1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/pci_hotplug.h> 30 #include <linux/vmalloc.h> 31 #include <asm/dma.h> 32 #include <linux/aer.h> 33 #include <linux/bitfield.h> 34 #include "pci.h" 35 36 DEFINE_MUTEX(pci_slot_mutex); 37 38 const char *pci_power_names[] = { 39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 40 }; 41 EXPORT_SYMBOL_GPL(pci_power_names); 42 43 #ifdef CONFIG_X86_32 44 int isa_dma_bridge_buggy; 45 EXPORT_SYMBOL(isa_dma_bridge_buggy); 46 #endif 47 48 int pci_pci_problems; 49 EXPORT_SYMBOL(pci_pci_problems); 50 51 unsigned int pci_pm_d3hot_delay; 52 53 static void pci_pme_list_scan(struct work_struct *work); 54 55 static LIST_HEAD(pci_pme_list); 56 static DEFINE_MUTEX(pci_pme_list_mutex); 57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 58 59 struct pci_pme_device { 60 struct list_head list; 61 struct pci_dev *dev; 62 }; 63 64 #define PME_TIMEOUT 1000 /* How long between PME checks */ 65 66 /* 67 * Following exit from Conventional Reset, devices must be ready within 1 sec 68 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 69 * Reset (PCIe r6.0 sec 5.8). 70 */ 71 #define PCI_RESET_WAIT 1000 /* msec */ 72 73 /* 74 * Devices may extend the 1 sec period through Request Retry Status 75 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 76 * limit, but 60 sec ought to be enough for any device to become 77 * responsive. 78 */ 79 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 80 81 static void pci_dev_d3_sleep(struct pci_dev *dev) 82 { 83 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 84 unsigned int upper; 85 86 if (delay_ms) { 87 /* Use a 20% upper bound, 1ms minimum */ 88 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 89 usleep_range(delay_ms * USEC_PER_MSEC, 90 (delay_ms + upper) * USEC_PER_MSEC); 91 } 92 } 93 94 bool pci_reset_supported(struct pci_dev *dev) 95 { 96 return dev->reset_methods[0] != 0; 97 } 98 99 #ifdef CONFIG_PCI_DOMAINS 100 int pci_domains_supported = 1; 101 #endif 102 103 #define DEFAULT_CARDBUS_IO_SIZE (256) 104 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 105 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 106 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 107 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 108 109 #define DEFAULT_HOTPLUG_IO_SIZE (256) 110 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 111 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 112 /* hpiosize=nn can override this */ 113 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 114 /* 115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 117 * pci=hpmemsize=nnM overrides both 118 */ 119 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 120 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 121 122 #define DEFAULT_HOTPLUG_BUS_SIZE 1 123 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 124 125 126 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 127 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 129 #elif defined CONFIG_PCIE_BUS_SAFE 130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 131 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 132 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 133 #elif defined CONFIG_PCIE_BUS_PEER2PEER 134 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 135 #else 136 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 137 #endif 138 139 /* 140 * The default CLS is used if arch didn't set CLS explicitly and not 141 * all pci devices agree on the same value. Arch can override either 142 * the dfl or actual value as it sees fit. Don't forget this is 143 * measured in 32-bit words, not bytes. 144 */ 145 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 146 u8 pci_cache_line_size; 147 148 /* 149 * If we set up a device for bus mastering, we need to check the latency 150 * timer as certain BIOSes forget to set it properly. 151 */ 152 unsigned int pcibios_max_latency = 255; 153 154 /* If set, the PCIe ARI capability will not be used. */ 155 static bool pcie_ari_disabled; 156 157 /* If set, the PCIe ATS capability will not be used. */ 158 static bool pcie_ats_disabled; 159 160 /* If set, the PCI config space of each device is printed during boot. */ 161 bool pci_early_dump; 162 163 bool pci_ats_disabled(void) 164 { 165 return pcie_ats_disabled; 166 } 167 EXPORT_SYMBOL_GPL(pci_ats_disabled); 168 169 /* Disable bridge_d3 for all PCIe ports */ 170 static bool pci_bridge_d3_disable; 171 /* Force bridge_d3 for all PCIe ports */ 172 static bool pci_bridge_d3_force; 173 174 static int __init pcie_port_pm_setup(char *str) 175 { 176 if (!strcmp(str, "off")) 177 pci_bridge_d3_disable = true; 178 else if (!strcmp(str, "force")) 179 pci_bridge_d3_force = true; 180 return 1; 181 } 182 __setup("pcie_port_pm=", pcie_port_pm_setup); 183 184 /** 185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 186 * @bus: pointer to PCI bus structure to search 187 * 188 * Given a PCI bus, returns the highest PCI bus number present in the set 189 * including the given PCI bus and its list of child PCI buses. 190 */ 191 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 192 { 193 struct pci_bus *tmp; 194 unsigned char max, n; 195 196 max = bus->busn_res.end; 197 list_for_each_entry(tmp, &bus->children, node) { 198 n = pci_bus_max_busnr(tmp); 199 if (n > max) 200 max = n; 201 } 202 return max; 203 } 204 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 205 206 /** 207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 208 * @pdev: the PCI device 209 * 210 * Returns error bits set in PCI_STATUS and clears them. 211 */ 212 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 213 { 214 u16 status; 215 int ret; 216 217 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 218 if (ret != PCIBIOS_SUCCESSFUL) 219 return -EIO; 220 221 status &= PCI_STATUS_ERROR_BITS; 222 if (status) 223 pci_write_config_word(pdev, PCI_STATUS, status); 224 225 return status; 226 } 227 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 228 229 #ifdef CONFIG_HAS_IOMEM 230 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 231 bool write_combine) 232 { 233 struct resource *res = &pdev->resource[bar]; 234 resource_size_t start = res->start; 235 resource_size_t size = resource_size(res); 236 237 /* 238 * Make sure the BAR is actually a memory resource, not an IO resource 239 */ 240 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 241 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 242 return NULL; 243 } 244 245 if (write_combine) 246 return ioremap_wc(start, size); 247 248 return ioremap(start, size); 249 } 250 251 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 252 { 253 return __pci_ioremap_resource(pdev, bar, false); 254 } 255 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 256 257 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 258 { 259 return __pci_ioremap_resource(pdev, bar, true); 260 } 261 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 262 #endif 263 264 /** 265 * pci_dev_str_match_path - test if a path string matches a device 266 * @dev: the PCI device to test 267 * @path: string to match the device against 268 * @endptr: pointer to the string after the match 269 * 270 * Test if a string (typically from a kernel parameter) formatted as a 271 * path of device/function addresses matches a PCI device. The string must 272 * be of the form: 273 * 274 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 275 * 276 * A path for a device can be obtained using 'lspci -t'. Using a path 277 * is more robust against bus renumbering than using only a single bus, 278 * device and function address. 279 * 280 * Returns 1 if the string matches the device, 0 if it does not and 281 * a negative error code if it fails to parse the string. 282 */ 283 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 284 const char **endptr) 285 { 286 int ret; 287 unsigned int seg, bus, slot, func; 288 char *wpath, *p; 289 char end; 290 291 *endptr = strchrnul(path, ';'); 292 293 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 294 if (!wpath) 295 return -ENOMEM; 296 297 while (1) { 298 p = strrchr(wpath, '/'); 299 if (!p) 300 break; 301 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 302 if (ret != 2) { 303 ret = -EINVAL; 304 goto free_and_exit; 305 } 306 307 if (dev->devfn != PCI_DEVFN(slot, func)) { 308 ret = 0; 309 goto free_and_exit; 310 } 311 312 /* 313 * Note: we don't need to get a reference to the upstream 314 * bridge because we hold a reference to the top level 315 * device which should hold a reference to the bridge, 316 * and so on. 317 */ 318 dev = pci_upstream_bridge(dev); 319 if (!dev) { 320 ret = 0; 321 goto free_and_exit; 322 } 323 324 *p = 0; 325 } 326 327 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 328 &func, &end); 329 if (ret != 4) { 330 seg = 0; 331 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 332 if (ret != 3) { 333 ret = -EINVAL; 334 goto free_and_exit; 335 } 336 } 337 338 ret = (seg == pci_domain_nr(dev->bus) && 339 bus == dev->bus->number && 340 dev->devfn == PCI_DEVFN(slot, func)); 341 342 free_and_exit: 343 kfree(wpath); 344 return ret; 345 } 346 347 /** 348 * pci_dev_str_match - test if a string matches a device 349 * @dev: the PCI device to test 350 * @p: string to match the device against 351 * @endptr: pointer to the string after the match 352 * 353 * Test if a string (typically from a kernel parameter) matches a specified 354 * PCI device. The string may be of one of the following formats: 355 * 356 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 357 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 358 * 359 * The first format specifies a PCI bus/device/function address which 360 * may change if new hardware is inserted, if motherboard firmware changes, 361 * or due to changes caused in kernel parameters. If the domain is 362 * left unspecified, it is taken to be 0. In order to be robust against 363 * bus renumbering issues, a path of PCI device/function numbers may be used 364 * to address the specific device. The path for a device can be determined 365 * through the use of 'lspci -t'. 366 * 367 * The second format matches devices using IDs in the configuration 368 * space which may match multiple devices in the system. A value of 0 369 * for any field will match all devices. (Note: this differs from 370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 371 * legacy reasons and convenience so users don't have to specify 372 * FFFFFFFFs on the command line.) 373 * 374 * Returns 1 if the string matches the device, 0 if it does not and 375 * a negative error code if the string cannot be parsed. 376 */ 377 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 378 const char **endptr) 379 { 380 int ret; 381 int count; 382 unsigned short vendor, device, subsystem_vendor, subsystem_device; 383 384 if (strncmp(p, "pci:", 4) == 0) { 385 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 386 p += 4; 387 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 388 &subsystem_vendor, &subsystem_device, &count); 389 if (ret != 4) { 390 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 391 if (ret != 2) 392 return -EINVAL; 393 394 subsystem_vendor = 0; 395 subsystem_device = 0; 396 } 397 398 p += count; 399 400 if ((!vendor || vendor == dev->vendor) && 401 (!device || device == dev->device) && 402 (!subsystem_vendor || 403 subsystem_vendor == dev->subsystem_vendor) && 404 (!subsystem_device || 405 subsystem_device == dev->subsystem_device)) 406 goto found; 407 } else { 408 /* 409 * PCI Bus, Device, Function IDs are specified 410 * (optionally, may include a path of devfns following it) 411 */ 412 ret = pci_dev_str_match_path(dev, p, &p); 413 if (ret < 0) 414 return ret; 415 else if (ret) 416 goto found; 417 } 418 419 *endptr = p; 420 return 0; 421 422 found: 423 *endptr = p; 424 return 1; 425 } 426 427 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 428 u8 pos, int cap, int *ttl) 429 { 430 u8 id; 431 u16 ent; 432 433 pci_bus_read_config_byte(bus, devfn, pos, &pos); 434 435 while ((*ttl)--) { 436 if (pos < 0x40) 437 break; 438 pos &= ~3; 439 pci_bus_read_config_word(bus, devfn, pos, &ent); 440 441 id = ent & 0xff; 442 if (id == 0xff) 443 break; 444 if (id == cap) 445 return pos; 446 pos = (ent >> 8); 447 } 448 return 0; 449 } 450 451 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 452 u8 pos, int cap) 453 { 454 int ttl = PCI_FIND_CAP_TTL; 455 456 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 457 } 458 459 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 460 { 461 return __pci_find_next_cap(dev->bus, dev->devfn, 462 pos + PCI_CAP_LIST_NEXT, cap); 463 } 464 EXPORT_SYMBOL_GPL(pci_find_next_capability); 465 466 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 467 unsigned int devfn, u8 hdr_type) 468 { 469 u16 status; 470 471 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 472 if (!(status & PCI_STATUS_CAP_LIST)) 473 return 0; 474 475 switch (hdr_type) { 476 case PCI_HEADER_TYPE_NORMAL: 477 case PCI_HEADER_TYPE_BRIDGE: 478 return PCI_CAPABILITY_LIST; 479 case PCI_HEADER_TYPE_CARDBUS: 480 return PCI_CB_CAPABILITY_LIST; 481 } 482 483 return 0; 484 } 485 486 /** 487 * pci_find_capability - query for devices' capabilities 488 * @dev: PCI device to query 489 * @cap: capability code 490 * 491 * Tell if a device supports a given PCI capability. 492 * Returns the address of the requested capability structure within the 493 * device's PCI configuration space or 0 in case the device does not 494 * support it. Possible values for @cap include: 495 * 496 * %PCI_CAP_ID_PM Power Management 497 * %PCI_CAP_ID_AGP Accelerated Graphics Port 498 * %PCI_CAP_ID_VPD Vital Product Data 499 * %PCI_CAP_ID_SLOTID Slot Identification 500 * %PCI_CAP_ID_MSI Message Signalled Interrupts 501 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 502 * %PCI_CAP_ID_PCIX PCI-X 503 * %PCI_CAP_ID_EXP PCI Express 504 */ 505 u8 pci_find_capability(struct pci_dev *dev, int cap) 506 { 507 u8 pos; 508 509 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 510 if (pos) 511 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 512 513 return pos; 514 } 515 EXPORT_SYMBOL(pci_find_capability); 516 517 /** 518 * pci_bus_find_capability - query for devices' capabilities 519 * @bus: the PCI bus to query 520 * @devfn: PCI device to query 521 * @cap: capability code 522 * 523 * Like pci_find_capability() but works for PCI devices that do not have a 524 * pci_dev structure set up yet. 525 * 526 * Returns the address of the requested capability structure within the 527 * device's PCI configuration space or 0 in case the device does not 528 * support it. 529 */ 530 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 531 { 532 u8 hdr_type, pos; 533 534 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 535 536 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK); 537 if (pos) 538 pos = __pci_find_next_cap(bus, devfn, pos, cap); 539 540 return pos; 541 } 542 EXPORT_SYMBOL(pci_bus_find_capability); 543 544 /** 545 * pci_find_next_ext_capability - Find an extended capability 546 * @dev: PCI device to query 547 * @start: address at which to start looking (0 to start at beginning of list) 548 * @cap: capability code 549 * 550 * Returns the address of the next matching extended capability structure 551 * within the device's PCI configuration space or 0 if the device does 552 * not support it. Some capabilities can occur several times, e.g., the 553 * vendor-specific capability, and this provides a way to find them all. 554 */ 555 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 556 { 557 u32 header; 558 int ttl; 559 u16 pos = PCI_CFG_SPACE_SIZE; 560 561 /* minimum 8 bytes per capability */ 562 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 563 564 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 565 return 0; 566 567 if (start) 568 pos = start; 569 570 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 571 return 0; 572 573 /* 574 * If we have no capabilities, this is indicated by cap ID, 575 * cap version and next pointer all being 0. 576 */ 577 if (header == 0) 578 return 0; 579 580 while (ttl-- > 0) { 581 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 582 return pos; 583 584 pos = PCI_EXT_CAP_NEXT(header); 585 if (pos < PCI_CFG_SPACE_SIZE) 586 break; 587 588 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 589 break; 590 } 591 592 return 0; 593 } 594 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 595 596 /** 597 * pci_find_ext_capability - Find an extended capability 598 * @dev: PCI device to query 599 * @cap: capability code 600 * 601 * Returns the address of the requested extended capability structure 602 * within the device's PCI configuration space or 0 if the device does 603 * not support it. Possible values for @cap include: 604 * 605 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 606 * %PCI_EXT_CAP_ID_VC Virtual Channel 607 * %PCI_EXT_CAP_ID_DSN Device Serial Number 608 * %PCI_EXT_CAP_ID_PWR Power Budgeting 609 */ 610 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 611 { 612 return pci_find_next_ext_capability(dev, 0, cap); 613 } 614 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 615 616 /** 617 * pci_get_dsn - Read and return the 8-byte Device Serial Number 618 * @dev: PCI device to query 619 * 620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 621 * Number. 622 * 623 * Returns the DSN, or zero if the capability does not exist. 624 */ 625 u64 pci_get_dsn(struct pci_dev *dev) 626 { 627 u32 dword; 628 u64 dsn; 629 int pos; 630 631 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 632 if (!pos) 633 return 0; 634 635 /* 636 * The Device Serial Number is two dwords offset 4 bytes from the 637 * capability position. The specification says that the first dword is 638 * the lower half, and the second dword is the upper half. 639 */ 640 pos += 4; 641 pci_read_config_dword(dev, pos, &dword); 642 dsn = (u64)dword; 643 pci_read_config_dword(dev, pos + 4, &dword); 644 dsn |= ((u64)dword) << 32; 645 646 return dsn; 647 } 648 EXPORT_SYMBOL_GPL(pci_get_dsn); 649 650 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 651 { 652 int rc, ttl = PCI_FIND_CAP_TTL; 653 u8 cap, mask; 654 655 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 656 mask = HT_3BIT_CAP_MASK; 657 else 658 mask = HT_5BIT_CAP_MASK; 659 660 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 661 PCI_CAP_ID_HT, &ttl); 662 while (pos) { 663 rc = pci_read_config_byte(dev, pos + 3, &cap); 664 if (rc != PCIBIOS_SUCCESSFUL) 665 return 0; 666 667 if ((cap & mask) == ht_cap) 668 return pos; 669 670 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 671 pos + PCI_CAP_LIST_NEXT, 672 PCI_CAP_ID_HT, &ttl); 673 } 674 675 return 0; 676 } 677 678 /** 679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 680 * @dev: PCI device to query 681 * @pos: Position from which to continue searching 682 * @ht_cap: HyperTransport capability code 683 * 684 * To be used in conjunction with pci_find_ht_capability() to search for 685 * all capabilities matching @ht_cap. @pos should always be a value returned 686 * from pci_find_ht_capability(). 687 * 688 * NB. To be 100% safe against broken PCI devices, the caller should take 689 * steps to avoid an infinite loop. 690 */ 691 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 692 { 693 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 694 } 695 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 696 697 /** 698 * pci_find_ht_capability - query a device's HyperTransport capabilities 699 * @dev: PCI device to query 700 * @ht_cap: HyperTransport capability code 701 * 702 * Tell if a device supports a given HyperTransport capability. 703 * Returns an address within the device's PCI configuration space 704 * or 0 in case the device does not support the request capability. 705 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 706 * which has a HyperTransport capability matching @ht_cap. 707 */ 708 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 709 { 710 u8 pos; 711 712 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 713 if (pos) 714 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 715 716 return pos; 717 } 718 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 719 720 /** 721 * pci_find_vsec_capability - Find a vendor-specific extended capability 722 * @dev: PCI device to query 723 * @vendor: Vendor ID for which capability is defined 724 * @cap: Vendor-specific capability ID 725 * 726 * If @dev has Vendor ID @vendor, search for a VSEC capability with 727 * VSEC ID @cap. If found, return the capability offset in 728 * config space; otherwise return 0. 729 */ 730 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 731 { 732 u16 vsec = 0; 733 u32 header; 734 int ret; 735 736 if (vendor != dev->vendor) 737 return 0; 738 739 while ((vsec = pci_find_next_ext_capability(dev, vsec, 740 PCI_EXT_CAP_ID_VNDR))) { 741 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 742 if (ret != PCIBIOS_SUCCESSFUL) 743 continue; 744 745 if (PCI_VNDR_HEADER_ID(header) == cap) 746 return vsec; 747 } 748 749 return 0; 750 } 751 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 752 753 /** 754 * pci_find_dvsec_capability - Find DVSEC for vendor 755 * @dev: PCI device to query 756 * @vendor: Vendor ID to match for the DVSEC 757 * @dvsec: Designated Vendor-specific capability ID 758 * 759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 760 * offset in config space; otherwise return 0. 761 */ 762 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 763 { 764 int pos; 765 766 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 767 if (!pos) 768 return 0; 769 770 while (pos) { 771 u16 v, id; 772 773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 775 if (vendor == v && dvsec == id) 776 return pos; 777 778 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 779 } 780 781 return 0; 782 } 783 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 784 785 /** 786 * pci_find_parent_resource - return resource region of parent bus of given 787 * region 788 * @dev: PCI device structure contains resources to be searched 789 * @res: child resource record for which parent is sought 790 * 791 * For given resource region of given device, return the resource region of 792 * parent bus the given region is contained in. 793 */ 794 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 795 struct resource *res) 796 { 797 const struct pci_bus *bus = dev->bus; 798 struct resource *r; 799 800 pci_bus_for_each_resource(bus, r) { 801 if (!r) 802 continue; 803 if (resource_contains(r, res)) { 804 805 /* 806 * If the window is prefetchable but the BAR is 807 * not, the allocator made a mistake. 808 */ 809 if (r->flags & IORESOURCE_PREFETCH && 810 !(res->flags & IORESOURCE_PREFETCH)) 811 return NULL; 812 813 /* 814 * If we're below a transparent bridge, there may 815 * be both a positively-decoded aperture and a 816 * subtractively-decoded region that contain the BAR. 817 * We want the positively-decoded one, so this depends 818 * on pci_bus_for_each_resource() giving us those 819 * first. 820 */ 821 return r; 822 } 823 } 824 return NULL; 825 } 826 EXPORT_SYMBOL(pci_find_parent_resource); 827 828 /** 829 * pci_find_resource - Return matching PCI device resource 830 * @dev: PCI device to query 831 * @res: Resource to look for 832 * 833 * Goes over standard PCI resources (BARs) and checks if the given resource 834 * is partially or fully contained in any of them. In that case the 835 * matching resource is returned, %NULL otherwise. 836 */ 837 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 838 { 839 int i; 840 841 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 842 struct resource *r = &dev->resource[i]; 843 844 if (r->start && resource_contains(r, res)) 845 return r; 846 } 847 848 return NULL; 849 } 850 EXPORT_SYMBOL(pci_find_resource); 851 852 /** 853 * pci_resource_name - Return the name of the PCI resource 854 * @dev: PCI device to query 855 * @i: index of the resource 856 * 857 * Return the standard PCI resource (BAR) name according to their index. 858 */ 859 const char *pci_resource_name(struct pci_dev *dev, unsigned int i) 860 { 861 static const char * const bar_name[] = { 862 "BAR 0", 863 "BAR 1", 864 "BAR 2", 865 "BAR 3", 866 "BAR 4", 867 "BAR 5", 868 "ROM", 869 #ifdef CONFIG_PCI_IOV 870 "VF BAR 0", 871 "VF BAR 1", 872 "VF BAR 2", 873 "VF BAR 3", 874 "VF BAR 4", 875 "VF BAR 5", 876 #endif 877 "bridge window", /* "io" included in %pR */ 878 "bridge window", /* "mem" included in %pR */ 879 "bridge window", /* "mem pref" included in %pR */ 880 }; 881 static const char * const cardbus_name[] = { 882 "BAR 1", 883 "unknown", 884 "unknown", 885 "unknown", 886 "unknown", 887 "unknown", 888 #ifdef CONFIG_PCI_IOV 889 "unknown", 890 "unknown", 891 "unknown", 892 "unknown", 893 "unknown", 894 "unknown", 895 #endif 896 "CardBus bridge window 0", /* I/O */ 897 "CardBus bridge window 1", /* I/O */ 898 "CardBus bridge window 0", /* mem */ 899 "CardBus bridge window 1", /* mem */ 900 }; 901 902 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS && 903 i < ARRAY_SIZE(cardbus_name)) 904 return cardbus_name[i]; 905 906 if (i < ARRAY_SIZE(bar_name)) 907 return bar_name[i]; 908 909 return "unknown"; 910 } 911 912 /** 913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 914 * @dev: the PCI device to operate on 915 * @pos: config space offset of status word 916 * @mask: mask of bit(s) to care about in status word 917 * 918 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 919 */ 920 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 921 { 922 int i; 923 924 /* Wait for Transaction Pending bit clean */ 925 for (i = 0; i < 4; i++) { 926 u16 status; 927 if (i) 928 msleep((1 << (i - 1)) * 100); 929 930 pci_read_config_word(dev, pos, &status); 931 if (!(status & mask)) 932 return 1; 933 } 934 935 return 0; 936 } 937 938 static int pci_acs_enable; 939 940 /** 941 * pci_request_acs - ask for ACS to be enabled if supported 942 */ 943 void pci_request_acs(void) 944 { 945 pci_acs_enable = 1; 946 } 947 948 static const char *disable_acs_redir_param; 949 950 /** 951 * pci_disable_acs_redir - disable ACS redirect capabilities 952 * @dev: the PCI device 953 * 954 * For only devices specified in the disable_acs_redir parameter. 955 */ 956 static void pci_disable_acs_redir(struct pci_dev *dev) 957 { 958 int ret = 0; 959 const char *p; 960 int pos; 961 u16 ctrl; 962 963 if (!disable_acs_redir_param) 964 return; 965 966 p = disable_acs_redir_param; 967 while (*p) { 968 ret = pci_dev_str_match(dev, p, &p); 969 if (ret < 0) { 970 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 971 disable_acs_redir_param); 972 973 break; 974 } else if (ret == 1) { 975 /* Found a match */ 976 break; 977 } 978 979 if (*p != ';' && *p != ',') { 980 /* End of param or invalid format */ 981 break; 982 } 983 p++; 984 } 985 986 if (ret != 1) 987 return; 988 989 if (!pci_dev_specific_disable_acs_redir(dev)) 990 return; 991 992 pos = dev->acs_cap; 993 if (!pos) { 994 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 995 return; 996 } 997 998 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 999 1000 /* P2P Request & Completion Redirect */ 1001 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 1002 1003 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 1004 1005 pci_info(dev, "disabled ACS redirect\n"); 1006 } 1007 1008 /** 1009 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 1010 * @dev: the PCI device 1011 */ 1012 static void pci_std_enable_acs(struct pci_dev *dev) 1013 { 1014 int pos; 1015 u16 cap; 1016 u16 ctrl; 1017 1018 pos = dev->acs_cap; 1019 if (!pos) 1020 return; 1021 1022 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 1023 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 1024 1025 /* Source Validation */ 1026 ctrl |= (cap & PCI_ACS_SV); 1027 1028 /* P2P Request Redirect */ 1029 ctrl |= (cap & PCI_ACS_RR); 1030 1031 /* P2P Completion Redirect */ 1032 ctrl |= (cap & PCI_ACS_CR); 1033 1034 /* Upstream Forwarding */ 1035 ctrl |= (cap & PCI_ACS_UF); 1036 1037 /* Enable Translation Blocking for external devices and noats */ 1038 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 1039 ctrl |= (cap & PCI_ACS_TB); 1040 1041 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 1042 } 1043 1044 /** 1045 * pci_enable_acs - enable ACS if hardware support it 1046 * @dev: the PCI device 1047 */ 1048 static void pci_enable_acs(struct pci_dev *dev) 1049 { 1050 if (!pci_acs_enable) 1051 goto disable_acs_redir; 1052 1053 if (!pci_dev_specific_enable_acs(dev)) 1054 goto disable_acs_redir; 1055 1056 pci_std_enable_acs(dev); 1057 1058 disable_acs_redir: 1059 /* 1060 * Note: pci_disable_acs_redir() must be called even if ACS was not 1061 * enabled by the kernel because it may have been enabled by 1062 * platform firmware. So if we are told to disable it, we should 1063 * always disable it after setting the kernel's default 1064 * preferences. 1065 */ 1066 pci_disable_acs_redir(dev); 1067 } 1068 1069 /** 1070 * pcie_read_tlp_log - read TLP Header Log 1071 * @dev: PCIe device 1072 * @where: PCI Config offset of TLP Header Log 1073 * @tlp_log: TLP Log structure to fill 1074 * 1075 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC. 1076 * 1077 * Return: 0 on success and filled TLP Log structure, <0 on error. 1078 */ 1079 int pcie_read_tlp_log(struct pci_dev *dev, int where, 1080 struct pcie_tlp_log *tlp_log) 1081 { 1082 int i, ret; 1083 1084 memset(tlp_log, 0, sizeof(*tlp_log)); 1085 1086 for (i = 0; i < 4; i++) { 1087 ret = pci_read_config_dword(dev, where + i * 4, 1088 &tlp_log->dw[i]); 1089 if (ret) 1090 return pcibios_err_to_errno(ret); 1091 } 1092 1093 return 0; 1094 } 1095 EXPORT_SYMBOL_GPL(pcie_read_tlp_log); 1096 1097 /** 1098 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1099 * @dev: PCI device to have its BARs restored 1100 * 1101 * Restore the BAR values for a given device, so as to make it 1102 * accessible by its driver. 1103 */ 1104 static void pci_restore_bars(struct pci_dev *dev) 1105 { 1106 int i; 1107 1108 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1109 pci_update_resource(dev, i); 1110 } 1111 1112 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1113 { 1114 if (pci_use_mid_pm()) 1115 return true; 1116 1117 return acpi_pci_power_manageable(dev); 1118 } 1119 1120 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1121 pci_power_t t) 1122 { 1123 if (pci_use_mid_pm()) 1124 return mid_pci_set_power_state(dev, t); 1125 1126 return acpi_pci_set_power_state(dev, t); 1127 } 1128 1129 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1130 { 1131 if (pci_use_mid_pm()) 1132 return mid_pci_get_power_state(dev); 1133 1134 return acpi_pci_get_power_state(dev); 1135 } 1136 1137 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1138 { 1139 if (!pci_use_mid_pm()) 1140 acpi_pci_refresh_power_state(dev); 1141 } 1142 1143 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1144 { 1145 if (pci_use_mid_pm()) 1146 return PCI_POWER_ERROR; 1147 1148 return acpi_pci_choose_state(dev); 1149 } 1150 1151 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1152 { 1153 if (pci_use_mid_pm()) 1154 return PCI_POWER_ERROR; 1155 1156 return acpi_pci_wakeup(dev, enable); 1157 } 1158 1159 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1160 { 1161 if (pci_use_mid_pm()) 1162 return false; 1163 1164 return acpi_pci_need_resume(dev); 1165 } 1166 1167 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1168 { 1169 if (pci_use_mid_pm()) 1170 return false; 1171 1172 return acpi_pci_bridge_d3(dev); 1173 } 1174 1175 /** 1176 * pci_update_current_state - Read power state of given device and cache it 1177 * @dev: PCI device to handle. 1178 * @state: State to cache in case the device doesn't have the PM capability 1179 * 1180 * The power state is read from the PMCSR register, which however is 1181 * inaccessible in D3cold. The platform firmware is therefore queried first 1182 * to detect accessibility of the register. In case the platform firmware 1183 * reports an incorrect state or the device isn't power manageable by the 1184 * platform at all, we try to detect D3cold by testing accessibility of the 1185 * vendor ID in config space. 1186 */ 1187 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1188 { 1189 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1190 dev->current_state = PCI_D3cold; 1191 } else if (dev->pm_cap) { 1192 u16 pmcsr; 1193 1194 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1195 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1196 dev->current_state = PCI_D3cold; 1197 return; 1198 } 1199 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1200 } else { 1201 dev->current_state = state; 1202 } 1203 } 1204 1205 /** 1206 * pci_refresh_power_state - Refresh the given device's power state data 1207 * @dev: Target PCI device. 1208 * 1209 * Ask the platform to refresh the devices power state information and invoke 1210 * pci_update_current_state() to update its current PCI power state. 1211 */ 1212 void pci_refresh_power_state(struct pci_dev *dev) 1213 { 1214 platform_pci_refresh_power_state(dev); 1215 pci_update_current_state(dev, dev->current_state); 1216 } 1217 1218 /** 1219 * pci_platform_power_transition - Use platform to change device power state 1220 * @dev: PCI device to handle. 1221 * @state: State to put the device into. 1222 */ 1223 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1224 { 1225 int error; 1226 1227 error = platform_pci_set_power_state(dev, state); 1228 if (!error) 1229 pci_update_current_state(dev, state); 1230 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1231 dev->current_state = PCI_D0; 1232 1233 return error; 1234 } 1235 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1236 1237 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1238 { 1239 pm_request_resume(&pci_dev->dev); 1240 return 0; 1241 } 1242 1243 /** 1244 * pci_resume_bus - Walk given bus and runtime resume devices on it 1245 * @bus: Top bus of the subtree to walk. 1246 */ 1247 void pci_resume_bus(struct pci_bus *bus) 1248 { 1249 if (bus) 1250 pci_walk_bus(bus, pci_resume_one, NULL); 1251 } 1252 1253 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1254 { 1255 int delay = 1; 1256 bool retrain = false; 1257 struct pci_dev *bridge; 1258 1259 if (pci_is_pcie(dev)) { 1260 bridge = pci_upstream_bridge(dev); 1261 if (bridge) 1262 retrain = true; 1263 } 1264 1265 /* 1266 * After reset, the device should not silently discard config 1267 * requests, but it may still indicate that it needs more time by 1268 * responding to them with CRS completions. The Root Port will 1269 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1270 * the read (except when CRS SV is enabled and the read was for the 1271 * Vendor ID; in that case it synthesizes 0x0001 data). 1272 * 1273 * Wait for the device to return a non-CRS completion. Read the 1274 * Command register instead of Vendor ID so we don't have to 1275 * contend with the CRS SV value. 1276 */ 1277 for (;;) { 1278 u32 id; 1279 1280 pci_read_config_dword(dev, PCI_COMMAND, &id); 1281 if (!PCI_POSSIBLE_ERROR(id)) 1282 break; 1283 1284 if (delay > timeout) { 1285 pci_warn(dev, "not ready %dms after %s; giving up\n", 1286 delay - 1, reset_type); 1287 return -ENOTTY; 1288 } 1289 1290 if (delay > PCI_RESET_WAIT) { 1291 if (retrain) { 1292 retrain = false; 1293 if (pcie_failed_link_retrain(bridge)) { 1294 delay = 1; 1295 continue; 1296 } 1297 } 1298 pci_info(dev, "not ready %dms after %s; waiting\n", 1299 delay - 1, reset_type); 1300 } 1301 1302 msleep(delay); 1303 delay *= 2; 1304 } 1305 1306 if (delay > PCI_RESET_WAIT) 1307 pci_info(dev, "ready %dms after %s\n", delay - 1, 1308 reset_type); 1309 else 1310 pci_dbg(dev, "ready %dms after %s\n", delay - 1, 1311 reset_type); 1312 1313 return 0; 1314 } 1315 1316 /** 1317 * pci_power_up - Put the given device into D0 1318 * @dev: PCI device to power up 1319 * 1320 * On success, return 0 or 1, depending on whether or not it is necessary to 1321 * restore the device's BARs subsequently (1 is returned in that case). 1322 * 1323 * On failure, return a negative error code. Always return failure if @dev 1324 * lacks a Power Management Capability, even if the platform was able to 1325 * put the device in D0 via non-PCI means. 1326 */ 1327 int pci_power_up(struct pci_dev *dev) 1328 { 1329 bool need_restore; 1330 pci_power_t state; 1331 u16 pmcsr; 1332 1333 platform_pci_set_power_state(dev, PCI_D0); 1334 1335 if (!dev->pm_cap) { 1336 state = platform_pci_get_power_state(dev); 1337 if (state == PCI_UNKNOWN) 1338 dev->current_state = PCI_D0; 1339 else 1340 dev->current_state = state; 1341 1342 return -EIO; 1343 } 1344 1345 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1346 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1347 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1348 pci_power_name(dev->current_state)); 1349 dev->current_state = PCI_D3cold; 1350 return -EIO; 1351 } 1352 1353 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1354 1355 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1356 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1357 1358 if (state == PCI_D0) 1359 goto end; 1360 1361 /* 1362 * Force the entire word to 0. This doesn't affect PME_Status, disables 1363 * PME_En, and sets PowerState to 0. 1364 */ 1365 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1366 1367 /* Mandatory transition delays; see PCI PM 1.2. */ 1368 if (state == PCI_D3hot) 1369 pci_dev_d3_sleep(dev); 1370 else if (state == PCI_D2) 1371 udelay(PCI_PM_D2_DELAY); 1372 1373 end: 1374 dev->current_state = PCI_D0; 1375 if (need_restore) 1376 return 1; 1377 1378 return 0; 1379 } 1380 1381 /** 1382 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1383 * @dev: PCI device to power up 1384 * @locked: whether pci_bus_sem is held 1385 * 1386 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1387 * to confirm the state change, restore its BARs if they might be lost and 1388 * reconfigure ASPM in accordance with the new power state. 1389 * 1390 * If pci_restore_state() is going to be called right after a power state change 1391 * to D0, it is more efficient to use pci_power_up() directly instead of this 1392 * function. 1393 */ 1394 static int pci_set_full_power_state(struct pci_dev *dev, bool locked) 1395 { 1396 u16 pmcsr; 1397 int ret; 1398 1399 ret = pci_power_up(dev); 1400 if (ret < 0) { 1401 if (dev->current_state == PCI_D0) 1402 return 0; 1403 1404 return ret; 1405 } 1406 1407 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1408 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1409 if (dev->current_state != PCI_D0) { 1410 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1411 pci_power_name(dev->current_state)); 1412 } else if (ret > 0) { 1413 /* 1414 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1415 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1416 * from D3hot to D0 _may_ perform an internal reset, thereby 1417 * going to "D0 Uninitialized" rather than "D0 Initialized". 1418 * For example, at least some versions of the 3c905B and the 1419 * 3c556B exhibit this behaviour. 1420 * 1421 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1422 * devices in a D3hot state at boot. Consequently, we need to 1423 * restore at least the BARs so that the device will be 1424 * accessible to its driver. 1425 */ 1426 pci_restore_bars(dev); 1427 } 1428 1429 if (dev->bus->self) 1430 pcie_aspm_pm_state_change(dev->bus->self, locked); 1431 1432 return 0; 1433 } 1434 1435 /** 1436 * __pci_dev_set_current_state - Set current state of a PCI device 1437 * @dev: Device to handle 1438 * @data: pointer to state to be set 1439 */ 1440 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1441 { 1442 pci_power_t state = *(pci_power_t *)data; 1443 1444 dev->current_state = state; 1445 return 0; 1446 } 1447 1448 /** 1449 * pci_bus_set_current_state - Walk given bus and set current state of devices 1450 * @bus: Top bus of the subtree to walk. 1451 * @state: state to be set 1452 */ 1453 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1454 { 1455 if (bus) 1456 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1457 } 1458 1459 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked) 1460 { 1461 if (!bus) 1462 return; 1463 1464 if (locked) 1465 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state); 1466 else 1467 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1468 } 1469 1470 /** 1471 * pci_set_low_power_state - Put a PCI device into a low-power state. 1472 * @dev: PCI device to handle. 1473 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1474 * @locked: whether pci_bus_sem is held 1475 * 1476 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1477 * 1478 * RETURN VALUE: 1479 * -EINVAL if the requested state is invalid. 1480 * -EIO if device does not support PCI PM or its PM capabilities register has a 1481 * wrong version, or device doesn't support the requested state. 1482 * 0 if device already is in the requested state. 1483 * 0 if device's power state has been successfully changed. 1484 */ 1485 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1486 { 1487 u16 pmcsr; 1488 1489 if (!dev->pm_cap) 1490 return -EIO; 1491 1492 /* 1493 * Validate transition: We can enter D0 from any state, but if 1494 * we're already in a low-power state, we can only go deeper. E.g., 1495 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1496 * we'd have to go from D3 to D0, then to D1. 1497 */ 1498 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1499 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1500 pci_power_name(dev->current_state), 1501 pci_power_name(state)); 1502 return -EINVAL; 1503 } 1504 1505 /* Check if this device supports the desired state */ 1506 if ((state == PCI_D1 && !dev->d1_support) 1507 || (state == PCI_D2 && !dev->d2_support)) 1508 return -EIO; 1509 1510 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1511 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1512 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1513 pci_power_name(dev->current_state), 1514 pci_power_name(state)); 1515 dev->current_state = PCI_D3cold; 1516 return -EIO; 1517 } 1518 1519 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1520 pmcsr |= state; 1521 1522 /* Enter specified state */ 1523 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1524 1525 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1526 if (state == PCI_D3hot) 1527 pci_dev_d3_sleep(dev); 1528 else if (state == PCI_D2) 1529 udelay(PCI_PM_D2_DELAY); 1530 1531 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1532 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1533 if (dev->current_state != state) 1534 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1535 pci_power_name(dev->current_state), 1536 pci_power_name(state)); 1537 1538 if (dev->bus->self) 1539 pcie_aspm_pm_state_change(dev->bus->self, locked); 1540 1541 return 0; 1542 } 1543 1544 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1545 { 1546 int error; 1547 1548 /* Bound the state we're entering */ 1549 if (state > PCI_D3cold) 1550 state = PCI_D3cold; 1551 else if (state < PCI_D0) 1552 state = PCI_D0; 1553 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1554 1555 /* 1556 * If the device or the parent bridge do not support PCI 1557 * PM, ignore the request if we're doing anything other 1558 * than putting it into D0 (which would only happen on 1559 * boot). 1560 */ 1561 return 0; 1562 1563 /* Check if we're already there */ 1564 if (dev->current_state == state) 1565 return 0; 1566 1567 if (state == PCI_D0) 1568 return pci_set_full_power_state(dev, locked); 1569 1570 /* 1571 * This device is quirked not to be put into D3, so don't put it in 1572 * D3 1573 */ 1574 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1575 return 0; 1576 1577 if (state == PCI_D3cold) { 1578 /* 1579 * To put the device in D3cold, put it into D3hot in the native 1580 * way, then put it into D3cold using platform ops. 1581 */ 1582 error = pci_set_low_power_state(dev, PCI_D3hot, locked); 1583 1584 if (pci_platform_power_transition(dev, PCI_D3cold)) 1585 return error; 1586 1587 /* Powering off a bridge may power off the whole hierarchy */ 1588 if (dev->current_state == PCI_D3cold) 1589 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked); 1590 } else { 1591 error = pci_set_low_power_state(dev, state, locked); 1592 1593 if (pci_platform_power_transition(dev, state)) 1594 return error; 1595 } 1596 1597 return 0; 1598 } 1599 1600 /** 1601 * pci_set_power_state - Set the power state of a PCI device 1602 * @dev: PCI device to handle. 1603 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1604 * 1605 * Transition a device to a new power state, using the platform firmware and/or 1606 * the device's PCI PM registers. 1607 * 1608 * RETURN VALUE: 1609 * -EINVAL if the requested state is invalid. 1610 * -EIO if device does not support PCI PM or its PM capabilities register has a 1611 * wrong version, or device doesn't support the requested state. 1612 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1613 * 0 if device already is in the requested state. 1614 * 0 if the transition is to D3 but D3 is not supported. 1615 * 0 if device's power state has been successfully changed. 1616 */ 1617 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1618 { 1619 return __pci_set_power_state(dev, state, false); 1620 } 1621 EXPORT_SYMBOL(pci_set_power_state); 1622 1623 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state) 1624 { 1625 lockdep_assert_held(&pci_bus_sem); 1626 1627 return __pci_set_power_state(dev, state, true); 1628 } 1629 EXPORT_SYMBOL(pci_set_power_state_locked); 1630 1631 #define PCI_EXP_SAVE_REGS 7 1632 1633 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1634 u16 cap, bool extended) 1635 { 1636 struct pci_cap_saved_state *tmp; 1637 1638 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1639 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1640 return tmp; 1641 } 1642 return NULL; 1643 } 1644 1645 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1646 { 1647 return _pci_find_saved_cap(dev, cap, false); 1648 } 1649 1650 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1651 { 1652 return _pci_find_saved_cap(dev, cap, true); 1653 } 1654 1655 static int pci_save_pcie_state(struct pci_dev *dev) 1656 { 1657 int i = 0; 1658 struct pci_cap_saved_state *save_state; 1659 u16 *cap; 1660 1661 if (!pci_is_pcie(dev)) 1662 return 0; 1663 1664 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1665 if (!save_state) { 1666 pci_err(dev, "buffer not found in %s\n", __func__); 1667 return -ENOMEM; 1668 } 1669 1670 cap = (u16 *)&save_state->cap.data[0]; 1671 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1672 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1673 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1674 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1675 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1676 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1677 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1678 1679 pci_save_aspm_l1ss_state(dev); 1680 pci_save_ltr_state(dev); 1681 1682 return 0; 1683 } 1684 1685 static void pci_restore_pcie_state(struct pci_dev *dev) 1686 { 1687 int i = 0; 1688 struct pci_cap_saved_state *save_state; 1689 u16 *cap; 1690 1691 /* 1692 * Restore max latencies (in the LTR capability) before enabling 1693 * LTR itself in PCI_EXP_DEVCTL2. 1694 */ 1695 pci_restore_ltr_state(dev); 1696 pci_restore_aspm_l1ss_state(dev); 1697 1698 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1699 if (!save_state) 1700 return; 1701 1702 /* 1703 * Downstream ports reset the LTR enable bit when link goes down. 1704 * Check and re-configure the bit here before restoring device. 1705 * PCIe r5.0, sec 7.5.3.16. 1706 */ 1707 pci_bridge_reconfigure_ltr(dev); 1708 1709 cap = (u16 *)&save_state->cap.data[0]; 1710 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1711 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1712 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1713 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1714 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1715 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1716 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1717 } 1718 1719 static int pci_save_pcix_state(struct pci_dev *dev) 1720 { 1721 int pos; 1722 struct pci_cap_saved_state *save_state; 1723 1724 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1725 if (!pos) 1726 return 0; 1727 1728 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1729 if (!save_state) { 1730 pci_err(dev, "buffer not found in %s\n", __func__); 1731 return -ENOMEM; 1732 } 1733 1734 pci_read_config_word(dev, pos + PCI_X_CMD, 1735 (u16 *)save_state->cap.data); 1736 1737 return 0; 1738 } 1739 1740 static void pci_restore_pcix_state(struct pci_dev *dev) 1741 { 1742 int i = 0, pos; 1743 struct pci_cap_saved_state *save_state; 1744 u16 *cap; 1745 1746 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1747 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1748 if (!save_state || !pos) 1749 return; 1750 cap = (u16 *)&save_state->cap.data[0]; 1751 1752 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1753 } 1754 1755 /** 1756 * pci_save_state - save the PCI configuration space of a device before 1757 * suspending 1758 * @dev: PCI device that we're dealing with 1759 */ 1760 int pci_save_state(struct pci_dev *dev) 1761 { 1762 int i; 1763 /* XXX: 100% dword access ok here? */ 1764 for (i = 0; i < 16; i++) { 1765 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1766 pci_dbg(dev, "save config %#04x: %#010x\n", 1767 i * 4, dev->saved_config_space[i]); 1768 } 1769 dev->state_saved = true; 1770 1771 i = pci_save_pcie_state(dev); 1772 if (i != 0) 1773 return i; 1774 1775 i = pci_save_pcix_state(dev); 1776 if (i != 0) 1777 return i; 1778 1779 pci_save_dpc_state(dev); 1780 pci_save_aer_state(dev); 1781 pci_save_ptm_state(dev); 1782 return pci_save_vc_state(dev); 1783 } 1784 EXPORT_SYMBOL(pci_save_state); 1785 1786 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1787 u32 saved_val, int retry, bool force) 1788 { 1789 u32 val; 1790 1791 pci_read_config_dword(pdev, offset, &val); 1792 if (!force && val == saved_val) 1793 return; 1794 1795 for (;;) { 1796 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1797 offset, val, saved_val); 1798 pci_write_config_dword(pdev, offset, saved_val); 1799 if (retry-- <= 0) 1800 return; 1801 1802 pci_read_config_dword(pdev, offset, &val); 1803 if (val == saved_val) 1804 return; 1805 1806 mdelay(1); 1807 } 1808 } 1809 1810 static void pci_restore_config_space_range(struct pci_dev *pdev, 1811 int start, int end, int retry, 1812 bool force) 1813 { 1814 int index; 1815 1816 for (index = end; index >= start; index--) 1817 pci_restore_config_dword(pdev, 4 * index, 1818 pdev->saved_config_space[index], 1819 retry, force); 1820 } 1821 1822 static void pci_restore_config_space(struct pci_dev *pdev) 1823 { 1824 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1825 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1826 /* Restore BARs before the command register. */ 1827 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1828 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1829 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1830 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1831 1832 /* 1833 * Force rewriting of prefetch registers to avoid S3 resume 1834 * issues on Intel PCI bridges that occur when these 1835 * registers are not explicitly written. 1836 */ 1837 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1838 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1839 } else { 1840 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1841 } 1842 } 1843 1844 static void pci_restore_rebar_state(struct pci_dev *pdev) 1845 { 1846 unsigned int pos, nbars, i; 1847 u32 ctrl; 1848 1849 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1850 if (!pos) 1851 return; 1852 1853 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1854 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 1855 1856 for (i = 0; i < nbars; i++, pos += 8) { 1857 struct resource *res; 1858 int bar_idx, size; 1859 1860 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1861 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1862 res = pdev->resource + bar_idx; 1863 size = pci_rebar_bytes_to_size(resource_size(res)); 1864 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1865 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 1866 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1867 } 1868 } 1869 1870 /** 1871 * pci_restore_state - Restore the saved state of a PCI device 1872 * @dev: PCI device that we're dealing with 1873 */ 1874 void pci_restore_state(struct pci_dev *dev) 1875 { 1876 if (!dev->state_saved) 1877 return; 1878 1879 pci_restore_pcie_state(dev); 1880 pci_restore_pasid_state(dev); 1881 pci_restore_pri_state(dev); 1882 pci_restore_ats_state(dev); 1883 pci_restore_vc_state(dev); 1884 pci_restore_rebar_state(dev); 1885 pci_restore_dpc_state(dev); 1886 pci_restore_ptm_state(dev); 1887 1888 pci_aer_clear_status(dev); 1889 pci_restore_aer_state(dev); 1890 1891 pci_restore_config_space(dev); 1892 1893 pci_restore_pcix_state(dev); 1894 pci_restore_msi_state(dev); 1895 1896 /* Restore ACS and IOV configuration state */ 1897 pci_enable_acs(dev); 1898 pci_restore_iov_state(dev); 1899 1900 dev->state_saved = false; 1901 } 1902 EXPORT_SYMBOL(pci_restore_state); 1903 1904 struct pci_saved_state { 1905 u32 config_space[16]; 1906 struct pci_cap_saved_data cap[]; 1907 }; 1908 1909 /** 1910 * pci_store_saved_state - Allocate and return an opaque struct containing 1911 * the device saved state. 1912 * @dev: PCI device that we're dealing with 1913 * 1914 * Return NULL if no state or error. 1915 */ 1916 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1917 { 1918 struct pci_saved_state *state; 1919 struct pci_cap_saved_state *tmp; 1920 struct pci_cap_saved_data *cap; 1921 size_t size; 1922 1923 if (!dev->state_saved) 1924 return NULL; 1925 1926 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1927 1928 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1929 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1930 1931 state = kzalloc(size, GFP_KERNEL); 1932 if (!state) 1933 return NULL; 1934 1935 memcpy(state->config_space, dev->saved_config_space, 1936 sizeof(state->config_space)); 1937 1938 cap = state->cap; 1939 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1940 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1941 memcpy(cap, &tmp->cap, len); 1942 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1943 } 1944 /* Empty cap_save terminates list */ 1945 1946 return state; 1947 } 1948 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1949 1950 /** 1951 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1952 * @dev: PCI device that we're dealing with 1953 * @state: Saved state returned from pci_store_saved_state() 1954 */ 1955 int pci_load_saved_state(struct pci_dev *dev, 1956 struct pci_saved_state *state) 1957 { 1958 struct pci_cap_saved_data *cap; 1959 1960 dev->state_saved = false; 1961 1962 if (!state) 1963 return 0; 1964 1965 memcpy(dev->saved_config_space, state->config_space, 1966 sizeof(state->config_space)); 1967 1968 cap = state->cap; 1969 while (cap->size) { 1970 struct pci_cap_saved_state *tmp; 1971 1972 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1973 if (!tmp || tmp->cap.size != cap->size) 1974 return -EINVAL; 1975 1976 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1977 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1978 sizeof(struct pci_cap_saved_data) + cap->size); 1979 } 1980 1981 dev->state_saved = true; 1982 return 0; 1983 } 1984 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1985 1986 /** 1987 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1988 * and free the memory allocated for it. 1989 * @dev: PCI device that we're dealing with 1990 * @state: Pointer to saved state returned from pci_store_saved_state() 1991 */ 1992 int pci_load_and_free_saved_state(struct pci_dev *dev, 1993 struct pci_saved_state **state) 1994 { 1995 int ret = pci_load_saved_state(dev, *state); 1996 kfree(*state); 1997 *state = NULL; 1998 return ret; 1999 } 2000 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 2001 2002 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 2003 { 2004 return pci_enable_resources(dev, bars); 2005 } 2006 2007 static int do_pci_enable_device(struct pci_dev *dev, int bars) 2008 { 2009 int err; 2010 struct pci_dev *bridge; 2011 u16 cmd; 2012 u8 pin; 2013 2014 err = pci_set_power_state(dev, PCI_D0); 2015 if (err < 0 && err != -EIO) 2016 return err; 2017 2018 bridge = pci_upstream_bridge(dev); 2019 if (bridge) 2020 pcie_aspm_powersave_config_link(bridge); 2021 2022 err = pcibios_enable_device(dev, bars); 2023 if (err < 0) 2024 return err; 2025 pci_fixup_device(pci_fixup_enable, dev); 2026 2027 if (dev->msi_enabled || dev->msix_enabled) 2028 return 0; 2029 2030 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 2031 if (pin) { 2032 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2033 if (cmd & PCI_COMMAND_INTX_DISABLE) 2034 pci_write_config_word(dev, PCI_COMMAND, 2035 cmd & ~PCI_COMMAND_INTX_DISABLE); 2036 } 2037 2038 return 0; 2039 } 2040 2041 /** 2042 * pci_reenable_device - Resume abandoned device 2043 * @dev: PCI device to be resumed 2044 * 2045 * NOTE: This function is a backend of pci_default_resume() and is not supposed 2046 * to be called by normal code, write proper resume handler and use it instead. 2047 */ 2048 int pci_reenable_device(struct pci_dev *dev) 2049 { 2050 if (pci_is_enabled(dev)) 2051 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 2052 return 0; 2053 } 2054 EXPORT_SYMBOL(pci_reenable_device); 2055 2056 static void pci_enable_bridge(struct pci_dev *dev) 2057 { 2058 struct pci_dev *bridge; 2059 int retval; 2060 2061 bridge = pci_upstream_bridge(dev); 2062 if (bridge) 2063 pci_enable_bridge(bridge); 2064 2065 if (pci_is_enabled(dev)) { 2066 if (!dev->is_busmaster) 2067 pci_set_master(dev); 2068 return; 2069 } 2070 2071 retval = pci_enable_device(dev); 2072 if (retval) 2073 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2074 retval); 2075 pci_set_master(dev); 2076 } 2077 2078 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2079 { 2080 struct pci_dev *bridge; 2081 int err; 2082 int i, bars = 0; 2083 2084 /* 2085 * Power state could be unknown at this point, either due to a fresh 2086 * boot or a device removal call. So get the current power state 2087 * so that things like MSI message writing will behave as expected 2088 * (e.g. if the device really is in D0 at enable time). 2089 */ 2090 pci_update_current_state(dev, dev->current_state); 2091 2092 if (atomic_inc_return(&dev->enable_cnt) > 1) 2093 return 0; /* already enabled */ 2094 2095 bridge = pci_upstream_bridge(dev); 2096 if (bridge) 2097 pci_enable_bridge(bridge); 2098 2099 /* only skip sriov related */ 2100 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2101 if (dev->resource[i].flags & flags) 2102 bars |= (1 << i); 2103 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2104 if (dev->resource[i].flags & flags) 2105 bars |= (1 << i); 2106 2107 err = do_pci_enable_device(dev, bars); 2108 if (err < 0) 2109 atomic_dec(&dev->enable_cnt); 2110 return err; 2111 } 2112 2113 /** 2114 * pci_enable_device_io - Initialize a device for use with IO space 2115 * @dev: PCI device to be initialized 2116 * 2117 * Initialize device before it's used by a driver. Ask low-level code 2118 * to enable I/O resources. Wake up the device if it was suspended. 2119 * Beware, this function can fail. 2120 */ 2121 int pci_enable_device_io(struct pci_dev *dev) 2122 { 2123 return pci_enable_device_flags(dev, IORESOURCE_IO); 2124 } 2125 EXPORT_SYMBOL(pci_enable_device_io); 2126 2127 /** 2128 * pci_enable_device_mem - Initialize a device for use with Memory space 2129 * @dev: PCI device to be initialized 2130 * 2131 * Initialize device before it's used by a driver. Ask low-level code 2132 * to enable Memory resources. Wake up the device if it was suspended. 2133 * Beware, this function can fail. 2134 */ 2135 int pci_enable_device_mem(struct pci_dev *dev) 2136 { 2137 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2138 } 2139 EXPORT_SYMBOL(pci_enable_device_mem); 2140 2141 /** 2142 * pci_enable_device - Initialize device before it's used by a driver. 2143 * @dev: PCI device to be initialized 2144 * 2145 * Initialize device before it's used by a driver. Ask low-level code 2146 * to enable I/O and memory. Wake up the device if it was suspended. 2147 * Beware, this function can fail. 2148 * 2149 * Note we don't actually enable the device many times if we call 2150 * this function repeatedly (we just increment the count). 2151 */ 2152 int pci_enable_device(struct pci_dev *dev) 2153 { 2154 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2155 } 2156 EXPORT_SYMBOL(pci_enable_device); 2157 2158 /* 2159 * pcibios_device_add - provide arch specific hooks when adding device dev 2160 * @dev: the PCI device being added 2161 * 2162 * Permits the platform to provide architecture specific functionality when 2163 * devices are added. This is the default implementation. Architecture 2164 * implementations can override this. 2165 */ 2166 int __weak pcibios_device_add(struct pci_dev *dev) 2167 { 2168 return 0; 2169 } 2170 2171 /** 2172 * pcibios_release_device - provide arch specific hooks when releasing 2173 * device dev 2174 * @dev: the PCI device being released 2175 * 2176 * Permits the platform to provide architecture specific functionality when 2177 * devices are released. This is the default implementation. Architecture 2178 * implementations can override this. 2179 */ 2180 void __weak pcibios_release_device(struct pci_dev *dev) {} 2181 2182 /** 2183 * pcibios_disable_device - disable arch specific PCI resources for device dev 2184 * @dev: the PCI device to disable 2185 * 2186 * Disables architecture specific PCI resources for the device. This 2187 * is the default implementation. Architecture implementations can 2188 * override this. 2189 */ 2190 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2191 2192 static void do_pci_disable_device(struct pci_dev *dev) 2193 { 2194 u16 pci_command; 2195 2196 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2197 if (pci_command & PCI_COMMAND_MASTER) { 2198 pci_command &= ~PCI_COMMAND_MASTER; 2199 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2200 } 2201 2202 pcibios_disable_device(dev); 2203 } 2204 2205 /** 2206 * pci_disable_enabled_device - Disable device without updating enable_cnt 2207 * @dev: PCI device to disable 2208 * 2209 * NOTE: This function is a backend of PCI power management routines and is 2210 * not supposed to be called drivers. 2211 */ 2212 void pci_disable_enabled_device(struct pci_dev *dev) 2213 { 2214 if (pci_is_enabled(dev)) 2215 do_pci_disable_device(dev); 2216 } 2217 2218 /** 2219 * pci_disable_device - Disable PCI device after use 2220 * @dev: PCI device to be disabled 2221 * 2222 * Signal to the system that the PCI device is not in use by the system 2223 * anymore. This only involves disabling PCI bus-mastering, if active. 2224 * 2225 * Note we don't actually disable the device until all callers of 2226 * pci_enable_device() have called pci_disable_device(). 2227 */ 2228 void pci_disable_device(struct pci_dev *dev) 2229 { 2230 struct pci_devres *dr; 2231 2232 dr = find_pci_dr(dev); 2233 if (dr) 2234 dr->enabled = 0; 2235 2236 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2237 "disabling already-disabled device"); 2238 2239 if (atomic_dec_return(&dev->enable_cnt) != 0) 2240 return; 2241 2242 do_pci_disable_device(dev); 2243 2244 dev->is_busmaster = 0; 2245 } 2246 EXPORT_SYMBOL(pci_disable_device); 2247 2248 /** 2249 * pcibios_set_pcie_reset_state - set reset state for device dev 2250 * @dev: the PCIe device reset 2251 * @state: Reset state to enter into 2252 * 2253 * Set the PCIe reset state for the device. This is the default 2254 * implementation. Architecture implementations can override this. 2255 */ 2256 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2257 enum pcie_reset_state state) 2258 { 2259 return -EINVAL; 2260 } 2261 2262 /** 2263 * pci_set_pcie_reset_state - set reset state for device dev 2264 * @dev: the PCIe device reset 2265 * @state: Reset state to enter into 2266 * 2267 * Sets the PCI reset state for the device. 2268 */ 2269 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2270 { 2271 return pcibios_set_pcie_reset_state(dev, state); 2272 } 2273 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2274 2275 #ifdef CONFIG_PCIEAER 2276 void pcie_clear_device_status(struct pci_dev *dev) 2277 { 2278 u16 sta; 2279 2280 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2281 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2282 } 2283 #endif 2284 2285 /** 2286 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2287 * @dev: PCIe root port or event collector. 2288 */ 2289 void pcie_clear_root_pme_status(struct pci_dev *dev) 2290 { 2291 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2292 } 2293 2294 /** 2295 * pci_check_pme_status - Check if given device has generated PME. 2296 * @dev: Device to check. 2297 * 2298 * Check the PME status of the device and if set, clear it and clear PME enable 2299 * (if set). Return 'true' if PME status and PME enable were both set or 2300 * 'false' otherwise. 2301 */ 2302 bool pci_check_pme_status(struct pci_dev *dev) 2303 { 2304 int pmcsr_pos; 2305 u16 pmcsr; 2306 bool ret = false; 2307 2308 if (!dev->pm_cap) 2309 return false; 2310 2311 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2312 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2313 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2314 return false; 2315 2316 /* Clear PME status. */ 2317 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2318 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2319 /* Disable PME to avoid interrupt flood. */ 2320 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2321 ret = true; 2322 } 2323 2324 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2325 2326 return ret; 2327 } 2328 2329 /** 2330 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2331 * @dev: Device to handle. 2332 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2333 * 2334 * Check if @dev has generated PME and queue a resume request for it in that 2335 * case. 2336 */ 2337 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2338 { 2339 if (pme_poll_reset && dev->pme_poll) 2340 dev->pme_poll = false; 2341 2342 if (pci_check_pme_status(dev)) { 2343 pci_wakeup_event(dev); 2344 pm_request_resume(&dev->dev); 2345 } 2346 return 0; 2347 } 2348 2349 /** 2350 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2351 * @bus: Top bus of the subtree to walk. 2352 */ 2353 void pci_pme_wakeup_bus(struct pci_bus *bus) 2354 { 2355 if (bus) 2356 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2357 } 2358 2359 2360 /** 2361 * pci_pme_capable - check the capability of PCI device to generate PME# 2362 * @dev: PCI device to handle. 2363 * @state: PCI state from which device will issue PME#. 2364 */ 2365 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2366 { 2367 if (!dev->pm_cap) 2368 return false; 2369 2370 return !!(dev->pme_support & (1 << state)); 2371 } 2372 EXPORT_SYMBOL(pci_pme_capable); 2373 2374 static void pci_pme_list_scan(struct work_struct *work) 2375 { 2376 struct pci_pme_device *pme_dev, *n; 2377 2378 mutex_lock(&pci_pme_list_mutex); 2379 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2380 struct pci_dev *pdev = pme_dev->dev; 2381 2382 if (pdev->pme_poll) { 2383 struct pci_dev *bridge = pdev->bus->self; 2384 struct device *dev = &pdev->dev; 2385 struct device *bdev = bridge ? &bridge->dev : NULL; 2386 int bref = 0; 2387 2388 /* 2389 * If we have a bridge, it should be in an active/D0 2390 * state or the configuration space of subordinate 2391 * devices may not be accessible or stable over the 2392 * course of the call. 2393 */ 2394 if (bdev) { 2395 bref = pm_runtime_get_if_active(bdev); 2396 if (!bref) 2397 continue; 2398 2399 if (bridge->current_state != PCI_D0) 2400 goto put_bridge; 2401 } 2402 2403 /* 2404 * The device itself should be suspended but config 2405 * space must be accessible, therefore it cannot be in 2406 * D3cold. 2407 */ 2408 if (pm_runtime_suspended(dev) && 2409 pdev->current_state != PCI_D3cold) 2410 pci_pme_wakeup(pdev, NULL); 2411 2412 put_bridge: 2413 if (bref > 0) 2414 pm_runtime_put(bdev); 2415 } else { 2416 list_del(&pme_dev->list); 2417 kfree(pme_dev); 2418 } 2419 } 2420 if (!list_empty(&pci_pme_list)) 2421 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2422 msecs_to_jiffies(PME_TIMEOUT)); 2423 mutex_unlock(&pci_pme_list_mutex); 2424 } 2425 2426 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2427 { 2428 u16 pmcsr; 2429 2430 if (!dev->pme_support) 2431 return; 2432 2433 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2434 /* Clear PME_Status by writing 1 to it and enable PME# */ 2435 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2436 if (!enable) 2437 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2438 2439 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2440 } 2441 2442 /** 2443 * pci_pme_restore - Restore PME configuration after config space restore. 2444 * @dev: PCI device to update. 2445 */ 2446 void pci_pme_restore(struct pci_dev *dev) 2447 { 2448 u16 pmcsr; 2449 2450 if (!dev->pme_support) 2451 return; 2452 2453 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2454 if (dev->wakeup_prepared) { 2455 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2456 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2457 } else { 2458 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2459 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2460 } 2461 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2462 } 2463 2464 /** 2465 * pci_pme_active - enable or disable PCI device's PME# function 2466 * @dev: PCI device to handle. 2467 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2468 * 2469 * The caller must verify that the device is capable of generating PME# before 2470 * calling this function with @enable equal to 'true'. 2471 */ 2472 void pci_pme_active(struct pci_dev *dev, bool enable) 2473 { 2474 __pci_pme_active(dev, enable); 2475 2476 /* 2477 * PCI (as opposed to PCIe) PME requires that the device have 2478 * its PME# line hooked up correctly. Not all hardware vendors 2479 * do this, so the PME never gets delivered and the device 2480 * remains asleep. The easiest way around this is to 2481 * periodically walk the list of suspended devices and check 2482 * whether any have their PME flag set. The assumption is that 2483 * we'll wake up often enough anyway that this won't be a huge 2484 * hit, and the power savings from the devices will still be a 2485 * win. 2486 * 2487 * Although PCIe uses in-band PME message instead of PME# line 2488 * to report PME, PME does not work for some PCIe devices in 2489 * reality. For example, there are devices that set their PME 2490 * status bits, but don't really bother to send a PME message; 2491 * there are PCI Express Root Ports that don't bother to 2492 * trigger interrupts when they receive PME messages from the 2493 * devices below. So PME poll is used for PCIe devices too. 2494 */ 2495 2496 if (dev->pme_poll) { 2497 struct pci_pme_device *pme_dev; 2498 if (enable) { 2499 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2500 GFP_KERNEL); 2501 if (!pme_dev) { 2502 pci_warn(dev, "can't enable PME#\n"); 2503 return; 2504 } 2505 pme_dev->dev = dev; 2506 mutex_lock(&pci_pme_list_mutex); 2507 list_add(&pme_dev->list, &pci_pme_list); 2508 if (list_is_singular(&pci_pme_list)) 2509 queue_delayed_work(system_freezable_wq, 2510 &pci_pme_work, 2511 msecs_to_jiffies(PME_TIMEOUT)); 2512 mutex_unlock(&pci_pme_list_mutex); 2513 } else { 2514 mutex_lock(&pci_pme_list_mutex); 2515 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2516 if (pme_dev->dev == dev) { 2517 list_del(&pme_dev->list); 2518 kfree(pme_dev); 2519 break; 2520 } 2521 } 2522 mutex_unlock(&pci_pme_list_mutex); 2523 } 2524 } 2525 2526 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2527 } 2528 EXPORT_SYMBOL(pci_pme_active); 2529 2530 /** 2531 * __pci_enable_wake - enable PCI device as wakeup event source 2532 * @dev: PCI device affected 2533 * @state: PCI state from which device will issue wakeup events 2534 * @enable: True to enable event generation; false to disable 2535 * 2536 * This enables the device as a wakeup event source, or disables it. 2537 * When such events involves platform-specific hooks, those hooks are 2538 * called automatically by this routine. 2539 * 2540 * Devices with legacy power management (no standard PCI PM capabilities) 2541 * always require such platform hooks. 2542 * 2543 * RETURN VALUE: 2544 * 0 is returned on success 2545 * -EINVAL is returned if device is not supposed to wake up the system 2546 * Error code depending on the platform is returned if both the platform and 2547 * the native mechanism fail to enable the generation of wake-up events 2548 */ 2549 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2550 { 2551 int ret = 0; 2552 2553 /* 2554 * Bridges that are not power-manageable directly only signal 2555 * wakeup on behalf of subordinate devices which is set up 2556 * elsewhere, so skip them. However, bridges that are 2557 * power-manageable may signal wakeup for themselves (for example, 2558 * on a hotplug event) and they need to be covered here. 2559 */ 2560 if (!pci_power_manageable(dev)) 2561 return 0; 2562 2563 /* Don't do the same thing twice in a row for one device. */ 2564 if (!!enable == !!dev->wakeup_prepared) 2565 return 0; 2566 2567 /* 2568 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2569 * Anderson we should be doing PME# wake enable followed by ACPI wake 2570 * enable. To disable wake-up we call the platform first, for symmetry. 2571 */ 2572 2573 if (enable) { 2574 int error; 2575 2576 /* 2577 * Enable PME signaling if the device can signal PME from 2578 * D3cold regardless of whether or not it can signal PME from 2579 * the current target state, because that will allow it to 2580 * signal PME when the hierarchy above it goes into D3cold and 2581 * the device itself ends up in D3cold as a result of that. 2582 */ 2583 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2584 pci_pme_active(dev, true); 2585 else 2586 ret = 1; 2587 error = platform_pci_set_wakeup(dev, true); 2588 if (ret) 2589 ret = error; 2590 if (!ret) 2591 dev->wakeup_prepared = true; 2592 } else { 2593 platform_pci_set_wakeup(dev, false); 2594 pci_pme_active(dev, false); 2595 dev->wakeup_prepared = false; 2596 } 2597 2598 return ret; 2599 } 2600 2601 /** 2602 * pci_enable_wake - change wakeup settings for a PCI device 2603 * @pci_dev: Target device 2604 * @state: PCI state from which device will issue wakeup events 2605 * @enable: Whether or not to enable event generation 2606 * 2607 * If @enable is set, check device_may_wakeup() for the device before calling 2608 * __pci_enable_wake() for it. 2609 */ 2610 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2611 { 2612 if (enable && !device_may_wakeup(&pci_dev->dev)) 2613 return -EINVAL; 2614 2615 return __pci_enable_wake(pci_dev, state, enable); 2616 } 2617 EXPORT_SYMBOL(pci_enable_wake); 2618 2619 /** 2620 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2621 * @dev: PCI device to prepare 2622 * @enable: True to enable wake-up event generation; false to disable 2623 * 2624 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2625 * and this function allows them to set that up cleanly - pci_enable_wake() 2626 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2627 * ordering constraints. 2628 * 2629 * This function only returns error code if the device is not allowed to wake 2630 * up the system from sleep or it is not capable of generating PME# from both 2631 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2632 */ 2633 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2634 { 2635 return pci_pme_capable(dev, PCI_D3cold) ? 2636 pci_enable_wake(dev, PCI_D3cold, enable) : 2637 pci_enable_wake(dev, PCI_D3hot, enable); 2638 } 2639 EXPORT_SYMBOL(pci_wake_from_d3); 2640 2641 /** 2642 * pci_target_state - find an appropriate low power state for a given PCI dev 2643 * @dev: PCI device 2644 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2645 * 2646 * Use underlying platform code to find a supported low power state for @dev. 2647 * If the platform can't manage @dev, return the deepest state from which it 2648 * can generate wake events, based on any available PME info. 2649 */ 2650 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2651 { 2652 if (platform_pci_power_manageable(dev)) { 2653 /* 2654 * Call the platform to find the target state for the device. 2655 */ 2656 pci_power_t state = platform_pci_choose_state(dev); 2657 2658 switch (state) { 2659 case PCI_POWER_ERROR: 2660 case PCI_UNKNOWN: 2661 return PCI_D3hot; 2662 2663 case PCI_D1: 2664 case PCI_D2: 2665 if (pci_no_d1d2(dev)) 2666 return PCI_D3hot; 2667 } 2668 2669 return state; 2670 } 2671 2672 /* 2673 * If the device is in D3cold even though it's not power-manageable by 2674 * the platform, it may have been powered down by non-standard means. 2675 * Best to let it slumber. 2676 */ 2677 if (dev->current_state == PCI_D3cold) 2678 return PCI_D3cold; 2679 else if (!dev->pm_cap) 2680 return PCI_D0; 2681 2682 if (wakeup && dev->pme_support) { 2683 pci_power_t state = PCI_D3hot; 2684 2685 /* 2686 * Find the deepest state from which the device can generate 2687 * PME#. 2688 */ 2689 while (state && !(dev->pme_support & (1 << state))) 2690 state--; 2691 2692 if (state) 2693 return state; 2694 else if (dev->pme_support & 1) 2695 return PCI_D0; 2696 } 2697 2698 return PCI_D3hot; 2699 } 2700 2701 /** 2702 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2703 * into a sleep state 2704 * @dev: Device to handle. 2705 * 2706 * Choose the power state appropriate for the device depending on whether 2707 * it can wake up the system and/or is power manageable by the platform 2708 * (PCI_D3hot is the default) and put the device into that state. 2709 */ 2710 int pci_prepare_to_sleep(struct pci_dev *dev) 2711 { 2712 bool wakeup = device_may_wakeup(&dev->dev); 2713 pci_power_t target_state = pci_target_state(dev, wakeup); 2714 int error; 2715 2716 if (target_state == PCI_POWER_ERROR) 2717 return -EIO; 2718 2719 pci_enable_wake(dev, target_state, wakeup); 2720 2721 error = pci_set_power_state(dev, target_state); 2722 2723 if (error) 2724 pci_enable_wake(dev, target_state, false); 2725 2726 return error; 2727 } 2728 EXPORT_SYMBOL(pci_prepare_to_sleep); 2729 2730 /** 2731 * pci_back_from_sleep - turn PCI device on during system-wide transition 2732 * into working state 2733 * @dev: Device to handle. 2734 * 2735 * Disable device's system wake-up capability and put it into D0. 2736 */ 2737 int pci_back_from_sleep(struct pci_dev *dev) 2738 { 2739 int ret = pci_set_power_state(dev, PCI_D0); 2740 2741 if (ret) 2742 return ret; 2743 2744 pci_enable_wake(dev, PCI_D0, false); 2745 return 0; 2746 } 2747 EXPORT_SYMBOL(pci_back_from_sleep); 2748 2749 /** 2750 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2751 * @dev: PCI device being suspended. 2752 * 2753 * Prepare @dev to generate wake-up events at run time and put it into a low 2754 * power state. 2755 */ 2756 int pci_finish_runtime_suspend(struct pci_dev *dev) 2757 { 2758 pci_power_t target_state; 2759 int error; 2760 2761 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2762 if (target_state == PCI_POWER_ERROR) 2763 return -EIO; 2764 2765 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2766 2767 error = pci_set_power_state(dev, target_state); 2768 2769 if (error) 2770 pci_enable_wake(dev, target_state, false); 2771 2772 return error; 2773 } 2774 2775 /** 2776 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2777 * @dev: Device to check. 2778 * 2779 * Return true if the device itself is capable of generating wake-up events 2780 * (through the platform or using the native PCIe PME) or if the device supports 2781 * PME and one of its upstream bridges can generate wake-up events. 2782 */ 2783 bool pci_dev_run_wake(struct pci_dev *dev) 2784 { 2785 struct pci_bus *bus = dev->bus; 2786 2787 if (!dev->pme_support) 2788 return false; 2789 2790 /* PME-capable in principle, but not from the target power state */ 2791 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2792 return false; 2793 2794 if (device_can_wakeup(&dev->dev)) 2795 return true; 2796 2797 while (bus->parent) { 2798 struct pci_dev *bridge = bus->self; 2799 2800 if (device_can_wakeup(&bridge->dev)) 2801 return true; 2802 2803 bus = bus->parent; 2804 } 2805 2806 /* We have reached the root bus. */ 2807 if (bus->bridge) 2808 return device_can_wakeup(bus->bridge); 2809 2810 return false; 2811 } 2812 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2813 2814 /** 2815 * pci_dev_need_resume - Check if it is necessary to resume the device. 2816 * @pci_dev: Device to check. 2817 * 2818 * Return 'true' if the device is not runtime-suspended or it has to be 2819 * reconfigured due to wakeup settings difference between system and runtime 2820 * suspend, or the current power state of it is not suitable for the upcoming 2821 * (system-wide) transition. 2822 */ 2823 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2824 { 2825 struct device *dev = &pci_dev->dev; 2826 pci_power_t target_state; 2827 2828 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2829 return true; 2830 2831 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2832 2833 /* 2834 * If the earlier platform check has not triggered, D3cold is just power 2835 * removal on top of D3hot, so no need to resume the device in that 2836 * case. 2837 */ 2838 return target_state != pci_dev->current_state && 2839 target_state != PCI_D3cold && 2840 pci_dev->current_state != PCI_D3hot; 2841 } 2842 2843 /** 2844 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2845 * @pci_dev: Device to check. 2846 * 2847 * If the device is suspended and it is not configured for system wakeup, 2848 * disable PME for it to prevent it from waking up the system unnecessarily. 2849 * 2850 * Note that if the device's power state is D3cold and the platform check in 2851 * pci_dev_need_resume() has not triggered, the device's configuration need not 2852 * be changed. 2853 */ 2854 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2855 { 2856 struct device *dev = &pci_dev->dev; 2857 2858 spin_lock_irq(&dev->power.lock); 2859 2860 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2861 pci_dev->current_state < PCI_D3cold) 2862 __pci_pme_active(pci_dev, false); 2863 2864 spin_unlock_irq(&dev->power.lock); 2865 } 2866 2867 /** 2868 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2869 * @pci_dev: Device to handle. 2870 * 2871 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2872 * it might have been disabled during the prepare phase of system suspend if 2873 * the device was not configured for system wakeup. 2874 */ 2875 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2876 { 2877 struct device *dev = &pci_dev->dev; 2878 2879 if (!pci_dev_run_wake(pci_dev)) 2880 return; 2881 2882 spin_lock_irq(&dev->power.lock); 2883 2884 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2885 __pci_pme_active(pci_dev, true); 2886 2887 spin_unlock_irq(&dev->power.lock); 2888 } 2889 2890 /** 2891 * pci_choose_state - Choose the power state of a PCI device. 2892 * @dev: Target PCI device. 2893 * @state: Target state for the whole system. 2894 * 2895 * Returns PCI power state suitable for @dev and @state. 2896 */ 2897 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2898 { 2899 if (state.event == PM_EVENT_ON) 2900 return PCI_D0; 2901 2902 return pci_target_state(dev, false); 2903 } 2904 EXPORT_SYMBOL(pci_choose_state); 2905 2906 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2907 { 2908 struct device *dev = &pdev->dev; 2909 struct device *parent = dev->parent; 2910 2911 if (parent) 2912 pm_runtime_get_sync(parent); 2913 pm_runtime_get_noresume(dev); 2914 /* 2915 * pdev->current_state is set to PCI_D3cold during suspending, 2916 * so wait until suspending completes 2917 */ 2918 pm_runtime_barrier(dev); 2919 /* 2920 * Only need to resume devices in D3cold, because config 2921 * registers are still accessible for devices suspended but 2922 * not in D3cold. 2923 */ 2924 if (pdev->current_state == PCI_D3cold) 2925 pm_runtime_resume(dev); 2926 } 2927 2928 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2929 { 2930 struct device *dev = &pdev->dev; 2931 struct device *parent = dev->parent; 2932 2933 pm_runtime_put(dev); 2934 if (parent) 2935 pm_runtime_put_sync(parent); 2936 } 2937 2938 static const struct dmi_system_id bridge_d3_blacklist[] = { 2939 #ifdef CONFIG_X86 2940 { 2941 /* 2942 * Gigabyte X299 root port is not marked as hotplug capable 2943 * which allows Linux to power manage it. However, this 2944 * confuses the BIOS SMI handler so don't power manage root 2945 * ports on that system. 2946 */ 2947 .ident = "X299 DESIGNARE EX-CF", 2948 .matches = { 2949 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2950 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2951 }, 2952 }, 2953 { 2954 /* 2955 * Downstream device is not accessible after putting a root port 2956 * into D3cold and back into D0 on Elo Continental Z2 board 2957 */ 2958 .ident = "Elo Continental Z2", 2959 .matches = { 2960 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 2961 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 2962 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 2963 }, 2964 }, 2965 #endif 2966 { } 2967 }; 2968 2969 /** 2970 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2971 * @bridge: Bridge to check 2972 * 2973 * This function checks if it is possible to move the bridge to D3. 2974 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2975 */ 2976 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2977 { 2978 if (!pci_is_pcie(bridge)) 2979 return false; 2980 2981 switch (pci_pcie_type(bridge)) { 2982 case PCI_EXP_TYPE_ROOT_PORT: 2983 case PCI_EXP_TYPE_UPSTREAM: 2984 case PCI_EXP_TYPE_DOWNSTREAM: 2985 if (pci_bridge_d3_disable) 2986 return false; 2987 2988 /* 2989 * Hotplug ports handled by firmware in System Management Mode 2990 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2991 */ 2992 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2993 return false; 2994 2995 if (pci_bridge_d3_force) 2996 return true; 2997 2998 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2999 if (bridge->is_thunderbolt) 3000 return true; 3001 3002 /* Platform might know better if the bridge supports D3 */ 3003 if (platform_pci_bridge_d3(bridge)) 3004 return true; 3005 3006 /* 3007 * Hotplug ports handled natively by the OS were not validated 3008 * by vendors for runtime D3 at least until 2018 because there 3009 * was no OS support. 3010 */ 3011 if (bridge->is_hotplug_bridge) 3012 return false; 3013 3014 if (dmi_check_system(bridge_d3_blacklist)) 3015 return false; 3016 3017 /* 3018 * It should be safe to put PCIe ports from 2015 or newer 3019 * to D3. 3020 */ 3021 if (dmi_get_bios_year() >= 2015) 3022 return true; 3023 break; 3024 } 3025 3026 return false; 3027 } 3028 3029 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3030 { 3031 bool *d3cold_ok = data; 3032 3033 if (/* The device needs to be allowed to go D3cold ... */ 3034 dev->no_d3cold || !dev->d3cold_allowed || 3035 3036 /* ... and if it is wakeup capable to do so from D3cold. */ 3037 (device_may_wakeup(&dev->dev) && 3038 !pci_pme_capable(dev, PCI_D3cold)) || 3039 3040 /* If it is a bridge it must be allowed to go to D3. */ 3041 !pci_power_manageable(dev)) 3042 3043 *d3cold_ok = false; 3044 3045 return !*d3cold_ok; 3046 } 3047 3048 /* 3049 * pci_bridge_d3_update - Update bridge D3 capabilities 3050 * @dev: PCI device which is changed 3051 * 3052 * Update upstream bridge PM capabilities accordingly depending on if the 3053 * device PM configuration was changed or the device is being removed. The 3054 * change is also propagated upstream. 3055 */ 3056 void pci_bridge_d3_update(struct pci_dev *dev) 3057 { 3058 bool remove = !device_is_registered(&dev->dev); 3059 struct pci_dev *bridge; 3060 bool d3cold_ok = true; 3061 3062 bridge = pci_upstream_bridge(dev); 3063 if (!bridge || !pci_bridge_d3_possible(bridge)) 3064 return; 3065 3066 /* 3067 * If D3 is currently allowed for the bridge, removing one of its 3068 * children won't change that. 3069 */ 3070 if (remove && bridge->bridge_d3) 3071 return; 3072 3073 /* 3074 * If D3 is currently allowed for the bridge and a child is added or 3075 * changed, disallowance of D3 can only be caused by that child, so 3076 * we only need to check that single device, not any of its siblings. 3077 * 3078 * If D3 is currently not allowed for the bridge, checking the device 3079 * first may allow us to skip checking its siblings. 3080 */ 3081 if (!remove) 3082 pci_dev_check_d3cold(dev, &d3cold_ok); 3083 3084 /* 3085 * If D3 is currently not allowed for the bridge, this may be caused 3086 * either by the device being changed/removed or any of its siblings, 3087 * so we need to go through all children to find out if one of them 3088 * continues to block D3. 3089 */ 3090 if (d3cold_ok && !bridge->bridge_d3) 3091 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3092 &d3cold_ok); 3093 3094 if (bridge->bridge_d3 != d3cold_ok) { 3095 bridge->bridge_d3 = d3cold_ok; 3096 /* Propagate change to upstream bridges */ 3097 pci_bridge_d3_update(bridge); 3098 } 3099 } 3100 3101 /** 3102 * pci_d3cold_enable - Enable D3cold for device 3103 * @dev: PCI device to handle 3104 * 3105 * This function can be used in drivers to enable D3cold from the device 3106 * they handle. It also updates upstream PCI bridge PM capabilities 3107 * accordingly. 3108 */ 3109 void pci_d3cold_enable(struct pci_dev *dev) 3110 { 3111 if (dev->no_d3cold) { 3112 dev->no_d3cold = false; 3113 pci_bridge_d3_update(dev); 3114 } 3115 } 3116 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3117 3118 /** 3119 * pci_d3cold_disable - Disable D3cold for device 3120 * @dev: PCI device to handle 3121 * 3122 * This function can be used in drivers to disable D3cold from the device 3123 * they handle. It also updates upstream PCI bridge PM capabilities 3124 * accordingly. 3125 */ 3126 void pci_d3cold_disable(struct pci_dev *dev) 3127 { 3128 if (!dev->no_d3cold) { 3129 dev->no_d3cold = true; 3130 pci_bridge_d3_update(dev); 3131 } 3132 } 3133 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3134 3135 /** 3136 * pci_pm_init - Initialize PM functions of given PCI device 3137 * @dev: PCI device to handle. 3138 */ 3139 void pci_pm_init(struct pci_dev *dev) 3140 { 3141 int pm; 3142 u16 status; 3143 u16 pmc; 3144 3145 pm_runtime_forbid(&dev->dev); 3146 pm_runtime_set_active(&dev->dev); 3147 pm_runtime_enable(&dev->dev); 3148 device_enable_async_suspend(&dev->dev); 3149 dev->wakeup_prepared = false; 3150 3151 dev->pm_cap = 0; 3152 dev->pme_support = 0; 3153 3154 /* find PCI PM capability in list */ 3155 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3156 if (!pm) 3157 return; 3158 /* Check device's ability to generate PME# */ 3159 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3160 3161 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3162 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3163 pmc & PCI_PM_CAP_VER_MASK); 3164 return; 3165 } 3166 3167 dev->pm_cap = pm; 3168 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3169 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3170 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3171 dev->d3cold_allowed = true; 3172 3173 dev->d1_support = false; 3174 dev->d2_support = false; 3175 if (!pci_no_d1d2(dev)) { 3176 if (pmc & PCI_PM_CAP_D1) 3177 dev->d1_support = true; 3178 if (pmc & PCI_PM_CAP_D2) 3179 dev->d2_support = true; 3180 3181 if (dev->d1_support || dev->d2_support) 3182 pci_info(dev, "supports%s%s\n", 3183 dev->d1_support ? " D1" : "", 3184 dev->d2_support ? " D2" : ""); 3185 } 3186 3187 pmc &= PCI_PM_CAP_PME_MASK; 3188 if (pmc) { 3189 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3190 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3191 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3192 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3193 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3194 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3195 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc); 3196 dev->pme_poll = true; 3197 /* 3198 * Make device's PM flags reflect the wake-up capability, but 3199 * let the user space enable it to wake up the system as needed. 3200 */ 3201 device_set_wakeup_capable(&dev->dev, true); 3202 /* Disable the PME# generation functionality */ 3203 pci_pme_active(dev, false); 3204 } 3205 3206 pci_read_config_word(dev, PCI_STATUS, &status); 3207 if (status & PCI_STATUS_IMM_READY) 3208 dev->imm_ready = 1; 3209 } 3210 3211 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3212 { 3213 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3214 3215 switch (prop) { 3216 case PCI_EA_P_MEM: 3217 case PCI_EA_P_VF_MEM: 3218 flags |= IORESOURCE_MEM; 3219 break; 3220 case PCI_EA_P_MEM_PREFETCH: 3221 case PCI_EA_P_VF_MEM_PREFETCH: 3222 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3223 break; 3224 case PCI_EA_P_IO: 3225 flags |= IORESOURCE_IO; 3226 break; 3227 default: 3228 return 0; 3229 } 3230 3231 return flags; 3232 } 3233 3234 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3235 u8 prop) 3236 { 3237 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3238 return &dev->resource[bei]; 3239 #ifdef CONFIG_PCI_IOV 3240 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3241 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3242 return &dev->resource[PCI_IOV_RESOURCES + 3243 bei - PCI_EA_BEI_VF_BAR0]; 3244 #endif 3245 else if (bei == PCI_EA_BEI_ROM) 3246 return &dev->resource[PCI_ROM_RESOURCE]; 3247 else 3248 return NULL; 3249 } 3250 3251 /* Read an Enhanced Allocation (EA) entry */ 3252 static int pci_ea_read(struct pci_dev *dev, int offset) 3253 { 3254 struct resource *res; 3255 const char *res_name; 3256 int ent_size, ent_offset = offset; 3257 resource_size_t start, end; 3258 unsigned long flags; 3259 u32 dw0, bei, base, max_offset; 3260 u8 prop; 3261 bool support_64 = (sizeof(resource_size_t) >= 8); 3262 3263 pci_read_config_dword(dev, ent_offset, &dw0); 3264 ent_offset += 4; 3265 3266 /* Entry size field indicates DWORDs after 1st */ 3267 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2; 3268 3269 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3270 goto out; 3271 3272 bei = FIELD_GET(PCI_EA_BEI, dw0); 3273 prop = FIELD_GET(PCI_EA_PP, dw0); 3274 3275 /* 3276 * If the Property is in the reserved range, try the Secondary 3277 * Property instead. 3278 */ 3279 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3280 prop = FIELD_GET(PCI_EA_SP, dw0); 3281 if (prop > PCI_EA_P_BRIDGE_IO) 3282 goto out; 3283 3284 res = pci_ea_get_resource(dev, bei, prop); 3285 res_name = pci_resource_name(dev, bei); 3286 if (!res) { 3287 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3288 goto out; 3289 } 3290 3291 flags = pci_ea_flags(dev, prop); 3292 if (!flags) { 3293 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3294 goto out; 3295 } 3296 3297 /* Read Base */ 3298 pci_read_config_dword(dev, ent_offset, &base); 3299 start = (base & PCI_EA_FIELD_MASK); 3300 ent_offset += 4; 3301 3302 /* Read MaxOffset */ 3303 pci_read_config_dword(dev, ent_offset, &max_offset); 3304 ent_offset += 4; 3305 3306 /* Read Base MSBs (if 64-bit entry) */ 3307 if (base & PCI_EA_IS_64) { 3308 u32 base_upper; 3309 3310 pci_read_config_dword(dev, ent_offset, &base_upper); 3311 ent_offset += 4; 3312 3313 flags |= IORESOURCE_MEM_64; 3314 3315 /* entry starts above 32-bit boundary, can't use */ 3316 if (!support_64 && base_upper) 3317 goto out; 3318 3319 if (support_64) 3320 start |= ((u64)base_upper << 32); 3321 } 3322 3323 end = start + (max_offset | 0x03); 3324 3325 /* Read MaxOffset MSBs (if 64-bit entry) */ 3326 if (max_offset & PCI_EA_IS_64) { 3327 u32 max_offset_upper; 3328 3329 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3330 ent_offset += 4; 3331 3332 flags |= IORESOURCE_MEM_64; 3333 3334 /* entry too big, can't use */ 3335 if (!support_64 && max_offset_upper) 3336 goto out; 3337 3338 if (support_64) 3339 end += ((u64)max_offset_upper << 32); 3340 } 3341 3342 if (end < start) { 3343 pci_err(dev, "EA Entry crosses address boundary\n"); 3344 goto out; 3345 } 3346 3347 if (ent_size != ent_offset - offset) { 3348 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3349 ent_size, ent_offset - offset); 3350 goto out; 3351 } 3352 3353 res->name = pci_name(dev); 3354 res->start = start; 3355 res->end = end; 3356 res->flags = flags; 3357 3358 if (bei <= PCI_EA_BEI_BAR5) 3359 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3360 res_name, res, prop); 3361 else if (bei == PCI_EA_BEI_ROM) 3362 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3363 res_name, res, prop); 3364 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3365 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3366 res_name, res, prop); 3367 else 3368 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n", 3369 bei, res, prop); 3370 3371 out: 3372 return offset + ent_size; 3373 } 3374 3375 /* Enhanced Allocation Initialization */ 3376 void pci_ea_init(struct pci_dev *dev) 3377 { 3378 int ea; 3379 u8 num_ent; 3380 int offset; 3381 int i; 3382 3383 /* find PCI EA capability in list */ 3384 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3385 if (!ea) 3386 return; 3387 3388 /* determine the number of entries */ 3389 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3390 &num_ent); 3391 num_ent &= PCI_EA_NUM_ENT_MASK; 3392 3393 offset = ea + PCI_EA_FIRST_ENT; 3394 3395 /* Skip DWORD 2 for type 1 functions */ 3396 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3397 offset += 4; 3398 3399 /* parse each EA entry */ 3400 for (i = 0; i < num_ent; ++i) 3401 offset = pci_ea_read(dev, offset); 3402 } 3403 3404 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3405 struct pci_cap_saved_state *new_cap) 3406 { 3407 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3408 } 3409 3410 /** 3411 * _pci_add_cap_save_buffer - allocate buffer for saving given 3412 * capability registers 3413 * @dev: the PCI device 3414 * @cap: the capability to allocate the buffer for 3415 * @extended: Standard or Extended capability ID 3416 * @size: requested size of the buffer 3417 */ 3418 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3419 bool extended, unsigned int size) 3420 { 3421 int pos; 3422 struct pci_cap_saved_state *save_state; 3423 3424 if (extended) 3425 pos = pci_find_ext_capability(dev, cap); 3426 else 3427 pos = pci_find_capability(dev, cap); 3428 3429 if (!pos) 3430 return 0; 3431 3432 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3433 if (!save_state) 3434 return -ENOMEM; 3435 3436 save_state->cap.cap_nr = cap; 3437 save_state->cap.cap_extended = extended; 3438 save_state->cap.size = size; 3439 pci_add_saved_cap(dev, save_state); 3440 3441 return 0; 3442 } 3443 3444 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3445 { 3446 return _pci_add_cap_save_buffer(dev, cap, false, size); 3447 } 3448 3449 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3450 { 3451 return _pci_add_cap_save_buffer(dev, cap, true, size); 3452 } 3453 3454 /** 3455 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3456 * @dev: the PCI device 3457 */ 3458 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3459 { 3460 int error; 3461 3462 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3463 PCI_EXP_SAVE_REGS * sizeof(u16)); 3464 if (error) 3465 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3466 3467 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3468 if (error) 3469 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3470 3471 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3472 2 * sizeof(u16)); 3473 if (error) 3474 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3475 3476 pci_allocate_vc_save_buffers(dev); 3477 } 3478 3479 void pci_free_cap_save_buffers(struct pci_dev *dev) 3480 { 3481 struct pci_cap_saved_state *tmp; 3482 struct hlist_node *n; 3483 3484 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3485 kfree(tmp); 3486 } 3487 3488 /** 3489 * pci_configure_ari - enable or disable ARI forwarding 3490 * @dev: the PCI device 3491 * 3492 * If @dev and its upstream bridge both support ARI, enable ARI in the 3493 * bridge. Otherwise, disable ARI in the bridge. 3494 */ 3495 void pci_configure_ari(struct pci_dev *dev) 3496 { 3497 u32 cap; 3498 struct pci_dev *bridge; 3499 3500 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3501 return; 3502 3503 bridge = dev->bus->self; 3504 if (!bridge) 3505 return; 3506 3507 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3508 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3509 return; 3510 3511 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3512 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3513 PCI_EXP_DEVCTL2_ARI); 3514 bridge->ari_enabled = 1; 3515 } else { 3516 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3517 PCI_EXP_DEVCTL2_ARI); 3518 bridge->ari_enabled = 0; 3519 } 3520 } 3521 3522 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3523 { 3524 int pos; 3525 u16 cap, ctrl; 3526 3527 pos = pdev->acs_cap; 3528 if (!pos) 3529 return false; 3530 3531 /* 3532 * Except for egress control, capabilities are either required 3533 * or only required if controllable. Features missing from the 3534 * capability field can therefore be assumed as hard-wired enabled. 3535 */ 3536 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3537 acs_flags &= (cap | PCI_ACS_EC); 3538 3539 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3540 return (ctrl & acs_flags) == acs_flags; 3541 } 3542 3543 /** 3544 * pci_acs_enabled - test ACS against required flags for a given device 3545 * @pdev: device to test 3546 * @acs_flags: required PCI ACS flags 3547 * 3548 * Return true if the device supports the provided flags. Automatically 3549 * filters out flags that are not implemented on multifunction devices. 3550 * 3551 * Note that this interface checks the effective ACS capabilities of the 3552 * device rather than the actual capabilities. For instance, most single 3553 * function endpoints are not required to support ACS because they have no 3554 * opportunity for peer-to-peer access. We therefore return 'true' 3555 * regardless of whether the device exposes an ACS capability. This makes 3556 * it much easier for callers of this function to ignore the actual type 3557 * or topology of the device when testing ACS support. 3558 */ 3559 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3560 { 3561 int ret; 3562 3563 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3564 if (ret >= 0) 3565 return ret > 0; 3566 3567 /* 3568 * Conventional PCI and PCI-X devices never support ACS, either 3569 * effectively or actually. The shared bus topology implies that 3570 * any device on the bus can receive or snoop DMA. 3571 */ 3572 if (!pci_is_pcie(pdev)) 3573 return false; 3574 3575 switch (pci_pcie_type(pdev)) { 3576 /* 3577 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3578 * but since their primary interface is PCI/X, we conservatively 3579 * handle them as we would a non-PCIe device. 3580 */ 3581 case PCI_EXP_TYPE_PCIE_BRIDGE: 3582 /* 3583 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3584 * applicable... must never implement an ACS Extended Capability...". 3585 * This seems arbitrary, but we take a conservative interpretation 3586 * of this statement. 3587 */ 3588 case PCI_EXP_TYPE_PCI_BRIDGE: 3589 case PCI_EXP_TYPE_RC_EC: 3590 return false; 3591 /* 3592 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3593 * implement ACS in order to indicate their peer-to-peer capabilities, 3594 * regardless of whether they are single- or multi-function devices. 3595 */ 3596 case PCI_EXP_TYPE_DOWNSTREAM: 3597 case PCI_EXP_TYPE_ROOT_PORT: 3598 return pci_acs_flags_enabled(pdev, acs_flags); 3599 /* 3600 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3601 * implemented by the remaining PCIe types to indicate peer-to-peer 3602 * capabilities, but only when they are part of a multifunction 3603 * device. The footnote for section 6.12 indicates the specific 3604 * PCIe types included here. 3605 */ 3606 case PCI_EXP_TYPE_ENDPOINT: 3607 case PCI_EXP_TYPE_UPSTREAM: 3608 case PCI_EXP_TYPE_LEG_END: 3609 case PCI_EXP_TYPE_RC_END: 3610 if (!pdev->multifunction) 3611 break; 3612 3613 return pci_acs_flags_enabled(pdev, acs_flags); 3614 } 3615 3616 /* 3617 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3618 * to single function devices with the exception of downstream ports. 3619 */ 3620 return true; 3621 } 3622 3623 /** 3624 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3625 * @start: starting downstream device 3626 * @end: ending upstream device or NULL to search to the root bus 3627 * @acs_flags: required flags 3628 * 3629 * Walk up a device tree from start to end testing PCI ACS support. If 3630 * any step along the way does not support the required flags, return false. 3631 */ 3632 bool pci_acs_path_enabled(struct pci_dev *start, 3633 struct pci_dev *end, u16 acs_flags) 3634 { 3635 struct pci_dev *pdev, *parent = start; 3636 3637 do { 3638 pdev = parent; 3639 3640 if (!pci_acs_enabled(pdev, acs_flags)) 3641 return false; 3642 3643 if (pci_is_root_bus(pdev->bus)) 3644 return (end == NULL); 3645 3646 parent = pdev->bus->self; 3647 } while (pdev != end); 3648 3649 return true; 3650 } 3651 3652 /** 3653 * pci_acs_init - Initialize ACS if hardware supports it 3654 * @dev: the PCI device 3655 */ 3656 void pci_acs_init(struct pci_dev *dev) 3657 { 3658 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3659 3660 /* 3661 * Attempt to enable ACS regardless of capability because some Root 3662 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3663 * the standard ACS capability but still support ACS via those 3664 * quirks. 3665 */ 3666 pci_enable_acs(dev); 3667 } 3668 3669 /** 3670 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3671 * @pdev: PCI device 3672 * @bar: BAR to find 3673 * 3674 * Helper to find the position of the ctrl register for a BAR. 3675 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3676 * Returns -ENOENT if no ctrl register for the BAR could be found. 3677 */ 3678 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3679 { 3680 unsigned int pos, nbars, i; 3681 u32 ctrl; 3682 3683 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3684 if (!pos) 3685 return -ENOTSUPP; 3686 3687 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3688 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 3689 3690 for (i = 0; i < nbars; i++, pos += 8) { 3691 int bar_idx; 3692 3693 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3694 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl); 3695 if (bar_idx == bar) 3696 return pos; 3697 } 3698 3699 return -ENOENT; 3700 } 3701 3702 /** 3703 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3704 * @pdev: PCI device 3705 * @bar: BAR to query 3706 * 3707 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3708 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3709 */ 3710 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3711 { 3712 int pos; 3713 u32 cap; 3714 3715 pos = pci_rebar_find_pos(pdev, bar); 3716 if (pos < 0) 3717 return 0; 3718 3719 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3720 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3721 3722 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3723 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3724 bar == 0 && cap == 0x700) 3725 return 0x3f00; 3726 3727 return cap; 3728 } 3729 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3730 3731 /** 3732 * pci_rebar_get_current_size - get the current size of a BAR 3733 * @pdev: PCI device 3734 * @bar: BAR to set size to 3735 * 3736 * Read the size of a BAR from the resizable BAR config. 3737 * Returns size if found or negative error code. 3738 */ 3739 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3740 { 3741 int pos; 3742 u32 ctrl; 3743 3744 pos = pci_rebar_find_pos(pdev, bar); 3745 if (pos < 0) 3746 return pos; 3747 3748 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3749 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl); 3750 } 3751 3752 /** 3753 * pci_rebar_set_size - set a new size for a BAR 3754 * @pdev: PCI device 3755 * @bar: BAR to set size to 3756 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3757 * 3758 * Set the new size of a BAR as defined in the spec. 3759 * Returns zero if resizing was successful, error code otherwise. 3760 */ 3761 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3762 { 3763 int pos; 3764 u32 ctrl; 3765 3766 pos = pci_rebar_find_pos(pdev, bar); 3767 if (pos < 0) 3768 return pos; 3769 3770 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3771 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3772 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 3773 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3774 return 0; 3775 } 3776 3777 /** 3778 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3779 * @dev: the PCI device 3780 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3781 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3782 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3783 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3784 * 3785 * Return 0 if all upstream bridges support AtomicOp routing, egress 3786 * blocking is disabled on all upstream ports, and the root port supports 3787 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3788 * AtomicOp completion), or negative otherwise. 3789 */ 3790 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3791 { 3792 struct pci_bus *bus = dev->bus; 3793 struct pci_dev *bridge; 3794 u32 cap, ctl2; 3795 3796 /* 3797 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3798 * in Device Control 2 is reserved in VFs and the PF value applies 3799 * to all associated VFs. 3800 */ 3801 if (dev->is_virtfn) 3802 return -EINVAL; 3803 3804 if (!pci_is_pcie(dev)) 3805 return -EINVAL; 3806 3807 /* 3808 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3809 * AtomicOp requesters. For now, we only support endpoints as 3810 * requesters and root ports as completers. No endpoints as 3811 * completers, and no peer-to-peer. 3812 */ 3813 3814 switch (pci_pcie_type(dev)) { 3815 case PCI_EXP_TYPE_ENDPOINT: 3816 case PCI_EXP_TYPE_LEG_END: 3817 case PCI_EXP_TYPE_RC_END: 3818 break; 3819 default: 3820 return -EINVAL; 3821 } 3822 3823 while (bus->parent) { 3824 bridge = bus->self; 3825 3826 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3827 3828 switch (pci_pcie_type(bridge)) { 3829 /* Ensure switch ports support AtomicOp routing */ 3830 case PCI_EXP_TYPE_UPSTREAM: 3831 case PCI_EXP_TYPE_DOWNSTREAM: 3832 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3833 return -EINVAL; 3834 break; 3835 3836 /* Ensure root port supports all the sizes we care about */ 3837 case PCI_EXP_TYPE_ROOT_PORT: 3838 if ((cap & cap_mask) != cap_mask) 3839 return -EINVAL; 3840 break; 3841 } 3842 3843 /* Ensure upstream ports don't block AtomicOps on egress */ 3844 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3845 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3846 &ctl2); 3847 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3848 return -EINVAL; 3849 } 3850 3851 bus = bus->parent; 3852 } 3853 3854 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3855 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3856 return 0; 3857 } 3858 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3859 3860 /** 3861 * pci_release_region - Release a PCI bar 3862 * @pdev: PCI device whose resources were previously reserved by 3863 * pci_request_region() 3864 * @bar: BAR to release 3865 * 3866 * Releases the PCI I/O and memory resources previously reserved by a 3867 * successful call to pci_request_region(). Call this function only 3868 * after all use of the PCI regions has ceased. 3869 */ 3870 void pci_release_region(struct pci_dev *pdev, int bar) 3871 { 3872 struct pci_devres *dr; 3873 3874 if (pci_resource_len(pdev, bar) == 0) 3875 return; 3876 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3877 release_region(pci_resource_start(pdev, bar), 3878 pci_resource_len(pdev, bar)); 3879 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3880 release_mem_region(pci_resource_start(pdev, bar), 3881 pci_resource_len(pdev, bar)); 3882 3883 dr = find_pci_dr(pdev); 3884 if (dr) 3885 dr->region_mask &= ~(1 << bar); 3886 } 3887 EXPORT_SYMBOL(pci_release_region); 3888 3889 /** 3890 * __pci_request_region - Reserved PCI I/O and memory resource 3891 * @pdev: PCI device whose resources are to be reserved 3892 * @bar: BAR to be reserved 3893 * @res_name: Name to be associated with resource. 3894 * @exclusive: whether the region access is exclusive or not 3895 * 3896 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3897 * being reserved by owner @res_name. Do not access any 3898 * address inside the PCI regions unless this call returns 3899 * successfully. 3900 * 3901 * If @exclusive is set, then the region is marked so that userspace 3902 * is explicitly not allowed to map the resource via /dev/mem or 3903 * sysfs MMIO access. 3904 * 3905 * Returns 0 on success, or %EBUSY on error. A warning 3906 * message is also printed on failure. 3907 */ 3908 static int __pci_request_region(struct pci_dev *pdev, int bar, 3909 const char *res_name, int exclusive) 3910 { 3911 struct pci_devres *dr; 3912 3913 if (pci_resource_len(pdev, bar) == 0) 3914 return 0; 3915 3916 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3917 if (!request_region(pci_resource_start(pdev, bar), 3918 pci_resource_len(pdev, bar), res_name)) 3919 goto err_out; 3920 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3921 if (!__request_mem_region(pci_resource_start(pdev, bar), 3922 pci_resource_len(pdev, bar), res_name, 3923 exclusive)) 3924 goto err_out; 3925 } 3926 3927 dr = find_pci_dr(pdev); 3928 if (dr) 3929 dr->region_mask |= 1 << bar; 3930 3931 return 0; 3932 3933 err_out: 3934 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3935 &pdev->resource[bar]); 3936 return -EBUSY; 3937 } 3938 3939 /** 3940 * pci_request_region - Reserve PCI I/O and memory resource 3941 * @pdev: PCI device whose resources are to be reserved 3942 * @bar: BAR to be reserved 3943 * @res_name: Name to be associated with resource 3944 * 3945 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3946 * being reserved by owner @res_name. Do not access any 3947 * address inside the PCI regions unless this call returns 3948 * successfully. 3949 * 3950 * Returns 0 on success, or %EBUSY on error. A warning 3951 * message is also printed on failure. 3952 */ 3953 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3954 { 3955 return __pci_request_region(pdev, bar, res_name, 0); 3956 } 3957 EXPORT_SYMBOL(pci_request_region); 3958 3959 /** 3960 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3961 * @pdev: PCI device whose resources were previously reserved 3962 * @bars: Bitmask of BARs to be released 3963 * 3964 * Release selected PCI I/O and memory resources previously reserved. 3965 * Call this function only after all use of the PCI regions has ceased. 3966 */ 3967 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3968 { 3969 int i; 3970 3971 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3972 if (bars & (1 << i)) 3973 pci_release_region(pdev, i); 3974 } 3975 EXPORT_SYMBOL(pci_release_selected_regions); 3976 3977 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3978 const char *res_name, int excl) 3979 { 3980 int i; 3981 3982 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3983 if (bars & (1 << i)) 3984 if (__pci_request_region(pdev, i, res_name, excl)) 3985 goto err_out; 3986 return 0; 3987 3988 err_out: 3989 while (--i >= 0) 3990 if (bars & (1 << i)) 3991 pci_release_region(pdev, i); 3992 3993 return -EBUSY; 3994 } 3995 3996 3997 /** 3998 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3999 * @pdev: PCI device whose resources are to be reserved 4000 * @bars: Bitmask of BARs to be requested 4001 * @res_name: Name to be associated with resource 4002 */ 4003 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4004 const char *res_name) 4005 { 4006 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4007 } 4008 EXPORT_SYMBOL(pci_request_selected_regions); 4009 4010 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4011 const char *res_name) 4012 { 4013 return __pci_request_selected_regions(pdev, bars, res_name, 4014 IORESOURCE_EXCLUSIVE); 4015 } 4016 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4017 4018 /** 4019 * pci_release_regions - Release reserved PCI I/O and memory resources 4020 * @pdev: PCI device whose resources were previously reserved by 4021 * pci_request_regions() 4022 * 4023 * Releases all PCI I/O and memory resources previously reserved by a 4024 * successful call to pci_request_regions(). Call this function only 4025 * after all use of the PCI regions has ceased. 4026 */ 4027 4028 void pci_release_regions(struct pci_dev *pdev) 4029 { 4030 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4031 } 4032 EXPORT_SYMBOL(pci_release_regions); 4033 4034 /** 4035 * pci_request_regions - Reserve PCI I/O and memory resources 4036 * @pdev: PCI device whose resources are to be reserved 4037 * @res_name: Name to be associated with resource. 4038 * 4039 * Mark all PCI regions associated with PCI device @pdev as 4040 * being reserved by owner @res_name. Do not access any 4041 * address inside the PCI regions unless this call returns 4042 * successfully. 4043 * 4044 * Returns 0 on success, or %EBUSY on error. A warning 4045 * message is also printed on failure. 4046 */ 4047 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4048 { 4049 return pci_request_selected_regions(pdev, 4050 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4051 } 4052 EXPORT_SYMBOL(pci_request_regions); 4053 4054 /** 4055 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4056 * @pdev: PCI device whose resources are to be reserved 4057 * @res_name: Name to be associated with resource. 4058 * 4059 * Mark all PCI regions associated with PCI device @pdev as being reserved 4060 * by owner @res_name. Do not access any address inside the PCI regions 4061 * unless this call returns successfully. 4062 * 4063 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4064 * and the sysfs MMIO access will not be allowed. 4065 * 4066 * Returns 0 on success, or %EBUSY on error. A warning message is also 4067 * printed on failure. 4068 */ 4069 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4070 { 4071 return pci_request_selected_regions_exclusive(pdev, 4072 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4073 } 4074 EXPORT_SYMBOL(pci_request_regions_exclusive); 4075 4076 /* 4077 * Record the PCI IO range (expressed as CPU physical address + size). 4078 * Return a negative value if an error has occurred, zero otherwise 4079 */ 4080 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4081 resource_size_t size) 4082 { 4083 int ret = 0; 4084 #ifdef PCI_IOBASE 4085 struct logic_pio_hwaddr *range; 4086 4087 if (!size || addr + size < addr) 4088 return -EINVAL; 4089 4090 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4091 if (!range) 4092 return -ENOMEM; 4093 4094 range->fwnode = fwnode; 4095 range->size = size; 4096 range->hw_start = addr; 4097 range->flags = LOGIC_PIO_CPU_MMIO; 4098 4099 ret = logic_pio_register_range(range); 4100 if (ret) 4101 kfree(range); 4102 4103 /* Ignore duplicates due to deferred probing */ 4104 if (ret == -EEXIST) 4105 ret = 0; 4106 #endif 4107 4108 return ret; 4109 } 4110 4111 phys_addr_t pci_pio_to_address(unsigned long pio) 4112 { 4113 #ifdef PCI_IOBASE 4114 if (pio < MMIO_UPPER_LIMIT) 4115 return logic_pio_to_hwaddr(pio); 4116 #endif 4117 4118 return (phys_addr_t) OF_BAD_ADDR; 4119 } 4120 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4121 4122 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4123 { 4124 #ifdef PCI_IOBASE 4125 return logic_pio_trans_cpuaddr(address); 4126 #else 4127 if (address > IO_SPACE_LIMIT) 4128 return (unsigned long)-1; 4129 4130 return (unsigned long) address; 4131 #endif 4132 } 4133 4134 /** 4135 * pci_remap_iospace - Remap the memory mapped I/O space 4136 * @res: Resource describing the I/O space 4137 * @phys_addr: physical address of range to be mapped 4138 * 4139 * Remap the memory mapped I/O space described by the @res and the CPU 4140 * physical address @phys_addr into virtual address space. Only 4141 * architectures that have memory mapped IO functions defined (and the 4142 * PCI_IOBASE value defined) should call this function. 4143 */ 4144 #ifndef pci_remap_iospace 4145 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4146 { 4147 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4148 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4149 4150 if (!(res->flags & IORESOURCE_IO)) 4151 return -EINVAL; 4152 4153 if (res->end > IO_SPACE_LIMIT) 4154 return -EINVAL; 4155 4156 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4157 pgprot_device(PAGE_KERNEL)); 4158 #else 4159 /* 4160 * This architecture does not have memory mapped I/O space, 4161 * so this function should never be called 4162 */ 4163 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4164 return -ENODEV; 4165 #endif 4166 } 4167 EXPORT_SYMBOL(pci_remap_iospace); 4168 #endif 4169 4170 /** 4171 * pci_unmap_iospace - Unmap the memory mapped I/O space 4172 * @res: resource to be unmapped 4173 * 4174 * Unmap the CPU virtual address @res from virtual address space. Only 4175 * architectures that have memory mapped IO functions defined (and the 4176 * PCI_IOBASE value defined) should call this function. 4177 */ 4178 void pci_unmap_iospace(struct resource *res) 4179 { 4180 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4181 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4182 4183 vunmap_range(vaddr, vaddr + resource_size(res)); 4184 #endif 4185 } 4186 EXPORT_SYMBOL(pci_unmap_iospace); 4187 4188 static void __pci_set_master(struct pci_dev *dev, bool enable) 4189 { 4190 u16 old_cmd, cmd; 4191 4192 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4193 if (enable) 4194 cmd = old_cmd | PCI_COMMAND_MASTER; 4195 else 4196 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4197 if (cmd != old_cmd) { 4198 pci_dbg(dev, "%s bus mastering\n", 4199 enable ? "enabling" : "disabling"); 4200 pci_write_config_word(dev, PCI_COMMAND, cmd); 4201 } 4202 dev->is_busmaster = enable; 4203 } 4204 4205 /** 4206 * pcibios_setup - process "pci=" kernel boot arguments 4207 * @str: string used to pass in "pci=" kernel boot arguments 4208 * 4209 * Process kernel boot arguments. This is the default implementation. 4210 * Architecture specific implementations can override this as necessary. 4211 */ 4212 char * __weak __init pcibios_setup(char *str) 4213 { 4214 return str; 4215 } 4216 4217 /** 4218 * pcibios_set_master - enable PCI bus-mastering for device dev 4219 * @dev: the PCI device to enable 4220 * 4221 * Enables PCI bus-mastering for the device. This is the default 4222 * implementation. Architecture specific implementations can override 4223 * this if necessary. 4224 */ 4225 void __weak pcibios_set_master(struct pci_dev *dev) 4226 { 4227 u8 lat; 4228 4229 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4230 if (pci_is_pcie(dev)) 4231 return; 4232 4233 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4234 if (lat < 16) 4235 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4236 else if (lat > pcibios_max_latency) 4237 lat = pcibios_max_latency; 4238 else 4239 return; 4240 4241 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4242 } 4243 4244 /** 4245 * pci_set_master - enables bus-mastering for device dev 4246 * @dev: the PCI device to enable 4247 * 4248 * Enables bus-mastering on the device and calls pcibios_set_master() 4249 * to do the needed arch specific settings. 4250 */ 4251 void pci_set_master(struct pci_dev *dev) 4252 { 4253 __pci_set_master(dev, true); 4254 pcibios_set_master(dev); 4255 } 4256 EXPORT_SYMBOL(pci_set_master); 4257 4258 /** 4259 * pci_clear_master - disables bus-mastering for device dev 4260 * @dev: the PCI device to disable 4261 */ 4262 void pci_clear_master(struct pci_dev *dev) 4263 { 4264 __pci_set_master(dev, false); 4265 } 4266 EXPORT_SYMBOL(pci_clear_master); 4267 4268 /** 4269 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4270 * @dev: the PCI device for which MWI is to be enabled 4271 * 4272 * Helper function for pci_set_mwi. 4273 * Originally copied from drivers/net/acenic.c. 4274 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4275 * 4276 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4277 */ 4278 int pci_set_cacheline_size(struct pci_dev *dev) 4279 { 4280 u8 cacheline_size; 4281 4282 if (!pci_cache_line_size) 4283 return -EINVAL; 4284 4285 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4286 equal to or multiple of the right value. */ 4287 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4288 if (cacheline_size >= pci_cache_line_size && 4289 (cacheline_size % pci_cache_line_size) == 0) 4290 return 0; 4291 4292 /* Write the correct value. */ 4293 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4294 /* Read it back. */ 4295 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4296 if (cacheline_size == pci_cache_line_size) 4297 return 0; 4298 4299 pci_dbg(dev, "cache line size of %d is not supported\n", 4300 pci_cache_line_size << 2); 4301 4302 return -EINVAL; 4303 } 4304 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4305 4306 /** 4307 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4308 * @dev: the PCI device for which MWI is enabled 4309 * 4310 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4311 * 4312 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4313 */ 4314 int pci_set_mwi(struct pci_dev *dev) 4315 { 4316 #ifdef PCI_DISABLE_MWI 4317 return 0; 4318 #else 4319 int rc; 4320 u16 cmd; 4321 4322 rc = pci_set_cacheline_size(dev); 4323 if (rc) 4324 return rc; 4325 4326 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4327 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4328 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4329 cmd |= PCI_COMMAND_INVALIDATE; 4330 pci_write_config_word(dev, PCI_COMMAND, cmd); 4331 } 4332 return 0; 4333 #endif 4334 } 4335 EXPORT_SYMBOL(pci_set_mwi); 4336 4337 /** 4338 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4339 * @dev: the PCI device for which MWI is enabled 4340 * 4341 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4342 * Callers are not required to check the return value. 4343 * 4344 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4345 */ 4346 int pci_try_set_mwi(struct pci_dev *dev) 4347 { 4348 #ifdef PCI_DISABLE_MWI 4349 return 0; 4350 #else 4351 return pci_set_mwi(dev); 4352 #endif 4353 } 4354 EXPORT_SYMBOL(pci_try_set_mwi); 4355 4356 /** 4357 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4358 * @dev: the PCI device to disable 4359 * 4360 * Disables PCI Memory-Write-Invalidate transaction on the device 4361 */ 4362 void pci_clear_mwi(struct pci_dev *dev) 4363 { 4364 #ifndef PCI_DISABLE_MWI 4365 u16 cmd; 4366 4367 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4368 if (cmd & PCI_COMMAND_INVALIDATE) { 4369 cmd &= ~PCI_COMMAND_INVALIDATE; 4370 pci_write_config_word(dev, PCI_COMMAND, cmd); 4371 } 4372 #endif 4373 } 4374 EXPORT_SYMBOL(pci_clear_mwi); 4375 4376 /** 4377 * pci_disable_parity - disable parity checking for device 4378 * @dev: the PCI device to operate on 4379 * 4380 * Disable parity checking for device @dev 4381 */ 4382 void pci_disable_parity(struct pci_dev *dev) 4383 { 4384 u16 cmd; 4385 4386 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4387 if (cmd & PCI_COMMAND_PARITY) { 4388 cmd &= ~PCI_COMMAND_PARITY; 4389 pci_write_config_word(dev, PCI_COMMAND, cmd); 4390 } 4391 } 4392 4393 /** 4394 * pci_intx - enables/disables PCI INTx for device dev 4395 * @pdev: the PCI device to operate on 4396 * @enable: boolean: whether to enable or disable PCI INTx 4397 * 4398 * Enables/disables PCI INTx for device @pdev 4399 */ 4400 void pci_intx(struct pci_dev *pdev, int enable) 4401 { 4402 u16 pci_command, new; 4403 4404 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4405 4406 if (enable) 4407 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4408 else 4409 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4410 4411 if (new != pci_command) { 4412 struct pci_devres *dr; 4413 4414 pci_write_config_word(pdev, PCI_COMMAND, new); 4415 4416 dr = find_pci_dr(pdev); 4417 if (dr && !dr->restore_intx) { 4418 dr->restore_intx = 1; 4419 dr->orig_intx = !enable; 4420 } 4421 } 4422 } 4423 EXPORT_SYMBOL_GPL(pci_intx); 4424 4425 /** 4426 * pci_wait_for_pending_transaction - wait for pending transaction 4427 * @dev: the PCI device to operate on 4428 * 4429 * Return 0 if transaction is pending 1 otherwise. 4430 */ 4431 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4432 { 4433 if (!pci_is_pcie(dev)) 4434 return 1; 4435 4436 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4437 PCI_EXP_DEVSTA_TRPND); 4438 } 4439 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4440 4441 /** 4442 * pcie_flr - initiate a PCIe function level reset 4443 * @dev: device to reset 4444 * 4445 * Initiate a function level reset unconditionally on @dev without 4446 * checking any flags and DEVCAP 4447 */ 4448 int pcie_flr(struct pci_dev *dev) 4449 { 4450 if (!pci_wait_for_pending_transaction(dev)) 4451 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4452 4453 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4454 4455 if (dev->imm_ready) 4456 return 0; 4457 4458 /* 4459 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4460 * 100ms, but may silently discard requests while the FLR is in 4461 * progress. Wait 100ms before trying to access the device. 4462 */ 4463 msleep(100); 4464 4465 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4466 } 4467 EXPORT_SYMBOL_GPL(pcie_flr); 4468 4469 /** 4470 * pcie_reset_flr - initiate a PCIe function level reset 4471 * @dev: device to reset 4472 * @probe: if true, return 0 if device can be reset this way 4473 * 4474 * Initiate a function level reset on @dev. 4475 */ 4476 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4477 { 4478 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4479 return -ENOTTY; 4480 4481 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4482 return -ENOTTY; 4483 4484 if (probe) 4485 return 0; 4486 4487 return pcie_flr(dev); 4488 } 4489 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4490 4491 static int pci_af_flr(struct pci_dev *dev, bool probe) 4492 { 4493 int pos; 4494 u8 cap; 4495 4496 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4497 if (!pos) 4498 return -ENOTTY; 4499 4500 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4501 return -ENOTTY; 4502 4503 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4504 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4505 return -ENOTTY; 4506 4507 if (probe) 4508 return 0; 4509 4510 /* 4511 * Wait for Transaction Pending bit to clear. A word-aligned test 4512 * is used, so we use the control offset rather than status and shift 4513 * the test bit to match. 4514 */ 4515 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4516 PCI_AF_STATUS_TP << 8)) 4517 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4518 4519 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4520 4521 if (dev->imm_ready) 4522 return 0; 4523 4524 /* 4525 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4526 * updated 27 July 2006; a device must complete an FLR within 4527 * 100ms, but may silently discard requests while the FLR is in 4528 * progress. Wait 100ms before trying to access the device. 4529 */ 4530 msleep(100); 4531 4532 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4533 } 4534 4535 /** 4536 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4537 * @dev: Device to reset. 4538 * @probe: if true, return 0 if the device can be reset this way. 4539 * 4540 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4541 * unset, it will be reinitialized internally when going from PCI_D3hot to 4542 * PCI_D0. If that's the case and the device is not in a low-power state 4543 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4544 * 4545 * NOTE: This causes the caller to sleep for twice the device power transition 4546 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4547 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4548 * Moreover, only devices in D0 can be reset by this function. 4549 */ 4550 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4551 { 4552 u16 csr; 4553 4554 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4555 return -ENOTTY; 4556 4557 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4558 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4559 return -ENOTTY; 4560 4561 if (probe) 4562 return 0; 4563 4564 if (dev->current_state != PCI_D0) 4565 return -EINVAL; 4566 4567 csr &= ~PCI_PM_CTRL_STATE_MASK; 4568 csr |= PCI_D3hot; 4569 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4570 pci_dev_d3_sleep(dev); 4571 4572 csr &= ~PCI_PM_CTRL_STATE_MASK; 4573 csr |= PCI_D0; 4574 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4575 pci_dev_d3_sleep(dev); 4576 4577 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4578 } 4579 4580 /** 4581 * pcie_wait_for_link_status - Wait for link status change 4582 * @pdev: Device whose link to wait for. 4583 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4584 * @active: Waiting for active or inactive? 4585 * 4586 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4587 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4588 */ 4589 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4590 bool use_lt, bool active) 4591 { 4592 u16 lnksta_mask, lnksta_match; 4593 unsigned long end_jiffies; 4594 u16 lnksta; 4595 4596 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4597 lnksta_match = active ? lnksta_mask : 0; 4598 4599 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4600 do { 4601 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4602 if ((lnksta & lnksta_mask) == lnksta_match) 4603 return 0; 4604 msleep(1); 4605 } while (time_before(jiffies, end_jiffies)); 4606 4607 return -ETIMEDOUT; 4608 } 4609 4610 /** 4611 * pcie_retrain_link - Request a link retrain and wait for it to complete 4612 * @pdev: Device whose link to retrain. 4613 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 4614 * 4615 * Retrain completion status is retrieved from the Link Status Register 4616 * according to @use_lt. It is not verified whether the use of the DLLLA 4617 * bit is valid. 4618 * 4619 * Return 0 if successful, or -ETIMEDOUT if training has not completed 4620 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4621 */ 4622 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 4623 { 4624 int rc; 4625 4626 /* 4627 * Ensure the updated LNKCTL parameters are used during link 4628 * training by checking that there is no ongoing link training to 4629 * avoid LTSSM race as recommended in Implementation Note at the 4630 * end of PCIe r6.0.1 sec 7.5.3.7. 4631 */ 4632 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4633 if (rc) 4634 return rc; 4635 4636 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4637 if (pdev->clear_retrain_link) { 4638 /* 4639 * Due to an erratum in some devices the Retrain Link bit 4640 * needs to be cleared again manually to allow the link 4641 * training to succeed. 4642 */ 4643 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4644 } 4645 4646 return pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4647 } 4648 4649 /** 4650 * pcie_wait_for_link_delay - Wait until link is active or inactive 4651 * @pdev: Bridge device 4652 * @active: waiting for active or inactive? 4653 * @delay: Delay to wait after link has become active (in ms) 4654 * 4655 * Use this to wait till link becomes active or inactive. 4656 */ 4657 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4658 int delay) 4659 { 4660 int rc; 4661 4662 /* 4663 * Some controllers might not implement link active reporting. In this 4664 * case, we wait for 1000 ms + any delay requested by the caller. 4665 */ 4666 if (!pdev->link_active_reporting) { 4667 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 4668 return true; 4669 } 4670 4671 /* 4672 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4673 * after which we should expect an link active if the reset was 4674 * successful. If so, software must wait a minimum 100ms before sending 4675 * configuration requests to devices downstream this port. 4676 * 4677 * If the link fails to activate, either the device was physically 4678 * removed or the link is permanently failed. 4679 */ 4680 if (active) 4681 msleep(20); 4682 rc = pcie_wait_for_link_status(pdev, false, active); 4683 if (active) { 4684 if (rc) 4685 rc = pcie_failed_link_retrain(pdev); 4686 if (rc) 4687 return false; 4688 4689 msleep(delay); 4690 return true; 4691 } 4692 4693 if (rc) 4694 return false; 4695 4696 return true; 4697 } 4698 4699 /** 4700 * pcie_wait_for_link - Wait until link is active or inactive 4701 * @pdev: Bridge device 4702 * @active: waiting for active or inactive? 4703 * 4704 * Use this to wait till link becomes active or inactive. 4705 */ 4706 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4707 { 4708 return pcie_wait_for_link_delay(pdev, active, 100); 4709 } 4710 4711 /* 4712 * Find maximum D3cold delay required by all the devices on the bus. The 4713 * spec says 100 ms, but firmware can lower it and we allow drivers to 4714 * increase it as well. 4715 * 4716 * Called with @pci_bus_sem locked for reading. 4717 */ 4718 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4719 { 4720 const struct pci_dev *pdev; 4721 int min_delay = 100; 4722 int max_delay = 0; 4723 4724 list_for_each_entry(pdev, &bus->devices, bus_list) { 4725 if (pdev->d3cold_delay < min_delay) 4726 min_delay = pdev->d3cold_delay; 4727 if (pdev->d3cold_delay > max_delay) 4728 max_delay = pdev->d3cold_delay; 4729 } 4730 4731 return max(min_delay, max_delay); 4732 } 4733 4734 /** 4735 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4736 * @dev: PCI bridge 4737 * @reset_type: reset type in human-readable form 4738 * 4739 * Handle necessary delays before access to the devices on the secondary 4740 * side of the bridge are permitted after D3cold to D0 transition 4741 * or Conventional Reset. 4742 * 4743 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4744 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4745 * 4.3.2. 4746 * 4747 * Return 0 on success or -ENOTTY if the first device on the secondary bus 4748 * failed to become accessible. 4749 */ 4750 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 4751 { 4752 struct pci_dev *child; 4753 int delay; 4754 4755 if (pci_dev_is_disconnected(dev)) 4756 return 0; 4757 4758 if (!pci_is_bridge(dev)) 4759 return 0; 4760 4761 down_read(&pci_bus_sem); 4762 4763 /* 4764 * We only deal with devices that are present currently on the bus. 4765 * For any hot-added devices the access delay is handled in pciehp 4766 * board_added(). In case of ACPI hotplug the firmware is expected 4767 * to configure the devices before OS is notified. 4768 */ 4769 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4770 up_read(&pci_bus_sem); 4771 return 0; 4772 } 4773 4774 /* Take d3cold_delay requirements into account */ 4775 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4776 if (!delay) { 4777 up_read(&pci_bus_sem); 4778 return 0; 4779 } 4780 4781 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4782 bus_list); 4783 up_read(&pci_bus_sem); 4784 4785 /* 4786 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4787 * accessing the device after reset (that is 1000 ms + 100 ms). 4788 */ 4789 if (!pci_is_pcie(dev)) { 4790 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4791 msleep(1000 + delay); 4792 return 0; 4793 } 4794 4795 /* 4796 * For PCIe downstream and root ports that do not support speeds 4797 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4798 * speeds (gen3) we need to wait first for the data link layer to 4799 * become active. 4800 * 4801 * However, 100 ms is the minimum and the PCIe spec says the 4802 * software must allow at least 1s before it can determine that the 4803 * device that did not respond is a broken device. Also device can 4804 * take longer than that to respond if it indicates so through Request 4805 * Retry Status completions. 4806 * 4807 * Therefore we wait for 100 ms and check for the device presence 4808 * until the timeout expires. 4809 */ 4810 if (!pcie_downstream_port(dev)) 4811 return 0; 4812 4813 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4814 u16 status; 4815 4816 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4817 msleep(delay); 4818 4819 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 4820 return 0; 4821 4822 /* 4823 * If the port supports active link reporting we now check 4824 * whether the link is active and if not bail out early with 4825 * the assumption that the device is not present anymore. 4826 */ 4827 if (!dev->link_active_reporting) 4828 return -ENOTTY; 4829 4830 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 4831 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 4832 return -ENOTTY; 4833 4834 return pci_dev_wait(child, reset_type, 4835 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 4836 } 4837 4838 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4839 delay); 4840 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4841 /* Did not train, no need to wait any further */ 4842 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 4843 return -ENOTTY; 4844 } 4845 4846 return pci_dev_wait(child, reset_type, 4847 PCIE_RESET_READY_POLL_MS - delay); 4848 } 4849 4850 void pci_reset_secondary_bus(struct pci_dev *dev) 4851 { 4852 u16 ctrl; 4853 4854 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4855 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4856 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4857 4858 /* 4859 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4860 * this to 2ms to ensure that we meet the minimum requirement. 4861 */ 4862 msleep(2); 4863 4864 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4865 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4866 } 4867 4868 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4869 { 4870 pci_reset_secondary_bus(dev); 4871 } 4872 4873 /** 4874 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4875 * @dev: Bridge device 4876 * 4877 * Use the bridge control register to assert reset on the secondary bus. 4878 * Devices on the secondary bus are left in power-on state. 4879 */ 4880 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4881 { 4882 pcibios_reset_secondary_bus(dev); 4883 4884 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 4885 } 4886 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4887 4888 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 4889 { 4890 struct pci_dev *pdev; 4891 4892 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4893 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4894 return -ENOTTY; 4895 4896 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4897 if (pdev != dev) 4898 return -ENOTTY; 4899 4900 if (probe) 4901 return 0; 4902 4903 return pci_bridge_secondary_bus_reset(dev->bus->self); 4904 } 4905 4906 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 4907 { 4908 int rc = -ENOTTY; 4909 4910 if (!hotplug || !try_module_get(hotplug->owner)) 4911 return rc; 4912 4913 if (hotplug->ops->reset_slot) 4914 rc = hotplug->ops->reset_slot(hotplug, probe); 4915 4916 module_put(hotplug->owner); 4917 4918 return rc; 4919 } 4920 4921 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 4922 { 4923 if (dev->multifunction || dev->subordinate || !dev->slot || 4924 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4925 return -ENOTTY; 4926 4927 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4928 } 4929 4930 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 4931 { 4932 int rc; 4933 4934 rc = pci_dev_reset_slot_function(dev, probe); 4935 if (rc != -ENOTTY) 4936 return rc; 4937 return pci_parent_bus_reset(dev, probe); 4938 } 4939 4940 void pci_dev_lock(struct pci_dev *dev) 4941 { 4942 /* block PM suspend, driver probe, etc. */ 4943 device_lock(&dev->dev); 4944 pci_cfg_access_lock(dev); 4945 } 4946 EXPORT_SYMBOL_GPL(pci_dev_lock); 4947 4948 /* Return 1 on successful lock, 0 on contention */ 4949 int pci_dev_trylock(struct pci_dev *dev) 4950 { 4951 if (device_trylock(&dev->dev)) { 4952 if (pci_cfg_access_trylock(dev)) 4953 return 1; 4954 device_unlock(&dev->dev); 4955 } 4956 4957 return 0; 4958 } 4959 EXPORT_SYMBOL_GPL(pci_dev_trylock); 4960 4961 void pci_dev_unlock(struct pci_dev *dev) 4962 { 4963 pci_cfg_access_unlock(dev); 4964 device_unlock(&dev->dev); 4965 } 4966 EXPORT_SYMBOL_GPL(pci_dev_unlock); 4967 4968 static void pci_dev_save_and_disable(struct pci_dev *dev) 4969 { 4970 const struct pci_error_handlers *err_handler = 4971 dev->driver ? dev->driver->err_handler : NULL; 4972 4973 /* 4974 * dev->driver->err_handler->reset_prepare() is protected against 4975 * races with ->remove() by the device lock, which must be held by 4976 * the caller. 4977 */ 4978 if (err_handler && err_handler->reset_prepare) 4979 err_handler->reset_prepare(dev); 4980 4981 /* 4982 * Wake-up device prior to save. PM registers default to D0 after 4983 * reset and a simple register restore doesn't reliably return 4984 * to a non-D0 state anyway. 4985 */ 4986 pci_set_power_state(dev, PCI_D0); 4987 4988 pci_save_state(dev); 4989 /* 4990 * Disable the device by clearing the Command register, except for 4991 * INTx-disable which is set. This not only disables MMIO and I/O port 4992 * BARs, but also prevents the device from being Bus Master, preventing 4993 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4994 * compliant devices, INTx-disable prevents legacy interrupts. 4995 */ 4996 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4997 } 4998 4999 static void pci_dev_restore(struct pci_dev *dev) 5000 { 5001 const struct pci_error_handlers *err_handler = 5002 dev->driver ? dev->driver->err_handler : NULL; 5003 5004 pci_restore_state(dev); 5005 5006 /* 5007 * dev->driver->err_handler->reset_done() is protected against 5008 * races with ->remove() by the device lock, which must be held by 5009 * the caller. 5010 */ 5011 if (err_handler && err_handler->reset_done) 5012 err_handler->reset_done(dev); 5013 } 5014 5015 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5016 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5017 { }, 5018 { pci_dev_specific_reset, .name = "device_specific" }, 5019 { pci_dev_acpi_reset, .name = "acpi" }, 5020 { pcie_reset_flr, .name = "flr" }, 5021 { pci_af_flr, .name = "af_flr" }, 5022 { pci_pm_reset, .name = "pm" }, 5023 { pci_reset_bus_function, .name = "bus" }, 5024 }; 5025 5026 static ssize_t reset_method_show(struct device *dev, 5027 struct device_attribute *attr, char *buf) 5028 { 5029 struct pci_dev *pdev = to_pci_dev(dev); 5030 ssize_t len = 0; 5031 int i, m; 5032 5033 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5034 m = pdev->reset_methods[i]; 5035 if (!m) 5036 break; 5037 5038 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5039 pci_reset_fn_methods[m].name); 5040 } 5041 5042 if (len) 5043 len += sysfs_emit_at(buf, len, "\n"); 5044 5045 return len; 5046 } 5047 5048 static int reset_method_lookup(const char *name) 5049 { 5050 int m; 5051 5052 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5053 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5054 return m; 5055 } 5056 5057 return 0; /* not found */ 5058 } 5059 5060 static ssize_t reset_method_store(struct device *dev, 5061 struct device_attribute *attr, 5062 const char *buf, size_t count) 5063 { 5064 struct pci_dev *pdev = to_pci_dev(dev); 5065 char *options, *name; 5066 int m, n; 5067 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5068 5069 if (sysfs_streq(buf, "")) { 5070 pdev->reset_methods[0] = 0; 5071 pci_warn(pdev, "All device reset methods disabled by user"); 5072 return count; 5073 } 5074 5075 if (sysfs_streq(buf, "default")) { 5076 pci_init_reset_methods(pdev); 5077 return count; 5078 } 5079 5080 options = kstrndup(buf, count, GFP_KERNEL); 5081 if (!options) 5082 return -ENOMEM; 5083 5084 n = 0; 5085 while ((name = strsep(&options, " ")) != NULL) { 5086 if (sysfs_streq(name, "")) 5087 continue; 5088 5089 name = strim(name); 5090 5091 m = reset_method_lookup(name); 5092 if (!m) { 5093 pci_err(pdev, "Invalid reset method '%s'", name); 5094 goto error; 5095 } 5096 5097 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5098 pci_err(pdev, "Unsupported reset method '%s'", name); 5099 goto error; 5100 } 5101 5102 if (n == PCI_NUM_RESET_METHODS - 1) { 5103 pci_err(pdev, "Too many reset methods\n"); 5104 goto error; 5105 } 5106 5107 reset_methods[n++] = m; 5108 } 5109 5110 reset_methods[n] = 0; 5111 5112 /* Warn if dev-specific supported but not highest priority */ 5113 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5114 reset_methods[0] != 1) 5115 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5116 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5117 kfree(options); 5118 return count; 5119 5120 error: 5121 /* Leave previous methods unchanged */ 5122 kfree(options); 5123 return -EINVAL; 5124 } 5125 static DEVICE_ATTR_RW(reset_method); 5126 5127 static struct attribute *pci_dev_reset_method_attrs[] = { 5128 &dev_attr_reset_method.attr, 5129 NULL, 5130 }; 5131 5132 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5133 struct attribute *a, int n) 5134 { 5135 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5136 5137 if (!pci_reset_supported(pdev)) 5138 return 0; 5139 5140 return a->mode; 5141 } 5142 5143 const struct attribute_group pci_dev_reset_method_attr_group = { 5144 .attrs = pci_dev_reset_method_attrs, 5145 .is_visible = pci_dev_reset_method_attr_is_visible, 5146 }; 5147 5148 /** 5149 * __pci_reset_function_locked - reset a PCI device function while holding 5150 * the @dev mutex lock. 5151 * @dev: PCI device to reset 5152 * 5153 * Some devices allow an individual function to be reset without affecting 5154 * other functions in the same device. The PCI device must be responsive 5155 * to PCI config space in order to use this function. 5156 * 5157 * The device function is presumed to be unused and the caller is holding 5158 * the device mutex lock when this function is called. 5159 * 5160 * Resetting the device will make the contents of PCI configuration space 5161 * random, so any caller of this must be prepared to reinitialise the 5162 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5163 * etc. 5164 * 5165 * Returns 0 if the device function was successfully reset or negative if the 5166 * device doesn't support resetting a single function. 5167 */ 5168 int __pci_reset_function_locked(struct pci_dev *dev) 5169 { 5170 int i, m, rc; 5171 5172 might_sleep(); 5173 5174 /* 5175 * A reset method returns -ENOTTY if it doesn't support this device and 5176 * we should try the next method. 5177 * 5178 * If it returns 0 (success), we're finished. If it returns any other 5179 * error, we're also finished: this indicates that further reset 5180 * mechanisms might be broken on the device. 5181 */ 5182 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5183 m = dev->reset_methods[i]; 5184 if (!m) 5185 return -ENOTTY; 5186 5187 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5188 if (!rc) 5189 return 0; 5190 if (rc != -ENOTTY) 5191 return rc; 5192 } 5193 5194 return -ENOTTY; 5195 } 5196 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5197 5198 /** 5199 * pci_init_reset_methods - check whether device can be safely reset 5200 * and store supported reset mechanisms. 5201 * @dev: PCI device to check for reset mechanisms 5202 * 5203 * Some devices allow an individual function to be reset without affecting 5204 * other functions in the same device. The PCI device must be in D0-D3hot 5205 * state. 5206 * 5207 * Stores reset mechanisms supported by device in reset_methods byte array 5208 * which is a member of struct pci_dev. 5209 */ 5210 void pci_init_reset_methods(struct pci_dev *dev) 5211 { 5212 int m, i, rc; 5213 5214 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5215 5216 might_sleep(); 5217 5218 i = 0; 5219 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5220 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5221 if (!rc) 5222 dev->reset_methods[i++] = m; 5223 else if (rc != -ENOTTY) 5224 break; 5225 } 5226 5227 dev->reset_methods[i] = 0; 5228 } 5229 5230 /** 5231 * pci_reset_function - quiesce and reset a PCI device function 5232 * @dev: PCI device to reset 5233 * 5234 * Some devices allow an individual function to be reset without affecting 5235 * other functions in the same device. The PCI device must be responsive 5236 * to PCI config space in order to use this function. 5237 * 5238 * This function does not just reset the PCI portion of a device, but 5239 * clears all the state associated with the device. This function differs 5240 * from __pci_reset_function_locked() in that it saves and restores device state 5241 * over the reset and takes the PCI device lock. 5242 * 5243 * Returns 0 if the device function was successfully reset or negative if the 5244 * device doesn't support resetting a single function. 5245 */ 5246 int pci_reset_function(struct pci_dev *dev) 5247 { 5248 int rc; 5249 5250 if (!pci_reset_supported(dev)) 5251 return -ENOTTY; 5252 5253 pci_dev_lock(dev); 5254 pci_dev_save_and_disable(dev); 5255 5256 rc = __pci_reset_function_locked(dev); 5257 5258 pci_dev_restore(dev); 5259 pci_dev_unlock(dev); 5260 5261 return rc; 5262 } 5263 EXPORT_SYMBOL_GPL(pci_reset_function); 5264 5265 /** 5266 * pci_reset_function_locked - quiesce and reset a PCI device function 5267 * @dev: PCI device to reset 5268 * 5269 * Some devices allow an individual function to be reset without affecting 5270 * other functions in the same device. The PCI device must be responsive 5271 * to PCI config space in order to use this function. 5272 * 5273 * This function does not just reset the PCI portion of a device, but 5274 * clears all the state associated with the device. This function differs 5275 * from __pci_reset_function_locked() in that it saves and restores device state 5276 * over the reset. It also differs from pci_reset_function() in that it 5277 * requires the PCI device lock to be held. 5278 * 5279 * Returns 0 if the device function was successfully reset or negative if the 5280 * device doesn't support resetting a single function. 5281 */ 5282 int pci_reset_function_locked(struct pci_dev *dev) 5283 { 5284 int rc; 5285 5286 if (!pci_reset_supported(dev)) 5287 return -ENOTTY; 5288 5289 pci_dev_save_and_disable(dev); 5290 5291 rc = __pci_reset_function_locked(dev); 5292 5293 pci_dev_restore(dev); 5294 5295 return rc; 5296 } 5297 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5298 5299 /** 5300 * pci_try_reset_function - quiesce and reset a PCI device function 5301 * @dev: PCI device to reset 5302 * 5303 * Same as above, except return -EAGAIN if unable to lock device. 5304 */ 5305 int pci_try_reset_function(struct pci_dev *dev) 5306 { 5307 int rc; 5308 5309 if (!pci_reset_supported(dev)) 5310 return -ENOTTY; 5311 5312 if (!pci_dev_trylock(dev)) 5313 return -EAGAIN; 5314 5315 pci_dev_save_and_disable(dev); 5316 rc = __pci_reset_function_locked(dev); 5317 pci_dev_restore(dev); 5318 pci_dev_unlock(dev); 5319 5320 return rc; 5321 } 5322 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5323 5324 /* Do any devices on or below this bus prevent a bus reset? */ 5325 static bool pci_bus_resettable(struct pci_bus *bus) 5326 { 5327 struct pci_dev *dev; 5328 5329 5330 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5331 return false; 5332 5333 list_for_each_entry(dev, &bus->devices, bus_list) { 5334 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5335 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5336 return false; 5337 } 5338 5339 return true; 5340 } 5341 5342 /* Lock devices from the top of the tree down */ 5343 static void pci_bus_lock(struct pci_bus *bus) 5344 { 5345 struct pci_dev *dev; 5346 5347 list_for_each_entry(dev, &bus->devices, bus_list) { 5348 pci_dev_lock(dev); 5349 if (dev->subordinate) 5350 pci_bus_lock(dev->subordinate); 5351 } 5352 } 5353 5354 /* Unlock devices from the bottom of the tree up */ 5355 static void pci_bus_unlock(struct pci_bus *bus) 5356 { 5357 struct pci_dev *dev; 5358 5359 list_for_each_entry(dev, &bus->devices, bus_list) { 5360 if (dev->subordinate) 5361 pci_bus_unlock(dev->subordinate); 5362 pci_dev_unlock(dev); 5363 } 5364 } 5365 5366 /* Return 1 on successful lock, 0 on contention */ 5367 static int pci_bus_trylock(struct pci_bus *bus) 5368 { 5369 struct pci_dev *dev; 5370 5371 list_for_each_entry(dev, &bus->devices, bus_list) { 5372 if (!pci_dev_trylock(dev)) 5373 goto unlock; 5374 if (dev->subordinate) { 5375 if (!pci_bus_trylock(dev->subordinate)) { 5376 pci_dev_unlock(dev); 5377 goto unlock; 5378 } 5379 } 5380 } 5381 return 1; 5382 5383 unlock: 5384 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5385 if (dev->subordinate) 5386 pci_bus_unlock(dev->subordinate); 5387 pci_dev_unlock(dev); 5388 } 5389 return 0; 5390 } 5391 5392 /* Do any devices on or below this slot prevent a bus reset? */ 5393 static bool pci_slot_resettable(struct pci_slot *slot) 5394 { 5395 struct pci_dev *dev; 5396 5397 if (slot->bus->self && 5398 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5399 return false; 5400 5401 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5402 if (!dev->slot || dev->slot != slot) 5403 continue; 5404 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5405 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5406 return false; 5407 } 5408 5409 return true; 5410 } 5411 5412 /* Lock devices from the top of the tree down */ 5413 static void pci_slot_lock(struct pci_slot *slot) 5414 { 5415 struct pci_dev *dev; 5416 5417 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5418 if (!dev->slot || dev->slot != slot) 5419 continue; 5420 pci_dev_lock(dev); 5421 if (dev->subordinate) 5422 pci_bus_lock(dev->subordinate); 5423 } 5424 } 5425 5426 /* Unlock devices from the bottom of the tree up */ 5427 static void pci_slot_unlock(struct pci_slot *slot) 5428 { 5429 struct pci_dev *dev; 5430 5431 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5432 if (!dev->slot || dev->slot != slot) 5433 continue; 5434 if (dev->subordinate) 5435 pci_bus_unlock(dev->subordinate); 5436 pci_dev_unlock(dev); 5437 } 5438 } 5439 5440 /* Return 1 on successful lock, 0 on contention */ 5441 static int pci_slot_trylock(struct pci_slot *slot) 5442 { 5443 struct pci_dev *dev; 5444 5445 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5446 if (!dev->slot || dev->slot != slot) 5447 continue; 5448 if (!pci_dev_trylock(dev)) 5449 goto unlock; 5450 if (dev->subordinate) { 5451 if (!pci_bus_trylock(dev->subordinate)) { 5452 pci_dev_unlock(dev); 5453 goto unlock; 5454 } 5455 } 5456 } 5457 return 1; 5458 5459 unlock: 5460 list_for_each_entry_continue_reverse(dev, 5461 &slot->bus->devices, bus_list) { 5462 if (!dev->slot || dev->slot != slot) 5463 continue; 5464 if (dev->subordinate) 5465 pci_bus_unlock(dev->subordinate); 5466 pci_dev_unlock(dev); 5467 } 5468 return 0; 5469 } 5470 5471 /* 5472 * Save and disable devices from the top of the tree down while holding 5473 * the @dev mutex lock for the entire tree. 5474 */ 5475 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5476 { 5477 struct pci_dev *dev; 5478 5479 list_for_each_entry(dev, &bus->devices, bus_list) { 5480 pci_dev_save_and_disable(dev); 5481 if (dev->subordinate) 5482 pci_bus_save_and_disable_locked(dev->subordinate); 5483 } 5484 } 5485 5486 /* 5487 * Restore devices from top of the tree down while holding @dev mutex lock 5488 * for the entire tree. Parent bridges need to be restored before we can 5489 * get to subordinate devices. 5490 */ 5491 static void pci_bus_restore_locked(struct pci_bus *bus) 5492 { 5493 struct pci_dev *dev; 5494 5495 list_for_each_entry(dev, &bus->devices, bus_list) { 5496 pci_dev_restore(dev); 5497 if (dev->subordinate) 5498 pci_bus_restore_locked(dev->subordinate); 5499 } 5500 } 5501 5502 /* 5503 * Save and disable devices from the top of the tree down while holding 5504 * the @dev mutex lock for the entire tree. 5505 */ 5506 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5507 { 5508 struct pci_dev *dev; 5509 5510 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5511 if (!dev->slot || dev->slot != slot) 5512 continue; 5513 pci_dev_save_and_disable(dev); 5514 if (dev->subordinate) 5515 pci_bus_save_and_disable_locked(dev->subordinate); 5516 } 5517 } 5518 5519 /* 5520 * Restore devices from top of the tree down while holding @dev mutex lock 5521 * for the entire tree. Parent bridges need to be restored before we can 5522 * get to subordinate devices. 5523 */ 5524 static void pci_slot_restore_locked(struct pci_slot *slot) 5525 { 5526 struct pci_dev *dev; 5527 5528 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5529 if (!dev->slot || dev->slot != slot) 5530 continue; 5531 pci_dev_restore(dev); 5532 if (dev->subordinate) 5533 pci_bus_restore_locked(dev->subordinate); 5534 } 5535 } 5536 5537 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5538 { 5539 int rc; 5540 5541 if (!slot || !pci_slot_resettable(slot)) 5542 return -ENOTTY; 5543 5544 if (!probe) 5545 pci_slot_lock(slot); 5546 5547 might_sleep(); 5548 5549 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5550 5551 if (!probe) 5552 pci_slot_unlock(slot); 5553 5554 return rc; 5555 } 5556 5557 /** 5558 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5559 * @slot: PCI slot to probe 5560 * 5561 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5562 */ 5563 int pci_probe_reset_slot(struct pci_slot *slot) 5564 { 5565 return pci_slot_reset(slot, PCI_RESET_PROBE); 5566 } 5567 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5568 5569 /** 5570 * __pci_reset_slot - Try to reset a PCI slot 5571 * @slot: PCI slot to reset 5572 * 5573 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5574 * independent of other slots. For instance, some slots may support slot power 5575 * control. In the case of a 1:1 bus to slot architecture, this function may 5576 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5577 * Generally a slot reset should be attempted before a bus reset. All of the 5578 * function of the slot and any subordinate buses behind the slot are reset 5579 * through this function. PCI config space of all devices in the slot and 5580 * behind the slot is saved before and restored after reset. 5581 * 5582 * Same as above except return -EAGAIN if the slot cannot be locked 5583 */ 5584 static int __pci_reset_slot(struct pci_slot *slot) 5585 { 5586 int rc; 5587 5588 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5589 if (rc) 5590 return rc; 5591 5592 if (pci_slot_trylock(slot)) { 5593 pci_slot_save_and_disable_locked(slot); 5594 might_sleep(); 5595 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5596 pci_slot_restore_locked(slot); 5597 pci_slot_unlock(slot); 5598 } else 5599 rc = -EAGAIN; 5600 5601 return rc; 5602 } 5603 5604 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5605 { 5606 int ret; 5607 5608 if (!bus->self || !pci_bus_resettable(bus)) 5609 return -ENOTTY; 5610 5611 if (probe) 5612 return 0; 5613 5614 pci_bus_lock(bus); 5615 5616 might_sleep(); 5617 5618 ret = pci_bridge_secondary_bus_reset(bus->self); 5619 5620 pci_bus_unlock(bus); 5621 5622 return ret; 5623 } 5624 5625 /** 5626 * pci_bus_error_reset - reset the bridge's subordinate bus 5627 * @bridge: The parent device that connects to the bus to reset 5628 * 5629 * This function will first try to reset the slots on this bus if the method is 5630 * available. If slot reset fails or is not available, this will fall back to a 5631 * secondary bus reset. 5632 */ 5633 int pci_bus_error_reset(struct pci_dev *bridge) 5634 { 5635 struct pci_bus *bus = bridge->subordinate; 5636 struct pci_slot *slot; 5637 5638 if (!bus) 5639 return -ENOTTY; 5640 5641 mutex_lock(&pci_slot_mutex); 5642 if (list_empty(&bus->slots)) 5643 goto bus_reset; 5644 5645 list_for_each_entry(slot, &bus->slots, list) 5646 if (pci_probe_reset_slot(slot)) 5647 goto bus_reset; 5648 5649 list_for_each_entry(slot, &bus->slots, list) 5650 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5651 goto bus_reset; 5652 5653 mutex_unlock(&pci_slot_mutex); 5654 return 0; 5655 bus_reset: 5656 mutex_unlock(&pci_slot_mutex); 5657 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5658 } 5659 5660 /** 5661 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5662 * @bus: PCI bus to probe 5663 * 5664 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5665 */ 5666 int pci_probe_reset_bus(struct pci_bus *bus) 5667 { 5668 return pci_bus_reset(bus, PCI_RESET_PROBE); 5669 } 5670 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5671 5672 /** 5673 * __pci_reset_bus - Try to reset a PCI bus 5674 * @bus: top level PCI bus to reset 5675 * 5676 * Same as above except return -EAGAIN if the bus cannot be locked 5677 */ 5678 static int __pci_reset_bus(struct pci_bus *bus) 5679 { 5680 int rc; 5681 5682 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5683 if (rc) 5684 return rc; 5685 5686 if (pci_bus_trylock(bus)) { 5687 pci_bus_save_and_disable_locked(bus); 5688 might_sleep(); 5689 rc = pci_bridge_secondary_bus_reset(bus->self); 5690 pci_bus_restore_locked(bus); 5691 pci_bus_unlock(bus); 5692 } else 5693 rc = -EAGAIN; 5694 5695 return rc; 5696 } 5697 5698 /** 5699 * pci_reset_bus - Try to reset a PCI bus 5700 * @pdev: top level PCI device to reset via slot/bus 5701 * 5702 * Same as above except return -EAGAIN if the bus cannot be locked 5703 */ 5704 int pci_reset_bus(struct pci_dev *pdev) 5705 { 5706 return (!pci_probe_reset_slot(pdev->slot)) ? 5707 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5708 } 5709 EXPORT_SYMBOL_GPL(pci_reset_bus); 5710 5711 /** 5712 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5713 * @dev: PCI device to query 5714 * 5715 * Returns mmrbc: maximum designed memory read count in bytes or 5716 * appropriate error value. 5717 */ 5718 int pcix_get_max_mmrbc(struct pci_dev *dev) 5719 { 5720 int cap; 5721 u32 stat; 5722 5723 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5724 if (!cap) 5725 return -EINVAL; 5726 5727 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5728 return -EINVAL; 5729 5730 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat); 5731 } 5732 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5733 5734 /** 5735 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5736 * @dev: PCI device to query 5737 * 5738 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5739 * value. 5740 */ 5741 int pcix_get_mmrbc(struct pci_dev *dev) 5742 { 5743 int cap; 5744 u16 cmd; 5745 5746 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5747 if (!cap) 5748 return -EINVAL; 5749 5750 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5751 return -EINVAL; 5752 5753 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 5754 } 5755 EXPORT_SYMBOL(pcix_get_mmrbc); 5756 5757 /** 5758 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5759 * @dev: PCI device to query 5760 * @mmrbc: maximum memory read count in bytes 5761 * valid values are 512, 1024, 2048, 4096 5762 * 5763 * If possible sets maximum memory read byte count, some bridges have errata 5764 * that prevent this. 5765 */ 5766 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5767 { 5768 int cap; 5769 u32 stat, v, o; 5770 u16 cmd; 5771 5772 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5773 return -EINVAL; 5774 5775 v = ffs(mmrbc) - 10; 5776 5777 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5778 if (!cap) 5779 return -EINVAL; 5780 5781 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5782 return -EINVAL; 5783 5784 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat)) 5785 return -E2BIG; 5786 5787 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5788 return -EINVAL; 5789 5790 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 5791 if (o != v) { 5792 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5793 return -EIO; 5794 5795 cmd &= ~PCI_X_CMD_MAX_READ; 5796 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v); 5797 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5798 return -EIO; 5799 } 5800 return 0; 5801 } 5802 EXPORT_SYMBOL(pcix_set_mmrbc); 5803 5804 /** 5805 * pcie_get_readrq - get PCI Express read request size 5806 * @dev: PCI device to query 5807 * 5808 * Returns maximum memory read request in bytes or appropriate error value. 5809 */ 5810 int pcie_get_readrq(struct pci_dev *dev) 5811 { 5812 u16 ctl; 5813 5814 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5815 5816 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl); 5817 } 5818 EXPORT_SYMBOL(pcie_get_readrq); 5819 5820 /** 5821 * pcie_set_readrq - set PCI Express maximum memory read request 5822 * @dev: PCI device to query 5823 * @rq: maximum memory read count in bytes 5824 * valid values are 128, 256, 512, 1024, 2048, 4096 5825 * 5826 * If possible sets maximum memory read request in bytes 5827 */ 5828 int pcie_set_readrq(struct pci_dev *dev, int rq) 5829 { 5830 u16 v; 5831 int ret; 5832 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 5833 5834 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5835 return -EINVAL; 5836 5837 /* 5838 * If using the "performance" PCIe config, we clamp the read rq 5839 * size to the max packet size to keep the host bridge from 5840 * generating requests larger than we can cope with. 5841 */ 5842 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5843 int mps = pcie_get_mps(dev); 5844 5845 if (mps < rq) 5846 rq = mps; 5847 } 5848 5849 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8); 5850 5851 if (bridge->no_inc_mrrs) { 5852 int max_mrrs = pcie_get_readrq(dev); 5853 5854 if (rq > max_mrrs) { 5855 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 5856 return -EINVAL; 5857 } 5858 } 5859 5860 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5861 PCI_EXP_DEVCTL_READRQ, v); 5862 5863 return pcibios_err_to_errno(ret); 5864 } 5865 EXPORT_SYMBOL(pcie_set_readrq); 5866 5867 /** 5868 * pcie_get_mps - get PCI Express maximum payload size 5869 * @dev: PCI device to query 5870 * 5871 * Returns maximum payload size in bytes 5872 */ 5873 int pcie_get_mps(struct pci_dev *dev) 5874 { 5875 u16 ctl; 5876 5877 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5878 5879 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl); 5880 } 5881 EXPORT_SYMBOL(pcie_get_mps); 5882 5883 /** 5884 * pcie_set_mps - set PCI Express maximum payload size 5885 * @dev: PCI device to query 5886 * @mps: maximum payload size in bytes 5887 * valid values are 128, 256, 512, 1024, 2048, 4096 5888 * 5889 * If possible sets maximum payload size 5890 */ 5891 int pcie_set_mps(struct pci_dev *dev, int mps) 5892 { 5893 u16 v; 5894 int ret; 5895 5896 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5897 return -EINVAL; 5898 5899 v = ffs(mps) - 8; 5900 if (v > dev->pcie_mpss) 5901 return -EINVAL; 5902 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v); 5903 5904 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5905 PCI_EXP_DEVCTL_PAYLOAD, v); 5906 5907 return pcibios_err_to_errno(ret); 5908 } 5909 EXPORT_SYMBOL(pcie_set_mps); 5910 5911 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta) 5912 { 5913 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)]; 5914 } 5915 5916 int pcie_link_speed_mbps(struct pci_dev *pdev) 5917 { 5918 u16 lnksta; 5919 int err; 5920 5921 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 5922 if (err) 5923 return err; 5924 5925 switch (to_pcie_link_speed(lnksta)) { 5926 case PCIE_SPEED_2_5GT: 5927 return 2500; 5928 case PCIE_SPEED_5_0GT: 5929 return 5000; 5930 case PCIE_SPEED_8_0GT: 5931 return 8000; 5932 case PCIE_SPEED_16_0GT: 5933 return 16000; 5934 case PCIE_SPEED_32_0GT: 5935 return 32000; 5936 case PCIE_SPEED_64_0GT: 5937 return 64000; 5938 default: 5939 break; 5940 } 5941 5942 return -EINVAL; 5943 } 5944 EXPORT_SYMBOL(pcie_link_speed_mbps); 5945 5946 /** 5947 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5948 * device and its bandwidth limitation 5949 * @dev: PCI device to query 5950 * @limiting_dev: storage for device causing the bandwidth limitation 5951 * @speed: storage for speed of limiting device 5952 * @width: storage for width of limiting device 5953 * 5954 * Walk up the PCI device chain and find the point where the minimum 5955 * bandwidth is available. Return the bandwidth available there and (if 5956 * limiting_dev, speed, and width pointers are supplied) information about 5957 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5958 * raw bandwidth. 5959 */ 5960 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5961 enum pci_bus_speed *speed, 5962 enum pcie_link_width *width) 5963 { 5964 u16 lnksta; 5965 enum pci_bus_speed next_speed; 5966 enum pcie_link_width next_width; 5967 u32 bw, next_bw; 5968 5969 if (speed) 5970 *speed = PCI_SPEED_UNKNOWN; 5971 if (width) 5972 *width = PCIE_LNK_WIDTH_UNKNOWN; 5973 5974 bw = 0; 5975 5976 while (dev) { 5977 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5978 5979 next_speed = to_pcie_link_speed(lnksta); 5980 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 5981 5982 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5983 5984 /* Check if current device limits the total bandwidth */ 5985 if (!bw || next_bw <= bw) { 5986 bw = next_bw; 5987 5988 if (limiting_dev) 5989 *limiting_dev = dev; 5990 if (speed) 5991 *speed = next_speed; 5992 if (width) 5993 *width = next_width; 5994 } 5995 5996 dev = pci_upstream_bridge(dev); 5997 } 5998 5999 return bw; 6000 } 6001 EXPORT_SYMBOL(pcie_bandwidth_available); 6002 6003 /** 6004 * pcie_get_speed_cap - query for the PCI device's link speed capability 6005 * @dev: PCI device to query 6006 * 6007 * Query the PCI device speed capability. Return the maximum link speed 6008 * supported by the device. 6009 */ 6010 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6011 { 6012 u32 lnkcap2, lnkcap; 6013 6014 /* 6015 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6016 * implementation note there recommends using the Supported Link 6017 * Speeds Vector in Link Capabilities 2 when supported. 6018 * 6019 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6020 * should use the Supported Link Speeds field in Link Capabilities, 6021 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6022 */ 6023 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6024 6025 /* PCIe r3.0-compliant */ 6026 if (lnkcap2) 6027 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6028 6029 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6030 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6031 return PCIE_SPEED_5_0GT; 6032 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6033 return PCIE_SPEED_2_5GT; 6034 6035 return PCI_SPEED_UNKNOWN; 6036 } 6037 EXPORT_SYMBOL(pcie_get_speed_cap); 6038 6039 /** 6040 * pcie_get_width_cap - query for the PCI device's link width capability 6041 * @dev: PCI device to query 6042 * 6043 * Query the PCI device width capability. Return the maximum link width 6044 * supported by the device. 6045 */ 6046 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6047 { 6048 u32 lnkcap; 6049 6050 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6051 if (lnkcap) 6052 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6053 6054 return PCIE_LNK_WIDTH_UNKNOWN; 6055 } 6056 EXPORT_SYMBOL(pcie_get_width_cap); 6057 6058 /** 6059 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6060 * @dev: PCI device 6061 * @speed: storage for link speed 6062 * @width: storage for link width 6063 * 6064 * Calculate a PCI device's link bandwidth by querying for its link speed 6065 * and width, multiplying them, and applying encoding overhead. The result 6066 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6067 */ 6068 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6069 enum pcie_link_width *width) 6070 { 6071 *speed = pcie_get_speed_cap(dev); 6072 *width = pcie_get_width_cap(dev); 6073 6074 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6075 return 0; 6076 6077 return *width * PCIE_SPEED2MBS_ENC(*speed); 6078 } 6079 6080 /** 6081 * __pcie_print_link_status - Report the PCI device's link speed and width 6082 * @dev: PCI device to query 6083 * @verbose: Print info even when enough bandwidth is available 6084 * 6085 * If the available bandwidth at the device is less than the device is 6086 * capable of, report the device's maximum possible bandwidth and the 6087 * upstream link that limits its performance. If @verbose, always print 6088 * the available bandwidth, even if the device isn't constrained. 6089 */ 6090 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6091 { 6092 enum pcie_link_width width, width_cap; 6093 enum pci_bus_speed speed, speed_cap; 6094 struct pci_dev *limiting_dev = NULL; 6095 u32 bw_avail, bw_cap; 6096 6097 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6098 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6099 6100 if (bw_avail >= bw_cap && verbose) 6101 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6102 bw_cap / 1000, bw_cap % 1000, 6103 pci_speed_string(speed_cap), width_cap); 6104 else if (bw_avail < bw_cap) 6105 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6106 bw_avail / 1000, bw_avail % 1000, 6107 pci_speed_string(speed), width, 6108 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6109 bw_cap / 1000, bw_cap % 1000, 6110 pci_speed_string(speed_cap), width_cap); 6111 } 6112 6113 /** 6114 * pcie_print_link_status - Report the PCI device's link speed and width 6115 * @dev: PCI device to query 6116 * 6117 * Report the available bandwidth at the device. 6118 */ 6119 void pcie_print_link_status(struct pci_dev *dev) 6120 { 6121 __pcie_print_link_status(dev, true); 6122 } 6123 EXPORT_SYMBOL(pcie_print_link_status); 6124 6125 /** 6126 * pci_select_bars - Make BAR mask from the type of resource 6127 * @dev: the PCI device for which BAR mask is made 6128 * @flags: resource type mask to be selected 6129 * 6130 * This helper routine makes bar mask from the type of resource. 6131 */ 6132 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6133 { 6134 int i, bars = 0; 6135 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6136 if (pci_resource_flags(dev, i) & flags) 6137 bars |= (1 << i); 6138 return bars; 6139 } 6140 EXPORT_SYMBOL(pci_select_bars); 6141 6142 /* Some architectures require additional programming to enable VGA */ 6143 static arch_set_vga_state_t arch_set_vga_state; 6144 6145 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6146 { 6147 arch_set_vga_state = func; /* NULL disables */ 6148 } 6149 6150 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6151 unsigned int command_bits, u32 flags) 6152 { 6153 if (arch_set_vga_state) 6154 return arch_set_vga_state(dev, decode, command_bits, 6155 flags); 6156 return 0; 6157 } 6158 6159 /** 6160 * pci_set_vga_state - set VGA decode state on device and parents if requested 6161 * @dev: the PCI device 6162 * @decode: true = enable decoding, false = disable decoding 6163 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6164 * @flags: traverse ancestors and change bridges 6165 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6166 */ 6167 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6168 unsigned int command_bits, u32 flags) 6169 { 6170 struct pci_bus *bus; 6171 struct pci_dev *bridge; 6172 u16 cmd; 6173 int rc; 6174 6175 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6176 6177 /* ARCH specific VGA enables */ 6178 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6179 if (rc) 6180 return rc; 6181 6182 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6183 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6184 if (decode) 6185 cmd |= command_bits; 6186 else 6187 cmd &= ~command_bits; 6188 pci_write_config_word(dev, PCI_COMMAND, cmd); 6189 } 6190 6191 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6192 return 0; 6193 6194 bus = dev->bus; 6195 while (bus) { 6196 bridge = bus->self; 6197 if (bridge) { 6198 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6199 &cmd); 6200 if (decode) 6201 cmd |= PCI_BRIDGE_CTL_VGA; 6202 else 6203 cmd &= ~PCI_BRIDGE_CTL_VGA; 6204 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6205 cmd); 6206 } 6207 bus = bus->parent; 6208 } 6209 return 0; 6210 } 6211 6212 #ifdef CONFIG_ACPI 6213 bool pci_pr3_present(struct pci_dev *pdev) 6214 { 6215 struct acpi_device *adev; 6216 6217 if (acpi_disabled) 6218 return false; 6219 6220 adev = ACPI_COMPANION(&pdev->dev); 6221 if (!adev) 6222 return false; 6223 6224 return adev->power.flags.power_resources && 6225 acpi_has_method(adev->handle, "_PR3"); 6226 } 6227 EXPORT_SYMBOL_GPL(pci_pr3_present); 6228 #endif 6229 6230 /** 6231 * pci_add_dma_alias - Add a DMA devfn alias for a device 6232 * @dev: the PCI device for which alias is added 6233 * @devfn_from: alias slot and function 6234 * @nr_devfns: number of subsequent devfns to alias 6235 * 6236 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6237 * which is used to program permissible bus-devfn source addresses for DMA 6238 * requests in an IOMMU. These aliases factor into IOMMU group creation 6239 * and are useful for devices generating DMA requests beyond or different 6240 * from their logical bus-devfn. Examples include device quirks where the 6241 * device simply uses the wrong devfn, as well as non-transparent bridges 6242 * where the alias may be a proxy for devices in another domain. 6243 * 6244 * IOMMU group creation is performed during device discovery or addition, 6245 * prior to any potential DMA mapping and therefore prior to driver probing 6246 * (especially for userspace assigned devices where IOMMU group definition 6247 * cannot be left as a userspace activity). DMA aliases should therefore 6248 * be configured via quirks, such as the PCI fixup header quirk. 6249 */ 6250 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6251 unsigned int nr_devfns) 6252 { 6253 int devfn_to; 6254 6255 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6256 devfn_to = devfn_from + nr_devfns - 1; 6257 6258 if (!dev->dma_alias_mask) 6259 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6260 if (!dev->dma_alias_mask) { 6261 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6262 return; 6263 } 6264 6265 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6266 6267 if (nr_devfns == 1) 6268 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6269 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6270 else if (nr_devfns > 1) 6271 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6272 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6273 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6274 } 6275 6276 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6277 { 6278 return (dev1->dma_alias_mask && 6279 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6280 (dev2->dma_alias_mask && 6281 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6282 pci_real_dma_dev(dev1) == dev2 || 6283 pci_real_dma_dev(dev2) == dev1; 6284 } 6285 6286 bool pci_device_is_present(struct pci_dev *pdev) 6287 { 6288 u32 v; 6289 6290 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6291 pdev = pci_physfn(pdev); 6292 if (pci_dev_is_disconnected(pdev)) 6293 return false; 6294 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6295 } 6296 EXPORT_SYMBOL_GPL(pci_device_is_present); 6297 6298 void pci_ignore_hotplug(struct pci_dev *dev) 6299 { 6300 struct pci_dev *bridge = dev->bus->self; 6301 6302 dev->ignore_hotplug = 1; 6303 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6304 if (bridge) 6305 bridge->ignore_hotplug = 1; 6306 } 6307 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6308 6309 /** 6310 * pci_real_dma_dev - Get PCI DMA device for PCI device 6311 * @dev: the PCI device that may have a PCI DMA alias 6312 * 6313 * Permits the platform to provide architecture-specific functionality to 6314 * devices needing to alias DMA to another PCI device on another PCI bus. If 6315 * the PCI device is on the same bus, it is recommended to use 6316 * pci_add_dma_alias(). This is the default implementation. Architecture 6317 * implementations can override this. 6318 */ 6319 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6320 { 6321 return dev; 6322 } 6323 6324 resource_size_t __weak pcibios_default_alignment(void) 6325 { 6326 return 0; 6327 } 6328 6329 /* 6330 * Arches that don't want to expose struct resource to userland as-is in 6331 * sysfs and /proc can implement their own pci_resource_to_user(). 6332 */ 6333 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6334 const struct resource *rsrc, 6335 resource_size_t *start, resource_size_t *end) 6336 { 6337 *start = rsrc->start; 6338 *end = rsrc->end; 6339 } 6340 6341 static char *resource_alignment_param; 6342 static DEFINE_SPINLOCK(resource_alignment_lock); 6343 6344 /** 6345 * pci_specified_resource_alignment - get resource alignment specified by user. 6346 * @dev: the PCI device to get 6347 * @resize: whether or not to change resources' size when reassigning alignment 6348 * 6349 * RETURNS: Resource alignment if it is specified. 6350 * Zero if it is not specified. 6351 */ 6352 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6353 bool *resize) 6354 { 6355 int align_order, count; 6356 resource_size_t align = pcibios_default_alignment(); 6357 const char *p; 6358 int ret; 6359 6360 spin_lock(&resource_alignment_lock); 6361 p = resource_alignment_param; 6362 if (!p || !*p) 6363 goto out; 6364 if (pci_has_flag(PCI_PROBE_ONLY)) { 6365 align = 0; 6366 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6367 goto out; 6368 } 6369 6370 while (*p) { 6371 count = 0; 6372 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6373 p[count] == '@') { 6374 p += count + 1; 6375 if (align_order > 63) { 6376 pr_err("PCI: Invalid requested alignment (order %d)\n", 6377 align_order); 6378 align_order = PAGE_SHIFT; 6379 } 6380 } else { 6381 align_order = PAGE_SHIFT; 6382 } 6383 6384 ret = pci_dev_str_match(dev, p, &p); 6385 if (ret == 1) { 6386 *resize = true; 6387 align = 1ULL << align_order; 6388 break; 6389 } else if (ret < 0) { 6390 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6391 p); 6392 break; 6393 } 6394 6395 if (*p != ';' && *p != ',') { 6396 /* End of param or invalid format */ 6397 break; 6398 } 6399 p++; 6400 } 6401 out: 6402 spin_unlock(&resource_alignment_lock); 6403 return align; 6404 } 6405 6406 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6407 resource_size_t align, bool resize) 6408 { 6409 struct resource *r = &dev->resource[bar]; 6410 const char *r_name = pci_resource_name(dev, bar); 6411 resource_size_t size; 6412 6413 if (!(r->flags & IORESOURCE_MEM)) 6414 return; 6415 6416 if (r->flags & IORESOURCE_PCI_FIXED) { 6417 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n", 6418 r_name, r, (unsigned long long)align); 6419 return; 6420 } 6421 6422 size = resource_size(r); 6423 if (size >= align) 6424 return; 6425 6426 /* 6427 * Increase the alignment of the resource. There are two ways we 6428 * can do this: 6429 * 6430 * 1) Increase the size of the resource. BARs are aligned on their 6431 * size, so when we reallocate space for this resource, we'll 6432 * allocate it with the larger alignment. This also prevents 6433 * assignment of any other BARs inside the alignment region, so 6434 * if we're requesting page alignment, this means no other BARs 6435 * will share the page. 6436 * 6437 * The disadvantage is that this makes the resource larger than 6438 * the hardware BAR, which may break drivers that compute things 6439 * based on the resource size, e.g., to find registers at a 6440 * fixed offset before the end of the BAR. 6441 * 6442 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6443 * set r->start to the desired alignment. By itself this 6444 * doesn't prevent other BARs being put inside the alignment 6445 * region, but if we realign *every* resource of every device in 6446 * the system, none of them will share an alignment region. 6447 * 6448 * When the user has requested alignment for only some devices via 6449 * the "pci=resource_alignment" argument, "resize" is true and we 6450 * use the first method. Otherwise we assume we're aligning all 6451 * devices and we use the second. 6452 */ 6453 6454 pci_info(dev, "%s %pR: requesting alignment to %#llx\n", 6455 r_name, r, (unsigned long long)align); 6456 6457 if (resize) { 6458 r->start = 0; 6459 r->end = align - 1; 6460 } else { 6461 r->flags &= ~IORESOURCE_SIZEALIGN; 6462 r->flags |= IORESOURCE_STARTALIGN; 6463 r->start = align; 6464 r->end = r->start + size - 1; 6465 } 6466 r->flags |= IORESOURCE_UNSET; 6467 } 6468 6469 /* 6470 * This function disables memory decoding and releases memory resources 6471 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6472 * It also rounds up size to specified alignment. 6473 * Later on, the kernel will assign page-aligned memory resource back 6474 * to the device. 6475 */ 6476 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6477 { 6478 int i; 6479 struct resource *r; 6480 resource_size_t align; 6481 u16 command; 6482 bool resize = false; 6483 6484 /* 6485 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6486 * 3.4.1.11. Their resources are allocated from the space 6487 * described by the VF BARx register in the PF's SR-IOV capability. 6488 * We can't influence their alignment here. 6489 */ 6490 if (dev->is_virtfn) 6491 return; 6492 6493 /* check if specified PCI is target device to reassign */ 6494 align = pci_specified_resource_alignment(dev, &resize); 6495 if (!align) 6496 return; 6497 6498 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6499 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6500 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6501 return; 6502 } 6503 6504 pci_read_config_word(dev, PCI_COMMAND, &command); 6505 command &= ~PCI_COMMAND_MEMORY; 6506 pci_write_config_word(dev, PCI_COMMAND, command); 6507 6508 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6509 pci_request_resource_alignment(dev, i, align, resize); 6510 6511 /* 6512 * Need to disable bridge's resource window, 6513 * to enable the kernel to reassign new resource 6514 * window later on. 6515 */ 6516 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6517 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6518 r = &dev->resource[i]; 6519 if (!(r->flags & IORESOURCE_MEM)) 6520 continue; 6521 r->flags |= IORESOURCE_UNSET; 6522 r->end = resource_size(r) - 1; 6523 r->start = 0; 6524 } 6525 pci_disable_bridge_window(dev); 6526 } 6527 } 6528 6529 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6530 { 6531 size_t count = 0; 6532 6533 spin_lock(&resource_alignment_lock); 6534 if (resource_alignment_param) 6535 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6536 spin_unlock(&resource_alignment_lock); 6537 6538 return count; 6539 } 6540 6541 static ssize_t resource_alignment_store(const struct bus_type *bus, 6542 const char *buf, size_t count) 6543 { 6544 char *param, *old, *end; 6545 6546 if (count >= (PAGE_SIZE - 1)) 6547 return -EINVAL; 6548 6549 param = kstrndup(buf, count, GFP_KERNEL); 6550 if (!param) 6551 return -ENOMEM; 6552 6553 end = strchr(param, '\n'); 6554 if (end) 6555 *end = '\0'; 6556 6557 spin_lock(&resource_alignment_lock); 6558 old = resource_alignment_param; 6559 if (strlen(param)) { 6560 resource_alignment_param = param; 6561 } else { 6562 kfree(param); 6563 resource_alignment_param = NULL; 6564 } 6565 spin_unlock(&resource_alignment_lock); 6566 6567 kfree(old); 6568 6569 return count; 6570 } 6571 6572 static BUS_ATTR_RW(resource_alignment); 6573 6574 static int __init pci_resource_alignment_sysfs_init(void) 6575 { 6576 return bus_create_file(&pci_bus_type, 6577 &bus_attr_resource_alignment); 6578 } 6579 late_initcall(pci_resource_alignment_sysfs_init); 6580 6581 static void pci_no_domains(void) 6582 { 6583 #ifdef CONFIG_PCI_DOMAINS 6584 pci_domains_supported = 0; 6585 #endif 6586 } 6587 6588 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6589 static DEFINE_IDA(pci_domain_nr_static_ida); 6590 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6591 6592 static void of_pci_reserve_static_domain_nr(void) 6593 { 6594 struct device_node *np; 6595 int domain_nr; 6596 6597 for_each_node_by_type(np, "pci") { 6598 domain_nr = of_get_pci_domain_nr(np); 6599 if (domain_nr < 0) 6600 continue; 6601 /* 6602 * Permanently allocate domain_nr in dynamic_ida 6603 * to prevent it from dynamic allocation. 6604 */ 6605 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6606 domain_nr, domain_nr, GFP_KERNEL); 6607 } 6608 } 6609 6610 static int of_pci_bus_find_domain_nr(struct device *parent) 6611 { 6612 static bool static_domains_reserved = false; 6613 int domain_nr; 6614 6615 /* On the first call scan device tree for static allocations. */ 6616 if (!static_domains_reserved) { 6617 of_pci_reserve_static_domain_nr(); 6618 static_domains_reserved = true; 6619 } 6620 6621 if (parent) { 6622 /* 6623 * If domain is in DT, allocate it in static IDA. This 6624 * prevents duplicate static allocations in case of errors 6625 * in DT. 6626 */ 6627 domain_nr = of_get_pci_domain_nr(parent->of_node); 6628 if (domain_nr >= 0) 6629 return ida_alloc_range(&pci_domain_nr_static_ida, 6630 domain_nr, domain_nr, 6631 GFP_KERNEL); 6632 } 6633 6634 /* 6635 * If domain was not specified in DT, choose a free ID from dynamic 6636 * allocations. All domain numbers from DT are permanently in 6637 * dynamic allocations to prevent assigning them to other DT nodes 6638 * without static domain. 6639 */ 6640 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6641 } 6642 6643 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6644 { 6645 if (bus->domain_nr < 0) 6646 return; 6647 6648 /* Release domain from IDA where it was allocated. */ 6649 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr) 6650 ida_free(&pci_domain_nr_static_ida, bus->domain_nr); 6651 else 6652 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr); 6653 } 6654 6655 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6656 { 6657 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6658 acpi_pci_bus_find_domain_nr(bus); 6659 } 6660 6661 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6662 { 6663 if (!acpi_disabled) 6664 return; 6665 of_pci_bus_release_domain_nr(bus, parent); 6666 } 6667 #endif 6668 6669 /** 6670 * pci_ext_cfg_avail - can we access extended PCI config space? 6671 * 6672 * Returns 1 if we can access PCI extended config space (offsets 6673 * greater than 0xff). This is the default implementation. Architecture 6674 * implementations can override this. 6675 */ 6676 int __weak pci_ext_cfg_avail(void) 6677 { 6678 return 1; 6679 } 6680 6681 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6682 { 6683 } 6684 EXPORT_SYMBOL(pci_fixup_cardbus); 6685 6686 static int __init pci_setup(char *str) 6687 { 6688 while (str) { 6689 char *k = strchr(str, ','); 6690 if (k) 6691 *k++ = 0; 6692 if (*str && (str = pcibios_setup(str)) && *str) { 6693 if (!strcmp(str, "nomsi")) { 6694 pci_no_msi(); 6695 } else if (!strncmp(str, "noats", 5)) { 6696 pr_info("PCIe: ATS is disabled\n"); 6697 pcie_ats_disabled = true; 6698 } else if (!strcmp(str, "noaer")) { 6699 pci_no_aer(); 6700 } else if (!strcmp(str, "earlydump")) { 6701 pci_early_dump = true; 6702 } else if (!strncmp(str, "realloc=", 8)) { 6703 pci_realloc_get_opt(str + 8); 6704 } else if (!strncmp(str, "realloc", 7)) { 6705 pci_realloc_get_opt("on"); 6706 } else if (!strcmp(str, "nodomains")) { 6707 pci_no_domains(); 6708 } else if (!strncmp(str, "noari", 5)) { 6709 pcie_ari_disabled = true; 6710 } else if (!strncmp(str, "cbiosize=", 9)) { 6711 pci_cardbus_io_size = memparse(str + 9, &str); 6712 } else if (!strncmp(str, "cbmemsize=", 10)) { 6713 pci_cardbus_mem_size = memparse(str + 10, &str); 6714 } else if (!strncmp(str, "resource_alignment=", 19)) { 6715 resource_alignment_param = str + 19; 6716 } else if (!strncmp(str, "ecrc=", 5)) { 6717 pcie_ecrc_get_policy(str + 5); 6718 } else if (!strncmp(str, "hpiosize=", 9)) { 6719 pci_hotplug_io_size = memparse(str + 9, &str); 6720 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6721 pci_hotplug_mmio_size = memparse(str + 11, &str); 6722 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6723 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6724 } else if (!strncmp(str, "hpmemsize=", 10)) { 6725 pci_hotplug_mmio_size = memparse(str + 10, &str); 6726 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6727 } else if (!strncmp(str, "hpbussize=", 10)) { 6728 pci_hotplug_bus_size = 6729 simple_strtoul(str + 10, &str, 0); 6730 if (pci_hotplug_bus_size > 0xff) 6731 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6732 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6733 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6734 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6735 pcie_bus_config = PCIE_BUS_SAFE; 6736 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6737 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6738 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6739 pcie_bus_config = PCIE_BUS_PEER2PEER; 6740 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6741 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6742 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6743 disable_acs_redir_param = str + 18; 6744 } else { 6745 pr_err("PCI: Unknown option `%s'\n", str); 6746 } 6747 } 6748 str = k; 6749 } 6750 return 0; 6751 } 6752 early_param("pci", pci_setup); 6753 6754 /* 6755 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6756 * in pci_setup(), above, to point to data in the __initdata section which 6757 * will be freed after the init sequence is complete. We can't allocate memory 6758 * in pci_setup() because some architectures do not have any memory allocation 6759 * service available during an early_param() call. So we allocate memory and 6760 * copy the variable here before the init section is freed. 6761 * 6762 */ 6763 static int __init pci_realloc_setup_params(void) 6764 { 6765 resource_alignment_param = kstrdup(resource_alignment_param, 6766 GFP_KERNEL); 6767 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6768 6769 return 0; 6770 } 6771 pure_initcall(pci_realloc_setup_params); 6772