1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/kernel.h> 12 #include <linux/delay.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/of.h> 16 #include <linux/of_pci.h> 17 #include <linux/pci.h> 18 #include <linux/pm.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/spinlock.h> 22 #include <linux/string.h> 23 #include <linux/log2.h> 24 #include <linux/pci-aspm.h> 25 #include <linux/pm_wakeup.h> 26 #include <linux/interrupt.h> 27 #include <linux/device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/pci_hotplug.h> 30 #include <linux/vmalloc.h> 31 #include <linux/pci-ats.h> 32 #include <asm/setup.h> 33 #include <asm/dma.h> 34 #include <linux/aer.h> 35 #include "pci.h" 36 37 const char *pci_power_names[] = { 38 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 39 }; 40 EXPORT_SYMBOL_GPL(pci_power_names); 41 42 int isa_dma_bridge_buggy; 43 EXPORT_SYMBOL(isa_dma_bridge_buggy); 44 45 int pci_pci_problems; 46 EXPORT_SYMBOL(pci_pci_problems); 47 48 unsigned int pci_pm_d3_delay; 49 50 static void pci_pme_list_scan(struct work_struct *work); 51 52 static LIST_HEAD(pci_pme_list); 53 static DEFINE_MUTEX(pci_pme_list_mutex); 54 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 55 56 struct pci_pme_device { 57 struct list_head list; 58 struct pci_dev *dev; 59 }; 60 61 #define PME_TIMEOUT 1000 /* How long between PME checks */ 62 63 static void pci_dev_d3_sleep(struct pci_dev *dev) 64 { 65 unsigned int delay = dev->d3_delay; 66 67 if (delay < pci_pm_d3_delay) 68 delay = pci_pm_d3_delay; 69 70 if (delay) 71 msleep(delay); 72 } 73 74 #ifdef CONFIG_PCI_DOMAINS 75 int pci_domains_supported = 1; 76 #endif 77 78 #define DEFAULT_CARDBUS_IO_SIZE (256) 79 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 80 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 81 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 82 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 83 84 #define DEFAULT_HOTPLUG_IO_SIZE (256) 85 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 86 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 87 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 88 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 89 90 #define DEFAULT_HOTPLUG_BUS_SIZE 1 91 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 92 93 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 94 95 /* 96 * The default CLS is used if arch didn't set CLS explicitly and not 97 * all pci devices agree on the same value. Arch can override either 98 * the dfl or actual value as it sees fit. Don't forget this is 99 * measured in 32-bit words, not bytes. 100 */ 101 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 102 u8 pci_cache_line_size; 103 104 /* 105 * If we set up a device for bus mastering, we need to check the latency 106 * timer as certain BIOSes forget to set it properly. 107 */ 108 unsigned int pcibios_max_latency = 255; 109 110 /* If set, the PCIe ARI capability will not be used. */ 111 static bool pcie_ari_disabled; 112 113 /* Disable bridge_d3 for all PCIe ports */ 114 static bool pci_bridge_d3_disable; 115 /* Force bridge_d3 for all PCIe ports */ 116 static bool pci_bridge_d3_force; 117 118 static int __init pcie_port_pm_setup(char *str) 119 { 120 if (!strcmp(str, "off")) 121 pci_bridge_d3_disable = true; 122 else if (!strcmp(str, "force")) 123 pci_bridge_d3_force = true; 124 return 1; 125 } 126 __setup("pcie_port_pm=", pcie_port_pm_setup); 127 128 /** 129 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 130 * @bus: pointer to PCI bus structure to search 131 * 132 * Given a PCI bus, returns the highest PCI bus number present in the set 133 * including the given PCI bus and its list of child PCI buses. 134 */ 135 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 136 { 137 struct pci_bus *tmp; 138 unsigned char max, n; 139 140 max = bus->busn_res.end; 141 list_for_each_entry(tmp, &bus->children, node) { 142 n = pci_bus_max_busnr(tmp); 143 if (n > max) 144 max = n; 145 } 146 return max; 147 } 148 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 149 150 #ifdef CONFIG_HAS_IOMEM 151 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 152 { 153 struct resource *res = &pdev->resource[bar]; 154 155 /* 156 * Make sure the BAR is actually a memory resource, not an IO resource 157 */ 158 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 159 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res); 160 return NULL; 161 } 162 return ioremap_nocache(res->start, resource_size(res)); 163 } 164 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 165 166 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 167 { 168 /* 169 * Make sure the BAR is actually a memory resource, not an IO resource 170 */ 171 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 172 WARN_ON(1); 173 return NULL; 174 } 175 return ioremap_wc(pci_resource_start(pdev, bar), 176 pci_resource_len(pdev, bar)); 177 } 178 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 179 #endif 180 181 182 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 183 u8 pos, int cap, int *ttl) 184 { 185 u8 id; 186 u16 ent; 187 188 pci_bus_read_config_byte(bus, devfn, pos, &pos); 189 190 while ((*ttl)--) { 191 if (pos < 0x40) 192 break; 193 pos &= ~3; 194 pci_bus_read_config_word(bus, devfn, pos, &ent); 195 196 id = ent & 0xff; 197 if (id == 0xff) 198 break; 199 if (id == cap) 200 return pos; 201 pos = (ent >> 8); 202 } 203 return 0; 204 } 205 206 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 207 u8 pos, int cap) 208 { 209 int ttl = PCI_FIND_CAP_TTL; 210 211 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 212 } 213 214 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 215 { 216 return __pci_find_next_cap(dev->bus, dev->devfn, 217 pos + PCI_CAP_LIST_NEXT, cap); 218 } 219 EXPORT_SYMBOL_GPL(pci_find_next_capability); 220 221 static int __pci_bus_find_cap_start(struct pci_bus *bus, 222 unsigned int devfn, u8 hdr_type) 223 { 224 u16 status; 225 226 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 227 if (!(status & PCI_STATUS_CAP_LIST)) 228 return 0; 229 230 switch (hdr_type) { 231 case PCI_HEADER_TYPE_NORMAL: 232 case PCI_HEADER_TYPE_BRIDGE: 233 return PCI_CAPABILITY_LIST; 234 case PCI_HEADER_TYPE_CARDBUS: 235 return PCI_CB_CAPABILITY_LIST; 236 } 237 238 return 0; 239 } 240 241 /** 242 * pci_find_capability - query for devices' capabilities 243 * @dev: PCI device to query 244 * @cap: capability code 245 * 246 * Tell if a device supports a given PCI capability. 247 * Returns the address of the requested capability structure within the 248 * device's PCI configuration space or 0 in case the device does not 249 * support it. Possible values for @cap: 250 * 251 * %PCI_CAP_ID_PM Power Management 252 * %PCI_CAP_ID_AGP Accelerated Graphics Port 253 * %PCI_CAP_ID_VPD Vital Product Data 254 * %PCI_CAP_ID_SLOTID Slot Identification 255 * %PCI_CAP_ID_MSI Message Signalled Interrupts 256 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 257 * %PCI_CAP_ID_PCIX PCI-X 258 * %PCI_CAP_ID_EXP PCI Express 259 */ 260 int pci_find_capability(struct pci_dev *dev, int cap) 261 { 262 int pos; 263 264 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 265 if (pos) 266 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 267 268 return pos; 269 } 270 EXPORT_SYMBOL(pci_find_capability); 271 272 /** 273 * pci_bus_find_capability - query for devices' capabilities 274 * @bus: the PCI bus to query 275 * @devfn: PCI device to query 276 * @cap: capability code 277 * 278 * Like pci_find_capability() but works for pci devices that do not have a 279 * pci_dev structure set up yet. 280 * 281 * Returns the address of the requested capability structure within the 282 * device's PCI configuration space or 0 in case the device does not 283 * support it. 284 */ 285 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 286 { 287 int pos; 288 u8 hdr_type; 289 290 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 291 292 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 293 if (pos) 294 pos = __pci_find_next_cap(bus, devfn, pos, cap); 295 296 return pos; 297 } 298 EXPORT_SYMBOL(pci_bus_find_capability); 299 300 /** 301 * pci_find_next_ext_capability - Find an extended capability 302 * @dev: PCI device to query 303 * @start: address at which to start looking (0 to start at beginning of list) 304 * @cap: capability code 305 * 306 * Returns the address of the next matching extended capability structure 307 * within the device's PCI configuration space or 0 if the device does 308 * not support it. Some capabilities can occur several times, e.g., the 309 * vendor-specific capability, and this provides a way to find them all. 310 */ 311 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 312 { 313 u32 header; 314 int ttl; 315 int pos = PCI_CFG_SPACE_SIZE; 316 317 /* minimum 8 bytes per capability */ 318 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 319 320 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 321 return 0; 322 323 if (start) 324 pos = start; 325 326 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 327 return 0; 328 329 /* 330 * If we have no capabilities, this is indicated by cap ID, 331 * cap version and next pointer all being 0. 332 */ 333 if (header == 0) 334 return 0; 335 336 while (ttl-- > 0) { 337 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 338 return pos; 339 340 pos = PCI_EXT_CAP_NEXT(header); 341 if (pos < PCI_CFG_SPACE_SIZE) 342 break; 343 344 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 345 break; 346 } 347 348 return 0; 349 } 350 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 351 352 /** 353 * pci_find_ext_capability - Find an extended capability 354 * @dev: PCI device to query 355 * @cap: capability code 356 * 357 * Returns the address of the requested extended capability structure 358 * within the device's PCI configuration space or 0 if the device does 359 * not support it. Possible values for @cap: 360 * 361 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 362 * %PCI_EXT_CAP_ID_VC Virtual Channel 363 * %PCI_EXT_CAP_ID_DSN Device Serial Number 364 * %PCI_EXT_CAP_ID_PWR Power Budgeting 365 */ 366 int pci_find_ext_capability(struct pci_dev *dev, int cap) 367 { 368 return pci_find_next_ext_capability(dev, 0, cap); 369 } 370 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 371 372 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 373 { 374 int rc, ttl = PCI_FIND_CAP_TTL; 375 u8 cap, mask; 376 377 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 378 mask = HT_3BIT_CAP_MASK; 379 else 380 mask = HT_5BIT_CAP_MASK; 381 382 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 383 PCI_CAP_ID_HT, &ttl); 384 while (pos) { 385 rc = pci_read_config_byte(dev, pos + 3, &cap); 386 if (rc != PCIBIOS_SUCCESSFUL) 387 return 0; 388 389 if ((cap & mask) == ht_cap) 390 return pos; 391 392 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 393 pos + PCI_CAP_LIST_NEXT, 394 PCI_CAP_ID_HT, &ttl); 395 } 396 397 return 0; 398 } 399 /** 400 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 401 * @dev: PCI device to query 402 * @pos: Position from which to continue searching 403 * @ht_cap: Hypertransport capability code 404 * 405 * To be used in conjunction with pci_find_ht_capability() to search for 406 * all capabilities matching @ht_cap. @pos should always be a value returned 407 * from pci_find_ht_capability(). 408 * 409 * NB. To be 100% safe against broken PCI devices, the caller should take 410 * steps to avoid an infinite loop. 411 */ 412 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 413 { 414 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 415 } 416 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 417 418 /** 419 * pci_find_ht_capability - query a device's Hypertransport capabilities 420 * @dev: PCI device to query 421 * @ht_cap: Hypertransport capability code 422 * 423 * Tell if a device supports a given Hypertransport capability. 424 * Returns an address within the device's PCI configuration space 425 * or 0 in case the device does not support the request capability. 426 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 427 * which has a Hypertransport capability matching @ht_cap. 428 */ 429 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 430 { 431 int pos; 432 433 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 434 if (pos) 435 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 436 437 return pos; 438 } 439 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 440 441 /** 442 * pci_find_parent_resource - return resource region of parent bus of given region 443 * @dev: PCI device structure contains resources to be searched 444 * @res: child resource record for which parent is sought 445 * 446 * For given resource region of given device, return the resource 447 * region of parent bus the given region is contained in. 448 */ 449 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 450 struct resource *res) 451 { 452 const struct pci_bus *bus = dev->bus; 453 struct resource *r; 454 int i; 455 456 pci_bus_for_each_resource(bus, r, i) { 457 if (!r) 458 continue; 459 if (resource_contains(r, res)) { 460 461 /* 462 * If the window is prefetchable but the BAR is 463 * not, the allocator made a mistake. 464 */ 465 if (r->flags & IORESOURCE_PREFETCH && 466 !(res->flags & IORESOURCE_PREFETCH)) 467 return NULL; 468 469 /* 470 * If we're below a transparent bridge, there may 471 * be both a positively-decoded aperture and a 472 * subtractively-decoded region that contain the BAR. 473 * We want the positively-decoded one, so this depends 474 * on pci_bus_for_each_resource() giving us those 475 * first. 476 */ 477 return r; 478 } 479 } 480 return NULL; 481 } 482 EXPORT_SYMBOL(pci_find_parent_resource); 483 484 /** 485 * pci_find_resource - Return matching PCI device resource 486 * @dev: PCI device to query 487 * @res: Resource to look for 488 * 489 * Goes over standard PCI resources (BARs) and checks if the given resource 490 * is partially or fully contained in any of them. In that case the 491 * matching resource is returned, %NULL otherwise. 492 */ 493 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 494 { 495 int i; 496 497 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 498 struct resource *r = &dev->resource[i]; 499 500 if (r->start && resource_contains(r, res)) 501 return r; 502 } 503 504 return NULL; 505 } 506 EXPORT_SYMBOL(pci_find_resource); 507 508 /** 509 * pci_find_pcie_root_port - return PCIe Root Port 510 * @dev: PCI device to query 511 * 512 * Traverse up the parent chain and return the PCIe Root Port PCI Device 513 * for a given PCI Device. 514 */ 515 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 516 { 517 struct pci_dev *bridge, *highest_pcie_bridge = dev; 518 519 bridge = pci_upstream_bridge(dev); 520 while (bridge && pci_is_pcie(bridge)) { 521 highest_pcie_bridge = bridge; 522 bridge = pci_upstream_bridge(bridge); 523 } 524 525 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 526 return NULL; 527 528 return highest_pcie_bridge; 529 } 530 EXPORT_SYMBOL(pci_find_pcie_root_port); 531 532 /** 533 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 534 * @dev: the PCI device to operate on 535 * @pos: config space offset of status word 536 * @mask: mask of bit(s) to care about in status word 537 * 538 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 539 */ 540 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 541 { 542 int i; 543 544 /* Wait for Transaction Pending bit clean */ 545 for (i = 0; i < 4; i++) { 546 u16 status; 547 if (i) 548 msleep((1 << (i - 1)) * 100); 549 550 pci_read_config_word(dev, pos, &status); 551 if (!(status & mask)) 552 return 1; 553 } 554 555 return 0; 556 } 557 558 /** 559 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 560 * @dev: PCI device to have its BARs restored 561 * 562 * Restore the BAR values for a given device, so as to make it 563 * accessible by its driver. 564 */ 565 static void pci_restore_bars(struct pci_dev *dev) 566 { 567 int i; 568 569 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 570 pci_update_resource(dev, i); 571 } 572 573 static const struct pci_platform_pm_ops *pci_platform_pm; 574 575 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 576 { 577 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 578 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 579 return -EINVAL; 580 pci_platform_pm = ops; 581 return 0; 582 } 583 584 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 585 { 586 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 587 } 588 589 static inline int platform_pci_set_power_state(struct pci_dev *dev, 590 pci_power_t t) 591 { 592 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 593 } 594 595 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 596 { 597 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 598 } 599 600 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 601 { 602 return pci_platform_pm ? 603 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 604 } 605 606 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 607 { 608 return pci_platform_pm ? 609 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 610 } 611 612 static inline bool platform_pci_need_resume(struct pci_dev *dev) 613 { 614 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 615 } 616 617 /** 618 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 619 * given PCI device 620 * @dev: PCI device to handle. 621 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 622 * 623 * RETURN VALUE: 624 * -EINVAL if the requested state is invalid. 625 * -EIO if device does not support PCI PM or its PM capabilities register has a 626 * wrong version, or device doesn't support the requested state. 627 * 0 if device already is in the requested state. 628 * 0 if device's power state has been successfully changed. 629 */ 630 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 631 { 632 u16 pmcsr; 633 bool need_restore = false; 634 635 /* Check if we're already there */ 636 if (dev->current_state == state) 637 return 0; 638 639 if (!dev->pm_cap) 640 return -EIO; 641 642 if (state < PCI_D0 || state > PCI_D3hot) 643 return -EINVAL; 644 645 /* Validate current state: 646 * Can enter D0 from any state, but if we can only go deeper 647 * to sleep if we're already in a low power state 648 */ 649 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 650 && dev->current_state > state) { 651 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n", 652 dev->current_state, state); 653 return -EINVAL; 654 } 655 656 /* check if this device supports the desired state */ 657 if ((state == PCI_D1 && !dev->d1_support) 658 || (state == PCI_D2 && !dev->d2_support)) 659 return -EIO; 660 661 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 662 663 /* If we're (effectively) in D3, force entire word to 0. 664 * This doesn't affect PME_Status, disables PME_En, and 665 * sets PowerState to 0. 666 */ 667 switch (dev->current_state) { 668 case PCI_D0: 669 case PCI_D1: 670 case PCI_D2: 671 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 672 pmcsr |= state; 673 break; 674 case PCI_D3hot: 675 case PCI_D3cold: 676 case PCI_UNKNOWN: /* Boot-up */ 677 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 678 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 679 need_restore = true; 680 /* Fall-through: force to D0 */ 681 default: 682 pmcsr = 0; 683 break; 684 } 685 686 /* enter specified state */ 687 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 688 689 /* Mandatory power management transition delays */ 690 /* see PCI PM 1.1 5.6.1 table 18 */ 691 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 692 pci_dev_d3_sleep(dev); 693 else if (state == PCI_D2 || dev->current_state == PCI_D2) 694 udelay(PCI_PM_D2_DELAY); 695 696 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 697 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 698 if (dev->current_state != state && printk_ratelimit()) 699 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n", 700 dev->current_state); 701 702 /* 703 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 704 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 705 * from D3hot to D0 _may_ perform an internal reset, thereby 706 * going to "D0 Uninitialized" rather than "D0 Initialized". 707 * For example, at least some versions of the 3c905B and the 708 * 3c556B exhibit this behaviour. 709 * 710 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 711 * devices in a D3hot state at boot. Consequently, we need to 712 * restore at least the BARs so that the device will be 713 * accessible to its driver. 714 */ 715 if (need_restore) 716 pci_restore_bars(dev); 717 718 if (dev->bus->self) 719 pcie_aspm_pm_state_change(dev->bus->self); 720 721 return 0; 722 } 723 724 /** 725 * pci_update_current_state - Read power state of given device and cache it 726 * @dev: PCI device to handle. 727 * @state: State to cache in case the device doesn't have the PM capability 728 * 729 * The power state is read from the PMCSR register, which however is 730 * inaccessible in D3cold. The platform firmware is therefore queried first 731 * to detect accessibility of the register. In case the platform firmware 732 * reports an incorrect state or the device isn't power manageable by the 733 * platform at all, we try to detect D3cold by testing accessibility of the 734 * vendor ID in config space. 735 */ 736 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 737 { 738 if (platform_pci_get_power_state(dev) == PCI_D3cold || 739 !pci_device_is_present(dev)) { 740 dev->current_state = PCI_D3cold; 741 } else if (dev->pm_cap) { 742 u16 pmcsr; 743 744 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 745 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 746 } else { 747 dev->current_state = state; 748 } 749 } 750 751 /** 752 * pci_power_up - Put the given device into D0 forcibly 753 * @dev: PCI device to power up 754 */ 755 void pci_power_up(struct pci_dev *dev) 756 { 757 if (platform_pci_power_manageable(dev)) 758 platform_pci_set_power_state(dev, PCI_D0); 759 760 pci_raw_set_power_state(dev, PCI_D0); 761 pci_update_current_state(dev, PCI_D0); 762 } 763 764 /** 765 * pci_platform_power_transition - Use platform to change device power state 766 * @dev: PCI device to handle. 767 * @state: State to put the device into. 768 */ 769 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 770 { 771 int error; 772 773 if (platform_pci_power_manageable(dev)) { 774 error = platform_pci_set_power_state(dev, state); 775 if (!error) 776 pci_update_current_state(dev, state); 777 } else 778 error = -ENODEV; 779 780 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 781 dev->current_state = PCI_D0; 782 783 return error; 784 } 785 786 /** 787 * pci_wakeup - Wake up a PCI device 788 * @pci_dev: Device to handle. 789 * @ign: ignored parameter 790 */ 791 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 792 { 793 pci_wakeup_event(pci_dev); 794 pm_request_resume(&pci_dev->dev); 795 return 0; 796 } 797 798 /** 799 * pci_wakeup_bus - Walk given bus and wake up devices on it 800 * @bus: Top bus of the subtree to walk. 801 */ 802 static void pci_wakeup_bus(struct pci_bus *bus) 803 { 804 if (bus) 805 pci_walk_bus(bus, pci_wakeup, NULL); 806 } 807 808 /** 809 * __pci_start_power_transition - Start power transition of a PCI device 810 * @dev: PCI device to handle. 811 * @state: State to put the device into. 812 */ 813 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 814 { 815 if (state == PCI_D0) { 816 pci_platform_power_transition(dev, PCI_D0); 817 /* 818 * Mandatory power management transition delays, see 819 * PCI Express Base Specification Revision 2.0 Section 820 * 6.6.1: Conventional Reset. Do not delay for 821 * devices powered on/off by corresponding bridge, 822 * because have already delayed for the bridge. 823 */ 824 if (dev->runtime_d3cold) { 825 if (dev->d3cold_delay) 826 msleep(dev->d3cold_delay); 827 /* 828 * When powering on a bridge from D3cold, the 829 * whole hierarchy may be powered on into 830 * D0uninitialized state, resume them to give 831 * them a chance to suspend again 832 */ 833 pci_wakeup_bus(dev->subordinate); 834 } 835 } 836 } 837 838 /** 839 * __pci_dev_set_current_state - Set current state of a PCI device 840 * @dev: Device to handle 841 * @data: pointer to state to be set 842 */ 843 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 844 { 845 pci_power_t state = *(pci_power_t *)data; 846 847 dev->current_state = state; 848 return 0; 849 } 850 851 /** 852 * __pci_bus_set_current_state - Walk given bus and set current state of devices 853 * @bus: Top bus of the subtree to walk. 854 * @state: state to be set 855 */ 856 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 857 { 858 if (bus) 859 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 860 } 861 862 /** 863 * __pci_complete_power_transition - Complete power transition of a PCI device 864 * @dev: PCI device to handle. 865 * @state: State to put the device into. 866 * 867 * This function should not be called directly by device drivers. 868 */ 869 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 870 { 871 int ret; 872 873 if (state <= PCI_D0) 874 return -EINVAL; 875 ret = pci_platform_power_transition(dev, state); 876 /* Power off the bridge may power off the whole hierarchy */ 877 if (!ret && state == PCI_D3cold) 878 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 879 return ret; 880 } 881 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 882 883 /** 884 * pci_set_power_state - Set the power state of a PCI device 885 * @dev: PCI device to handle. 886 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 887 * 888 * Transition a device to a new power state, using the platform firmware and/or 889 * the device's PCI PM registers. 890 * 891 * RETURN VALUE: 892 * -EINVAL if the requested state is invalid. 893 * -EIO if device does not support PCI PM or its PM capabilities register has a 894 * wrong version, or device doesn't support the requested state. 895 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 896 * 0 if device already is in the requested state. 897 * 0 if the transition is to D3 but D3 is not supported. 898 * 0 if device's power state has been successfully changed. 899 */ 900 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 901 { 902 int error; 903 904 /* bound the state we're entering */ 905 if (state > PCI_D3cold) 906 state = PCI_D3cold; 907 else if (state < PCI_D0) 908 state = PCI_D0; 909 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 910 /* 911 * If the device or the parent bridge do not support PCI PM, 912 * ignore the request if we're doing anything other than putting 913 * it into D0 (which would only happen on boot). 914 */ 915 return 0; 916 917 /* Check if we're already there */ 918 if (dev->current_state == state) 919 return 0; 920 921 __pci_start_power_transition(dev, state); 922 923 /* This device is quirked not to be put into D3, so 924 don't put it in D3 */ 925 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 926 return 0; 927 928 /* 929 * To put device in D3cold, we put device into D3hot in native 930 * way, then put device into D3cold with platform ops 931 */ 932 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 933 PCI_D3hot : state); 934 935 if (!__pci_complete_power_transition(dev, state)) 936 error = 0; 937 938 return error; 939 } 940 EXPORT_SYMBOL(pci_set_power_state); 941 942 /** 943 * pci_choose_state - Choose the power state of a PCI device 944 * @dev: PCI device to be suspended 945 * @state: target sleep state for the whole system. This is the value 946 * that is passed to suspend() function. 947 * 948 * Returns PCI power state suitable for given device and given system 949 * message. 950 */ 951 952 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 953 { 954 pci_power_t ret; 955 956 if (!dev->pm_cap) 957 return PCI_D0; 958 959 ret = platform_pci_choose_state(dev); 960 if (ret != PCI_POWER_ERROR) 961 return ret; 962 963 switch (state.event) { 964 case PM_EVENT_ON: 965 return PCI_D0; 966 case PM_EVENT_FREEZE: 967 case PM_EVENT_PRETHAW: 968 /* REVISIT both freeze and pre-thaw "should" use D0 */ 969 case PM_EVENT_SUSPEND: 970 case PM_EVENT_HIBERNATE: 971 return PCI_D3hot; 972 default: 973 dev_info(&dev->dev, "unrecognized suspend event %d\n", 974 state.event); 975 BUG(); 976 } 977 return PCI_D0; 978 } 979 EXPORT_SYMBOL(pci_choose_state); 980 981 #define PCI_EXP_SAVE_REGS 7 982 983 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 984 u16 cap, bool extended) 985 { 986 struct pci_cap_saved_state *tmp; 987 988 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 989 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 990 return tmp; 991 } 992 return NULL; 993 } 994 995 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 996 { 997 return _pci_find_saved_cap(dev, cap, false); 998 } 999 1000 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1001 { 1002 return _pci_find_saved_cap(dev, cap, true); 1003 } 1004 1005 static int pci_save_pcie_state(struct pci_dev *dev) 1006 { 1007 int i = 0; 1008 struct pci_cap_saved_state *save_state; 1009 u16 *cap; 1010 1011 if (!pci_is_pcie(dev)) 1012 return 0; 1013 1014 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1015 if (!save_state) { 1016 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 1017 return -ENOMEM; 1018 } 1019 1020 cap = (u16 *)&save_state->cap.data[0]; 1021 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1022 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1023 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1024 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1025 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1026 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1027 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1028 1029 return 0; 1030 } 1031 1032 static void pci_restore_pcie_state(struct pci_dev *dev) 1033 { 1034 int i = 0; 1035 struct pci_cap_saved_state *save_state; 1036 u16 *cap; 1037 1038 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1039 if (!save_state) 1040 return; 1041 1042 cap = (u16 *)&save_state->cap.data[0]; 1043 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1044 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1045 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1046 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1047 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1048 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1049 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1050 } 1051 1052 1053 static int pci_save_pcix_state(struct pci_dev *dev) 1054 { 1055 int pos; 1056 struct pci_cap_saved_state *save_state; 1057 1058 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1059 if (!pos) 1060 return 0; 1061 1062 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1063 if (!save_state) { 1064 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 1065 return -ENOMEM; 1066 } 1067 1068 pci_read_config_word(dev, pos + PCI_X_CMD, 1069 (u16 *)save_state->cap.data); 1070 1071 return 0; 1072 } 1073 1074 static void pci_restore_pcix_state(struct pci_dev *dev) 1075 { 1076 int i = 0, pos; 1077 struct pci_cap_saved_state *save_state; 1078 u16 *cap; 1079 1080 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1081 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1082 if (!save_state || !pos) 1083 return; 1084 cap = (u16 *)&save_state->cap.data[0]; 1085 1086 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1087 } 1088 1089 1090 /** 1091 * pci_save_state - save the PCI configuration space of a device before suspending 1092 * @dev: - PCI device that we're dealing with 1093 */ 1094 int pci_save_state(struct pci_dev *dev) 1095 { 1096 int i; 1097 /* XXX: 100% dword access ok here? */ 1098 for (i = 0; i < 16; i++) 1099 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1100 dev->state_saved = true; 1101 1102 i = pci_save_pcie_state(dev); 1103 if (i != 0) 1104 return i; 1105 1106 i = pci_save_pcix_state(dev); 1107 if (i != 0) 1108 return i; 1109 1110 return pci_save_vc_state(dev); 1111 } 1112 EXPORT_SYMBOL(pci_save_state); 1113 1114 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1115 u32 saved_val, int retry) 1116 { 1117 u32 val; 1118 1119 pci_read_config_dword(pdev, offset, &val); 1120 if (val == saved_val) 1121 return; 1122 1123 for (;;) { 1124 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1125 offset, val, saved_val); 1126 pci_write_config_dword(pdev, offset, saved_val); 1127 if (retry-- <= 0) 1128 return; 1129 1130 pci_read_config_dword(pdev, offset, &val); 1131 if (val == saved_val) 1132 return; 1133 1134 mdelay(1); 1135 } 1136 } 1137 1138 static void pci_restore_config_space_range(struct pci_dev *pdev, 1139 int start, int end, int retry) 1140 { 1141 int index; 1142 1143 for (index = end; index >= start; index--) 1144 pci_restore_config_dword(pdev, 4 * index, 1145 pdev->saved_config_space[index], 1146 retry); 1147 } 1148 1149 static void pci_restore_config_space(struct pci_dev *pdev) 1150 { 1151 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1152 pci_restore_config_space_range(pdev, 10, 15, 0); 1153 /* Restore BARs before the command register. */ 1154 pci_restore_config_space_range(pdev, 4, 9, 10); 1155 pci_restore_config_space_range(pdev, 0, 3, 0); 1156 } else { 1157 pci_restore_config_space_range(pdev, 0, 15, 0); 1158 } 1159 } 1160 1161 /** 1162 * pci_restore_state - Restore the saved state of a PCI device 1163 * @dev: - PCI device that we're dealing with 1164 */ 1165 void pci_restore_state(struct pci_dev *dev) 1166 { 1167 if (!dev->state_saved) 1168 return; 1169 1170 /* PCI Express register must be restored first */ 1171 pci_restore_pcie_state(dev); 1172 pci_restore_pasid_state(dev); 1173 pci_restore_pri_state(dev); 1174 pci_restore_ats_state(dev); 1175 pci_restore_vc_state(dev); 1176 1177 pci_cleanup_aer_error_status_regs(dev); 1178 1179 pci_restore_config_space(dev); 1180 1181 pci_restore_pcix_state(dev); 1182 pci_restore_msi_state(dev); 1183 1184 /* Restore ACS and IOV configuration state */ 1185 pci_enable_acs(dev); 1186 pci_restore_iov_state(dev); 1187 1188 dev->state_saved = false; 1189 } 1190 EXPORT_SYMBOL(pci_restore_state); 1191 1192 struct pci_saved_state { 1193 u32 config_space[16]; 1194 struct pci_cap_saved_data cap[0]; 1195 }; 1196 1197 /** 1198 * pci_store_saved_state - Allocate and return an opaque struct containing 1199 * the device saved state. 1200 * @dev: PCI device that we're dealing with 1201 * 1202 * Return NULL if no state or error. 1203 */ 1204 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1205 { 1206 struct pci_saved_state *state; 1207 struct pci_cap_saved_state *tmp; 1208 struct pci_cap_saved_data *cap; 1209 size_t size; 1210 1211 if (!dev->state_saved) 1212 return NULL; 1213 1214 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1215 1216 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1217 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1218 1219 state = kzalloc(size, GFP_KERNEL); 1220 if (!state) 1221 return NULL; 1222 1223 memcpy(state->config_space, dev->saved_config_space, 1224 sizeof(state->config_space)); 1225 1226 cap = state->cap; 1227 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1228 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1229 memcpy(cap, &tmp->cap, len); 1230 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1231 } 1232 /* Empty cap_save terminates list */ 1233 1234 return state; 1235 } 1236 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1237 1238 /** 1239 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1240 * @dev: PCI device that we're dealing with 1241 * @state: Saved state returned from pci_store_saved_state() 1242 */ 1243 int pci_load_saved_state(struct pci_dev *dev, 1244 struct pci_saved_state *state) 1245 { 1246 struct pci_cap_saved_data *cap; 1247 1248 dev->state_saved = false; 1249 1250 if (!state) 1251 return 0; 1252 1253 memcpy(dev->saved_config_space, state->config_space, 1254 sizeof(state->config_space)); 1255 1256 cap = state->cap; 1257 while (cap->size) { 1258 struct pci_cap_saved_state *tmp; 1259 1260 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1261 if (!tmp || tmp->cap.size != cap->size) 1262 return -EINVAL; 1263 1264 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1265 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1266 sizeof(struct pci_cap_saved_data) + cap->size); 1267 } 1268 1269 dev->state_saved = true; 1270 return 0; 1271 } 1272 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1273 1274 /** 1275 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1276 * and free the memory allocated for it. 1277 * @dev: PCI device that we're dealing with 1278 * @state: Pointer to saved state returned from pci_store_saved_state() 1279 */ 1280 int pci_load_and_free_saved_state(struct pci_dev *dev, 1281 struct pci_saved_state **state) 1282 { 1283 int ret = pci_load_saved_state(dev, *state); 1284 kfree(*state); 1285 *state = NULL; 1286 return ret; 1287 } 1288 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1289 1290 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1291 { 1292 return pci_enable_resources(dev, bars); 1293 } 1294 1295 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1296 { 1297 int err; 1298 struct pci_dev *bridge; 1299 u16 cmd; 1300 u8 pin; 1301 1302 err = pci_set_power_state(dev, PCI_D0); 1303 if (err < 0 && err != -EIO) 1304 return err; 1305 1306 bridge = pci_upstream_bridge(dev); 1307 if (bridge) 1308 pcie_aspm_powersave_config_link(bridge); 1309 1310 err = pcibios_enable_device(dev, bars); 1311 if (err < 0) 1312 return err; 1313 pci_fixup_device(pci_fixup_enable, dev); 1314 1315 if (dev->msi_enabled || dev->msix_enabled) 1316 return 0; 1317 1318 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1319 if (pin) { 1320 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1321 if (cmd & PCI_COMMAND_INTX_DISABLE) 1322 pci_write_config_word(dev, PCI_COMMAND, 1323 cmd & ~PCI_COMMAND_INTX_DISABLE); 1324 } 1325 1326 return 0; 1327 } 1328 1329 /** 1330 * pci_reenable_device - Resume abandoned device 1331 * @dev: PCI device to be resumed 1332 * 1333 * Note this function is a backend of pci_default_resume and is not supposed 1334 * to be called by normal code, write proper resume handler and use it instead. 1335 */ 1336 int pci_reenable_device(struct pci_dev *dev) 1337 { 1338 if (pci_is_enabled(dev)) 1339 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1340 return 0; 1341 } 1342 EXPORT_SYMBOL(pci_reenable_device); 1343 1344 static void pci_enable_bridge(struct pci_dev *dev) 1345 { 1346 struct pci_dev *bridge; 1347 int retval; 1348 1349 bridge = pci_upstream_bridge(dev); 1350 if (bridge) 1351 pci_enable_bridge(bridge); 1352 1353 if (pci_is_enabled(dev)) { 1354 if (!dev->is_busmaster) 1355 pci_set_master(dev); 1356 return; 1357 } 1358 1359 retval = pci_enable_device(dev); 1360 if (retval) 1361 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1362 retval); 1363 pci_set_master(dev); 1364 } 1365 1366 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1367 { 1368 struct pci_dev *bridge; 1369 int err; 1370 int i, bars = 0; 1371 1372 /* 1373 * Power state could be unknown at this point, either due to a fresh 1374 * boot or a device removal call. So get the current power state 1375 * so that things like MSI message writing will behave as expected 1376 * (e.g. if the device really is in D0 at enable time). 1377 */ 1378 if (dev->pm_cap) { 1379 u16 pmcsr; 1380 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1381 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1382 } 1383 1384 if (atomic_inc_return(&dev->enable_cnt) > 1) 1385 return 0; /* already enabled */ 1386 1387 bridge = pci_upstream_bridge(dev); 1388 if (bridge) 1389 pci_enable_bridge(bridge); 1390 1391 /* only skip sriov related */ 1392 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1393 if (dev->resource[i].flags & flags) 1394 bars |= (1 << i); 1395 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1396 if (dev->resource[i].flags & flags) 1397 bars |= (1 << i); 1398 1399 err = do_pci_enable_device(dev, bars); 1400 if (err < 0) 1401 atomic_dec(&dev->enable_cnt); 1402 return err; 1403 } 1404 1405 /** 1406 * pci_enable_device_io - Initialize a device for use with IO space 1407 * @dev: PCI device to be initialized 1408 * 1409 * Initialize device before it's used by a driver. Ask low-level code 1410 * to enable I/O resources. Wake up the device if it was suspended. 1411 * Beware, this function can fail. 1412 */ 1413 int pci_enable_device_io(struct pci_dev *dev) 1414 { 1415 return pci_enable_device_flags(dev, IORESOURCE_IO); 1416 } 1417 EXPORT_SYMBOL(pci_enable_device_io); 1418 1419 /** 1420 * pci_enable_device_mem - Initialize a device for use with Memory space 1421 * @dev: PCI device to be initialized 1422 * 1423 * Initialize device before it's used by a driver. Ask low-level code 1424 * to enable Memory resources. Wake up the device if it was suspended. 1425 * Beware, this function can fail. 1426 */ 1427 int pci_enable_device_mem(struct pci_dev *dev) 1428 { 1429 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1430 } 1431 EXPORT_SYMBOL(pci_enable_device_mem); 1432 1433 /** 1434 * pci_enable_device - Initialize device before it's used by a driver. 1435 * @dev: PCI device to be initialized 1436 * 1437 * Initialize device before it's used by a driver. Ask low-level code 1438 * to enable I/O and memory. Wake up the device if it was suspended. 1439 * Beware, this function can fail. 1440 * 1441 * Note we don't actually enable the device many times if we call 1442 * this function repeatedly (we just increment the count). 1443 */ 1444 int pci_enable_device(struct pci_dev *dev) 1445 { 1446 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1447 } 1448 EXPORT_SYMBOL(pci_enable_device); 1449 1450 /* 1451 * Managed PCI resources. This manages device on/off, intx/msi/msix 1452 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1453 * there's no need to track it separately. pci_devres is initialized 1454 * when a device is enabled using managed PCI device enable interface. 1455 */ 1456 struct pci_devres { 1457 unsigned int enabled:1; 1458 unsigned int pinned:1; 1459 unsigned int orig_intx:1; 1460 unsigned int restore_intx:1; 1461 u32 region_mask; 1462 }; 1463 1464 static void pcim_release(struct device *gendev, void *res) 1465 { 1466 struct pci_dev *dev = to_pci_dev(gendev); 1467 struct pci_devres *this = res; 1468 int i; 1469 1470 if (dev->msi_enabled) 1471 pci_disable_msi(dev); 1472 if (dev->msix_enabled) 1473 pci_disable_msix(dev); 1474 1475 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1476 if (this->region_mask & (1 << i)) 1477 pci_release_region(dev, i); 1478 1479 if (this->restore_intx) 1480 pci_intx(dev, this->orig_intx); 1481 1482 if (this->enabled && !this->pinned) 1483 pci_disable_device(dev); 1484 } 1485 1486 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1487 { 1488 struct pci_devres *dr, *new_dr; 1489 1490 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1491 if (dr) 1492 return dr; 1493 1494 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1495 if (!new_dr) 1496 return NULL; 1497 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1498 } 1499 1500 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1501 { 1502 if (pci_is_managed(pdev)) 1503 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1504 return NULL; 1505 } 1506 1507 /** 1508 * pcim_enable_device - Managed pci_enable_device() 1509 * @pdev: PCI device to be initialized 1510 * 1511 * Managed pci_enable_device(). 1512 */ 1513 int pcim_enable_device(struct pci_dev *pdev) 1514 { 1515 struct pci_devres *dr; 1516 int rc; 1517 1518 dr = get_pci_dr(pdev); 1519 if (unlikely(!dr)) 1520 return -ENOMEM; 1521 if (dr->enabled) 1522 return 0; 1523 1524 rc = pci_enable_device(pdev); 1525 if (!rc) { 1526 pdev->is_managed = 1; 1527 dr->enabled = 1; 1528 } 1529 return rc; 1530 } 1531 EXPORT_SYMBOL(pcim_enable_device); 1532 1533 /** 1534 * pcim_pin_device - Pin managed PCI device 1535 * @pdev: PCI device to pin 1536 * 1537 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1538 * driver detach. @pdev must have been enabled with 1539 * pcim_enable_device(). 1540 */ 1541 void pcim_pin_device(struct pci_dev *pdev) 1542 { 1543 struct pci_devres *dr; 1544 1545 dr = find_pci_dr(pdev); 1546 WARN_ON(!dr || !dr->enabled); 1547 if (dr) 1548 dr->pinned = 1; 1549 } 1550 EXPORT_SYMBOL(pcim_pin_device); 1551 1552 /* 1553 * pcibios_add_device - provide arch specific hooks when adding device dev 1554 * @dev: the PCI device being added 1555 * 1556 * Permits the platform to provide architecture specific functionality when 1557 * devices are added. This is the default implementation. Architecture 1558 * implementations can override this. 1559 */ 1560 int __weak pcibios_add_device(struct pci_dev *dev) 1561 { 1562 return 0; 1563 } 1564 1565 /** 1566 * pcibios_release_device - provide arch specific hooks when releasing device dev 1567 * @dev: the PCI device being released 1568 * 1569 * Permits the platform to provide architecture specific functionality when 1570 * devices are released. This is the default implementation. Architecture 1571 * implementations can override this. 1572 */ 1573 void __weak pcibios_release_device(struct pci_dev *dev) {} 1574 1575 /** 1576 * pcibios_disable_device - disable arch specific PCI resources for device dev 1577 * @dev: the PCI device to disable 1578 * 1579 * Disables architecture specific PCI resources for the device. This 1580 * is the default implementation. Architecture implementations can 1581 * override this. 1582 */ 1583 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1584 1585 /** 1586 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1587 * @irq: ISA IRQ to penalize 1588 * @active: IRQ active or not 1589 * 1590 * Permits the platform to provide architecture-specific functionality when 1591 * penalizing ISA IRQs. This is the default implementation. Architecture 1592 * implementations can override this. 1593 */ 1594 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1595 1596 static void do_pci_disable_device(struct pci_dev *dev) 1597 { 1598 u16 pci_command; 1599 1600 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1601 if (pci_command & PCI_COMMAND_MASTER) { 1602 pci_command &= ~PCI_COMMAND_MASTER; 1603 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1604 } 1605 1606 pcibios_disable_device(dev); 1607 } 1608 1609 /** 1610 * pci_disable_enabled_device - Disable device without updating enable_cnt 1611 * @dev: PCI device to disable 1612 * 1613 * NOTE: This function is a backend of PCI power management routines and is 1614 * not supposed to be called drivers. 1615 */ 1616 void pci_disable_enabled_device(struct pci_dev *dev) 1617 { 1618 if (pci_is_enabled(dev)) 1619 do_pci_disable_device(dev); 1620 } 1621 1622 /** 1623 * pci_disable_device - Disable PCI device after use 1624 * @dev: PCI device to be disabled 1625 * 1626 * Signal to the system that the PCI device is not in use by the system 1627 * anymore. This only involves disabling PCI bus-mastering, if active. 1628 * 1629 * Note we don't actually disable the device until all callers of 1630 * pci_enable_device() have called pci_disable_device(). 1631 */ 1632 void pci_disable_device(struct pci_dev *dev) 1633 { 1634 struct pci_devres *dr; 1635 1636 dr = find_pci_dr(dev); 1637 if (dr) 1638 dr->enabled = 0; 1639 1640 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1641 "disabling already-disabled device"); 1642 1643 if (atomic_dec_return(&dev->enable_cnt) != 0) 1644 return; 1645 1646 do_pci_disable_device(dev); 1647 1648 dev->is_busmaster = 0; 1649 } 1650 EXPORT_SYMBOL(pci_disable_device); 1651 1652 /** 1653 * pcibios_set_pcie_reset_state - set reset state for device dev 1654 * @dev: the PCIe device reset 1655 * @state: Reset state to enter into 1656 * 1657 * 1658 * Sets the PCIe reset state for the device. This is the default 1659 * implementation. Architecture implementations can override this. 1660 */ 1661 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1662 enum pcie_reset_state state) 1663 { 1664 return -EINVAL; 1665 } 1666 1667 /** 1668 * pci_set_pcie_reset_state - set reset state for device dev 1669 * @dev: the PCIe device reset 1670 * @state: Reset state to enter into 1671 * 1672 * 1673 * Sets the PCI reset state for the device. 1674 */ 1675 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1676 { 1677 return pcibios_set_pcie_reset_state(dev, state); 1678 } 1679 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1680 1681 /** 1682 * pci_check_pme_status - Check if given device has generated PME. 1683 * @dev: Device to check. 1684 * 1685 * Check the PME status of the device and if set, clear it and clear PME enable 1686 * (if set). Return 'true' if PME status and PME enable were both set or 1687 * 'false' otherwise. 1688 */ 1689 bool pci_check_pme_status(struct pci_dev *dev) 1690 { 1691 int pmcsr_pos; 1692 u16 pmcsr; 1693 bool ret = false; 1694 1695 if (!dev->pm_cap) 1696 return false; 1697 1698 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1699 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1700 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1701 return false; 1702 1703 /* Clear PME status. */ 1704 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1705 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1706 /* Disable PME to avoid interrupt flood. */ 1707 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1708 ret = true; 1709 } 1710 1711 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1712 1713 return ret; 1714 } 1715 1716 /** 1717 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1718 * @dev: Device to handle. 1719 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1720 * 1721 * Check if @dev has generated PME and queue a resume request for it in that 1722 * case. 1723 */ 1724 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1725 { 1726 if (pme_poll_reset && dev->pme_poll) 1727 dev->pme_poll = false; 1728 1729 if (pci_check_pme_status(dev)) { 1730 pci_wakeup_event(dev); 1731 pm_request_resume(&dev->dev); 1732 } 1733 return 0; 1734 } 1735 1736 /** 1737 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1738 * @bus: Top bus of the subtree to walk. 1739 */ 1740 void pci_pme_wakeup_bus(struct pci_bus *bus) 1741 { 1742 if (bus) 1743 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1744 } 1745 1746 1747 /** 1748 * pci_pme_capable - check the capability of PCI device to generate PME# 1749 * @dev: PCI device to handle. 1750 * @state: PCI state from which device will issue PME#. 1751 */ 1752 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1753 { 1754 if (!dev->pm_cap) 1755 return false; 1756 1757 return !!(dev->pme_support & (1 << state)); 1758 } 1759 EXPORT_SYMBOL(pci_pme_capable); 1760 1761 static void pci_pme_list_scan(struct work_struct *work) 1762 { 1763 struct pci_pme_device *pme_dev, *n; 1764 1765 mutex_lock(&pci_pme_list_mutex); 1766 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1767 if (pme_dev->dev->pme_poll) { 1768 struct pci_dev *bridge; 1769 1770 bridge = pme_dev->dev->bus->self; 1771 /* 1772 * If bridge is in low power state, the 1773 * configuration space of subordinate devices 1774 * may be not accessible 1775 */ 1776 if (bridge && bridge->current_state != PCI_D0) 1777 continue; 1778 pci_pme_wakeup(pme_dev->dev, NULL); 1779 } else { 1780 list_del(&pme_dev->list); 1781 kfree(pme_dev); 1782 } 1783 } 1784 if (!list_empty(&pci_pme_list)) 1785 queue_delayed_work(system_freezable_wq, &pci_pme_work, 1786 msecs_to_jiffies(PME_TIMEOUT)); 1787 mutex_unlock(&pci_pme_list_mutex); 1788 } 1789 1790 static void __pci_pme_active(struct pci_dev *dev, bool enable) 1791 { 1792 u16 pmcsr; 1793 1794 if (!dev->pme_support) 1795 return; 1796 1797 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1798 /* Clear PME_Status by writing 1 to it and enable PME# */ 1799 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1800 if (!enable) 1801 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1802 1803 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1804 } 1805 1806 /** 1807 * pci_pme_restore - Restore PME configuration after config space restore. 1808 * @dev: PCI device to update. 1809 */ 1810 void pci_pme_restore(struct pci_dev *dev) 1811 { 1812 u16 pmcsr; 1813 1814 if (!dev->pme_support) 1815 return; 1816 1817 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1818 if (dev->wakeup_prepared) { 1819 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 1820 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 1821 } else { 1822 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1823 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1824 } 1825 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1826 } 1827 1828 /** 1829 * pci_pme_active - enable or disable PCI device's PME# function 1830 * @dev: PCI device to handle. 1831 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1832 * 1833 * The caller must verify that the device is capable of generating PME# before 1834 * calling this function with @enable equal to 'true'. 1835 */ 1836 void pci_pme_active(struct pci_dev *dev, bool enable) 1837 { 1838 __pci_pme_active(dev, enable); 1839 1840 /* 1841 * PCI (as opposed to PCIe) PME requires that the device have 1842 * its PME# line hooked up correctly. Not all hardware vendors 1843 * do this, so the PME never gets delivered and the device 1844 * remains asleep. The easiest way around this is to 1845 * periodically walk the list of suspended devices and check 1846 * whether any have their PME flag set. The assumption is that 1847 * we'll wake up often enough anyway that this won't be a huge 1848 * hit, and the power savings from the devices will still be a 1849 * win. 1850 * 1851 * Although PCIe uses in-band PME message instead of PME# line 1852 * to report PME, PME does not work for some PCIe devices in 1853 * reality. For example, there are devices that set their PME 1854 * status bits, but don't really bother to send a PME message; 1855 * there are PCI Express Root Ports that don't bother to 1856 * trigger interrupts when they receive PME messages from the 1857 * devices below. So PME poll is used for PCIe devices too. 1858 */ 1859 1860 if (dev->pme_poll) { 1861 struct pci_pme_device *pme_dev; 1862 if (enable) { 1863 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1864 GFP_KERNEL); 1865 if (!pme_dev) { 1866 dev_warn(&dev->dev, "can't enable PME#\n"); 1867 return; 1868 } 1869 pme_dev->dev = dev; 1870 mutex_lock(&pci_pme_list_mutex); 1871 list_add(&pme_dev->list, &pci_pme_list); 1872 if (list_is_singular(&pci_pme_list)) 1873 queue_delayed_work(system_freezable_wq, 1874 &pci_pme_work, 1875 msecs_to_jiffies(PME_TIMEOUT)); 1876 mutex_unlock(&pci_pme_list_mutex); 1877 } else { 1878 mutex_lock(&pci_pme_list_mutex); 1879 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1880 if (pme_dev->dev == dev) { 1881 list_del(&pme_dev->list); 1882 kfree(pme_dev); 1883 break; 1884 } 1885 } 1886 mutex_unlock(&pci_pme_list_mutex); 1887 } 1888 } 1889 1890 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1891 } 1892 EXPORT_SYMBOL(pci_pme_active); 1893 1894 /** 1895 * pci_enable_wake - enable PCI device as wakeup event source 1896 * @dev: PCI device affected 1897 * @state: PCI state from which device will issue wakeup events 1898 * @enable: True to enable event generation; false to disable 1899 * 1900 * This enables the device as a wakeup event source, or disables it. 1901 * When such events involves platform-specific hooks, those hooks are 1902 * called automatically by this routine. 1903 * 1904 * Devices with legacy power management (no standard PCI PM capabilities) 1905 * always require such platform hooks. 1906 * 1907 * RETURN VALUE: 1908 * 0 is returned on success 1909 * -EINVAL is returned if device is not supposed to wake up the system 1910 * Error code depending on the platform is returned if both the platform and 1911 * the native mechanism fail to enable the generation of wake-up events 1912 */ 1913 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 1914 { 1915 int ret = 0; 1916 1917 /* 1918 * Bridges can only signal wakeup on behalf of subordinate devices, 1919 * but that is set up elsewhere, so skip them. 1920 */ 1921 if (pci_has_subordinate(dev)) 1922 return 0; 1923 1924 /* Don't do the same thing twice in a row for one device. */ 1925 if (!!enable == !!dev->wakeup_prepared) 1926 return 0; 1927 1928 /* 1929 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1930 * Anderson we should be doing PME# wake enable followed by ACPI wake 1931 * enable. To disable wake-up we call the platform first, for symmetry. 1932 */ 1933 1934 if (enable) { 1935 int error; 1936 1937 if (pci_pme_capable(dev, state)) 1938 pci_pme_active(dev, true); 1939 else 1940 ret = 1; 1941 error = platform_pci_set_wakeup(dev, true); 1942 if (ret) 1943 ret = error; 1944 if (!ret) 1945 dev->wakeup_prepared = true; 1946 } else { 1947 platform_pci_set_wakeup(dev, false); 1948 pci_pme_active(dev, false); 1949 dev->wakeup_prepared = false; 1950 } 1951 1952 return ret; 1953 } 1954 EXPORT_SYMBOL(pci_enable_wake); 1955 1956 /** 1957 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1958 * @dev: PCI device to prepare 1959 * @enable: True to enable wake-up event generation; false to disable 1960 * 1961 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1962 * and this function allows them to set that up cleanly - pci_enable_wake() 1963 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1964 * ordering constraints. 1965 * 1966 * This function only returns error code if the device is not capable of 1967 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1968 * enable wake-up power for it. 1969 */ 1970 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1971 { 1972 return pci_pme_capable(dev, PCI_D3cold) ? 1973 pci_enable_wake(dev, PCI_D3cold, enable) : 1974 pci_enable_wake(dev, PCI_D3hot, enable); 1975 } 1976 EXPORT_SYMBOL(pci_wake_from_d3); 1977 1978 /** 1979 * pci_target_state - find an appropriate low power state for a given PCI dev 1980 * @dev: PCI device 1981 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 1982 * 1983 * Use underlying platform code to find a supported low power state for @dev. 1984 * If the platform can't manage @dev, return the deepest state from which it 1985 * can generate wake events, based on any available PME info. 1986 */ 1987 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 1988 { 1989 pci_power_t target_state = PCI_D3hot; 1990 1991 if (platform_pci_power_manageable(dev)) { 1992 /* 1993 * Call the platform to choose the target state of the device 1994 * and enable wake-up from this state if supported. 1995 */ 1996 pci_power_t state = platform_pci_choose_state(dev); 1997 1998 switch (state) { 1999 case PCI_POWER_ERROR: 2000 case PCI_UNKNOWN: 2001 break; 2002 case PCI_D1: 2003 case PCI_D2: 2004 if (pci_no_d1d2(dev)) 2005 break; 2006 default: 2007 target_state = state; 2008 } 2009 2010 return target_state; 2011 } 2012 2013 if (!dev->pm_cap) 2014 target_state = PCI_D0; 2015 2016 /* 2017 * If the device is in D3cold even though it's not power-manageable by 2018 * the platform, it may have been powered down by non-standard means. 2019 * Best to let it slumber. 2020 */ 2021 if (dev->current_state == PCI_D3cold) 2022 target_state = PCI_D3cold; 2023 2024 if (wakeup) { 2025 /* 2026 * Find the deepest state from which the device can generate 2027 * wake-up events, make it the target state and enable device 2028 * to generate PME#. 2029 */ 2030 if (dev->pme_support) { 2031 while (target_state 2032 && !(dev->pme_support & (1 << target_state))) 2033 target_state--; 2034 } 2035 } 2036 2037 return target_state; 2038 } 2039 2040 /** 2041 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 2042 * @dev: Device to handle. 2043 * 2044 * Choose the power state appropriate for the device depending on whether 2045 * it can wake up the system and/or is power manageable by the platform 2046 * (PCI_D3hot is the default) and put the device into that state. 2047 */ 2048 int pci_prepare_to_sleep(struct pci_dev *dev) 2049 { 2050 bool wakeup = device_may_wakeup(&dev->dev); 2051 pci_power_t target_state = pci_target_state(dev, wakeup); 2052 int error; 2053 2054 if (target_state == PCI_POWER_ERROR) 2055 return -EIO; 2056 2057 pci_enable_wake(dev, target_state, wakeup); 2058 2059 error = pci_set_power_state(dev, target_state); 2060 2061 if (error) 2062 pci_enable_wake(dev, target_state, false); 2063 2064 return error; 2065 } 2066 EXPORT_SYMBOL(pci_prepare_to_sleep); 2067 2068 /** 2069 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 2070 * @dev: Device to handle. 2071 * 2072 * Disable device's system wake-up capability and put it into D0. 2073 */ 2074 int pci_back_from_sleep(struct pci_dev *dev) 2075 { 2076 pci_enable_wake(dev, PCI_D0, false); 2077 return pci_set_power_state(dev, PCI_D0); 2078 } 2079 EXPORT_SYMBOL(pci_back_from_sleep); 2080 2081 /** 2082 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2083 * @dev: PCI device being suspended. 2084 * 2085 * Prepare @dev to generate wake-up events at run time and put it into a low 2086 * power state. 2087 */ 2088 int pci_finish_runtime_suspend(struct pci_dev *dev) 2089 { 2090 pci_power_t target_state; 2091 int error; 2092 2093 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2094 if (target_state == PCI_POWER_ERROR) 2095 return -EIO; 2096 2097 dev->runtime_d3cold = target_state == PCI_D3cold; 2098 2099 pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2100 2101 error = pci_set_power_state(dev, target_state); 2102 2103 if (error) { 2104 pci_enable_wake(dev, target_state, false); 2105 dev->runtime_d3cold = false; 2106 } 2107 2108 return error; 2109 } 2110 2111 /** 2112 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2113 * @dev: Device to check. 2114 * 2115 * Return true if the device itself is capable of generating wake-up events 2116 * (through the platform or using the native PCIe PME) or if the device supports 2117 * PME and one of its upstream bridges can generate wake-up events. 2118 */ 2119 bool pci_dev_run_wake(struct pci_dev *dev) 2120 { 2121 struct pci_bus *bus = dev->bus; 2122 2123 if (device_can_wakeup(&dev->dev)) 2124 return true; 2125 2126 if (!dev->pme_support) 2127 return false; 2128 2129 /* PME-capable in principle, but not from the target power state */ 2130 if (!pci_pme_capable(dev, pci_target_state(dev, false))) 2131 return false; 2132 2133 while (bus->parent) { 2134 struct pci_dev *bridge = bus->self; 2135 2136 if (device_can_wakeup(&bridge->dev)) 2137 return true; 2138 2139 bus = bus->parent; 2140 } 2141 2142 /* We have reached the root bus. */ 2143 if (bus->bridge) 2144 return device_can_wakeup(bus->bridge); 2145 2146 return false; 2147 } 2148 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2149 2150 /** 2151 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2152 * @pci_dev: Device to check. 2153 * 2154 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2155 * reconfigured due to wakeup settings difference between system and runtime 2156 * suspend and the current power state of it is suitable for the upcoming 2157 * (system) transition. 2158 * 2159 * If the device is not configured for system wakeup, disable PME for it before 2160 * returning 'true' to prevent it from waking up the system unnecessarily. 2161 */ 2162 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2163 { 2164 struct device *dev = &pci_dev->dev; 2165 bool wakeup = device_may_wakeup(dev); 2166 2167 if (!pm_runtime_suspended(dev) 2168 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state 2169 || platform_pci_need_resume(pci_dev)) 2170 return false; 2171 2172 /* 2173 * At this point the device is good to go unless it's been configured 2174 * to generate PME at the runtime suspend time, but it is not supposed 2175 * to wake up the system. In that case, simply disable PME for it 2176 * (it will have to be re-enabled on exit from system resume). 2177 * 2178 * If the device's power state is D3cold and the platform check above 2179 * hasn't triggered, the device's configuration is suitable and we don't 2180 * need to manipulate it at all. 2181 */ 2182 spin_lock_irq(&dev->power.lock); 2183 2184 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2185 !wakeup) 2186 __pci_pme_active(pci_dev, false); 2187 2188 spin_unlock_irq(&dev->power.lock); 2189 return true; 2190 } 2191 2192 /** 2193 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2194 * @pci_dev: Device to handle. 2195 * 2196 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2197 * it might have been disabled during the prepare phase of system suspend if 2198 * the device was not configured for system wakeup. 2199 */ 2200 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2201 { 2202 struct device *dev = &pci_dev->dev; 2203 2204 if (!pci_dev_run_wake(pci_dev)) 2205 return; 2206 2207 spin_lock_irq(&dev->power.lock); 2208 2209 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2210 __pci_pme_active(pci_dev, true); 2211 2212 spin_unlock_irq(&dev->power.lock); 2213 } 2214 2215 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2216 { 2217 struct device *dev = &pdev->dev; 2218 struct device *parent = dev->parent; 2219 2220 if (parent) 2221 pm_runtime_get_sync(parent); 2222 pm_runtime_get_noresume(dev); 2223 /* 2224 * pdev->current_state is set to PCI_D3cold during suspending, 2225 * so wait until suspending completes 2226 */ 2227 pm_runtime_barrier(dev); 2228 /* 2229 * Only need to resume devices in D3cold, because config 2230 * registers are still accessible for devices suspended but 2231 * not in D3cold. 2232 */ 2233 if (pdev->current_state == PCI_D3cold) 2234 pm_runtime_resume(dev); 2235 } 2236 2237 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2238 { 2239 struct device *dev = &pdev->dev; 2240 struct device *parent = dev->parent; 2241 2242 pm_runtime_put(dev); 2243 if (parent) 2244 pm_runtime_put_sync(parent); 2245 } 2246 2247 /** 2248 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2249 * @bridge: Bridge to check 2250 * 2251 * This function checks if it is possible to move the bridge to D3. 2252 * Currently we only allow D3 for recent enough PCIe ports. 2253 */ 2254 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2255 { 2256 unsigned int year; 2257 2258 if (!pci_is_pcie(bridge)) 2259 return false; 2260 2261 switch (pci_pcie_type(bridge)) { 2262 case PCI_EXP_TYPE_ROOT_PORT: 2263 case PCI_EXP_TYPE_UPSTREAM: 2264 case PCI_EXP_TYPE_DOWNSTREAM: 2265 if (pci_bridge_d3_disable) 2266 return false; 2267 2268 /* 2269 * Hotplug interrupts cannot be delivered if the link is down, 2270 * so parents of a hotplug port must stay awake. In addition, 2271 * hotplug ports handled by firmware in System Management Mode 2272 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2273 * For simplicity, disallow in general for now. 2274 */ 2275 if (bridge->is_hotplug_bridge) 2276 return false; 2277 2278 if (pci_bridge_d3_force) 2279 return true; 2280 2281 /* 2282 * It should be safe to put PCIe ports from 2015 or newer 2283 * to D3. 2284 */ 2285 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && 2286 year >= 2015) { 2287 return true; 2288 } 2289 break; 2290 } 2291 2292 return false; 2293 } 2294 2295 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2296 { 2297 bool *d3cold_ok = data; 2298 2299 if (/* The device needs to be allowed to go D3cold ... */ 2300 dev->no_d3cold || !dev->d3cold_allowed || 2301 2302 /* ... and if it is wakeup capable to do so from D3cold. */ 2303 (device_may_wakeup(&dev->dev) && 2304 !pci_pme_capable(dev, PCI_D3cold)) || 2305 2306 /* If it is a bridge it must be allowed to go to D3. */ 2307 !pci_power_manageable(dev)) 2308 2309 *d3cold_ok = false; 2310 2311 return !*d3cold_ok; 2312 } 2313 2314 /* 2315 * pci_bridge_d3_update - Update bridge D3 capabilities 2316 * @dev: PCI device which is changed 2317 * 2318 * Update upstream bridge PM capabilities accordingly depending on if the 2319 * device PM configuration was changed or the device is being removed. The 2320 * change is also propagated upstream. 2321 */ 2322 void pci_bridge_d3_update(struct pci_dev *dev) 2323 { 2324 bool remove = !device_is_registered(&dev->dev); 2325 struct pci_dev *bridge; 2326 bool d3cold_ok = true; 2327 2328 bridge = pci_upstream_bridge(dev); 2329 if (!bridge || !pci_bridge_d3_possible(bridge)) 2330 return; 2331 2332 /* 2333 * If D3 is currently allowed for the bridge, removing one of its 2334 * children won't change that. 2335 */ 2336 if (remove && bridge->bridge_d3) 2337 return; 2338 2339 /* 2340 * If D3 is currently allowed for the bridge and a child is added or 2341 * changed, disallowance of D3 can only be caused by that child, so 2342 * we only need to check that single device, not any of its siblings. 2343 * 2344 * If D3 is currently not allowed for the bridge, checking the device 2345 * first may allow us to skip checking its siblings. 2346 */ 2347 if (!remove) 2348 pci_dev_check_d3cold(dev, &d3cold_ok); 2349 2350 /* 2351 * If D3 is currently not allowed for the bridge, this may be caused 2352 * either by the device being changed/removed or any of its siblings, 2353 * so we need to go through all children to find out if one of them 2354 * continues to block D3. 2355 */ 2356 if (d3cold_ok && !bridge->bridge_d3) 2357 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2358 &d3cold_ok); 2359 2360 if (bridge->bridge_d3 != d3cold_ok) { 2361 bridge->bridge_d3 = d3cold_ok; 2362 /* Propagate change to upstream bridges */ 2363 pci_bridge_d3_update(bridge); 2364 } 2365 } 2366 2367 /** 2368 * pci_d3cold_enable - Enable D3cold for device 2369 * @dev: PCI device to handle 2370 * 2371 * This function can be used in drivers to enable D3cold from the device 2372 * they handle. It also updates upstream PCI bridge PM capabilities 2373 * accordingly. 2374 */ 2375 void pci_d3cold_enable(struct pci_dev *dev) 2376 { 2377 if (dev->no_d3cold) { 2378 dev->no_d3cold = false; 2379 pci_bridge_d3_update(dev); 2380 } 2381 } 2382 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2383 2384 /** 2385 * pci_d3cold_disable - Disable D3cold for device 2386 * @dev: PCI device to handle 2387 * 2388 * This function can be used in drivers to disable D3cold from the device 2389 * they handle. It also updates upstream PCI bridge PM capabilities 2390 * accordingly. 2391 */ 2392 void pci_d3cold_disable(struct pci_dev *dev) 2393 { 2394 if (!dev->no_d3cold) { 2395 dev->no_d3cold = true; 2396 pci_bridge_d3_update(dev); 2397 } 2398 } 2399 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2400 2401 /** 2402 * pci_pm_init - Initialize PM functions of given PCI device 2403 * @dev: PCI device to handle. 2404 */ 2405 void pci_pm_init(struct pci_dev *dev) 2406 { 2407 int pm; 2408 u16 pmc; 2409 2410 pm_runtime_forbid(&dev->dev); 2411 pm_runtime_set_active(&dev->dev); 2412 pm_runtime_enable(&dev->dev); 2413 device_enable_async_suspend(&dev->dev); 2414 dev->wakeup_prepared = false; 2415 2416 dev->pm_cap = 0; 2417 dev->pme_support = 0; 2418 2419 /* find PCI PM capability in list */ 2420 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2421 if (!pm) 2422 return; 2423 /* Check device's ability to generate PME# */ 2424 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2425 2426 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2427 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 2428 pmc & PCI_PM_CAP_VER_MASK); 2429 return; 2430 } 2431 2432 dev->pm_cap = pm; 2433 dev->d3_delay = PCI_PM_D3_WAIT; 2434 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2435 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2436 dev->d3cold_allowed = true; 2437 2438 dev->d1_support = false; 2439 dev->d2_support = false; 2440 if (!pci_no_d1d2(dev)) { 2441 if (pmc & PCI_PM_CAP_D1) 2442 dev->d1_support = true; 2443 if (pmc & PCI_PM_CAP_D2) 2444 dev->d2_support = true; 2445 2446 if (dev->d1_support || dev->d2_support) 2447 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 2448 dev->d1_support ? " D1" : "", 2449 dev->d2_support ? " D2" : ""); 2450 } 2451 2452 pmc &= PCI_PM_CAP_PME_MASK; 2453 if (pmc) { 2454 dev_printk(KERN_DEBUG, &dev->dev, 2455 "PME# supported from%s%s%s%s%s\n", 2456 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2457 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2458 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2459 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2460 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2461 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2462 dev->pme_poll = true; 2463 /* 2464 * Make device's PM flags reflect the wake-up capability, but 2465 * let the user space enable it to wake up the system as needed. 2466 */ 2467 device_set_wakeup_capable(&dev->dev, true); 2468 /* Disable the PME# generation functionality */ 2469 pci_pme_active(dev, false); 2470 } 2471 } 2472 2473 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2474 { 2475 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2476 2477 switch (prop) { 2478 case PCI_EA_P_MEM: 2479 case PCI_EA_P_VF_MEM: 2480 flags |= IORESOURCE_MEM; 2481 break; 2482 case PCI_EA_P_MEM_PREFETCH: 2483 case PCI_EA_P_VF_MEM_PREFETCH: 2484 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2485 break; 2486 case PCI_EA_P_IO: 2487 flags |= IORESOURCE_IO; 2488 break; 2489 default: 2490 return 0; 2491 } 2492 2493 return flags; 2494 } 2495 2496 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2497 u8 prop) 2498 { 2499 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2500 return &dev->resource[bei]; 2501 #ifdef CONFIG_PCI_IOV 2502 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2503 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2504 return &dev->resource[PCI_IOV_RESOURCES + 2505 bei - PCI_EA_BEI_VF_BAR0]; 2506 #endif 2507 else if (bei == PCI_EA_BEI_ROM) 2508 return &dev->resource[PCI_ROM_RESOURCE]; 2509 else 2510 return NULL; 2511 } 2512 2513 /* Read an Enhanced Allocation (EA) entry */ 2514 static int pci_ea_read(struct pci_dev *dev, int offset) 2515 { 2516 struct resource *res; 2517 int ent_size, ent_offset = offset; 2518 resource_size_t start, end; 2519 unsigned long flags; 2520 u32 dw0, bei, base, max_offset; 2521 u8 prop; 2522 bool support_64 = (sizeof(resource_size_t) >= 8); 2523 2524 pci_read_config_dword(dev, ent_offset, &dw0); 2525 ent_offset += 4; 2526 2527 /* Entry size field indicates DWORDs after 1st */ 2528 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2529 2530 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2531 goto out; 2532 2533 bei = (dw0 & PCI_EA_BEI) >> 4; 2534 prop = (dw0 & PCI_EA_PP) >> 8; 2535 2536 /* 2537 * If the Property is in the reserved range, try the Secondary 2538 * Property instead. 2539 */ 2540 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2541 prop = (dw0 & PCI_EA_SP) >> 16; 2542 if (prop > PCI_EA_P_BRIDGE_IO) 2543 goto out; 2544 2545 res = pci_ea_get_resource(dev, bei, prop); 2546 if (!res) { 2547 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei); 2548 goto out; 2549 } 2550 2551 flags = pci_ea_flags(dev, prop); 2552 if (!flags) { 2553 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop); 2554 goto out; 2555 } 2556 2557 /* Read Base */ 2558 pci_read_config_dword(dev, ent_offset, &base); 2559 start = (base & PCI_EA_FIELD_MASK); 2560 ent_offset += 4; 2561 2562 /* Read MaxOffset */ 2563 pci_read_config_dword(dev, ent_offset, &max_offset); 2564 ent_offset += 4; 2565 2566 /* Read Base MSBs (if 64-bit entry) */ 2567 if (base & PCI_EA_IS_64) { 2568 u32 base_upper; 2569 2570 pci_read_config_dword(dev, ent_offset, &base_upper); 2571 ent_offset += 4; 2572 2573 flags |= IORESOURCE_MEM_64; 2574 2575 /* entry starts above 32-bit boundary, can't use */ 2576 if (!support_64 && base_upper) 2577 goto out; 2578 2579 if (support_64) 2580 start |= ((u64)base_upper << 32); 2581 } 2582 2583 end = start + (max_offset | 0x03); 2584 2585 /* Read MaxOffset MSBs (if 64-bit entry) */ 2586 if (max_offset & PCI_EA_IS_64) { 2587 u32 max_offset_upper; 2588 2589 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2590 ent_offset += 4; 2591 2592 flags |= IORESOURCE_MEM_64; 2593 2594 /* entry too big, can't use */ 2595 if (!support_64 && max_offset_upper) 2596 goto out; 2597 2598 if (support_64) 2599 end += ((u64)max_offset_upper << 32); 2600 } 2601 2602 if (end < start) { 2603 dev_err(&dev->dev, "EA Entry crosses address boundary\n"); 2604 goto out; 2605 } 2606 2607 if (ent_size != ent_offset - offset) { 2608 dev_err(&dev->dev, 2609 "EA Entry Size (%d) does not match length read (%d)\n", 2610 ent_size, ent_offset - offset); 2611 goto out; 2612 } 2613 2614 res->name = pci_name(dev); 2615 res->start = start; 2616 res->end = end; 2617 res->flags = flags; 2618 2619 if (bei <= PCI_EA_BEI_BAR5) 2620 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2621 bei, res, prop); 2622 else if (bei == PCI_EA_BEI_ROM) 2623 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2624 res, prop); 2625 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2626 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2627 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2628 else 2629 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2630 bei, res, prop); 2631 2632 out: 2633 return offset + ent_size; 2634 } 2635 2636 /* Enhanced Allocation Initialization */ 2637 void pci_ea_init(struct pci_dev *dev) 2638 { 2639 int ea; 2640 u8 num_ent; 2641 int offset; 2642 int i; 2643 2644 /* find PCI EA capability in list */ 2645 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2646 if (!ea) 2647 return; 2648 2649 /* determine the number of entries */ 2650 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2651 &num_ent); 2652 num_ent &= PCI_EA_NUM_ENT_MASK; 2653 2654 offset = ea + PCI_EA_FIRST_ENT; 2655 2656 /* Skip DWORD 2 for type 1 functions */ 2657 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2658 offset += 4; 2659 2660 /* parse each EA entry */ 2661 for (i = 0; i < num_ent; ++i) 2662 offset = pci_ea_read(dev, offset); 2663 } 2664 2665 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2666 struct pci_cap_saved_state *new_cap) 2667 { 2668 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2669 } 2670 2671 /** 2672 * _pci_add_cap_save_buffer - allocate buffer for saving given 2673 * capability registers 2674 * @dev: the PCI device 2675 * @cap: the capability to allocate the buffer for 2676 * @extended: Standard or Extended capability ID 2677 * @size: requested size of the buffer 2678 */ 2679 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2680 bool extended, unsigned int size) 2681 { 2682 int pos; 2683 struct pci_cap_saved_state *save_state; 2684 2685 if (extended) 2686 pos = pci_find_ext_capability(dev, cap); 2687 else 2688 pos = pci_find_capability(dev, cap); 2689 2690 if (!pos) 2691 return 0; 2692 2693 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2694 if (!save_state) 2695 return -ENOMEM; 2696 2697 save_state->cap.cap_nr = cap; 2698 save_state->cap.cap_extended = extended; 2699 save_state->cap.size = size; 2700 pci_add_saved_cap(dev, save_state); 2701 2702 return 0; 2703 } 2704 2705 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2706 { 2707 return _pci_add_cap_save_buffer(dev, cap, false, size); 2708 } 2709 2710 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2711 { 2712 return _pci_add_cap_save_buffer(dev, cap, true, size); 2713 } 2714 2715 /** 2716 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2717 * @dev: the PCI device 2718 */ 2719 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2720 { 2721 int error; 2722 2723 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2724 PCI_EXP_SAVE_REGS * sizeof(u16)); 2725 if (error) 2726 dev_err(&dev->dev, 2727 "unable to preallocate PCI Express save buffer\n"); 2728 2729 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2730 if (error) 2731 dev_err(&dev->dev, 2732 "unable to preallocate PCI-X save buffer\n"); 2733 2734 pci_allocate_vc_save_buffers(dev); 2735 } 2736 2737 void pci_free_cap_save_buffers(struct pci_dev *dev) 2738 { 2739 struct pci_cap_saved_state *tmp; 2740 struct hlist_node *n; 2741 2742 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2743 kfree(tmp); 2744 } 2745 2746 /** 2747 * pci_configure_ari - enable or disable ARI forwarding 2748 * @dev: the PCI device 2749 * 2750 * If @dev and its upstream bridge both support ARI, enable ARI in the 2751 * bridge. Otherwise, disable ARI in the bridge. 2752 */ 2753 void pci_configure_ari(struct pci_dev *dev) 2754 { 2755 u32 cap; 2756 struct pci_dev *bridge; 2757 2758 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2759 return; 2760 2761 bridge = dev->bus->self; 2762 if (!bridge) 2763 return; 2764 2765 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2766 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2767 return; 2768 2769 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2770 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2771 PCI_EXP_DEVCTL2_ARI); 2772 bridge->ari_enabled = 1; 2773 } else { 2774 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2775 PCI_EXP_DEVCTL2_ARI); 2776 bridge->ari_enabled = 0; 2777 } 2778 } 2779 2780 static int pci_acs_enable; 2781 2782 /** 2783 * pci_request_acs - ask for ACS to be enabled if supported 2784 */ 2785 void pci_request_acs(void) 2786 { 2787 pci_acs_enable = 1; 2788 } 2789 2790 /** 2791 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2792 * @dev: the PCI device 2793 */ 2794 static void pci_std_enable_acs(struct pci_dev *dev) 2795 { 2796 int pos; 2797 u16 cap; 2798 u16 ctrl; 2799 2800 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2801 if (!pos) 2802 return; 2803 2804 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2805 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2806 2807 /* Source Validation */ 2808 ctrl |= (cap & PCI_ACS_SV); 2809 2810 /* P2P Request Redirect */ 2811 ctrl |= (cap & PCI_ACS_RR); 2812 2813 /* P2P Completion Redirect */ 2814 ctrl |= (cap & PCI_ACS_CR); 2815 2816 /* Upstream Forwarding */ 2817 ctrl |= (cap & PCI_ACS_UF); 2818 2819 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2820 } 2821 2822 /** 2823 * pci_enable_acs - enable ACS if hardware support it 2824 * @dev: the PCI device 2825 */ 2826 void pci_enable_acs(struct pci_dev *dev) 2827 { 2828 if (!pci_acs_enable) 2829 return; 2830 2831 if (!pci_dev_specific_enable_acs(dev)) 2832 return; 2833 2834 pci_std_enable_acs(dev); 2835 } 2836 2837 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2838 { 2839 int pos; 2840 u16 cap, ctrl; 2841 2842 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2843 if (!pos) 2844 return false; 2845 2846 /* 2847 * Except for egress control, capabilities are either required 2848 * or only required if controllable. Features missing from the 2849 * capability field can therefore be assumed as hard-wired enabled. 2850 */ 2851 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2852 acs_flags &= (cap | PCI_ACS_EC); 2853 2854 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2855 return (ctrl & acs_flags) == acs_flags; 2856 } 2857 2858 /** 2859 * pci_acs_enabled - test ACS against required flags for a given device 2860 * @pdev: device to test 2861 * @acs_flags: required PCI ACS flags 2862 * 2863 * Return true if the device supports the provided flags. Automatically 2864 * filters out flags that are not implemented on multifunction devices. 2865 * 2866 * Note that this interface checks the effective ACS capabilities of the 2867 * device rather than the actual capabilities. For instance, most single 2868 * function endpoints are not required to support ACS because they have no 2869 * opportunity for peer-to-peer access. We therefore return 'true' 2870 * regardless of whether the device exposes an ACS capability. This makes 2871 * it much easier for callers of this function to ignore the actual type 2872 * or topology of the device when testing ACS support. 2873 */ 2874 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2875 { 2876 int ret; 2877 2878 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2879 if (ret >= 0) 2880 return ret > 0; 2881 2882 /* 2883 * Conventional PCI and PCI-X devices never support ACS, either 2884 * effectively or actually. The shared bus topology implies that 2885 * any device on the bus can receive or snoop DMA. 2886 */ 2887 if (!pci_is_pcie(pdev)) 2888 return false; 2889 2890 switch (pci_pcie_type(pdev)) { 2891 /* 2892 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2893 * but since their primary interface is PCI/X, we conservatively 2894 * handle them as we would a non-PCIe device. 2895 */ 2896 case PCI_EXP_TYPE_PCIE_BRIDGE: 2897 /* 2898 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2899 * applicable... must never implement an ACS Extended Capability...". 2900 * This seems arbitrary, but we take a conservative interpretation 2901 * of this statement. 2902 */ 2903 case PCI_EXP_TYPE_PCI_BRIDGE: 2904 case PCI_EXP_TYPE_RC_EC: 2905 return false; 2906 /* 2907 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2908 * implement ACS in order to indicate their peer-to-peer capabilities, 2909 * regardless of whether they are single- or multi-function devices. 2910 */ 2911 case PCI_EXP_TYPE_DOWNSTREAM: 2912 case PCI_EXP_TYPE_ROOT_PORT: 2913 return pci_acs_flags_enabled(pdev, acs_flags); 2914 /* 2915 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2916 * implemented by the remaining PCIe types to indicate peer-to-peer 2917 * capabilities, but only when they are part of a multifunction 2918 * device. The footnote for section 6.12 indicates the specific 2919 * PCIe types included here. 2920 */ 2921 case PCI_EXP_TYPE_ENDPOINT: 2922 case PCI_EXP_TYPE_UPSTREAM: 2923 case PCI_EXP_TYPE_LEG_END: 2924 case PCI_EXP_TYPE_RC_END: 2925 if (!pdev->multifunction) 2926 break; 2927 2928 return pci_acs_flags_enabled(pdev, acs_flags); 2929 } 2930 2931 /* 2932 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2933 * to single function devices with the exception of downstream ports. 2934 */ 2935 return true; 2936 } 2937 2938 /** 2939 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2940 * @start: starting downstream device 2941 * @end: ending upstream device or NULL to search to the root bus 2942 * @acs_flags: required flags 2943 * 2944 * Walk up a device tree from start to end testing PCI ACS support. If 2945 * any step along the way does not support the required flags, return false. 2946 */ 2947 bool pci_acs_path_enabled(struct pci_dev *start, 2948 struct pci_dev *end, u16 acs_flags) 2949 { 2950 struct pci_dev *pdev, *parent = start; 2951 2952 do { 2953 pdev = parent; 2954 2955 if (!pci_acs_enabled(pdev, acs_flags)) 2956 return false; 2957 2958 if (pci_is_root_bus(pdev->bus)) 2959 return (end == NULL); 2960 2961 parent = pdev->bus->self; 2962 } while (pdev != end); 2963 2964 return true; 2965 } 2966 2967 /** 2968 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2969 * @dev: the PCI device 2970 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 2971 * 2972 * Perform INTx swizzling for a device behind one level of bridge. This is 2973 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2974 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2975 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2976 * the PCI Express Base Specification, Revision 2.1) 2977 */ 2978 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2979 { 2980 int slot; 2981 2982 if (pci_ari_enabled(dev->bus)) 2983 slot = 0; 2984 else 2985 slot = PCI_SLOT(dev->devfn); 2986 2987 return (((pin - 1) + slot) % 4) + 1; 2988 } 2989 2990 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2991 { 2992 u8 pin; 2993 2994 pin = dev->pin; 2995 if (!pin) 2996 return -1; 2997 2998 while (!pci_is_root_bus(dev->bus)) { 2999 pin = pci_swizzle_interrupt_pin(dev, pin); 3000 dev = dev->bus->self; 3001 } 3002 *bridge = dev; 3003 return pin; 3004 } 3005 3006 /** 3007 * pci_common_swizzle - swizzle INTx all the way to root bridge 3008 * @dev: the PCI device 3009 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3010 * 3011 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3012 * bridges all the way up to a PCI root bus. 3013 */ 3014 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3015 { 3016 u8 pin = *pinp; 3017 3018 while (!pci_is_root_bus(dev->bus)) { 3019 pin = pci_swizzle_interrupt_pin(dev, pin); 3020 dev = dev->bus->self; 3021 } 3022 *pinp = pin; 3023 return PCI_SLOT(dev->devfn); 3024 } 3025 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3026 3027 /** 3028 * pci_release_region - Release a PCI bar 3029 * @pdev: PCI device whose resources were previously reserved by pci_request_region 3030 * @bar: BAR to release 3031 * 3032 * Releases the PCI I/O and memory resources previously reserved by a 3033 * successful call to pci_request_region. Call this function only 3034 * after all use of the PCI regions has ceased. 3035 */ 3036 void pci_release_region(struct pci_dev *pdev, int bar) 3037 { 3038 struct pci_devres *dr; 3039 3040 if (pci_resource_len(pdev, bar) == 0) 3041 return; 3042 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3043 release_region(pci_resource_start(pdev, bar), 3044 pci_resource_len(pdev, bar)); 3045 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3046 release_mem_region(pci_resource_start(pdev, bar), 3047 pci_resource_len(pdev, bar)); 3048 3049 dr = find_pci_dr(pdev); 3050 if (dr) 3051 dr->region_mask &= ~(1 << bar); 3052 } 3053 EXPORT_SYMBOL(pci_release_region); 3054 3055 /** 3056 * __pci_request_region - Reserved PCI I/O and memory resource 3057 * @pdev: PCI device whose resources are to be reserved 3058 * @bar: BAR to be reserved 3059 * @res_name: Name to be associated with resource. 3060 * @exclusive: whether the region access is exclusive or not 3061 * 3062 * Mark the PCI region associated with PCI device @pdev BR @bar as 3063 * being reserved by owner @res_name. Do not access any 3064 * address inside the PCI regions unless this call returns 3065 * successfully. 3066 * 3067 * If @exclusive is set, then the region is marked so that userspace 3068 * is explicitly not allowed to map the resource via /dev/mem or 3069 * sysfs MMIO access. 3070 * 3071 * Returns 0 on success, or %EBUSY on error. A warning 3072 * message is also printed on failure. 3073 */ 3074 static int __pci_request_region(struct pci_dev *pdev, int bar, 3075 const char *res_name, int exclusive) 3076 { 3077 struct pci_devres *dr; 3078 3079 if (pci_resource_len(pdev, bar) == 0) 3080 return 0; 3081 3082 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3083 if (!request_region(pci_resource_start(pdev, bar), 3084 pci_resource_len(pdev, bar), res_name)) 3085 goto err_out; 3086 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3087 if (!__request_mem_region(pci_resource_start(pdev, bar), 3088 pci_resource_len(pdev, bar), res_name, 3089 exclusive)) 3090 goto err_out; 3091 } 3092 3093 dr = find_pci_dr(pdev); 3094 if (dr) 3095 dr->region_mask |= 1 << bar; 3096 3097 return 0; 3098 3099 err_out: 3100 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 3101 &pdev->resource[bar]); 3102 return -EBUSY; 3103 } 3104 3105 /** 3106 * pci_request_region - Reserve PCI I/O and memory resource 3107 * @pdev: PCI device whose resources are to be reserved 3108 * @bar: BAR to be reserved 3109 * @res_name: Name to be associated with resource 3110 * 3111 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3112 * being reserved by owner @res_name. Do not access any 3113 * address inside the PCI regions unless this call returns 3114 * successfully. 3115 * 3116 * Returns 0 on success, or %EBUSY on error. A warning 3117 * message is also printed on failure. 3118 */ 3119 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3120 { 3121 return __pci_request_region(pdev, bar, res_name, 0); 3122 } 3123 EXPORT_SYMBOL(pci_request_region); 3124 3125 /** 3126 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 3127 * @pdev: PCI device whose resources are to be reserved 3128 * @bar: BAR to be reserved 3129 * @res_name: Name to be associated with resource. 3130 * 3131 * Mark the PCI region associated with PCI device @pdev BR @bar as 3132 * being reserved by owner @res_name. Do not access any 3133 * address inside the PCI regions unless this call returns 3134 * successfully. 3135 * 3136 * Returns 0 on success, or %EBUSY on error. A warning 3137 * message is also printed on failure. 3138 * 3139 * The key difference that _exclusive makes it that userspace is 3140 * explicitly not allowed to map the resource via /dev/mem or 3141 * sysfs. 3142 */ 3143 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 3144 const char *res_name) 3145 { 3146 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 3147 } 3148 EXPORT_SYMBOL(pci_request_region_exclusive); 3149 3150 /** 3151 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3152 * @pdev: PCI device whose resources were previously reserved 3153 * @bars: Bitmask of BARs to be released 3154 * 3155 * Release selected PCI I/O and memory resources previously reserved. 3156 * Call this function only after all use of the PCI regions has ceased. 3157 */ 3158 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3159 { 3160 int i; 3161 3162 for (i = 0; i < 6; i++) 3163 if (bars & (1 << i)) 3164 pci_release_region(pdev, i); 3165 } 3166 EXPORT_SYMBOL(pci_release_selected_regions); 3167 3168 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3169 const char *res_name, int excl) 3170 { 3171 int i; 3172 3173 for (i = 0; i < 6; i++) 3174 if (bars & (1 << i)) 3175 if (__pci_request_region(pdev, i, res_name, excl)) 3176 goto err_out; 3177 return 0; 3178 3179 err_out: 3180 while (--i >= 0) 3181 if (bars & (1 << i)) 3182 pci_release_region(pdev, i); 3183 3184 return -EBUSY; 3185 } 3186 3187 3188 /** 3189 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3190 * @pdev: PCI device whose resources are to be reserved 3191 * @bars: Bitmask of BARs to be requested 3192 * @res_name: Name to be associated with resource 3193 */ 3194 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3195 const char *res_name) 3196 { 3197 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3198 } 3199 EXPORT_SYMBOL(pci_request_selected_regions); 3200 3201 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3202 const char *res_name) 3203 { 3204 return __pci_request_selected_regions(pdev, bars, res_name, 3205 IORESOURCE_EXCLUSIVE); 3206 } 3207 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3208 3209 /** 3210 * pci_release_regions - Release reserved PCI I/O and memory resources 3211 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 3212 * 3213 * Releases all PCI I/O and memory resources previously reserved by a 3214 * successful call to pci_request_regions. Call this function only 3215 * after all use of the PCI regions has ceased. 3216 */ 3217 3218 void pci_release_regions(struct pci_dev *pdev) 3219 { 3220 pci_release_selected_regions(pdev, (1 << 6) - 1); 3221 } 3222 EXPORT_SYMBOL(pci_release_regions); 3223 3224 /** 3225 * pci_request_regions - Reserved PCI I/O and memory resources 3226 * @pdev: PCI device whose resources are to be reserved 3227 * @res_name: Name to be associated with resource. 3228 * 3229 * Mark all PCI regions associated with PCI device @pdev as 3230 * being reserved by owner @res_name. Do not access any 3231 * address inside the PCI regions unless this call returns 3232 * successfully. 3233 * 3234 * Returns 0 on success, or %EBUSY on error. A warning 3235 * message is also printed on failure. 3236 */ 3237 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3238 { 3239 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3240 } 3241 EXPORT_SYMBOL(pci_request_regions); 3242 3243 /** 3244 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3245 * @pdev: PCI device whose resources are to be reserved 3246 * @res_name: Name to be associated with resource. 3247 * 3248 * Mark all PCI regions associated with PCI device @pdev as 3249 * being reserved by owner @res_name. Do not access any 3250 * address inside the PCI regions unless this call returns 3251 * successfully. 3252 * 3253 * pci_request_regions_exclusive() will mark the region so that 3254 * /dev/mem and the sysfs MMIO access will not be allowed. 3255 * 3256 * Returns 0 on success, or %EBUSY on error. A warning 3257 * message is also printed on failure. 3258 */ 3259 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3260 { 3261 return pci_request_selected_regions_exclusive(pdev, 3262 ((1 << 6) - 1), res_name); 3263 } 3264 EXPORT_SYMBOL(pci_request_regions_exclusive); 3265 3266 #ifdef PCI_IOBASE 3267 struct io_range { 3268 struct list_head list; 3269 phys_addr_t start; 3270 resource_size_t size; 3271 }; 3272 3273 static LIST_HEAD(io_range_list); 3274 static DEFINE_SPINLOCK(io_range_lock); 3275 #endif 3276 3277 /* 3278 * Record the PCI IO range (expressed as CPU physical address + size). 3279 * Return a negative value if an error has occured, zero otherwise 3280 */ 3281 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size) 3282 { 3283 int err = 0; 3284 3285 #ifdef PCI_IOBASE 3286 struct io_range *range; 3287 resource_size_t allocated_size = 0; 3288 3289 /* check if the range hasn't been previously recorded */ 3290 spin_lock(&io_range_lock); 3291 list_for_each_entry(range, &io_range_list, list) { 3292 if (addr >= range->start && addr + size <= range->start + size) { 3293 /* range already registered, bail out */ 3294 goto end_register; 3295 } 3296 allocated_size += range->size; 3297 } 3298 3299 /* range not registed yet, check for available space */ 3300 if (allocated_size + size - 1 > IO_SPACE_LIMIT) { 3301 /* if it's too big check if 64K space can be reserved */ 3302 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) { 3303 err = -E2BIG; 3304 goto end_register; 3305 } 3306 3307 size = SZ_64K; 3308 pr_warn("Requested IO range too big, new size set to 64K\n"); 3309 } 3310 3311 /* add the range to the list */ 3312 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3313 if (!range) { 3314 err = -ENOMEM; 3315 goto end_register; 3316 } 3317 3318 range->start = addr; 3319 range->size = size; 3320 3321 list_add_tail(&range->list, &io_range_list); 3322 3323 end_register: 3324 spin_unlock(&io_range_lock); 3325 #endif 3326 3327 return err; 3328 } 3329 3330 phys_addr_t pci_pio_to_address(unsigned long pio) 3331 { 3332 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3333 3334 #ifdef PCI_IOBASE 3335 struct io_range *range; 3336 resource_size_t allocated_size = 0; 3337 3338 if (pio > IO_SPACE_LIMIT) 3339 return address; 3340 3341 spin_lock(&io_range_lock); 3342 list_for_each_entry(range, &io_range_list, list) { 3343 if (pio >= allocated_size && pio < allocated_size + range->size) { 3344 address = range->start + pio - allocated_size; 3345 break; 3346 } 3347 allocated_size += range->size; 3348 } 3349 spin_unlock(&io_range_lock); 3350 #endif 3351 3352 return address; 3353 } 3354 3355 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3356 { 3357 #ifdef PCI_IOBASE 3358 struct io_range *res; 3359 resource_size_t offset = 0; 3360 unsigned long addr = -1; 3361 3362 spin_lock(&io_range_lock); 3363 list_for_each_entry(res, &io_range_list, list) { 3364 if (address >= res->start && address < res->start + res->size) { 3365 addr = address - res->start + offset; 3366 break; 3367 } 3368 offset += res->size; 3369 } 3370 spin_unlock(&io_range_lock); 3371 3372 return addr; 3373 #else 3374 if (address > IO_SPACE_LIMIT) 3375 return (unsigned long)-1; 3376 3377 return (unsigned long) address; 3378 #endif 3379 } 3380 3381 /** 3382 * pci_remap_iospace - Remap the memory mapped I/O space 3383 * @res: Resource describing the I/O space 3384 * @phys_addr: physical address of range to be mapped 3385 * 3386 * Remap the memory mapped I/O space described by the @res 3387 * and the CPU physical address @phys_addr into virtual address space. 3388 * Only architectures that have memory mapped IO functions defined 3389 * (and the PCI_IOBASE value defined) should call this function. 3390 */ 3391 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3392 { 3393 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3394 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3395 3396 if (!(res->flags & IORESOURCE_IO)) 3397 return -EINVAL; 3398 3399 if (res->end > IO_SPACE_LIMIT) 3400 return -EINVAL; 3401 3402 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3403 pgprot_device(PAGE_KERNEL)); 3404 #else 3405 /* this architecture does not have memory mapped I/O space, 3406 so this function should never be called */ 3407 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3408 return -ENODEV; 3409 #endif 3410 } 3411 EXPORT_SYMBOL(pci_remap_iospace); 3412 3413 /** 3414 * pci_unmap_iospace - Unmap the memory mapped I/O space 3415 * @res: resource to be unmapped 3416 * 3417 * Unmap the CPU virtual address @res from virtual address space. 3418 * Only architectures that have memory mapped IO functions defined 3419 * (and the PCI_IOBASE value defined) should call this function. 3420 */ 3421 void pci_unmap_iospace(struct resource *res) 3422 { 3423 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3424 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3425 3426 unmap_kernel_range(vaddr, resource_size(res)); 3427 #endif 3428 } 3429 EXPORT_SYMBOL(pci_unmap_iospace); 3430 3431 /** 3432 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 3433 * @dev: Generic device to remap IO address for 3434 * @offset: Resource address to map 3435 * @size: Size of map 3436 * 3437 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 3438 * detach. 3439 */ 3440 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 3441 resource_size_t offset, 3442 resource_size_t size) 3443 { 3444 void __iomem **ptr, *addr; 3445 3446 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 3447 if (!ptr) 3448 return NULL; 3449 3450 addr = pci_remap_cfgspace(offset, size); 3451 if (addr) { 3452 *ptr = addr; 3453 devres_add(dev, ptr); 3454 } else 3455 devres_free(ptr); 3456 3457 return addr; 3458 } 3459 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 3460 3461 /** 3462 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 3463 * @dev: generic device to handle the resource for 3464 * @res: configuration space resource to be handled 3465 * 3466 * Checks that a resource is a valid memory region, requests the memory 3467 * region and ioremaps with pci_remap_cfgspace() API that ensures the 3468 * proper PCI configuration space memory attributes are guaranteed. 3469 * 3470 * All operations are managed and will be undone on driver detach. 3471 * 3472 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 3473 * on failure. Usage example: 3474 * 3475 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3476 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 3477 * if (IS_ERR(base)) 3478 * return PTR_ERR(base); 3479 */ 3480 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 3481 struct resource *res) 3482 { 3483 resource_size_t size; 3484 const char *name; 3485 void __iomem *dest_ptr; 3486 3487 BUG_ON(!dev); 3488 3489 if (!res || resource_type(res) != IORESOURCE_MEM) { 3490 dev_err(dev, "invalid resource\n"); 3491 return IOMEM_ERR_PTR(-EINVAL); 3492 } 3493 3494 size = resource_size(res); 3495 name = res->name ?: dev_name(dev); 3496 3497 if (!devm_request_mem_region(dev, res->start, size, name)) { 3498 dev_err(dev, "can't request region for resource %pR\n", res); 3499 return IOMEM_ERR_PTR(-EBUSY); 3500 } 3501 3502 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 3503 if (!dest_ptr) { 3504 dev_err(dev, "ioremap failed for resource %pR\n", res); 3505 devm_release_mem_region(dev, res->start, size); 3506 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 3507 } 3508 3509 return dest_ptr; 3510 } 3511 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 3512 3513 static void __pci_set_master(struct pci_dev *dev, bool enable) 3514 { 3515 u16 old_cmd, cmd; 3516 3517 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 3518 if (enable) 3519 cmd = old_cmd | PCI_COMMAND_MASTER; 3520 else 3521 cmd = old_cmd & ~PCI_COMMAND_MASTER; 3522 if (cmd != old_cmd) { 3523 dev_dbg(&dev->dev, "%s bus mastering\n", 3524 enable ? "enabling" : "disabling"); 3525 pci_write_config_word(dev, PCI_COMMAND, cmd); 3526 } 3527 dev->is_busmaster = enable; 3528 } 3529 3530 /** 3531 * pcibios_setup - process "pci=" kernel boot arguments 3532 * @str: string used to pass in "pci=" kernel boot arguments 3533 * 3534 * Process kernel boot arguments. This is the default implementation. 3535 * Architecture specific implementations can override this as necessary. 3536 */ 3537 char * __weak __init pcibios_setup(char *str) 3538 { 3539 return str; 3540 } 3541 3542 /** 3543 * pcibios_set_master - enable PCI bus-mastering for device dev 3544 * @dev: the PCI device to enable 3545 * 3546 * Enables PCI bus-mastering for the device. This is the default 3547 * implementation. Architecture specific implementations can override 3548 * this if necessary. 3549 */ 3550 void __weak pcibios_set_master(struct pci_dev *dev) 3551 { 3552 u8 lat; 3553 3554 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 3555 if (pci_is_pcie(dev)) 3556 return; 3557 3558 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 3559 if (lat < 16) 3560 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 3561 else if (lat > pcibios_max_latency) 3562 lat = pcibios_max_latency; 3563 else 3564 return; 3565 3566 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 3567 } 3568 3569 /** 3570 * pci_set_master - enables bus-mastering for device dev 3571 * @dev: the PCI device to enable 3572 * 3573 * Enables bus-mastering on the device and calls pcibios_set_master() 3574 * to do the needed arch specific settings. 3575 */ 3576 void pci_set_master(struct pci_dev *dev) 3577 { 3578 __pci_set_master(dev, true); 3579 pcibios_set_master(dev); 3580 } 3581 EXPORT_SYMBOL(pci_set_master); 3582 3583 /** 3584 * pci_clear_master - disables bus-mastering for device dev 3585 * @dev: the PCI device to disable 3586 */ 3587 void pci_clear_master(struct pci_dev *dev) 3588 { 3589 __pci_set_master(dev, false); 3590 } 3591 EXPORT_SYMBOL(pci_clear_master); 3592 3593 /** 3594 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 3595 * @dev: the PCI device for which MWI is to be enabled 3596 * 3597 * Helper function for pci_set_mwi. 3598 * Originally copied from drivers/net/acenic.c. 3599 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 3600 * 3601 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3602 */ 3603 int pci_set_cacheline_size(struct pci_dev *dev) 3604 { 3605 u8 cacheline_size; 3606 3607 if (!pci_cache_line_size) 3608 return -EINVAL; 3609 3610 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 3611 equal to or multiple of the right value. */ 3612 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3613 if (cacheline_size >= pci_cache_line_size && 3614 (cacheline_size % pci_cache_line_size) == 0) 3615 return 0; 3616 3617 /* Write the correct value. */ 3618 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 3619 /* Read it back. */ 3620 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3621 if (cacheline_size == pci_cache_line_size) 3622 return 0; 3623 3624 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n", 3625 pci_cache_line_size << 2); 3626 3627 return -EINVAL; 3628 } 3629 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 3630 3631 /** 3632 * pci_set_mwi - enables memory-write-invalidate PCI transaction 3633 * @dev: the PCI device for which MWI is enabled 3634 * 3635 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3636 * 3637 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3638 */ 3639 int pci_set_mwi(struct pci_dev *dev) 3640 { 3641 #ifdef PCI_DISABLE_MWI 3642 return 0; 3643 #else 3644 int rc; 3645 u16 cmd; 3646 3647 rc = pci_set_cacheline_size(dev); 3648 if (rc) 3649 return rc; 3650 3651 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3652 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 3653 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 3654 cmd |= PCI_COMMAND_INVALIDATE; 3655 pci_write_config_word(dev, PCI_COMMAND, cmd); 3656 } 3657 return 0; 3658 #endif 3659 } 3660 EXPORT_SYMBOL(pci_set_mwi); 3661 3662 /** 3663 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 3664 * @dev: the PCI device for which MWI is enabled 3665 * 3666 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3667 * Callers are not required to check the return value. 3668 * 3669 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3670 */ 3671 int pci_try_set_mwi(struct pci_dev *dev) 3672 { 3673 #ifdef PCI_DISABLE_MWI 3674 return 0; 3675 #else 3676 return pci_set_mwi(dev); 3677 #endif 3678 } 3679 EXPORT_SYMBOL(pci_try_set_mwi); 3680 3681 /** 3682 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 3683 * @dev: the PCI device to disable 3684 * 3685 * Disables PCI Memory-Write-Invalidate transaction on the device 3686 */ 3687 void pci_clear_mwi(struct pci_dev *dev) 3688 { 3689 #ifndef PCI_DISABLE_MWI 3690 u16 cmd; 3691 3692 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3693 if (cmd & PCI_COMMAND_INVALIDATE) { 3694 cmd &= ~PCI_COMMAND_INVALIDATE; 3695 pci_write_config_word(dev, PCI_COMMAND, cmd); 3696 } 3697 #endif 3698 } 3699 EXPORT_SYMBOL(pci_clear_mwi); 3700 3701 /** 3702 * pci_intx - enables/disables PCI INTx for device dev 3703 * @pdev: the PCI device to operate on 3704 * @enable: boolean: whether to enable or disable PCI INTx 3705 * 3706 * Enables/disables PCI INTx for device dev 3707 */ 3708 void pci_intx(struct pci_dev *pdev, int enable) 3709 { 3710 u16 pci_command, new; 3711 3712 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 3713 3714 if (enable) 3715 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 3716 else 3717 new = pci_command | PCI_COMMAND_INTX_DISABLE; 3718 3719 if (new != pci_command) { 3720 struct pci_devres *dr; 3721 3722 pci_write_config_word(pdev, PCI_COMMAND, new); 3723 3724 dr = find_pci_dr(pdev); 3725 if (dr && !dr->restore_intx) { 3726 dr->restore_intx = 1; 3727 dr->orig_intx = !enable; 3728 } 3729 } 3730 } 3731 EXPORT_SYMBOL_GPL(pci_intx); 3732 3733 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3734 { 3735 struct pci_bus *bus = dev->bus; 3736 bool mask_updated = true; 3737 u32 cmd_status_dword; 3738 u16 origcmd, newcmd; 3739 unsigned long flags; 3740 bool irq_pending; 3741 3742 /* 3743 * We do a single dword read to retrieve both command and status. 3744 * Document assumptions that make this possible. 3745 */ 3746 BUILD_BUG_ON(PCI_COMMAND % 4); 3747 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3748 3749 raw_spin_lock_irqsave(&pci_lock, flags); 3750 3751 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3752 3753 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3754 3755 /* 3756 * Check interrupt status register to see whether our device 3757 * triggered the interrupt (when masking) or the next IRQ is 3758 * already pending (when unmasking). 3759 */ 3760 if (mask != irq_pending) { 3761 mask_updated = false; 3762 goto done; 3763 } 3764 3765 origcmd = cmd_status_dword; 3766 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3767 if (mask) 3768 newcmd |= PCI_COMMAND_INTX_DISABLE; 3769 if (newcmd != origcmd) 3770 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3771 3772 done: 3773 raw_spin_unlock_irqrestore(&pci_lock, flags); 3774 3775 return mask_updated; 3776 } 3777 3778 /** 3779 * pci_check_and_mask_intx - mask INTx on pending interrupt 3780 * @dev: the PCI device to operate on 3781 * 3782 * Check if the device dev has its INTx line asserted, mask it and 3783 * return true in that case. False is returned if no interrupt was 3784 * pending. 3785 */ 3786 bool pci_check_and_mask_intx(struct pci_dev *dev) 3787 { 3788 return pci_check_and_set_intx_mask(dev, true); 3789 } 3790 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3791 3792 /** 3793 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3794 * @dev: the PCI device to operate on 3795 * 3796 * Check if the device dev has its INTx line asserted, unmask it if not 3797 * and return true. False is returned and the mask remains active if 3798 * there was still an interrupt pending. 3799 */ 3800 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3801 { 3802 return pci_check_and_set_intx_mask(dev, false); 3803 } 3804 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3805 3806 /** 3807 * pci_wait_for_pending_transaction - waits for pending transaction 3808 * @dev: the PCI device to operate on 3809 * 3810 * Return 0 if transaction is pending 1 otherwise. 3811 */ 3812 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3813 { 3814 if (!pci_is_pcie(dev)) 3815 return 1; 3816 3817 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 3818 PCI_EXP_DEVSTA_TRPND); 3819 } 3820 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3821 3822 static void pci_flr_wait(struct pci_dev *dev) 3823 { 3824 int delay = 1, timeout = 60000; 3825 u32 id; 3826 3827 /* 3828 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within 3829 * 100ms, but may silently discard requests while the FLR is in 3830 * progress. Wait 100ms before trying to access the device. 3831 */ 3832 msleep(100); 3833 3834 /* 3835 * After 100ms, the device should not silently discard config 3836 * requests, but it may still indicate that it needs more time by 3837 * responding to them with CRS completions. The Root Port will 3838 * generally synthesize ~0 data to complete the read (except when 3839 * CRS SV is enabled and the read was for the Vendor ID; in that 3840 * case it synthesizes 0x0001 data). 3841 * 3842 * Wait for the device to return a non-CRS completion. Read the 3843 * Command register instead of Vendor ID so we don't have to 3844 * contend with the CRS SV value. 3845 */ 3846 pci_read_config_dword(dev, PCI_COMMAND, &id); 3847 while (id == ~0) { 3848 if (delay > timeout) { 3849 dev_warn(&dev->dev, "not ready %dms after FLR; giving up\n", 3850 100 + delay - 1); 3851 return; 3852 } 3853 3854 if (delay > 1000) 3855 dev_info(&dev->dev, "not ready %dms after FLR; waiting\n", 3856 100 + delay - 1); 3857 3858 msleep(delay); 3859 delay *= 2; 3860 pci_read_config_dword(dev, PCI_COMMAND, &id); 3861 } 3862 3863 if (delay > 1000) 3864 dev_info(&dev->dev, "ready %dms after FLR\n", 100 + delay - 1); 3865 } 3866 3867 /** 3868 * pcie_has_flr - check if a device supports function level resets 3869 * @dev: device to check 3870 * 3871 * Returns true if the device advertises support for PCIe function level 3872 * resets. 3873 */ 3874 static bool pcie_has_flr(struct pci_dev *dev) 3875 { 3876 u32 cap; 3877 3878 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 3879 return false; 3880 3881 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3882 return cap & PCI_EXP_DEVCAP_FLR; 3883 } 3884 3885 /** 3886 * pcie_flr - initiate a PCIe function level reset 3887 * @dev: device to reset 3888 * 3889 * Initiate a function level reset on @dev. The caller should ensure the 3890 * device supports FLR before calling this function, e.g. by using the 3891 * pcie_has_flr() helper. 3892 */ 3893 void pcie_flr(struct pci_dev *dev) 3894 { 3895 if (!pci_wait_for_pending_transaction(dev)) 3896 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 3897 3898 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 3899 pci_flr_wait(dev); 3900 } 3901 EXPORT_SYMBOL_GPL(pcie_flr); 3902 3903 static int pci_af_flr(struct pci_dev *dev, int probe) 3904 { 3905 int pos; 3906 u8 cap; 3907 3908 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3909 if (!pos) 3910 return -ENOTTY; 3911 3912 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 3913 return -ENOTTY; 3914 3915 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3916 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3917 return -ENOTTY; 3918 3919 if (probe) 3920 return 0; 3921 3922 /* 3923 * Wait for Transaction Pending bit to clear. A word-aligned test 3924 * is used, so we use the conrol offset rather than status and shift 3925 * the test bit to match. 3926 */ 3927 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 3928 PCI_AF_STATUS_TP << 8)) 3929 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 3930 3931 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3932 pci_flr_wait(dev); 3933 return 0; 3934 } 3935 3936 /** 3937 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3938 * @dev: Device to reset. 3939 * @probe: If set, only check if the device can be reset this way. 3940 * 3941 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3942 * unset, it will be reinitialized internally when going from PCI_D3hot to 3943 * PCI_D0. If that's the case and the device is not in a low-power state 3944 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3945 * 3946 * NOTE: This causes the caller to sleep for twice the device power transition 3947 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3948 * by default (i.e. unless the @dev's d3_delay field has a different value). 3949 * Moreover, only devices in D0 can be reset by this function. 3950 */ 3951 static int pci_pm_reset(struct pci_dev *dev, int probe) 3952 { 3953 u16 csr; 3954 3955 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 3956 return -ENOTTY; 3957 3958 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3959 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3960 return -ENOTTY; 3961 3962 if (probe) 3963 return 0; 3964 3965 if (dev->current_state != PCI_D0) 3966 return -EINVAL; 3967 3968 csr &= ~PCI_PM_CTRL_STATE_MASK; 3969 csr |= PCI_D3hot; 3970 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3971 pci_dev_d3_sleep(dev); 3972 3973 csr &= ~PCI_PM_CTRL_STATE_MASK; 3974 csr |= PCI_D0; 3975 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3976 pci_dev_d3_sleep(dev); 3977 3978 return 0; 3979 } 3980 3981 void pci_reset_secondary_bus(struct pci_dev *dev) 3982 { 3983 u16 ctrl; 3984 3985 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 3986 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3987 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3988 /* 3989 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 3990 * this to 2ms to ensure that we meet the minimum requirement. 3991 */ 3992 msleep(2); 3993 3994 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3995 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3996 3997 /* 3998 * Trhfa for conventional PCI is 2^25 clock cycles. 3999 * Assuming a minimum 33MHz clock this results in a 1s 4000 * delay before we can consider subordinate devices to 4001 * be re-initialized. PCIe has some ways to shorten this, 4002 * but we don't make use of them yet. 4003 */ 4004 ssleep(1); 4005 } 4006 4007 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4008 { 4009 pci_reset_secondary_bus(dev); 4010 } 4011 4012 /** 4013 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 4014 * @dev: Bridge device 4015 * 4016 * Use the bridge control register to assert reset on the secondary bus. 4017 * Devices on the secondary bus are left in power-on state. 4018 */ 4019 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 4020 { 4021 pcibios_reset_secondary_bus(dev); 4022 } 4023 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 4024 4025 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4026 { 4027 struct pci_dev *pdev; 4028 4029 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4030 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4031 return -ENOTTY; 4032 4033 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4034 if (pdev != dev) 4035 return -ENOTTY; 4036 4037 if (probe) 4038 return 0; 4039 4040 pci_reset_bridge_secondary_bus(dev->bus->self); 4041 4042 return 0; 4043 } 4044 4045 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4046 { 4047 int rc = -ENOTTY; 4048 4049 if (!hotplug || !try_module_get(hotplug->ops->owner)) 4050 return rc; 4051 4052 if (hotplug->ops->reset_slot) 4053 rc = hotplug->ops->reset_slot(hotplug, probe); 4054 4055 module_put(hotplug->ops->owner); 4056 4057 return rc; 4058 } 4059 4060 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4061 { 4062 struct pci_dev *pdev; 4063 4064 if (dev->subordinate || !dev->slot || 4065 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4066 return -ENOTTY; 4067 4068 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4069 if (pdev != dev && pdev->slot == dev->slot) 4070 return -ENOTTY; 4071 4072 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4073 } 4074 4075 static void pci_dev_lock(struct pci_dev *dev) 4076 { 4077 pci_cfg_access_lock(dev); 4078 /* block PM suspend, driver probe, etc. */ 4079 device_lock(&dev->dev); 4080 } 4081 4082 /* Return 1 on successful lock, 0 on contention */ 4083 static int pci_dev_trylock(struct pci_dev *dev) 4084 { 4085 if (pci_cfg_access_trylock(dev)) { 4086 if (device_trylock(&dev->dev)) 4087 return 1; 4088 pci_cfg_access_unlock(dev); 4089 } 4090 4091 return 0; 4092 } 4093 4094 static void pci_dev_unlock(struct pci_dev *dev) 4095 { 4096 device_unlock(&dev->dev); 4097 pci_cfg_access_unlock(dev); 4098 } 4099 4100 static void pci_dev_save_and_disable(struct pci_dev *dev) 4101 { 4102 const struct pci_error_handlers *err_handler = 4103 dev->driver ? dev->driver->err_handler : NULL; 4104 4105 /* 4106 * dev->driver->err_handler->reset_prepare() is protected against 4107 * races with ->remove() by the device lock, which must be held by 4108 * the caller. 4109 */ 4110 if (err_handler && err_handler->reset_prepare) 4111 err_handler->reset_prepare(dev); 4112 4113 /* 4114 * Wake-up device prior to save. PM registers default to D0 after 4115 * reset and a simple register restore doesn't reliably return 4116 * to a non-D0 state anyway. 4117 */ 4118 pci_set_power_state(dev, PCI_D0); 4119 4120 pci_save_state(dev); 4121 /* 4122 * Disable the device by clearing the Command register, except for 4123 * INTx-disable which is set. This not only disables MMIO and I/O port 4124 * BARs, but also prevents the device from being Bus Master, preventing 4125 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4126 * compliant devices, INTx-disable prevents legacy interrupts. 4127 */ 4128 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4129 } 4130 4131 static void pci_dev_restore(struct pci_dev *dev) 4132 { 4133 const struct pci_error_handlers *err_handler = 4134 dev->driver ? dev->driver->err_handler : NULL; 4135 4136 pci_restore_state(dev); 4137 4138 /* 4139 * dev->driver->err_handler->reset_done() is protected against 4140 * races with ->remove() by the device lock, which must be held by 4141 * the caller. 4142 */ 4143 if (err_handler && err_handler->reset_done) 4144 err_handler->reset_done(dev); 4145 } 4146 4147 /** 4148 * __pci_reset_function - reset a PCI device function 4149 * @dev: PCI device to reset 4150 * 4151 * Some devices allow an individual function to be reset without affecting 4152 * other functions in the same device. The PCI device must be responsive 4153 * to PCI config space in order to use this function. 4154 * 4155 * The device function is presumed to be unused when this function is called. 4156 * Resetting the device will make the contents of PCI configuration space 4157 * random, so any caller of this must be prepared to reinitialise the 4158 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4159 * etc. 4160 * 4161 * Returns 0 if the device function was successfully reset or negative if the 4162 * device doesn't support resetting a single function. 4163 */ 4164 int __pci_reset_function(struct pci_dev *dev) 4165 { 4166 int ret; 4167 4168 pci_dev_lock(dev); 4169 ret = __pci_reset_function_locked(dev); 4170 pci_dev_unlock(dev); 4171 4172 return ret; 4173 } 4174 EXPORT_SYMBOL_GPL(__pci_reset_function); 4175 4176 /** 4177 * __pci_reset_function_locked - reset a PCI device function while holding 4178 * the @dev mutex lock. 4179 * @dev: PCI device to reset 4180 * 4181 * Some devices allow an individual function to be reset without affecting 4182 * other functions in the same device. The PCI device must be responsive 4183 * to PCI config space in order to use this function. 4184 * 4185 * The device function is presumed to be unused and the caller is holding 4186 * the device mutex lock when this function is called. 4187 * Resetting the device will make the contents of PCI configuration space 4188 * random, so any caller of this must be prepared to reinitialise the 4189 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4190 * etc. 4191 * 4192 * Returns 0 if the device function was successfully reset or negative if the 4193 * device doesn't support resetting a single function. 4194 */ 4195 int __pci_reset_function_locked(struct pci_dev *dev) 4196 { 4197 int rc; 4198 4199 might_sleep(); 4200 4201 rc = pci_dev_specific_reset(dev, 0); 4202 if (rc != -ENOTTY) 4203 return rc; 4204 if (pcie_has_flr(dev)) { 4205 pcie_flr(dev); 4206 return 0; 4207 } 4208 rc = pci_af_flr(dev, 0); 4209 if (rc != -ENOTTY) 4210 return rc; 4211 rc = pci_pm_reset(dev, 0); 4212 if (rc != -ENOTTY) 4213 return rc; 4214 rc = pci_dev_reset_slot_function(dev, 0); 4215 if (rc != -ENOTTY) 4216 return rc; 4217 return pci_parent_bus_reset(dev, 0); 4218 } 4219 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4220 4221 /** 4222 * pci_probe_reset_function - check whether the device can be safely reset 4223 * @dev: PCI device to reset 4224 * 4225 * Some devices allow an individual function to be reset without affecting 4226 * other functions in the same device. The PCI device must be responsive 4227 * to PCI config space in order to use this function. 4228 * 4229 * Returns 0 if the device function can be reset or negative if the 4230 * device doesn't support resetting a single function. 4231 */ 4232 int pci_probe_reset_function(struct pci_dev *dev) 4233 { 4234 int rc; 4235 4236 might_sleep(); 4237 4238 rc = pci_dev_specific_reset(dev, 1); 4239 if (rc != -ENOTTY) 4240 return rc; 4241 if (pcie_has_flr(dev)) 4242 return 0; 4243 rc = pci_af_flr(dev, 1); 4244 if (rc != -ENOTTY) 4245 return rc; 4246 rc = pci_pm_reset(dev, 1); 4247 if (rc != -ENOTTY) 4248 return rc; 4249 rc = pci_dev_reset_slot_function(dev, 1); 4250 if (rc != -ENOTTY) 4251 return rc; 4252 4253 return pci_parent_bus_reset(dev, 1); 4254 } 4255 4256 /** 4257 * pci_reset_function - quiesce and reset a PCI device function 4258 * @dev: PCI device to reset 4259 * 4260 * Some devices allow an individual function to be reset without affecting 4261 * other functions in the same device. The PCI device must be responsive 4262 * to PCI config space in order to use this function. 4263 * 4264 * This function does not just reset the PCI portion of a device, but 4265 * clears all the state associated with the device. This function differs 4266 * from __pci_reset_function in that it saves and restores device state 4267 * over the reset. 4268 * 4269 * Returns 0 if the device function was successfully reset or negative if the 4270 * device doesn't support resetting a single function. 4271 */ 4272 int pci_reset_function(struct pci_dev *dev) 4273 { 4274 int rc; 4275 4276 rc = pci_probe_reset_function(dev); 4277 if (rc) 4278 return rc; 4279 4280 pci_dev_lock(dev); 4281 pci_dev_save_and_disable(dev); 4282 4283 rc = __pci_reset_function_locked(dev); 4284 4285 pci_dev_restore(dev); 4286 pci_dev_unlock(dev); 4287 4288 return rc; 4289 } 4290 EXPORT_SYMBOL_GPL(pci_reset_function); 4291 4292 /** 4293 * pci_reset_function_locked - quiesce and reset a PCI device function 4294 * @dev: PCI device to reset 4295 * 4296 * Some devices allow an individual function to be reset without affecting 4297 * other functions in the same device. The PCI device must be responsive 4298 * to PCI config space in order to use this function. 4299 * 4300 * This function does not just reset the PCI portion of a device, but 4301 * clears all the state associated with the device. This function differs 4302 * from __pci_reset_function() in that it saves and restores device state 4303 * over the reset. It also differs from pci_reset_function() in that it 4304 * requires the PCI device lock to be held. 4305 * 4306 * Returns 0 if the device function was successfully reset or negative if the 4307 * device doesn't support resetting a single function. 4308 */ 4309 int pci_reset_function_locked(struct pci_dev *dev) 4310 { 4311 int rc; 4312 4313 rc = pci_probe_reset_function(dev); 4314 if (rc) 4315 return rc; 4316 4317 pci_dev_save_and_disable(dev); 4318 4319 rc = __pci_reset_function_locked(dev); 4320 4321 pci_dev_restore(dev); 4322 4323 return rc; 4324 } 4325 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 4326 4327 /** 4328 * pci_try_reset_function - quiesce and reset a PCI device function 4329 * @dev: PCI device to reset 4330 * 4331 * Same as above, except return -EAGAIN if unable to lock device. 4332 */ 4333 int pci_try_reset_function(struct pci_dev *dev) 4334 { 4335 int rc; 4336 4337 rc = pci_probe_reset_function(dev); 4338 if (rc) 4339 return rc; 4340 4341 if (!pci_dev_trylock(dev)) 4342 return -EAGAIN; 4343 4344 pci_dev_save_and_disable(dev); 4345 rc = __pci_reset_function_locked(dev); 4346 pci_dev_unlock(dev); 4347 4348 pci_dev_restore(dev); 4349 return rc; 4350 } 4351 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4352 4353 /* Do any devices on or below this bus prevent a bus reset? */ 4354 static bool pci_bus_resetable(struct pci_bus *bus) 4355 { 4356 struct pci_dev *dev; 4357 4358 list_for_each_entry(dev, &bus->devices, bus_list) { 4359 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4360 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4361 return false; 4362 } 4363 4364 return true; 4365 } 4366 4367 /* Lock devices from the top of the tree down */ 4368 static void pci_bus_lock(struct pci_bus *bus) 4369 { 4370 struct pci_dev *dev; 4371 4372 list_for_each_entry(dev, &bus->devices, bus_list) { 4373 pci_dev_lock(dev); 4374 if (dev->subordinate) 4375 pci_bus_lock(dev->subordinate); 4376 } 4377 } 4378 4379 /* Unlock devices from the bottom of the tree up */ 4380 static void pci_bus_unlock(struct pci_bus *bus) 4381 { 4382 struct pci_dev *dev; 4383 4384 list_for_each_entry(dev, &bus->devices, bus_list) { 4385 if (dev->subordinate) 4386 pci_bus_unlock(dev->subordinate); 4387 pci_dev_unlock(dev); 4388 } 4389 } 4390 4391 /* Return 1 on successful lock, 0 on contention */ 4392 static int pci_bus_trylock(struct pci_bus *bus) 4393 { 4394 struct pci_dev *dev; 4395 4396 list_for_each_entry(dev, &bus->devices, bus_list) { 4397 if (!pci_dev_trylock(dev)) 4398 goto unlock; 4399 if (dev->subordinate) { 4400 if (!pci_bus_trylock(dev->subordinate)) { 4401 pci_dev_unlock(dev); 4402 goto unlock; 4403 } 4404 } 4405 } 4406 return 1; 4407 4408 unlock: 4409 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 4410 if (dev->subordinate) 4411 pci_bus_unlock(dev->subordinate); 4412 pci_dev_unlock(dev); 4413 } 4414 return 0; 4415 } 4416 4417 /* Do any devices on or below this slot prevent a bus reset? */ 4418 static bool pci_slot_resetable(struct pci_slot *slot) 4419 { 4420 struct pci_dev *dev; 4421 4422 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4423 if (!dev->slot || dev->slot != slot) 4424 continue; 4425 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4426 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4427 return false; 4428 } 4429 4430 return true; 4431 } 4432 4433 /* Lock devices from the top of the tree down */ 4434 static void pci_slot_lock(struct pci_slot *slot) 4435 { 4436 struct pci_dev *dev; 4437 4438 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4439 if (!dev->slot || dev->slot != slot) 4440 continue; 4441 pci_dev_lock(dev); 4442 if (dev->subordinate) 4443 pci_bus_lock(dev->subordinate); 4444 } 4445 } 4446 4447 /* Unlock devices from the bottom of the tree up */ 4448 static void pci_slot_unlock(struct pci_slot *slot) 4449 { 4450 struct pci_dev *dev; 4451 4452 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4453 if (!dev->slot || dev->slot != slot) 4454 continue; 4455 if (dev->subordinate) 4456 pci_bus_unlock(dev->subordinate); 4457 pci_dev_unlock(dev); 4458 } 4459 } 4460 4461 /* Return 1 on successful lock, 0 on contention */ 4462 static int pci_slot_trylock(struct pci_slot *slot) 4463 { 4464 struct pci_dev *dev; 4465 4466 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4467 if (!dev->slot || dev->slot != slot) 4468 continue; 4469 if (!pci_dev_trylock(dev)) 4470 goto unlock; 4471 if (dev->subordinate) { 4472 if (!pci_bus_trylock(dev->subordinate)) { 4473 pci_dev_unlock(dev); 4474 goto unlock; 4475 } 4476 } 4477 } 4478 return 1; 4479 4480 unlock: 4481 list_for_each_entry_continue_reverse(dev, 4482 &slot->bus->devices, bus_list) { 4483 if (!dev->slot || dev->slot != slot) 4484 continue; 4485 if (dev->subordinate) 4486 pci_bus_unlock(dev->subordinate); 4487 pci_dev_unlock(dev); 4488 } 4489 return 0; 4490 } 4491 4492 /* Save and disable devices from the top of the tree down */ 4493 static void pci_bus_save_and_disable(struct pci_bus *bus) 4494 { 4495 struct pci_dev *dev; 4496 4497 list_for_each_entry(dev, &bus->devices, bus_list) { 4498 pci_dev_lock(dev); 4499 pci_dev_save_and_disable(dev); 4500 pci_dev_unlock(dev); 4501 if (dev->subordinate) 4502 pci_bus_save_and_disable(dev->subordinate); 4503 } 4504 } 4505 4506 /* 4507 * Restore devices from top of the tree down - parent bridges need to be 4508 * restored before we can get to subordinate devices. 4509 */ 4510 static void pci_bus_restore(struct pci_bus *bus) 4511 { 4512 struct pci_dev *dev; 4513 4514 list_for_each_entry(dev, &bus->devices, bus_list) { 4515 pci_dev_lock(dev); 4516 pci_dev_restore(dev); 4517 pci_dev_unlock(dev); 4518 if (dev->subordinate) 4519 pci_bus_restore(dev->subordinate); 4520 } 4521 } 4522 4523 /* Save and disable devices from the top of the tree down */ 4524 static void pci_slot_save_and_disable(struct pci_slot *slot) 4525 { 4526 struct pci_dev *dev; 4527 4528 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4529 if (!dev->slot || dev->slot != slot) 4530 continue; 4531 pci_dev_save_and_disable(dev); 4532 if (dev->subordinate) 4533 pci_bus_save_and_disable(dev->subordinate); 4534 } 4535 } 4536 4537 /* 4538 * Restore devices from top of the tree down - parent bridges need to be 4539 * restored before we can get to subordinate devices. 4540 */ 4541 static void pci_slot_restore(struct pci_slot *slot) 4542 { 4543 struct pci_dev *dev; 4544 4545 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4546 if (!dev->slot || dev->slot != slot) 4547 continue; 4548 pci_dev_restore(dev); 4549 if (dev->subordinate) 4550 pci_bus_restore(dev->subordinate); 4551 } 4552 } 4553 4554 static int pci_slot_reset(struct pci_slot *slot, int probe) 4555 { 4556 int rc; 4557 4558 if (!slot || !pci_slot_resetable(slot)) 4559 return -ENOTTY; 4560 4561 if (!probe) 4562 pci_slot_lock(slot); 4563 4564 might_sleep(); 4565 4566 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 4567 4568 if (!probe) 4569 pci_slot_unlock(slot); 4570 4571 return rc; 4572 } 4573 4574 /** 4575 * pci_probe_reset_slot - probe whether a PCI slot can be reset 4576 * @slot: PCI slot to probe 4577 * 4578 * Return 0 if slot can be reset, negative if a slot reset is not supported. 4579 */ 4580 int pci_probe_reset_slot(struct pci_slot *slot) 4581 { 4582 return pci_slot_reset(slot, 1); 4583 } 4584 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 4585 4586 /** 4587 * pci_reset_slot - reset a PCI slot 4588 * @slot: PCI slot to reset 4589 * 4590 * A PCI bus may host multiple slots, each slot may support a reset mechanism 4591 * independent of other slots. For instance, some slots may support slot power 4592 * control. In the case of a 1:1 bus to slot architecture, this function may 4593 * wrap the bus reset to avoid spurious slot related events such as hotplug. 4594 * Generally a slot reset should be attempted before a bus reset. All of the 4595 * function of the slot and any subordinate buses behind the slot are reset 4596 * through this function. PCI config space of all devices in the slot and 4597 * behind the slot is saved before and restored after reset. 4598 * 4599 * Return 0 on success, non-zero on error. 4600 */ 4601 int pci_reset_slot(struct pci_slot *slot) 4602 { 4603 int rc; 4604 4605 rc = pci_slot_reset(slot, 1); 4606 if (rc) 4607 return rc; 4608 4609 pci_slot_save_and_disable(slot); 4610 4611 rc = pci_slot_reset(slot, 0); 4612 4613 pci_slot_restore(slot); 4614 4615 return rc; 4616 } 4617 EXPORT_SYMBOL_GPL(pci_reset_slot); 4618 4619 /** 4620 * pci_try_reset_slot - Try to reset a PCI slot 4621 * @slot: PCI slot to reset 4622 * 4623 * Same as above except return -EAGAIN if the slot cannot be locked 4624 */ 4625 int pci_try_reset_slot(struct pci_slot *slot) 4626 { 4627 int rc; 4628 4629 rc = pci_slot_reset(slot, 1); 4630 if (rc) 4631 return rc; 4632 4633 pci_slot_save_and_disable(slot); 4634 4635 if (pci_slot_trylock(slot)) { 4636 might_sleep(); 4637 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 4638 pci_slot_unlock(slot); 4639 } else 4640 rc = -EAGAIN; 4641 4642 pci_slot_restore(slot); 4643 4644 return rc; 4645 } 4646 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 4647 4648 static int pci_bus_reset(struct pci_bus *bus, int probe) 4649 { 4650 if (!bus->self || !pci_bus_resetable(bus)) 4651 return -ENOTTY; 4652 4653 if (probe) 4654 return 0; 4655 4656 pci_bus_lock(bus); 4657 4658 might_sleep(); 4659 4660 pci_reset_bridge_secondary_bus(bus->self); 4661 4662 pci_bus_unlock(bus); 4663 4664 return 0; 4665 } 4666 4667 /** 4668 * pci_probe_reset_bus - probe whether a PCI bus can be reset 4669 * @bus: PCI bus to probe 4670 * 4671 * Return 0 if bus can be reset, negative if a bus reset is not supported. 4672 */ 4673 int pci_probe_reset_bus(struct pci_bus *bus) 4674 { 4675 return pci_bus_reset(bus, 1); 4676 } 4677 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 4678 4679 /** 4680 * pci_reset_bus - reset a PCI bus 4681 * @bus: top level PCI bus to reset 4682 * 4683 * Do a bus reset on the given bus and any subordinate buses, saving 4684 * and restoring state of all devices. 4685 * 4686 * Return 0 on success, non-zero on error. 4687 */ 4688 int pci_reset_bus(struct pci_bus *bus) 4689 { 4690 int rc; 4691 4692 rc = pci_bus_reset(bus, 1); 4693 if (rc) 4694 return rc; 4695 4696 pci_bus_save_and_disable(bus); 4697 4698 rc = pci_bus_reset(bus, 0); 4699 4700 pci_bus_restore(bus); 4701 4702 return rc; 4703 } 4704 EXPORT_SYMBOL_GPL(pci_reset_bus); 4705 4706 /** 4707 * pci_try_reset_bus - Try to reset a PCI bus 4708 * @bus: top level PCI bus to reset 4709 * 4710 * Same as above except return -EAGAIN if the bus cannot be locked 4711 */ 4712 int pci_try_reset_bus(struct pci_bus *bus) 4713 { 4714 int rc; 4715 4716 rc = pci_bus_reset(bus, 1); 4717 if (rc) 4718 return rc; 4719 4720 pci_bus_save_and_disable(bus); 4721 4722 if (pci_bus_trylock(bus)) { 4723 might_sleep(); 4724 pci_reset_bridge_secondary_bus(bus->self); 4725 pci_bus_unlock(bus); 4726 } else 4727 rc = -EAGAIN; 4728 4729 pci_bus_restore(bus); 4730 4731 return rc; 4732 } 4733 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 4734 4735 /** 4736 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 4737 * @dev: PCI device to query 4738 * 4739 * Returns mmrbc: maximum designed memory read count in bytes 4740 * or appropriate error value. 4741 */ 4742 int pcix_get_max_mmrbc(struct pci_dev *dev) 4743 { 4744 int cap; 4745 u32 stat; 4746 4747 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4748 if (!cap) 4749 return -EINVAL; 4750 4751 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4752 return -EINVAL; 4753 4754 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 4755 } 4756 EXPORT_SYMBOL(pcix_get_max_mmrbc); 4757 4758 /** 4759 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 4760 * @dev: PCI device to query 4761 * 4762 * Returns mmrbc: maximum memory read count in bytes 4763 * or appropriate error value. 4764 */ 4765 int pcix_get_mmrbc(struct pci_dev *dev) 4766 { 4767 int cap; 4768 u16 cmd; 4769 4770 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4771 if (!cap) 4772 return -EINVAL; 4773 4774 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4775 return -EINVAL; 4776 4777 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 4778 } 4779 EXPORT_SYMBOL(pcix_get_mmrbc); 4780 4781 /** 4782 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 4783 * @dev: PCI device to query 4784 * @mmrbc: maximum memory read count in bytes 4785 * valid values are 512, 1024, 2048, 4096 4786 * 4787 * If possible sets maximum memory read byte count, some bridges have erratas 4788 * that prevent this. 4789 */ 4790 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 4791 { 4792 int cap; 4793 u32 stat, v, o; 4794 u16 cmd; 4795 4796 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 4797 return -EINVAL; 4798 4799 v = ffs(mmrbc) - 10; 4800 4801 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4802 if (!cap) 4803 return -EINVAL; 4804 4805 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4806 return -EINVAL; 4807 4808 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 4809 return -E2BIG; 4810 4811 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4812 return -EINVAL; 4813 4814 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 4815 if (o != v) { 4816 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 4817 return -EIO; 4818 4819 cmd &= ~PCI_X_CMD_MAX_READ; 4820 cmd |= v << 2; 4821 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 4822 return -EIO; 4823 } 4824 return 0; 4825 } 4826 EXPORT_SYMBOL(pcix_set_mmrbc); 4827 4828 /** 4829 * pcie_get_readrq - get PCI Express read request size 4830 * @dev: PCI device to query 4831 * 4832 * Returns maximum memory read request in bytes 4833 * or appropriate error value. 4834 */ 4835 int pcie_get_readrq(struct pci_dev *dev) 4836 { 4837 u16 ctl; 4838 4839 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4840 4841 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 4842 } 4843 EXPORT_SYMBOL(pcie_get_readrq); 4844 4845 /** 4846 * pcie_set_readrq - set PCI Express maximum memory read request 4847 * @dev: PCI device to query 4848 * @rq: maximum memory read count in bytes 4849 * valid values are 128, 256, 512, 1024, 2048, 4096 4850 * 4851 * If possible sets maximum memory read request in bytes 4852 */ 4853 int pcie_set_readrq(struct pci_dev *dev, int rq) 4854 { 4855 u16 v; 4856 4857 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 4858 return -EINVAL; 4859 4860 /* 4861 * If using the "performance" PCIe config, we clamp the 4862 * read rq size to the max packet size to prevent the 4863 * host bridge generating requests larger than we can 4864 * cope with 4865 */ 4866 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 4867 int mps = pcie_get_mps(dev); 4868 4869 if (mps < rq) 4870 rq = mps; 4871 } 4872 4873 v = (ffs(rq) - 8) << 12; 4874 4875 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4876 PCI_EXP_DEVCTL_READRQ, v); 4877 } 4878 EXPORT_SYMBOL(pcie_set_readrq); 4879 4880 /** 4881 * pcie_get_mps - get PCI Express maximum payload size 4882 * @dev: PCI device to query 4883 * 4884 * Returns maximum payload size in bytes 4885 */ 4886 int pcie_get_mps(struct pci_dev *dev) 4887 { 4888 u16 ctl; 4889 4890 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4891 4892 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 4893 } 4894 EXPORT_SYMBOL(pcie_get_mps); 4895 4896 /** 4897 * pcie_set_mps - set PCI Express maximum payload size 4898 * @dev: PCI device to query 4899 * @mps: maximum payload size in bytes 4900 * valid values are 128, 256, 512, 1024, 2048, 4096 4901 * 4902 * If possible sets maximum payload size 4903 */ 4904 int pcie_set_mps(struct pci_dev *dev, int mps) 4905 { 4906 u16 v; 4907 4908 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 4909 return -EINVAL; 4910 4911 v = ffs(mps) - 8; 4912 if (v > dev->pcie_mpss) 4913 return -EINVAL; 4914 v <<= 5; 4915 4916 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4917 PCI_EXP_DEVCTL_PAYLOAD, v); 4918 } 4919 EXPORT_SYMBOL(pcie_set_mps); 4920 4921 /** 4922 * pcie_get_minimum_link - determine minimum link settings of a PCI device 4923 * @dev: PCI device to query 4924 * @speed: storage for minimum speed 4925 * @width: storage for minimum width 4926 * 4927 * This function will walk up the PCI device chain and determine the minimum 4928 * link width and speed of the device. 4929 */ 4930 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 4931 enum pcie_link_width *width) 4932 { 4933 int ret; 4934 4935 *speed = PCI_SPEED_UNKNOWN; 4936 *width = PCIE_LNK_WIDTH_UNKNOWN; 4937 4938 while (dev) { 4939 u16 lnksta; 4940 enum pci_bus_speed next_speed; 4941 enum pcie_link_width next_width; 4942 4943 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 4944 if (ret) 4945 return ret; 4946 4947 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 4948 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 4949 PCI_EXP_LNKSTA_NLW_SHIFT; 4950 4951 if (next_speed < *speed) 4952 *speed = next_speed; 4953 4954 if (next_width < *width) 4955 *width = next_width; 4956 4957 dev = dev->bus->self; 4958 } 4959 4960 return 0; 4961 } 4962 EXPORT_SYMBOL(pcie_get_minimum_link); 4963 4964 /** 4965 * pci_select_bars - Make BAR mask from the type of resource 4966 * @dev: the PCI device for which BAR mask is made 4967 * @flags: resource type mask to be selected 4968 * 4969 * This helper routine makes bar mask from the type of resource. 4970 */ 4971 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 4972 { 4973 int i, bars = 0; 4974 for (i = 0; i < PCI_NUM_RESOURCES; i++) 4975 if (pci_resource_flags(dev, i) & flags) 4976 bars |= (1 << i); 4977 return bars; 4978 } 4979 EXPORT_SYMBOL(pci_select_bars); 4980 4981 /* Some architectures require additional programming to enable VGA */ 4982 static arch_set_vga_state_t arch_set_vga_state; 4983 4984 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 4985 { 4986 arch_set_vga_state = func; /* NULL disables */ 4987 } 4988 4989 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 4990 unsigned int command_bits, u32 flags) 4991 { 4992 if (arch_set_vga_state) 4993 return arch_set_vga_state(dev, decode, command_bits, 4994 flags); 4995 return 0; 4996 } 4997 4998 /** 4999 * pci_set_vga_state - set VGA decode state on device and parents if requested 5000 * @dev: the PCI device 5001 * @decode: true = enable decoding, false = disable decoding 5002 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5003 * @flags: traverse ancestors and change bridges 5004 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5005 */ 5006 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5007 unsigned int command_bits, u32 flags) 5008 { 5009 struct pci_bus *bus; 5010 struct pci_dev *bridge; 5011 u16 cmd; 5012 int rc; 5013 5014 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5015 5016 /* ARCH specific VGA enables */ 5017 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5018 if (rc) 5019 return rc; 5020 5021 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5022 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5023 if (decode == true) 5024 cmd |= command_bits; 5025 else 5026 cmd &= ~command_bits; 5027 pci_write_config_word(dev, PCI_COMMAND, cmd); 5028 } 5029 5030 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5031 return 0; 5032 5033 bus = dev->bus; 5034 while (bus) { 5035 bridge = bus->self; 5036 if (bridge) { 5037 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5038 &cmd); 5039 if (decode == true) 5040 cmd |= PCI_BRIDGE_CTL_VGA; 5041 else 5042 cmd &= ~PCI_BRIDGE_CTL_VGA; 5043 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5044 cmd); 5045 } 5046 bus = bus->parent; 5047 } 5048 return 0; 5049 } 5050 5051 /** 5052 * pci_add_dma_alias - Add a DMA devfn alias for a device 5053 * @dev: the PCI device for which alias is added 5054 * @devfn: alias slot and function 5055 * 5056 * This helper encodes 8-bit devfn as bit number in dma_alias_mask. 5057 * It should be called early, preferably as PCI fixup header quirk. 5058 */ 5059 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5060 { 5061 if (!dev->dma_alias_mask) 5062 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX), 5063 sizeof(long), GFP_KERNEL); 5064 if (!dev->dma_alias_mask) { 5065 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n"); 5066 return; 5067 } 5068 5069 set_bit(devfn, dev->dma_alias_mask); 5070 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n", 5071 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5072 } 5073 5074 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5075 { 5076 return (dev1->dma_alias_mask && 5077 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5078 (dev2->dma_alias_mask && 5079 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5080 } 5081 5082 bool pci_device_is_present(struct pci_dev *pdev) 5083 { 5084 u32 v; 5085 5086 if (pci_dev_is_disconnected(pdev)) 5087 return false; 5088 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5089 } 5090 EXPORT_SYMBOL_GPL(pci_device_is_present); 5091 5092 void pci_ignore_hotplug(struct pci_dev *dev) 5093 { 5094 struct pci_dev *bridge = dev->bus->self; 5095 5096 dev->ignore_hotplug = 1; 5097 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5098 if (bridge) 5099 bridge->ignore_hotplug = 1; 5100 } 5101 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5102 5103 resource_size_t __weak pcibios_default_alignment(void) 5104 { 5105 return 0; 5106 } 5107 5108 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 5109 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 5110 static DEFINE_SPINLOCK(resource_alignment_lock); 5111 5112 /** 5113 * pci_specified_resource_alignment - get resource alignment specified by user. 5114 * @dev: the PCI device to get 5115 * @resize: whether or not to change resources' size when reassigning alignment 5116 * 5117 * RETURNS: Resource alignment if it is specified. 5118 * Zero if it is not specified. 5119 */ 5120 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5121 bool *resize) 5122 { 5123 int seg, bus, slot, func, align_order, count; 5124 unsigned short vendor, device, subsystem_vendor, subsystem_device; 5125 resource_size_t align = pcibios_default_alignment(); 5126 char *p; 5127 5128 spin_lock(&resource_alignment_lock); 5129 p = resource_alignment_param; 5130 if (!*p && !align) 5131 goto out; 5132 if (pci_has_flag(PCI_PROBE_ONLY)) { 5133 align = 0; 5134 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5135 goto out; 5136 } 5137 5138 while (*p) { 5139 count = 0; 5140 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5141 p[count] == '@') { 5142 p += count + 1; 5143 } else { 5144 align_order = -1; 5145 } 5146 if (strncmp(p, "pci:", 4) == 0) { 5147 /* PCI vendor/device (subvendor/subdevice) ids are specified */ 5148 p += 4; 5149 if (sscanf(p, "%hx:%hx:%hx:%hx%n", 5150 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) { 5151 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) { 5152 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n", 5153 p); 5154 break; 5155 } 5156 subsystem_vendor = subsystem_device = 0; 5157 } 5158 p += count; 5159 if ((!vendor || (vendor == dev->vendor)) && 5160 (!device || (device == dev->device)) && 5161 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) && 5162 (!subsystem_device || (subsystem_device == dev->subsystem_device))) { 5163 *resize = true; 5164 if (align_order == -1) 5165 align = PAGE_SIZE; 5166 else 5167 align = 1 << align_order; 5168 /* Found */ 5169 break; 5170 } 5171 } 5172 else { 5173 if (sscanf(p, "%x:%x:%x.%x%n", 5174 &seg, &bus, &slot, &func, &count) != 4) { 5175 seg = 0; 5176 if (sscanf(p, "%x:%x.%x%n", 5177 &bus, &slot, &func, &count) != 3) { 5178 /* Invalid format */ 5179 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 5180 p); 5181 break; 5182 } 5183 } 5184 p += count; 5185 if (seg == pci_domain_nr(dev->bus) && 5186 bus == dev->bus->number && 5187 slot == PCI_SLOT(dev->devfn) && 5188 func == PCI_FUNC(dev->devfn)) { 5189 *resize = true; 5190 if (align_order == -1) 5191 align = PAGE_SIZE; 5192 else 5193 align = 1 << align_order; 5194 /* Found */ 5195 break; 5196 } 5197 } 5198 if (*p != ';' && *p != ',') { 5199 /* End of param or invalid format */ 5200 break; 5201 } 5202 p++; 5203 } 5204 out: 5205 spin_unlock(&resource_alignment_lock); 5206 return align; 5207 } 5208 5209 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 5210 resource_size_t align, bool resize) 5211 { 5212 struct resource *r = &dev->resource[bar]; 5213 resource_size_t size; 5214 5215 if (!(r->flags & IORESOURCE_MEM)) 5216 return; 5217 5218 if (r->flags & IORESOURCE_PCI_FIXED) { 5219 dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 5220 bar, r, (unsigned long long)align); 5221 return; 5222 } 5223 5224 size = resource_size(r); 5225 if (size >= align) 5226 return; 5227 5228 /* 5229 * Increase the alignment of the resource. There are two ways we 5230 * can do this: 5231 * 5232 * 1) Increase the size of the resource. BARs are aligned on their 5233 * size, so when we reallocate space for this resource, we'll 5234 * allocate it with the larger alignment. This also prevents 5235 * assignment of any other BARs inside the alignment region, so 5236 * if we're requesting page alignment, this means no other BARs 5237 * will share the page. 5238 * 5239 * The disadvantage is that this makes the resource larger than 5240 * the hardware BAR, which may break drivers that compute things 5241 * based on the resource size, e.g., to find registers at a 5242 * fixed offset before the end of the BAR. 5243 * 5244 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 5245 * set r->start to the desired alignment. By itself this 5246 * doesn't prevent other BARs being put inside the alignment 5247 * region, but if we realign *every* resource of every device in 5248 * the system, none of them will share an alignment region. 5249 * 5250 * When the user has requested alignment for only some devices via 5251 * the "pci=resource_alignment" argument, "resize" is true and we 5252 * use the first method. Otherwise we assume we're aligning all 5253 * devices and we use the second. 5254 */ 5255 5256 dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n", 5257 bar, r, (unsigned long long)align); 5258 5259 if (resize) { 5260 r->start = 0; 5261 r->end = align - 1; 5262 } else { 5263 r->flags &= ~IORESOURCE_SIZEALIGN; 5264 r->flags |= IORESOURCE_STARTALIGN; 5265 r->start = align; 5266 r->end = r->start + size - 1; 5267 } 5268 r->flags |= IORESOURCE_UNSET; 5269 } 5270 5271 /* 5272 * This function disables memory decoding and releases memory resources 5273 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 5274 * It also rounds up size to specified alignment. 5275 * Later on, the kernel will assign page-aligned memory resource back 5276 * to the device. 5277 */ 5278 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 5279 { 5280 int i; 5281 struct resource *r; 5282 resource_size_t align; 5283 u16 command; 5284 bool resize = false; 5285 5286 /* 5287 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 5288 * 3.4.1.11. Their resources are allocated from the space 5289 * described by the VF BARx register in the PF's SR-IOV capability. 5290 * We can't influence their alignment here. 5291 */ 5292 if (dev->is_virtfn) 5293 return; 5294 5295 /* check if specified PCI is target device to reassign */ 5296 align = pci_specified_resource_alignment(dev, &resize); 5297 if (!align) 5298 return; 5299 5300 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 5301 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 5302 dev_warn(&dev->dev, 5303 "Can't reassign resources to host bridge.\n"); 5304 return; 5305 } 5306 5307 dev_info(&dev->dev, 5308 "Disabling memory decoding and releasing memory resources.\n"); 5309 pci_read_config_word(dev, PCI_COMMAND, &command); 5310 command &= ~PCI_COMMAND_MEMORY; 5311 pci_write_config_word(dev, PCI_COMMAND, command); 5312 5313 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 5314 pci_request_resource_alignment(dev, i, align, resize); 5315 5316 /* 5317 * Need to disable bridge's resource window, 5318 * to enable the kernel to reassign new resource 5319 * window later on. 5320 */ 5321 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 5322 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 5323 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 5324 r = &dev->resource[i]; 5325 if (!(r->flags & IORESOURCE_MEM)) 5326 continue; 5327 r->flags |= IORESOURCE_UNSET; 5328 r->end = resource_size(r) - 1; 5329 r->start = 0; 5330 } 5331 pci_disable_bridge_window(dev); 5332 } 5333 } 5334 5335 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 5336 { 5337 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 5338 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 5339 spin_lock(&resource_alignment_lock); 5340 strncpy(resource_alignment_param, buf, count); 5341 resource_alignment_param[count] = '\0'; 5342 spin_unlock(&resource_alignment_lock); 5343 return count; 5344 } 5345 5346 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 5347 { 5348 size_t count; 5349 spin_lock(&resource_alignment_lock); 5350 count = snprintf(buf, size, "%s", resource_alignment_param); 5351 spin_unlock(&resource_alignment_lock); 5352 return count; 5353 } 5354 5355 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 5356 { 5357 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 5358 } 5359 5360 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 5361 const char *buf, size_t count) 5362 { 5363 return pci_set_resource_alignment_param(buf, count); 5364 } 5365 5366 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 5367 pci_resource_alignment_store); 5368 5369 static int __init pci_resource_alignment_sysfs_init(void) 5370 { 5371 return bus_create_file(&pci_bus_type, 5372 &bus_attr_resource_alignment); 5373 } 5374 late_initcall(pci_resource_alignment_sysfs_init); 5375 5376 static void pci_no_domains(void) 5377 { 5378 #ifdef CONFIG_PCI_DOMAINS 5379 pci_domains_supported = 0; 5380 #endif 5381 } 5382 5383 #ifdef CONFIG_PCI_DOMAINS 5384 static atomic_t __domain_nr = ATOMIC_INIT(-1); 5385 5386 int pci_get_new_domain_nr(void) 5387 { 5388 return atomic_inc_return(&__domain_nr); 5389 } 5390 5391 #ifdef CONFIG_PCI_DOMAINS_GENERIC 5392 static int of_pci_bus_find_domain_nr(struct device *parent) 5393 { 5394 static int use_dt_domains = -1; 5395 int domain = -1; 5396 5397 if (parent) 5398 domain = of_get_pci_domain_nr(parent->of_node); 5399 /* 5400 * Check DT domain and use_dt_domains values. 5401 * 5402 * If DT domain property is valid (domain >= 0) and 5403 * use_dt_domains != 0, the DT assignment is valid since this means 5404 * we have not previously allocated a domain number by using 5405 * pci_get_new_domain_nr(); we should also update use_dt_domains to 5406 * 1, to indicate that we have just assigned a domain number from 5407 * DT. 5408 * 5409 * If DT domain property value is not valid (ie domain < 0), and we 5410 * have not previously assigned a domain number from DT 5411 * (use_dt_domains != 1) we should assign a domain number by 5412 * using the: 5413 * 5414 * pci_get_new_domain_nr() 5415 * 5416 * API and update the use_dt_domains value to keep track of method we 5417 * are using to assign domain numbers (use_dt_domains = 0). 5418 * 5419 * All other combinations imply we have a platform that is trying 5420 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 5421 * which is a recipe for domain mishandling and it is prevented by 5422 * invalidating the domain value (domain = -1) and printing a 5423 * corresponding error. 5424 */ 5425 if (domain >= 0 && use_dt_domains) { 5426 use_dt_domains = 1; 5427 } else if (domain < 0 && use_dt_domains != 1) { 5428 use_dt_domains = 0; 5429 domain = pci_get_new_domain_nr(); 5430 } else { 5431 dev_err(parent, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n", 5432 parent->of_node); 5433 domain = -1; 5434 } 5435 5436 return domain; 5437 } 5438 5439 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 5440 { 5441 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 5442 acpi_pci_bus_find_domain_nr(bus); 5443 } 5444 #endif 5445 #endif 5446 5447 /** 5448 * pci_ext_cfg_avail - can we access extended PCI config space? 5449 * 5450 * Returns 1 if we can access PCI extended config space (offsets 5451 * greater than 0xff). This is the default implementation. Architecture 5452 * implementations can override this. 5453 */ 5454 int __weak pci_ext_cfg_avail(void) 5455 { 5456 return 1; 5457 } 5458 5459 void __weak pci_fixup_cardbus(struct pci_bus *bus) 5460 { 5461 } 5462 EXPORT_SYMBOL(pci_fixup_cardbus); 5463 5464 static int __init pci_setup(char *str) 5465 { 5466 while (str) { 5467 char *k = strchr(str, ','); 5468 if (k) 5469 *k++ = 0; 5470 if (*str && (str = pcibios_setup(str)) && *str) { 5471 if (!strcmp(str, "nomsi")) { 5472 pci_no_msi(); 5473 } else if (!strcmp(str, "noaer")) { 5474 pci_no_aer(); 5475 } else if (!strncmp(str, "realloc=", 8)) { 5476 pci_realloc_get_opt(str + 8); 5477 } else if (!strncmp(str, "realloc", 7)) { 5478 pci_realloc_get_opt("on"); 5479 } else if (!strcmp(str, "nodomains")) { 5480 pci_no_domains(); 5481 } else if (!strncmp(str, "noari", 5)) { 5482 pcie_ari_disabled = true; 5483 } else if (!strncmp(str, "cbiosize=", 9)) { 5484 pci_cardbus_io_size = memparse(str + 9, &str); 5485 } else if (!strncmp(str, "cbmemsize=", 10)) { 5486 pci_cardbus_mem_size = memparse(str + 10, &str); 5487 } else if (!strncmp(str, "resource_alignment=", 19)) { 5488 pci_set_resource_alignment_param(str + 19, 5489 strlen(str + 19)); 5490 } else if (!strncmp(str, "ecrc=", 5)) { 5491 pcie_ecrc_get_policy(str + 5); 5492 } else if (!strncmp(str, "hpiosize=", 9)) { 5493 pci_hotplug_io_size = memparse(str + 9, &str); 5494 } else if (!strncmp(str, "hpmemsize=", 10)) { 5495 pci_hotplug_mem_size = memparse(str + 10, &str); 5496 } else if (!strncmp(str, "hpbussize=", 10)) { 5497 pci_hotplug_bus_size = 5498 simple_strtoul(str + 10, &str, 0); 5499 if (pci_hotplug_bus_size > 0xff) 5500 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 5501 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 5502 pcie_bus_config = PCIE_BUS_TUNE_OFF; 5503 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 5504 pcie_bus_config = PCIE_BUS_SAFE; 5505 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 5506 pcie_bus_config = PCIE_BUS_PERFORMANCE; 5507 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 5508 pcie_bus_config = PCIE_BUS_PEER2PEER; 5509 } else if (!strncmp(str, "pcie_scan_all", 13)) { 5510 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 5511 } else { 5512 printk(KERN_ERR "PCI: Unknown option `%s'\n", 5513 str); 5514 } 5515 } 5516 str = k; 5517 } 5518 return 0; 5519 } 5520 early_param("pci", pci_setup); 5521