME enable 2309 * (if set). Return 'true' if PME status and PME enable were both set or 2310 * 'false' otherwise. 2311 */ 2312 bool pci_check_pme_status(struct pci_dev *dev) 2313 { 2314 int pmcsr_pos; 2315 u16 pmcsr; 2316 bool ret = false; 2317 2318 if (!dev->pm_cap) 2319 return false; 2320 2321 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2322 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2323 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2324 return false; 2325 2326 /* Clear PME status. */ 2327 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2328 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2329 /* Disable PME to avoid interrupt flood. */ 2330 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2331 ret = true; 2332 } 2333 2334 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2335 2336 return ret; 2337 } 2338 2339 /** 2340 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2341 * @dev: Device to handle. 2342 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2343 * 2344 * Check if @dev has generated PME and queue a resume request for it in that 2345 * case. 2346 */ 2347 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2348 { 2349 if (pme_poll_reset && dev->pme_poll) 2350 dev->pme_poll = false; 2351 2352 if (pci_check_pme_status(dev)) { 2353 pci_wakeup_event(dev); 2354 pm_request_resume(&dev->dev); 2355 } 2356 return 0; 2357 } 2358 2359 /** 2360 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2361 * @bus: Top bus of the subtree to walk. 2362 */ 2363 void pci_pme_wakeup_bus(struct pci_bus *bus) 2364 { 2365 if (bus) 2366 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2367 } 2368 2369 2370 /** 2371 * pci_pme_capable - check the capability of PCI device to generate PME# 2372 * @dev: PCI device to handle. 2373 * @state: PCI state from which device will issue PME#. 2374 */ 2375 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2376 { 2377 if (!dev->pm_cap) 2378 return false; 2379 2380 return !!(dev->pme_support & (1 << state)); 2381 } 2382 EXPORT_SYMBOL(pci_pme_capable); 2383 2384 static void pci_pme_list_scan(struct work_struct *work) 2385 { 2386 struct pci_pme_device *pme_dev, *n; 2387 2388 mutex_lock(&pci_pme_list_mutex); 2389 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2390 if (pme_dev->dev->pme_poll) { 2391 struct pci_dev *bridge; 2392 2393 bridge = pme_dev->dev->bus->self; 2394 /* 2395 * If bridge is in low power state, the 2396 * configuration space of subordinate devices 2397 * may be not accessible 2398 */ 2399 if (bridge && bridge->current_state != PCI_D0) 2400 continue; 2401 /* 2402 * If the device is in D3cold it should not be 2403 * polled either. 2404 */ 2405 if (pme_dev->dev->current_state == PCI_D3cold) 2406 continue; 2407 2408 pci_pme_wakeup(pme_dev->dev, NULL); 2409 } else { 2410 list_del(&pme_dev->list); 2411 kfree(pme_dev); 2412 } 2413 } 2414 if (!list_empty(&pci_pme_list)) 2415 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2416 msecs_to_jiffies(PME_TIMEOUT)); 2417 mutex_unlock(&pci_pme_list_mutex); 2418 } 2419 2420 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2421 { 2422 u16 pmcsr; 2423 2424 if (!dev->pme_support) 2425 return; 2426 2427 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2428 /* Clear PME_Status by writing 1 to it and enable PME# */ 2429 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2430 if (!enable) 2431 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2432 2433 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2434 } 2435 2436 /** 2437 * pci_pme_restore - Restore PME configuration after config space restore. 2438 * @dev: PCI device to update. 2439 */ 2440 void pci_pme_restore(struct pci_dev *dev) 2441 { 2442 u16 pmcsr; 2443 2444 if (!dev->pme_support) 2445 return; 2446 2447 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2448 if (dev->wakeup_prepared) { 2449 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2450 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2451 } else { 2452 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2453 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2454 } 2455 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2456 } 2457 2458 /** 2459 * pci_pme_active - enable or disable PCI device's PME# function 2460 * @dev: PCI device to handle. 2461 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2462 * 2463 * The caller must verify that the device is capable of generating PME# before 2464 * calling this function with @enable equal to 'true'. 2465 */ 2466 void pci_pme_active(struct pci_dev *dev, bool enable) 2467 { 2468 __pci_pme_active(dev, enable); 2469 2470 /* 2471 * PCI (as opposed to PCIe) PME requires that the device have 2472 * its PME# line hooked up correctly. Not all hardware vendors 2473 * do this, so the PME never gets delivered and the device 2474 * remains asleep. The easiest way around this is to 2475 * periodically walk the list of suspended devices and check 2476 * whether any have their PME flag set. The assumption is that 2477 * we'll wake up often enough anyway that this won't be a huge 2478 * hit, and the power savings from the devices will still be a 2479 * win. 2480 * 2481 * Although PCIe uses in-band PME message instead of PME# line 2482 * to report PME, PME does not work for some PCIe devices in 2483 * reality. For example, there are devices that set their PME 2484 * status bits, but don't really bother to send a PME message; 2485 * there are PCI Express Root Ports that don't bother to 2486 * trigger interrupts when they receive PME messages from the 2487 * devices below. So PME poll is used for PCIe devices too. 2488 */ 2489 2490 if (dev->pme_poll) { 2491 struct pci_pme_device *pme_dev; 2492 if (enable) { 2493 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2494 GFP_KERNEL); 2495 if (!pme_dev) { 2496 pci_warn(dev, "can't enable PME#\n"); 2497 return; 2498 } 2499 pme_dev->dev = dev; 2500 mutex_lock(&pci_pme_list_mutex); 2501 list_add(&pme_dev->list, &pci_pme_list); 2502 if (list_is_singular(&pci_pme_list)) 2503 queue_delayed_work(system_freezable_wq, 2504 &pci_pme_work, 2505 msecs_to_jiffies(PME_TIMEOUT)); 2506 mutex_unlock(&pci_pme_list_mutex); 2507 } else { 2508 mutex_lock(&pci_pme_list_mutex); 2509 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2510 if (pme_dev->dev == dev) { 2511 list_del(&pme_dev->list); 2512 kfree(pme_dev); 2513 break; 2514 } 2515 } 2516 mutex_unlock(&pci_pme_list_mutex); 2517 } 2518 } 2519 2520 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2521 } 2522 EXPORT_SYMBOL(pci_pme_active); 2523 2524 /** 2525 * __pci_enable_wake - enable PCI device as wakeup event source 2526 * @dev: PCI device affected 2527 * @state: PCI state from which device will issue wakeup events 2528 * @enable: True to enable event generation; false to disable 2529 * 2530 * This enables the device as a wakeup event source, or disables it. 2531 * When such events involves platform-specific hooks, those hooks are 2532 * called automatically by this routine. 2533 * 2534 * Devices with legacy power management (no standard PCI PM capabilities) 2535 * always require such platform hooks. 2536 * 2537 * RETURN VALUE: 2538 * 0 is returned on success 2539 * -EINVAL is returned if device is not supposed to wake up the system 2540 * Error code depending on the platform is returned if both the platform and 2541 * the native mechanism fail to enable the generation of wake-up events 2542 */ 2543 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2544 { 2545 int ret = 0; 2546 2547 /* 2548 * Bridges that are not power-manageable directly only signal 2549 * wakeup on behalf of subordinate devices which is set up 2550 * elsewhere, so skip them. However, bridges that are 2551 * power-manageable may signal wakeup for themselves (for example, 2552 * on a hotplug event) and they need to be covered here. 2553 */ 2554 if (!pci_power_manageable(dev)) 2555 return 0; 2556 2557 /* Don't do the same thing twice in a row for one device. */ 2558 if (!!enable == !!dev->wakeup_prepared) 2559 return 0; 2560 2561 /* 2562 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2563 * Anderson we should be doing PME# wake enable followed by ACPI wake 2564 * enable. To disable wake-up we call the platform first, for symmetry. 2565 */ 2566 2567 if (enable) { 2568 int error; 2569 2570 /* 2571 * Enable PME signaling if the device can signal PME from 2572 * D3cold regardless of whether or not it can signal PME from 2573 * the current target state, because that will allow it to 2574 * signal PME when the hierarchy above it goes into D3cold and 2575 * the device itself ends up in D3cold as a result of that. 2576 */ 2577 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2578 pci_pme_active(dev, true); 2579 else 2580 ret = 1; 2581 error = platform_pci_set_wakeup(dev, true); 2582 if (ret) 2583 ret = error; 2584 if (!ret) 2585 dev->wakeup_prepared = true; 2586 } else { 2587 platform_pci_set_wakeup(dev, false); 2588 pci_pme_active(dev, false); 2589 dev->wakeup_prepared = false; 2590 } 2591 2592 return ret; 2593 } 2594 2595 /** 2596 * pci_enable_wake - change wakeup settings for a PCI device 2597 * @pci_dev: Target device 2598 * @state: PCI state from which device will issue wakeup events 2599 * @enable: Whether or not to enable event generation 2600 * 2601 * If @enable is set, check device_may_wakeup() for the device before calling 2602 * __pci_enable_wake() for it. 2603 */ 2604 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2605 { 2606 if (enable && !device_may_wakeup(&pci_dev->dev)) 2607 return -EINVAL; 2608 2609 return __pci_enable_wake(pci_dev, state, enable); 2610 } 2611 EXPORT_SYMBOL(pci_enable_wake); 2612 2613 /** 2614 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2615 * @dev: PCI device to prepare 2616 * @enable: True to enable wake-up event generation; false to disable 2617 * 2618 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2619 * and this function allows them to set that up cleanly - pci_enable_wake() 2620 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2621 * ordering constraints. 2622 * 2623 * This function only returns error code if the device is not allowed to wake 2624 * up the system from sleep or it is not capable of generating PME# from both 2625 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2626 */ 2627 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2628 { 2629 return pci_pme_capable(dev, PCI_D3cold) ? 2630 pci_enable_wake(dev, PCI_D3cold, enable) : 2631 pci_enable_wake(dev, PCI_D3hot, enable); 2632 } 2633 EXPORT_SYMBOL(pci_wake_from_d3); 2634 2635 /** 2636 * pci_target_state - find an appropriate low power state for a given PCI dev 2637 * @dev: PCI device 2638 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2639 * 2640 * Use underlying platform code to find a supported low power state for @dev. 2641 * If the platform can't manage @dev, return the deepest state from which it 2642 * can generate wake events, based on any available PME info. 2643 */ 2644 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2645 { 2646 if (platform_pci_power_manageable(dev)) { 2647 /* 2648 * Call the platform to find the target state for the device. 2649 */ 2650 pci_power_t state = platform_pci_choose_state(dev); 2651 2652 switch (state) { 2653 case PCI_POWER_ERROR: 2654 case PCI_UNKNOWN: 2655 return PCI_D3hot; 2656 2657 case PCI_D1: 2658 case PCI_D2: 2659 if (pci_no_d1d2(dev)) 2660 return PCI_D3hot; 2661 } 2662 2663 return state; 2664 } 2665 2666 /* 2667 * If the device is in D3cold even though it's not power-manageable by 2668 * the platform, it may have been powered down by non-standard means. 2669 * Best to let it slumber. 2670 */ 2671 if (dev->current_state == PCI_D3cold) 2672 return PCI_D3cold; 2673 else if (!dev->pm_cap) 2674 return PCI_D0; 2675 2676 if (wakeup && dev->pme_support) { 2677 pci_power_t state = PCI_D3hot; 2678 2679 /* 2680 * Find the deepest state from which the device can generate 2681 * PME#. 2682 */ 2683 while (state && !(dev->pme_support & (1 << state))) 2684 state--; 2685 2686 if (state) 2687 return state; 2688 else if (dev->pme_support & 1) 2689 return PCI_D0; 2690 } 2691 2692 return PCI_D3hot; 2693 } 2694 2695 /** 2696 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2697 * into a sleep state 2698 * @dev: Device to handle. 2699 * 2700 * Choose the power state appropriate for the device depending on whether 2701 * it can wake up the system and/or is power manageable by the platform 2702 * (PCI_D3hot is the default) and put the device into that state. 2703 */ 2704 int pci_prepare_to_sleep(struct pci_dev *dev) 2705 { 2706 bool wakeup = device_may_wakeup(&dev->dev); 2707 pci_power_t target_state = pci_target_state(dev, wakeup); 2708 int error; 2709 2710 if (target_state == PCI_POWER_ERROR) 2711 return -EIO; 2712 2713 pci_enable_wake(dev, target_state, wakeup); 2714 2715 error = pci_set_power_state(dev, target_state); 2716 2717 if (error) 2718 pci_enable_wake(dev, target_state, false); 2719 2720 return error; 2721 } 2722 EXPORT_SYMBOL(pci_prepare_to_sleep); 2723 2724 /** 2725 * pci_back_from_sleep - turn PCI device on during system-wide transition 2726 * into working state 2727 * @dev: Device to handle. 2728 * 2729 * Disable device's system wake-up capability and put it into D0. 2730 */ 2731 int pci_back_from_sleep(struct pci_dev *dev) 2732 { 2733 int ret = pci_set_power_state(dev, PCI_D0); 2734 2735 if (ret) 2736 return ret; 2737 2738 pci_enable_wake(dev, PCI_D0, false); 2739 return 0; 2740 } 2741 EXPORT_SYMBOL(pci_back_from_sleep); 2742 2743 /** 2744 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2745 * @dev: PCI device being suspended. 2746 * 2747 * Prepare @dev to generate wake-up events at run time and put it into a low 2748 * power state. 2749 */ 2750 int pci_finish_runtime_suspend(struct pci_dev *dev) 2751 { 2752 pci_power_t target_state; 2753 int error; 2754 2755 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2756 if (target_state == PCI_POWER_ERROR) 2757 return -EIO; 2758 2759 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2760 2761 error = pci_set_power_state(dev, target_state); 2762 2763 if (error) 2764 pci_enable_wake(dev, target_state, false); 2765 2766 return error; 2767 } 2768 2769 /** 2770 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2771 * @dev: Device to check. 2772 * 2773 * Return true if the device itself is capable of generating wake-up events 2774 * (through the platform or using the native PCIe PME) or if the device supports 2775 * PME and one of its upstream bridges can generate wake-up events. 2776 */ 2777 bool pci_dev_run_wake(struct pci_dev *dev) 2778 { 2779 struct pci_bus *bus = dev->bus; 2780 2781 if (!dev->pme_support) 2782 return false; 2783 2784 /* PME-capable in principle, but not from the target power state */ 2785 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2786 return false; 2787 2788 if (device_can_wakeup(&dev->dev)) 2789 return true; 2790 2791 while (bus->parent) { 2792 struct pci_dev *bridge = bus->self; 2793 2794 if (device_can_wakeup(&bridge->dev)) 2795 return true; 2796 2797 bus = bus->parent; 2798 } 2799 2800 /* We have reached the root bus. */ 2801 if (bus->bridge) 2802 return device_can_wakeup(bus->bridge); 2803 2804 return false; 2805 } 2806 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2807 2808 /** 2809 * pci_dev_need_resume - Check if it is necessary to resume the device. 2810 * @pci_dev: Device to check. 2811 * 2812 * Return 'true' if the device is not runtime-suspended or it has to be 2813 * reconfigured due to wakeup settings difference between system and runtime 2814 * suspend, or the current power state of it is not suitable for the upcoming 2815 * (system-wide) transition. 2816 */ 2817 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2818 { 2819 struct device *dev = &pci_dev->dev; 2820 pci_power_t target_state; 2821 2822 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2823 return true; 2824 2825 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2826 2827 /* 2828 * If the earlier platform check has not triggered, D3cold is just power 2829 * removal on top of D3hot, so no need to resume the device in that 2830 * case. 2831 */ 2832 return target_state != pci_dev->current_state && 2833 target_state != PCI_D3cold && 2834 pci_dev->current_state != PCI_D3hot; 2835 } 2836 2837 /** 2838 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2839 * @pci_dev: Device to check. 2840 * 2841 * If the device is suspended and it is not configured for system wakeup, 2842 * disable PME for it to prevent it from waking up the system unnecessarily. 2843 * 2844 * Note that if the device's power state is D3cold and the platform check in 2845 * pci_dev_need_resume() has not triggered, the device's configuration need not 2846 * be changed. 2847 */ 2848 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2849 { 2850 struct device *dev = &pci_dev->dev; 2851 2852 spin_lock_irq(&dev->power.lock); 2853 2854 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2855 pci_dev->current_state < PCI_D3cold) 2856 __pci_pme_active(pci_dev, false); 2857 2858 spin_unlock_irq(&dev->power.lock); 2859 } 2860 2861 /** 2862 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2863 * @pci_dev: Device to handle. 2864 * 2865 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2866 * it might have been disabled during the prepare phase of system suspend if 2867 * the device was not configured for system wakeup. 2868 */ 2869 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2870 { 2871 struct device *dev = &pci_dev->dev; 2872 2873 if (!pci_dev_run_wake(pci_dev)) 2874 return; 2875 2876 spin_lock_irq(&dev->power.lock); 2877 2878 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2879 __pci_pme_active(pci_dev, true); 2880 2881 spin_unlock_irq(&dev->power.lock); 2882 } 2883 2884 /** 2885 * pci_choose_state - Choose the power state of a PCI device. 2886 * @dev: Target PCI device. 2887 * @state: Target state for the whole system. 2888 * 2889 * Returns PCI power state suitable for @dev and @state. 2890 */ 2891 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2892 { 2893 if (state.event == PM_EVENT_ON) 2894 return PCI_D0; 2895 2896 return pci_target_state(dev, false); 2897 } 2898 EXPORT_SYMBOL(pci_choose_state); 2899 2900 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2901 { 2902 struct device *dev = &pdev->dev; 2903 struct device *parent = dev->parent; 2904 2905 if (parent) 2906 pm_runtime_get_sync(parent); 2907 pm_runtime_get_noresume(dev); 2908 /* 2909 * pdev->current_state is set to PCI_D3cold during suspending, 2910 * so wait until suspending completes 2911 */ 2912 pm_runtime_barrier(dev); 2913 /* 2914 * Only need to resume devices in D3cold, because config 2915 * registers are still accessible for devices suspended but 2916 * not in D3cold. 2917 */ 2918 if (pdev->current_state == PCI_D3cold) 2919 pm_runtime_resume(dev); 2920 } 2921 2922 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2923 { 2924 struct device *dev = &pdev->dev; 2925 struct device *parent = dev->parent; 2926 2927 pm_runtime_put(dev); 2928 if (parent) 2929 pm_runtime_put_sync(parent); 2930 } 2931 2932 static const struct dmi_system_id bridge_d3_blacklist[] = { 2933 #ifdef CONFIG_X86 2934 { 2935 /* 2936 * Gigabyte X299 root port is not marked as hotplug capable 2937 * which allows Linux to power manage it. However, this 2938 * confuses the BIOS SMI handler so don't power manage root 2939 * ports on that system. 2940 */ 2941 .ident = "X299 DESIGNARE EX-CF", 2942 .matches = { 2943 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2944 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2945 }, 2946 }, 2947 { 2948 /* 2949 * Downstream device is not accessible after putting a root port 2950 * into D3cold and back into D0 on Elo i2. 2951 */ 2952 .ident = "Elo i2", 2953 .matches = { 2954 DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"), 2955 DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"), 2956 DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"), 2957 }, 2958 }, 2959 #endif 2960 { } 2961 }; 2962 2963 /** 2964 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2965 * @bridge: Bridge to check 2966 * 2967 * This function checks if it is possible to move the bridge to D3. 2968 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2969 */ 2970 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2971 { 2972 if (!pci_is_pcie(bridge)) 2973 return false; 2974 2975 switch (pci_pcie_type(bridge)) { 2976 case PCI_EXP_TYPE_ROOT_PORT: 2977 case PCI_EXP_TYPE_UPSTREAM: 2978 case PCI_EXP_TYPE_DOWNSTREAM: 2979 if (pci_bridge_d3_disable) 2980 return false; 2981 2982 /* 2983 * Hotplug ports handled by firmware in System Management Mode 2984 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2985 */ 2986 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2987 return false; 2988 2989 if (pci_bridge_d3_force) 2990 return true; 2991 2992 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2993 if (bridge->is_thunderbolt) 2994 return true; 2995 2996 /* Platform might know better if the bridge supports D3 */ 2997 if (platform_pci_bridge_d3(bridge)) 2998 return true; 2999 3000 /* 3001 * Hotplug ports handled natively by the OS were not validated 3002 * by vendors for runtime D3 at least until 2018 because there 3003 * was no OS support. 3004 */ 3005 if (bridge->is_hotplug_bridge) 3006 return false; 3007 3008 if (dmi_check_system(bridge_d3_blacklist)) 3009 return false; 3010 3011 /* 3012 * It should be safe to put PCIe ports from 2015 or newer 3013 * to D3. 3014 */ 3015 if (dmi_get_bios_year() >= 2015) 3016 return true; 3017 break; 3018 } 3019 3020 return false; 3021 } 3022 3023 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3024 { 3025 bool *d3cold_ok = data; 3026 3027 if (/* The device needs to be allowed to go D3cold ... */ 3028 dev->no_d3cold || !dev->d3cold_allowed || 3029 3030 /* ... and if it is wakeup capable to do so from D3cold. */ 3031 (device_may_wakeup(&dev->dev) && 3032 !pci_pme_capable(dev, PCI_D3cold)) || 3033 3034 /* If it is a bridge it must be allowed to go to D3. */ 3035 !pci_power_manageable(dev)) 3036 3037 *d3cold_ok = false; 3038 3039 return !*d3cold_ok; 3040 } 3041 3042 /* 3043 * pci_bridge_d3_update - Update bridge D3 capabilities 3044 * @dev: PCI device which is changed 3045 * 3046 * Update upstream bridge PM capabilities accordingly depending on if the 3047 * device PM configuration was changed or the device is being removed. The 3048 * change is also propagated upstream. 3049 */ 3050 void pci_bridge_d3_update(struct pci_dev *dev) 3051 { 3052 bool remove = !device_is_registered(&dev->dev); 3053 struct pci_dev *bridge; 3054 bool d3cold_ok = true; 3055 3056 bridge = pci_upstream_bridge(dev); 3057 if (!bridge || !pci_bridge_d3_possible(bridge)) 3058 return; 3059 3060 /* 3061 * If D3 is currently allowed for the bridge, removing one of its 3062 * children won't change that. 3063 */ 3064 if (remove && bridge->bridge_d3) 3065 return; 3066 3067 /* 3068 * If D3 is currently allowed for the bridge and a child is added or 3069 * changed, disallowance of D3 can only be caused by that child, so 3070 * we only need to check that single device, not any of its siblings. 3071 * 3072 * If D3 is currently not allowed for the bridge, checking the device 3073 * first may allow us to skip checking its siblings. 3074 */ 3075 if (!remove) 3076 pci_dev_check_d3cold(dev, &d3cold_ok); 3077 3078 /* 3079 * If D3 is currently not allowed for the bridge, this may be caused 3080 * either by the device being changed/removed or any of its siblings, 3081 * so we need to go through all children to find out if one of them 3082 * continues to block D3. 3083 */ 3084 if (d3cold_ok && !bridge->bridge_d3) 3085 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3086 &d3cold_ok); 3087 3088 if (bridge->bridge_d3 != d3cold_ok) { 3089 bridge->bridge_d3 = d3cold_ok; 3090 /* Propagate change to upstream bridges */ 3091 pci_bridge_d3_update(bridge); 3092 } 3093 } 3094 3095 /** 3096 * pci_d3cold_enable - Enable D3cold for device 3097 * @dev: PCI device to handle 3098 * 3099 * This function can be used in drivers to enable D3cold from the device 3100 * they handle. It also updates upstream PCI bridge PM capabilities 3101 * accordingly. 3102 */ 3103 void pci_d3cold_enable(struct pci_dev *dev) 3104 { 3105 if (dev->no_d3cold) { 3106 dev->no_d3cold = false; 3107 pci_bridge_d3_update(dev); 3108 } 3109 } 3110 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3111 3112 /** 3113 * pci_d3cold_disable - Disable D3cold for device 3114 * @dev: PCI device to handle 3115 * 3116 * This function can be used in drivers to disable D3cold from the device 3117 * they handle. It also updates upstream PCI bridge PM capabilities 3118 * accordingly. 3119 */ 3120 void pci_d3cold_disable(struct pci_dev *dev) 3121 { 3122 if (!dev->no_d3cold) { 3123 dev->no_d3cold = true; 3124 pci_bridge_d3_update(dev); 3125 } 3126 } 3127 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3128 3129 /** 3130 * pci_pm_init - Initialize PM functions of given PCI device 3131 * @dev: PCI device to handle. 3132 */ 3133 void pci_pm_init(struct pci_dev *dev) 3134 { 3135 int pm; 3136 u16 status; 3137 u16 pmc; 3138 3139 pm_runtime_forbid(&dev->dev); 3140 pm_runtime_set_active(&dev->dev); 3141 pm_runtime_enable(&dev->dev); 3142 device_enable_async_suspend(&dev->dev); 3143 dev->wakeup_prepared = false; 3144 3145 dev->pm_cap = 0; 3146 dev->pme_support = 0; 3147 3148 /* find PCI PM capability in list */ 3149 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3150 if (!pm) 3151 return; 3152 /* Check device's ability to generate PME# */ 3153 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3154 3155 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3156 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3157 pmc & PCI_PM_CAP_VER_MASK); 3158 return; 3159 } 3160 3161 dev->pm_cap = pm; 3162 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3163 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3164 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3165 dev->d3cold_allowed = true; 3166 3167 dev->d1_support = false; 3168 dev->d2_support = false; 3169 if (!pci_no_d1d2(dev)) { 3170 if (pmc & PCI_PM_CAP_D1) 3171 dev->d1_support = true; 3172 if (pmc & PCI_PM_CAP_D2) 3173 dev->d2_support = true; 3174 3175 if (dev->d1_support || dev->d2_support) 3176 pci_info(dev, "supports%s%s\n", 3177 dev->d1_support ? " D1" : "", 3178 dev->d2_support ? " D2" : ""); 3179 } 3180 3181 pmc &= PCI_PM_CAP_PME_MASK; 3182 if (pmc) { 3183 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3184 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3185 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3186 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3187 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3188 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3189 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3190 dev->pme_poll = true; 3191 /* 3192 * Make device's PM flags reflect the wake-up capability, but 3193 * let the user space enable it to wake up the system as needed. 3194 */ 3195 device_set_wakeup_capable(&dev->dev, true); 3196 /* Disable the PME# generation functionality */ 3197 pci_pme_active(dev, false); 3198 } 3199 3200 pci_read_config_word(dev, PCI_STATUS, &status); 3201 if (status & PCI_STATUS_IMM_READY) 3202 dev->imm_ready = 1; 3203 } 3204 3205 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3206 { 3207 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3208 3209 switch (prop) { 3210 case PCI_EA_P_MEM: 3211 case PCI_EA_P_VF_MEM: 3212 flags |= IORESOURCE_MEM; 3213 break; 3214 case PCI_EA_P_MEM_PREFETCH: 3215 case PCI_EA_P_VF_MEM_PREFETCH: 3216 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3217 break; 3218 case PCI_EA_P_IO: 3219 flags |= IORESOURCE_IO; 3220 break; 3221 default: 3222 return 0; 3223 } 3224 3225 return flags; 3226 } 3227 3228 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3229 u8 prop) 3230 { 3231 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3232 return &dev->resource[bei]; 3233 #ifdef CONFIG_PCI_IOV 3234 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3235 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3236 return &dev->resource[PCI_IOV_RESOURCES + 3237 bei - PCI_EA_BEI_VF_BAR0]; 3238 #endif 3239 else if (bei == PCI_EA_BEI_ROM) 3240 return &dev->resource[PCI_ROM_RESOURCE]; 3241 else 3242 return NULL; 3243 } 3244 3245 /* Read an Enhanced Allocation (EA) entry */ 3246 static int pci_ea_read(struct pci_dev *dev, int offset) 3247 { 3248 struct resource *res; 3249 int ent_size, ent_offset = offset; 3250 resource_size_t start, end; 3251 unsigned long flags; 3252 u32 dw0, bei, base, max_offset; 3253 u8 prop; 3254 bool support_64 = (sizeof(resource_size_t) >= 8); 3255 3256 pci_read_config_dword(dev, ent_offset, &dw0); 3257 ent_offset += 4; 3258 3259 /* Entry size field indicates DWORDs after 1st */ 3260 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3261 3262 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3263 goto out; 3264 3265 bei = (dw0 & PCI_EA_BEI) >> 4; 3266 prop = (dw0 & PCI_EA_PP) >> 8; 3267 3268 /* 3269 * If the Property is in the reserved range, try the Secondary 3270 * Property instead. 3271 */ 3272 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3273 prop = (dw0 & PCI_EA_SP) >> 16; 3274 if (prop > PCI_EA_P_BRIDGE_IO) 3275 goto out; 3276 3277 res = pci_ea_get_resource(dev, bei, prop); 3278 if (!res) { 3279 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3280 goto out; 3281 } 3282 3283 flags = pci_ea_flags(dev, prop); 3284 if (!flags) { 3285 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3286 goto out; 3287 } 3288 3289 /* Read Base */ 3290 pci_read_config_dword(dev, ent_offset, &base); 3291 start = (base & PCI_EA_FIELD_MASK); 3292 ent_offset += 4; 3293 3294 /* Read MaxOffset */ 3295 pci_read_config_dword(dev, ent_offset, &max_offset); 3296 ent_offset += 4; 3297 3298 /* Read Base MSBs (if 64-bit entry) */ 3299 if (base & PCI_EA_IS_64) { 3300 u32 base_upper; 3301 3302 pci_read_config_dword(dev, ent_offset, &base_upper); 3303 ent_offset += 4; 3304 3305 flags |= IORESOURCE_MEM_64; 3306 3307 /* entry starts above 32-bit boundary, can't use */ 3308 if (!support_64 && base_upper) 3309 goto out; 3310 3311 if (support_64) 3312 start |= ((u64)base_upper << 32); 3313 } 3314 3315 end = start + (max_offset | 0x03); 3316 3317 /* Read MaxOffset MSBs (if 64-bit entry) */ 3318 if (max_offset & PCI_EA_IS_64) { 3319 u32 max_offset_upper; 3320 3321 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3322 ent_offset += 4; 3323 3324 flags |= IORESOURCE_MEM_64; 3325 3326 /* entry too big, can't use */ 3327 if (!support_64 && max_offset_upper) 3328 goto out; 3329 3330 if (support_64) 3331 end += ((u64)max_offset_upper << 32); 3332 } 3333 3334 if (end < start) { 3335 pci_err(dev, "EA Entry crosses address boundary\n"); 3336 goto out; 3337 } 3338 3339 if (ent_size != ent_offset - offset) { 3340 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3341 ent_size, ent_offset - offset); 3342 goto out; 3343 } 3344 3345 res->name = pci_name(dev); 3346 res->start = start; 3347 res->end = end; 3348 res->flags = flags; 3349 3350 if (bei <= PCI_EA_BEI_BAR5) 3351 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3352 bei, res, prop); 3353 else if (bei == PCI_EA_BEI_ROM) 3354 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3355 res, prop); 3356 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3357 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3358 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3359 else 3360 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3361 bei, res, prop); 3362 3363 out: 3364 return offset + ent_size; 3365 } 3366 3367 /* Enhanced Allocation Initialization */ 3368 void pci_ea_init(struct pci_dev *dev) 3369 { 3370 int ea; 3371 u8 num_ent; 3372 int offset; 3373 int i; 3374 3375 /* find PCI EA capability in list */ 3376 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3377 if (!ea) 3378 return; 3379 3380 /* determine the number of entries */ 3381 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3382 &num_ent); 3383 num_ent &= PCI_EA_NUM_ENT_MASK; 3384 3385 offset = ea + PCI_EA_FIRST_ENT; 3386 3387 /* Skip DWORD 2 for type 1 functions */ 3388 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3389 offset += 4; 3390 3391 /* parse each EA entry */ 3392 for (i = 0; i < num_ent; ++i) 3393 offset = pci_ea_read(dev, offset); 3394 } 3395 3396 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3397 struct pci_cap_saved_state *new_cap) 3398 { 3399 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3400 } 3401 3402 /** 3403 * _pci_add_cap_save_buffer - allocate buffer for saving given 3404 * capability registers 3405 * @dev: the PCI device 3406 * @cap: the capability to allocate the buffer for 3407 * @extended: Standard or Extended capability ID 3408 * @size: requested size of the buffer 3409 */ 3410 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3411 bool extended, unsigned int size) 3412 { 3413 int pos; 3414 struct pci_cap_saved_state *save_state; 3415 3416 if (extended) 3417 pos = pci_find_ext_capability(dev, cap); 3418 else 3419 pos = pci_find_capability(dev, cap); 3420 3421 if (!pos) 3422 return 0; 3423 3424 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3425 if (!save_state) 3426 return -ENOMEM; 3427 3428 save_state->cap.cap_nr = cap; 3429 save_state->cap.cap_extended = extended; 3430 save_state->cap.size = size; 3431 pci_add_saved_cap(dev, save_state); 3432 3433 return 0; 3434 } 3435 3436 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3437 { 3438 return _pci_add_cap_save_buffer(dev, cap, false, size); 3439 } 3440 3441 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3442 { 3443 return _pci_add_cap_save_buffer(dev, cap, true, size); 3444 } 3445 3446 /** 3447 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3448 * @dev: the PCI device 3449 */ 3450 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3451 { 3452 int error; 3453 3454 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3455 PCI_EXP_SAVE_REGS * sizeof(u16)); 3456 if (error) 3457 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3458 3459 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3460 if (error) 3461 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3462 3463 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3464 2 * sizeof(u16)); 3465 if (error) 3466 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3467 3468 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_L1SS, 3469 2 * sizeof(u32)); 3470 if (error) 3471 pci_err(dev, "unable to allocate suspend buffer for ASPM-L1SS\n"); 3472 3473 pci_allocate_vc_save_buffers(dev); 3474 } 3475 3476 void pci_free_cap_save_buffers(struct pci_dev *dev) 3477 { 3478 struct pci_cap_saved_state *tmp; 3479 struct hlist_node *n; 3480 3481 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3482 kfree(tmp); 3483 } 3484 3485 /** 3486 * pci_configure_ari - enable or disable ARI forwarding 3487 * @dev: the PCI device 3488 * 3489 * If @dev and its upstream bridge both support ARI, enable ARI in the 3490 * bridge. Otherwise, disable ARI in the bridge. 3491 */ 3492 void pci_configure_ari(struct pci_dev *dev) 3493 { 3494 u32 cap; 3495 struct pci_dev *bridge; 3496 3497 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3498 return; 3499 3500 bridge = dev->bus->self; 3501 if (!bridge) 3502 return; 3503 3504 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3505 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3506 return; 3507 3508 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3509 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3510 PCI_EXP_DEVCTL2_ARI); 3511 bridge->ari_enabled = 1; 3512 } else { 3513 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3514 PCI_EXP_DEVCTL2_ARI); 3515 bridge->ari_enabled = 0; 3516 } 3517 } 3518 3519 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3520 { 3521 int pos; 3522 u16 cap, ctrl; 3523 3524 pos = pdev->acs_cap; 3525 if (!pos) 3526 return false; 3527 3528 /* 3529 * Except for egress control, capabilities are either required 3530 * or only required if controllable. Features missing from the 3531 * capability field can therefore be assumed as hard-wired enabled. 3532 */ 3533 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3534 acs_flags &= (cap | PCI_ACS_EC); 3535 3536 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3537 return (ctrl & acs_flags) == acs_flags; 3538 } 3539 3540 /** 3541 * pci_acs_enabled - test ACS against required flags for a given device 3542 * @pdev: device to test 3543 * @acs_flags: required PCI ACS flags 3544 * 3545 * Return true if the device supports the provided flags. Automatically 3546 * filters out flags that are not implemented on multifunction devices. 3547 * 3548 * Note that this interface checks the effective ACS capabilities of the 3549 * device rather than the actual capabilities. For instance, most single 3550 * function endpoints are not required to support ACS because they have no 3551 * opportunity for peer-to-peer access. We therefore return 'true' 3552 * regardless of whether the device exposes an ACS capability. This makes 3553 * it much easier for callers of this function to ignore the actual type 3554 * or topology of the device when testing ACS support. 3555 */ 3556 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3557 { 3558 int ret; 3559 3560 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3561 if (ret >= 0) 3562 return ret > 0; 3563 3564 /* 3565 * Conventional PCI and PCI-X devices never support ACS, either 3566 * effectively or actually. The shared bus topology implies that 3567 * any device on the bus can receive or snoop DMA. 3568 */ 3569 if (!pci_is_pcie(pdev)) 3570 return false; 3571 3572 switch (pci_pcie_type(pdev)) { 3573 /* 3574 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3575 * but since their primary interface is PCI/X, we conservatively 3576 * handle them as we would a non-PCIe device. 3577 */ 3578 case PCI_EXP_TYPE_PCIE_BRIDGE: 3579 /* 3580 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3581 * applicable... must never implement an ACS Extended Capability...". 3582 * This seems arbitrary, but we take a conservative interpretation 3583 * of this statement. 3584 */ 3585 case PCI_EXP_TYPE_PCI_BRIDGE: 3586 case PCI_EXP_TYPE_RC_EC: 3587 return false; 3588 /* 3589 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3590 * implement ACS in order to indicate their peer-to-peer capabilities, 3591 * regardless of whether they are single- or multi-function devices. 3592 */ 3593 case PCI_EXP_TYPE_DOWNSTREAM: 3594 case PCI_EXP_TYPE_ROOT_PORT: 3595 return pci_acs_flags_enabled(pdev, acs_flags); 3596 /* 3597 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3598 * implemented by the remaining PCIe types to indicate peer-to-peer 3599 * capabilities, but only when they are part of a multifunction 3600 * device. The footnote for section 6.12 indicates the specific 3601 * PCIe types included here. 3602 */ 3603 case PCI_EXP_TYPE_ENDPOINT: 3604 case PCI_EXP_TYPE_UPSTREAM: 3605 case PCI_EXP_TYPE_LEG_END: 3606 case PCI_EXP_TYPE_RC_END: 3607 if (!pdev->multifunction) 3608 break; 3609 3610 return pci_acs_flags_enabled(pdev, acs_flags); 3611 } 3612 3613 /* 3614 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3615 * to single function devices with the exception of downstream ports. 3616 */ 3617 return true; 3618 } 3619 3620 /** 3621 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3622 * @start: starting downstream device 3623 * @end: ending upstream device or NULL to search to the root bus 3624 * @acs_flags: required flags 3625 * 3626 * Walk up a device tree from start to end testing PCI ACS support. If 3627 * any step along the way does not support the required flags, return false. 3628 */ 3629 bool pci_acs_path_enabled(struct pci_dev *start, 3630 struct pci_dev *end, u16 acs_flags) 3631 { 3632 struct pci_dev *pdev, *parent = start; 3633 3634 do { 3635 pdev = parent; 3636 3637 if (!pci_acs_enabled(pdev, acs_flags)) 3638 return false; 3639 3640 if (pci_is_root_bus(pdev->bus)) 3641 return (end == NULL); 3642 3643 parent = pdev->bus->self; 3644 } while (pdev != end); 3645 3646 return true; 3647 } 3648 3649 /** 3650 * pci_acs_init - Initialize ACS if hardware supports it 3651 * @dev: the PCI device 3652 */ 3653 void pci_acs_init(struct pci_dev *dev) 3654 { 3655 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3656 3657 /* 3658 * Attempt to enable ACS regardless of capability because some Root 3659 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3660 * the standard ACS capability but still support ACS via those 3661 * quirks. 3662 */ 3663 pci_enable_acs(dev); 3664 } 3665 3666 /** 3667 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3668 * @pdev: PCI device 3669 * @bar: BAR to find 3670 * 3671 * Helper to find the position of the ctrl register for a BAR. 3672 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3673 * Returns -ENOENT if no ctrl register for the BAR could be found. 3674 */ 3675 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3676 { 3677 unsigned int pos, nbars, i; 3678 u32 ctrl; 3679 3680 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3681 if (!pos) 3682 return -ENOTSUPP; 3683 3684 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3685 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3686 PCI_REBAR_CTRL_NBAR_SHIFT; 3687 3688 for (i = 0; i < nbars; i++, pos += 8) { 3689 int bar_idx; 3690 3691 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3692 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3693 if (bar_idx == bar) 3694 return pos; 3695 } 3696 3697 return -ENOENT; 3698 } 3699 3700 /** 3701 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3702 * @pdev: PCI device 3703 * @bar: BAR to query 3704 * 3705 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3706 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3707 */ 3708 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3709 { 3710 int pos; 3711 u32 cap; 3712 3713 pos = pci_rebar_find_pos(pdev, bar); 3714 if (pos < 0) 3715 return 0; 3716 3717 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3718 cap &= PCI_REBAR_CAP_SIZES; 3719 3720 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3721 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3722 bar == 0 && cap == 0x7000) 3723 cap = 0x3f000; 3724 3725 return cap >> 4; 3726 } 3727 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3728 3729 /** 3730 * pci_rebar_get_current_size - get the current size of a BAR 3731 * @pdev: PCI device 3732 * @bar: BAR to set size to 3733 * 3734 * Read the size of a BAR from the resizable BAR config. 3735 * Returns size if found or negative error code. 3736 */ 3737 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3738 { 3739 int pos; 3740 u32 ctrl; 3741 3742 pos = pci_rebar_find_pos(pdev, bar); 3743 if (pos < 0) 3744 return pos; 3745 3746 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3747 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3748 } 3749 3750 /** 3751 * pci_rebar_set_size - set a new size for a BAR 3752 * @pdev: PCI device 3753 * @bar: BAR to set size to 3754 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3755 * 3756 * Set the new size of a BAR as defined in the spec. 3757 * Returns zero if resizing was successful, error code otherwise. 3758 */ 3759 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3760 { 3761 int pos; 3762 u32 ctrl; 3763 3764 pos = pci_rebar_find_pos(pdev, bar); 3765 if (pos < 0) 3766 return pos; 3767 3768 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3769 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3770 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3771 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3772 return 0; 3773 } 3774 3775 /** 3776 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3777 * @dev: the PCI device 3778 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3779 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3780 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3781 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3782 * 3783 * Return 0 if all upstream bridges support AtomicOp routing, egress 3784 * blocking is disabled on all upstream ports, and the root port supports 3785 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3786 * AtomicOp completion), or negative otherwise. 3787 */ 3788 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3789 { 3790 struct pci_bus *bus = dev->bus; 3791 struct pci_dev *bridge; 3792 u32 cap, ctl2; 3793 3794 /* 3795 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3796 * in Device Control 2 is reserved in VFs and the PF value applies 3797 * to all associated VFs. 3798 */ 3799 if (dev->is_virtfn) 3800 return -EINVAL; 3801 3802 if (!pci_is_pcie(dev)) 3803 return -EINVAL; 3804 3805 /* 3806 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3807 * AtomicOp requesters. For now, we only support endpoints as 3808 * requesters and root ports as completers. No endpoints as 3809 * completers, and no peer-to-peer. 3810 */ 3811 3812 switch (pci_pcie_type(dev)) { 3813 case PCI_EXP_TYPE_ENDPOINT: 3814 case PCI_EXP_TYPE_LEG_END: 3815 case PCI_EXP_TYPE_RC_END: 3816 break; 3817 default: 3818 return -EINVAL; 3819 } 3820 3821 while (bus->parent) { 3822 bridge = bus->self; 3823 3824 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3825 3826 switch (pci_pcie_type(bridge)) { 3827 /* Ensure switch ports support AtomicOp routing */ 3828 case PCI_EXP_TYPE_UPSTREAM: 3829 case PCI_EXP_TYPE_DOWNSTREAM: 3830 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3831 return -EINVAL; 3832 break; 3833 3834 /* Ensure root port supports all the sizes we care about */ 3835 case PCI_EXP_TYPE_ROOT_PORT: 3836 if ((cap & cap_mask) != cap_mask) 3837 return -EINVAL; 3838 break; 3839 } 3840 3841 /* Ensure upstream ports don't block AtomicOps on egress */ 3842 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3843 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3844 &ctl2); 3845 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3846 return -EINVAL; 3847 } 3848 3849 bus = bus->parent; 3850 } 3851 3852 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3853 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3854 return 0; 3855 } 3856 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3857 3858 /** 3859 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3860 * @dev: the PCI device 3861 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3862 * 3863 * Perform INTx swizzling for a device behind one level of bridge. This is 3864 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3865 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3866 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3867 * the PCI Express Base Specification, Revision 2.1) 3868 */ 3869 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3870 { 3871 int slot; 3872 3873 if (pci_ari_enabled(dev->bus)) 3874 slot = 0; 3875 else 3876 slot = PCI_SLOT(dev->devfn); 3877 3878 return (((pin - 1) + slot) % 4) + 1; 3879 } 3880 3881 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3882 { 3883 u8 pin; 3884 3885 pin = dev->pin; 3886 if (!pin) 3887 return -1; 3888 3889 while (!pci_is_root_bus(dev->bus)) { 3890 pin = pci_swizzle_interrupt_pin(dev, pin); 3891 dev = dev->bus->self; 3892 } 3893 *bridge = dev; 3894 return pin; 3895 } 3896 3897 /** 3898 * pci_common_swizzle - swizzle INTx all the way to root bridge 3899 * @dev: the PCI device 3900 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3901 * 3902 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3903 * bridges all the way up to a PCI root bus. 3904 */ 3905 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3906 { 3907 u8 pin = *pinp; 3908 3909 while (!pci_is_root_bus(dev->bus)) { 3910 pin = pci_swizzle_interrupt_pin(dev, pin); 3911 dev = dev->bus->self; 3912 } 3913 *pinp = pin; 3914 return PCI_SLOT(dev->devfn); 3915 } 3916 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3917 3918 /** 3919 * pci_release_region - Release a PCI bar 3920 * @pdev: PCI device whose resources were previously reserved by 3921 * pci_request_region() 3922 * @bar: BAR to release 3923 * 3924 * Releases the PCI I/O and memory resources previously reserved by a 3925 * successful call to pci_request_region(). Call this function only 3926 * after all use of the PCI regions has ceased. 3927 */ 3928 void pci_release_region(struct pci_dev *pdev, int bar) 3929 { 3930 struct pci_devres *dr; 3931 3932 if (pci_resource_len(pdev, bar) == 0) 3933 return; 3934 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3935 release_region(pci_resource_start(pdev, bar), 3936 pci_resource_len(pdev, bar)); 3937 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3938 release_mem_region(pci_resource_start(pdev, bar), 3939 pci_resource_len(pdev, bar)); 3940 3941 dr = find_pci_dr(pdev); 3942 if (dr) 3943 dr->region_mask &= ~(1 << bar); 3944 } 3945 EXPORT_SYMBOL(pci_release_region); 3946 3947 /** 3948 * __pci_request_region - Reserved PCI I/O and memory resource 3949 * @pdev: PCI device whose resources are to be reserved 3950 * @bar: BAR to be reserved 3951 * @res_name: Name to be associated with resource. 3952 * @exclusive: whether the region access is exclusive or not 3953 * 3954 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3955 * being reserved by owner @res_name. Do not access any 3956 * address inside the PCI regions unless this call returns 3957 * successfully. 3958 * 3959 * If @exclusive is set, then the region is marked so that userspace 3960 * is explicitly not allowed to map the resource via /dev/mem or 3961 * sysfs MMIO access. 3962 * 3963 * Returns 0 on success, or %EBUSY on error. A warning 3964 * message is also printed on failure. 3965 */ 3966 static int __pci_request_region(struct pci_dev *pdev, int bar, 3967 const char *res_name, int exclusive) 3968 { 3969 struct pci_devres *dr; 3970 3971 if (pci_resource_len(pdev, bar) == 0) 3972 return 0; 3973 3974 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3975 if (!request_region(pci_resource_start(pdev, bar), 3976 pci_resource_len(pdev, bar), res_name)) 3977 goto err_out; 3978 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3979 if (!__request_mem_region(pci_resource_start(pdev, bar), 3980 pci_resource_len(pdev, bar), res_name, 3981 exclusive)) 3982 goto err_out; 3983 } 3984 3985 dr = find_pci_dr(pdev); 3986 if (dr) 3987 dr->region_mask |= 1 << bar; 3988 3989 return 0; 3990 3991 err_out: 3992 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3993 &pdev->resource[bar]); 3994 return -EBUSY; 3995 } 3996 3997 /** 3998 * pci_request_region - Reserve PCI I/O and memory resource 3999 * @pdev: PCI device whose resources are to be reserved 4000 * @bar: BAR to be reserved 4001 * @res_name: Name to be associated with resource 4002 * 4003 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4004 * being reserved by owner @res_name. Do not access any 4005 * address inside the PCI regions unless this call returns 4006 * successfully. 4007 * 4008 * Returns 0 on success, or %EBUSY on error. A warning 4009 * message is also printed on failure. 4010 */ 4011 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4012 { 4013 return __pci_request_region(pdev, bar, res_name, 0); 4014 } 4015 EXPORT_SYMBOL(pci_request_region); 4016 4017 /** 4018 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4019 * @pdev: PCI device whose resources were previously reserved 4020 * @bars: Bitmask of BARs to be released 4021 * 4022 * Release selected PCI I/O and memory resources previously reserved. 4023 * Call this function only after all use of the PCI regions has ceased. 4024 */ 4025 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4026 { 4027 int i; 4028 4029 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4030 if (bars & (1 << i)) 4031 pci_release_region(pdev, i); 4032 } 4033 EXPORT_SYMBOL(pci_release_selected_regions); 4034 4035 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4036 const char *res_name, int excl) 4037 { 4038 int i; 4039 4040 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4041 if (bars & (1 << i)) 4042 if (__pci_request_region(pdev, i, res_name, excl)) 4043 goto err_out; 4044 return 0; 4045 4046 err_out: 4047 while (--i >= 0) 4048 if (bars & (1 << i)) 4049 pci_release_region(pdev, i); 4050 4051 return -EBUSY; 4052 } 4053 4054 4055 /** 4056 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4057 * @pdev: PCI device whose resources are to be reserved 4058 * @bars: Bitmask of BARs to be requested 4059 * @res_name: Name to be associated with resource 4060 */ 4061 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4062 const char *res_name) 4063 { 4064 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4065 } 4066 EXPORT_SYMBOL(pci_request_selected_regions); 4067 4068 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4069 const char *res_name) 4070 { 4071 return __pci_request_selected_regions(pdev, bars, res_name, 4072 IORESOURCE_EXCLUSIVE); 4073 } 4074 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4075 4076 /** 4077 * pci_release_regions - Release reserved PCI I/O and memory resources 4078 * @pdev: PCI device whose resources were previously reserved by 4079 * pci_request_regions() 4080 * 4081 * Releases all PCI I/O and memory resources previously reserved by a 4082 * successful call to pci_request_regions(). Call this function only 4083 * after all use of the PCI regions has ceased. 4084 */ 4085 4086 void pci_release_regions(struct pci_dev *pdev) 4087 { 4088 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4089 } 4090 EXPORT_SYMBOL(pci_release_regions); 4091 4092 /** 4093 * pci_request_regions - Reserve PCI I/O and memory resources 4094 * @pdev: PCI device whose resources are to be reserved 4095 * @res_name: Name to be associated with resource. 4096 * 4097 * Mark all PCI regions associated with PCI device @pdev as 4098 * being reserved by owner @res_name. Do not access any 4099 * address inside the PCI regions unless this call returns 4100 * successfully. 4101 * 4102 * Returns 0 on success, or %EBUSY on error. A warning 4103 * message is also printed on failure. 4104 */ 4105 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4106 { 4107 return pci_request_selected_regions(pdev, 4108 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4109 } 4110 EXPORT_SYMBOL(pci_request_regions); 4111 4112 /** 4113 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4114 * @pdev: PCI device whose resources are to be reserved 4115 * @res_name: Name to be associated with resource. 4116 * 4117 * Mark all PCI regions associated with PCI device @pdev as being reserved 4118 * by owner @res_name. Do not access any address inside the PCI regions 4119 * unless this call returns successfully. 4120 * 4121 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4122 * and the sysfs MMIO access will not be allowed. 4123 * 4124 * Returns 0 on success, or %EBUSY on error. A warning message is also 4125 * printed on failure. 4126 */ 4127 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4128 { 4129 return pci_request_selected_regions_exclusive(pdev, 4130 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4131 } 4132 EXPORT_SYMBOL(pci_request_regions_exclusive); 4133 4134 /* 4135 * Record the PCI IO range (expressed as CPU physical address + size). 4136 * Return a negative value if an error has occurred, zero otherwise 4137 */ 4138 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4139 resource_size_t size) 4140 { 4141 int ret = 0; 4142 #ifdef PCI_IOBASE 4143 struct logic_pio_hwaddr *range; 4144 4145 if (!size || addr + size < addr) 4146 return -EINVAL; 4147 4148 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4149 if (!range) 4150 return -ENOMEM; 4151 4152 range->fwnode = fwnode; 4153 range->size = size; 4154 range->hw_start = addr; 4155 range->flags = LOGIC_PIO_CPU_MMIO; 4156 4157 ret = logic_pio_register_range(range); 4158 if (ret) 4159 kfree(range); 4160 4161 /* Ignore duplicates due to deferred probing */ 4162 if (ret == -EEXIST) 4163 ret = 0; 4164 #endif 4165 4166 return ret; 4167 } 4168 4169 phys_addr_t pci_pio_to_address(unsigned long pio) 4170 { 4171 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 4172 4173 #ifdef PCI_IOBASE 4174 if (pio >= MMIO_UPPER_LIMIT) 4175 return address; 4176 4177 address = logic_pio_to_hwaddr(pio); 4178 #endif 4179 4180 return address; 4181 } 4182 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4183 4184 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4185 { 4186 #ifdef PCI_IOBASE 4187 return logic_pio_trans_cpuaddr(address); 4188 #else 4189 if (address > IO_SPACE_LIMIT) 4190 return (unsigned long)-1; 4191 4192 return (unsigned long) address; 4193 #endif 4194 } 4195 4196 /** 4197 * pci_remap_iospace - Remap the memory mapped I/O space 4198 * @res: Resource describing the I/O space 4199 * @phys_addr: physical address of range to be mapped 4200 * 4201 * Remap the memory mapped I/O space described by the @res and the CPU 4202 * physical address @phys_addr into virtual address space. Only 4203 * architectures that have memory mapped IO functions defined (and the 4204 * PCI_IOBASE value defined) should call this function. 4205 */ 4206 #ifndef pci_remap_iospace 4207 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4208 { 4209 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4210 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4211 4212 if (!(res->flags & IORESOURCE_IO)) 4213 return -EINVAL; 4214 4215 if (res->end > IO_SPACE_LIMIT) 4216 return -EINVAL; 4217 4218 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4219 pgprot_device(PAGE_KERNEL)); 4220 #else 4221 /* 4222 * This architecture does not have memory mapped I/O space, 4223 * so this function should never be called 4224 */ 4225 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4226 return -ENODEV; 4227 #endif 4228 } 4229 EXPORT_SYMBOL(pci_remap_iospace); 4230 #endif 4231 4232 /** 4233 * pci_unmap_iospace - Unmap the memory mapped I/O space 4234 * @res: resource to be unmapped 4235 * 4236 * Unmap the CPU virtual address @res from virtual address space. Only 4237 * architectures that have memory mapped IO functions defined (and the 4238 * PCI_IOBASE value defined) should call this function. 4239 */ 4240 void pci_unmap_iospace(struct resource *res) 4241 { 4242 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4243 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4244 4245 vunmap_range(vaddr, vaddr + resource_size(res)); 4246 #endif 4247 } 4248 EXPORT_SYMBOL(pci_unmap_iospace); 4249 4250 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4251 { 4252 struct resource **res = ptr; 4253 4254 pci_unmap_iospace(*res); 4255 } 4256 4257 /** 4258 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4259 * @dev: Generic device to remap IO address for 4260 * @res: Resource describing the I/O space 4261 * @phys_addr: physical address of range to be mapped 4262 * 4263 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4264 * detach. 4265 */ 4266 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4267 phys_addr_t phys_addr) 4268 { 4269 const struct resource **ptr; 4270 int error; 4271 4272 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4273 if (!ptr) 4274 return -ENOMEM; 4275 4276 error = pci_remap_iospace(res, phys_addr); 4277 if (error) { 4278 devres_free(ptr); 4279 } else { 4280 *ptr = res; 4281 devres_add(dev, ptr); 4282 } 4283 4284 return error; 4285 } 4286 EXPORT_SYMBOL(devm_pci_remap_iospace); 4287 4288 /** 4289 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4290 * @dev: Generic device to remap IO address for 4291 * @offset: Resource address to map 4292 * @size: Size of map 4293 * 4294 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4295 * detach. 4296 */ 4297 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4298 resource_size_t offset, 4299 resource_size_t size) 4300 { 4301 void __iomem **ptr, *addr; 4302 4303 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4304 if (!ptr) 4305 return NULL; 4306 4307 addr = pci_remap_cfgspace(offset, size); 4308 if (addr) { 4309 *ptr = addr; 4310 devres_add(dev, ptr); 4311 } else 4312 devres_free(ptr); 4313 4314 return addr; 4315 } 4316 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4317 4318 /** 4319 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4320 * @dev: generic device to handle the resource for 4321 * @res: configuration space resource to be handled 4322 * 4323 * Checks that a resource is a valid memory region, requests the memory 4324 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4325 * proper PCI configuration space memory attributes are guaranteed. 4326 * 4327 * All operations are managed and will be undone on driver detach. 4328 * 4329 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4330 * on failure. Usage example:: 4331 * 4332 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4333 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4334 * if (IS_ERR(base)) 4335 * return PTR_ERR(base); 4336 */ 4337 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4338 struct resource *res) 4339 { 4340 resource_size_t size; 4341 const char *name; 4342 void __iomem *dest_ptr; 4343 4344 BUG_ON(!dev); 4345 4346 if (!res || resource_type(res) != IORESOURCE_MEM) { 4347 dev_err(dev, "invalid resource\n"); 4348 return IOMEM_ERR_PTR(-EINVAL); 4349 } 4350 4351 size = resource_size(res); 4352 4353 if (res->name) 4354 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4355 res->name); 4356 else 4357 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4358 if (!name) 4359 return IOMEM_ERR_PTR(-ENOMEM); 4360 4361 if (!devm_request_mem_region(dev, res->start, size, name)) { 4362 dev_err(dev, "can't request region for resource %pR\n", res); 4363 return IOMEM_ERR_PTR(-EBUSY); 4364 } 4365 4366 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4367 if (!dest_ptr) { 4368 dev_err(dev, "ioremap failed for resource %pR\n", res); 4369 devm_release_mem_region(dev, res->start, size); 4370 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4371 } 4372 4373 return dest_ptr; 4374 } 4375 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4376 4377 static void __pci_set_master(struct pci_dev *dev, bool enable) 4378 { 4379 u16 old_cmd, cmd; 4380 4381 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4382 if (enable) 4383 cmd = old_cmd | PCI_COMMAND_MASTER; 4384 else 4385 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4386 if (cmd != old_cmd) { 4387 pci_dbg(dev, "%s bus mastering\n", 4388 enable ? "enabling" : "disabling"); 4389 pci_write_config_word(dev, PCI_COMMAND, cmd); 4390 } 4391 dev->is_busmaster = enable; 4392 } 4393 4394 /** 4395 * pcibios_setup - process "pci=" kernel boot arguments 4396 * @str: string used to pass in "pci=" kernel boot arguments 4397 * 4398 * Process kernel boot arguments. This is the default implementation. 4399 * Architecture specific implementations can override this as necessary. 4400 */ 4401 char * __weak __init pcibios_setup(char *str) 4402 { 4403 return str; 4404 } 4405 4406 /** 4407 * pcibios_set_master - enable PCI bus-mastering for device dev 4408 * @dev: the PCI device to enable 4409 * 4410 * Enables PCI bus-mastering for the device. This is the default 4411 * implementation. Architecture specific implementations can override 4412 * this if necessary. 4413 */ 4414 void __weak pcibios_set_master(struct pci_dev *dev) 4415 { 4416 u8 lat; 4417 4418 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4419 if (pci_is_pcie(dev)) 4420 return; 4421 4422 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4423 if (lat < 16) 4424 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4425 else if (lat > pcibios_max_latency) 4426 lat = pcibios_max_latency; 4427 else 4428 return; 4429 4430 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4431 } 4432 4433 /** 4434 * pci_set_master - enables bus-mastering for device dev 4435 * @dev: the PCI device to enable 4436 * 4437 * Enables bus-mastering on the device and calls pcibios_set_master() 4438 * to do the needed arch specific settings. 4439 */ 4440 void pci_set_master(struct pci_dev *dev) 4441 { 4442 __pci_set_master(dev, true); 4443 pcibios_set_master(dev); 4444 } 4445 EXPORT_SYMBOL(pci_set_master); 4446 4447 /** 4448 * pci_clear_master - disables bus-mastering for device dev 4449 * @dev: the PCI device to disable 4450 */ 4451 void pci_clear_master(struct pci_dev *dev) 4452 { 4453 __pci_set_master(dev, false); 4454 } 4455 EXPORT_SYMBOL(pci_clear_master); 4456 4457 /** 4458 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4459 * @dev: the PCI device for which MWI is to be enabled 4460 * 4461 * Helper function for pci_set_mwi. 4462 * Originally copied from drivers/net/acenic.c. 4463 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4464 * 4465 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4466 */ 4467 int pci_set_cacheline_size(struct pci_dev *dev) 4468 { 4469 u8 cacheline_size; 4470 4471 if (!pci_cache_line_size) 4472 return -EINVAL; 4473 4474 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4475 equal to or multiple of the right value. */ 4476 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4477 if (cacheline_size >= pci_cache_line_size && 4478 (cacheline_size % pci_cache_line_size) == 0) 4479 return 0; 4480 4481 /* Write the correct value. */ 4482 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4483 /* Read it back. */ 4484 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4485 if (cacheline_size == pci_cache_line_size) 4486 return 0; 4487 4488 pci_dbg(dev, "cache line size of %d is not supported\n", 4489 pci_cache_line_size << 2); 4490 4491 return -EINVAL; 4492 } 4493 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4494 4495 /** 4496 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4497 * @dev: the PCI device for which MWI is enabled 4498 * 4499 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4500 * 4501 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4502 */ 4503 int pci_set_mwi(struct pci_dev *dev) 4504 { 4505 #ifdef PCI_DISABLE_MWI 4506 return 0; 4507 #else 4508 int rc; 4509 u16 cmd; 4510 4511 rc = pci_set_cacheline_size(dev); 4512 if (rc) 4513 return rc; 4514 4515 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4516 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4517 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4518 cmd |= PCI_COMMAND_INVALIDATE; 4519 pci_write_config_word(dev, PCI_COMMAND, cmd); 4520 } 4521 return 0; 4522 #endif 4523 } 4524 EXPORT_SYMBOL(pci_set_mwi); 4525 4526 /** 4527 * pcim_set_mwi - a device-managed pci_set_mwi() 4528 * @dev: the PCI device for which MWI is enabled 4529 * 4530 * Managed pci_set_mwi(). 4531 * 4532 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4533 */ 4534 int pcim_set_mwi(struct pci_dev *dev) 4535 { 4536 struct pci_devres *dr; 4537 4538 dr = find_pci_dr(dev); 4539 if (!dr) 4540 return -ENOMEM; 4541 4542 dr->mwi = 1; 4543 return pci_set_mwi(dev); 4544 } 4545 EXPORT_SYMBOL(pcim_set_mwi); 4546 4547 /** 4548 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4549 * @dev: the PCI device for which MWI is enabled 4550 * 4551 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4552 * Callers are not required to check the return value. 4553 * 4554 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4555 */ 4556 int pci_try_set_mwi(struct pci_dev *dev) 4557 { 4558 #ifdef PCI_DISABLE_MWI 4559 return 0; 4560 #else 4561 return pci_set_mwi(dev); 4562 #endif 4563 } 4564 EXPORT_SYMBOL(pci_try_set_mwi); 4565 4566 /** 4567 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4568 * @dev: the PCI device to disable 4569 * 4570 * Disables PCI Memory-Write-Invalidate transaction on the device 4571 */ 4572 void pci_clear_mwi(struct pci_dev *dev) 4573 { 4574 #ifndef PCI_DISABLE_MWI 4575 u16 cmd; 4576 4577 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4578 if (cmd & PCI_COMMAND_INVALIDATE) { 4579 cmd &= ~PCI_COMMAND_INVALIDATE; 4580 pci_write_config_word(dev, PCI_COMMAND, cmd); 4581 } 4582 #endif 4583 } 4584 EXPORT_SYMBOL(pci_clear_mwi); 4585 4586 /** 4587 * pci_disable_parity - disable parity checking for device 4588 * @dev: the PCI device to operate on 4589 * 4590 * Disable parity checking for device @dev 4591 */ 4592 void pci_disable_parity(struct pci_dev *dev) 4593 { 4594 u16 cmd; 4595 4596 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4597 if (cmd & PCI_COMMAND_PARITY) { 4598 cmd &= ~PCI_COMMAND_PARITY; 4599 pci_write_config_word(dev, PCI_COMMAND, cmd); 4600 } 4601 } 4602 4603 /** 4604 * pci_intx - enables/disables PCI INTx for device dev 4605 * @pdev: the PCI device to operate on 4606 * @enable: boolean: whether to enable or disable PCI INTx 4607 * 4608 * Enables/disables PCI INTx for device @pdev 4609 */ 4610 void pci_intx(struct pci_dev *pdev, int enable) 4611 { 4612 u16 pci_command, new; 4613 4614 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4615 4616 if (enable) 4617 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4618 else 4619 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4620 4621 if (new != pci_command) { 4622 struct pci_devres *dr; 4623 4624 pci_write_config_word(pdev, PCI_COMMAND, new); 4625 4626 dr = find_pci_dr(pdev); 4627 if (dr && !dr->restore_intx) { 4628 dr->restore_intx = 1; 4629 dr->orig_intx = !enable; 4630 } 4631 } 4632 } 4633 EXPORT_SYMBOL_GPL(pci_intx); 4634 4635 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4636 { 4637 struct pci_bus *bus = dev->bus; 4638 bool mask_updated = true; 4639 u32 cmd_status_dword; 4640 u16 origcmd, newcmd; 4641 unsigned long flags; 4642 bool irq_pending; 4643 4644 /* 4645 * We do a single dword read to retrieve both command and status. 4646 * Document assumptions that make this possible. 4647 */ 4648 BUILD_BUG_ON(PCI_COMMAND % 4); 4649 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4650 4651 raw_spin_lock_irqsave(&pci_lock, flags); 4652 4653 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4654 4655 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4656 4657 /* 4658 * Check interrupt status register to see whether our device 4659 * triggered the interrupt (when masking) or the next IRQ is 4660 * already pending (when unmasking). 4661 */ 4662 if (mask != irq_pending) { 4663 mask_updated = false; 4664 goto done; 4665 } 4666 4667 origcmd = cmd_status_dword; 4668 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4669 if (mask) 4670 newcmd |= PCI_COMMAND_INTX_DISABLE; 4671 if (newcmd != origcmd) 4672 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4673 4674 done: 4675 raw_spin_unlock_irqrestore(&pci_lock, flags); 4676 4677 return mask_updated; 4678 } 4679 4680 /** 4681 * pci_check_and_mask_intx - mask INTx on pending interrupt 4682 * @dev: the PCI device to operate on 4683 * 4684 * Check if the device dev has its INTx line asserted, mask it and return 4685 * true in that case. False is returned if no interrupt was pending. 4686 */ 4687 bool pci_check_and_mask_intx(struct pci_dev *dev) 4688 { 4689 return pci_check_and_set_intx_mask(dev, true); 4690 } 4691 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4692 4693 /** 4694 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4695 * @dev: the PCI device to operate on 4696 * 4697 * Check if the device dev has its INTx line asserted, unmask it if not and 4698 * return true. False is returned and the mask remains active if there was 4699 * still an interrupt pending. 4700 */ 4701 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4702 { 4703 return pci_check_and_set_intx_mask(dev, false); 4704 } 4705 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4706 4707 /** 4708 * pci_wait_for_pending_transaction - wait for pending transaction 4709 * @dev: the PCI device to operate on 4710 * 4711 * Return 0 if transaction is pending 1 otherwise. 4712 */ 4713 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4714 { 4715 if (!pci_is_pcie(dev)) 4716 return 1; 4717 4718 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4719 PCI_EXP_DEVSTA_TRPND); 4720 } 4721 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4722 4723 /** 4724 * pcie_flr - initiate a PCIe function level reset 4725 * @dev: device to reset 4726 * 4727 * Initiate a function level reset unconditionally on @dev without 4728 * checking any flags and DEVCAP 4729 */ 4730 int pcie_flr(struct pci_dev *dev) 4731 { 4732 if (!pci_wait_for_pending_transaction(dev)) 4733 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4734 4735 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4736 4737 if (dev->imm_ready) 4738 return 0; 4739 4740 /* 4741 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4742 * 100ms, but may silently discard requests while the FLR is in 4743 * progress. Wait 100ms before trying to access the device. 4744 */ 4745 msleep(100); 4746 4747 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4748 } 4749 EXPORT_SYMBOL_GPL(pcie_flr); 4750 4751 /** 4752 * pcie_reset_flr - initiate a PCIe function level reset 4753 * @dev: device to reset 4754 * @probe: if true, return 0 if device can be reset this way 4755 * 4756 * Initiate a function level reset on @dev. 4757 */ 4758 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4759 { 4760 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4761 return -ENOTTY; 4762 4763 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4764 return -ENOTTY; 4765 4766 if (probe) 4767 return 0; 4768 4769 return pcie_flr(dev); 4770 } 4771 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4772 4773 static int pci_af_flr(struct pci_dev *dev, bool probe) 4774 { 4775 int pos; 4776 u8 cap; 4777 4778 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4779 if (!pos) 4780 return -ENOTTY; 4781 4782 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4783 return -ENOTTY; 4784 4785 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4786 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4787 return -ENOTTY; 4788 4789 if (probe) 4790 return 0; 4791 4792 /* 4793 * Wait for Transaction Pending bit to clear. A word-aligned test 4794 * is used, so we use the control offset rather than status and shift 4795 * the test bit to match. 4796 */ 4797 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4798 PCI_AF_STATUS_TP << 8)) 4799 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4800 4801 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4802 4803 if (dev->imm_ready) 4804 return 0; 4805 4806 /* 4807 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4808 * updated 27 July 2006; a device must complete an FLR within 4809 * 100ms, but may silently discard requests while the FLR is in 4810 * progress. Wait 100ms before trying to access the device. 4811 */ 4812 msleep(100); 4813 4814 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4815 } 4816 4817 /** 4818 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4819 * @dev: Device to reset. 4820 * @probe: if true, return 0 if the device can be reset this way. 4821 * 4822 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4823 * unset, it will be reinitialized internally when going from PCI_D3hot to 4824 * PCI_D0. If that's the case and the device is not in a low-power state 4825 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4826 * 4827 * NOTE: This causes the caller to sleep for twice the device power transition 4828 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4829 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4830 * Moreover, only devices in D0 can be reset by this function. 4831 */ 4832 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4833 { 4834 u16 csr; 4835 4836 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4837 return -ENOTTY; 4838 4839 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4840 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4841 return -ENOTTY; 4842 4843 if (probe) 4844 return 0; 4845 4846 if (dev->current_state != PCI_D0) 4847 return -EINVAL; 4848 4849 csr &= ~PCI_PM_CTRL_STATE_MASK; 4850 csr |= PCI_D3hot; 4851 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4852 pci_dev_d3_sleep(dev); 4853 4854 csr &= ~PCI_PM_CTRL_STATE_MASK; 4855 csr |= PCI_D0; 4856 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4857 pci_dev_d3_sleep(dev); 4858 4859 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4860 } 4861 4862 /** 4863 * pcie_wait_for_link_delay - Wait until link is active or inactive 4864 * @pdev: Bridge device 4865 * @active: waiting for active or inactive? 4866 * @delay: Delay to wait after link has become active (in ms) 4867 * 4868 * Use this to wait till link becomes active or inactive. 4869 */ 4870 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4871 int delay) 4872 { 4873 int timeout = 1000; 4874 bool ret; 4875 u16 lnk_status; 4876 4877 /* 4878 * Some controllers might not implement link active reporting. In this 4879 * case, we wait for 1000 ms + any delay requested by the caller. 4880 */ 4881 if (!pdev->link_active_reporting) { 4882 msleep(timeout + delay); 4883 return true; 4884 } 4885 4886 /* 4887 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4888 * after which we should expect an link active if the reset was 4889 * successful. If so, software must wait a minimum 100ms before sending 4890 * configuration requests to devices downstream this port. 4891 * 4892 * If the link fails to activate, either the device was physically 4893 * removed or the link is permanently failed. 4894 */ 4895 if (active) 4896 msleep(20); 4897 for (;;) { 4898 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4899 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4900 if (ret == active) 4901 break; 4902 if (timeout <= 0) 4903 break; 4904 msleep(10); 4905 timeout -= 10; 4906 } 4907 if (active && ret) 4908 msleep(delay); 4909 4910 return ret == active; 4911 } 4912 4913 /** 4914 * pcie_wait_for_link - Wait until link is active or inactive 4915 * @pdev: Bridge device 4916 * @active: waiting for active or inactive? 4917 * 4918 * Use this to wait till link becomes active or inactive. 4919 */ 4920 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4921 { 4922 return pcie_wait_for_link_delay(pdev, active, 100); 4923 } 4924 4925 /* 4926 * Find maximum D3cold delay required by all the devices on the bus. The 4927 * spec says 100 ms, but firmware can lower it and we allow drivers to 4928 * increase it as well. 4929 * 4930 * Called with @pci_bus_sem locked for reading. 4931 */ 4932 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4933 { 4934 const struct pci_dev *pdev; 4935 int min_delay = 100; 4936 int max_delay = 0; 4937 4938 list_for_each_entry(pdev, &bus->devices, bus_list) { 4939 if (pdev->d3cold_delay < min_delay) 4940 min_delay = pdev->d3cold_delay; 4941 if (pdev->d3cold_delay > max_delay) 4942 max_delay = pdev->d3cold_delay; 4943 } 4944 4945 return max(min_delay, max_delay); 4946 } 4947 4948 /** 4949 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4950 * @dev: PCI bridge 4951 * 4952 * Handle necessary delays before access to the devices on the secondary 4953 * side of the bridge are permitted after D3cold to D0 transition. 4954 * 4955 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4956 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4957 * 4.3.2. 4958 */ 4959 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4960 { 4961 struct pci_dev *child; 4962 int delay; 4963 4964 if (pci_dev_is_disconnected(dev)) 4965 return; 4966 4967 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4968 return; 4969 4970 down_read(&pci_bus_sem); 4971 4972 /* 4973 * We only deal with devices that are present currently on the bus. 4974 * For any hot-added devices the access delay is handled in pciehp 4975 * board_added(). In case of ACPI hotplug the firmware is expected 4976 * to configure the devices before OS is notified. 4977 */ 4978 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4979 up_read(&pci_bus_sem); 4980 return; 4981 } 4982 4983 /* Take d3cold_delay requirements into account */ 4984 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4985 if (!delay) { 4986 up_read(&pci_bus_sem); 4987 return; 4988 } 4989 4990 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4991 bus_list); 4992 up_read(&pci_bus_sem); 4993 4994 /* 4995 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4996 * accessing the device after reset (that is 1000 ms + 100 ms). In 4997 * practice this should not be needed because we don't do power 4998 * management for them (see pci_bridge_d3_possible()). 4999 */ 5000 if (!pci_is_pcie(dev)) { 5001 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 5002 msleep(1000 + delay); 5003 return; 5004 } 5005 5006 /* 5007 * For PCIe downstream and root ports that do not support speeds 5008 * greater than 5 GT/s need to wait minimum 100 ms. For higher 5009 * speeds (gen3) we need to wait first for the data link layer to 5010 * become active. 5011 * 5012 * However, 100 ms is the minimum and the PCIe spec says the 5013 * software must allow at least 1s before it can determine that the 5014 * device that did not respond is a broken device. There is 5015 * evidence that 100 ms is not always enough, for example certain 5016 * Titan Ridge xHCI controller does not always respond to 5017 * configuration requests if we only wait for 100 ms (see 5018 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 5019 * 5020 * Therefore we wait for 100 ms and check for the device presence. 5021 * If it is still not present give it an additional 100 ms. 5022 */ 5023 if (!pcie_downstream_port(dev)) 5024 return; 5025 5026 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 5027 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 5028 msleep(delay); 5029 } else { 5030 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 5031 delay); 5032 if (!pcie_wait_for_link_delay(dev, true, delay)) { 5033 /* Did not train, no need to wait any further */ 5034 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 5035 return; 5036 } 5037 } 5038 5039 if (!pci_device_is_present(child)) { 5040 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 5041 msleep(delay); 5042 } 5043 } 5044 5045 void pci_reset_secondary_bus(struct pci_dev *dev) 5046 { 5047 u16 ctrl; 5048 5049 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5050 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5051 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5052 5053 /* 5054 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5055 * this to 2ms to ensure that we meet the minimum requirement. 5056 */ 5057 msleep(2); 5058 5059 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5060 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5061 5062 /* 5063 * Trhfa for conventional PCI is 2^25 clock cycles. 5064 * Assuming a minimum 33MHz clock this results in a 1s 5065 * delay before we can consider subordinate devices to 5066 * be re-initialized. PCIe has some ways to shorten this, 5067 * but we don't make use of them yet. 5068 */ 5069 ssleep(1); 5070 } 5071 5072 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5073 { 5074 pci_reset_secondary_bus(dev); 5075 } 5076 5077 /** 5078 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5079 * @dev: Bridge device 5080 * 5081 * Use the bridge control register to assert reset on the secondary bus. 5082 * Devices on the secondary bus are left in power-on state. 5083 */ 5084 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5085 { 5086 pcibios_reset_secondary_bus(dev); 5087 5088 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 5089 } 5090 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5091 5092 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5093 { 5094 struct pci_dev *pdev; 5095 5096 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5097 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5098 return -ENOTTY; 5099 5100 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5101 if (pdev != dev) 5102 return -ENOTTY; 5103 5104 if (probe) 5105 return 0; 5106 5107 return pci_bridge_secondary_bus_reset(dev->bus->self); 5108 } 5109 5110 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5111 { 5112 int rc = -ENOTTY; 5113 5114 if (!hotplug || !try_module_get(hotplug->owner)) 5115 return rc; 5116 5117 if (hotplug->ops->reset_slot) 5118 rc = hotplug->ops->reset_slot(hotplug, probe); 5119 5120 module_put(hotplug->owner); 5121 5122 return rc; 5123 } 5124 5125 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5126 { 5127 if (dev->multifunction || dev->subordinate || !dev->slot || 5128 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5129 return -ENOTTY; 5130 5131 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5132 } 5133 5134 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5135 { 5136 int rc; 5137 5138 rc = pci_dev_reset_slot_function(dev, probe); 5139 if (rc != -ENOTTY) 5140 return rc; 5141 return pci_parent_bus_reset(dev, probe); 5142 } 5143 5144 void pci_dev_lock(struct pci_dev *dev) 5145 { 5146 /* block PM suspend, driver probe, etc. */ 5147 device_lock(&dev->dev); 5148 pci_cfg_access_lock(dev); 5149 } 5150 EXPORT_SYMBOL_GPL(pci_dev_lock); 5151 5152 /* Return 1 on successful lock, 0 on contention */ 5153 int pci_dev_trylock(struct pci_dev *dev) 5154 { 5155 if (device_trylock(&dev->dev)) { 5156 if (pci_cfg_access_trylock(dev)) 5157 return 1; 5158 device_unlock(&dev->dev); 5159 } 5160 5161 return 0; 5162 } 5163 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5164 5165 void pci_dev_unlock(struct pci_dev *dev) 5166 { 5167 pci_cfg_access_unlock(dev); 5168 device_unlock(&dev->dev); 5169 } 5170 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5171 5172 static void pci_dev_save_and_disable(struct pci_dev *dev) 5173 { 5174 const struct pci_error_handlers *err_handler = 5175 dev->driver ? dev->driver->err_handler : NULL; 5176 5177 /* 5178 * dev->driver->err_handler->reset_prepare() is protected against 5179 * races with ->remove() by the device lock, which must be held by 5180 * the caller. 5181 */ 5182 if (err_handler && err_handler->reset_prepare) 5183 err_handler->reset_prepare(dev); 5184 5185 /* 5186 * Wake-up device prior to save. PM registers default to D0 after 5187 * reset and a simple register restore doesn't reliably return 5188 * to a non-D0 state anyway. 5189 */ 5190 pci_set_power_state(dev, PCI_D0); 5191 5192 pci_save_state(dev); 5193 /* 5194 * Disable the device by clearing the Command register, except for 5195 * INTx-disable which is set. This not only disables MMIO and I/O port 5196 * BARs, but also prevents the device from being Bus Master, preventing 5197 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5198 * compliant devices, INTx-disable prevents legacy interrupts. 5199 */ 5200 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5201 } 5202 5203 static void pci_dev_restore(struct pci_dev *dev) 5204 { 5205 const struct pci_error_handlers *err_handler = 5206 dev->driver ? dev->driver->err_handler : NULL; 5207 5208 pci_restore_state(dev); 5209 5210 /* 5211 * dev->driver->err_handler->reset_done() is protected against 5212 * races with ->remove() by the device lock, which must be held by 5213 * the caller. 5214 */ 5215 if (err_handler && err_handler->reset_done) 5216 err_handler->reset_done(dev); 5217 } 5218 5219 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5220 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5221 { }, 5222 { pci_dev_specific_reset, .name = "device_specific" }, 5223 { pci_dev_acpi_reset, .name = "acpi" }, 5224 { pcie_reset_flr, .name = "flr" }, 5225 { pci_af_flr, .name = "af_flr" }, 5226 { pci_pm_reset, .name = "pm" }, 5227 { pci_reset_bus_function, .name = "bus" }, 5228 }; 5229 5230 static ssize_t reset_method_show(struct device *dev, 5231 struct device_attribute *attr, char *buf) 5232 { 5233 struct pci_dev *pdev = to_pci_dev(dev); 5234 ssize_t len = 0; 5235 int i, m; 5236 5237 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5238 m = pdev->reset_methods[i]; 5239 if (!m) 5240 break; 5241 5242 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5243 pci_reset_fn_methods[m].name); 5244 } 5245 5246 if (len) 5247 len += sysfs_emit_at(buf, len, "\n"); 5248 5249 return len; 5250 } 5251 5252 static int reset_method_lookup(const char *name) 5253 { 5254 int m; 5255 5256 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5257 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5258 return m; 5259 } 5260 5261 return 0; /* not found */ 5262 } 5263 5264 static ssize_t reset_method_store(struct device *dev, 5265 struct device_attribute *attr, 5266 const char *buf, size_t count) 5267 { 5268 struct pci_dev *pdev = to_pci_dev(dev); 5269 char *options, *name; 5270 int m, n; 5271 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5272 5273 if (sysfs_streq(buf, "")) { 5274 pdev->reset_methods[0] = 0; 5275 pci_warn(pdev, "All device reset methods disabled by user"); 5276 return count; 5277 } 5278 5279 if (sysfs_streq(buf, "default")) { 5280 pci_init_reset_methods(pdev); 5281 return count; 5282 } 5283 5284 options = kstrndup(buf, count, GFP_KERNEL); 5285 if (!options) 5286 return -ENOMEM; 5287 5288 n = 0; 5289 while ((name = strsep(&options, " ")) != NULL) { 5290 if (sysfs_streq(name, "")) 5291 continue; 5292 5293 name = strim(name); 5294 5295 m = reset_method_lookup(name); 5296 if (!m) { 5297 pci_err(pdev, "Invalid reset method '%s'", name); 5298 goto error; 5299 } 5300 5301 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5302 pci_err(pdev, "Unsupported reset method '%s'", name); 5303 goto error; 5304 } 5305 5306 if (n == PCI_NUM_RESET_METHODS - 1) { 5307 pci_err(pdev, "Too many reset methods\n"); 5308 goto error; 5309 } 5310 5311 reset_methods[n++] = m; 5312 } 5313 5314 reset_methods[n] = 0; 5315 5316 /* Warn if dev-specific supported but not highest priority */ 5317 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5318 reset_methods[0] != 1) 5319 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5320 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5321 kfree(options); 5322 return count; 5323 5324 error: 5325 /* Leave previous methods unchanged */ 5326 kfree(options); 5327 return -EINVAL; 5328 } 5329 static DEVICE_ATTR_RW(reset_method); 5330 5331 static struct attribute *pci_dev_reset_method_attrs[] = { 5332 &dev_attr_reset_method.attr, 5333 NULL, 5334 }; 5335 5336 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5337 struct attribute *a, int n) 5338 { 5339 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5340 5341 if (!pci_reset_supported(pdev)) 5342 return 0; 5343 5344 return a->mode; 5345 } 5346 5347 const struct attribute_group pci_dev_reset_method_attr_group = { 5348 .attrs = pci_dev_reset_method_attrs, 5349 .is_visible = pci_dev_reset_method_attr_is_visible, 5350 }; 5351 5352 /** 5353 * __pci_reset_function_locked - reset a PCI device function while holding 5354 * the @dev mutex lock. 5355 * @dev: PCI device to reset 5356 * 5357 * Some devices allow an individual function to be reset without affecting 5358 * other functions in the same device. The PCI device must be responsive 5359 * to PCI config space in order to use this function. 5360 * 5361 * The device function is presumed to be unused and the caller is holding 5362 * the device mutex lock when this function is called. 5363 * 5364 * Resetting the device will make the contents of PCI configuration space 5365 * random, so any caller of this must be prepared to reinitialise the 5366 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5367 * etc. 5368 * 5369 * Returns 0 if the device function was successfully reset or negative if the 5370 * device doesn't support resetting a single function. 5371 */ 5372 int __pci_reset_function_locked(struct pci_dev *dev) 5373 { 5374 int i, m, rc; 5375 5376 might_sleep(); 5377 5378 /* 5379 * A reset method returns -ENOTTY if it doesn't support this device and 5380 * we should try the next method. 5381 * 5382 * If it returns 0 (success), we're finished. If it returns any other 5383 * error, we're also finished: this indicates that further reset 5384 * mechanisms might be broken on the device. 5385 */ 5386 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5387 m = dev->reset_methods[i]; 5388 if (!m) 5389 return -ENOTTY; 5390 5391 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5392 if (!rc) 5393 return 0; 5394 if (rc != -ENOTTY) 5395 return rc; 5396 } 5397 5398 return -ENOTTY; 5399 } 5400 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5401 5402 /** 5403 * pci_init_reset_methods - check whether device can be safely reset 5404 * and store supported reset mechanisms. 5405 * @dev: PCI device to check for reset mechanisms 5406 * 5407 * Some devices allow an individual function to be reset without affecting 5408 * other functions in the same device. The PCI device must be in D0-D3hot 5409 * state. 5410 * 5411 * Stores reset mechanisms supported by device in reset_methods byte array 5412 * which is a member of struct pci_dev. 5413 */ 5414 void pci_init_reset_methods(struct pci_dev *dev) 5415 { 5416 int m, i, rc; 5417 5418 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5419 5420 might_sleep(); 5421 5422 i = 0; 5423 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5424 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5425 if (!rc) 5426 dev->reset_methods[i++] = m; 5427 else if (rc != -ENOTTY) 5428 break; 5429 } 5430 5431 dev->reset_methods[i] = 0; 5432 } 5433 5434 /** 5435 * pci_reset_function - quiesce and reset a PCI device function 5436 * @dev: PCI device to reset 5437 * 5438 * Some devices allow an individual function to be reset without affecting 5439 * other functions in the same device. The PCI device must be responsive 5440 * to PCI config space in order to use this function. 5441 * 5442 * This function does not just reset the PCI portion of a device, but 5443 * clears all the state associated with the device. This function differs 5444 * from __pci_reset_function_locked() in that it saves and restores device state 5445 * over the reset and takes the PCI device lock. 5446 * 5447 * Returns 0 if the device function was successfully reset or negative if the 5448 * device doesn't support resetting a single function. 5449 */ 5450 int pci_reset_function(struct pci_dev *dev) 5451 { 5452 int rc; 5453 5454 if (!pci_reset_supported(dev)) 5455 return -ENOTTY; 5456 5457 pci_dev_lock(dev); 5458 pci_dev_save_and_disable(dev); 5459 5460 rc = __pci_reset_function_locked(dev); 5461 5462 pci_dev_restore(dev); 5463 pci_dev_unlock(dev); 5464 5465 return rc; 5466 } 5467 EXPORT_SYMBOL_GPL(pci_reset_function); 5468 5469 /** 5470 * pci_reset_function_locked - quiesce and reset a PCI device function 5471 * @dev: PCI device to reset 5472 * 5473 * Some devices allow an individual function to be reset without affecting 5474 * other functions in the same device. The PCI device must be responsive 5475 * to PCI config space in order to use this function. 5476 * 5477 * This function does not just reset the PCI portion of a device, but 5478 * clears all the state associated with the device. This function differs 5479 * from __pci_reset_function_locked() in that it saves and restores device state 5480 * over the reset. It also differs from pci_reset_function() in that it 5481 * requires the PCI device lock to be held. 5482 * 5483 * Returns 0 if the device function was successfully reset or negative if the 5484 * device doesn't support resetting a single function. 5485 */ 5486 int pci_reset_function_locked(struct pci_dev *dev) 5487 { 5488 int rc; 5489 5490 if (!pci_reset_supported(dev)) 5491 return -ENOTTY; 5492 5493 pci_dev_save_and_disable(dev); 5494 5495 rc = __pci_reset_function_locked(dev); 5496 5497 pci_dev_restore(dev); 5498 5499 return rc; 5500 } 5501 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5502 5503 /** 5504 * pci_try_reset_function - quiesce and reset a PCI device function 5505 * @dev: PCI device to reset 5506 * 5507 * Same as above, except return -EAGAIN if unable to lock device. 5508 */ 5509 int pci_try_reset_function(struct pci_dev *dev) 5510 { 5511 int rc; 5512 5513 if (!pci_reset_supported(dev)) 5514 return -ENOTTY; 5515 5516 if (!pci_dev_trylock(dev)) 5517 return -EAGAIN; 5518 5519 pci_dev_save_and_disable(dev); 5520 rc = __pci_reset_function_locked(dev); 5521 pci_dev_restore(dev); 5522 pci_dev_unlock(dev); 5523 5524 return rc; 5525 } 5526 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5527 5528 /* Do any devices on or below this bus prevent a bus reset? */ 5529 static bool pci_bus_resetable(struct pci_bus *bus) 5530 { 5531 struct pci_dev *dev; 5532 5533 5534 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5535 return false; 5536 5537 list_for_each_entry(dev, &bus->devices, bus_list) { 5538 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5539 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5540 return false; 5541 } 5542 5543 return true; 5544 } 5545 5546 /* Lock devices from the top of the tree down */ 5547 static void pci_bus_lock(struct pci_bus *bus) 5548 { 5549 struct pci_dev *dev; 5550 5551 list_for_each_entry(dev, &bus->devices, bus_list) { 5552 pci_dev_lock(dev); 5553 if (dev->subordinate) 5554 pci_bus_lock(dev->subordinate); 5555 } 5556 } 5557 5558 /* Unlock devices from the bottom of the tree up */ 5559 static void pci_bus_unlock(struct pci_bus *bus) 5560 { 5561 struct pci_dev *dev; 5562 5563 list_for_each_entry(dev, &bus->devices, bus_list) { 5564 if (dev->subordinate) 5565 pci_bus_unlock(dev->subordinate); 5566 pci_dev_unlock(dev); 5567 } 5568 } 5569 5570 /* Return 1 on successful lock, 0 on contention */ 5571 static int pci_bus_trylock(struct pci_bus *bus) 5572 { 5573 struct pci_dev *dev; 5574 5575 list_for_each_entry(dev, &bus->devices, bus_list) { 5576 if (!pci_dev_trylock(dev)) 5577 goto unlock; 5578 if (dev->subordinate) { 5579 if (!pci_bus_trylock(dev->subordinate)) { 5580 pci_dev_unlock(dev); 5581 goto unlock; 5582 } 5583 } 5584 } 5585 return 1; 5586 5587 unlock: 5588 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5589 if (dev->subordinate) 5590 pci_bus_unlock(dev->subordinate); 5591 pci_dev_unlock(dev); 5592 } 5593 return 0; 5594 } 5595 5596 /* Do any devices on or below this slot prevent a bus reset? */ 5597 static bool pci_slot_resetable(struct pci_slot *slot) 5598 { 5599 struct pci_dev *dev; 5600 5601 if (slot->bus->self && 5602 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5603 return false; 5604 5605 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5606 if (!dev->slot || dev->slot != slot) 5607 continue; 5608 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5609 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5610 return false; 5611 } 5612 5613 return true; 5614 } 5615 5616 /* Lock devices from the top of the tree down */ 5617 static void pci_slot_lock(struct pci_slot *slot) 5618 { 5619 struct pci_dev *dev; 5620 5621 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5622 if (!dev->slot || dev->slot != slot) 5623 continue; 5624 pci_dev_lock(dev); 5625 if (dev->subordinate) 5626 pci_bus_lock(dev->subordinate); 5627 } 5628 } 5629 5630 /* Unlock devices from the bottom of the tree up */ 5631 static void pci_slot_unlock(struct pci_slot *slot) 5632 { 5633 struct pci_dev *dev; 5634 5635 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5636 if (!dev->slot || dev->slot != slot) 5637 continue; 5638 if (dev->subordinate) 5639 pci_bus_unlock(dev->subordinate); 5640 pci_dev_unlock(dev); 5641 } 5642 } 5643 5644 /* Return 1 on successful lock, 0 on contention */ 5645 static int pci_slot_trylock(struct pci_slot *slot) 5646 { 5647 struct pci_dev *dev; 5648 5649 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5650 if (!dev->slot || dev->slot != slot) 5651 continue; 5652 if (!pci_dev_trylock(dev)) 5653 goto unlock; 5654 if (dev->subordinate) { 5655 if (!pci_bus_trylock(dev->subordinate)) { 5656 pci_dev_unlock(dev); 5657 goto unlock; 5658 } 5659 } 5660 } 5661 return 1; 5662 5663 unlock: 5664 list_for_each_entry_continue_reverse(dev, 5665 &slot->bus->devices, bus_list) { 5666 if (!dev->slot || dev->slot != slot) 5667 continue; 5668 if (dev->subordinate) 5669 pci_bus_unlock(dev->subordinate); 5670 pci_dev_unlock(dev); 5671 } 5672 return 0; 5673 } 5674 5675 /* 5676 * Save and disable devices from the top of the tree down while holding 5677 * the @dev mutex lock for the entire tree. 5678 */ 5679 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5680 { 5681 struct pci_dev *dev; 5682 5683 list_for_each_entry(dev, &bus->devices, bus_list) { 5684 pci_dev_save_and_disable(dev); 5685 if (dev->subordinate) 5686 pci_bus_save_and_disable_locked(dev->subordinate); 5687 } 5688 } 5689 5690 /* 5691 * Restore devices from top of the tree down while holding @dev mutex lock 5692 * for the entire tree. Parent bridges need to be restored before we can 5693 * get to subordinate devices. 5694 */ 5695 static void pci_bus_restore_locked(struct pci_bus *bus) 5696 { 5697 struct pci_dev *dev; 5698 5699 list_for_each_entry(dev, &bus->devices, bus_list) { 5700 pci_dev_restore(dev); 5701 if (dev->subordinate) 5702 pci_bus_restore_locked(dev->subordinate); 5703 } 5704 } 5705 5706 /* 5707 * Save and disable devices from the top of the tree down while holding 5708 * the @dev mutex lock for the entire tree. 5709 */ 5710 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5711 { 5712 struct pci_dev *dev; 5713 5714 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5715 if (!dev->slot || dev->slot != slot) 5716 continue; 5717 pci_dev_save_and_disable(dev); 5718 if (dev->subordinate) 5719 pci_bus_save_and_disable_locked(dev->subordinate); 5720 } 5721 } 5722 5723 /* 5724 * Restore devices from top of the tree down while holding @dev mutex lock 5725 * for the entire tree. Parent bridges need to be restored before we can 5726 * get to subordinate devices. 5727 */ 5728 static void pci_slot_restore_locked(struct pci_slot *slot) 5729 { 5730 struct pci_dev *dev; 5731 5732 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5733 if (!dev->slot || dev->slot != slot) 5734 continue; 5735 pci_dev_restore(dev); 5736 if (dev->subordinate) 5737 pci_bus_restore_locked(dev->subordinate); 5738 } 5739 } 5740 5741 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5742 { 5743 int rc; 5744 5745 if (!slot || !pci_slot_resetable(slot)) 5746 return -ENOTTY; 5747 5748 if (!probe) 5749 pci_slot_lock(slot); 5750 5751 might_sleep(); 5752 5753 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5754 5755 if (!probe) 5756 pci_slot_unlock(slot); 5757 5758 return rc; 5759 } 5760 5761 /** 5762 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5763 * @slot: PCI slot to probe 5764 * 5765 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5766 */ 5767 int pci_probe_reset_slot(struct pci_slot *slot) 5768 { 5769 return pci_slot_reset(slot, PCI_RESET_PROBE); 5770 } 5771 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5772 5773 /** 5774 * __pci_reset_slot - Try to reset a PCI slot 5775 * @slot: PCI slot to reset 5776 * 5777 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5778 * independent of other slots. For instance, some slots may support slot power 5779 * control. In the case of a 1:1 bus to slot architecture, this function may 5780 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5781 * Generally a slot reset should be attempted before a bus reset. All of the 5782 * function of the slot and any subordinate buses behind the slot are reset 5783 * through this function. PCI config space of all devices in the slot and 5784 * behind the slot is saved before and restored after reset. 5785 * 5786 * Same as above except return -EAGAIN if the slot cannot be locked 5787 */ 5788 static int __pci_reset_slot(struct pci_slot *slot) 5789 { 5790 int rc; 5791 5792 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5793 if (rc) 5794 return rc; 5795 5796 if (pci_slot_trylock(slot)) { 5797 pci_slot_save_and_disable_locked(slot); 5798 might_sleep(); 5799 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5800 pci_slot_restore_locked(slot); 5801 pci_slot_unlock(slot); 5802 } else 5803 rc = -EAGAIN; 5804 5805 return rc; 5806 } 5807 5808 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5809 { 5810 int ret; 5811 5812 if (!bus->self || !pci_bus_resetable(bus)) 5813 return -ENOTTY; 5814 5815 if (probe) 5816 return 0; 5817 5818 pci_bus_lock(bus); 5819 5820 might_sleep(); 5821 5822 ret = pci_bridge_secondary_bus_reset(bus->self); 5823 5824 pci_bus_unlock(bus); 5825 5826 return ret; 5827 } 5828 5829 /** 5830 * pci_bus_error_reset - reset the bridge's subordinate bus 5831 * @bridge: The parent device that connects to the bus to reset 5832 * 5833 * This function will first try to reset the slots on this bus if the method is 5834 * available. If slot reset fails or is not available, this will fall back to a 5835 * secondary bus reset. 5836 */ 5837 int pci_bus_error_reset(struct pci_dev *bridge) 5838 { 5839 struct pci_bus *bus = bridge->subordinate; 5840 struct pci_slot *slot; 5841 5842 if (!bus) 5843 return -ENOTTY; 5844 5845 mutex_lock(&pci_slot_mutex); 5846 if (list_empty(&bus->slots)) 5847 goto bus_reset; 5848 5849 list_for_each_entry(slot, &bus->slots, list) 5850 if (pci_probe_reset_slot(slot)) 5851 goto bus_reset; 5852 5853 list_for_each_entry(slot, &bus->slots, list) 5854 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5855 goto bus_reset; 5856 5857 mutex_unlock(&pci_slot_mutex); 5858 return 0; 5859 bus_reset: 5860 mutex_unlock(&pci_slot_mutex); 5861 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5862 } 5863 5864 /** 5865 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5866 * @bus: PCI bus to probe 5867 * 5868 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5869 */ 5870 int pci_probe_reset_bus(struct pci_bus *bus) 5871 { 5872 return pci_bus_reset(bus, PCI_RESET_PROBE); 5873 } 5874 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5875 5876 /** 5877 * __pci_reset_bus - Try to reset a PCI bus 5878 * @bus: top level PCI bus to reset 5879 * 5880 * Same as above except return -EAGAIN if the bus cannot be locked 5881 */ 5882 static int __pci_reset_bus(struct pci_bus *bus) 5883 { 5884 int rc; 5885 5886 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5887 if (rc) 5888 return rc; 5889 5890 if (pci_bus_trylock(bus)) { 5891 pci_bus_save_and_disable_locked(bus); 5892 might_sleep(); 5893 rc = pci_bridge_secondary_bus_reset(bus->self); 5894 pci_bus_restore_locked(bus); 5895 pci_bus_unlock(bus); 5896 } else 5897 rc = -EAGAIN; 5898 5899 return rc; 5900 } 5901 5902 /** 5903 * pci_reset_bus - Try to reset a PCI bus 5904 * @pdev: top level PCI device to reset via slot/bus 5905 * 5906 * Same as above except return -EAGAIN if the bus cannot be locked 5907 */ 5908 int pci_reset_bus(struct pci_dev *pdev) 5909 { 5910 return (!pci_probe_reset_slot(pdev->slot)) ? 5911 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5912 } 5913 EXPORT_SYMBOL_GPL(pci_reset_bus); 5914 5915 /** 5916 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5917 * @dev: PCI device to query 5918 * 5919 * Returns mmrbc: maximum designed memory read count in bytes or 5920 * appropriate error value. 5921 */ 5922 int pcix_get_max_mmrbc(struct pci_dev *dev) 5923 { 5924 int cap; 5925 u32 stat; 5926 5927 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5928 if (!cap) 5929 return -EINVAL; 5930 5931 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5932 return -EINVAL; 5933 5934 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5935 } 5936 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5937 5938 /** 5939 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5940 * @dev: PCI device to query 5941 * 5942 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5943 * value. 5944 */ 5945 int pcix_get_mmrbc(struct pci_dev *dev) 5946 { 5947 int cap; 5948 u16 cmd; 5949 5950 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5951 if (!cap) 5952 return -EINVAL; 5953 5954 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5955 return -EINVAL; 5956 5957 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5958 } 5959 EXPORT_SYMBOL(pcix_get_mmrbc); 5960 5961 /** 5962 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5963 * @dev: PCI device to query 5964 * @mmrbc: maximum memory read count in bytes 5965 * valid values are 512, 1024, 2048, 4096 5966 * 5967 * If possible sets maximum memory read byte count, some bridges have errata 5968 * that prevent this. 5969 */ 5970 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5971 { 5972 int cap; 5973 u32 stat, v, o; 5974 u16 cmd; 5975 5976 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5977 return -EINVAL; 5978 5979 v = ffs(mmrbc) - 10; 5980 5981 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5982 if (!cap) 5983 return -EINVAL; 5984 5985 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5986 return -EINVAL; 5987 5988 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5989 return -E2BIG; 5990 5991 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5992 return -EINVAL; 5993 5994 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5995 if (o != v) { 5996 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5997 return -EIO; 5998 5999 cmd &= ~PCI_X_CMD_MAX_READ; 6000 cmd |= v << 2; 6001 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 6002 return -EIO; 6003 } 6004 return 0; 6005 } 6006 EXPORT_SYMBOL(pcix_set_mmrbc); 6007 6008 /** 6009 * pcie_get_readrq - get PCI Express read request size 6010 * @dev: PCI device to query 6011 * 6012 * Returns maximum memory read request in bytes or appropriate error value. 6013 */ 6014 int pcie_get_readrq(struct pci_dev *dev) 6015 { 6016 u16 ctl; 6017 6018 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6019 6020 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6021 } 6022 EXPORT_SYMBOL(pcie_get_readrq); 6023 6024 /** 6025 * pcie_set_readrq - set PCI Express maximum memory read request 6026 * @dev: PCI device to query 6027 * @rq: maximum memory read count in bytes 6028 * valid values are 128, 256, 512, 1024, 2048, 4096 6029 * 6030 * If possible sets maximum memory read request in bytes 6031 */ 6032 int pcie_set_readrq(struct pci_dev *dev, int rq) 6033 { 6034 u16 v; 6035 int ret; 6036 6037 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6038 return -EINVAL; 6039 6040 /* 6041 * If using the "performance" PCIe config, we clamp the read rq 6042 * size to the max packet size to keep the host bridge from 6043 * generating requests larger than we can cope with. 6044 */ 6045 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6046 int mps = pcie_get_mps(dev); 6047 6048 if (mps < rq) 6049 rq = mps; 6050 } 6051 6052 v = (ffs(rq) - 8) << 12; 6053 6054 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6055 PCI_EXP_DEVCTL_READRQ, v); 6056 6057 return pcibios_err_to_errno(ret); 6058 } 6059 EXPORT_SYMBOL(pcie_set_readrq); 6060 6061 /** 6062 * pcie_get_mps - get PCI Express maximum payload size 6063 * @dev: PCI device to query 6064 * 6065 * Returns maximum payload size in bytes 6066 */ 6067 int pcie_get_mps(struct pci_dev *dev) 6068 { 6069 u16 ctl; 6070 6071 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6072 6073 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6074 } 6075 EXPORT_SYMBOL(pcie_get_mps); 6076 6077 /** 6078 * pcie_set_mps - set PCI Express maximum payload size 6079 * @dev: PCI device to query 6080 * @mps: maximum payload size in bytes 6081 * valid values are 128, 256, 512, 1024, 2048, 4096 6082 * 6083 * If possible sets maximum payload size 6084 */ 6085 int pcie_set_mps(struct pci_dev *dev, int mps) 6086 { 6087 u16 v; 6088 int ret; 6089 6090 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6091 return -EINVAL; 6092 6093 v = ffs(mps) - 8; 6094 if (v > dev->pcie_mpss) 6095 return -EINVAL; 6096 v <<= 5; 6097 6098 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6099 PCI_EXP_DEVCTL_PAYLOAD, v); 6100 6101 return pcibios_err_to_errno(ret); 6102 } 6103 EXPORT_SYMBOL(pcie_set_mps); 6104 6105 /** 6106 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6107 * device and its bandwidth limitation 6108 * @dev: PCI device to query 6109 * @limiting_dev: storage for device causing the bandwidth limitation 6110 * @speed: storage for speed of limiting device 6111 * @width: storage for width of limiting device 6112 * 6113 * Walk up the PCI device chain and find the point where the minimum 6114 * bandwidth is available. Return the bandwidth available there and (if 6115 * limiting_dev, speed, and width pointers are supplied) information about 6116 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6117 * raw bandwidth. 6118 */ 6119 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6120 enum pci_bus_speed *speed, 6121 enum pcie_link_width *width) 6122 { 6123 u16 lnksta; 6124 enum pci_bus_speed next_speed; 6125 enum pcie_link_width next_width; 6126 u32 bw, next_bw; 6127 6128 if (speed) 6129 *speed = PCI_SPEED_UNKNOWN; 6130 if (width) 6131 *width = PCIE_LNK_WIDTH_UNKNOWN; 6132 6133 bw = 0; 6134 6135 while (dev) { 6136 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6137 6138 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 6139 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 6140 PCI_EXP_LNKSTA_NLW_SHIFT; 6141 6142 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6143 6144 /* Check if current device limits the total bandwidth */ 6145 if (!bw || next_bw <= bw) { 6146 bw = next_bw; 6147 6148 if (limiting_dev) 6149 *limiting_dev = dev; 6150 if (speed) 6151 *speed = next_speed; 6152 if (width) 6153 *width = next_width; 6154 } 6155 6156 dev = pci_upstream_bridge(dev); 6157 } 6158 6159 return bw; 6160 } 6161 EXPORT_SYMBOL(pcie_bandwidth_available); 6162 6163 /** 6164 * pcie_get_speed_cap - query for the PCI device's link speed capability 6165 * @dev: PCI device to query 6166 * 6167 * Query the PCI device speed capability. Return the maximum link speed 6168 * supported by the device. 6169 */ 6170 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6171 { 6172 u32 lnkcap2, lnkcap; 6173 6174 /* 6175 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6176 * implementation note there recommends using the Supported Link 6177 * Speeds Vector in Link Capabilities 2 when supported. 6178 * 6179 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6180 * should use the Supported Link Speeds field in Link Capabilities, 6181 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6182 */ 6183 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6184 6185 /* PCIe r3.0-compliant */ 6186 if (lnkcap2) 6187 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6188 6189 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6190 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6191 return PCIE_SPEED_5_0GT; 6192 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6193 return PCIE_SPEED_2_5GT; 6194 6195 return PCI_SPEED_UNKNOWN; 6196 } 6197 EXPORT_SYMBOL(pcie_get_speed_cap); 6198 6199 /** 6200 * pcie_get_width_cap - query for the PCI device's link width capability 6201 * @dev: PCI device to query 6202 * 6203 * Query the PCI device width capability. Return the maximum link width 6204 * supported by the device. 6205 */ 6206 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6207 { 6208 u32 lnkcap; 6209 6210 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6211 if (lnkcap) 6212 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 6213 6214 return PCIE_LNK_WIDTH_UNKNOWN; 6215 } 6216 EXPORT_SYMBOL(pcie_get_width_cap); 6217 6218 /** 6219 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6220 * @dev: PCI device 6221 * @speed: storage for link speed 6222 * @width: storage for link width 6223 * 6224 * Calculate a PCI device's link bandwidth by querying for its link speed 6225 * and width, multiplying them, and applying encoding overhead. The result 6226 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6227 */ 6228 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6229 enum pcie_link_width *width) 6230 { 6231 *speed = pcie_get_speed_cap(dev); 6232 *width = pcie_get_width_cap(dev); 6233 6234 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6235 return 0; 6236 6237 return *width * PCIE_SPEED2MBS_ENC(*speed); 6238 } 6239 6240 /** 6241 * __pcie_print_link_status - Report the PCI device's link speed and width 6242 * @dev: PCI device to query 6243 * @verbose: Print info even when enough bandwidth is available 6244 * 6245 * If the available bandwidth at the device is less than the device is 6246 * capable of, report the device's maximum possible bandwidth and the 6247 * upstream link that limits its performance. If @verbose, always print 6248 * the available bandwidth, even if the device isn't constrained. 6249 */ 6250 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6251 { 6252 enum pcie_link_width width, width_cap; 6253 enum pci_bus_speed speed, speed_cap; 6254 struct pci_dev *limiting_dev = NULL; 6255 u32 bw_avail, bw_cap; 6256 6257 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6258 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6259 6260 if (bw_avail >= bw_cap && verbose) 6261 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6262 bw_cap / 1000, bw_cap % 1000, 6263 pci_speed_string(speed_cap), width_cap); 6264 else if (bw_avail < bw_cap) 6265 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6266 bw_avail / 1000, bw_avail % 1000, 6267 pci_speed_string(speed), width, 6268 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6269 bw_cap / 1000, bw_cap % 1000, 6270 pci_speed_string(speed_cap), width_cap); 6271 } 6272 6273 /** 6274 * pcie_print_link_status - Report the PCI device's link speed and width 6275 * @dev: PCI device to query 6276 * 6277 * Report the available bandwidth at the device. 6278 */ 6279 void pcie_print_link_status(struct pci_dev *dev) 6280 { 6281 __pcie_print_link_status(dev, true); 6282 } 6283 EXPORT_SYMBOL(pcie_print_link_status); 6284 6285 /** 6286 * pci_select_bars - Make BAR mask from the type of resource 6287 * @dev: the PCI device for which BAR mask is made 6288 * @flags: resource type mask to be selected 6289 * 6290 * This helper routine makes bar mask from the type of resource. 6291 */ 6292 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6293 { 6294 int i, bars = 0; 6295 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6296 if (pci_resource_flags(dev, i) & flags) 6297 bars |= (1 << i); 6298 return bars; 6299 } 6300 EXPORT_SYMBOL(pci_select_bars); 6301 6302 /* Some architectures require additional programming to enable VGA */ 6303 static arch_set_vga_state_t arch_set_vga_state; 6304 6305 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6306 { 6307 arch_set_vga_state = func; /* NULL disables */ 6308 } 6309 6310 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6311 unsigned int command_bits, u32 flags) 6312 { 6313 if (arch_set_vga_state) 6314 return arch_set_vga_state(dev, decode, command_bits, 6315 flags); 6316 return 0; 6317 } 6318 6319 /** 6320 * pci_set_vga_state - set VGA decode state on device and parents if requested 6321 * @dev: the PCI device 6322 * @decode: true = enable decoding, false = disable decoding 6323 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6324 * @flags: traverse ancestors and change bridges 6325 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6326 */ 6327 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6328 unsigned int command_bits, u32 flags) 6329 { 6330 struct pci_bus *bus; 6331 struct pci_dev *bridge; 6332 u16 cmd; 6333 int rc; 6334 6335 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6336 6337 /* ARCH specific VGA enables */ 6338 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6339 if (rc) 6340 return rc; 6341 6342 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6343 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6344 if (decode) 6345 cmd |= command_bits; 6346 else 6347 cmd &= ~command_bits; 6348 pci_write_config_word(dev, PCI_COMMAND, cmd); 6349 } 6350 6351 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6352 return 0; 6353 6354 bus = dev->bus; 6355 while (bus) { 6356 bridge = bus->self; 6357 if (bridge) { 6358 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6359 &cmd); 6360 if (decode) 6361 cmd |= PCI_BRIDGE_CTL_VGA; 6362 else 6363 cmd &= ~PCI_BRIDGE_CTL_VGA; 6364 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6365 cmd); 6366 } 6367 bus = bus->parent; 6368 } 6369 return 0; 6370 } 6371 6372 #ifdef CONFIG_ACPI 6373 bool pci_pr3_present(struct pci_dev *pdev) 6374 { 6375 struct acpi_device *adev; 6376 6377 if (acpi_disabled) 6378 return false; 6379 6380 adev = ACPI_COMPANION(&pdev->dev); 6381 if (!adev) 6382 return false; 6383 6384 return adev->power.flags.power_resources && 6385 acpi_has_method(adev->handle, "_PR3"); 6386 } 6387 EXPORT_SYMBOL_GPL(pci_pr3_present); 6388 #endif 6389 6390 /** 6391 * pci_add_dma_alias - Add a DMA devfn alias for a device 6392 * @dev: the PCI device for which alias is added 6393 * @devfn_from: alias slot and function 6394 * @nr_devfns: number of subsequent devfns to alias 6395 * 6396 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6397 * which is used to program permissible bus-devfn source addresses for DMA 6398 * requests in an IOMMU. These aliases factor into IOMMU group creation 6399 * and are useful for devices generating DMA requests beyond or different 6400 * from their logical bus-devfn. Examples include device quirks where the 6401 * device simply uses the wrong devfn, as well as non-transparent bridges 6402 * where the alias may be a proxy for devices in another domain. 6403 * 6404 * IOMMU group creation is performed during device discovery or addition, 6405 * prior to any potential DMA mapping and therefore prior to driver probing 6406 * (especially for userspace assigned devices where IOMMU group definition 6407 * cannot be left as a userspace activity). DMA aliases should therefore 6408 * be configured via quirks, such as the PCI fixup header quirk. 6409 */ 6410 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6411 unsigned int nr_devfns) 6412 { 6413 int devfn_to; 6414 6415 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6416 devfn_to = devfn_from + nr_devfns - 1; 6417 6418 if (!dev->dma_alias_mask) 6419 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6420 if (!dev->dma_alias_mask) { 6421 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6422 return; 6423 } 6424 6425 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6426 6427 if (nr_devfns == 1) 6428 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6429 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6430 else if (nr_devfns > 1) 6431 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6432 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6433 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6434 } 6435 6436 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6437 { 6438 return (dev1->dma_alias_mask && 6439 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6440 (dev2->dma_alias_mask && 6441 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6442 pci_real_dma_dev(dev1) == dev2 || 6443 pci_real_dma_dev(dev2) == dev1; 6444 } 6445 6446 bool pci_device_is_present(struct pci_dev *pdev) 6447 { 6448 u32 v; 6449 6450 if (pci_dev_is_disconnected(pdev)) 6451 return false; 6452 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6453 } 6454 EXPORT_SYMBOL_GPL(pci_device_is_present); 6455 6456 void pci_ignore_hotplug(struct pci_dev *dev) 6457 { 6458 struct pci_dev *bridge = dev->bus->self; 6459 6460 dev->ignore_hotplug = 1; 6461 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6462 if (bridge) 6463 bridge->ignore_hotplug = 1; 6464 } 6465 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6466 6467 /** 6468 * pci_real_dma_dev - Get PCI DMA device for PCI device 6469 * @dev: the PCI device that may have a PCI DMA alias 6470 * 6471 * Permits the platform to provide architecture-specific functionality to 6472 * devices needing to alias DMA to another PCI device on another PCI bus. If 6473 * the PCI device is on the same bus, it is recommended to use 6474 * pci_add_dma_alias(). This is the default implementation. Architecture 6475 * implementations can override this. 6476 */ 6477 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6478 { 6479 return dev; 6480 } 6481 6482 resource_size_t __weak pcibios_default_alignment(void) 6483 { 6484 return 0; 6485 } 6486 6487 /* 6488 * Arches that don't want to expose struct resource to userland as-is in 6489 * sysfs and /proc can implement their own pci_resource_to_user(). 6490 */ 6491 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6492 const struct resource *rsrc, 6493 resource_size_t *start, resource_size_t *end) 6494 { 6495 *start = rsrc->start; 6496 *end = rsrc->end; 6497 } 6498 6499 static char *resource_alignment_param; 6500 static DEFINE_SPINLOCK(resource_alignment_lock); 6501 6502 /** 6503 * pci_specified_resource_alignment - get resource alignment specified by user. 6504 * @dev: the PCI device to get 6505 * @resize: whether or not to change resources' size when reassigning alignment 6506 * 6507 * RETURNS: Resource alignment if it is specified. 6508 * Zero if it is not specified. 6509 */ 6510 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6511 bool *resize) 6512 { 6513 int align_order, count; 6514 resource_size_t align = pcibios_default_alignment(); 6515 const char *p; 6516 int ret; 6517 6518 spin_lock(&resource_alignment_lock); 6519 p = resource_alignment_param; 6520 if (!p || !*p) 6521 goto out; 6522 if (pci_has_flag(PCI_PROBE_ONLY)) { 6523 align = 0; 6524 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6525 goto out; 6526 } 6527 6528 while (*p) { 6529 count = 0; 6530 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6531 p[count] == '@') { 6532 p += count + 1; 6533 if (align_order > 63) { 6534 pr_err("PCI: Invalid requested alignment (order %d)\n", 6535 align_order); 6536 align_order = PAGE_SHIFT; 6537 } 6538 } else { 6539 align_order = PAGE_SHIFT; 6540 } 6541 6542 ret = pci_dev_str_match(dev, p, &p); 6543 if (ret == 1) { 6544 *resize = true; 6545 align = 1ULL << align_order; 6546 break; 6547 } else if (ret < 0) { 6548 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6549 p); 6550 break; 6551 } 6552 6553 if (*p != ';' && *p != ',') { 6554 /* End of param or invalid format */ 6555 break; 6556 } 6557 p++; 6558 } 6559 out: 6560 spin_unlock(&resource_alignment_lock); 6561 return align; 6562 } 6563 6564 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6565 resource_size_t align, bool resize) 6566 { 6567 struct resource *r = &dev->resource[bar]; 6568 resource_size_t size; 6569 6570 if (!(r->flags & IORESOURCE_MEM)) 6571 return; 6572 6573 if (r->flags & IORESOURCE_PCI_FIXED) { 6574 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6575 bar, r, (unsigned long long)align); 6576 return; 6577 } 6578 6579 size = resource_size(r); 6580 if (size >= align) 6581 return; 6582 6583 /* 6584 * Increase the alignment of the resource. There are two ways we 6585 * can do this: 6586 * 6587 * 1) Increase the size of the resource. BARs are aligned on their 6588 * size, so when we reallocate space for this resource, we'll 6589 * allocate it with the larger alignment. This also prevents 6590 * assignment of any other BARs inside the alignment region, so 6591 * if we're requesting page alignment, this means no other BARs 6592 * will share the page. 6593 * 6594 * The disadvantage is that this makes the resource larger than 6595 * the hardware BAR, which may break drivers that compute things 6596 * based on the resource size, e.g., to find registers at a 6597 * fixed offset before the end of the BAR. 6598 * 6599 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6600 * set r->start to the desired alignment. By itself this 6601 * doesn't prevent other BARs being put inside the alignment 6602 * region, but if we realign *every* resource of every device in 6603 * the system, none of them will share an alignment region. 6604 * 6605 * When the user has requested alignment for only some devices via 6606 * the "pci=resource_alignment" argument, "resize" is true and we 6607 * use the first method. Otherwise we assume we're aligning all 6608 * devices and we use the second. 6609 */ 6610 6611 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6612 bar, r, (unsigned long long)align); 6613 6614 if (resize) { 6615 r->start = 0; 6616 r->end = align - 1; 6617 } else { 6618 r->flags &= ~IORESOURCE_SIZEALIGN; 6619 r->flags |= IORESOURCE_STARTALIGN; 6620 r->start = align; 6621 r->end = r->start + size - 1; 6622 } 6623 r->flags |= IORESOURCE_UNSET; 6624 } 6625 6626 /* 6627 * This function disables memory decoding and releases memory resources 6628 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6629 * It also rounds up size to specified alignment. 6630 * Later on, the kernel will assign page-aligned memory resource back 6631 * to the device. 6632 */ 6633 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6634 { 6635 int i; 6636 struct resource *r; 6637 resource_size_t align; 6638 u16 command; 6639 bool resize = false; 6640 6641 /* 6642 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6643 * 3.4.1.11. Their resources are allocated from the space 6644 * described by the VF BARx register in the PF's SR-IOV capability. 6645 * We can't influence their alignment here. 6646 */ 6647 if (dev->is_virtfn) 6648 return; 6649 6650 /* check if specified PCI is target device to reassign */ 6651 align = pci_specified_resource_alignment(dev, &resize); 6652 if (!align) 6653 return; 6654 6655 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6656 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6657 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6658 return; 6659 } 6660 6661 pci_read_config_word(dev, PCI_COMMAND, &command); 6662 command &= ~PCI_COMMAND_MEMORY; 6663 pci_write_config_word(dev, PCI_COMMAND, command); 6664 6665 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6666 pci_request_resource_alignment(dev, i, align, resize); 6667 6668 /* 6669 * Need to disable bridge's resource window, 6670 * to enable the kernel to reassign new resource 6671 * window later on. 6672 */ 6673 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6674 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6675 r = &dev->resource[i]; 6676 if (!(r->flags & IORESOURCE_MEM)) 6677 continue; 6678 r->flags |= IORESOURCE_UNSET; 6679 r->end = resource_size(r) - 1; 6680 r->start = 0; 6681 } 6682 pci_disable_bridge_window(dev); 6683 } 6684 } 6685 6686 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6687 { 6688 size_t count = 0; 6689 6690 spin_lock(&resource_alignment_lock); 6691 if (resource_alignment_param) 6692 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6693 spin_unlock(&resource_alignment_lock); 6694 6695 return count; 6696 } 6697 6698 static ssize_t resource_alignment_store(struct bus_type *bus, 6699 const char *buf, size_t count) 6700 { 6701 char *param, *old, *end; 6702 6703 if (count >= (PAGE_SIZE - 1)) 6704 return -EINVAL; 6705 6706 param = kstrndup(buf, count, GFP_KERNEL); 6707 if (!param) 6708 return -ENOMEM; 6709 6710 end = strchr(param, '\n'); 6711 if (end) 6712 *end = '\0'; 6713 6714 spin_lock(&resource_alignment_lock); 6715 old = resource_alignment_param; 6716 if (strlen(param)) { 6717 resource_alignment_param = param; 6718 } else { 6719 kfree(param); 6720 resource_alignment_param = NULL; 6721 } 6722 spin_unlock(&resource_alignment_lock); 6723 6724 kfree(old); 6725 6726 return count; 6727 } 6728 6729 static BUS_ATTR_RW(resource_alignment); 6730 6731 static int __init pci_resource_alignment_sysfs_init(void) 6732 { 6733 return bus_create_file(&pci_bus_type, 6734 &bus_attr_resource_alignment); 6735 } 6736 late_initcall(pci_resource_alignment_sysfs_init); 6737 6738 static void pci_no_domains(void) 6739 { 6740 #ifdef CONFIG_PCI_DOMAINS 6741 pci_domains_supported = 0; 6742 #endif 6743 } 6744 6745 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6746 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6747 6748 static int pci_get_new_domain_nr(void) 6749 { 6750 return atomic_inc_return(&__domain_nr); 6751 } 6752 6753 static int of_pci_bus_find_domain_nr(struct device *parent) 6754 { 6755 static int use_dt_domains = -1; 6756 int domain = -1; 6757 6758 if (parent) 6759 domain = of_get_pci_domain_nr(parent->of_node); 6760 6761 /* 6762 * Check DT domain and use_dt_domains values. 6763 * 6764 * If DT domain property is valid (domain >= 0) and 6765 * use_dt_domains != 0, the DT assignment is valid since this means 6766 * we have not previously allocated a domain number by using 6767 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6768 * 1, to indicate that we have just assigned a domain number from 6769 * DT. 6770 * 6771 * If DT domain property value is not valid (ie domain < 0), and we 6772 * have not previously assigned a domain number from DT 6773 * (use_dt_domains != 1) we should assign a domain number by 6774 * using the: 6775 * 6776 * pci_get_new_domain_nr() 6777 * 6778 * API and update the use_dt_domains value to keep track of method we 6779 * are using to assign domain numbers (use_dt_domains = 0). 6780 * 6781 * All other combinations imply we have a platform that is trying 6782 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6783 * which is a recipe for domain mishandling and it is prevented by 6784 * invalidating the domain value (domain = -1) and printing a 6785 * corresponding error. 6786 */ 6787 if (domain >= 0 && use_dt_domains) { 6788 use_dt_domains = 1; 6789 } else if (domain < 0 && use_dt_domains != 1) { 6790 use_dt_domains = 0; 6791 domain = pci_get_new_domain_nr(); 6792 } else { 6793 if (parent) 6794 pr_err("Node %pOF has ", parent->of_node); 6795 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6796 domain = -1; 6797 } 6798 6799 return domain; 6800 } 6801 6802 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6803 { 6804 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6805 acpi_pci_bus_find_domain_nr(bus); 6806 } 6807 #endif 6808 6809 /** 6810 * pci_ext_cfg_avail - can we access extended PCI config space? 6811 * 6812 * Returns 1 if we can access PCI extended config space (offsets 6813 * greater than 0xff). This is the default implementation. Architecture 6814 * implementations can override this. 6815 */ 6816 int __weak pci_ext_cfg_avail(void) 6817 { 6818 return 1; 6819 } 6820 6821 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6822 { 6823 } 6824 EXPORT_SYMBOL(pci_fixup_cardbus); 6825 6826 static int __init pci_setup(char *str) 6827 { 6828 while (str) { 6829 char *k = strchr(str, ','); 6830 if (k) 6831 *k++ = 0; 6832 if (*str && (str = pcibios_setup(str)) && *str) { 6833 if (!strcmp(str, "nomsi")) { 6834 pci_no_msi(); 6835 } else if (!strncmp(str, "noats", 5)) { 6836 pr_info("PCIe: ATS is disabled\n"); 6837 pcie_ats_disabled = true; 6838 } else if (!strcmp(str, "noaer")) { 6839 pci_no_aer(); 6840 } else if (!strcmp(str, "earlydump")) { 6841 pci_early_dump = true; 6842 } else if (!strncmp(str, "realloc=", 8)) { 6843 pci_realloc_get_opt(str + 8); 6844 } else if (!strncmp(str, "realloc", 7)) { 6845 pci_realloc_get_opt("on"); 6846 } else if (!strcmp(str, "nodomains")) { 6847 pci_no_domains(); 6848 } else if (!strncmp(str, "noari", 5)) { 6849 pcie_ari_disabled = true; 6850 } else if (!strncmp(str, "cbiosize=", 9)) { 6851 pci_cardbus_io_size = memparse(str + 9, &str); 6852 } else if (!strncmp(str, "cbmemsize=", 10)) { 6853 pci_cardbus_mem_size = memparse(str + 10, &str); 6854 } else if (!strncmp(str, "resource_alignment=", 19)) { 6855 resource_alignment_param = str + 19; 6856 } else if (!strncmp(str, "ecrc=", 5)) { 6857 pcie_ecrc_get_policy(str + 5); 6858 } else if (!strncmp(str, "hpiosize=", 9)) { 6859 pci_hotplug_io_size = memparse(str + 9, &str); 6860 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6861 pci_hotplug_mmio_size = memparse(str + 11, &str); 6862 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6863 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6864 } else if (!strncmp(str, "hpmemsize=", 10)) { 6865 pci_hotplug_mmio_size = memparse(str + 10, &str); 6866 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6867 } else if (!strncmp(str, "hpbussize=", 10)) { 6868 pci_hotplug_bus_size = 6869 simple_strtoul(str + 10, &str, 0); 6870 if (pci_hotplug_bus_size > 0xff) 6871 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6872 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6873 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6874 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6875 pcie_bus_config = PCIE_BUS_SAFE; 6876 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6877 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6878 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6879 pcie_bus_config = PCIE_BUS_PEER2PEER; 6880 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6881 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6882 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6883 disable_acs_redir_param = str + 18; 6884 } else { 6885 pr_err("PCI: Unknown option `%s'\n", str); 6886 } 6887 } 6888 str = k; 6889 } 6890 return 0; 6891 } 6892 early_param("pci", pci_setup); 6893 6894 /* 6895 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6896 * in pci_setup(), above, to point to data in the __initdata section which 6897 * will be freed after the init sequence is complete. We can't allocate memory 6898 * in pci_setup() because some architectures do not have any memory allocation 6899 * service available during an early_param() call. So we allocate memory and 6900 * copy the variable here before the init section is freed. 6901 * 6902 */ 6903 static int __init pci_realloc_setup_params(void) 6904 { 6905 resource_alignment_param = kstrdup(resource_alignment_param, 6906 GFP_KERNEL); 6907 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6908 6909 return 0; 6910 } 6911 pure_initcall(pci_realloc_setup_params); 6912