1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/pci_hotplug.h> 30 #include <linux/vmalloc.h> 31 #include <asm/dma.h> 32 #include <linux/aer.h> 33 #include <linux/bitfield.h> 34 #include "pci.h" 35 36 DEFINE_MUTEX(pci_slot_mutex); 37 38 const char *pci_power_names[] = { 39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 40 }; 41 EXPORT_SYMBOL_GPL(pci_power_names); 42 43 #ifdef CONFIG_X86_32 44 int isa_dma_bridge_buggy; 45 EXPORT_SYMBOL(isa_dma_bridge_buggy); 46 #endif 47 48 int pci_pci_problems; 49 EXPORT_SYMBOL(pci_pci_problems); 50 51 unsigned int pci_pm_d3hot_delay; 52 53 static void pci_pme_list_scan(struct work_struct *work); 54 55 static LIST_HEAD(pci_pme_list); 56 static DEFINE_MUTEX(pci_pme_list_mutex); 57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 58 59 struct pci_pme_device { 60 struct list_head list; 61 struct pci_dev *dev; 62 }; 63 64 #define PME_TIMEOUT 1000 /* How long between PME checks */ 65 66 /* 67 * Following exit from Conventional Reset, devices must be ready within 1 sec 68 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 69 * Reset (PCIe r6.0 sec 5.8). 70 */ 71 #define PCI_RESET_WAIT 1000 /* msec */ 72 73 /* 74 * Devices may extend the 1 sec period through Request Retry Status 75 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 76 * limit, but 60 sec ought to be enough for any device to become 77 * responsive. 78 */ 79 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 80 81 static void pci_dev_d3_sleep(struct pci_dev *dev) 82 { 83 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 84 unsigned int upper; 85 86 if (delay_ms) { 87 /* Use a 20% upper bound, 1ms minimum */ 88 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 89 usleep_range(delay_ms * USEC_PER_MSEC, 90 (delay_ms + upper) * USEC_PER_MSEC); 91 } 92 } 93 94 bool pci_reset_supported(struct pci_dev *dev) 95 { 96 return dev->reset_methods[0] != 0; 97 } 98 99 #ifdef CONFIG_PCI_DOMAINS 100 int pci_domains_supported = 1; 101 #endif 102 103 #define DEFAULT_CARDBUS_IO_SIZE (256) 104 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 105 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 106 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 107 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 108 109 #define DEFAULT_HOTPLUG_IO_SIZE (256) 110 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 111 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 112 /* hpiosize=nn can override this */ 113 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 114 /* 115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 117 * pci=hpmemsize=nnM overrides both 118 */ 119 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 120 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 121 122 #define DEFAULT_HOTPLUG_BUS_SIZE 1 123 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 124 125 126 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 127 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 129 #elif defined CONFIG_PCIE_BUS_SAFE 130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 131 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 132 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 133 #elif defined CONFIG_PCIE_BUS_PEER2PEER 134 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 135 #else 136 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 137 #endif 138 139 /* 140 * The default CLS is used if arch didn't set CLS explicitly and not 141 * all pci devices agree on the same value. Arch can override either 142 * the dfl or actual value as it sees fit. Don't forget this is 143 * measured in 32-bit words, not bytes. 144 */ 145 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2; 146 u8 pci_cache_line_size __ro_after_init ; 147 148 /* 149 * If we set up a device for bus mastering, we need to check the latency 150 * timer as certain BIOSes forget to set it properly. 151 */ 152 unsigned int pcibios_max_latency = 255; 153 154 /* If set, the PCIe ARI capability will not be used. */ 155 static bool pcie_ari_disabled; 156 157 /* If set, the PCIe ATS capability will not be used. */ 158 static bool pcie_ats_disabled; 159 160 /* If set, the PCI config space of each device is printed during boot. */ 161 bool pci_early_dump; 162 163 bool pci_ats_disabled(void) 164 { 165 return pcie_ats_disabled; 166 } 167 EXPORT_SYMBOL_GPL(pci_ats_disabled); 168 169 /* Disable bridge_d3 for all PCIe ports */ 170 static bool pci_bridge_d3_disable; 171 /* Force bridge_d3 for all PCIe ports */ 172 static bool pci_bridge_d3_force; 173 174 static int __init pcie_port_pm_setup(char *str) 175 { 176 if (!strcmp(str, "off")) 177 pci_bridge_d3_disable = true; 178 else if (!strcmp(str, "force")) 179 pci_bridge_d3_force = true; 180 return 1; 181 } 182 __setup("pcie_port_pm=", pcie_port_pm_setup); 183 184 /** 185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 186 * @bus: pointer to PCI bus structure to search 187 * 188 * Given a PCI bus, returns the highest PCI bus number present in the set 189 * including the given PCI bus and its list of child PCI buses. 190 */ 191 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 192 { 193 struct pci_bus *tmp; 194 unsigned char max, n; 195 196 max = bus->busn_res.end; 197 list_for_each_entry(tmp, &bus->children, node) { 198 n = pci_bus_max_busnr(tmp); 199 if (n > max) 200 max = n; 201 } 202 return max; 203 } 204 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 205 206 /** 207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 208 * @pdev: the PCI device 209 * 210 * Returns error bits set in PCI_STATUS and clears them. 211 */ 212 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 213 { 214 u16 status; 215 int ret; 216 217 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 218 if (ret != PCIBIOS_SUCCESSFUL) 219 return -EIO; 220 221 status &= PCI_STATUS_ERROR_BITS; 222 if (status) 223 pci_write_config_word(pdev, PCI_STATUS, status); 224 225 return status; 226 } 227 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 228 229 #ifdef CONFIG_HAS_IOMEM 230 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 231 bool write_combine) 232 { 233 struct resource *res = &pdev->resource[bar]; 234 resource_size_t start = res->start; 235 resource_size_t size = resource_size(res); 236 237 /* 238 * Make sure the BAR is actually a memory resource, not an IO resource 239 */ 240 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 241 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 242 return NULL; 243 } 244 245 if (write_combine) 246 return ioremap_wc(start, size); 247 248 return ioremap(start, size); 249 } 250 251 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 252 { 253 return __pci_ioremap_resource(pdev, bar, false); 254 } 255 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 256 257 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 258 { 259 return __pci_ioremap_resource(pdev, bar, true); 260 } 261 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 262 #endif 263 264 /** 265 * pci_dev_str_match_path - test if a path string matches a device 266 * @dev: the PCI device to test 267 * @path: string to match the device against 268 * @endptr: pointer to the string after the match 269 * 270 * Test if a string (typically from a kernel parameter) formatted as a 271 * path of device/function addresses matches a PCI device. The string must 272 * be of the form: 273 * 274 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 275 * 276 * A path for a device can be obtained using 'lspci -t'. Using a path 277 * is more robust against bus renumbering than using only a single bus, 278 * device and function address. 279 * 280 * Returns 1 if the string matches the device, 0 if it does not and 281 * a negative error code if it fails to parse the string. 282 */ 283 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 284 const char **endptr) 285 { 286 int ret; 287 unsigned int seg, bus, slot, func; 288 char *wpath, *p; 289 char end; 290 291 *endptr = strchrnul(path, ';'); 292 293 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 294 if (!wpath) 295 return -ENOMEM; 296 297 while (1) { 298 p = strrchr(wpath, '/'); 299 if (!p) 300 break; 301 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 302 if (ret != 2) { 303 ret = -EINVAL; 304 goto free_and_exit; 305 } 306 307 if (dev->devfn != PCI_DEVFN(slot, func)) { 308 ret = 0; 309 goto free_and_exit; 310 } 311 312 /* 313 * Note: we don't need to get a reference to the upstream 314 * bridge because we hold a reference to the top level 315 * device which should hold a reference to the bridge, 316 * and so on. 317 */ 318 dev = pci_upstream_bridge(dev); 319 if (!dev) { 320 ret = 0; 321 goto free_and_exit; 322 } 323 324 *p = 0; 325 } 326 327 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 328 &func, &end); 329 if (ret != 4) { 330 seg = 0; 331 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 332 if (ret != 3) { 333 ret = -EINVAL; 334 goto free_and_exit; 335 } 336 } 337 338 ret = (seg == pci_domain_nr(dev->bus) && 339 bus == dev->bus->number && 340 dev->devfn == PCI_DEVFN(slot, func)); 341 342 free_and_exit: 343 kfree(wpath); 344 return ret; 345 } 346 347 /** 348 * pci_dev_str_match - test if a string matches a device 349 * @dev: the PCI device to test 350 * @p: string to match the device against 351 * @endptr: pointer to the string after the match 352 * 353 * Test if a string (typically from a kernel parameter) matches a specified 354 * PCI device. The string may be of one of the following formats: 355 * 356 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 357 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 358 * 359 * The first format specifies a PCI bus/device/function address which 360 * may change if new hardware is inserted, if motherboard firmware changes, 361 * or due to changes caused in kernel parameters. If the domain is 362 * left unspecified, it is taken to be 0. In order to be robust against 363 * bus renumbering issues, a path of PCI device/function numbers may be used 364 * to address the specific device. The path for a device can be determined 365 * through the use of 'lspci -t'. 366 * 367 * The second format matches devices using IDs in the configuration 368 * space which may match multiple devices in the system. A value of 0 369 * for any field will match all devices. (Note: this differs from 370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 371 * legacy reasons and convenience so users don't have to specify 372 * FFFFFFFFs on the command line.) 373 * 374 * Returns 1 if the string matches the device, 0 if it does not and 375 * a negative error code if the string cannot be parsed. 376 */ 377 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 378 const char **endptr) 379 { 380 int ret; 381 int count; 382 unsigned short vendor, device, subsystem_vendor, subsystem_device; 383 384 if (strncmp(p, "pci:", 4) == 0) { 385 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 386 p += 4; 387 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 388 &subsystem_vendor, &subsystem_device, &count); 389 if (ret != 4) { 390 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 391 if (ret != 2) 392 return -EINVAL; 393 394 subsystem_vendor = 0; 395 subsystem_device = 0; 396 } 397 398 p += count; 399 400 if ((!vendor || vendor == dev->vendor) && 401 (!device || device == dev->device) && 402 (!subsystem_vendor || 403 subsystem_vendor == dev->subsystem_vendor) && 404 (!subsystem_device || 405 subsystem_device == dev->subsystem_device)) 406 goto found; 407 } else { 408 /* 409 * PCI Bus, Device, Function IDs are specified 410 * (optionally, may include a path of devfns following it) 411 */ 412 ret = pci_dev_str_match_path(dev, p, &p); 413 if (ret < 0) 414 return ret; 415 else if (ret) 416 goto found; 417 } 418 419 *endptr = p; 420 return 0; 421 422 found: 423 *endptr = p; 424 return 1; 425 } 426 427 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 428 u8 pos, int cap, int *ttl) 429 { 430 u8 id; 431 u16 ent; 432 433 pci_bus_read_config_byte(bus, devfn, pos, &pos); 434 435 while ((*ttl)--) { 436 if (pos < 0x40) 437 break; 438 pos &= ~3; 439 pci_bus_read_config_word(bus, devfn, pos, &ent); 440 441 id = ent & 0xff; 442 if (id == 0xff) 443 break; 444 if (id == cap) 445 return pos; 446 pos = (ent >> 8); 447 } 448 return 0; 449 } 450 451 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 452 u8 pos, int cap) 453 { 454 int ttl = PCI_FIND_CAP_TTL; 455 456 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 457 } 458 459 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 460 { 461 return __pci_find_next_cap(dev->bus, dev->devfn, 462 pos + PCI_CAP_LIST_NEXT, cap); 463 } 464 EXPORT_SYMBOL_GPL(pci_find_next_capability); 465 466 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 467 unsigned int devfn, u8 hdr_type) 468 { 469 u16 status; 470 471 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 472 if (!(status & PCI_STATUS_CAP_LIST)) 473 return 0; 474 475 switch (hdr_type) { 476 case PCI_HEADER_TYPE_NORMAL: 477 case PCI_HEADER_TYPE_BRIDGE: 478 return PCI_CAPABILITY_LIST; 479 case PCI_HEADER_TYPE_CARDBUS: 480 return PCI_CB_CAPABILITY_LIST; 481 } 482 483 return 0; 484 } 485 486 /** 487 * pci_find_capability - query for devices' capabilities 488 * @dev: PCI device to query 489 * @cap: capability code 490 * 491 * Tell if a device supports a given PCI capability. 492 * Returns the address of the requested capability structure within the 493 * device's PCI configuration space or 0 in case the device does not 494 * support it. Possible values for @cap include: 495 * 496 * %PCI_CAP_ID_PM Power Management 497 * %PCI_CAP_ID_AGP Accelerated Graphics Port 498 * %PCI_CAP_ID_VPD Vital Product Data 499 * %PCI_CAP_ID_SLOTID Slot Identification 500 * %PCI_CAP_ID_MSI Message Signalled Interrupts 501 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 502 * %PCI_CAP_ID_PCIX PCI-X 503 * %PCI_CAP_ID_EXP PCI Express 504 */ 505 u8 pci_find_capability(struct pci_dev *dev, int cap) 506 { 507 u8 pos; 508 509 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 510 if (pos) 511 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 512 513 return pos; 514 } 515 EXPORT_SYMBOL(pci_find_capability); 516 517 /** 518 * pci_bus_find_capability - query for devices' capabilities 519 * @bus: the PCI bus to query 520 * @devfn: PCI device to query 521 * @cap: capability code 522 * 523 * Like pci_find_capability() but works for PCI devices that do not have a 524 * pci_dev structure set up yet. 525 * 526 * Returns the address of the requested capability structure within the 527 * device's PCI configuration space or 0 in case the device does not 528 * support it. 529 */ 530 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 531 { 532 u8 hdr_type, pos; 533 534 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 535 536 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK); 537 if (pos) 538 pos = __pci_find_next_cap(bus, devfn, pos, cap); 539 540 return pos; 541 } 542 EXPORT_SYMBOL(pci_bus_find_capability); 543 544 /** 545 * pci_find_next_ext_capability - Find an extended capability 546 * @dev: PCI device to query 547 * @start: address at which to start looking (0 to start at beginning of list) 548 * @cap: capability code 549 * 550 * Returns the address of the next matching extended capability structure 551 * within the device's PCI configuration space or 0 if the device does 552 * not support it. Some capabilities can occur several times, e.g., the 553 * vendor-specific capability, and this provides a way to find them all. 554 */ 555 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 556 { 557 u32 header; 558 int ttl; 559 u16 pos = PCI_CFG_SPACE_SIZE; 560 561 /* minimum 8 bytes per capability */ 562 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 563 564 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 565 return 0; 566 567 if (start) 568 pos = start; 569 570 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 571 return 0; 572 573 /* 574 * If we have no capabilities, this is indicated by cap ID, 575 * cap version and next pointer all being 0. 576 */ 577 if (header == 0) 578 return 0; 579 580 while (ttl-- > 0) { 581 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 582 return pos; 583 584 pos = PCI_EXT_CAP_NEXT(header); 585 if (pos < PCI_CFG_SPACE_SIZE) 586 break; 587 588 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 589 break; 590 } 591 592 return 0; 593 } 594 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 595 596 /** 597 * pci_find_ext_capability - Find an extended capability 598 * @dev: PCI device to query 599 * @cap: capability code 600 * 601 * Returns the address of the requested extended capability structure 602 * within the device's PCI configuration space or 0 if the device does 603 * not support it. Possible values for @cap include: 604 * 605 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 606 * %PCI_EXT_CAP_ID_VC Virtual Channel 607 * %PCI_EXT_CAP_ID_DSN Device Serial Number 608 * %PCI_EXT_CAP_ID_PWR Power Budgeting 609 */ 610 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 611 { 612 return pci_find_next_ext_capability(dev, 0, cap); 613 } 614 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 615 616 /** 617 * pci_get_dsn - Read and return the 8-byte Device Serial Number 618 * @dev: PCI device to query 619 * 620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 621 * Number. 622 * 623 * Returns the DSN, or zero if the capability does not exist. 624 */ 625 u64 pci_get_dsn(struct pci_dev *dev) 626 { 627 u32 dword; 628 u64 dsn; 629 int pos; 630 631 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 632 if (!pos) 633 return 0; 634 635 /* 636 * The Device Serial Number is two dwords offset 4 bytes from the 637 * capability position. The specification says that the first dword is 638 * the lower half, and the second dword is the upper half. 639 */ 640 pos += 4; 641 pci_read_config_dword(dev, pos, &dword); 642 dsn = (u64)dword; 643 pci_read_config_dword(dev, pos + 4, &dword); 644 dsn |= ((u64)dword) << 32; 645 646 return dsn; 647 } 648 EXPORT_SYMBOL_GPL(pci_get_dsn); 649 650 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 651 { 652 int rc, ttl = PCI_FIND_CAP_TTL; 653 u8 cap, mask; 654 655 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 656 mask = HT_3BIT_CAP_MASK; 657 else 658 mask = HT_5BIT_CAP_MASK; 659 660 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 661 PCI_CAP_ID_HT, &ttl); 662 while (pos) { 663 rc = pci_read_config_byte(dev, pos + 3, &cap); 664 if (rc != PCIBIOS_SUCCESSFUL) 665 return 0; 666 667 if ((cap & mask) == ht_cap) 668 return pos; 669 670 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 671 pos + PCI_CAP_LIST_NEXT, 672 PCI_CAP_ID_HT, &ttl); 673 } 674 675 return 0; 676 } 677 678 /** 679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 680 * @dev: PCI device to query 681 * @pos: Position from which to continue searching 682 * @ht_cap: HyperTransport capability code 683 * 684 * To be used in conjunction with pci_find_ht_capability() to search for 685 * all capabilities matching @ht_cap. @pos should always be a value returned 686 * from pci_find_ht_capability(). 687 * 688 * NB. To be 100% safe against broken PCI devices, the caller should take 689 * steps to avoid an infinite loop. 690 */ 691 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 692 { 693 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 694 } 695 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 696 697 /** 698 * pci_find_ht_capability - query a device's HyperTransport capabilities 699 * @dev: PCI device to query 700 * @ht_cap: HyperTransport capability code 701 * 702 * Tell if a device supports a given HyperTransport capability. 703 * Returns an address within the device's PCI configuration space 704 * or 0 in case the device does not support the request capability. 705 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 706 * which has a HyperTransport capability matching @ht_cap. 707 */ 708 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 709 { 710 u8 pos; 711 712 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 713 if (pos) 714 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 715 716 return pos; 717 } 718 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 719 720 /** 721 * pci_find_vsec_capability - Find a vendor-specific extended capability 722 * @dev: PCI device to query 723 * @vendor: Vendor ID for which capability is defined 724 * @cap: Vendor-specific capability ID 725 * 726 * If @dev has Vendor ID @vendor, search for a VSEC capability with 727 * VSEC ID @cap. If found, return the capability offset in 728 * config space; otherwise return 0. 729 */ 730 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 731 { 732 u16 vsec = 0; 733 u32 header; 734 int ret; 735 736 if (vendor != dev->vendor) 737 return 0; 738 739 while ((vsec = pci_find_next_ext_capability(dev, vsec, 740 PCI_EXT_CAP_ID_VNDR))) { 741 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 742 if (ret != PCIBIOS_SUCCESSFUL) 743 continue; 744 745 if (PCI_VNDR_HEADER_ID(header) == cap) 746 return vsec; 747 } 748 749 return 0; 750 } 751 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 752 753 /** 754 * pci_find_dvsec_capability - Find DVSEC for vendor 755 * @dev: PCI device to query 756 * @vendor: Vendor ID to match for the DVSEC 757 * @dvsec: Designated Vendor-specific capability ID 758 * 759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 760 * offset in config space; otherwise return 0. 761 */ 762 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 763 { 764 int pos; 765 766 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 767 if (!pos) 768 return 0; 769 770 while (pos) { 771 u16 v, id; 772 773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 775 if (vendor == v && dvsec == id) 776 return pos; 777 778 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 779 } 780 781 return 0; 782 } 783 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 784 785 /** 786 * pci_find_parent_resource - return resource region of parent bus of given 787 * region 788 * @dev: PCI device structure contains resources to be searched 789 * @res: child resource record for which parent is sought 790 * 791 * For given resource region of given device, return the resource region of 792 * parent bus the given region is contained in. 793 */ 794 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 795 struct resource *res) 796 { 797 const struct pci_bus *bus = dev->bus; 798 struct resource *r; 799 800 pci_bus_for_each_resource(bus, r) { 801 if (!r) 802 continue; 803 if (resource_contains(r, res)) { 804 805 /* 806 * If the window is prefetchable but the BAR is 807 * not, the allocator made a mistake. 808 */ 809 if (r->flags & IORESOURCE_PREFETCH && 810 !(res->flags & IORESOURCE_PREFETCH)) 811 return NULL; 812 813 /* 814 * If we're below a transparent bridge, there may 815 * be both a positively-decoded aperture and a 816 * subtractively-decoded region that contain the BAR. 817 * We want the positively-decoded one, so this depends 818 * on pci_bus_for_each_resource() giving us those 819 * first. 820 */ 821 return r; 822 } 823 } 824 return NULL; 825 } 826 EXPORT_SYMBOL(pci_find_parent_resource); 827 828 /** 829 * pci_find_resource - Return matching PCI device resource 830 * @dev: PCI device to query 831 * @res: Resource to look for 832 * 833 * Goes over standard PCI resources (BARs) and checks if the given resource 834 * is partially or fully contained in any of them. In that case the 835 * matching resource is returned, %NULL otherwise. 836 */ 837 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 838 { 839 int i; 840 841 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 842 struct resource *r = &dev->resource[i]; 843 844 if (r->start && resource_contains(r, res)) 845 return r; 846 } 847 848 return NULL; 849 } 850 EXPORT_SYMBOL(pci_find_resource); 851 852 /** 853 * pci_resource_name - Return the name of the PCI resource 854 * @dev: PCI device to query 855 * @i: index of the resource 856 * 857 * Return the standard PCI resource (BAR) name according to their index. 858 */ 859 const char *pci_resource_name(struct pci_dev *dev, unsigned int i) 860 { 861 static const char * const bar_name[] = { 862 "BAR 0", 863 "BAR 1", 864 "BAR 2", 865 "BAR 3", 866 "BAR 4", 867 "BAR 5", 868 "ROM", 869 #ifdef CONFIG_PCI_IOV 870 "VF BAR 0", 871 "VF BAR 1", 872 "VF BAR 2", 873 "VF BAR 3", 874 "VF BAR 4", 875 "VF BAR 5", 876 #endif 877 "bridge window", /* "io" included in %pR */ 878 "bridge window", /* "mem" included in %pR */ 879 "bridge window", /* "mem pref" included in %pR */ 880 }; 881 static const char * const cardbus_name[] = { 882 "BAR 1", 883 "unknown", 884 "unknown", 885 "unknown", 886 "unknown", 887 "unknown", 888 #ifdef CONFIG_PCI_IOV 889 "unknown", 890 "unknown", 891 "unknown", 892 "unknown", 893 "unknown", 894 "unknown", 895 #endif 896 "CardBus bridge window 0", /* I/O */ 897 "CardBus bridge window 1", /* I/O */ 898 "CardBus bridge window 0", /* mem */ 899 "CardBus bridge window 1", /* mem */ 900 }; 901 902 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS && 903 i < ARRAY_SIZE(cardbus_name)) 904 return cardbus_name[i]; 905 906 if (i < ARRAY_SIZE(bar_name)) 907 return bar_name[i]; 908 909 return "unknown"; 910 } 911 912 /** 913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 914 * @dev: the PCI device to operate on 915 * @pos: config space offset of status word 916 * @mask: mask of bit(s) to care about in status word 917 * 918 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 919 */ 920 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 921 { 922 int i; 923 924 /* Wait for Transaction Pending bit clean */ 925 for (i = 0; i < 4; i++) { 926 u16 status; 927 if (i) 928 msleep((1 << (i - 1)) * 100); 929 930 pci_read_config_word(dev, pos, &status); 931 if (!(status & mask)) 932 return 1; 933 } 934 935 return 0; 936 } 937 938 static int pci_acs_enable; 939 940 /** 941 * pci_request_acs - ask for ACS to be enabled if supported 942 */ 943 void pci_request_acs(void) 944 { 945 pci_acs_enable = 1; 946 } 947 948 static const char *disable_acs_redir_param; 949 static const char *config_acs_param; 950 951 struct pci_acs { 952 u16 cap; 953 u16 ctrl; 954 u16 fw_ctrl; 955 }; 956 957 static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps, 958 const char *p, u16 mask, u16 flags) 959 { 960 char *delimit; 961 int ret = 0; 962 963 if (!p) 964 return; 965 966 while (*p) { 967 if (!mask) { 968 /* Check for ACS flags */ 969 delimit = strstr(p, "@"); 970 if (delimit) { 971 int end; 972 u32 shift = 0; 973 974 end = delimit - p - 1; 975 976 while (end > -1) { 977 if (*(p + end) == '0') { 978 mask |= 1 << shift; 979 shift++; 980 end--; 981 } else if (*(p + end) == '1') { 982 mask |= 1 << shift; 983 flags |= 1 << shift; 984 shift++; 985 end--; 986 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) { 987 shift++; 988 end--; 989 } else { 990 pci_err(dev, "Invalid ACS flags... Ignoring\n"); 991 return; 992 } 993 } 994 p = delimit + 1; 995 } else { 996 pci_err(dev, "ACS Flags missing\n"); 997 return; 998 } 999 } 1000 1001 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR | 1002 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) { 1003 pci_err(dev, "Invalid ACS flags specified\n"); 1004 return; 1005 } 1006 1007 ret = pci_dev_str_match(dev, p, &p); 1008 if (ret < 0) { 1009 pr_info_once("PCI: Can't parse ACS command line parameter\n"); 1010 break; 1011 } else if (ret == 1) { 1012 /* Found a match */ 1013 break; 1014 } 1015 1016 if (*p != ';' && *p != ',') { 1017 /* End of param or invalid format */ 1018 break; 1019 } 1020 p++; 1021 } 1022 1023 if (ret != 1) 1024 return; 1025 1026 if (!pci_dev_specific_disable_acs_redir(dev)) 1027 return; 1028 1029 pci_dbg(dev, "ACS mask = %#06x\n", mask); 1030 pci_dbg(dev, "ACS flags = %#06x\n", flags); 1031 1032 /* If mask is 0 then we copy the bit from the firmware setting. */ 1033 caps->ctrl = (caps->ctrl & ~mask) | (caps->fw_ctrl & mask); 1034 caps->ctrl |= flags; 1035 1036 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl); 1037 } 1038 1039 /** 1040 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 1041 * @dev: the PCI device 1042 * @caps: default ACS controls 1043 */ 1044 static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps) 1045 { 1046 /* Source Validation */ 1047 caps->ctrl |= (caps->cap & PCI_ACS_SV); 1048 1049 /* P2P Request Redirect */ 1050 caps->ctrl |= (caps->cap & PCI_ACS_RR); 1051 1052 /* P2P Completion Redirect */ 1053 caps->ctrl |= (caps->cap & PCI_ACS_CR); 1054 1055 /* Upstream Forwarding */ 1056 caps->ctrl |= (caps->cap & PCI_ACS_UF); 1057 1058 /* Enable Translation Blocking for external devices and noats */ 1059 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 1060 caps->ctrl |= (caps->cap & PCI_ACS_TB); 1061 } 1062 1063 /** 1064 * pci_enable_acs - enable ACS if hardware support it 1065 * @dev: the PCI device 1066 */ 1067 static void pci_enable_acs(struct pci_dev *dev) 1068 { 1069 struct pci_acs caps; 1070 int pos; 1071 1072 pos = dev->acs_cap; 1073 if (!pos) 1074 return; 1075 1076 pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap); 1077 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl); 1078 caps.fw_ctrl = caps.ctrl; 1079 1080 /* If an iommu is present we start with kernel default caps */ 1081 if (pci_acs_enable) { 1082 if (pci_dev_specific_enable_acs(dev)) 1083 pci_std_enable_acs(dev, &caps); 1084 } 1085 1086 /* 1087 * Always apply caps from the command line, even if there is no iommu. 1088 * Trust that the admin has a reason to change the ACS settings. 1089 */ 1090 __pci_config_acs(dev, &caps, disable_acs_redir_param, 1091 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC, 1092 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)); 1093 __pci_config_acs(dev, &caps, config_acs_param, 0, 0); 1094 1095 pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl); 1096 } 1097 1098 /** 1099 * pcie_read_tlp_log - read TLP Header Log 1100 * @dev: PCIe device 1101 * @where: PCI Config offset of TLP Header Log 1102 * @tlp_log: TLP Log structure to fill 1103 * 1104 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC. 1105 * 1106 * Return: 0 on success and filled TLP Log structure, <0 on error. 1107 */ 1108 int pcie_read_tlp_log(struct pci_dev *dev, int where, 1109 struct pcie_tlp_log *tlp_log) 1110 { 1111 int i, ret; 1112 1113 memset(tlp_log, 0, sizeof(*tlp_log)); 1114 1115 for (i = 0; i < 4; i++) { 1116 ret = pci_read_config_dword(dev, where + i * 4, 1117 &tlp_log->dw[i]); 1118 if (ret) 1119 return pcibios_err_to_errno(ret); 1120 } 1121 1122 return 0; 1123 } 1124 EXPORT_SYMBOL_GPL(pcie_read_tlp_log); 1125 1126 /** 1127 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1128 * @dev: PCI device to have its BARs restored 1129 * 1130 * Restore the BAR values for a given device, so as to make it 1131 * accessible by its driver. 1132 */ 1133 static void pci_restore_bars(struct pci_dev *dev) 1134 { 1135 int i; 1136 1137 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1138 pci_update_resource(dev, i); 1139 } 1140 1141 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1142 { 1143 if (pci_use_mid_pm()) 1144 return true; 1145 1146 return acpi_pci_power_manageable(dev); 1147 } 1148 1149 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1150 pci_power_t t) 1151 { 1152 if (pci_use_mid_pm()) 1153 return mid_pci_set_power_state(dev, t); 1154 1155 return acpi_pci_set_power_state(dev, t); 1156 } 1157 1158 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1159 { 1160 if (pci_use_mid_pm()) 1161 return mid_pci_get_power_state(dev); 1162 1163 return acpi_pci_get_power_state(dev); 1164 } 1165 1166 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1167 { 1168 if (!pci_use_mid_pm()) 1169 acpi_pci_refresh_power_state(dev); 1170 } 1171 1172 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1173 { 1174 if (pci_use_mid_pm()) 1175 return PCI_POWER_ERROR; 1176 1177 return acpi_pci_choose_state(dev); 1178 } 1179 1180 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1181 { 1182 if (pci_use_mid_pm()) 1183 return PCI_POWER_ERROR; 1184 1185 return acpi_pci_wakeup(dev, enable); 1186 } 1187 1188 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1189 { 1190 if (pci_use_mid_pm()) 1191 return false; 1192 1193 return acpi_pci_need_resume(dev); 1194 } 1195 1196 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1197 { 1198 if (pci_use_mid_pm()) 1199 return false; 1200 1201 return acpi_pci_bridge_d3(dev); 1202 } 1203 1204 /** 1205 * pci_update_current_state - Read power state of given device and cache it 1206 * @dev: PCI device to handle. 1207 * @state: State to cache in case the device doesn't have the PM capability 1208 * 1209 * The power state is read from the PMCSR register, which however is 1210 * inaccessible in D3cold. The platform firmware is therefore queried first 1211 * to detect accessibility of the register. In case the platform firmware 1212 * reports an incorrect state or the device isn't power manageable by the 1213 * platform at all, we try to detect D3cold by testing accessibility of the 1214 * vendor ID in config space. 1215 */ 1216 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1217 { 1218 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1219 dev->current_state = PCI_D3cold; 1220 } else if (dev->pm_cap) { 1221 u16 pmcsr; 1222 1223 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1224 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1225 dev->current_state = PCI_D3cold; 1226 return; 1227 } 1228 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1229 } else { 1230 dev->current_state = state; 1231 } 1232 } 1233 1234 /** 1235 * pci_refresh_power_state - Refresh the given device's power state data 1236 * @dev: Target PCI device. 1237 * 1238 * Ask the platform to refresh the devices power state information and invoke 1239 * pci_update_current_state() to update its current PCI power state. 1240 */ 1241 void pci_refresh_power_state(struct pci_dev *dev) 1242 { 1243 platform_pci_refresh_power_state(dev); 1244 pci_update_current_state(dev, dev->current_state); 1245 } 1246 1247 /** 1248 * pci_platform_power_transition - Use platform to change device power state 1249 * @dev: PCI device to handle. 1250 * @state: State to put the device into. 1251 */ 1252 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1253 { 1254 int error; 1255 1256 error = platform_pci_set_power_state(dev, state); 1257 if (!error) 1258 pci_update_current_state(dev, state); 1259 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1260 dev->current_state = PCI_D0; 1261 1262 return error; 1263 } 1264 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1265 1266 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1267 { 1268 pm_request_resume(&pci_dev->dev); 1269 return 0; 1270 } 1271 1272 /** 1273 * pci_resume_bus - Walk given bus and runtime resume devices on it 1274 * @bus: Top bus of the subtree to walk. 1275 */ 1276 void pci_resume_bus(struct pci_bus *bus) 1277 { 1278 if (bus) 1279 pci_walk_bus(bus, pci_resume_one, NULL); 1280 } 1281 1282 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1283 { 1284 int delay = 1; 1285 bool retrain = false; 1286 struct pci_dev *root, *bridge; 1287 1288 root = pcie_find_root_port(dev); 1289 1290 if (pci_is_pcie(dev)) { 1291 bridge = pci_upstream_bridge(dev); 1292 if (bridge) 1293 retrain = true; 1294 } 1295 1296 /* 1297 * The caller has already waited long enough after a reset that the 1298 * device should respond to config requests, but it may respond 1299 * with Request Retry Status (RRS) if it needs more time to 1300 * initialize. 1301 * 1302 * If the device is below a Root Port with Configuration RRS 1303 * Software Visibility enabled, reading the Vendor ID returns a 1304 * special data value if the device responded with RRS. Read the 1305 * Vendor ID until we get non-RRS status. 1306 * 1307 * If there's no Root Port or Configuration RRS Software Visibility 1308 * is not enabled, the device may still respond with RRS, but 1309 * hardware may retry the config request. If no retries receive 1310 * Successful Completion, hardware generally synthesizes ~0 1311 * (PCI_ERROR_RESPONSE) data to complete the read. Reading Vendor 1312 * ID for VFs and non-existent devices also returns ~0, so read the 1313 * Command register until it returns something other than ~0. 1314 */ 1315 for (;;) { 1316 u32 id; 1317 1318 if (pci_dev_is_disconnected(dev)) { 1319 pci_dbg(dev, "disconnected; not waiting\n"); 1320 return -ENOTTY; 1321 } 1322 1323 if (root && root->config_rrs_sv) { 1324 pci_read_config_dword(dev, PCI_VENDOR_ID, &id); 1325 if (!pci_bus_rrs_vendor_id(id)) 1326 break; 1327 } else { 1328 pci_read_config_dword(dev, PCI_COMMAND, &id); 1329 if (!PCI_POSSIBLE_ERROR(id)) 1330 break; 1331 } 1332 1333 if (delay > timeout) { 1334 pci_warn(dev, "not ready %dms after %s; giving up\n", 1335 delay - 1, reset_type); 1336 return -ENOTTY; 1337 } 1338 1339 if (delay > PCI_RESET_WAIT) { 1340 if (retrain) { 1341 retrain = false; 1342 if (pcie_failed_link_retrain(bridge) == 0) { 1343 delay = 1; 1344 continue; 1345 } 1346 } 1347 pci_info(dev, "not ready %dms after %s; waiting\n", 1348 delay - 1, reset_type); 1349 } 1350 1351 msleep(delay); 1352 delay *= 2; 1353 } 1354 1355 if (delay > PCI_RESET_WAIT) 1356 pci_info(dev, "ready %dms after %s\n", delay - 1, 1357 reset_type); 1358 else 1359 pci_dbg(dev, "ready %dms after %s\n", delay - 1, 1360 reset_type); 1361 1362 return 0; 1363 } 1364 1365 /** 1366 * pci_power_up - Put the given device into D0 1367 * @dev: PCI device to power up 1368 * 1369 * On success, return 0 or 1, depending on whether or not it is necessary to 1370 * restore the device's BARs subsequently (1 is returned in that case). 1371 * 1372 * On failure, return a negative error code. Always return failure if @dev 1373 * lacks a Power Management Capability, even if the platform was able to 1374 * put the device in D0 via non-PCI means. 1375 */ 1376 int pci_power_up(struct pci_dev *dev) 1377 { 1378 bool need_restore; 1379 pci_power_t state; 1380 u16 pmcsr; 1381 1382 platform_pci_set_power_state(dev, PCI_D0); 1383 1384 if (!dev->pm_cap) { 1385 state = platform_pci_get_power_state(dev); 1386 if (state == PCI_UNKNOWN) 1387 dev->current_state = PCI_D0; 1388 else 1389 dev->current_state = state; 1390 1391 return -EIO; 1392 } 1393 1394 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1395 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1396 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1397 pci_power_name(dev->current_state)); 1398 dev->current_state = PCI_D3cold; 1399 return -EIO; 1400 } 1401 1402 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1403 1404 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1405 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1406 1407 if (state == PCI_D0) 1408 goto end; 1409 1410 /* 1411 * Force the entire word to 0. This doesn't affect PME_Status, disables 1412 * PME_En, and sets PowerState to 0. 1413 */ 1414 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1415 1416 /* Mandatory transition delays; see PCI PM 1.2. */ 1417 if (state == PCI_D3hot) 1418 pci_dev_d3_sleep(dev); 1419 else if (state == PCI_D2) 1420 udelay(PCI_PM_D2_DELAY); 1421 1422 end: 1423 dev->current_state = PCI_D0; 1424 if (need_restore) 1425 return 1; 1426 1427 return 0; 1428 } 1429 1430 /** 1431 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1432 * @dev: PCI device to power up 1433 * @locked: whether pci_bus_sem is held 1434 * 1435 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1436 * to confirm the state change, restore its BARs if they might be lost and 1437 * reconfigure ASPM in accordance with the new power state. 1438 * 1439 * If pci_restore_state() is going to be called right after a power state change 1440 * to D0, it is more efficient to use pci_power_up() directly instead of this 1441 * function. 1442 */ 1443 static int pci_set_full_power_state(struct pci_dev *dev, bool locked) 1444 { 1445 u16 pmcsr; 1446 int ret; 1447 1448 ret = pci_power_up(dev); 1449 if (ret < 0) { 1450 if (dev->current_state == PCI_D0) 1451 return 0; 1452 1453 return ret; 1454 } 1455 1456 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1457 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1458 if (dev->current_state != PCI_D0) { 1459 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1460 pci_power_name(dev->current_state)); 1461 } else if (ret > 0) { 1462 /* 1463 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1464 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1465 * from D3hot to D0 _may_ perform an internal reset, thereby 1466 * going to "D0 Uninitialized" rather than "D0 Initialized". 1467 * For example, at least some versions of the 3c905B and the 1468 * 3c556B exhibit this behaviour. 1469 * 1470 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1471 * devices in a D3hot state at boot. Consequently, we need to 1472 * restore at least the BARs so that the device will be 1473 * accessible to its driver. 1474 */ 1475 pci_restore_bars(dev); 1476 } 1477 1478 if (dev->bus->self) 1479 pcie_aspm_pm_state_change(dev->bus->self, locked); 1480 1481 return 0; 1482 } 1483 1484 /** 1485 * __pci_dev_set_current_state - Set current state of a PCI device 1486 * @dev: Device to handle 1487 * @data: pointer to state to be set 1488 */ 1489 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1490 { 1491 pci_power_t state = *(pci_power_t *)data; 1492 1493 dev->current_state = state; 1494 return 0; 1495 } 1496 1497 /** 1498 * pci_bus_set_current_state - Walk given bus and set current state of devices 1499 * @bus: Top bus of the subtree to walk. 1500 * @state: state to be set 1501 */ 1502 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1503 { 1504 if (bus) 1505 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1506 } 1507 1508 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked) 1509 { 1510 if (!bus) 1511 return; 1512 1513 if (locked) 1514 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state); 1515 else 1516 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1517 } 1518 1519 /** 1520 * pci_set_low_power_state - Put a PCI device into a low-power state. 1521 * @dev: PCI device to handle. 1522 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1523 * @locked: whether pci_bus_sem is held 1524 * 1525 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1526 * 1527 * RETURN VALUE: 1528 * -EINVAL if the requested state is invalid. 1529 * -EIO if device does not support PCI PM or its PM capabilities register has a 1530 * wrong version, or device doesn't support the requested state. 1531 * 0 if device already is in the requested state. 1532 * 0 if device's power state has been successfully changed. 1533 */ 1534 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1535 { 1536 u16 pmcsr; 1537 1538 if (!dev->pm_cap) 1539 return -EIO; 1540 1541 /* 1542 * Validate transition: We can enter D0 from any state, but if 1543 * we're already in a low-power state, we can only go deeper. E.g., 1544 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1545 * we'd have to go from D3 to D0, then to D1. 1546 */ 1547 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1548 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1549 pci_power_name(dev->current_state), 1550 pci_power_name(state)); 1551 return -EINVAL; 1552 } 1553 1554 /* Check if this device supports the desired state */ 1555 if ((state == PCI_D1 && !dev->d1_support) 1556 || (state == PCI_D2 && !dev->d2_support)) 1557 return -EIO; 1558 1559 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1560 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1561 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1562 pci_power_name(dev->current_state), 1563 pci_power_name(state)); 1564 dev->current_state = PCI_D3cold; 1565 return -EIO; 1566 } 1567 1568 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1569 pmcsr |= state; 1570 1571 /* Enter specified state */ 1572 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1573 1574 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1575 if (state == PCI_D3hot) 1576 pci_dev_d3_sleep(dev); 1577 else if (state == PCI_D2) 1578 udelay(PCI_PM_D2_DELAY); 1579 1580 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1581 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1582 if (dev->current_state != state) 1583 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1584 pci_power_name(dev->current_state), 1585 pci_power_name(state)); 1586 1587 if (dev->bus->self) 1588 pcie_aspm_pm_state_change(dev->bus->self, locked); 1589 1590 return 0; 1591 } 1592 1593 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1594 { 1595 int error; 1596 1597 /* Bound the state we're entering */ 1598 if (state > PCI_D3cold) 1599 state = PCI_D3cold; 1600 else if (state < PCI_D0) 1601 state = PCI_D0; 1602 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1603 1604 /* 1605 * If the device or the parent bridge do not support PCI 1606 * PM, ignore the request if we're doing anything other 1607 * than putting it into D0 (which would only happen on 1608 * boot). 1609 */ 1610 return 0; 1611 1612 /* Check if we're already there */ 1613 if (dev->current_state == state) 1614 return 0; 1615 1616 if (state == PCI_D0) 1617 return pci_set_full_power_state(dev, locked); 1618 1619 /* 1620 * This device is quirked not to be put into D3, so don't put it in 1621 * D3 1622 */ 1623 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1624 return 0; 1625 1626 if (state == PCI_D3cold) { 1627 /* 1628 * To put the device in D3cold, put it into D3hot in the native 1629 * way, then put it into D3cold using platform ops. 1630 */ 1631 error = pci_set_low_power_state(dev, PCI_D3hot, locked); 1632 1633 if (pci_platform_power_transition(dev, PCI_D3cold)) 1634 return error; 1635 1636 /* Powering off a bridge may power off the whole hierarchy */ 1637 if (dev->current_state == PCI_D3cold) 1638 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked); 1639 } else { 1640 error = pci_set_low_power_state(dev, state, locked); 1641 1642 if (pci_platform_power_transition(dev, state)) 1643 return error; 1644 } 1645 1646 return 0; 1647 } 1648 1649 /** 1650 * pci_set_power_state - Set the power state of a PCI device 1651 * @dev: PCI device to handle. 1652 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1653 * 1654 * Transition a device to a new power state, using the platform firmware and/or 1655 * the device's PCI PM registers. 1656 * 1657 * RETURN VALUE: 1658 * -EINVAL if the requested state is invalid. 1659 * -EIO if device does not support PCI PM or its PM capabilities register has a 1660 * wrong version, or device doesn't support the requested state. 1661 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1662 * 0 if device already is in the requested state. 1663 * 0 if the transition is to D3 but D3 is not supported. 1664 * 0 if device's power state has been successfully changed. 1665 */ 1666 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1667 { 1668 return __pci_set_power_state(dev, state, false); 1669 } 1670 EXPORT_SYMBOL(pci_set_power_state); 1671 1672 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state) 1673 { 1674 lockdep_assert_held(&pci_bus_sem); 1675 1676 return __pci_set_power_state(dev, state, true); 1677 } 1678 EXPORT_SYMBOL(pci_set_power_state_locked); 1679 1680 #define PCI_EXP_SAVE_REGS 7 1681 1682 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1683 u16 cap, bool extended) 1684 { 1685 struct pci_cap_saved_state *tmp; 1686 1687 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1688 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1689 return tmp; 1690 } 1691 return NULL; 1692 } 1693 1694 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1695 { 1696 return _pci_find_saved_cap(dev, cap, false); 1697 } 1698 1699 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1700 { 1701 return _pci_find_saved_cap(dev, cap, true); 1702 } 1703 1704 static int pci_save_pcie_state(struct pci_dev *dev) 1705 { 1706 int i = 0; 1707 struct pci_cap_saved_state *save_state; 1708 u16 *cap; 1709 1710 if (!pci_is_pcie(dev)) 1711 return 0; 1712 1713 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1714 if (!save_state) { 1715 pci_err(dev, "buffer not found in %s\n", __func__); 1716 return -ENOMEM; 1717 } 1718 1719 cap = (u16 *)&save_state->cap.data[0]; 1720 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1721 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1722 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1723 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1724 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1725 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1726 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1727 1728 pci_save_aspm_l1ss_state(dev); 1729 pci_save_ltr_state(dev); 1730 1731 return 0; 1732 } 1733 1734 static void pci_restore_pcie_state(struct pci_dev *dev) 1735 { 1736 int i = 0; 1737 struct pci_cap_saved_state *save_state; 1738 u16 *cap; 1739 1740 /* 1741 * Restore max latencies (in the LTR capability) before enabling 1742 * LTR itself in PCI_EXP_DEVCTL2. 1743 */ 1744 pci_restore_ltr_state(dev); 1745 pci_restore_aspm_l1ss_state(dev); 1746 1747 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1748 if (!save_state) 1749 return; 1750 1751 /* 1752 * Downstream ports reset the LTR enable bit when link goes down. 1753 * Check and re-configure the bit here before restoring device. 1754 * PCIe r5.0, sec 7.5.3.16. 1755 */ 1756 pci_bridge_reconfigure_ltr(dev); 1757 1758 cap = (u16 *)&save_state->cap.data[0]; 1759 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1760 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1761 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1762 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1763 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1764 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1765 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1766 } 1767 1768 static int pci_save_pcix_state(struct pci_dev *dev) 1769 { 1770 int pos; 1771 struct pci_cap_saved_state *save_state; 1772 1773 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1774 if (!pos) 1775 return 0; 1776 1777 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1778 if (!save_state) { 1779 pci_err(dev, "buffer not found in %s\n", __func__); 1780 return -ENOMEM; 1781 } 1782 1783 pci_read_config_word(dev, pos + PCI_X_CMD, 1784 (u16 *)save_state->cap.data); 1785 1786 return 0; 1787 } 1788 1789 static void pci_restore_pcix_state(struct pci_dev *dev) 1790 { 1791 int i = 0, pos; 1792 struct pci_cap_saved_state *save_state; 1793 u16 *cap; 1794 1795 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1796 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1797 if (!save_state || !pos) 1798 return; 1799 cap = (u16 *)&save_state->cap.data[0]; 1800 1801 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1802 } 1803 1804 /** 1805 * pci_save_state - save the PCI configuration space of a device before 1806 * suspending 1807 * @dev: PCI device that we're dealing with 1808 */ 1809 int pci_save_state(struct pci_dev *dev) 1810 { 1811 int i; 1812 /* XXX: 100% dword access ok here? */ 1813 for (i = 0; i < 16; i++) { 1814 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1815 pci_dbg(dev, "save config %#04x: %#010x\n", 1816 i * 4, dev->saved_config_space[i]); 1817 } 1818 dev->state_saved = true; 1819 1820 i = pci_save_pcie_state(dev); 1821 if (i != 0) 1822 return i; 1823 1824 i = pci_save_pcix_state(dev); 1825 if (i != 0) 1826 return i; 1827 1828 pci_save_dpc_state(dev); 1829 pci_save_aer_state(dev); 1830 pci_save_ptm_state(dev); 1831 return pci_save_vc_state(dev); 1832 } 1833 EXPORT_SYMBOL(pci_save_state); 1834 1835 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1836 u32 saved_val, int retry, bool force) 1837 { 1838 u32 val; 1839 1840 pci_read_config_dword(pdev, offset, &val); 1841 if (!force && val == saved_val) 1842 return; 1843 1844 for (;;) { 1845 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1846 offset, val, saved_val); 1847 pci_write_config_dword(pdev, offset, saved_val); 1848 if (retry-- <= 0) 1849 return; 1850 1851 pci_read_config_dword(pdev, offset, &val); 1852 if (val == saved_val) 1853 return; 1854 1855 mdelay(1); 1856 } 1857 } 1858 1859 static void pci_restore_config_space_range(struct pci_dev *pdev, 1860 int start, int end, int retry, 1861 bool force) 1862 { 1863 int index; 1864 1865 for (index = end; index >= start; index--) 1866 pci_restore_config_dword(pdev, 4 * index, 1867 pdev->saved_config_space[index], 1868 retry, force); 1869 } 1870 1871 static void pci_restore_config_space(struct pci_dev *pdev) 1872 { 1873 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1874 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1875 /* Restore BARs before the command register. */ 1876 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1877 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1878 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1879 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1880 1881 /* 1882 * Force rewriting of prefetch registers to avoid S3 resume 1883 * issues on Intel PCI bridges that occur when these 1884 * registers are not explicitly written. 1885 */ 1886 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1887 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1888 } else { 1889 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1890 } 1891 } 1892 1893 static void pci_restore_rebar_state(struct pci_dev *pdev) 1894 { 1895 unsigned int pos, nbars, i; 1896 u32 ctrl; 1897 1898 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1899 if (!pos) 1900 return; 1901 1902 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1903 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 1904 1905 for (i = 0; i < nbars; i++, pos += 8) { 1906 struct resource *res; 1907 int bar_idx, size; 1908 1909 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1910 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1911 res = pdev->resource + bar_idx; 1912 size = pci_rebar_bytes_to_size(resource_size(res)); 1913 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1914 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 1915 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1916 } 1917 } 1918 1919 /** 1920 * pci_restore_state - Restore the saved state of a PCI device 1921 * @dev: PCI device that we're dealing with 1922 */ 1923 void pci_restore_state(struct pci_dev *dev) 1924 { 1925 if (!dev->state_saved) 1926 return; 1927 1928 pci_restore_pcie_state(dev); 1929 pci_restore_pasid_state(dev); 1930 pci_restore_pri_state(dev); 1931 pci_restore_ats_state(dev); 1932 pci_restore_vc_state(dev); 1933 pci_restore_rebar_state(dev); 1934 pci_restore_dpc_state(dev); 1935 pci_restore_ptm_state(dev); 1936 1937 pci_aer_clear_status(dev); 1938 pci_restore_aer_state(dev); 1939 1940 pci_restore_config_space(dev); 1941 1942 pci_restore_pcix_state(dev); 1943 pci_restore_msi_state(dev); 1944 1945 /* Restore ACS and IOV configuration state */ 1946 pci_enable_acs(dev); 1947 pci_restore_iov_state(dev); 1948 1949 dev->state_saved = false; 1950 } 1951 EXPORT_SYMBOL(pci_restore_state); 1952 1953 struct pci_saved_state { 1954 u32 config_space[16]; 1955 struct pci_cap_saved_data cap[]; 1956 }; 1957 1958 /** 1959 * pci_store_saved_state - Allocate and return an opaque struct containing 1960 * the device saved state. 1961 * @dev: PCI device that we're dealing with 1962 * 1963 * Return NULL if no state or error. 1964 */ 1965 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1966 { 1967 struct pci_saved_state *state; 1968 struct pci_cap_saved_state *tmp; 1969 struct pci_cap_saved_data *cap; 1970 size_t size; 1971 1972 if (!dev->state_saved) 1973 return NULL; 1974 1975 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1976 1977 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1978 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1979 1980 state = kzalloc(size, GFP_KERNEL); 1981 if (!state) 1982 return NULL; 1983 1984 memcpy(state->config_space, dev->saved_config_space, 1985 sizeof(state->config_space)); 1986 1987 cap = state->cap; 1988 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1989 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1990 memcpy(cap, &tmp->cap, len); 1991 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1992 } 1993 /* Empty cap_save terminates list */ 1994 1995 return state; 1996 } 1997 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1998 1999 /** 2000 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 2001 * @dev: PCI device that we're dealing with 2002 * @state: Saved state returned from pci_store_saved_state() 2003 */ 2004 int pci_load_saved_state(struct pci_dev *dev, 2005 struct pci_saved_state *state) 2006 { 2007 struct pci_cap_saved_data *cap; 2008 2009 dev->state_saved = false; 2010 2011 if (!state) 2012 return 0; 2013 2014 memcpy(dev->saved_config_space, state->config_space, 2015 sizeof(state->config_space)); 2016 2017 cap = state->cap; 2018 while (cap->size) { 2019 struct pci_cap_saved_state *tmp; 2020 2021 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 2022 if (!tmp || tmp->cap.size != cap->size) 2023 return -EINVAL; 2024 2025 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 2026 cap = (struct pci_cap_saved_data *)((u8 *)cap + 2027 sizeof(struct pci_cap_saved_data) + cap->size); 2028 } 2029 2030 dev->state_saved = true; 2031 return 0; 2032 } 2033 EXPORT_SYMBOL_GPL(pci_load_saved_state); 2034 2035 /** 2036 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 2037 * and free the memory allocated for it. 2038 * @dev: PCI device that we're dealing with 2039 * @state: Pointer to saved state returned from pci_store_saved_state() 2040 */ 2041 int pci_load_and_free_saved_state(struct pci_dev *dev, 2042 struct pci_saved_state **state) 2043 { 2044 int ret = pci_load_saved_state(dev, *state); 2045 kfree(*state); 2046 *state = NULL; 2047 return ret; 2048 } 2049 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 2050 2051 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 2052 { 2053 return pci_enable_resources(dev, bars); 2054 } 2055 2056 static int do_pci_enable_device(struct pci_dev *dev, int bars) 2057 { 2058 int err; 2059 struct pci_dev *bridge; 2060 u16 cmd; 2061 u8 pin; 2062 2063 err = pci_set_power_state(dev, PCI_D0); 2064 if (err < 0 && err != -EIO) 2065 return err; 2066 2067 bridge = pci_upstream_bridge(dev); 2068 if (bridge) 2069 pcie_aspm_powersave_config_link(bridge); 2070 2071 err = pcibios_enable_device(dev, bars); 2072 if (err < 0) 2073 return err; 2074 pci_fixup_device(pci_fixup_enable, dev); 2075 2076 if (dev->msi_enabled || dev->msix_enabled) 2077 return 0; 2078 2079 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 2080 if (pin) { 2081 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2082 if (cmd & PCI_COMMAND_INTX_DISABLE) 2083 pci_write_config_word(dev, PCI_COMMAND, 2084 cmd & ~PCI_COMMAND_INTX_DISABLE); 2085 } 2086 2087 return 0; 2088 } 2089 2090 /** 2091 * pci_reenable_device - Resume abandoned device 2092 * @dev: PCI device to be resumed 2093 * 2094 * NOTE: This function is a backend of pci_default_resume() and is not supposed 2095 * to be called by normal code, write proper resume handler and use it instead. 2096 */ 2097 int pci_reenable_device(struct pci_dev *dev) 2098 { 2099 if (pci_is_enabled(dev)) 2100 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 2101 return 0; 2102 } 2103 EXPORT_SYMBOL(pci_reenable_device); 2104 2105 static void pci_enable_bridge(struct pci_dev *dev) 2106 { 2107 struct pci_dev *bridge; 2108 int retval; 2109 2110 bridge = pci_upstream_bridge(dev); 2111 if (bridge) 2112 pci_enable_bridge(bridge); 2113 2114 if (pci_is_enabled(dev)) { 2115 if (!dev->is_busmaster) 2116 pci_set_master(dev); 2117 return; 2118 } 2119 2120 retval = pci_enable_device(dev); 2121 if (retval) 2122 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2123 retval); 2124 pci_set_master(dev); 2125 } 2126 2127 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2128 { 2129 struct pci_dev *bridge; 2130 int err; 2131 int i, bars = 0; 2132 2133 /* 2134 * Power state could be unknown at this point, either due to a fresh 2135 * boot or a device removal call. So get the current power state 2136 * so that things like MSI message writing will behave as expected 2137 * (e.g. if the device really is in D0 at enable time). 2138 */ 2139 pci_update_current_state(dev, dev->current_state); 2140 2141 if (atomic_inc_return(&dev->enable_cnt) > 1) 2142 return 0; /* already enabled */ 2143 2144 bridge = pci_upstream_bridge(dev); 2145 if (bridge) 2146 pci_enable_bridge(bridge); 2147 2148 /* only skip sriov related */ 2149 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2150 if (dev->resource[i].flags & flags) 2151 bars |= (1 << i); 2152 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2153 if (dev->resource[i].flags & flags) 2154 bars |= (1 << i); 2155 2156 err = do_pci_enable_device(dev, bars); 2157 if (err < 0) 2158 atomic_dec(&dev->enable_cnt); 2159 return err; 2160 } 2161 2162 /** 2163 * pci_enable_device_mem - Initialize a device for use with Memory space 2164 * @dev: PCI device to be initialized 2165 * 2166 * Initialize device before it's used by a driver. Ask low-level code 2167 * to enable Memory resources. Wake up the device if it was suspended. 2168 * Beware, this function can fail. 2169 */ 2170 int pci_enable_device_mem(struct pci_dev *dev) 2171 { 2172 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2173 } 2174 EXPORT_SYMBOL(pci_enable_device_mem); 2175 2176 /** 2177 * pci_enable_device - Initialize device before it's used by a driver. 2178 * @dev: PCI device to be initialized 2179 * 2180 * Initialize device before it's used by a driver. Ask low-level code 2181 * to enable I/O and memory. Wake up the device if it was suspended. 2182 * Beware, this function can fail. 2183 * 2184 * Note we don't actually enable the device many times if we call 2185 * this function repeatedly (we just increment the count). 2186 */ 2187 int pci_enable_device(struct pci_dev *dev) 2188 { 2189 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2190 } 2191 EXPORT_SYMBOL(pci_enable_device); 2192 2193 /* 2194 * pcibios_device_add - provide arch specific hooks when adding device dev 2195 * @dev: the PCI device being added 2196 * 2197 * Permits the platform to provide architecture specific functionality when 2198 * devices are added. This is the default implementation. Architecture 2199 * implementations can override this. 2200 */ 2201 int __weak pcibios_device_add(struct pci_dev *dev) 2202 { 2203 return 0; 2204 } 2205 2206 /** 2207 * pcibios_release_device - provide arch specific hooks when releasing 2208 * device dev 2209 * @dev: the PCI device being released 2210 * 2211 * Permits the platform to provide architecture specific functionality when 2212 * devices are released. This is the default implementation. Architecture 2213 * implementations can override this. 2214 */ 2215 void __weak pcibios_release_device(struct pci_dev *dev) {} 2216 2217 /** 2218 * pcibios_disable_device - disable arch specific PCI resources for device dev 2219 * @dev: the PCI device to disable 2220 * 2221 * Disables architecture specific PCI resources for the device. This 2222 * is the default implementation. Architecture implementations can 2223 * override this. 2224 */ 2225 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2226 2227 static void do_pci_disable_device(struct pci_dev *dev) 2228 { 2229 u16 pci_command; 2230 2231 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2232 if (pci_command & PCI_COMMAND_MASTER) { 2233 pci_command &= ~PCI_COMMAND_MASTER; 2234 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2235 } 2236 2237 pcibios_disable_device(dev); 2238 } 2239 2240 /** 2241 * pci_disable_enabled_device - Disable device without updating enable_cnt 2242 * @dev: PCI device to disable 2243 * 2244 * NOTE: This function is a backend of PCI power management routines and is 2245 * not supposed to be called drivers. 2246 */ 2247 void pci_disable_enabled_device(struct pci_dev *dev) 2248 { 2249 if (pci_is_enabled(dev)) 2250 do_pci_disable_device(dev); 2251 } 2252 2253 /** 2254 * pci_disable_device - Disable PCI device after use 2255 * @dev: PCI device to be disabled 2256 * 2257 * Signal to the system that the PCI device is not in use by the system 2258 * anymore. This only involves disabling PCI bus-mastering, if active. 2259 * 2260 * Note we don't actually disable the device until all callers of 2261 * pci_enable_device() have called pci_disable_device(). 2262 */ 2263 void pci_disable_device(struct pci_dev *dev) 2264 { 2265 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2266 "disabling already-disabled device"); 2267 2268 if (atomic_dec_return(&dev->enable_cnt) != 0) 2269 return; 2270 2271 do_pci_disable_device(dev); 2272 2273 dev->is_busmaster = 0; 2274 } 2275 EXPORT_SYMBOL(pci_disable_device); 2276 2277 /** 2278 * pcibios_set_pcie_reset_state - set reset state for device dev 2279 * @dev: the PCIe device reset 2280 * @state: Reset state to enter into 2281 * 2282 * Set the PCIe reset state for the device. This is the default 2283 * implementation. Architecture implementations can override this. 2284 */ 2285 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2286 enum pcie_reset_state state) 2287 { 2288 return -EINVAL; 2289 } 2290 2291 /** 2292 * pci_set_pcie_reset_state - set reset state for device dev 2293 * @dev: the PCIe device reset 2294 * @state: Reset state to enter into 2295 * 2296 * Sets the PCI reset state for the device. 2297 */ 2298 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2299 { 2300 return pcibios_set_pcie_reset_state(dev, state); 2301 } 2302 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2303 2304 #ifdef CONFIG_PCIEAER 2305 void pcie_clear_device_status(struct pci_dev *dev) 2306 { 2307 u16 sta; 2308 2309 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2310 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2311 } 2312 #endif 2313 2314 /** 2315 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2316 * @dev: PCIe root port or event collector. 2317 */ 2318 void pcie_clear_root_pme_status(struct pci_dev *dev) 2319 { 2320 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2321 } 2322 2323 /** 2324 * pci_check_pme_status - Check if given device has generated PME. 2325 * @dev: Device to check. 2326 * 2327 * Check the PME status of the device and if set, clear it and clear PME enable 2328 * (if set). Return 'true' if PME status and PME enable were both set or 2329 * 'false' otherwise. 2330 */ 2331 bool pci_check_pme_status(struct pci_dev *dev) 2332 { 2333 int pmcsr_pos; 2334 u16 pmcsr; 2335 bool ret = false; 2336 2337 if (!dev->pm_cap) 2338 return false; 2339 2340 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2341 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2342 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2343 return false; 2344 2345 /* Clear PME status. */ 2346 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2347 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2348 /* Disable PME to avoid interrupt flood. */ 2349 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2350 ret = true; 2351 } 2352 2353 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2354 2355 return ret; 2356 } 2357 2358 /** 2359 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2360 * @dev: Device to handle. 2361 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2362 * 2363 * Check if @dev has generated PME and queue a resume request for it in that 2364 * case. 2365 */ 2366 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2367 { 2368 if (pme_poll_reset && dev->pme_poll) 2369 dev->pme_poll = false; 2370 2371 if (pci_check_pme_status(dev)) { 2372 pci_wakeup_event(dev); 2373 pm_request_resume(&dev->dev); 2374 } 2375 return 0; 2376 } 2377 2378 /** 2379 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2380 * @bus: Top bus of the subtree to walk. 2381 */ 2382 void pci_pme_wakeup_bus(struct pci_bus *bus) 2383 { 2384 if (bus) 2385 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2386 } 2387 2388 2389 /** 2390 * pci_pme_capable - check the capability of PCI device to generate PME# 2391 * @dev: PCI device to handle. 2392 * @state: PCI state from which device will issue PME#. 2393 */ 2394 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2395 { 2396 if (!dev->pm_cap) 2397 return false; 2398 2399 return !!(dev->pme_support & (1 << state)); 2400 } 2401 EXPORT_SYMBOL(pci_pme_capable); 2402 2403 static void pci_pme_list_scan(struct work_struct *work) 2404 { 2405 struct pci_pme_device *pme_dev, *n; 2406 2407 mutex_lock(&pci_pme_list_mutex); 2408 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2409 struct pci_dev *pdev = pme_dev->dev; 2410 2411 if (pdev->pme_poll) { 2412 struct pci_dev *bridge = pdev->bus->self; 2413 struct device *dev = &pdev->dev; 2414 struct device *bdev = bridge ? &bridge->dev : NULL; 2415 int bref = 0; 2416 2417 /* 2418 * If we have a bridge, it should be in an active/D0 2419 * state or the configuration space of subordinate 2420 * devices may not be accessible or stable over the 2421 * course of the call. 2422 */ 2423 if (bdev) { 2424 bref = pm_runtime_get_if_active(bdev); 2425 if (!bref) 2426 continue; 2427 2428 if (bridge->current_state != PCI_D0) 2429 goto put_bridge; 2430 } 2431 2432 /* 2433 * The device itself should be suspended but config 2434 * space must be accessible, therefore it cannot be in 2435 * D3cold. 2436 */ 2437 if (pm_runtime_suspended(dev) && 2438 pdev->current_state != PCI_D3cold) 2439 pci_pme_wakeup(pdev, NULL); 2440 2441 put_bridge: 2442 if (bref > 0) 2443 pm_runtime_put(bdev); 2444 } else { 2445 list_del(&pme_dev->list); 2446 kfree(pme_dev); 2447 } 2448 } 2449 if (!list_empty(&pci_pme_list)) 2450 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2451 msecs_to_jiffies(PME_TIMEOUT)); 2452 mutex_unlock(&pci_pme_list_mutex); 2453 } 2454 2455 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2456 { 2457 u16 pmcsr; 2458 2459 if (!dev->pme_support) 2460 return; 2461 2462 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2463 /* Clear PME_Status by writing 1 to it and enable PME# */ 2464 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2465 if (!enable) 2466 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2467 2468 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2469 } 2470 2471 /** 2472 * pci_pme_restore - Restore PME configuration after config space restore. 2473 * @dev: PCI device to update. 2474 */ 2475 void pci_pme_restore(struct pci_dev *dev) 2476 { 2477 u16 pmcsr; 2478 2479 if (!dev->pme_support) 2480 return; 2481 2482 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2483 if (dev->wakeup_prepared) { 2484 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2485 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2486 } else { 2487 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2488 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2489 } 2490 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2491 } 2492 2493 /** 2494 * pci_pme_active - enable or disable PCI device's PME# function 2495 * @dev: PCI device to handle. 2496 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2497 * 2498 * The caller must verify that the device is capable of generating PME# before 2499 * calling this function with @enable equal to 'true'. 2500 */ 2501 void pci_pme_active(struct pci_dev *dev, bool enable) 2502 { 2503 __pci_pme_active(dev, enable); 2504 2505 /* 2506 * PCI (as opposed to PCIe) PME requires that the device have 2507 * its PME# line hooked up correctly. Not all hardware vendors 2508 * do this, so the PME never gets delivered and the device 2509 * remains asleep. The easiest way around this is to 2510 * periodically walk the list of suspended devices and check 2511 * whether any have their PME flag set. The assumption is that 2512 * we'll wake up often enough anyway that this won't be a huge 2513 * hit, and the power savings from the devices will still be a 2514 * win. 2515 * 2516 * Although PCIe uses in-band PME message instead of PME# line 2517 * to report PME, PME does not work for some PCIe devices in 2518 * reality. For example, there are devices that set their PME 2519 * status bits, but don't really bother to send a PME message; 2520 * there are PCI Express Root Ports that don't bother to 2521 * trigger interrupts when they receive PME messages from the 2522 * devices below. So PME poll is used for PCIe devices too. 2523 */ 2524 2525 if (dev->pme_poll) { 2526 struct pci_pme_device *pme_dev; 2527 if (enable) { 2528 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2529 GFP_KERNEL); 2530 if (!pme_dev) { 2531 pci_warn(dev, "can't enable PME#\n"); 2532 return; 2533 } 2534 pme_dev->dev = dev; 2535 mutex_lock(&pci_pme_list_mutex); 2536 list_add(&pme_dev->list, &pci_pme_list); 2537 if (list_is_singular(&pci_pme_list)) 2538 queue_delayed_work(system_freezable_wq, 2539 &pci_pme_work, 2540 msecs_to_jiffies(PME_TIMEOUT)); 2541 mutex_unlock(&pci_pme_list_mutex); 2542 } else { 2543 mutex_lock(&pci_pme_list_mutex); 2544 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2545 if (pme_dev->dev == dev) { 2546 list_del(&pme_dev->list); 2547 kfree(pme_dev); 2548 break; 2549 } 2550 } 2551 mutex_unlock(&pci_pme_list_mutex); 2552 } 2553 } 2554 2555 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2556 } 2557 EXPORT_SYMBOL(pci_pme_active); 2558 2559 /** 2560 * __pci_enable_wake - enable PCI device as wakeup event source 2561 * @dev: PCI device affected 2562 * @state: PCI state from which device will issue wakeup events 2563 * @enable: True to enable event generation; false to disable 2564 * 2565 * This enables the device as a wakeup event source, or disables it. 2566 * When such events involves platform-specific hooks, those hooks are 2567 * called automatically by this routine. 2568 * 2569 * Devices with legacy power management (no standard PCI PM capabilities) 2570 * always require such platform hooks. 2571 * 2572 * RETURN VALUE: 2573 * 0 is returned on success 2574 * -EINVAL is returned if device is not supposed to wake up the system 2575 * Error code depending on the platform is returned if both the platform and 2576 * the native mechanism fail to enable the generation of wake-up events 2577 */ 2578 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2579 { 2580 int ret = 0; 2581 2582 /* 2583 * Bridges that are not power-manageable directly only signal 2584 * wakeup on behalf of subordinate devices which is set up 2585 * elsewhere, so skip them. However, bridges that are 2586 * power-manageable may signal wakeup for themselves (for example, 2587 * on a hotplug event) and they need to be covered here. 2588 */ 2589 if (!pci_power_manageable(dev)) 2590 return 0; 2591 2592 /* Don't do the same thing twice in a row for one device. */ 2593 if (!!enable == !!dev->wakeup_prepared) 2594 return 0; 2595 2596 /* 2597 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2598 * Anderson we should be doing PME# wake enable followed by ACPI wake 2599 * enable. To disable wake-up we call the platform first, for symmetry. 2600 */ 2601 2602 if (enable) { 2603 int error; 2604 2605 /* 2606 * Enable PME signaling if the device can signal PME from 2607 * D3cold regardless of whether or not it can signal PME from 2608 * the current target state, because that will allow it to 2609 * signal PME when the hierarchy above it goes into D3cold and 2610 * the device itself ends up in D3cold as a result of that. 2611 */ 2612 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2613 pci_pme_active(dev, true); 2614 else 2615 ret = 1; 2616 error = platform_pci_set_wakeup(dev, true); 2617 if (ret) 2618 ret = error; 2619 if (!ret) 2620 dev->wakeup_prepared = true; 2621 } else { 2622 platform_pci_set_wakeup(dev, false); 2623 pci_pme_active(dev, false); 2624 dev->wakeup_prepared = false; 2625 } 2626 2627 return ret; 2628 } 2629 2630 /** 2631 * pci_enable_wake - change wakeup settings for a PCI device 2632 * @pci_dev: Target device 2633 * @state: PCI state from which device will issue wakeup events 2634 * @enable: Whether or not to enable event generation 2635 * 2636 * If @enable is set, check device_may_wakeup() for the device before calling 2637 * __pci_enable_wake() for it. 2638 */ 2639 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2640 { 2641 if (enable && !device_may_wakeup(&pci_dev->dev)) 2642 return -EINVAL; 2643 2644 return __pci_enable_wake(pci_dev, state, enable); 2645 } 2646 EXPORT_SYMBOL(pci_enable_wake); 2647 2648 /** 2649 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2650 * @dev: PCI device to prepare 2651 * @enable: True to enable wake-up event generation; false to disable 2652 * 2653 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2654 * and this function allows them to set that up cleanly - pci_enable_wake() 2655 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2656 * ordering constraints. 2657 * 2658 * This function only returns error code if the device is not allowed to wake 2659 * up the system from sleep or it is not capable of generating PME# from both 2660 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2661 */ 2662 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2663 { 2664 return pci_pme_capable(dev, PCI_D3cold) ? 2665 pci_enable_wake(dev, PCI_D3cold, enable) : 2666 pci_enable_wake(dev, PCI_D3hot, enable); 2667 } 2668 EXPORT_SYMBOL(pci_wake_from_d3); 2669 2670 /** 2671 * pci_target_state - find an appropriate low power state for a given PCI dev 2672 * @dev: PCI device 2673 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2674 * 2675 * Use underlying platform code to find a supported low power state for @dev. 2676 * If the platform can't manage @dev, return the deepest state from which it 2677 * can generate wake events, based on any available PME info. 2678 */ 2679 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2680 { 2681 if (platform_pci_power_manageable(dev)) { 2682 /* 2683 * Call the platform to find the target state for the device. 2684 */ 2685 pci_power_t state = platform_pci_choose_state(dev); 2686 2687 switch (state) { 2688 case PCI_POWER_ERROR: 2689 case PCI_UNKNOWN: 2690 return PCI_D3hot; 2691 2692 case PCI_D1: 2693 case PCI_D2: 2694 if (pci_no_d1d2(dev)) 2695 return PCI_D3hot; 2696 } 2697 2698 return state; 2699 } 2700 2701 /* 2702 * If the device is in D3cold even though it's not power-manageable by 2703 * the platform, it may have been powered down by non-standard means. 2704 * Best to let it slumber. 2705 */ 2706 if (dev->current_state == PCI_D3cold) 2707 return PCI_D3cold; 2708 else if (!dev->pm_cap) 2709 return PCI_D0; 2710 2711 if (wakeup && dev->pme_support) { 2712 pci_power_t state = PCI_D3hot; 2713 2714 /* 2715 * Find the deepest state from which the device can generate 2716 * PME#. 2717 */ 2718 while (state && !(dev->pme_support & (1 << state))) 2719 state--; 2720 2721 if (state) 2722 return state; 2723 else if (dev->pme_support & 1) 2724 return PCI_D0; 2725 } 2726 2727 return PCI_D3hot; 2728 } 2729 2730 /** 2731 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2732 * into a sleep state 2733 * @dev: Device to handle. 2734 * 2735 * Choose the power state appropriate for the device depending on whether 2736 * it can wake up the system and/or is power manageable by the platform 2737 * (PCI_D3hot is the default) and put the device into that state. 2738 */ 2739 int pci_prepare_to_sleep(struct pci_dev *dev) 2740 { 2741 bool wakeup = device_may_wakeup(&dev->dev); 2742 pci_power_t target_state = pci_target_state(dev, wakeup); 2743 int error; 2744 2745 if (target_state == PCI_POWER_ERROR) 2746 return -EIO; 2747 2748 pci_enable_wake(dev, target_state, wakeup); 2749 2750 error = pci_set_power_state(dev, target_state); 2751 2752 if (error) 2753 pci_enable_wake(dev, target_state, false); 2754 2755 return error; 2756 } 2757 EXPORT_SYMBOL(pci_prepare_to_sleep); 2758 2759 /** 2760 * pci_back_from_sleep - turn PCI device on during system-wide transition 2761 * into working state 2762 * @dev: Device to handle. 2763 * 2764 * Disable device's system wake-up capability and put it into D0. 2765 */ 2766 int pci_back_from_sleep(struct pci_dev *dev) 2767 { 2768 int ret = pci_set_power_state(dev, PCI_D0); 2769 2770 if (ret) 2771 return ret; 2772 2773 pci_enable_wake(dev, PCI_D0, false); 2774 return 0; 2775 } 2776 EXPORT_SYMBOL(pci_back_from_sleep); 2777 2778 /** 2779 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2780 * @dev: PCI device being suspended. 2781 * 2782 * Prepare @dev to generate wake-up events at run time and put it into a low 2783 * power state. 2784 */ 2785 int pci_finish_runtime_suspend(struct pci_dev *dev) 2786 { 2787 pci_power_t target_state; 2788 int error; 2789 2790 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2791 if (target_state == PCI_POWER_ERROR) 2792 return -EIO; 2793 2794 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2795 2796 error = pci_set_power_state(dev, target_state); 2797 2798 if (error) 2799 pci_enable_wake(dev, target_state, false); 2800 2801 return error; 2802 } 2803 2804 /** 2805 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2806 * @dev: Device to check. 2807 * 2808 * Return true if the device itself is capable of generating wake-up events 2809 * (through the platform or using the native PCIe PME) or if the device supports 2810 * PME and one of its upstream bridges can generate wake-up events. 2811 */ 2812 bool pci_dev_run_wake(struct pci_dev *dev) 2813 { 2814 struct pci_bus *bus = dev->bus; 2815 2816 if (!dev->pme_support) 2817 return false; 2818 2819 /* PME-capable in principle, but not from the target power state */ 2820 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2821 return false; 2822 2823 if (device_can_wakeup(&dev->dev)) 2824 return true; 2825 2826 while (bus->parent) { 2827 struct pci_dev *bridge = bus->self; 2828 2829 if (device_can_wakeup(&bridge->dev)) 2830 return true; 2831 2832 bus = bus->parent; 2833 } 2834 2835 /* We have reached the root bus. */ 2836 if (bus->bridge) 2837 return device_can_wakeup(bus->bridge); 2838 2839 return false; 2840 } 2841 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2842 2843 /** 2844 * pci_dev_need_resume - Check if it is necessary to resume the device. 2845 * @pci_dev: Device to check. 2846 * 2847 * Return 'true' if the device is not runtime-suspended or it has to be 2848 * reconfigured due to wakeup settings difference between system and runtime 2849 * suspend, or the current power state of it is not suitable for the upcoming 2850 * (system-wide) transition. 2851 */ 2852 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2853 { 2854 struct device *dev = &pci_dev->dev; 2855 pci_power_t target_state; 2856 2857 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2858 return true; 2859 2860 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2861 2862 /* 2863 * If the earlier platform check has not triggered, D3cold is just power 2864 * removal on top of D3hot, so no need to resume the device in that 2865 * case. 2866 */ 2867 return target_state != pci_dev->current_state && 2868 target_state != PCI_D3cold && 2869 pci_dev->current_state != PCI_D3hot; 2870 } 2871 2872 /** 2873 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2874 * @pci_dev: Device to check. 2875 * 2876 * If the device is suspended and it is not configured for system wakeup, 2877 * disable PME for it to prevent it from waking up the system unnecessarily. 2878 * 2879 * Note that if the device's power state is D3cold and the platform check in 2880 * pci_dev_need_resume() has not triggered, the device's configuration need not 2881 * be changed. 2882 */ 2883 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2884 { 2885 struct device *dev = &pci_dev->dev; 2886 2887 spin_lock_irq(&dev->power.lock); 2888 2889 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2890 pci_dev->current_state < PCI_D3cold) 2891 __pci_pme_active(pci_dev, false); 2892 2893 spin_unlock_irq(&dev->power.lock); 2894 } 2895 2896 /** 2897 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2898 * @pci_dev: Device to handle. 2899 * 2900 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2901 * it might have been disabled during the prepare phase of system suspend if 2902 * the device was not configured for system wakeup. 2903 */ 2904 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2905 { 2906 struct device *dev = &pci_dev->dev; 2907 2908 if (!pci_dev_run_wake(pci_dev)) 2909 return; 2910 2911 spin_lock_irq(&dev->power.lock); 2912 2913 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2914 __pci_pme_active(pci_dev, true); 2915 2916 spin_unlock_irq(&dev->power.lock); 2917 } 2918 2919 /** 2920 * pci_choose_state - Choose the power state of a PCI device. 2921 * @dev: Target PCI device. 2922 * @state: Target state for the whole system. 2923 * 2924 * Returns PCI power state suitable for @dev and @state. 2925 */ 2926 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2927 { 2928 if (state.event == PM_EVENT_ON) 2929 return PCI_D0; 2930 2931 return pci_target_state(dev, false); 2932 } 2933 EXPORT_SYMBOL(pci_choose_state); 2934 2935 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2936 { 2937 struct device *dev = &pdev->dev; 2938 struct device *parent = dev->parent; 2939 2940 if (parent) 2941 pm_runtime_get_sync(parent); 2942 pm_runtime_get_noresume(dev); 2943 /* 2944 * pdev->current_state is set to PCI_D3cold during suspending, 2945 * so wait until suspending completes 2946 */ 2947 pm_runtime_barrier(dev); 2948 /* 2949 * Only need to resume devices in D3cold, because config 2950 * registers are still accessible for devices suspended but 2951 * not in D3cold. 2952 */ 2953 if (pdev->current_state == PCI_D3cold) 2954 pm_runtime_resume(dev); 2955 } 2956 2957 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2958 { 2959 struct device *dev = &pdev->dev; 2960 struct device *parent = dev->parent; 2961 2962 pm_runtime_put(dev); 2963 if (parent) 2964 pm_runtime_put_sync(parent); 2965 } 2966 2967 static const struct dmi_system_id bridge_d3_blacklist[] = { 2968 #ifdef CONFIG_X86 2969 { 2970 /* 2971 * Gigabyte X299 root port is not marked as hotplug capable 2972 * which allows Linux to power manage it. However, this 2973 * confuses the BIOS SMI handler so don't power manage root 2974 * ports on that system. 2975 */ 2976 .ident = "X299 DESIGNARE EX-CF", 2977 .matches = { 2978 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2979 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2980 }, 2981 }, 2982 { 2983 /* 2984 * Downstream device is not accessible after putting a root port 2985 * into D3cold and back into D0 on Elo Continental Z2 board 2986 */ 2987 .ident = "Elo Continental Z2", 2988 .matches = { 2989 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 2990 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 2991 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 2992 }, 2993 }, 2994 { 2995 /* 2996 * Changing power state of root port dGPU is connected fails 2997 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229 2998 */ 2999 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972", 3000 .matches = { 3001 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"), 3002 DMI_MATCH(DMI_BOARD_NAME, "1972"), 3003 DMI_MATCH(DMI_BOARD_VERSION, "95.33"), 3004 }, 3005 }, 3006 #endif 3007 { } 3008 }; 3009 3010 /** 3011 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 3012 * @bridge: Bridge to check 3013 * 3014 * This function checks if it is possible to move the bridge to D3. 3015 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 3016 */ 3017 bool pci_bridge_d3_possible(struct pci_dev *bridge) 3018 { 3019 if (!pci_is_pcie(bridge)) 3020 return false; 3021 3022 switch (pci_pcie_type(bridge)) { 3023 case PCI_EXP_TYPE_ROOT_PORT: 3024 case PCI_EXP_TYPE_UPSTREAM: 3025 case PCI_EXP_TYPE_DOWNSTREAM: 3026 if (pci_bridge_d3_disable) 3027 return false; 3028 3029 /* 3030 * Hotplug ports handled by firmware in System Management Mode 3031 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3032 */ 3033 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3034 return false; 3035 3036 if (pci_bridge_d3_force) 3037 return true; 3038 3039 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3040 if (bridge->is_thunderbolt) 3041 return true; 3042 3043 /* Platform might know better if the bridge supports D3 */ 3044 if (platform_pci_bridge_d3(bridge)) 3045 return true; 3046 3047 /* 3048 * Hotplug ports handled natively by the OS were not validated 3049 * by vendors for runtime D3 at least until 2018 because there 3050 * was no OS support. 3051 */ 3052 if (bridge->is_hotplug_bridge) 3053 return false; 3054 3055 if (dmi_check_system(bridge_d3_blacklist)) 3056 return false; 3057 3058 /* 3059 * It should be safe to put PCIe ports from 2015 or newer 3060 * to D3. 3061 */ 3062 if (dmi_get_bios_year() >= 2015) 3063 return true; 3064 break; 3065 } 3066 3067 return false; 3068 } 3069 3070 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3071 { 3072 bool *d3cold_ok = data; 3073 3074 if (/* The device needs to be allowed to go D3cold ... */ 3075 dev->no_d3cold || !dev->d3cold_allowed || 3076 3077 /* ... and if it is wakeup capable to do so from D3cold. */ 3078 (device_may_wakeup(&dev->dev) && 3079 !pci_pme_capable(dev, PCI_D3cold)) || 3080 3081 /* If it is a bridge it must be allowed to go to D3. */ 3082 !pci_power_manageable(dev)) 3083 3084 *d3cold_ok = false; 3085 3086 return !*d3cold_ok; 3087 } 3088 3089 /* 3090 * pci_bridge_d3_update - Update bridge D3 capabilities 3091 * @dev: PCI device which is changed 3092 * 3093 * Update upstream bridge PM capabilities accordingly depending on if the 3094 * device PM configuration was changed or the device is being removed. The 3095 * change is also propagated upstream. 3096 */ 3097 void pci_bridge_d3_update(struct pci_dev *dev) 3098 { 3099 bool remove = !device_is_registered(&dev->dev); 3100 struct pci_dev *bridge; 3101 bool d3cold_ok = true; 3102 3103 bridge = pci_upstream_bridge(dev); 3104 if (!bridge || !pci_bridge_d3_possible(bridge)) 3105 return; 3106 3107 /* 3108 * If D3 is currently allowed for the bridge, removing one of its 3109 * children won't change that. 3110 */ 3111 if (remove && bridge->bridge_d3) 3112 return; 3113 3114 /* 3115 * If D3 is currently allowed for the bridge and a child is added or 3116 * changed, disallowance of D3 can only be caused by that child, so 3117 * we only need to check that single device, not any of its siblings. 3118 * 3119 * If D3 is currently not allowed for the bridge, checking the device 3120 * first may allow us to skip checking its siblings. 3121 */ 3122 if (!remove) 3123 pci_dev_check_d3cold(dev, &d3cold_ok); 3124 3125 /* 3126 * If D3 is currently not allowed for the bridge, this may be caused 3127 * either by the device being changed/removed or any of its siblings, 3128 * so we need to go through all children to find out if one of them 3129 * continues to block D3. 3130 */ 3131 if (d3cold_ok && !bridge->bridge_d3) 3132 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3133 &d3cold_ok); 3134 3135 if (bridge->bridge_d3 != d3cold_ok) { 3136 bridge->bridge_d3 = d3cold_ok; 3137 /* Propagate change to upstream bridges */ 3138 pci_bridge_d3_update(bridge); 3139 } 3140 } 3141 3142 /** 3143 * pci_d3cold_enable - Enable D3cold for device 3144 * @dev: PCI device to handle 3145 * 3146 * This function can be used in drivers to enable D3cold from the device 3147 * they handle. It also updates upstream PCI bridge PM capabilities 3148 * accordingly. 3149 */ 3150 void pci_d3cold_enable(struct pci_dev *dev) 3151 { 3152 if (dev->no_d3cold) { 3153 dev->no_d3cold = false; 3154 pci_bridge_d3_update(dev); 3155 } 3156 } 3157 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3158 3159 /** 3160 * pci_d3cold_disable - Disable D3cold for device 3161 * @dev: PCI device to handle 3162 * 3163 * This function can be used in drivers to disable D3cold from the device 3164 * they handle. It also updates upstream PCI bridge PM capabilities 3165 * accordingly. 3166 */ 3167 void pci_d3cold_disable(struct pci_dev *dev) 3168 { 3169 if (!dev->no_d3cold) { 3170 dev->no_d3cold = true; 3171 pci_bridge_d3_update(dev); 3172 } 3173 } 3174 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3175 3176 /** 3177 * pci_pm_init - Initialize PM functions of given PCI device 3178 * @dev: PCI device to handle. 3179 */ 3180 void pci_pm_init(struct pci_dev *dev) 3181 { 3182 int pm; 3183 u16 status; 3184 u16 pmc; 3185 3186 pm_runtime_forbid(&dev->dev); 3187 pm_runtime_set_active(&dev->dev); 3188 pm_runtime_enable(&dev->dev); 3189 device_enable_async_suspend(&dev->dev); 3190 dev->wakeup_prepared = false; 3191 3192 dev->pm_cap = 0; 3193 dev->pme_support = 0; 3194 3195 /* find PCI PM capability in list */ 3196 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3197 if (!pm) 3198 return; 3199 /* Check device's ability to generate PME# */ 3200 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3201 3202 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3203 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3204 pmc & PCI_PM_CAP_VER_MASK); 3205 return; 3206 } 3207 3208 dev->pm_cap = pm; 3209 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3210 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3211 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3212 dev->d3cold_allowed = true; 3213 3214 dev->d1_support = false; 3215 dev->d2_support = false; 3216 if (!pci_no_d1d2(dev)) { 3217 if (pmc & PCI_PM_CAP_D1) 3218 dev->d1_support = true; 3219 if (pmc & PCI_PM_CAP_D2) 3220 dev->d2_support = true; 3221 3222 if (dev->d1_support || dev->d2_support) 3223 pci_info(dev, "supports%s%s\n", 3224 dev->d1_support ? " D1" : "", 3225 dev->d2_support ? " D2" : ""); 3226 } 3227 3228 pmc &= PCI_PM_CAP_PME_MASK; 3229 if (pmc) { 3230 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3231 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3232 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3233 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3234 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3235 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3236 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc); 3237 dev->pme_poll = true; 3238 /* 3239 * Make device's PM flags reflect the wake-up capability, but 3240 * let the user space enable it to wake up the system as needed. 3241 */ 3242 device_set_wakeup_capable(&dev->dev, true); 3243 /* Disable the PME# generation functionality */ 3244 pci_pme_active(dev, false); 3245 } 3246 3247 pci_read_config_word(dev, PCI_STATUS, &status); 3248 if (status & PCI_STATUS_IMM_READY) 3249 dev->imm_ready = 1; 3250 } 3251 3252 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3253 { 3254 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3255 3256 switch (prop) { 3257 case PCI_EA_P_MEM: 3258 case PCI_EA_P_VF_MEM: 3259 flags |= IORESOURCE_MEM; 3260 break; 3261 case PCI_EA_P_MEM_PREFETCH: 3262 case PCI_EA_P_VF_MEM_PREFETCH: 3263 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3264 break; 3265 case PCI_EA_P_IO: 3266 flags |= IORESOURCE_IO; 3267 break; 3268 default: 3269 return 0; 3270 } 3271 3272 return flags; 3273 } 3274 3275 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3276 u8 prop) 3277 { 3278 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3279 return &dev->resource[bei]; 3280 #ifdef CONFIG_PCI_IOV 3281 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3282 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3283 return &dev->resource[PCI_IOV_RESOURCES + 3284 bei - PCI_EA_BEI_VF_BAR0]; 3285 #endif 3286 else if (bei == PCI_EA_BEI_ROM) 3287 return &dev->resource[PCI_ROM_RESOURCE]; 3288 else 3289 return NULL; 3290 } 3291 3292 /* Read an Enhanced Allocation (EA) entry */ 3293 static int pci_ea_read(struct pci_dev *dev, int offset) 3294 { 3295 struct resource *res; 3296 const char *res_name; 3297 int ent_size, ent_offset = offset; 3298 resource_size_t start, end; 3299 unsigned long flags; 3300 u32 dw0, bei, base, max_offset; 3301 u8 prop; 3302 bool support_64 = (sizeof(resource_size_t) >= 8); 3303 3304 pci_read_config_dword(dev, ent_offset, &dw0); 3305 ent_offset += 4; 3306 3307 /* Entry size field indicates DWORDs after 1st */ 3308 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2; 3309 3310 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3311 goto out; 3312 3313 bei = FIELD_GET(PCI_EA_BEI, dw0); 3314 prop = FIELD_GET(PCI_EA_PP, dw0); 3315 3316 /* 3317 * If the Property is in the reserved range, try the Secondary 3318 * Property instead. 3319 */ 3320 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3321 prop = FIELD_GET(PCI_EA_SP, dw0); 3322 if (prop > PCI_EA_P_BRIDGE_IO) 3323 goto out; 3324 3325 res = pci_ea_get_resource(dev, bei, prop); 3326 res_name = pci_resource_name(dev, bei); 3327 if (!res) { 3328 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3329 goto out; 3330 } 3331 3332 flags = pci_ea_flags(dev, prop); 3333 if (!flags) { 3334 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3335 goto out; 3336 } 3337 3338 /* Read Base */ 3339 pci_read_config_dword(dev, ent_offset, &base); 3340 start = (base & PCI_EA_FIELD_MASK); 3341 ent_offset += 4; 3342 3343 /* Read MaxOffset */ 3344 pci_read_config_dword(dev, ent_offset, &max_offset); 3345 ent_offset += 4; 3346 3347 /* Read Base MSBs (if 64-bit entry) */ 3348 if (base & PCI_EA_IS_64) { 3349 u32 base_upper; 3350 3351 pci_read_config_dword(dev, ent_offset, &base_upper); 3352 ent_offset += 4; 3353 3354 flags |= IORESOURCE_MEM_64; 3355 3356 /* entry starts above 32-bit boundary, can't use */ 3357 if (!support_64 && base_upper) 3358 goto out; 3359 3360 if (support_64) 3361 start |= ((u64)base_upper << 32); 3362 } 3363 3364 end = start + (max_offset | 0x03); 3365 3366 /* Read MaxOffset MSBs (if 64-bit entry) */ 3367 if (max_offset & PCI_EA_IS_64) { 3368 u32 max_offset_upper; 3369 3370 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3371 ent_offset += 4; 3372 3373 flags |= IORESOURCE_MEM_64; 3374 3375 /* entry too big, can't use */ 3376 if (!support_64 && max_offset_upper) 3377 goto out; 3378 3379 if (support_64) 3380 end += ((u64)max_offset_upper << 32); 3381 } 3382 3383 if (end < start) { 3384 pci_err(dev, "EA Entry crosses address boundary\n"); 3385 goto out; 3386 } 3387 3388 if (ent_size != ent_offset - offset) { 3389 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3390 ent_size, ent_offset - offset); 3391 goto out; 3392 } 3393 3394 res->name = pci_name(dev); 3395 res->start = start; 3396 res->end = end; 3397 res->flags = flags; 3398 3399 if (bei <= PCI_EA_BEI_BAR5) 3400 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3401 res_name, res, prop); 3402 else if (bei == PCI_EA_BEI_ROM) 3403 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3404 res_name, res, prop); 3405 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3406 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3407 res_name, res, prop); 3408 else 3409 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n", 3410 bei, res, prop); 3411 3412 out: 3413 return offset + ent_size; 3414 } 3415 3416 /* Enhanced Allocation Initialization */ 3417 void pci_ea_init(struct pci_dev *dev) 3418 { 3419 int ea; 3420 u8 num_ent; 3421 int offset; 3422 int i; 3423 3424 /* find PCI EA capability in list */ 3425 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3426 if (!ea) 3427 return; 3428 3429 /* determine the number of entries */ 3430 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3431 &num_ent); 3432 num_ent &= PCI_EA_NUM_ENT_MASK; 3433 3434 offset = ea + PCI_EA_FIRST_ENT; 3435 3436 /* Skip DWORD 2 for type 1 functions */ 3437 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3438 offset += 4; 3439 3440 /* parse each EA entry */ 3441 for (i = 0; i < num_ent; ++i) 3442 offset = pci_ea_read(dev, offset); 3443 } 3444 3445 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3446 struct pci_cap_saved_state *new_cap) 3447 { 3448 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3449 } 3450 3451 /** 3452 * _pci_add_cap_save_buffer - allocate buffer for saving given 3453 * capability registers 3454 * @dev: the PCI device 3455 * @cap: the capability to allocate the buffer for 3456 * @extended: Standard or Extended capability ID 3457 * @size: requested size of the buffer 3458 */ 3459 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3460 bool extended, unsigned int size) 3461 { 3462 int pos; 3463 struct pci_cap_saved_state *save_state; 3464 3465 if (extended) 3466 pos = pci_find_ext_capability(dev, cap); 3467 else 3468 pos = pci_find_capability(dev, cap); 3469 3470 if (!pos) 3471 return 0; 3472 3473 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3474 if (!save_state) 3475 return -ENOMEM; 3476 3477 save_state->cap.cap_nr = cap; 3478 save_state->cap.cap_extended = extended; 3479 save_state->cap.size = size; 3480 pci_add_saved_cap(dev, save_state); 3481 3482 return 0; 3483 } 3484 3485 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3486 { 3487 return _pci_add_cap_save_buffer(dev, cap, false, size); 3488 } 3489 3490 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3491 { 3492 return _pci_add_cap_save_buffer(dev, cap, true, size); 3493 } 3494 3495 /** 3496 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3497 * @dev: the PCI device 3498 */ 3499 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3500 { 3501 int error; 3502 3503 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3504 PCI_EXP_SAVE_REGS * sizeof(u16)); 3505 if (error) 3506 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3507 3508 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3509 if (error) 3510 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3511 3512 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3513 2 * sizeof(u16)); 3514 if (error) 3515 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3516 3517 pci_allocate_vc_save_buffers(dev); 3518 } 3519 3520 void pci_free_cap_save_buffers(struct pci_dev *dev) 3521 { 3522 struct pci_cap_saved_state *tmp; 3523 struct hlist_node *n; 3524 3525 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3526 kfree(tmp); 3527 } 3528 3529 /** 3530 * pci_configure_ari - enable or disable ARI forwarding 3531 * @dev: the PCI device 3532 * 3533 * If @dev and its upstream bridge both support ARI, enable ARI in the 3534 * bridge. Otherwise, disable ARI in the bridge. 3535 */ 3536 void pci_configure_ari(struct pci_dev *dev) 3537 { 3538 u32 cap; 3539 struct pci_dev *bridge; 3540 3541 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3542 return; 3543 3544 bridge = dev->bus->self; 3545 if (!bridge) 3546 return; 3547 3548 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3549 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3550 return; 3551 3552 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3553 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3554 PCI_EXP_DEVCTL2_ARI); 3555 bridge->ari_enabled = 1; 3556 } else { 3557 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3558 PCI_EXP_DEVCTL2_ARI); 3559 bridge->ari_enabled = 0; 3560 } 3561 } 3562 3563 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3564 { 3565 int pos; 3566 u16 cap, ctrl; 3567 3568 pos = pdev->acs_cap; 3569 if (!pos) 3570 return false; 3571 3572 /* 3573 * Except for egress control, capabilities are either required 3574 * or only required if controllable. Features missing from the 3575 * capability field can therefore be assumed as hard-wired enabled. 3576 */ 3577 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3578 acs_flags &= (cap | PCI_ACS_EC); 3579 3580 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3581 return (ctrl & acs_flags) == acs_flags; 3582 } 3583 3584 /** 3585 * pci_acs_enabled - test ACS against required flags for a given device 3586 * @pdev: device to test 3587 * @acs_flags: required PCI ACS flags 3588 * 3589 * Return true if the device supports the provided flags. Automatically 3590 * filters out flags that are not implemented on multifunction devices. 3591 * 3592 * Note that this interface checks the effective ACS capabilities of the 3593 * device rather than the actual capabilities. For instance, most single 3594 * function endpoints are not required to support ACS because they have no 3595 * opportunity for peer-to-peer access. We therefore return 'true' 3596 * regardless of whether the device exposes an ACS capability. This makes 3597 * it much easier for callers of this function to ignore the actual type 3598 * or topology of the device when testing ACS support. 3599 */ 3600 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3601 { 3602 int ret; 3603 3604 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3605 if (ret >= 0) 3606 return ret > 0; 3607 3608 /* 3609 * Conventional PCI and PCI-X devices never support ACS, either 3610 * effectively or actually. The shared bus topology implies that 3611 * any device on the bus can receive or snoop DMA. 3612 */ 3613 if (!pci_is_pcie(pdev)) 3614 return false; 3615 3616 switch (pci_pcie_type(pdev)) { 3617 /* 3618 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3619 * but since their primary interface is PCI/X, we conservatively 3620 * handle them as we would a non-PCIe device. 3621 */ 3622 case PCI_EXP_TYPE_PCIE_BRIDGE: 3623 /* 3624 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3625 * applicable... must never implement an ACS Extended Capability...". 3626 * This seems arbitrary, but we take a conservative interpretation 3627 * of this statement. 3628 */ 3629 case PCI_EXP_TYPE_PCI_BRIDGE: 3630 case PCI_EXP_TYPE_RC_EC: 3631 return false; 3632 /* 3633 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3634 * implement ACS in order to indicate their peer-to-peer capabilities, 3635 * regardless of whether they are single- or multi-function devices. 3636 */ 3637 case PCI_EXP_TYPE_DOWNSTREAM: 3638 case PCI_EXP_TYPE_ROOT_PORT: 3639 return pci_acs_flags_enabled(pdev, acs_flags); 3640 /* 3641 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3642 * implemented by the remaining PCIe types to indicate peer-to-peer 3643 * capabilities, but only when they are part of a multifunction 3644 * device. The footnote for section 6.12 indicates the specific 3645 * PCIe types included here. 3646 */ 3647 case PCI_EXP_TYPE_ENDPOINT: 3648 case PCI_EXP_TYPE_UPSTREAM: 3649 case PCI_EXP_TYPE_LEG_END: 3650 case PCI_EXP_TYPE_RC_END: 3651 if (!pdev->multifunction) 3652 break; 3653 3654 return pci_acs_flags_enabled(pdev, acs_flags); 3655 } 3656 3657 /* 3658 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3659 * to single function devices with the exception of downstream ports. 3660 */ 3661 return true; 3662 } 3663 3664 /** 3665 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3666 * @start: starting downstream device 3667 * @end: ending upstream device or NULL to search to the root bus 3668 * @acs_flags: required flags 3669 * 3670 * Walk up a device tree from start to end testing PCI ACS support. If 3671 * any step along the way does not support the required flags, return false. 3672 */ 3673 bool pci_acs_path_enabled(struct pci_dev *start, 3674 struct pci_dev *end, u16 acs_flags) 3675 { 3676 struct pci_dev *pdev, *parent = start; 3677 3678 do { 3679 pdev = parent; 3680 3681 if (!pci_acs_enabled(pdev, acs_flags)) 3682 return false; 3683 3684 if (pci_is_root_bus(pdev->bus)) 3685 return (end == NULL); 3686 3687 parent = pdev->bus->self; 3688 } while (pdev != end); 3689 3690 return true; 3691 } 3692 3693 /** 3694 * pci_acs_init - Initialize ACS if hardware supports it 3695 * @dev: the PCI device 3696 */ 3697 void pci_acs_init(struct pci_dev *dev) 3698 { 3699 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3700 3701 /* 3702 * Attempt to enable ACS regardless of capability because some Root 3703 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3704 * the standard ACS capability but still support ACS via those 3705 * quirks. 3706 */ 3707 pci_enable_acs(dev); 3708 } 3709 3710 /** 3711 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3712 * @pdev: PCI device 3713 * @bar: BAR to find 3714 * 3715 * Helper to find the position of the ctrl register for a BAR. 3716 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3717 * Returns -ENOENT if no ctrl register for the BAR could be found. 3718 */ 3719 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3720 { 3721 unsigned int pos, nbars, i; 3722 u32 ctrl; 3723 3724 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3725 if (!pos) 3726 return -ENOTSUPP; 3727 3728 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3729 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 3730 3731 for (i = 0; i < nbars; i++, pos += 8) { 3732 int bar_idx; 3733 3734 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3735 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl); 3736 if (bar_idx == bar) 3737 return pos; 3738 } 3739 3740 return -ENOENT; 3741 } 3742 3743 /** 3744 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3745 * @pdev: PCI device 3746 * @bar: BAR to query 3747 * 3748 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3749 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3750 */ 3751 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3752 { 3753 int pos; 3754 u32 cap; 3755 3756 pos = pci_rebar_find_pos(pdev, bar); 3757 if (pos < 0) 3758 return 0; 3759 3760 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3761 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3762 3763 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3764 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3765 bar == 0 && cap == 0x700) 3766 return 0x3f00; 3767 3768 return cap; 3769 } 3770 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3771 3772 /** 3773 * pci_rebar_get_current_size - get the current size of a BAR 3774 * @pdev: PCI device 3775 * @bar: BAR to set size to 3776 * 3777 * Read the size of a BAR from the resizable BAR config. 3778 * Returns size if found or negative error code. 3779 */ 3780 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3781 { 3782 int pos; 3783 u32 ctrl; 3784 3785 pos = pci_rebar_find_pos(pdev, bar); 3786 if (pos < 0) 3787 return pos; 3788 3789 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3790 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl); 3791 } 3792 3793 /** 3794 * pci_rebar_set_size - set a new size for a BAR 3795 * @pdev: PCI device 3796 * @bar: BAR to set size to 3797 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3798 * 3799 * Set the new size of a BAR as defined in the spec. 3800 * Returns zero if resizing was successful, error code otherwise. 3801 */ 3802 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3803 { 3804 int pos; 3805 u32 ctrl; 3806 3807 pos = pci_rebar_find_pos(pdev, bar); 3808 if (pos < 0) 3809 return pos; 3810 3811 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3812 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3813 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 3814 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3815 return 0; 3816 } 3817 3818 /** 3819 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3820 * @dev: the PCI device 3821 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3822 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3823 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3824 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3825 * 3826 * Return 0 if all upstream bridges support AtomicOp routing, egress 3827 * blocking is disabled on all upstream ports, and the root port supports 3828 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3829 * AtomicOp completion), or negative otherwise. 3830 */ 3831 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3832 { 3833 struct pci_bus *bus = dev->bus; 3834 struct pci_dev *bridge; 3835 u32 cap, ctl2; 3836 3837 /* 3838 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3839 * in Device Control 2 is reserved in VFs and the PF value applies 3840 * to all associated VFs. 3841 */ 3842 if (dev->is_virtfn) 3843 return -EINVAL; 3844 3845 if (!pci_is_pcie(dev)) 3846 return -EINVAL; 3847 3848 /* 3849 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3850 * AtomicOp requesters. For now, we only support endpoints as 3851 * requesters and root ports as completers. No endpoints as 3852 * completers, and no peer-to-peer. 3853 */ 3854 3855 switch (pci_pcie_type(dev)) { 3856 case PCI_EXP_TYPE_ENDPOINT: 3857 case PCI_EXP_TYPE_LEG_END: 3858 case PCI_EXP_TYPE_RC_END: 3859 break; 3860 default: 3861 return -EINVAL; 3862 } 3863 3864 while (bus->parent) { 3865 bridge = bus->self; 3866 3867 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3868 3869 switch (pci_pcie_type(bridge)) { 3870 /* Ensure switch ports support AtomicOp routing */ 3871 case PCI_EXP_TYPE_UPSTREAM: 3872 case PCI_EXP_TYPE_DOWNSTREAM: 3873 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3874 return -EINVAL; 3875 break; 3876 3877 /* Ensure root port supports all the sizes we care about */ 3878 case PCI_EXP_TYPE_ROOT_PORT: 3879 if ((cap & cap_mask) != cap_mask) 3880 return -EINVAL; 3881 break; 3882 } 3883 3884 /* Ensure upstream ports don't block AtomicOps on egress */ 3885 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3886 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3887 &ctl2); 3888 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3889 return -EINVAL; 3890 } 3891 3892 bus = bus->parent; 3893 } 3894 3895 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3896 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3897 return 0; 3898 } 3899 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3900 3901 /** 3902 * pci_release_region - Release a PCI bar 3903 * @pdev: PCI device whose resources were previously reserved by 3904 * pci_request_region() 3905 * @bar: BAR to release 3906 * 3907 * Releases the PCI I/O and memory resources previously reserved by a 3908 * successful call to pci_request_region(). Call this function only 3909 * after all use of the PCI regions has ceased. 3910 */ 3911 void pci_release_region(struct pci_dev *pdev, int bar) 3912 { 3913 /* 3914 * This is done for backwards compatibility, because the old PCI devres 3915 * API had a mode in which the function became managed if it had been 3916 * enabled with pcim_enable_device() instead of pci_enable_device(). 3917 */ 3918 if (pci_is_managed(pdev)) { 3919 pcim_release_region(pdev, bar); 3920 return; 3921 } 3922 3923 if (pci_resource_len(pdev, bar) == 0) 3924 return; 3925 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3926 release_region(pci_resource_start(pdev, bar), 3927 pci_resource_len(pdev, bar)); 3928 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3929 release_mem_region(pci_resource_start(pdev, bar), 3930 pci_resource_len(pdev, bar)); 3931 } 3932 EXPORT_SYMBOL(pci_release_region); 3933 3934 /** 3935 * __pci_request_region - Reserved PCI I/O and memory resource 3936 * @pdev: PCI device whose resources are to be reserved 3937 * @bar: BAR to be reserved 3938 * @res_name: Name to be associated with resource. 3939 * @exclusive: whether the region access is exclusive or not 3940 * 3941 * Returns: 0 on success, negative error code on failure. 3942 * 3943 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3944 * being reserved by owner @res_name. Do not access any 3945 * address inside the PCI regions unless this call returns 3946 * successfully. 3947 * 3948 * If @exclusive is set, then the region is marked so that userspace 3949 * is explicitly not allowed to map the resource via /dev/mem or 3950 * sysfs MMIO access. 3951 * 3952 * Returns 0 on success, or %EBUSY on error. A warning 3953 * message is also printed on failure. 3954 */ 3955 static int __pci_request_region(struct pci_dev *pdev, int bar, 3956 const char *res_name, int exclusive) 3957 { 3958 if (pci_is_managed(pdev)) { 3959 if (exclusive == IORESOURCE_EXCLUSIVE) 3960 return pcim_request_region_exclusive(pdev, bar, res_name); 3961 3962 return pcim_request_region(pdev, bar, res_name); 3963 } 3964 3965 if (pci_resource_len(pdev, bar) == 0) 3966 return 0; 3967 3968 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3969 if (!request_region(pci_resource_start(pdev, bar), 3970 pci_resource_len(pdev, bar), res_name)) 3971 goto err_out; 3972 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3973 if (!__request_mem_region(pci_resource_start(pdev, bar), 3974 pci_resource_len(pdev, bar), res_name, 3975 exclusive)) 3976 goto err_out; 3977 } 3978 3979 return 0; 3980 3981 err_out: 3982 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3983 &pdev->resource[bar]); 3984 return -EBUSY; 3985 } 3986 3987 /** 3988 * pci_request_region - Reserve PCI I/O and memory resource 3989 * @pdev: PCI device whose resources are to be reserved 3990 * @bar: BAR to be reserved 3991 * @res_name: Name to be associated with resource 3992 * 3993 * Returns: 0 on success, negative error code on failure. 3994 * 3995 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3996 * being reserved by owner @res_name. Do not access any 3997 * address inside the PCI regions unless this call returns 3998 * successfully. 3999 * 4000 * Returns 0 on success, or %EBUSY on error. A warning 4001 * message is also printed on failure. 4002 * 4003 * NOTE: 4004 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4005 * when pcim_enable_device() has been called in advance. This hybrid feature is 4006 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4007 */ 4008 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4009 { 4010 return __pci_request_region(pdev, bar, res_name, 0); 4011 } 4012 EXPORT_SYMBOL(pci_request_region); 4013 4014 /** 4015 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4016 * @pdev: PCI device whose resources were previously reserved 4017 * @bars: Bitmask of BARs to be released 4018 * 4019 * Release selected PCI I/O and memory resources previously reserved. 4020 * Call this function only after all use of the PCI regions has ceased. 4021 */ 4022 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4023 { 4024 int i; 4025 4026 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4027 if (bars & (1 << i)) 4028 pci_release_region(pdev, i); 4029 } 4030 EXPORT_SYMBOL(pci_release_selected_regions); 4031 4032 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4033 const char *res_name, int excl) 4034 { 4035 int i; 4036 4037 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4038 if (bars & (1 << i)) 4039 if (__pci_request_region(pdev, i, res_name, excl)) 4040 goto err_out; 4041 return 0; 4042 4043 err_out: 4044 while (--i >= 0) 4045 if (bars & (1 << i)) 4046 pci_release_region(pdev, i); 4047 4048 return -EBUSY; 4049 } 4050 4051 4052 /** 4053 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4054 * @pdev: PCI device whose resources are to be reserved 4055 * @bars: Bitmask of BARs to be requested 4056 * @res_name: Name to be associated with resource 4057 * 4058 * Returns: 0 on success, negative error code on failure. 4059 * 4060 * NOTE: 4061 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4062 * when pcim_enable_device() has been called in advance. This hybrid feature is 4063 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4064 */ 4065 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4066 const char *res_name) 4067 { 4068 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4069 } 4070 EXPORT_SYMBOL(pci_request_selected_regions); 4071 4072 /** 4073 * pci_request_selected_regions_exclusive - Request regions exclusively 4074 * @pdev: PCI device to request regions from 4075 * @bars: bit mask of BARs to request 4076 * @res_name: name to be associated with the requests 4077 * 4078 * Returns: 0 on success, negative error code on failure. 4079 * 4080 * NOTE: 4081 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4082 * when pcim_enable_device() has been called in advance. This hybrid feature is 4083 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4084 */ 4085 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4086 const char *res_name) 4087 { 4088 return __pci_request_selected_regions(pdev, bars, res_name, 4089 IORESOURCE_EXCLUSIVE); 4090 } 4091 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4092 4093 /** 4094 * pci_release_regions - Release reserved PCI I/O and memory resources 4095 * @pdev: PCI device whose resources were previously reserved by 4096 * pci_request_regions() 4097 * 4098 * Releases all PCI I/O and memory resources previously reserved by a 4099 * successful call to pci_request_regions(). Call this function only 4100 * after all use of the PCI regions has ceased. 4101 */ 4102 void pci_release_regions(struct pci_dev *pdev) 4103 { 4104 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4105 } 4106 EXPORT_SYMBOL(pci_release_regions); 4107 4108 /** 4109 * pci_request_regions - Reserve PCI I/O and memory resources 4110 * @pdev: PCI device whose resources are to be reserved 4111 * @res_name: Name to be associated with resource. 4112 * 4113 * Mark all PCI regions associated with PCI device @pdev as 4114 * being reserved by owner @res_name. Do not access any 4115 * address inside the PCI regions unless this call returns 4116 * successfully. 4117 * 4118 * Returns 0 on success, or %EBUSY on error. A warning 4119 * message is also printed on failure. 4120 * 4121 * NOTE: 4122 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4123 * when pcim_enable_device() has been called in advance. This hybrid feature is 4124 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4125 */ 4126 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4127 { 4128 return pci_request_selected_regions(pdev, 4129 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4130 } 4131 EXPORT_SYMBOL(pci_request_regions); 4132 4133 /** 4134 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4135 * @pdev: PCI device whose resources are to be reserved 4136 * @res_name: Name to be associated with resource. 4137 * 4138 * Returns: 0 on success, negative error code on failure. 4139 * 4140 * Mark all PCI regions associated with PCI device @pdev as being reserved 4141 * by owner @res_name. Do not access any address inside the PCI regions 4142 * unless this call returns successfully. 4143 * 4144 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4145 * and the sysfs MMIO access will not be allowed. 4146 * 4147 * Returns 0 on success, or %EBUSY on error. A warning message is also 4148 * printed on failure. 4149 * 4150 * NOTE: 4151 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4152 * when pcim_enable_device() has been called in advance. This hybrid feature is 4153 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead. 4154 */ 4155 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4156 { 4157 return pci_request_selected_regions_exclusive(pdev, 4158 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4159 } 4160 EXPORT_SYMBOL(pci_request_regions_exclusive); 4161 4162 /* 4163 * Record the PCI IO range (expressed as CPU physical address + size). 4164 * Return a negative value if an error has occurred, zero otherwise 4165 */ 4166 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4167 resource_size_t size) 4168 { 4169 int ret = 0; 4170 #ifdef PCI_IOBASE 4171 struct logic_pio_hwaddr *range; 4172 4173 if (!size || addr + size < addr) 4174 return -EINVAL; 4175 4176 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4177 if (!range) 4178 return -ENOMEM; 4179 4180 range->fwnode = fwnode; 4181 range->size = size; 4182 range->hw_start = addr; 4183 range->flags = LOGIC_PIO_CPU_MMIO; 4184 4185 ret = logic_pio_register_range(range); 4186 if (ret) 4187 kfree(range); 4188 4189 /* Ignore duplicates due to deferred probing */ 4190 if (ret == -EEXIST) 4191 ret = 0; 4192 #endif 4193 4194 return ret; 4195 } 4196 4197 phys_addr_t pci_pio_to_address(unsigned long pio) 4198 { 4199 #ifdef PCI_IOBASE 4200 if (pio < MMIO_UPPER_LIMIT) 4201 return logic_pio_to_hwaddr(pio); 4202 #endif 4203 4204 return (phys_addr_t) OF_BAD_ADDR; 4205 } 4206 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4207 4208 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4209 { 4210 #ifdef PCI_IOBASE 4211 return logic_pio_trans_cpuaddr(address); 4212 #else 4213 if (address > IO_SPACE_LIMIT) 4214 return (unsigned long)-1; 4215 4216 return (unsigned long) address; 4217 #endif 4218 } 4219 4220 /** 4221 * pci_remap_iospace - Remap the memory mapped I/O space 4222 * @res: Resource describing the I/O space 4223 * @phys_addr: physical address of range to be mapped 4224 * 4225 * Remap the memory mapped I/O space described by the @res and the CPU 4226 * physical address @phys_addr into virtual address space. Only 4227 * architectures that have memory mapped IO functions defined (and the 4228 * PCI_IOBASE value defined) should call this function. 4229 */ 4230 #ifndef pci_remap_iospace 4231 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4232 { 4233 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4234 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4235 4236 if (!(res->flags & IORESOURCE_IO)) 4237 return -EINVAL; 4238 4239 if (res->end > IO_SPACE_LIMIT) 4240 return -EINVAL; 4241 4242 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4243 pgprot_device(PAGE_KERNEL)); 4244 #else 4245 /* 4246 * This architecture does not have memory mapped I/O space, 4247 * so this function should never be called 4248 */ 4249 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4250 return -ENODEV; 4251 #endif 4252 } 4253 EXPORT_SYMBOL(pci_remap_iospace); 4254 #endif 4255 4256 /** 4257 * pci_unmap_iospace - Unmap the memory mapped I/O space 4258 * @res: resource to be unmapped 4259 * 4260 * Unmap the CPU virtual address @res from virtual address space. Only 4261 * architectures that have memory mapped IO functions defined (and the 4262 * PCI_IOBASE value defined) should call this function. 4263 */ 4264 void pci_unmap_iospace(struct resource *res) 4265 { 4266 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4267 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4268 4269 vunmap_range(vaddr, vaddr + resource_size(res)); 4270 #endif 4271 } 4272 EXPORT_SYMBOL(pci_unmap_iospace); 4273 4274 static void __pci_set_master(struct pci_dev *dev, bool enable) 4275 { 4276 u16 old_cmd, cmd; 4277 4278 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4279 if (enable) 4280 cmd = old_cmd | PCI_COMMAND_MASTER; 4281 else 4282 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4283 if (cmd != old_cmd) { 4284 pci_dbg(dev, "%s bus mastering\n", 4285 enable ? "enabling" : "disabling"); 4286 pci_write_config_word(dev, PCI_COMMAND, cmd); 4287 } 4288 dev->is_busmaster = enable; 4289 } 4290 4291 /** 4292 * pcibios_setup - process "pci=" kernel boot arguments 4293 * @str: string used to pass in "pci=" kernel boot arguments 4294 * 4295 * Process kernel boot arguments. This is the default implementation. 4296 * Architecture specific implementations can override this as necessary. 4297 */ 4298 char * __weak __init pcibios_setup(char *str) 4299 { 4300 return str; 4301 } 4302 4303 /** 4304 * pcibios_set_master - enable PCI bus-mastering for device dev 4305 * @dev: the PCI device to enable 4306 * 4307 * Enables PCI bus-mastering for the device. This is the default 4308 * implementation. Architecture specific implementations can override 4309 * this if necessary. 4310 */ 4311 void __weak pcibios_set_master(struct pci_dev *dev) 4312 { 4313 u8 lat; 4314 4315 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4316 if (pci_is_pcie(dev)) 4317 return; 4318 4319 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4320 if (lat < 16) 4321 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4322 else if (lat > pcibios_max_latency) 4323 lat = pcibios_max_latency; 4324 else 4325 return; 4326 4327 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4328 } 4329 4330 /** 4331 * pci_set_master - enables bus-mastering for device dev 4332 * @dev: the PCI device to enable 4333 * 4334 * Enables bus-mastering on the device and calls pcibios_set_master() 4335 * to do the needed arch specific settings. 4336 */ 4337 void pci_set_master(struct pci_dev *dev) 4338 { 4339 __pci_set_master(dev, true); 4340 pcibios_set_master(dev); 4341 } 4342 EXPORT_SYMBOL(pci_set_master); 4343 4344 /** 4345 * pci_clear_master - disables bus-mastering for device dev 4346 * @dev: the PCI device to disable 4347 */ 4348 void pci_clear_master(struct pci_dev *dev) 4349 { 4350 __pci_set_master(dev, false); 4351 } 4352 EXPORT_SYMBOL(pci_clear_master); 4353 4354 /** 4355 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4356 * @dev: the PCI device for which MWI is to be enabled 4357 * 4358 * Helper function for pci_set_mwi. 4359 * Originally copied from drivers/net/acenic.c. 4360 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4361 * 4362 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4363 */ 4364 int pci_set_cacheline_size(struct pci_dev *dev) 4365 { 4366 u8 cacheline_size; 4367 4368 if (!pci_cache_line_size) 4369 return -EINVAL; 4370 4371 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4372 equal to or multiple of the right value. */ 4373 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4374 if (cacheline_size >= pci_cache_line_size && 4375 (cacheline_size % pci_cache_line_size) == 0) 4376 return 0; 4377 4378 /* Write the correct value. */ 4379 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4380 /* Read it back. */ 4381 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4382 if (cacheline_size == pci_cache_line_size) 4383 return 0; 4384 4385 pci_dbg(dev, "cache line size of %d is not supported\n", 4386 pci_cache_line_size << 2); 4387 4388 return -EINVAL; 4389 } 4390 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4391 4392 /** 4393 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4394 * @dev: the PCI device for which MWI is enabled 4395 * 4396 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4397 * 4398 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4399 */ 4400 int pci_set_mwi(struct pci_dev *dev) 4401 { 4402 #ifdef PCI_DISABLE_MWI 4403 return 0; 4404 #else 4405 int rc; 4406 u16 cmd; 4407 4408 rc = pci_set_cacheline_size(dev); 4409 if (rc) 4410 return rc; 4411 4412 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4413 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4414 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4415 cmd |= PCI_COMMAND_INVALIDATE; 4416 pci_write_config_word(dev, PCI_COMMAND, cmd); 4417 } 4418 return 0; 4419 #endif 4420 } 4421 EXPORT_SYMBOL(pci_set_mwi); 4422 4423 /** 4424 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4425 * @dev: the PCI device for which MWI is enabled 4426 * 4427 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4428 * Callers are not required to check the return value. 4429 * 4430 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4431 */ 4432 int pci_try_set_mwi(struct pci_dev *dev) 4433 { 4434 #ifdef PCI_DISABLE_MWI 4435 return 0; 4436 #else 4437 return pci_set_mwi(dev); 4438 #endif 4439 } 4440 EXPORT_SYMBOL(pci_try_set_mwi); 4441 4442 /** 4443 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4444 * @dev: the PCI device to disable 4445 * 4446 * Disables PCI Memory-Write-Invalidate transaction on the device 4447 */ 4448 void pci_clear_mwi(struct pci_dev *dev) 4449 { 4450 #ifndef PCI_DISABLE_MWI 4451 u16 cmd; 4452 4453 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4454 if (cmd & PCI_COMMAND_INVALIDATE) { 4455 cmd &= ~PCI_COMMAND_INVALIDATE; 4456 pci_write_config_word(dev, PCI_COMMAND, cmd); 4457 } 4458 #endif 4459 } 4460 EXPORT_SYMBOL(pci_clear_mwi); 4461 4462 /** 4463 * pci_disable_parity - disable parity checking for device 4464 * @dev: the PCI device to operate on 4465 * 4466 * Disable parity checking for device @dev 4467 */ 4468 void pci_disable_parity(struct pci_dev *dev) 4469 { 4470 u16 cmd; 4471 4472 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4473 if (cmd & PCI_COMMAND_PARITY) { 4474 cmd &= ~PCI_COMMAND_PARITY; 4475 pci_write_config_word(dev, PCI_COMMAND, cmd); 4476 } 4477 } 4478 4479 /** 4480 * pci_intx - enables/disables PCI INTx for device dev 4481 * @pdev: the PCI device to operate on 4482 * @enable: boolean: whether to enable or disable PCI INTx 4483 * 4484 * Enables/disables PCI INTx for device @pdev 4485 * 4486 * NOTE: 4487 * This is a "hybrid" function: It's normally unmanaged, but becomes managed 4488 * when pcim_enable_device() has been called in advance. This hybrid feature is 4489 * DEPRECATED! If you want managed cleanup, use pcim_intx() instead. 4490 */ 4491 void pci_intx(struct pci_dev *pdev, int enable) 4492 { 4493 u16 pci_command, new; 4494 4495 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4496 4497 if (enable) 4498 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4499 else 4500 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4501 4502 if (new != pci_command) { 4503 /* Preserve the "hybrid" behavior for backwards compatibility */ 4504 if (pci_is_managed(pdev)) { 4505 WARN_ON_ONCE(pcim_intx(pdev, enable) != 0); 4506 return; 4507 } 4508 4509 pci_write_config_word(pdev, PCI_COMMAND, new); 4510 } 4511 } 4512 EXPORT_SYMBOL_GPL(pci_intx); 4513 4514 /** 4515 * pci_wait_for_pending_transaction - wait for pending transaction 4516 * @dev: the PCI device to operate on 4517 * 4518 * Return 0 if transaction is pending 1 otherwise. 4519 */ 4520 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4521 { 4522 if (!pci_is_pcie(dev)) 4523 return 1; 4524 4525 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4526 PCI_EXP_DEVSTA_TRPND); 4527 } 4528 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4529 4530 /** 4531 * pcie_flr - initiate a PCIe function level reset 4532 * @dev: device to reset 4533 * 4534 * Initiate a function level reset unconditionally on @dev without 4535 * checking any flags and DEVCAP 4536 */ 4537 int pcie_flr(struct pci_dev *dev) 4538 { 4539 if (!pci_wait_for_pending_transaction(dev)) 4540 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4541 4542 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4543 4544 if (dev->imm_ready) 4545 return 0; 4546 4547 /* 4548 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4549 * 100ms, but may silently discard requests while the FLR is in 4550 * progress. Wait 100ms before trying to access the device. 4551 */ 4552 msleep(100); 4553 4554 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4555 } 4556 EXPORT_SYMBOL_GPL(pcie_flr); 4557 4558 /** 4559 * pcie_reset_flr - initiate a PCIe function level reset 4560 * @dev: device to reset 4561 * @probe: if true, return 0 if device can be reset this way 4562 * 4563 * Initiate a function level reset on @dev. 4564 */ 4565 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4566 { 4567 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4568 return -ENOTTY; 4569 4570 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4571 return -ENOTTY; 4572 4573 if (probe) 4574 return 0; 4575 4576 return pcie_flr(dev); 4577 } 4578 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4579 4580 static int pci_af_flr(struct pci_dev *dev, bool probe) 4581 { 4582 int pos; 4583 u8 cap; 4584 4585 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4586 if (!pos) 4587 return -ENOTTY; 4588 4589 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4590 return -ENOTTY; 4591 4592 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4593 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4594 return -ENOTTY; 4595 4596 if (probe) 4597 return 0; 4598 4599 /* 4600 * Wait for Transaction Pending bit to clear. A word-aligned test 4601 * is used, so we use the control offset rather than status and shift 4602 * the test bit to match. 4603 */ 4604 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4605 PCI_AF_STATUS_TP << 8)) 4606 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4607 4608 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4609 4610 if (dev->imm_ready) 4611 return 0; 4612 4613 /* 4614 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4615 * updated 27 July 2006; a device must complete an FLR within 4616 * 100ms, but may silently discard requests while the FLR is in 4617 * progress. Wait 100ms before trying to access the device. 4618 */ 4619 msleep(100); 4620 4621 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4622 } 4623 4624 /** 4625 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4626 * @dev: Device to reset. 4627 * @probe: if true, return 0 if the device can be reset this way. 4628 * 4629 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4630 * unset, it will be reinitialized internally when going from PCI_D3hot to 4631 * PCI_D0. If that's the case and the device is not in a low-power state 4632 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4633 * 4634 * NOTE: This causes the caller to sleep for twice the device power transition 4635 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4636 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4637 * Moreover, only devices in D0 can be reset by this function. 4638 */ 4639 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4640 { 4641 u16 csr; 4642 4643 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4644 return -ENOTTY; 4645 4646 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4647 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4648 return -ENOTTY; 4649 4650 if (probe) 4651 return 0; 4652 4653 if (dev->current_state != PCI_D0) 4654 return -EINVAL; 4655 4656 csr &= ~PCI_PM_CTRL_STATE_MASK; 4657 csr |= PCI_D3hot; 4658 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4659 pci_dev_d3_sleep(dev); 4660 4661 csr &= ~PCI_PM_CTRL_STATE_MASK; 4662 csr |= PCI_D0; 4663 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4664 pci_dev_d3_sleep(dev); 4665 4666 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4667 } 4668 4669 /** 4670 * pcie_wait_for_link_status - Wait for link status change 4671 * @pdev: Device whose link to wait for. 4672 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4673 * @active: Waiting for active or inactive? 4674 * 4675 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4676 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4677 */ 4678 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4679 bool use_lt, bool active) 4680 { 4681 u16 lnksta_mask, lnksta_match; 4682 unsigned long end_jiffies; 4683 u16 lnksta; 4684 4685 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4686 lnksta_match = active ? lnksta_mask : 0; 4687 4688 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4689 do { 4690 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4691 if ((lnksta & lnksta_mask) == lnksta_match) 4692 return 0; 4693 msleep(1); 4694 } while (time_before(jiffies, end_jiffies)); 4695 4696 return -ETIMEDOUT; 4697 } 4698 4699 /** 4700 * pcie_retrain_link - Request a link retrain and wait for it to complete 4701 * @pdev: Device whose link to retrain. 4702 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 4703 * 4704 * Retrain completion status is retrieved from the Link Status Register 4705 * according to @use_lt. It is not verified whether the use of the DLLLA 4706 * bit is valid. 4707 * 4708 * Return 0 if successful, or -ETIMEDOUT if training has not completed 4709 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4710 */ 4711 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 4712 { 4713 int rc; 4714 4715 /* 4716 * Ensure the updated LNKCTL parameters are used during link 4717 * training by checking that there is no ongoing link training that 4718 * may have started before link parameters were changed, so as to 4719 * avoid LTSSM race as recommended in Implementation Note at the end 4720 * of PCIe r6.1 sec 7.5.3.7. 4721 */ 4722 rc = pcie_wait_for_link_status(pdev, true, false); 4723 if (rc) 4724 return rc; 4725 4726 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4727 if (pdev->clear_retrain_link) { 4728 /* 4729 * Due to an erratum in some devices the Retrain Link bit 4730 * needs to be cleared again manually to allow the link 4731 * training to succeed. 4732 */ 4733 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4734 } 4735 4736 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4737 4738 /* 4739 * Clear LBMS after a manual retrain so that the bit can be used 4740 * to track link speed or width changes made by hardware itself 4741 * in attempt to correct unreliable link operation. 4742 */ 4743 pcie_capability_write_word(pdev, PCI_EXP_LNKSTA, PCI_EXP_LNKSTA_LBMS); 4744 return rc; 4745 } 4746 4747 /** 4748 * pcie_wait_for_link_delay - Wait until link is active or inactive 4749 * @pdev: Bridge device 4750 * @active: waiting for active or inactive? 4751 * @delay: Delay to wait after link has become active (in ms) 4752 * 4753 * Use this to wait till link becomes active or inactive. 4754 */ 4755 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4756 int delay) 4757 { 4758 int rc; 4759 4760 /* 4761 * Some controllers might not implement link active reporting. In this 4762 * case, we wait for 1000 ms + any delay requested by the caller. 4763 */ 4764 if (!pdev->link_active_reporting) { 4765 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 4766 return true; 4767 } 4768 4769 /* 4770 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4771 * after which we should expect an link active if the reset was 4772 * successful. If so, software must wait a minimum 100ms before sending 4773 * configuration requests to devices downstream this port. 4774 * 4775 * If the link fails to activate, either the device was physically 4776 * removed or the link is permanently failed. 4777 */ 4778 if (active) 4779 msleep(20); 4780 rc = pcie_wait_for_link_status(pdev, false, active); 4781 if (active) { 4782 if (rc) 4783 rc = pcie_failed_link_retrain(pdev); 4784 if (rc) 4785 return false; 4786 4787 msleep(delay); 4788 return true; 4789 } 4790 4791 if (rc) 4792 return false; 4793 4794 return true; 4795 } 4796 4797 /** 4798 * pcie_wait_for_link - Wait until link is active or inactive 4799 * @pdev: Bridge device 4800 * @active: waiting for active or inactive? 4801 * 4802 * Use this to wait till link becomes active or inactive. 4803 */ 4804 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4805 { 4806 return pcie_wait_for_link_delay(pdev, active, 100); 4807 } 4808 4809 /* 4810 * Find maximum D3cold delay required by all the devices on the bus. The 4811 * spec says 100 ms, but firmware can lower it and we allow drivers to 4812 * increase it as well. 4813 * 4814 * Called with @pci_bus_sem locked for reading. 4815 */ 4816 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4817 { 4818 const struct pci_dev *pdev; 4819 int min_delay = 100; 4820 int max_delay = 0; 4821 4822 list_for_each_entry(pdev, &bus->devices, bus_list) { 4823 if (pdev->d3cold_delay < min_delay) 4824 min_delay = pdev->d3cold_delay; 4825 if (pdev->d3cold_delay > max_delay) 4826 max_delay = pdev->d3cold_delay; 4827 } 4828 4829 return max(min_delay, max_delay); 4830 } 4831 4832 /** 4833 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4834 * @dev: PCI bridge 4835 * @reset_type: reset type in human-readable form 4836 * 4837 * Handle necessary delays before access to the devices on the secondary 4838 * side of the bridge are permitted after D3cold to D0 transition 4839 * or Conventional Reset. 4840 * 4841 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4842 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4843 * 4.3.2. 4844 * 4845 * Return 0 on success or -ENOTTY if the first device on the secondary bus 4846 * failed to become accessible. 4847 */ 4848 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 4849 { 4850 struct pci_dev *child __free(pci_dev_put) = NULL; 4851 int delay; 4852 4853 if (pci_dev_is_disconnected(dev)) 4854 return 0; 4855 4856 if (!pci_is_bridge(dev)) 4857 return 0; 4858 4859 down_read(&pci_bus_sem); 4860 4861 /* 4862 * We only deal with devices that are present currently on the bus. 4863 * For any hot-added devices the access delay is handled in pciehp 4864 * board_added(). In case of ACPI hotplug the firmware is expected 4865 * to configure the devices before OS is notified. 4866 */ 4867 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4868 up_read(&pci_bus_sem); 4869 return 0; 4870 } 4871 4872 /* Take d3cold_delay requirements into account */ 4873 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4874 if (!delay) { 4875 up_read(&pci_bus_sem); 4876 return 0; 4877 } 4878 4879 child = pci_dev_get(list_first_entry(&dev->subordinate->devices, 4880 struct pci_dev, bus_list)); 4881 up_read(&pci_bus_sem); 4882 4883 /* 4884 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4885 * accessing the device after reset (that is 1000 ms + 100 ms). 4886 */ 4887 if (!pci_is_pcie(dev)) { 4888 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4889 msleep(1000 + delay); 4890 return 0; 4891 } 4892 4893 /* 4894 * For PCIe downstream and root ports that do not support speeds 4895 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4896 * speeds (gen3) we need to wait first for the data link layer to 4897 * become active. 4898 * 4899 * However, 100 ms is the minimum and the PCIe spec says the 4900 * software must allow at least 1s before it can determine that the 4901 * device that did not respond is a broken device. Also device can 4902 * take longer than that to respond if it indicates so through Request 4903 * Retry Status completions. 4904 * 4905 * Therefore we wait for 100 ms and check for the device presence 4906 * until the timeout expires. 4907 */ 4908 if (!pcie_downstream_port(dev)) 4909 return 0; 4910 4911 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4912 u16 status; 4913 4914 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4915 msleep(delay); 4916 4917 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 4918 return 0; 4919 4920 /* 4921 * If the port supports active link reporting we now check 4922 * whether the link is active and if not bail out early with 4923 * the assumption that the device is not present anymore. 4924 */ 4925 if (!dev->link_active_reporting) 4926 return -ENOTTY; 4927 4928 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 4929 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 4930 return -ENOTTY; 4931 4932 return pci_dev_wait(child, reset_type, 4933 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 4934 } 4935 4936 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4937 delay); 4938 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4939 /* Did not train, no need to wait any further */ 4940 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 4941 return -ENOTTY; 4942 } 4943 4944 return pci_dev_wait(child, reset_type, 4945 PCIE_RESET_READY_POLL_MS - delay); 4946 } 4947 4948 void pci_reset_secondary_bus(struct pci_dev *dev) 4949 { 4950 u16 ctrl; 4951 4952 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4953 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4954 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4955 4956 /* 4957 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4958 * this to 2ms to ensure that we meet the minimum requirement. 4959 */ 4960 msleep(2); 4961 4962 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4963 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4964 } 4965 4966 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4967 { 4968 pci_reset_secondary_bus(dev); 4969 } 4970 4971 /** 4972 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4973 * @dev: Bridge device 4974 * 4975 * Use the bridge control register to assert reset on the secondary bus. 4976 * Devices on the secondary bus are left in power-on state. 4977 */ 4978 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4979 { 4980 if (!dev->block_cfg_access) 4981 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n", 4982 __builtin_return_address(0)); 4983 pcibios_reset_secondary_bus(dev); 4984 4985 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 4986 } 4987 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4988 4989 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 4990 { 4991 struct pci_dev *pdev; 4992 4993 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4994 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4995 return -ENOTTY; 4996 4997 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4998 if (pdev != dev) 4999 return -ENOTTY; 5000 5001 if (probe) 5002 return 0; 5003 5004 return pci_bridge_secondary_bus_reset(dev->bus->self); 5005 } 5006 5007 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5008 { 5009 int rc = -ENOTTY; 5010 5011 if (!hotplug || !try_module_get(hotplug->owner)) 5012 return rc; 5013 5014 if (hotplug->ops->reset_slot) 5015 rc = hotplug->ops->reset_slot(hotplug, probe); 5016 5017 module_put(hotplug->owner); 5018 5019 return rc; 5020 } 5021 5022 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5023 { 5024 if (dev->multifunction || dev->subordinate || !dev->slot || 5025 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5026 return -ENOTTY; 5027 5028 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5029 } 5030 5031 static u16 cxl_port_dvsec(struct pci_dev *dev) 5032 { 5033 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL, 5034 PCI_DVSEC_CXL_PORT); 5035 } 5036 5037 static bool cxl_sbr_masked(struct pci_dev *dev) 5038 { 5039 u16 dvsec, reg; 5040 int rc; 5041 5042 dvsec = cxl_port_dvsec(dev); 5043 if (!dvsec) 5044 return false; 5045 5046 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®); 5047 if (rc || PCI_POSSIBLE_ERROR(reg)) 5048 return false; 5049 5050 /* 5051 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR 5052 * bit in Bridge Control has no effect. When 1, the Port generates 5053 * hot reset when the SBR bit is set to 1. 5054 */ 5055 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) 5056 return false; 5057 5058 return true; 5059 } 5060 5061 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5062 { 5063 struct pci_dev *bridge = pci_upstream_bridge(dev); 5064 int rc; 5065 5066 /* 5067 * If "dev" is below a CXL port that has SBR control masked, SBR 5068 * won't do anything, so return error. 5069 */ 5070 if (bridge && cxl_sbr_masked(bridge)) { 5071 if (probe) 5072 return 0; 5073 5074 return -ENOTTY; 5075 } 5076 5077 rc = pci_dev_reset_slot_function(dev, probe); 5078 if (rc != -ENOTTY) 5079 return rc; 5080 return pci_parent_bus_reset(dev, probe); 5081 } 5082 5083 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe) 5084 { 5085 struct pci_dev *bridge; 5086 u16 dvsec, reg, val; 5087 int rc; 5088 5089 bridge = pci_upstream_bridge(dev); 5090 if (!bridge) 5091 return -ENOTTY; 5092 5093 dvsec = cxl_port_dvsec(bridge); 5094 if (!dvsec) 5095 return -ENOTTY; 5096 5097 if (probe) 5098 return 0; 5099 5100 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®); 5101 if (rc) 5102 return -ENOTTY; 5103 5104 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) { 5105 val = reg; 5106 } else { 5107 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR; 5108 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, 5109 val); 5110 } 5111 5112 rc = pci_reset_bus_function(dev, probe); 5113 5114 if (reg != val) 5115 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, 5116 reg); 5117 5118 return rc; 5119 } 5120 5121 void pci_dev_lock(struct pci_dev *dev) 5122 { 5123 /* block PM suspend, driver probe, etc. */ 5124 device_lock(&dev->dev); 5125 pci_cfg_access_lock(dev); 5126 } 5127 EXPORT_SYMBOL_GPL(pci_dev_lock); 5128 5129 /* Return 1 on successful lock, 0 on contention */ 5130 int pci_dev_trylock(struct pci_dev *dev) 5131 { 5132 if (device_trylock(&dev->dev)) { 5133 if (pci_cfg_access_trylock(dev)) 5134 return 1; 5135 device_unlock(&dev->dev); 5136 } 5137 5138 return 0; 5139 } 5140 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5141 5142 void pci_dev_unlock(struct pci_dev *dev) 5143 { 5144 pci_cfg_access_unlock(dev); 5145 device_unlock(&dev->dev); 5146 } 5147 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5148 5149 static void pci_dev_save_and_disable(struct pci_dev *dev) 5150 { 5151 const struct pci_error_handlers *err_handler = 5152 dev->driver ? dev->driver->err_handler : NULL; 5153 5154 /* 5155 * dev->driver->err_handler->reset_prepare() is protected against 5156 * races with ->remove() by the device lock, which must be held by 5157 * the caller. 5158 */ 5159 if (err_handler && err_handler->reset_prepare) 5160 err_handler->reset_prepare(dev); 5161 5162 /* 5163 * Wake-up device prior to save. PM registers default to D0 after 5164 * reset and a simple register restore doesn't reliably return 5165 * to a non-D0 state anyway. 5166 */ 5167 pci_set_power_state(dev, PCI_D0); 5168 5169 pci_save_state(dev); 5170 /* 5171 * Disable the device by clearing the Command register, except for 5172 * INTx-disable which is set. This not only disables MMIO and I/O port 5173 * BARs, but also prevents the device from being Bus Master, preventing 5174 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5175 * compliant devices, INTx-disable prevents legacy interrupts. 5176 */ 5177 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5178 } 5179 5180 static void pci_dev_restore(struct pci_dev *dev) 5181 { 5182 const struct pci_error_handlers *err_handler = 5183 dev->driver ? dev->driver->err_handler : NULL; 5184 5185 pci_restore_state(dev); 5186 5187 /* 5188 * dev->driver->err_handler->reset_done() is protected against 5189 * races with ->remove() by the device lock, which must be held by 5190 * the caller. 5191 */ 5192 if (err_handler && err_handler->reset_done) 5193 err_handler->reset_done(dev); 5194 } 5195 5196 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5197 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5198 { }, 5199 { pci_dev_specific_reset, .name = "device_specific" }, 5200 { pci_dev_acpi_reset, .name = "acpi" }, 5201 { pcie_reset_flr, .name = "flr" }, 5202 { pci_af_flr, .name = "af_flr" }, 5203 { pci_pm_reset, .name = "pm" }, 5204 { pci_reset_bus_function, .name = "bus" }, 5205 { cxl_reset_bus_function, .name = "cxl_bus" }, 5206 }; 5207 5208 static ssize_t reset_method_show(struct device *dev, 5209 struct device_attribute *attr, char *buf) 5210 { 5211 struct pci_dev *pdev = to_pci_dev(dev); 5212 ssize_t len = 0; 5213 int i, m; 5214 5215 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5216 m = pdev->reset_methods[i]; 5217 if (!m) 5218 break; 5219 5220 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5221 pci_reset_fn_methods[m].name); 5222 } 5223 5224 if (len) 5225 len += sysfs_emit_at(buf, len, "\n"); 5226 5227 return len; 5228 } 5229 5230 static int reset_method_lookup(const char *name) 5231 { 5232 int m; 5233 5234 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5235 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5236 return m; 5237 } 5238 5239 return 0; /* not found */ 5240 } 5241 5242 static ssize_t reset_method_store(struct device *dev, 5243 struct device_attribute *attr, 5244 const char *buf, size_t count) 5245 { 5246 struct pci_dev *pdev = to_pci_dev(dev); 5247 char *options, *name; 5248 int m, n; 5249 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5250 5251 if (sysfs_streq(buf, "")) { 5252 pdev->reset_methods[0] = 0; 5253 pci_warn(pdev, "All device reset methods disabled by user"); 5254 return count; 5255 } 5256 5257 if (sysfs_streq(buf, "default")) { 5258 pci_init_reset_methods(pdev); 5259 return count; 5260 } 5261 5262 options = kstrndup(buf, count, GFP_KERNEL); 5263 if (!options) 5264 return -ENOMEM; 5265 5266 n = 0; 5267 while ((name = strsep(&options, " ")) != NULL) { 5268 if (sysfs_streq(name, "")) 5269 continue; 5270 5271 name = strim(name); 5272 5273 m = reset_method_lookup(name); 5274 if (!m) { 5275 pci_err(pdev, "Invalid reset method '%s'", name); 5276 goto error; 5277 } 5278 5279 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5280 pci_err(pdev, "Unsupported reset method '%s'", name); 5281 goto error; 5282 } 5283 5284 if (n == PCI_NUM_RESET_METHODS - 1) { 5285 pci_err(pdev, "Too many reset methods\n"); 5286 goto error; 5287 } 5288 5289 reset_methods[n++] = m; 5290 } 5291 5292 reset_methods[n] = 0; 5293 5294 /* Warn if dev-specific supported but not highest priority */ 5295 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5296 reset_methods[0] != 1) 5297 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5298 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5299 kfree(options); 5300 return count; 5301 5302 error: 5303 /* Leave previous methods unchanged */ 5304 kfree(options); 5305 return -EINVAL; 5306 } 5307 static DEVICE_ATTR_RW(reset_method); 5308 5309 static struct attribute *pci_dev_reset_method_attrs[] = { 5310 &dev_attr_reset_method.attr, 5311 NULL, 5312 }; 5313 5314 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5315 struct attribute *a, int n) 5316 { 5317 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5318 5319 if (!pci_reset_supported(pdev)) 5320 return 0; 5321 5322 return a->mode; 5323 } 5324 5325 const struct attribute_group pci_dev_reset_method_attr_group = { 5326 .attrs = pci_dev_reset_method_attrs, 5327 .is_visible = pci_dev_reset_method_attr_is_visible, 5328 }; 5329 5330 /** 5331 * __pci_reset_function_locked - reset a PCI device function while holding 5332 * the @dev mutex lock. 5333 * @dev: PCI device to reset 5334 * 5335 * Some devices allow an individual function to be reset without affecting 5336 * other functions in the same device. The PCI device must be responsive 5337 * to PCI config space in order to use this function. 5338 * 5339 * The device function is presumed to be unused and the caller is holding 5340 * the device mutex lock when this function is called. 5341 * 5342 * Resetting the device will make the contents of PCI configuration space 5343 * random, so any caller of this must be prepared to reinitialise the 5344 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5345 * etc. 5346 * 5347 * Returns 0 if the device function was successfully reset or negative if the 5348 * device doesn't support resetting a single function. 5349 */ 5350 int __pci_reset_function_locked(struct pci_dev *dev) 5351 { 5352 int i, m, rc; 5353 5354 might_sleep(); 5355 5356 /* 5357 * A reset method returns -ENOTTY if it doesn't support this device and 5358 * we should try the next method. 5359 * 5360 * If it returns 0 (success), we're finished. If it returns any other 5361 * error, we're also finished: this indicates that further reset 5362 * mechanisms might be broken on the device. 5363 */ 5364 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5365 m = dev->reset_methods[i]; 5366 if (!m) 5367 return -ENOTTY; 5368 5369 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5370 if (!rc) 5371 return 0; 5372 if (rc != -ENOTTY) 5373 return rc; 5374 } 5375 5376 return -ENOTTY; 5377 } 5378 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5379 5380 /** 5381 * pci_init_reset_methods - check whether device can be safely reset 5382 * and store supported reset mechanisms. 5383 * @dev: PCI device to check for reset mechanisms 5384 * 5385 * Some devices allow an individual function to be reset without affecting 5386 * other functions in the same device. The PCI device must be in D0-D3hot 5387 * state. 5388 * 5389 * Stores reset mechanisms supported by device in reset_methods byte array 5390 * which is a member of struct pci_dev. 5391 */ 5392 void pci_init_reset_methods(struct pci_dev *dev) 5393 { 5394 int m, i, rc; 5395 5396 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5397 5398 might_sleep(); 5399 5400 i = 0; 5401 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5402 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5403 if (!rc) 5404 dev->reset_methods[i++] = m; 5405 else if (rc != -ENOTTY) 5406 break; 5407 } 5408 5409 dev->reset_methods[i] = 0; 5410 } 5411 5412 /** 5413 * pci_reset_function - quiesce and reset a PCI device function 5414 * @dev: PCI device to reset 5415 * 5416 * Some devices allow an individual function to be reset without affecting 5417 * other functions in the same device. The PCI device must be responsive 5418 * to PCI config space in order to use this function. 5419 * 5420 * This function does not just reset the PCI portion of a device, but 5421 * clears all the state associated with the device. This function differs 5422 * from __pci_reset_function_locked() in that it saves and restores device state 5423 * over the reset and takes the PCI device lock. 5424 * 5425 * Returns 0 if the device function was successfully reset or negative if the 5426 * device doesn't support resetting a single function. 5427 */ 5428 int pci_reset_function(struct pci_dev *dev) 5429 { 5430 struct pci_dev *bridge; 5431 int rc; 5432 5433 if (!pci_reset_supported(dev)) 5434 return -ENOTTY; 5435 5436 /* 5437 * If there's no upstream bridge, no locking is needed since there is 5438 * no upstream bridge configuration to hold consistent. 5439 */ 5440 bridge = pci_upstream_bridge(dev); 5441 if (bridge) 5442 pci_dev_lock(bridge); 5443 5444 pci_dev_lock(dev); 5445 pci_dev_save_and_disable(dev); 5446 5447 rc = __pci_reset_function_locked(dev); 5448 5449 pci_dev_restore(dev); 5450 pci_dev_unlock(dev); 5451 5452 if (bridge) 5453 pci_dev_unlock(bridge); 5454 5455 return rc; 5456 } 5457 EXPORT_SYMBOL_GPL(pci_reset_function); 5458 5459 /** 5460 * pci_reset_function_locked - quiesce and reset a PCI device function 5461 * @dev: PCI device to reset 5462 * 5463 * Some devices allow an individual function to be reset without affecting 5464 * other functions in the same device. The PCI device must be responsive 5465 * to PCI config space in order to use this function. 5466 * 5467 * This function does not just reset the PCI portion of a device, but 5468 * clears all the state associated with the device. This function differs 5469 * from __pci_reset_function_locked() in that it saves and restores device state 5470 * over the reset. It also differs from pci_reset_function() in that it 5471 * requires the PCI device lock to be held. 5472 * 5473 * Returns 0 if the device function was successfully reset or negative if the 5474 * device doesn't support resetting a single function. 5475 */ 5476 int pci_reset_function_locked(struct pci_dev *dev) 5477 { 5478 int rc; 5479 5480 if (!pci_reset_supported(dev)) 5481 return -ENOTTY; 5482 5483 pci_dev_save_and_disable(dev); 5484 5485 rc = __pci_reset_function_locked(dev); 5486 5487 pci_dev_restore(dev); 5488 5489 return rc; 5490 } 5491 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5492 5493 /** 5494 * pci_try_reset_function - quiesce and reset a PCI device function 5495 * @dev: PCI device to reset 5496 * 5497 * Same as above, except return -EAGAIN if unable to lock device. 5498 */ 5499 int pci_try_reset_function(struct pci_dev *dev) 5500 { 5501 int rc; 5502 5503 if (!pci_reset_supported(dev)) 5504 return -ENOTTY; 5505 5506 if (!pci_dev_trylock(dev)) 5507 return -EAGAIN; 5508 5509 pci_dev_save_and_disable(dev); 5510 rc = __pci_reset_function_locked(dev); 5511 pci_dev_restore(dev); 5512 pci_dev_unlock(dev); 5513 5514 return rc; 5515 } 5516 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5517 5518 /* Do any devices on or below this bus prevent a bus reset? */ 5519 static bool pci_bus_resettable(struct pci_bus *bus) 5520 { 5521 struct pci_dev *dev; 5522 5523 5524 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5525 return false; 5526 5527 list_for_each_entry(dev, &bus->devices, bus_list) { 5528 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5529 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5530 return false; 5531 } 5532 5533 return true; 5534 } 5535 5536 /* Lock devices from the top of the tree down */ 5537 static void pci_bus_lock(struct pci_bus *bus) 5538 { 5539 struct pci_dev *dev; 5540 5541 pci_dev_lock(bus->self); 5542 list_for_each_entry(dev, &bus->devices, bus_list) { 5543 if (dev->subordinate) 5544 pci_bus_lock(dev->subordinate); 5545 else 5546 pci_dev_lock(dev); 5547 } 5548 } 5549 5550 /* Unlock devices from the bottom of the tree up */ 5551 static void pci_bus_unlock(struct pci_bus *bus) 5552 { 5553 struct pci_dev *dev; 5554 5555 list_for_each_entry(dev, &bus->devices, bus_list) { 5556 if (dev->subordinate) 5557 pci_bus_unlock(dev->subordinate); 5558 else 5559 pci_dev_unlock(dev); 5560 } 5561 pci_dev_unlock(bus->self); 5562 } 5563 5564 /* Return 1 on successful lock, 0 on contention */ 5565 static int pci_bus_trylock(struct pci_bus *bus) 5566 { 5567 struct pci_dev *dev; 5568 5569 if (!pci_dev_trylock(bus->self)) 5570 return 0; 5571 5572 list_for_each_entry(dev, &bus->devices, bus_list) { 5573 if (dev->subordinate) { 5574 if (!pci_bus_trylock(dev->subordinate)) 5575 goto unlock; 5576 } else if (!pci_dev_trylock(dev)) 5577 goto unlock; 5578 } 5579 return 1; 5580 5581 unlock: 5582 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5583 if (dev->subordinate) 5584 pci_bus_unlock(dev->subordinate); 5585 else 5586 pci_dev_unlock(dev); 5587 } 5588 pci_dev_unlock(bus->self); 5589 return 0; 5590 } 5591 5592 /* Do any devices on or below this slot prevent a bus reset? */ 5593 static bool pci_slot_resettable(struct pci_slot *slot) 5594 { 5595 struct pci_dev *dev; 5596 5597 if (slot->bus->self && 5598 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5599 return false; 5600 5601 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5602 if (!dev->slot || dev->slot != slot) 5603 continue; 5604 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5605 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5606 return false; 5607 } 5608 5609 return true; 5610 } 5611 5612 /* Lock devices from the top of the tree down */ 5613 static void pci_slot_lock(struct pci_slot *slot) 5614 { 5615 struct pci_dev *dev; 5616 5617 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5618 if (!dev->slot || dev->slot != slot) 5619 continue; 5620 if (dev->subordinate) 5621 pci_bus_lock(dev->subordinate); 5622 else 5623 pci_dev_lock(dev); 5624 } 5625 } 5626 5627 /* Unlock devices from the bottom of the tree up */ 5628 static void pci_slot_unlock(struct pci_slot *slot) 5629 { 5630 struct pci_dev *dev; 5631 5632 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5633 if (!dev->slot || dev->slot != slot) 5634 continue; 5635 if (dev->subordinate) 5636 pci_bus_unlock(dev->subordinate); 5637 pci_dev_unlock(dev); 5638 } 5639 } 5640 5641 /* Return 1 on successful lock, 0 on contention */ 5642 static int pci_slot_trylock(struct pci_slot *slot) 5643 { 5644 struct pci_dev *dev; 5645 5646 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5647 if (!dev->slot || dev->slot != slot) 5648 continue; 5649 if (dev->subordinate) { 5650 if (!pci_bus_trylock(dev->subordinate)) { 5651 pci_dev_unlock(dev); 5652 goto unlock; 5653 } 5654 } else if (!pci_dev_trylock(dev)) 5655 goto unlock; 5656 } 5657 return 1; 5658 5659 unlock: 5660 list_for_each_entry_continue_reverse(dev, 5661 &slot->bus->devices, bus_list) { 5662 if (!dev->slot || dev->slot != slot) 5663 continue; 5664 if (dev->subordinate) 5665 pci_bus_unlock(dev->subordinate); 5666 else 5667 pci_dev_unlock(dev); 5668 } 5669 return 0; 5670 } 5671 5672 /* 5673 * Save and disable devices from the top of the tree down while holding 5674 * the @dev mutex lock for the entire tree. 5675 */ 5676 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5677 { 5678 struct pci_dev *dev; 5679 5680 list_for_each_entry(dev, &bus->devices, bus_list) { 5681 pci_dev_save_and_disable(dev); 5682 if (dev->subordinate) 5683 pci_bus_save_and_disable_locked(dev->subordinate); 5684 } 5685 } 5686 5687 /* 5688 * Restore devices from top of the tree down while holding @dev mutex lock 5689 * for the entire tree. Parent bridges need to be restored before we can 5690 * get to subordinate devices. 5691 */ 5692 static void pci_bus_restore_locked(struct pci_bus *bus) 5693 { 5694 struct pci_dev *dev; 5695 5696 list_for_each_entry(dev, &bus->devices, bus_list) { 5697 pci_dev_restore(dev); 5698 if (dev->subordinate) { 5699 pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5700 pci_bus_restore_locked(dev->subordinate); 5701 } 5702 } 5703 } 5704 5705 /* 5706 * Save and disable devices from the top of the tree down while holding 5707 * the @dev mutex lock for the entire tree. 5708 */ 5709 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5710 { 5711 struct pci_dev *dev; 5712 5713 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5714 if (!dev->slot || dev->slot != slot) 5715 continue; 5716 pci_dev_save_and_disable(dev); 5717 if (dev->subordinate) 5718 pci_bus_save_and_disable_locked(dev->subordinate); 5719 } 5720 } 5721 5722 /* 5723 * Restore devices from top of the tree down while holding @dev mutex lock 5724 * for the entire tree. Parent bridges need to be restored before we can 5725 * get to subordinate devices. 5726 */ 5727 static void pci_slot_restore_locked(struct pci_slot *slot) 5728 { 5729 struct pci_dev *dev; 5730 5731 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5732 if (!dev->slot || dev->slot != slot) 5733 continue; 5734 pci_dev_restore(dev); 5735 if (dev->subordinate) { 5736 pci_bridge_wait_for_secondary_bus(dev, "slot reset"); 5737 pci_bus_restore_locked(dev->subordinate); 5738 } 5739 } 5740 } 5741 5742 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5743 { 5744 int rc; 5745 5746 if (!slot || !pci_slot_resettable(slot)) 5747 return -ENOTTY; 5748 5749 if (!probe) 5750 pci_slot_lock(slot); 5751 5752 might_sleep(); 5753 5754 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5755 5756 if (!probe) 5757 pci_slot_unlock(slot); 5758 5759 return rc; 5760 } 5761 5762 /** 5763 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5764 * @slot: PCI slot to probe 5765 * 5766 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5767 */ 5768 int pci_probe_reset_slot(struct pci_slot *slot) 5769 { 5770 return pci_slot_reset(slot, PCI_RESET_PROBE); 5771 } 5772 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5773 5774 /** 5775 * __pci_reset_slot - Try to reset a PCI slot 5776 * @slot: PCI slot to reset 5777 * 5778 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5779 * independent of other slots. For instance, some slots may support slot power 5780 * control. In the case of a 1:1 bus to slot architecture, this function may 5781 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5782 * Generally a slot reset should be attempted before a bus reset. All of the 5783 * function of the slot and any subordinate buses behind the slot are reset 5784 * through this function. PCI config space of all devices in the slot and 5785 * behind the slot is saved before and restored after reset. 5786 * 5787 * Same as above except return -EAGAIN if the slot cannot be locked 5788 */ 5789 static int __pci_reset_slot(struct pci_slot *slot) 5790 { 5791 int rc; 5792 5793 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5794 if (rc) 5795 return rc; 5796 5797 if (pci_slot_trylock(slot)) { 5798 pci_slot_save_and_disable_locked(slot); 5799 might_sleep(); 5800 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5801 pci_slot_restore_locked(slot); 5802 pci_slot_unlock(slot); 5803 } else 5804 rc = -EAGAIN; 5805 5806 return rc; 5807 } 5808 5809 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5810 { 5811 int ret; 5812 5813 if (!bus->self || !pci_bus_resettable(bus)) 5814 return -ENOTTY; 5815 5816 if (probe) 5817 return 0; 5818 5819 pci_bus_lock(bus); 5820 5821 might_sleep(); 5822 5823 ret = pci_bridge_secondary_bus_reset(bus->self); 5824 5825 pci_bus_unlock(bus); 5826 5827 return ret; 5828 } 5829 5830 /** 5831 * pci_bus_error_reset - reset the bridge's subordinate bus 5832 * @bridge: The parent device that connects to the bus to reset 5833 * 5834 * This function will first try to reset the slots on this bus if the method is 5835 * available. If slot reset fails or is not available, this will fall back to a 5836 * secondary bus reset. 5837 */ 5838 int pci_bus_error_reset(struct pci_dev *bridge) 5839 { 5840 struct pci_bus *bus = bridge->subordinate; 5841 struct pci_slot *slot; 5842 5843 if (!bus) 5844 return -ENOTTY; 5845 5846 mutex_lock(&pci_slot_mutex); 5847 if (list_empty(&bus->slots)) 5848 goto bus_reset; 5849 5850 list_for_each_entry(slot, &bus->slots, list) 5851 if (pci_probe_reset_slot(slot)) 5852 goto bus_reset; 5853 5854 list_for_each_entry(slot, &bus->slots, list) 5855 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5856 goto bus_reset; 5857 5858 mutex_unlock(&pci_slot_mutex); 5859 return 0; 5860 bus_reset: 5861 mutex_unlock(&pci_slot_mutex); 5862 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5863 } 5864 5865 /** 5866 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5867 * @bus: PCI bus to probe 5868 * 5869 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5870 */ 5871 int pci_probe_reset_bus(struct pci_bus *bus) 5872 { 5873 return pci_bus_reset(bus, PCI_RESET_PROBE); 5874 } 5875 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5876 5877 /** 5878 * __pci_reset_bus - Try to reset a PCI bus 5879 * @bus: top level PCI bus to reset 5880 * 5881 * Same as above except return -EAGAIN if the bus cannot be locked 5882 */ 5883 static int __pci_reset_bus(struct pci_bus *bus) 5884 { 5885 int rc; 5886 5887 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5888 if (rc) 5889 return rc; 5890 5891 if (pci_bus_trylock(bus)) { 5892 pci_bus_save_and_disable_locked(bus); 5893 might_sleep(); 5894 rc = pci_bridge_secondary_bus_reset(bus->self); 5895 pci_bus_restore_locked(bus); 5896 pci_bus_unlock(bus); 5897 } else 5898 rc = -EAGAIN; 5899 5900 return rc; 5901 } 5902 5903 /** 5904 * pci_reset_bus - Try to reset a PCI bus 5905 * @pdev: top level PCI device to reset via slot/bus 5906 * 5907 * Same as above except return -EAGAIN if the bus cannot be locked 5908 */ 5909 int pci_reset_bus(struct pci_dev *pdev) 5910 { 5911 return (!pci_probe_reset_slot(pdev->slot)) ? 5912 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5913 } 5914 EXPORT_SYMBOL_GPL(pci_reset_bus); 5915 5916 /** 5917 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5918 * @dev: PCI device to query 5919 * 5920 * Returns mmrbc: maximum designed memory read count in bytes or 5921 * appropriate error value. 5922 */ 5923 int pcix_get_max_mmrbc(struct pci_dev *dev) 5924 { 5925 int cap; 5926 u32 stat; 5927 5928 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5929 if (!cap) 5930 return -EINVAL; 5931 5932 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5933 return -EINVAL; 5934 5935 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat); 5936 } 5937 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5938 5939 /** 5940 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5941 * @dev: PCI device to query 5942 * 5943 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5944 * value. 5945 */ 5946 int pcix_get_mmrbc(struct pci_dev *dev) 5947 { 5948 int cap; 5949 u16 cmd; 5950 5951 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5952 if (!cap) 5953 return -EINVAL; 5954 5955 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5956 return -EINVAL; 5957 5958 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 5959 } 5960 EXPORT_SYMBOL(pcix_get_mmrbc); 5961 5962 /** 5963 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5964 * @dev: PCI device to query 5965 * @mmrbc: maximum memory read count in bytes 5966 * valid values are 512, 1024, 2048, 4096 5967 * 5968 * If possible sets maximum memory read byte count, some bridges have errata 5969 * that prevent this. 5970 */ 5971 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5972 { 5973 int cap; 5974 u32 stat, v, o; 5975 u16 cmd; 5976 5977 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5978 return -EINVAL; 5979 5980 v = ffs(mmrbc) - 10; 5981 5982 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5983 if (!cap) 5984 return -EINVAL; 5985 5986 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5987 return -EINVAL; 5988 5989 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat)) 5990 return -E2BIG; 5991 5992 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5993 return -EINVAL; 5994 5995 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 5996 if (o != v) { 5997 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5998 return -EIO; 5999 6000 cmd &= ~PCI_X_CMD_MAX_READ; 6001 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v); 6002 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 6003 return -EIO; 6004 } 6005 return 0; 6006 } 6007 EXPORT_SYMBOL(pcix_set_mmrbc); 6008 6009 /** 6010 * pcie_get_readrq - get PCI Express read request size 6011 * @dev: PCI device to query 6012 * 6013 * Returns maximum memory read request in bytes or appropriate error value. 6014 */ 6015 int pcie_get_readrq(struct pci_dev *dev) 6016 { 6017 u16 ctl; 6018 6019 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6020 6021 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl); 6022 } 6023 EXPORT_SYMBOL(pcie_get_readrq); 6024 6025 /** 6026 * pcie_set_readrq - set PCI Express maximum memory read request 6027 * @dev: PCI device to query 6028 * @rq: maximum memory read count in bytes 6029 * valid values are 128, 256, 512, 1024, 2048, 4096 6030 * 6031 * If possible sets maximum memory read request in bytes 6032 */ 6033 int pcie_set_readrq(struct pci_dev *dev, int rq) 6034 { 6035 u16 v; 6036 int ret; 6037 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 6038 6039 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6040 return -EINVAL; 6041 6042 /* 6043 * If using the "performance" PCIe config, we clamp the read rq 6044 * size to the max packet size to keep the host bridge from 6045 * generating requests larger than we can cope with. 6046 */ 6047 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6048 int mps = pcie_get_mps(dev); 6049 6050 if (mps < rq) 6051 rq = mps; 6052 } 6053 6054 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8); 6055 6056 if (bridge->no_inc_mrrs) { 6057 int max_mrrs = pcie_get_readrq(dev); 6058 6059 if (rq > max_mrrs) { 6060 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 6061 return -EINVAL; 6062 } 6063 } 6064 6065 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6066 PCI_EXP_DEVCTL_READRQ, v); 6067 6068 return pcibios_err_to_errno(ret); 6069 } 6070 EXPORT_SYMBOL(pcie_set_readrq); 6071 6072 /** 6073 * pcie_get_mps - get PCI Express maximum payload size 6074 * @dev: PCI device to query 6075 * 6076 * Returns maximum payload size in bytes 6077 */ 6078 int pcie_get_mps(struct pci_dev *dev) 6079 { 6080 u16 ctl; 6081 6082 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6083 6084 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl); 6085 } 6086 EXPORT_SYMBOL(pcie_get_mps); 6087 6088 /** 6089 * pcie_set_mps - set PCI Express maximum payload size 6090 * @dev: PCI device to query 6091 * @mps: maximum payload size in bytes 6092 * valid values are 128, 256, 512, 1024, 2048, 4096 6093 * 6094 * If possible sets maximum payload size 6095 */ 6096 int pcie_set_mps(struct pci_dev *dev, int mps) 6097 { 6098 u16 v; 6099 int ret; 6100 6101 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6102 return -EINVAL; 6103 6104 v = ffs(mps) - 8; 6105 if (v > dev->pcie_mpss) 6106 return -EINVAL; 6107 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v); 6108 6109 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6110 PCI_EXP_DEVCTL_PAYLOAD, v); 6111 6112 return pcibios_err_to_errno(ret); 6113 } 6114 EXPORT_SYMBOL(pcie_set_mps); 6115 6116 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta) 6117 { 6118 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)]; 6119 } 6120 6121 int pcie_link_speed_mbps(struct pci_dev *pdev) 6122 { 6123 u16 lnksta; 6124 int err; 6125 6126 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 6127 if (err) 6128 return err; 6129 6130 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta)); 6131 } 6132 EXPORT_SYMBOL(pcie_link_speed_mbps); 6133 6134 /** 6135 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6136 * device and its bandwidth limitation 6137 * @dev: PCI device to query 6138 * @limiting_dev: storage for device causing the bandwidth limitation 6139 * @speed: storage for speed of limiting device 6140 * @width: storage for width of limiting device 6141 * 6142 * Walk up the PCI device chain and find the point where the minimum 6143 * bandwidth is available. Return the bandwidth available there and (if 6144 * limiting_dev, speed, and width pointers are supplied) information about 6145 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6146 * raw bandwidth. 6147 */ 6148 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6149 enum pci_bus_speed *speed, 6150 enum pcie_link_width *width) 6151 { 6152 u16 lnksta; 6153 enum pci_bus_speed next_speed; 6154 enum pcie_link_width next_width; 6155 u32 bw, next_bw; 6156 6157 if (speed) 6158 *speed = PCI_SPEED_UNKNOWN; 6159 if (width) 6160 *width = PCIE_LNK_WIDTH_UNKNOWN; 6161 6162 bw = 0; 6163 6164 while (dev) { 6165 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6166 6167 next_speed = to_pcie_link_speed(lnksta); 6168 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6169 6170 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6171 6172 /* Check if current device limits the total bandwidth */ 6173 if (!bw || next_bw <= bw) { 6174 bw = next_bw; 6175 6176 if (limiting_dev) 6177 *limiting_dev = dev; 6178 if (speed) 6179 *speed = next_speed; 6180 if (width) 6181 *width = next_width; 6182 } 6183 6184 dev = pci_upstream_bridge(dev); 6185 } 6186 6187 return bw; 6188 } 6189 EXPORT_SYMBOL(pcie_bandwidth_available); 6190 6191 /** 6192 * pcie_get_speed_cap - query for the PCI device's link speed capability 6193 * @dev: PCI device to query 6194 * 6195 * Query the PCI device speed capability. Return the maximum link speed 6196 * supported by the device. 6197 */ 6198 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6199 { 6200 u32 lnkcap2, lnkcap; 6201 6202 /* 6203 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6204 * implementation note there recommends using the Supported Link 6205 * Speeds Vector in Link Capabilities 2 when supported. 6206 * 6207 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6208 * should use the Supported Link Speeds field in Link Capabilities, 6209 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6210 */ 6211 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6212 6213 /* PCIe r3.0-compliant */ 6214 if (lnkcap2) 6215 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6216 6217 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6218 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6219 return PCIE_SPEED_5_0GT; 6220 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6221 return PCIE_SPEED_2_5GT; 6222 6223 return PCI_SPEED_UNKNOWN; 6224 } 6225 EXPORT_SYMBOL(pcie_get_speed_cap); 6226 6227 /** 6228 * pcie_get_width_cap - query for the PCI device's link width capability 6229 * @dev: PCI device to query 6230 * 6231 * Query the PCI device width capability. Return the maximum link width 6232 * supported by the device. 6233 */ 6234 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6235 { 6236 u32 lnkcap; 6237 6238 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6239 if (lnkcap) 6240 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6241 6242 return PCIE_LNK_WIDTH_UNKNOWN; 6243 } 6244 EXPORT_SYMBOL(pcie_get_width_cap); 6245 6246 /** 6247 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6248 * @dev: PCI device 6249 * @speed: storage for link speed 6250 * @width: storage for link width 6251 * 6252 * Calculate a PCI device's link bandwidth by querying for its link speed 6253 * and width, multiplying them, and applying encoding overhead. The result 6254 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6255 */ 6256 static u32 pcie_bandwidth_capable(struct pci_dev *dev, 6257 enum pci_bus_speed *speed, 6258 enum pcie_link_width *width) 6259 { 6260 *speed = pcie_get_speed_cap(dev); 6261 *width = pcie_get_width_cap(dev); 6262 6263 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6264 return 0; 6265 6266 return *width * PCIE_SPEED2MBS_ENC(*speed); 6267 } 6268 6269 /** 6270 * __pcie_print_link_status - Report the PCI device's link speed and width 6271 * @dev: PCI device to query 6272 * @verbose: Print info even when enough bandwidth is available 6273 * 6274 * If the available bandwidth at the device is less than the device is 6275 * capable of, report the device's maximum possible bandwidth and the 6276 * upstream link that limits its performance. If @verbose, always print 6277 * the available bandwidth, even if the device isn't constrained. 6278 */ 6279 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6280 { 6281 enum pcie_link_width width, width_cap; 6282 enum pci_bus_speed speed, speed_cap; 6283 struct pci_dev *limiting_dev = NULL; 6284 u32 bw_avail, bw_cap; 6285 6286 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6287 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6288 6289 if (bw_avail >= bw_cap && verbose) 6290 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6291 bw_cap / 1000, bw_cap % 1000, 6292 pci_speed_string(speed_cap), width_cap); 6293 else if (bw_avail < bw_cap) 6294 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6295 bw_avail / 1000, bw_avail % 1000, 6296 pci_speed_string(speed), width, 6297 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6298 bw_cap / 1000, bw_cap % 1000, 6299 pci_speed_string(speed_cap), width_cap); 6300 } 6301 6302 /** 6303 * pcie_print_link_status - Report the PCI device's link speed and width 6304 * @dev: PCI device to query 6305 * 6306 * Report the available bandwidth at the device. 6307 */ 6308 void pcie_print_link_status(struct pci_dev *dev) 6309 { 6310 __pcie_print_link_status(dev, true); 6311 } 6312 EXPORT_SYMBOL(pcie_print_link_status); 6313 6314 /** 6315 * pci_select_bars - Make BAR mask from the type of resource 6316 * @dev: the PCI device for which BAR mask is made 6317 * @flags: resource type mask to be selected 6318 * 6319 * This helper routine makes bar mask from the type of resource. 6320 */ 6321 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6322 { 6323 int i, bars = 0; 6324 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6325 if (pci_resource_flags(dev, i) & flags) 6326 bars |= (1 << i); 6327 return bars; 6328 } 6329 EXPORT_SYMBOL(pci_select_bars); 6330 6331 /* Some architectures require additional programming to enable VGA */ 6332 static arch_set_vga_state_t arch_set_vga_state; 6333 6334 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6335 { 6336 arch_set_vga_state = func; /* NULL disables */ 6337 } 6338 6339 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6340 unsigned int command_bits, u32 flags) 6341 { 6342 if (arch_set_vga_state) 6343 return arch_set_vga_state(dev, decode, command_bits, 6344 flags); 6345 return 0; 6346 } 6347 6348 /** 6349 * pci_set_vga_state - set VGA decode state on device and parents if requested 6350 * @dev: the PCI device 6351 * @decode: true = enable decoding, false = disable decoding 6352 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6353 * @flags: traverse ancestors and change bridges 6354 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6355 */ 6356 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6357 unsigned int command_bits, u32 flags) 6358 { 6359 struct pci_bus *bus; 6360 struct pci_dev *bridge; 6361 u16 cmd; 6362 int rc; 6363 6364 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6365 6366 /* ARCH specific VGA enables */ 6367 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6368 if (rc) 6369 return rc; 6370 6371 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6372 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6373 if (decode) 6374 cmd |= command_bits; 6375 else 6376 cmd &= ~command_bits; 6377 pci_write_config_word(dev, PCI_COMMAND, cmd); 6378 } 6379 6380 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6381 return 0; 6382 6383 bus = dev->bus; 6384 while (bus) { 6385 bridge = bus->self; 6386 if (bridge) { 6387 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6388 &cmd); 6389 if (decode) 6390 cmd |= PCI_BRIDGE_CTL_VGA; 6391 else 6392 cmd &= ~PCI_BRIDGE_CTL_VGA; 6393 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6394 cmd); 6395 } 6396 bus = bus->parent; 6397 } 6398 return 0; 6399 } 6400 6401 #ifdef CONFIG_ACPI 6402 bool pci_pr3_present(struct pci_dev *pdev) 6403 { 6404 struct acpi_device *adev; 6405 6406 if (acpi_disabled) 6407 return false; 6408 6409 adev = ACPI_COMPANION(&pdev->dev); 6410 if (!adev) 6411 return false; 6412 6413 return adev->power.flags.power_resources && 6414 acpi_has_method(adev->handle, "_PR3"); 6415 } 6416 EXPORT_SYMBOL_GPL(pci_pr3_present); 6417 #endif 6418 6419 /** 6420 * pci_add_dma_alias - Add a DMA devfn alias for a device 6421 * @dev: the PCI device for which alias is added 6422 * @devfn_from: alias slot and function 6423 * @nr_devfns: number of subsequent devfns to alias 6424 * 6425 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6426 * which is used to program permissible bus-devfn source addresses for DMA 6427 * requests in an IOMMU. These aliases factor into IOMMU group creation 6428 * and are useful for devices generating DMA requests beyond or different 6429 * from their logical bus-devfn. Examples include device quirks where the 6430 * device simply uses the wrong devfn, as well as non-transparent bridges 6431 * where the alias may be a proxy for devices in another domain. 6432 * 6433 * IOMMU group creation is performed during device discovery or addition, 6434 * prior to any potential DMA mapping and therefore prior to driver probing 6435 * (especially for userspace assigned devices where IOMMU group definition 6436 * cannot be left as a userspace activity). DMA aliases should therefore 6437 * be configured via quirks, such as the PCI fixup header quirk. 6438 */ 6439 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6440 unsigned int nr_devfns) 6441 { 6442 int devfn_to; 6443 6444 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6445 devfn_to = devfn_from + nr_devfns - 1; 6446 6447 if (!dev->dma_alias_mask) 6448 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6449 if (!dev->dma_alias_mask) { 6450 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6451 return; 6452 } 6453 6454 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6455 6456 if (nr_devfns == 1) 6457 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6458 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6459 else if (nr_devfns > 1) 6460 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6461 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6462 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6463 } 6464 6465 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6466 { 6467 return (dev1->dma_alias_mask && 6468 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6469 (dev2->dma_alias_mask && 6470 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6471 pci_real_dma_dev(dev1) == dev2 || 6472 pci_real_dma_dev(dev2) == dev1; 6473 } 6474 6475 bool pci_device_is_present(struct pci_dev *pdev) 6476 { 6477 u32 v; 6478 6479 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6480 pdev = pci_physfn(pdev); 6481 if (pci_dev_is_disconnected(pdev)) 6482 return false; 6483 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6484 } 6485 EXPORT_SYMBOL_GPL(pci_device_is_present); 6486 6487 void pci_ignore_hotplug(struct pci_dev *dev) 6488 { 6489 struct pci_dev *bridge = dev->bus->self; 6490 6491 dev->ignore_hotplug = 1; 6492 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6493 if (bridge) 6494 bridge->ignore_hotplug = 1; 6495 } 6496 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6497 6498 /** 6499 * pci_real_dma_dev - Get PCI DMA device for PCI device 6500 * @dev: the PCI device that may have a PCI DMA alias 6501 * 6502 * Permits the platform to provide architecture-specific functionality to 6503 * devices needing to alias DMA to another PCI device on another PCI bus. If 6504 * the PCI device is on the same bus, it is recommended to use 6505 * pci_add_dma_alias(). This is the default implementation. Architecture 6506 * implementations can override this. 6507 */ 6508 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6509 { 6510 return dev; 6511 } 6512 6513 resource_size_t __weak pcibios_default_alignment(void) 6514 { 6515 return 0; 6516 } 6517 6518 /* 6519 * Arches that don't want to expose struct resource to userland as-is in 6520 * sysfs and /proc can implement their own pci_resource_to_user(). 6521 */ 6522 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6523 const struct resource *rsrc, 6524 resource_size_t *start, resource_size_t *end) 6525 { 6526 *start = rsrc->start; 6527 *end = rsrc->end; 6528 } 6529 6530 static char *resource_alignment_param; 6531 static DEFINE_SPINLOCK(resource_alignment_lock); 6532 6533 /** 6534 * pci_specified_resource_alignment - get resource alignment specified by user. 6535 * @dev: the PCI device to get 6536 * @resize: whether or not to change resources' size when reassigning alignment 6537 * 6538 * RETURNS: Resource alignment if it is specified. 6539 * Zero if it is not specified. 6540 */ 6541 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6542 bool *resize) 6543 { 6544 int align_order, count; 6545 resource_size_t align = pcibios_default_alignment(); 6546 const char *p; 6547 int ret; 6548 6549 spin_lock(&resource_alignment_lock); 6550 p = resource_alignment_param; 6551 if (!p || !*p) 6552 goto out; 6553 if (pci_has_flag(PCI_PROBE_ONLY)) { 6554 align = 0; 6555 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6556 goto out; 6557 } 6558 6559 while (*p) { 6560 count = 0; 6561 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6562 p[count] == '@') { 6563 p += count + 1; 6564 if (align_order > 63) { 6565 pr_err("PCI: Invalid requested alignment (order %d)\n", 6566 align_order); 6567 align_order = PAGE_SHIFT; 6568 } 6569 } else { 6570 align_order = PAGE_SHIFT; 6571 } 6572 6573 ret = pci_dev_str_match(dev, p, &p); 6574 if (ret == 1) { 6575 *resize = true; 6576 align = 1ULL << align_order; 6577 break; 6578 } else if (ret < 0) { 6579 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6580 p); 6581 break; 6582 } 6583 6584 if (*p != ';' && *p != ',') { 6585 /* End of param or invalid format */ 6586 break; 6587 } 6588 p++; 6589 } 6590 out: 6591 spin_unlock(&resource_alignment_lock); 6592 return align; 6593 } 6594 6595 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6596 resource_size_t align, bool resize) 6597 { 6598 struct resource *r = &dev->resource[bar]; 6599 const char *r_name = pci_resource_name(dev, bar); 6600 resource_size_t size; 6601 6602 if (!(r->flags & IORESOURCE_MEM)) 6603 return; 6604 6605 if (r->flags & IORESOURCE_PCI_FIXED) { 6606 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n", 6607 r_name, r, (unsigned long long)align); 6608 return; 6609 } 6610 6611 size = resource_size(r); 6612 if (size >= align) 6613 return; 6614 6615 /* 6616 * Increase the alignment of the resource. There are two ways we 6617 * can do this: 6618 * 6619 * 1) Increase the size of the resource. BARs are aligned on their 6620 * size, so when we reallocate space for this resource, we'll 6621 * allocate it with the larger alignment. This also prevents 6622 * assignment of any other BARs inside the alignment region, so 6623 * if we're requesting page alignment, this means no other BARs 6624 * will share the page. 6625 * 6626 * The disadvantage is that this makes the resource larger than 6627 * the hardware BAR, which may break drivers that compute things 6628 * based on the resource size, e.g., to find registers at a 6629 * fixed offset before the end of the BAR. 6630 * 6631 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6632 * set r->start to the desired alignment. By itself this 6633 * doesn't prevent other BARs being put inside the alignment 6634 * region, but if we realign *every* resource of every device in 6635 * the system, none of them will share an alignment region. 6636 * 6637 * When the user has requested alignment for only some devices via 6638 * the "pci=resource_alignment" argument, "resize" is true and we 6639 * use the first method. Otherwise we assume we're aligning all 6640 * devices and we use the second. 6641 */ 6642 6643 pci_info(dev, "%s %pR: requesting alignment to %#llx\n", 6644 r_name, r, (unsigned long long)align); 6645 6646 if (resize) { 6647 r->start = 0; 6648 r->end = align - 1; 6649 } else { 6650 r->flags &= ~IORESOURCE_SIZEALIGN; 6651 r->flags |= IORESOURCE_STARTALIGN; 6652 r->start = align; 6653 r->end = r->start + size - 1; 6654 } 6655 r->flags |= IORESOURCE_UNSET; 6656 } 6657 6658 /* 6659 * This function disables memory decoding and releases memory resources 6660 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6661 * It also rounds up size to specified alignment. 6662 * Later on, the kernel will assign page-aligned memory resource back 6663 * to the device. 6664 */ 6665 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6666 { 6667 int i; 6668 struct resource *r; 6669 resource_size_t align; 6670 u16 command; 6671 bool resize = false; 6672 6673 /* 6674 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6675 * 3.4.1.11. Their resources are allocated from the space 6676 * described by the VF BARx register in the PF's SR-IOV capability. 6677 * We can't influence their alignment here. 6678 */ 6679 if (dev->is_virtfn) 6680 return; 6681 6682 /* check if specified PCI is target device to reassign */ 6683 align = pci_specified_resource_alignment(dev, &resize); 6684 if (!align) 6685 return; 6686 6687 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6688 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6689 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6690 return; 6691 } 6692 6693 pci_read_config_word(dev, PCI_COMMAND, &command); 6694 command &= ~PCI_COMMAND_MEMORY; 6695 pci_write_config_word(dev, PCI_COMMAND, command); 6696 6697 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6698 pci_request_resource_alignment(dev, i, align, resize); 6699 6700 /* 6701 * Need to disable bridge's resource window, 6702 * to enable the kernel to reassign new resource 6703 * window later on. 6704 */ 6705 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6706 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6707 r = &dev->resource[i]; 6708 if (!(r->flags & IORESOURCE_MEM)) 6709 continue; 6710 r->flags |= IORESOURCE_UNSET; 6711 r->end = resource_size(r) - 1; 6712 r->start = 0; 6713 } 6714 pci_disable_bridge_window(dev); 6715 } 6716 } 6717 6718 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6719 { 6720 size_t count = 0; 6721 6722 spin_lock(&resource_alignment_lock); 6723 if (resource_alignment_param) 6724 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6725 spin_unlock(&resource_alignment_lock); 6726 6727 return count; 6728 } 6729 6730 static ssize_t resource_alignment_store(const struct bus_type *bus, 6731 const char *buf, size_t count) 6732 { 6733 char *param, *old, *end; 6734 6735 if (count >= (PAGE_SIZE - 1)) 6736 return -EINVAL; 6737 6738 param = kstrndup(buf, count, GFP_KERNEL); 6739 if (!param) 6740 return -ENOMEM; 6741 6742 end = strchr(param, '\n'); 6743 if (end) 6744 *end = '\0'; 6745 6746 spin_lock(&resource_alignment_lock); 6747 old = resource_alignment_param; 6748 if (strlen(param)) { 6749 resource_alignment_param = param; 6750 } else { 6751 kfree(param); 6752 resource_alignment_param = NULL; 6753 } 6754 spin_unlock(&resource_alignment_lock); 6755 6756 kfree(old); 6757 6758 return count; 6759 } 6760 6761 static BUS_ATTR_RW(resource_alignment); 6762 6763 static int __init pci_resource_alignment_sysfs_init(void) 6764 { 6765 return bus_create_file(&pci_bus_type, 6766 &bus_attr_resource_alignment); 6767 } 6768 late_initcall(pci_resource_alignment_sysfs_init); 6769 6770 static void pci_no_domains(void) 6771 { 6772 #ifdef CONFIG_PCI_DOMAINS 6773 pci_domains_supported = 0; 6774 #endif 6775 } 6776 6777 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6778 static DEFINE_IDA(pci_domain_nr_static_ida); 6779 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6780 6781 static void of_pci_reserve_static_domain_nr(void) 6782 { 6783 struct device_node *np; 6784 int domain_nr; 6785 6786 for_each_node_by_type(np, "pci") { 6787 domain_nr = of_get_pci_domain_nr(np); 6788 if (domain_nr < 0) 6789 continue; 6790 /* 6791 * Permanently allocate domain_nr in dynamic_ida 6792 * to prevent it from dynamic allocation. 6793 */ 6794 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6795 domain_nr, domain_nr, GFP_KERNEL); 6796 } 6797 } 6798 6799 static int of_pci_bus_find_domain_nr(struct device *parent) 6800 { 6801 static bool static_domains_reserved = false; 6802 int domain_nr; 6803 6804 /* On the first call scan device tree for static allocations. */ 6805 if (!static_domains_reserved) { 6806 of_pci_reserve_static_domain_nr(); 6807 static_domains_reserved = true; 6808 } 6809 6810 if (parent) { 6811 /* 6812 * If domain is in DT, allocate it in static IDA. This 6813 * prevents duplicate static allocations in case of errors 6814 * in DT. 6815 */ 6816 domain_nr = of_get_pci_domain_nr(parent->of_node); 6817 if (domain_nr >= 0) 6818 return ida_alloc_range(&pci_domain_nr_static_ida, 6819 domain_nr, domain_nr, 6820 GFP_KERNEL); 6821 } 6822 6823 /* 6824 * If domain was not specified in DT, choose a free ID from dynamic 6825 * allocations. All domain numbers from DT are permanently in 6826 * dynamic allocations to prevent assigning them to other DT nodes 6827 * without static domain. 6828 */ 6829 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6830 } 6831 6832 static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr) 6833 { 6834 if (domain_nr < 0) 6835 return; 6836 6837 /* Release domain from IDA where it was allocated. */ 6838 if (of_get_pci_domain_nr(parent->of_node) == domain_nr) 6839 ida_free(&pci_domain_nr_static_ida, domain_nr); 6840 else 6841 ida_free(&pci_domain_nr_dynamic_ida, domain_nr); 6842 } 6843 6844 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6845 { 6846 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6847 acpi_pci_bus_find_domain_nr(bus); 6848 } 6849 6850 void pci_bus_release_domain_nr(struct device *parent, int domain_nr) 6851 { 6852 if (!acpi_disabled) 6853 return; 6854 of_pci_bus_release_domain_nr(parent, domain_nr); 6855 } 6856 #endif 6857 6858 /** 6859 * pci_ext_cfg_avail - can we access extended PCI config space? 6860 * 6861 * Returns 1 if we can access PCI extended config space (offsets 6862 * greater than 0xff). This is the default implementation. Architecture 6863 * implementations can override this. 6864 */ 6865 int __weak pci_ext_cfg_avail(void) 6866 { 6867 return 1; 6868 } 6869 6870 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6871 { 6872 } 6873 EXPORT_SYMBOL(pci_fixup_cardbus); 6874 6875 static int __init pci_setup(char *str) 6876 { 6877 while (str) { 6878 char *k = strchr(str, ','); 6879 if (k) 6880 *k++ = 0; 6881 if (*str && (str = pcibios_setup(str)) && *str) { 6882 if (!strcmp(str, "nomsi")) { 6883 pci_no_msi(); 6884 } else if (!strncmp(str, "noats", 5)) { 6885 pr_info("PCIe: ATS is disabled\n"); 6886 pcie_ats_disabled = true; 6887 } else if (!strcmp(str, "noaer")) { 6888 pci_no_aer(); 6889 } else if (!strcmp(str, "earlydump")) { 6890 pci_early_dump = true; 6891 } else if (!strncmp(str, "realloc=", 8)) { 6892 pci_realloc_get_opt(str + 8); 6893 } else if (!strncmp(str, "realloc", 7)) { 6894 pci_realloc_get_opt("on"); 6895 } else if (!strcmp(str, "nodomains")) { 6896 pci_no_domains(); 6897 } else if (!strncmp(str, "noari", 5)) { 6898 pcie_ari_disabled = true; 6899 } else if (!strncmp(str, "cbiosize=", 9)) { 6900 pci_cardbus_io_size = memparse(str + 9, &str); 6901 } else if (!strncmp(str, "cbmemsize=", 10)) { 6902 pci_cardbus_mem_size = memparse(str + 10, &str); 6903 } else if (!strncmp(str, "resource_alignment=", 19)) { 6904 resource_alignment_param = str + 19; 6905 } else if (!strncmp(str, "ecrc=", 5)) { 6906 pcie_ecrc_get_policy(str + 5); 6907 } else if (!strncmp(str, "hpiosize=", 9)) { 6908 pci_hotplug_io_size = memparse(str + 9, &str); 6909 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6910 pci_hotplug_mmio_size = memparse(str + 11, &str); 6911 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6912 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6913 } else if (!strncmp(str, "hpmemsize=", 10)) { 6914 pci_hotplug_mmio_size = memparse(str + 10, &str); 6915 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6916 } else if (!strncmp(str, "hpbussize=", 10)) { 6917 pci_hotplug_bus_size = 6918 simple_strtoul(str + 10, &str, 0); 6919 if (pci_hotplug_bus_size > 0xff) 6920 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6921 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6922 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6923 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6924 pcie_bus_config = PCIE_BUS_SAFE; 6925 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6926 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6927 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6928 pcie_bus_config = PCIE_BUS_PEER2PEER; 6929 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6930 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6931 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6932 disable_acs_redir_param = str + 18; 6933 } else if (!strncmp(str, "config_acs=", 11)) { 6934 config_acs_param = str + 11; 6935 } else { 6936 pr_err("PCI: Unknown option `%s'\n", str); 6937 } 6938 } 6939 str = k; 6940 } 6941 return 0; 6942 } 6943 early_param("pci", pci_setup); 6944 6945 /* 6946 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6947 * in pci_setup(), above, to point to data in the __initdata section which 6948 * will be freed after the init sequence is complete. We can't allocate memory 6949 * in pci_setup() because some architectures do not have any memory allocation 6950 * service available during an early_param() call. So we allocate memory and 6951 * copy the variable here before the init section is freed. 6952 * 6953 */ 6954 static int __init pci_realloc_setup_params(void) 6955 { 6956 resource_alignment_param = kstrdup(resource_alignment_param, 6957 GFP_KERNEL); 6958 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6959 config_acs_param = kstrdup(config_acs_param, GFP_KERNEL); 6960 6961 return 0; 6962 } 6963 pure_initcall(pci_realloc_setup_params); 6964