xref: /linux/drivers/pci/pci.c (revision 2eff01ee2881becc9daaa0d53477ec202136b1f4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/dma.h>
32 #include <linux/aer.h>
33 #include <linux/bitfield.h>
34 #include "pci.h"
35 
36 DEFINE_MUTEX(pci_slot_mutex);
37 
38 const char *pci_power_names[] = {
39 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42 
43 #ifdef CONFIG_X86_32
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 #endif
47 
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
50 
51 unsigned int pci_pm_d3hot_delay;
52 
53 static void pci_pme_list_scan(struct work_struct *work);
54 
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 
59 struct pci_pme_device {
60 	struct list_head list;
61 	struct pci_dev *dev;
62 };
63 
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 
66 /*
67  * Following exit from Conventional Reset, devices must be ready within 1 sec
68  * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
69  * Reset (PCIe r6.0 sec 5.8).
70  */
71 #define PCI_RESET_WAIT 1000 /* msec */
72 
73 /*
74  * Devices may extend the 1 sec period through Request Retry Status
75  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
76  * limit, but 60 sec ought to be enough for any device to become
77  * responsive.
78  */
79 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
80 
81 static void pci_dev_d3_sleep(struct pci_dev *dev)
82 {
83 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
84 	unsigned int upper;
85 
86 	if (delay_ms) {
87 		/* Use a 20% upper bound, 1ms minimum */
88 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
89 		usleep_range(delay_ms * USEC_PER_MSEC,
90 			     (delay_ms + upper) * USEC_PER_MSEC);
91 	}
92 }
93 
94 bool pci_reset_supported(struct pci_dev *dev)
95 {
96 	return dev->reset_methods[0] != 0;
97 }
98 
99 #ifdef CONFIG_PCI_DOMAINS
100 int pci_domains_supported = 1;
101 #endif
102 
103 #define DEFAULT_CARDBUS_IO_SIZE		(256)
104 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
105 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
106 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
107 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
108 
109 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
110 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
111 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
112 /* hpiosize=nn can override this */
113 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
114 /*
115  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
116  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
117  * pci=hpmemsize=nnM overrides both
118  */
119 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
120 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
121 
122 #define DEFAULT_HOTPLUG_BUS_SIZE	1
123 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
124 
125 
126 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
127 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
129 #elif defined CONFIG_PCIE_BUS_SAFE
130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
131 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
132 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
133 #elif defined CONFIG_PCIE_BUS_PEER2PEER
134 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
135 #else
136 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
137 #endif
138 
139 /*
140  * The default CLS is used if arch didn't set CLS explicitly and not
141  * all pci devices agree on the same value.  Arch can override either
142  * the dfl or actual value as it sees fit.  Don't forget this is
143  * measured in 32-bit words, not bytes.
144  */
145 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
146 u8 pci_cache_line_size __ro_after_init ;
147 
148 /*
149  * If we set up a device for bus mastering, we need to check the latency
150  * timer as certain BIOSes forget to set it properly.
151  */
152 unsigned int pcibios_max_latency = 255;
153 
154 /* If set, the PCIe ARI capability will not be used. */
155 static bool pcie_ari_disabled;
156 
157 /* If set, the PCIe ATS capability will not be used. */
158 static bool pcie_ats_disabled;
159 
160 /* If set, the PCI config space of each device is printed during boot. */
161 bool pci_early_dump;
162 
163 bool pci_ats_disabled(void)
164 {
165 	return pcie_ats_disabled;
166 }
167 EXPORT_SYMBOL_GPL(pci_ats_disabled);
168 
169 /* Disable bridge_d3 for all PCIe ports */
170 static bool pci_bridge_d3_disable;
171 /* Force bridge_d3 for all PCIe ports */
172 static bool pci_bridge_d3_force;
173 
174 static int __init pcie_port_pm_setup(char *str)
175 {
176 	if (!strcmp(str, "off"))
177 		pci_bridge_d3_disable = true;
178 	else if (!strcmp(str, "force"))
179 		pci_bridge_d3_force = true;
180 	return 1;
181 }
182 __setup("pcie_port_pm=", pcie_port_pm_setup);
183 
184 /**
185  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
186  * @bus: pointer to PCI bus structure to search
187  *
188  * Given a PCI bus, returns the highest PCI bus number present in the set
189  * including the given PCI bus and its list of child PCI buses.
190  */
191 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
192 {
193 	struct pci_bus *tmp;
194 	unsigned char max, n;
195 
196 	max = bus->busn_res.end;
197 	list_for_each_entry(tmp, &bus->children, node) {
198 		n = pci_bus_max_busnr(tmp);
199 		if (n > max)
200 			max = n;
201 	}
202 	return max;
203 }
204 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
205 
206 /**
207  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
208  * @pdev: the PCI device
209  *
210  * Returns error bits set in PCI_STATUS and clears them.
211  */
212 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
213 {
214 	u16 status;
215 	int ret;
216 
217 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
218 	if (ret != PCIBIOS_SUCCESSFUL)
219 		return -EIO;
220 
221 	status &= PCI_STATUS_ERROR_BITS;
222 	if (status)
223 		pci_write_config_word(pdev, PCI_STATUS, status);
224 
225 	return status;
226 }
227 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
228 
229 #ifdef CONFIG_HAS_IOMEM
230 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
231 					    bool write_combine)
232 {
233 	struct resource *res = &pdev->resource[bar];
234 	resource_size_t start = res->start;
235 	resource_size_t size = resource_size(res);
236 
237 	/*
238 	 * Make sure the BAR is actually a memory resource, not an IO resource
239 	 */
240 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
241 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
242 		return NULL;
243 	}
244 
245 	if (write_combine)
246 		return ioremap_wc(start, size);
247 
248 	return ioremap(start, size);
249 }
250 
251 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
252 {
253 	return __pci_ioremap_resource(pdev, bar, false);
254 }
255 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
256 
257 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
258 {
259 	return __pci_ioremap_resource(pdev, bar, true);
260 }
261 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
262 #endif
263 
264 /**
265  * pci_dev_str_match_path - test if a path string matches a device
266  * @dev: the PCI device to test
267  * @path: string to match the device against
268  * @endptr: pointer to the string after the match
269  *
270  * Test if a string (typically from a kernel parameter) formatted as a
271  * path of device/function addresses matches a PCI device. The string must
272  * be of the form:
273  *
274  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
275  *
276  * A path for a device can be obtained using 'lspci -t'.  Using a path
277  * is more robust against bus renumbering than using only a single bus,
278  * device and function address.
279  *
280  * Returns 1 if the string matches the device, 0 if it does not and
281  * a negative error code if it fails to parse the string.
282  */
283 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
284 				  const char **endptr)
285 {
286 	int ret;
287 	unsigned int seg, bus, slot, func;
288 	char *wpath, *p;
289 	char end;
290 
291 	*endptr = strchrnul(path, ';');
292 
293 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
294 	if (!wpath)
295 		return -ENOMEM;
296 
297 	while (1) {
298 		p = strrchr(wpath, '/');
299 		if (!p)
300 			break;
301 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
302 		if (ret != 2) {
303 			ret = -EINVAL;
304 			goto free_and_exit;
305 		}
306 
307 		if (dev->devfn != PCI_DEVFN(slot, func)) {
308 			ret = 0;
309 			goto free_and_exit;
310 		}
311 
312 		/*
313 		 * Note: we don't need to get a reference to the upstream
314 		 * bridge because we hold a reference to the top level
315 		 * device which should hold a reference to the bridge,
316 		 * and so on.
317 		 */
318 		dev = pci_upstream_bridge(dev);
319 		if (!dev) {
320 			ret = 0;
321 			goto free_and_exit;
322 		}
323 
324 		*p = 0;
325 	}
326 
327 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
328 		     &func, &end);
329 	if (ret != 4) {
330 		seg = 0;
331 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
332 		if (ret != 3) {
333 			ret = -EINVAL;
334 			goto free_and_exit;
335 		}
336 	}
337 
338 	ret = (seg == pci_domain_nr(dev->bus) &&
339 	       bus == dev->bus->number &&
340 	       dev->devfn == PCI_DEVFN(slot, func));
341 
342 free_and_exit:
343 	kfree(wpath);
344 	return ret;
345 }
346 
347 /**
348  * pci_dev_str_match - test if a string matches a device
349  * @dev: the PCI device to test
350  * @p: string to match the device against
351  * @endptr: pointer to the string after the match
352  *
353  * Test if a string (typically from a kernel parameter) matches a specified
354  * PCI device. The string may be of one of the following formats:
355  *
356  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
357  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
358  *
359  * The first format specifies a PCI bus/device/function address which
360  * may change if new hardware is inserted, if motherboard firmware changes,
361  * or due to changes caused in kernel parameters. If the domain is
362  * left unspecified, it is taken to be 0.  In order to be robust against
363  * bus renumbering issues, a path of PCI device/function numbers may be used
364  * to address the specific device.  The path for a device can be determined
365  * through the use of 'lspci -t'.
366  *
367  * The second format matches devices using IDs in the configuration
368  * space which may match multiple devices in the system. A value of 0
369  * for any field will match all devices. (Note: this differs from
370  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
371  * legacy reasons and convenience so users don't have to specify
372  * FFFFFFFFs on the command line.)
373  *
374  * Returns 1 if the string matches the device, 0 if it does not and
375  * a negative error code if the string cannot be parsed.
376  */
377 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
378 			     const char **endptr)
379 {
380 	int ret;
381 	int count;
382 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
383 
384 	if (strncmp(p, "pci:", 4) == 0) {
385 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
386 		p += 4;
387 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
388 			     &subsystem_vendor, &subsystem_device, &count);
389 		if (ret != 4) {
390 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
391 			if (ret != 2)
392 				return -EINVAL;
393 
394 			subsystem_vendor = 0;
395 			subsystem_device = 0;
396 		}
397 
398 		p += count;
399 
400 		if ((!vendor || vendor == dev->vendor) &&
401 		    (!device || device == dev->device) &&
402 		    (!subsystem_vendor ||
403 			    subsystem_vendor == dev->subsystem_vendor) &&
404 		    (!subsystem_device ||
405 			    subsystem_device == dev->subsystem_device))
406 			goto found;
407 	} else {
408 		/*
409 		 * PCI Bus, Device, Function IDs are specified
410 		 * (optionally, may include a path of devfns following it)
411 		 */
412 		ret = pci_dev_str_match_path(dev, p, &p);
413 		if (ret < 0)
414 			return ret;
415 		else if (ret)
416 			goto found;
417 	}
418 
419 	*endptr = p;
420 	return 0;
421 
422 found:
423 	*endptr = p;
424 	return 1;
425 }
426 
427 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
428 				  u8 pos, int cap, int *ttl)
429 {
430 	u8 id;
431 	u16 ent;
432 
433 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
434 
435 	while ((*ttl)--) {
436 		if (pos < 0x40)
437 			break;
438 		pos &= ~3;
439 		pci_bus_read_config_word(bus, devfn, pos, &ent);
440 
441 		id = ent & 0xff;
442 		if (id == 0xff)
443 			break;
444 		if (id == cap)
445 			return pos;
446 		pos = (ent >> 8);
447 	}
448 	return 0;
449 }
450 
451 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
452 			      u8 pos, int cap)
453 {
454 	int ttl = PCI_FIND_CAP_TTL;
455 
456 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
457 }
458 
459 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
460 {
461 	return __pci_find_next_cap(dev->bus, dev->devfn,
462 				   pos + PCI_CAP_LIST_NEXT, cap);
463 }
464 EXPORT_SYMBOL_GPL(pci_find_next_capability);
465 
466 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
467 				    unsigned int devfn, u8 hdr_type)
468 {
469 	u16 status;
470 
471 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
472 	if (!(status & PCI_STATUS_CAP_LIST))
473 		return 0;
474 
475 	switch (hdr_type) {
476 	case PCI_HEADER_TYPE_NORMAL:
477 	case PCI_HEADER_TYPE_BRIDGE:
478 		return PCI_CAPABILITY_LIST;
479 	case PCI_HEADER_TYPE_CARDBUS:
480 		return PCI_CB_CAPABILITY_LIST;
481 	}
482 
483 	return 0;
484 }
485 
486 /**
487  * pci_find_capability - query for devices' capabilities
488  * @dev: PCI device to query
489  * @cap: capability code
490  *
491  * Tell if a device supports a given PCI capability.
492  * Returns the address of the requested capability structure within the
493  * device's PCI configuration space or 0 in case the device does not
494  * support it.  Possible values for @cap include:
495  *
496  *  %PCI_CAP_ID_PM           Power Management
497  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
498  *  %PCI_CAP_ID_VPD          Vital Product Data
499  *  %PCI_CAP_ID_SLOTID       Slot Identification
500  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
501  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
502  *  %PCI_CAP_ID_PCIX         PCI-X
503  *  %PCI_CAP_ID_EXP          PCI Express
504  */
505 u8 pci_find_capability(struct pci_dev *dev, int cap)
506 {
507 	u8 pos;
508 
509 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
510 	if (pos)
511 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
512 
513 	return pos;
514 }
515 EXPORT_SYMBOL(pci_find_capability);
516 
517 /**
518  * pci_bus_find_capability - query for devices' capabilities
519  * @bus: the PCI bus to query
520  * @devfn: PCI device to query
521  * @cap: capability code
522  *
523  * Like pci_find_capability() but works for PCI devices that do not have a
524  * pci_dev structure set up yet.
525  *
526  * Returns the address of the requested capability structure within the
527  * device's PCI configuration space or 0 in case the device does not
528  * support it.
529  */
530 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
531 {
532 	u8 hdr_type, pos;
533 
534 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
535 
536 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
537 	if (pos)
538 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
539 
540 	return pos;
541 }
542 EXPORT_SYMBOL(pci_bus_find_capability);
543 
544 /**
545  * pci_find_next_ext_capability - Find an extended capability
546  * @dev: PCI device to query
547  * @start: address at which to start looking (0 to start at beginning of list)
548  * @cap: capability code
549  *
550  * Returns the address of the next matching extended capability structure
551  * within the device's PCI configuration space or 0 if the device does
552  * not support it.  Some capabilities can occur several times, e.g., the
553  * vendor-specific capability, and this provides a way to find them all.
554  */
555 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
556 {
557 	u32 header;
558 	int ttl;
559 	u16 pos = PCI_CFG_SPACE_SIZE;
560 
561 	/* minimum 8 bytes per capability */
562 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
563 
564 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
565 		return 0;
566 
567 	if (start)
568 		pos = start;
569 
570 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
571 		return 0;
572 
573 	/*
574 	 * If we have no capabilities, this is indicated by cap ID,
575 	 * cap version and next pointer all being 0.
576 	 */
577 	if (header == 0)
578 		return 0;
579 
580 	while (ttl-- > 0) {
581 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
582 			return pos;
583 
584 		pos = PCI_EXT_CAP_NEXT(header);
585 		if (pos < PCI_CFG_SPACE_SIZE)
586 			break;
587 
588 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
589 			break;
590 	}
591 
592 	return 0;
593 }
594 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
595 
596 /**
597  * pci_find_ext_capability - Find an extended capability
598  * @dev: PCI device to query
599  * @cap: capability code
600  *
601  * Returns the address of the requested extended capability structure
602  * within the device's PCI configuration space or 0 if the device does
603  * not support it.  Possible values for @cap include:
604  *
605  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
606  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
607  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
608  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
609  */
610 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
611 {
612 	return pci_find_next_ext_capability(dev, 0, cap);
613 }
614 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
615 
616 /**
617  * pci_get_dsn - Read and return the 8-byte Device Serial Number
618  * @dev: PCI device to query
619  *
620  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
621  * Number.
622  *
623  * Returns the DSN, or zero if the capability does not exist.
624  */
625 u64 pci_get_dsn(struct pci_dev *dev)
626 {
627 	u32 dword;
628 	u64 dsn;
629 	int pos;
630 
631 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
632 	if (!pos)
633 		return 0;
634 
635 	/*
636 	 * The Device Serial Number is two dwords offset 4 bytes from the
637 	 * capability position. The specification says that the first dword is
638 	 * the lower half, and the second dword is the upper half.
639 	 */
640 	pos += 4;
641 	pci_read_config_dword(dev, pos, &dword);
642 	dsn = (u64)dword;
643 	pci_read_config_dword(dev, pos + 4, &dword);
644 	dsn |= ((u64)dword) << 32;
645 
646 	return dsn;
647 }
648 EXPORT_SYMBOL_GPL(pci_get_dsn);
649 
650 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
651 {
652 	int rc, ttl = PCI_FIND_CAP_TTL;
653 	u8 cap, mask;
654 
655 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
656 		mask = HT_3BIT_CAP_MASK;
657 	else
658 		mask = HT_5BIT_CAP_MASK;
659 
660 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
661 				      PCI_CAP_ID_HT, &ttl);
662 	while (pos) {
663 		rc = pci_read_config_byte(dev, pos + 3, &cap);
664 		if (rc != PCIBIOS_SUCCESSFUL)
665 			return 0;
666 
667 		if ((cap & mask) == ht_cap)
668 			return pos;
669 
670 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
671 					      pos + PCI_CAP_LIST_NEXT,
672 					      PCI_CAP_ID_HT, &ttl);
673 	}
674 
675 	return 0;
676 }
677 
678 /**
679  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
680  * @dev: PCI device to query
681  * @pos: Position from which to continue searching
682  * @ht_cap: HyperTransport capability code
683  *
684  * To be used in conjunction with pci_find_ht_capability() to search for
685  * all capabilities matching @ht_cap. @pos should always be a value returned
686  * from pci_find_ht_capability().
687  *
688  * NB. To be 100% safe against broken PCI devices, the caller should take
689  * steps to avoid an infinite loop.
690  */
691 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
692 {
693 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
694 }
695 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
696 
697 /**
698  * pci_find_ht_capability - query a device's HyperTransport capabilities
699  * @dev: PCI device to query
700  * @ht_cap: HyperTransport capability code
701  *
702  * Tell if a device supports a given HyperTransport capability.
703  * Returns an address within the device's PCI configuration space
704  * or 0 in case the device does not support the request capability.
705  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
706  * which has a HyperTransport capability matching @ht_cap.
707  */
708 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
709 {
710 	u8 pos;
711 
712 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
713 	if (pos)
714 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
715 
716 	return pos;
717 }
718 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
719 
720 /**
721  * pci_find_vsec_capability - Find a vendor-specific extended capability
722  * @dev: PCI device to query
723  * @vendor: Vendor ID for which capability is defined
724  * @cap: Vendor-specific capability ID
725  *
726  * If @dev has Vendor ID @vendor, search for a VSEC capability with
727  * VSEC ID @cap. If found, return the capability offset in
728  * config space; otherwise return 0.
729  */
730 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
731 {
732 	u16 vsec = 0;
733 	u32 header;
734 	int ret;
735 
736 	if (vendor != dev->vendor)
737 		return 0;
738 
739 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 						     PCI_EXT_CAP_ID_VNDR))) {
741 		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
742 		if (ret != PCIBIOS_SUCCESSFUL)
743 			continue;
744 
745 		if (PCI_VNDR_HEADER_ID(header) == cap)
746 			return vsec;
747 	}
748 
749 	return 0;
750 }
751 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
752 
753 /**
754  * pci_find_dvsec_capability - Find DVSEC for vendor
755  * @dev: PCI device to query
756  * @vendor: Vendor ID to match for the DVSEC
757  * @dvsec: Designated Vendor-specific capability ID
758  *
759  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
760  * offset in config space; otherwise return 0.
761  */
762 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
763 {
764 	int pos;
765 
766 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
767 	if (!pos)
768 		return 0;
769 
770 	while (pos) {
771 		u16 v, id;
772 
773 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
774 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
775 		if (vendor == v && dvsec == id)
776 			return pos;
777 
778 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
779 	}
780 
781 	return 0;
782 }
783 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
784 
785 /**
786  * pci_find_parent_resource - return resource region of parent bus of given
787  *			      region
788  * @dev: PCI device structure contains resources to be searched
789  * @res: child resource record for which parent is sought
790  *
791  * For given resource region of given device, return the resource region of
792  * parent bus the given region is contained in.
793  */
794 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
795 					  struct resource *res)
796 {
797 	const struct pci_bus *bus = dev->bus;
798 	struct resource *r;
799 
800 	pci_bus_for_each_resource(bus, r) {
801 		if (!r)
802 			continue;
803 		if (resource_contains(r, res)) {
804 
805 			/*
806 			 * If the window is prefetchable but the BAR is
807 			 * not, the allocator made a mistake.
808 			 */
809 			if (r->flags & IORESOURCE_PREFETCH &&
810 			    !(res->flags & IORESOURCE_PREFETCH))
811 				return NULL;
812 
813 			/*
814 			 * If we're below a transparent bridge, there may
815 			 * be both a positively-decoded aperture and a
816 			 * subtractively-decoded region that contain the BAR.
817 			 * We want the positively-decoded one, so this depends
818 			 * on pci_bus_for_each_resource() giving us those
819 			 * first.
820 			 */
821 			return r;
822 		}
823 	}
824 	return NULL;
825 }
826 EXPORT_SYMBOL(pci_find_parent_resource);
827 
828 /**
829  * pci_find_resource - Return matching PCI device resource
830  * @dev: PCI device to query
831  * @res: Resource to look for
832  *
833  * Goes over standard PCI resources (BARs) and checks if the given resource
834  * is partially or fully contained in any of them. In that case the
835  * matching resource is returned, %NULL otherwise.
836  */
837 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
838 {
839 	int i;
840 
841 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
842 		struct resource *r = &dev->resource[i];
843 
844 		if (r->start && resource_contains(r, res))
845 			return r;
846 	}
847 
848 	return NULL;
849 }
850 EXPORT_SYMBOL(pci_find_resource);
851 
852 /**
853  * pci_resource_name - Return the name of the PCI resource
854  * @dev: PCI device to query
855  * @i: index of the resource
856  *
857  * Return the standard PCI resource (BAR) name according to their index.
858  */
859 const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
860 {
861 	static const char * const bar_name[] = {
862 		"BAR 0",
863 		"BAR 1",
864 		"BAR 2",
865 		"BAR 3",
866 		"BAR 4",
867 		"BAR 5",
868 		"ROM",
869 #ifdef CONFIG_PCI_IOV
870 		"VF BAR 0",
871 		"VF BAR 1",
872 		"VF BAR 2",
873 		"VF BAR 3",
874 		"VF BAR 4",
875 		"VF BAR 5",
876 #endif
877 		"bridge window",	/* "io" included in %pR */
878 		"bridge window",	/* "mem" included in %pR */
879 		"bridge window",	/* "mem pref" included in %pR */
880 	};
881 	static const char * const cardbus_name[] = {
882 		"BAR 1",
883 		"unknown",
884 		"unknown",
885 		"unknown",
886 		"unknown",
887 		"unknown",
888 #ifdef CONFIG_PCI_IOV
889 		"unknown",
890 		"unknown",
891 		"unknown",
892 		"unknown",
893 		"unknown",
894 		"unknown",
895 #endif
896 		"CardBus bridge window 0",	/* I/O */
897 		"CardBus bridge window 1",	/* I/O */
898 		"CardBus bridge window 0",	/* mem */
899 		"CardBus bridge window 1",	/* mem */
900 	};
901 
902 	if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
903 	    i < ARRAY_SIZE(cardbus_name))
904 		return cardbus_name[i];
905 
906 	if (i < ARRAY_SIZE(bar_name))
907 		return bar_name[i];
908 
909 	return "unknown";
910 }
911 
912 /**
913  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
914  * @dev: the PCI device to operate on
915  * @pos: config space offset of status word
916  * @mask: mask of bit(s) to care about in status word
917  *
918  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
919  */
920 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
921 {
922 	int i;
923 
924 	/* Wait for Transaction Pending bit clean */
925 	for (i = 0; i < 4; i++) {
926 		u16 status;
927 		if (i)
928 			msleep((1 << (i - 1)) * 100);
929 
930 		pci_read_config_word(dev, pos, &status);
931 		if (!(status & mask))
932 			return 1;
933 	}
934 
935 	return 0;
936 }
937 
938 static int pci_acs_enable;
939 
940 /**
941  * pci_request_acs - ask for ACS to be enabled if supported
942  */
943 void pci_request_acs(void)
944 {
945 	pci_acs_enable = 1;
946 }
947 
948 static const char *disable_acs_redir_param;
949 static const char *config_acs_param;
950 
951 struct pci_acs {
952 	u16 cap;
953 	u16 ctrl;
954 	u16 fw_ctrl;
955 };
956 
957 static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps,
958 			     const char *p, u16 mask, u16 flags)
959 {
960 	char *delimit;
961 	int ret = 0;
962 
963 	if (!p)
964 		return;
965 
966 	while (*p) {
967 		if (!mask) {
968 			/* Check for ACS flags */
969 			delimit = strstr(p, "@");
970 			if (delimit) {
971 				int end;
972 				u32 shift = 0;
973 
974 				end = delimit - p - 1;
975 
976 				while (end > -1) {
977 					if (*(p + end) == '0') {
978 						mask |= 1 << shift;
979 						shift++;
980 						end--;
981 					} else if (*(p + end) == '1') {
982 						mask |= 1 << shift;
983 						flags |= 1 << shift;
984 						shift++;
985 						end--;
986 					} else if ((*(p + end) == 'x') || (*(p + end) == 'X')) {
987 						shift++;
988 						end--;
989 					} else {
990 						pci_err(dev, "Invalid ACS flags... Ignoring\n");
991 						return;
992 					}
993 				}
994 				p = delimit + 1;
995 			} else {
996 				pci_err(dev, "ACS Flags missing\n");
997 				return;
998 			}
999 		}
1000 
1001 		if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR |
1002 			    PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) {
1003 			pci_err(dev, "Invalid ACS flags specified\n");
1004 			return;
1005 		}
1006 
1007 		ret = pci_dev_str_match(dev, p, &p);
1008 		if (ret < 0) {
1009 			pr_info_once("PCI: Can't parse ACS command line parameter\n");
1010 			break;
1011 		} else if (ret == 1) {
1012 			/* Found a match */
1013 			break;
1014 		}
1015 
1016 		if (*p != ';' && *p != ',') {
1017 			/* End of param or invalid format */
1018 			break;
1019 		}
1020 		p++;
1021 	}
1022 
1023 	if (ret != 1)
1024 		return;
1025 
1026 	if (!pci_dev_specific_disable_acs_redir(dev))
1027 		return;
1028 
1029 	pci_dbg(dev, "ACS mask  = %#06x\n", mask);
1030 	pci_dbg(dev, "ACS flags = %#06x\n", flags);
1031 
1032 	/* If mask is 0 then we copy the bit from the firmware setting. */
1033 	caps->ctrl = (caps->ctrl & ~mask) | (caps->fw_ctrl & mask);
1034 	caps->ctrl |= flags;
1035 
1036 	pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl);
1037 }
1038 
1039 /**
1040  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1041  * @dev: the PCI device
1042  * @caps: default ACS controls
1043  */
1044 static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps)
1045 {
1046 	/* Source Validation */
1047 	caps->ctrl |= (caps->cap & PCI_ACS_SV);
1048 
1049 	/* P2P Request Redirect */
1050 	caps->ctrl |= (caps->cap & PCI_ACS_RR);
1051 
1052 	/* P2P Completion Redirect */
1053 	caps->ctrl |= (caps->cap & PCI_ACS_CR);
1054 
1055 	/* Upstream Forwarding */
1056 	caps->ctrl |= (caps->cap & PCI_ACS_UF);
1057 
1058 	/* Enable Translation Blocking for external devices and noats */
1059 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1060 		caps->ctrl |= (caps->cap & PCI_ACS_TB);
1061 }
1062 
1063 /**
1064  * pci_enable_acs - enable ACS if hardware support it
1065  * @dev: the PCI device
1066  */
1067 static void pci_enable_acs(struct pci_dev *dev)
1068 {
1069 	struct pci_acs caps;
1070 	bool enable_acs = false;
1071 	int pos;
1072 
1073 	/* If an iommu is present we start with kernel default caps */
1074 	if (pci_acs_enable) {
1075 		if (pci_dev_specific_enable_acs(dev))
1076 			enable_acs = true;
1077 	}
1078 
1079 	pos = dev->acs_cap;
1080 	if (!pos)
1081 		return;
1082 
1083 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap);
1084 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl);
1085 	caps.fw_ctrl = caps.ctrl;
1086 
1087 	if (enable_acs)
1088 		pci_std_enable_acs(dev, &caps);
1089 
1090 	/*
1091 	 * Always apply caps from the command line, even if there is no iommu.
1092 	 * Trust that the admin has a reason to change the ACS settings.
1093 	 */
1094 	__pci_config_acs(dev, &caps, disable_acs_redir_param,
1095 			 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC,
1096 			 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC));
1097 	__pci_config_acs(dev, &caps, config_acs_param, 0, 0);
1098 
1099 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl);
1100 }
1101 
1102 /**
1103  * pcie_read_tlp_log - read TLP Header Log
1104  * @dev: PCIe device
1105  * @where: PCI Config offset of TLP Header Log
1106  * @tlp_log: TLP Log structure to fill
1107  *
1108  * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1109  *
1110  * Return: 0 on success and filled TLP Log structure, <0 on error.
1111  */
1112 int pcie_read_tlp_log(struct pci_dev *dev, int where,
1113 		      struct pcie_tlp_log *tlp_log)
1114 {
1115 	int i, ret;
1116 
1117 	memset(tlp_log, 0, sizeof(*tlp_log));
1118 
1119 	for (i = 0; i < 4; i++) {
1120 		ret = pci_read_config_dword(dev, where + i * 4,
1121 					    &tlp_log->dw[i]);
1122 		if (ret)
1123 			return pcibios_err_to_errno(ret);
1124 	}
1125 
1126 	return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1129 
1130 /**
1131  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1132  * @dev: PCI device to have its BARs restored
1133  *
1134  * Restore the BAR values for a given device, so as to make it
1135  * accessible by its driver.
1136  */
1137 static void pci_restore_bars(struct pci_dev *dev)
1138 {
1139 	int i;
1140 
1141 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1142 		pci_update_resource(dev, i);
1143 }
1144 
1145 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1146 {
1147 	if (pci_use_mid_pm())
1148 		return true;
1149 
1150 	return acpi_pci_power_manageable(dev);
1151 }
1152 
1153 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1154 					       pci_power_t t)
1155 {
1156 	if (pci_use_mid_pm())
1157 		return mid_pci_set_power_state(dev, t);
1158 
1159 	return acpi_pci_set_power_state(dev, t);
1160 }
1161 
1162 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1163 {
1164 	if (pci_use_mid_pm())
1165 		return mid_pci_get_power_state(dev);
1166 
1167 	return acpi_pci_get_power_state(dev);
1168 }
1169 
1170 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1171 {
1172 	if (!pci_use_mid_pm())
1173 		acpi_pci_refresh_power_state(dev);
1174 }
1175 
1176 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1177 {
1178 	if (pci_use_mid_pm())
1179 		return PCI_POWER_ERROR;
1180 
1181 	return acpi_pci_choose_state(dev);
1182 }
1183 
1184 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1185 {
1186 	if (pci_use_mid_pm())
1187 		return PCI_POWER_ERROR;
1188 
1189 	return acpi_pci_wakeup(dev, enable);
1190 }
1191 
1192 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1193 {
1194 	if (pci_use_mid_pm())
1195 		return false;
1196 
1197 	return acpi_pci_need_resume(dev);
1198 }
1199 
1200 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1201 {
1202 	if (pci_use_mid_pm())
1203 		return false;
1204 
1205 	return acpi_pci_bridge_d3(dev);
1206 }
1207 
1208 /**
1209  * pci_update_current_state - Read power state of given device and cache it
1210  * @dev: PCI device to handle.
1211  * @state: State to cache in case the device doesn't have the PM capability
1212  *
1213  * The power state is read from the PMCSR register, which however is
1214  * inaccessible in D3cold.  The platform firmware is therefore queried first
1215  * to detect accessibility of the register.  In case the platform firmware
1216  * reports an incorrect state or the device isn't power manageable by the
1217  * platform at all, we try to detect D3cold by testing accessibility of the
1218  * vendor ID in config space.
1219  */
1220 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1221 {
1222 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1223 		dev->current_state = PCI_D3cold;
1224 	} else if (dev->pm_cap) {
1225 		u16 pmcsr;
1226 
1227 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1228 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1229 			dev->current_state = PCI_D3cold;
1230 			return;
1231 		}
1232 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1233 	} else {
1234 		dev->current_state = state;
1235 	}
1236 }
1237 
1238 /**
1239  * pci_refresh_power_state - Refresh the given device's power state data
1240  * @dev: Target PCI device.
1241  *
1242  * Ask the platform to refresh the devices power state information and invoke
1243  * pci_update_current_state() to update its current PCI power state.
1244  */
1245 void pci_refresh_power_state(struct pci_dev *dev)
1246 {
1247 	platform_pci_refresh_power_state(dev);
1248 	pci_update_current_state(dev, dev->current_state);
1249 }
1250 
1251 /**
1252  * pci_platform_power_transition - Use platform to change device power state
1253  * @dev: PCI device to handle.
1254  * @state: State to put the device into.
1255  */
1256 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1257 {
1258 	int error;
1259 
1260 	error = platform_pci_set_power_state(dev, state);
1261 	if (!error)
1262 		pci_update_current_state(dev, state);
1263 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1264 		dev->current_state = PCI_D0;
1265 
1266 	return error;
1267 }
1268 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1269 
1270 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1271 {
1272 	pm_request_resume(&pci_dev->dev);
1273 	return 0;
1274 }
1275 
1276 /**
1277  * pci_resume_bus - Walk given bus and runtime resume devices on it
1278  * @bus: Top bus of the subtree to walk.
1279  */
1280 void pci_resume_bus(struct pci_bus *bus)
1281 {
1282 	if (bus)
1283 		pci_walk_bus(bus, pci_resume_one, NULL);
1284 }
1285 
1286 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1287 {
1288 	int delay = 1;
1289 	bool retrain = false;
1290 	struct pci_dev *root, *bridge;
1291 
1292 	root = pcie_find_root_port(dev);
1293 
1294 	if (pci_is_pcie(dev)) {
1295 		bridge = pci_upstream_bridge(dev);
1296 		if (bridge)
1297 			retrain = true;
1298 	}
1299 
1300 	/*
1301 	 * The caller has already waited long enough after a reset that the
1302 	 * device should respond to config requests, but it may respond
1303 	 * with Request Retry Status (RRS) if it needs more time to
1304 	 * initialize.
1305 	 *
1306 	 * If the device is below a Root Port with Configuration RRS
1307 	 * Software Visibility enabled, reading the Vendor ID returns a
1308 	 * special data value if the device responded with RRS.  Read the
1309 	 * Vendor ID until we get non-RRS status.
1310 	 *
1311 	 * If there's no Root Port or Configuration RRS Software Visibility
1312 	 * is not enabled, the device may still respond with RRS, but
1313 	 * hardware may retry the config request.  If no retries receive
1314 	 * Successful Completion, hardware generally synthesizes ~0
1315 	 * (PCI_ERROR_RESPONSE) data to complete the read.  Reading Vendor
1316 	 * ID for VFs and non-existent devices also returns ~0, so read the
1317 	 * Command register until it returns something other than ~0.
1318 	 */
1319 	for (;;) {
1320 		u32 id;
1321 
1322 		if (pci_dev_is_disconnected(dev)) {
1323 			pci_dbg(dev, "disconnected; not waiting\n");
1324 			return -ENOTTY;
1325 		}
1326 
1327 		if (root && root->config_rrs_sv) {
1328 			pci_read_config_dword(dev, PCI_VENDOR_ID, &id);
1329 			if (!pci_bus_rrs_vendor_id(id))
1330 				break;
1331 		} else {
1332 			pci_read_config_dword(dev, PCI_COMMAND, &id);
1333 			if (!PCI_POSSIBLE_ERROR(id))
1334 				break;
1335 		}
1336 
1337 		if (delay > timeout) {
1338 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1339 				 delay - 1, reset_type);
1340 			return -ENOTTY;
1341 		}
1342 
1343 		if (delay > PCI_RESET_WAIT) {
1344 			if (retrain) {
1345 				retrain = false;
1346 				if (pcie_failed_link_retrain(bridge) == 0) {
1347 					delay = 1;
1348 					continue;
1349 				}
1350 			}
1351 			pci_info(dev, "not ready %dms after %s; waiting\n",
1352 				 delay - 1, reset_type);
1353 		}
1354 
1355 		msleep(delay);
1356 		delay *= 2;
1357 	}
1358 
1359 	if (delay > PCI_RESET_WAIT)
1360 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1361 			 reset_type);
1362 	else
1363 		pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1364 			reset_type);
1365 
1366 	return 0;
1367 }
1368 
1369 /**
1370  * pci_power_up - Put the given device into D0
1371  * @dev: PCI device to power up
1372  *
1373  * On success, return 0 or 1, depending on whether or not it is necessary to
1374  * restore the device's BARs subsequently (1 is returned in that case).
1375  *
1376  * On failure, return a negative error code.  Always return failure if @dev
1377  * lacks a Power Management Capability, even if the platform was able to
1378  * put the device in D0 via non-PCI means.
1379  */
1380 int pci_power_up(struct pci_dev *dev)
1381 {
1382 	bool need_restore;
1383 	pci_power_t state;
1384 	u16 pmcsr;
1385 
1386 	platform_pci_set_power_state(dev, PCI_D0);
1387 
1388 	if (!dev->pm_cap) {
1389 		state = platform_pci_get_power_state(dev);
1390 		if (state == PCI_UNKNOWN)
1391 			dev->current_state = PCI_D0;
1392 		else
1393 			dev->current_state = state;
1394 
1395 		return -EIO;
1396 	}
1397 
1398 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1399 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1400 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1401 			pci_power_name(dev->current_state));
1402 		dev->current_state = PCI_D3cold;
1403 		return -EIO;
1404 	}
1405 
1406 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1407 
1408 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1409 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1410 
1411 	if (state == PCI_D0)
1412 		goto end;
1413 
1414 	/*
1415 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1416 	 * PME_En, and sets PowerState to 0.
1417 	 */
1418 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1419 
1420 	/* Mandatory transition delays; see PCI PM 1.2. */
1421 	if (state == PCI_D3hot)
1422 		pci_dev_d3_sleep(dev);
1423 	else if (state == PCI_D2)
1424 		udelay(PCI_PM_D2_DELAY);
1425 
1426 end:
1427 	dev->current_state = PCI_D0;
1428 	if (need_restore)
1429 		return 1;
1430 
1431 	return 0;
1432 }
1433 
1434 /**
1435  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1436  * @dev: PCI device to power up
1437  * @locked: whether pci_bus_sem is held
1438  *
1439  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1440  * to confirm the state change, restore its BARs if they might be lost and
1441  * reconfigure ASPM in accordance with the new power state.
1442  *
1443  * If pci_restore_state() is going to be called right after a power state change
1444  * to D0, it is more efficient to use pci_power_up() directly instead of this
1445  * function.
1446  */
1447 static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1448 {
1449 	u16 pmcsr;
1450 	int ret;
1451 
1452 	ret = pci_power_up(dev);
1453 	if (ret < 0) {
1454 		if (dev->current_state == PCI_D0)
1455 			return 0;
1456 
1457 		return ret;
1458 	}
1459 
1460 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1461 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1462 	if (dev->current_state != PCI_D0) {
1463 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1464 				     pci_power_name(dev->current_state));
1465 	} else if (ret > 0) {
1466 		/*
1467 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1468 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1469 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1470 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1471 		 * For example, at least some versions of the 3c905B and the
1472 		 * 3c556B exhibit this behaviour.
1473 		 *
1474 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1475 		 * devices in a D3hot state at boot.  Consequently, we need to
1476 		 * restore at least the BARs so that the device will be
1477 		 * accessible to its driver.
1478 		 */
1479 		pci_restore_bars(dev);
1480 	}
1481 
1482 	if (dev->bus->self)
1483 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1484 
1485 	return 0;
1486 }
1487 
1488 /**
1489  * __pci_dev_set_current_state - Set current state of a PCI device
1490  * @dev: Device to handle
1491  * @data: pointer to state to be set
1492  */
1493 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1494 {
1495 	pci_power_t state = *(pci_power_t *)data;
1496 
1497 	dev->current_state = state;
1498 	return 0;
1499 }
1500 
1501 /**
1502  * pci_bus_set_current_state - Walk given bus and set current state of devices
1503  * @bus: Top bus of the subtree to walk.
1504  * @state: state to be set
1505  */
1506 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1507 {
1508 	if (bus)
1509 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1510 }
1511 
1512 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1513 {
1514 	if (!bus)
1515 		return;
1516 
1517 	if (locked)
1518 		pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1519 	else
1520 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1521 }
1522 
1523 /**
1524  * pci_set_low_power_state - Put a PCI device into a low-power state.
1525  * @dev: PCI device to handle.
1526  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1527  * @locked: whether pci_bus_sem is held
1528  *
1529  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1530  *
1531  * RETURN VALUE:
1532  * -EINVAL if the requested state is invalid.
1533  * -EIO if device does not support PCI PM or its PM capabilities register has a
1534  * wrong version, or device doesn't support the requested state.
1535  * 0 if device already is in the requested state.
1536  * 0 if device's power state has been successfully changed.
1537  */
1538 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1539 {
1540 	u16 pmcsr;
1541 
1542 	if (!dev->pm_cap)
1543 		return -EIO;
1544 
1545 	/*
1546 	 * Validate transition: We can enter D0 from any state, but if
1547 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1548 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1549 	 * we'd have to go from D3 to D0, then to D1.
1550 	 */
1551 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1552 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1553 			pci_power_name(dev->current_state),
1554 			pci_power_name(state));
1555 		return -EINVAL;
1556 	}
1557 
1558 	/* Check if this device supports the desired state */
1559 	if ((state == PCI_D1 && !dev->d1_support)
1560 	   || (state == PCI_D2 && !dev->d2_support))
1561 		return -EIO;
1562 
1563 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1564 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1565 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1566 			pci_power_name(dev->current_state),
1567 			pci_power_name(state));
1568 		dev->current_state = PCI_D3cold;
1569 		return -EIO;
1570 	}
1571 
1572 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1573 	pmcsr |= state;
1574 
1575 	/* Enter specified state */
1576 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1577 
1578 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1579 	if (state == PCI_D3hot)
1580 		pci_dev_d3_sleep(dev);
1581 	else if (state == PCI_D2)
1582 		udelay(PCI_PM_D2_DELAY);
1583 
1584 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1585 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1586 	if (dev->current_state != state)
1587 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1588 				     pci_power_name(dev->current_state),
1589 				     pci_power_name(state));
1590 
1591 	if (dev->bus->self)
1592 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1593 
1594 	return 0;
1595 }
1596 
1597 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1598 {
1599 	int error;
1600 
1601 	/* Bound the state we're entering */
1602 	if (state > PCI_D3cold)
1603 		state = PCI_D3cold;
1604 	else if (state < PCI_D0)
1605 		state = PCI_D0;
1606 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1607 
1608 		/*
1609 		 * If the device or the parent bridge do not support PCI
1610 		 * PM, ignore the request if we're doing anything other
1611 		 * than putting it into D0 (which would only happen on
1612 		 * boot).
1613 		 */
1614 		return 0;
1615 
1616 	/* Check if we're already there */
1617 	if (dev->current_state == state)
1618 		return 0;
1619 
1620 	if (state == PCI_D0)
1621 		return pci_set_full_power_state(dev, locked);
1622 
1623 	/*
1624 	 * This device is quirked not to be put into D3, so don't put it in
1625 	 * D3
1626 	 */
1627 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1628 		return 0;
1629 
1630 	if (state == PCI_D3cold) {
1631 		/*
1632 		 * To put the device in D3cold, put it into D3hot in the native
1633 		 * way, then put it into D3cold using platform ops.
1634 		 */
1635 		error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1636 
1637 		if (pci_platform_power_transition(dev, PCI_D3cold))
1638 			return error;
1639 
1640 		/* Powering off a bridge may power off the whole hierarchy */
1641 		if (dev->current_state == PCI_D3cold)
1642 			__pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1643 	} else {
1644 		error = pci_set_low_power_state(dev, state, locked);
1645 
1646 		if (pci_platform_power_transition(dev, state))
1647 			return error;
1648 	}
1649 
1650 	return 0;
1651 }
1652 
1653 /**
1654  * pci_set_power_state - Set the power state of a PCI device
1655  * @dev: PCI device to handle.
1656  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1657  *
1658  * Transition a device to a new power state, using the platform firmware and/or
1659  * the device's PCI PM registers.
1660  *
1661  * RETURN VALUE:
1662  * -EINVAL if the requested state is invalid.
1663  * -EIO if device does not support PCI PM or its PM capabilities register has a
1664  * wrong version, or device doesn't support the requested state.
1665  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1666  * 0 if device already is in the requested state.
1667  * 0 if the transition is to D3 but D3 is not supported.
1668  * 0 if device's power state has been successfully changed.
1669  */
1670 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1671 {
1672 	return __pci_set_power_state(dev, state, false);
1673 }
1674 EXPORT_SYMBOL(pci_set_power_state);
1675 
1676 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1677 {
1678 	lockdep_assert_held(&pci_bus_sem);
1679 
1680 	return __pci_set_power_state(dev, state, true);
1681 }
1682 EXPORT_SYMBOL(pci_set_power_state_locked);
1683 
1684 #define PCI_EXP_SAVE_REGS	7
1685 
1686 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1687 						       u16 cap, bool extended)
1688 {
1689 	struct pci_cap_saved_state *tmp;
1690 
1691 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1692 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1693 			return tmp;
1694 	}
1695 	return NULL;
1696 }
1697 
1698 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1699 {
1700 	return _pci_find_saved_cap(dev, cap, false);
1701 }
1702 
1703 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1704 {
1705 	return _pci_find_saved_cap(dev, cap, true);
1706 }
1707 
1708 static int pci_save_pcie_state(struct pci_dev *dev)
1709 {
1710 	int i = 0;
1711 	struct pci_cap_saved_state *save_state;
1712 	u16 *cap;
1713 
1714 	if (!pci_is_pcie(dev))
1715 		return 0;
1716 
1717 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1718 	if (!save_state) {
1719 		pci_err(dev, "buffer not found in %s\n", __func__);
1720 		return -ENOMEM;
1721 	}
1722 
1723 	cap = (u16 *)&save_state->cap.data[0];
1724 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1725 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1726 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1727 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1728 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1729 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1730 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1731 
1732 	pci_save_aspm_l1ss_state(dev);
1733 	pci_save_ltr_state(dev);
1734 
1735 	return 0;
1736 }
1737 
1738 static void pci_restore_pcie_state(struct pci_dev *dev)
1739 {
1740 	int i = 0;
1741 	struct pci_cap_saved_state *save_state;
1742 	u16 *cap;
1743 
1744 	/*
1745 	 * Restore max latencies (in the LTR capability) before enabling
1746 	 * LTR itself in PCI_EXP_DEVCTL2.
1747 	 */
1748 	pci_restore_ltr_state(dev);
1749 	pci_restore_aspm_l1ss_state(dev);
1750 
1751 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1752 	if (!save_state)
1753 		return;
1754 
1755 	/*
1756 	 * Downstream ports reset the LTR enable bit when link goes down.
1757 	 * Check and re-configure the bit here before restoring device.
1758 	 * PCIe r5.0, sec 7.5.3.16.
1759 	 */
1760 	pci_bridge_reconfigure_ltr(dev);
1761 
1762 	cap = (u16 *)&save_state->cap.data[0];
1763 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1764 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1765 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1766 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1767 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1768 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1769 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1770 }
1771 
1772 static int pci_save_pcix_state(struct pci_dev *dev)
1773 {
1774 	int pos;
1775 	struct pci_cap_saved_state *save_state;
1776 
1777 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1778 	if (!pos)
1779 		return 0;
1780 
1781 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1782 	if (!save_state) {
1783 		pci_err(dev, "buffer not found in %s\n", __func__);
1784 		return -ENOMEM;
1785 	}
1786 
1787 	pci_read_config_word(dev, pos + PCI_X_CMD,
1788 			     (u16 *)save_state->cap.data);
1789 
1790 	return 0;
1791 }
1792 
1793 static void pci_restore_pcix_state(struct pci_dev *dev)
1794 {
1795 	int i = 0, pos;
1796 	struct pci_cap_saved_state *save_state;
1797 	u16 *cap;
1798 
1799 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1800 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1801 	if (!save_state || !pos)
1802 		return;
1803 	cap = (u16 *)&save_state->cap.data[0];
1804 
1805 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1806 }
1807 
1808 /**
1809  * pci_save_state - save the PCI configuration space of a device before
1810  *		    suspending
1811  * @dev: PCI device that we're dealing with
1812  */
1813 int pci_save_state(struct pci_dev *dev)
1814 {
1815 	int i;
1816 	/* XXX: 100% dword access ok here? */
1817 	for (i = 0; i < 16; i++) {
1818 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1819 		pci_dbg(dev, "save config %#04x: %#010x\n",
1820 			i * 4, dev->saved_config_space[i]);
1821 	}
1822 	dev->state_saved = true;
1823 
1824 	i = pci_save_pcie_state(dev);
1825 	if (i != 0)
1826 		return i;
1827 
1828 	i = pci_save_pcix_state(dev);
1829 	if (i != 0)
1830 		return i;
1831 
1832 	pci_save_dpc_state(dev);
1833 	pci_save_aer_state(dev);
1834 	pci_save_ptm_state(dev);
1835 	pci_save_tph_state(dev);
1836 	return pci_save_vc_state(dev);
1837 }
1838 EXPORT_SYMBOL(pci_save_state);
1839 
1840 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1841 				     u32 saved_val, int retry, bool force)
1842 {
1843 	u32 val;
1844 
1845 	pci_read_config_dword(pdev, offset, &val);
1846 	if (!force && val == saved_val)
1847 		return;
1848 
1849 	for (;;) {
1850 		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1851 			offset, val, saved_val);
1852 		pci_write_config_dword(pdev, offset, saved_val);
1853 		if (retry-- <= 0)
1854 			return;
1855 
1856 		pci_read_config_dword(pdev, offset, &val);
1857 		if (val == saved_val)
1858 			return;
1859 
1860 		mdelay(1);
1861 	}
1862 }
1863 
1864 static void pci_restore_config_space_range(struct pci_dev *pdev,
1865 					   int start, int end, int retry,
1866 					   bool force)
1867 {
1868 	int index;
1869 
1870 	for (index = end; index >= start; index--)
1871 		pci_restore_config_dword(pdev, 4 * index,
1872 					 pdev->saved_config_space[index],
1873 					 retry, force);
1874 }
1875 
1876 static void pci_restore_config_space(struct pci_dev *pdev)
1877 {
1878 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1879 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1880 		/* Restore BARs before the command register. */
1881 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1882 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1883 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1884 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1885 
1886 		/*
1887 		 * Force rewriting of prefetch registers to avoid S3 resume
1888 		 * issues on Intel PCI bridges that occur when these
1889 		 * registers are not explicitly written.
1890 		 */
1891 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1892 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1893 	} else {
1894 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1895 	}
1896 }
1897 
1898 static void pci_restore_rebar_state(struct pci_dev *pdev)
1899 {
1900 	unsigned int pos, nbars, i;
1901 	u32 ctrl;
1902 
1903 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1904 	if (!pos)
1905 		return;
1906 
1907 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1908 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1909 
1910 	for (i = 0; i < nbars; i++, pos += 8) {
1911 		struct resource *res;
1912 		int bar_idx, size;
1913 
1914 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1915 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1916 		res = pdev->resource + bar_idx;
1917 		size = pci_rebar_bytes_to_size(resource_size(res));
1918 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1919 		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1920 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1921 	}
1922 }
1923 
1924 /**
1925  * pci_restore_state - Restore the saved state of a PCI device
1926  * @dev: PCI device that we're dealing with
1927  */
1928 void pci_restore_state(struct pci_dev *dev)
1929 {
1930 	if (!dev->state_saved)
1931 		return;
1932 
1933 	pci_restore_pcie_state(dev);
1934 	pci_restore_pasid_state(dev);
1935 	pci_restore_pri_state(dev);
1936 	pci_restore_ats_state(dev);
1937 	pci_restore_vc_state(dev);
1938 	pci_restore_rebar_state(dev);
1939 	pci_restore_dpc_state(dev);
1940 	pci_restore_ptm_state(dev);
1941 	pci_restore_tph_state(dev);
1942 
1943 	pci_aer_clear_status(dev);
1944 	pci_restore_aer_state(dev);
1945 
1946 	pci_restore_config_space(dev);
1947 
1948 	pci_restore_pcix_state(dev);
1949 	pci_restore_msi_state(dev);
1950 
1951 	/* Restore ACS and IOV configuration state */
1952 	pci_enable_acs(dev);
1953 	pci_restore_iov_state(dev);
1954 
1955 	dev->state_saved = false;
1956 }
1957 EXPORT_SYMBOL(pci_restore_state);
1958 
1959 struct pci_saved_state {
1960 	u32 config_space[16];
1961 	struct pci_cap_saved_data cap[];
1962 };
1963 
1964 /**
1965  * pci_store_saved_state - Allocate and return an opaque struct containing
1966  *			   the device saved state.
1967  * @dev: PCI device that we're dealing with
1968  *
1969  * Return NULL if no state or error.
1970  */
1971 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1972 {
1973 	struct pci_saved_state *state;
1974 	struct pci_cap_saved_state *tmp;
1975 	struct pci_cap_saved_data *cap;
1976 	size_t size;
1977 
1978 	if (!dev->state_saved)
1979 		return NULL;
1980 
1981 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1982 
1983 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1984 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1985 
1986 	state = kzalloc(size, GFP_KERNEL);
1987 	if (!state)
1988 		return NULL;
1989 
1990 	memcpy(state->config_space, dev->saved_config_space,
1991 	       sizeof(state->config_space));
1992 
1993 	cap = state->cap;
1994 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1995 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1996 		memcpy(cap, &tmp->cap, len);
1997 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1998 	}
1999 	/* Empty cap_save terminates list */
2000 
2001 	return state;
2002 }
2003 EXPORT_SYMBOL_GPL(pci_store_saved_state);
2004 
2005 /**
2006  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
2007  * @dev: PCI device that we're dealing with
2008  * @state: Saved state returned from pci_store_saved_state()
2009  */
2010 int pci_load_saved_state(struct pci_dev *dev,
2011 			 struct pci_saved_state *state)
2012 {
2013 	struct pci_cap_saved_data *cap;
2014 
2015 	dev->state_saved = false;
2016 
2017 	if (!state)
2018 		return 0;
2019 
2020 	memcpy(dev->saved_config_space, state->config_space,
2021 	       sizeof(state->config_space));
2022 
2023 	cap = state->cap;
2024 	while (cap->size) {
2025 		struct pci_cap_saved_state *tmp;
2026 
2027 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2028 		if (!tmp || tmp->cap.size != cap->size)
2029 			return -EINVAL;
2030 
2031 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2032 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
2033 		       sizeof(struct pci_cap_saved_data) + cap->size);
2034 	}
2035 
2036 	dev->state_saved = true;
2037 	return 0;
2038 }
2039 EXPORT_SYMBOL_GPL(pci_load_saved_state);
2040 
2041 /**
2042  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2043  *				   and free the memory allocated for it.
2044  * @dev: PCI device that we're dealing with
2045  * @state: Pointer to saved state returned from pci_store_saved_state()
2046  */
2047 int pci_load_and_free_saved_state(struct pci_dev *dev,
2048 				  struct pci_saved_state **state)
2049 {
2050 	int ret = pci_load_saved_state(dev, *state);
2051 	kfree(*state);
2052 	*state = NULL;
2053 	return ret;
2054 }
2055 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2056 
2057 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2058 {
2059 	return pci_enable_resources(dev, bars);
2060 }
2061 
2062 static int do_pci_enable_device(struct pci_dev *dev, int bars)
2063 {
2064 	int err;
2065 	struct pci_dev *bridge;
2066 	u16 cmd;
2067 	u8 pin;
2068 
2069 	err = pci_set_power_state(dev, PCI_D0);
2070 	if (err < 0 && err != -EIO)
2071 		return err;
2072 
2073 	bridge = pci_upstream_bridge(dev);
2074 	if (bridge)
2075 		pcie_aspm_powersave_config_link(bridge);
2076 
2077 	err = pcibios_enable_device(dev, bars);
2078 	if (err < 0)
2079 		return err;
2080 	pci_fixup_device(pci_fixup_enable, dev);
2081 
2082 	if (dev->msi_enabled || dev->msix_enabled)
2083 		return 0;
2084 
2085 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2086 	if (pin) {
2087 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
2088 		if (cmd & PCI_COMMAND_INTX_DISABLE)
2089 			pci_write_config_word(dev, PCI_COMMAND,
2090 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
2091 	}
2092 
2093 	return 0;
2094 }
2095 
2096 /**
2097  * pci_reenable_device - Resume abandoned device
2098  * @dev: PCI device to be resumed
2099  *
2100  * NOTE: This function is a backend of pci_default_resume() and is not supposed
2101  * to be called by normal code, write proper resume handler and use it instead.
2102  */
2103 int pci_reenable_device(struct pci_dev *dev)
2104 {
2105 	if (pci_is_enabled(dev))
2106 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2107 	return 0;
2108 }
2109 EXPORT_SYMBOL(pci_reenable_device);
2110 
2111 static void pci_enable_bridge(struct pci_dev *dev)
2112 {
2113 	struct pci_dev *bridge;
2114 	int retval;
2115 
2116 	bridge = pci_upstream_bridge(dev);
2117 	if (bridge)
2118 		pci_enable_bridge(bridge);
2119 
2120 	if (pci_is_enabled(dev)) {
2121 		if (!dev->is_busmaster)
2122 			pci_set_master(dev);
2123 		return;
2124 	}
2125 
2126 	retval = pci_enable_device(dev);
2127 	if (retval)
2128 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2129 			retval);
2130 	pci_set_master(dev);
2131 }
2132 
2133 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2134 {
2135 	struct pci_dev *bridge;
2136 	int err;
2137 	int i, bars = 0;
2138 
2139 	/*
2140 	 * Power state could be unknown at this point, either due to a fresh
2141 	 * boot or a device removal call.  So get the current power state
2142 	 * so that things like MSI message writing will behave as expected
2143 	 * (e.g. if the device really is in D0 at enable time).
2144 	 */
2145 	pci_update_current_state(dev, dev->current_state);
2146 
2147 	if (atomic_inc_return(&dev->enable_cnt) > 1)
2148 		return 0;		/* already enabled */
2149 
2150 	bridge = pci_upstream_bridge(dev);
2151 	if (bridge)
2152 		pci_enable_bridge(bridge);
2153 
2154 	/* only skip sriov related */
2155 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2156 		if (dev->resource[i].flags & flags)
2157 			bars |= (1 << i);
2158 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2159 		if (dev->resource[i].flags & flags)
2160 			bars |= (1 << i);
2161 
2162 	err = do_pci_enable_device(dev, bars);
2163 	if (err < 0)
2164 		atomic_dec(&dev->enable_cnt);
2165 	return err;
2166 }
2167 
2168 /**
2169  * pci_enable_device_mem - Initialize a device for use with Memory space
2170  * @dev: PCI device to be initialized
2171  *
2172  * Initialize device before it's used by a driver. Ask low-level code
2173  * to enable Memory resources. Wake up the device if it was suspended.
2174  * Beware, this function can fail.
2175  */
2176 int pci_enable_device_mem(struct pci_dev *dev)
2177 {
2178 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2179 }
2180 EXPORT_SYMBOL(pci_enable_device_mem);
2181 
2182 /**
2183  * pci_enable_device - Initialize device before it's used by a driver.
2184  * @dev: PCI device to be initialized
2185  *
2186  * Initialize device before it's used by a driver. Ask low-level code
2187  * to enable I/O and memory. Wake up the device if it was suspended.
2188  * Beware, this function can fail.
2189  *
2190  * Note we don't actually enable the device many times if we call
2191  * this function repeatedly (we just increment the count).
2192  */
2193 int pci_enable_device(struct pci_dev *dev)
2194 {
2195 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2196 }
2197 EXPORT_SYMBOL(pci_enable_device);
2198 
2199 /*
2200  * pcibios_device_add - provide arch specific hooks when adding device dev
2201  * @dev: the PCI device being added
2202  *
2203  * Permits the platform to provide architecture specific functionality when
2204  * devices are added. This is the default implementation. Architecture
2205  * implementations can override this.
2206  */
2207 int __weak pcibios_device_add(struct pci_dev *dev)
2208 {
2209 	return 0;
2210 }
2211 
2212 /**
2213  * pcibios_release_device - provide arch specific hooks when releasing
2214  *			    device dev
2215  * @dev: the PCI device being released
2216  *
2217  * Permits the platform to provide architecture specific functionality when
2218  * devices are released. This is the default implementation. Architecture
2219  * implementations can override this.
2220  */
2221 void __weak pcibios_release_device(struct pci_dev *dev) {}
2222 
2223 /**
2224  * pcibios_disable_device - disable arch specific PCI resources for device dev
2225  * @dev: the PCI device to disable
2226  *
2227  * Disables architecture specific PCI resources for the device. This
2228  * is the default implementation. Architecture implementations can
2229  * override this.
2230  */
2231 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2232 
2233 static void do_pci_disable_device(struct pci_dev *dev)
2234 {
2235 	u16 pci_command;
2236 
2237 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2238 	if (pci_command & PCI_COMMAND_MASTER) {
2239 		pci_command &= ~PCI_COMMAND_MASTER;
2240 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2241 	}
2242 
2243 	pcibios_disable_device(dev);
2244 }
2245 
2246 /**
2247  * pci_disable_enabled_device - Disable device without updating enable_cnt
2248  * @dev: PCI device to disable
2249  *
2250  * NOTE: This function is a backend of PCI power management routines and is
2251  * not supposed to be called drivers.
2252  */
2253 void pci_disable_enabled_device(struct pci_dev *dev)
2254 {
2255 	if (pci_is_enabled(dev))
2256 		do_pci_disable_device(dev);
2257 }
2258 
2259 /**
2260  * pci_disable_device - Disable PCI device after use
2261  * @dev: PCI device to be disabled
2262  *
2263  * Signal to the system that the PCI device is not in use by the system
2264  * anymore.  This only involves disabling PCI bus-mastering, if active.
2265  *
2266  * Note we don't actually disable the device until all callers of
2267  * pci_enable_device() have called pci_disable_device().
2268  */
2269 void pci_disable_device(struct pci_dev *dev)
2270 {
2271 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2272 		      "disabling already-disabled device");
2273 
2274 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2275 		return;
2276 
2277 	do_pci_disable_device(dev);
2278 
2279 	dev->is_busmaster = 0;
2280 }
2281 EXPORT_SYMBOL(pci_disable_device);
2282 
2283 /**
2284  * pcibios_set_pcie_reset_state - set reset state for device dev
2285  * @dev: the PCIe device reset
2286  * @state: Reset state to enter into
2287  *
2288  * Set the PCIe reset state for the device. This is the default
2289  * implementation. Architecture implementations can override this.
2290  */
2291 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2292 					enum pcie_reset_state state)
2293 {
2294 	return -EINVAL;
2295 }
2296 
2297 /**
2298  * pci_set_pcie_reset_state - set reset state for device dev
2299  * @dev: the PCIe device reset
2300  * @state: Reset state to enter into
2301  *
2302  * Sets the PCI reset state for the device.
2303  */
2304 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2305 {
2306 	return pcibios_set_pcie_reset_state(dev, state);
2307 }
2308 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2309 
2310 #ifdef CONFIG_PCIEAER
2311 void pcie_clear_device_status(struct pci_dev *dev)
2312 {
2313 	u16 sta;
2314 
2315 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2316 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2317 }
2318 #endif
2319 
2320 /**
2321  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2322  * @dev: PCIe root port or event collector.
2323  */
2324 void pcie_clear_root_pme_status(struct pci_dev *dev)
2325 {
2326 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2327 }
2328 
2329 /**
2330  * pci_check_pme_status - Check if given device has generated PME.
2331  * @dev: Device to check.
2332  *
2333  * Check the PME status of the device and if set, clear it and clear PME enable
2334  * (if set).  Return 'true' if PME status and PME enable were both set or
2335  * 'false' otherwise.
2336  */
2337 bool pci_check_pme_status(struct pci_dev *dev)
2338 {
2339 	int pmcsr_pos;
2340 	u16 pmcsr;
2341 	bool ret = false;
2342 
2343 	if (!dev->pm_cap)
2344 		return false;
2345 
2346 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2347 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2348 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2349 		return false;
2350 
2351 	/* Clear PME status. */
2352 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2353 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2354 		/* Disable PME to avoid interrupt flood. */
2355 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2356 		ret = true;
2357 	}
2358 
2359 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2360 
2361 	return ret;
2362 }
2363 
2364 /**
2365  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2366  * @dev: Device to handle.
2367  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2368  *
2369  * Check if @dev has generated PME and queue a resume request for it in that
2370  * case.
2371  */
2372 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2373 {
2374 	if (pme_poll_reset && dev->pme_poll)
2375 		dev->pme_poll = false;
2376 
2377 	if (pci_check_pme_status(dev)) {
2378 		pci_wakeup_event(dev);
2379 		pm_request_resume(&dev->dev);
2380 	}
2381 	return 0;
2382 }
2383 
2384 /**
2385  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2386  * @bus: Top bus of the subtree to walk.
2387  */
2388 void pci_pme_wakeup_bus(struct pci_bus *bus)
2389 {
2390 	if (bus)
2391 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2392 }
2393 
2394 
2395 /**
2396  * pci_pme_capable - check the capability of PCI device to generate PME#
2397  * @dev: PCI device to handle.
2398  * @state: PCI state from which device will issue PME#.
2399  */
2400 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2401 {
2402 	if (!dev->pm_cap)
2403 		return false;
2404 
2405 	return !!(dev->pme_support & (1 << state));
2406 }
2407 EXPORT_SYMBOL(pci_pme_capable);
2408 
2409 static void pci_pme_list_scan(struct work_struct *work)
2410 {
2411 	struct pci_pme_device *pme_dev, *n;
2412 
2413 	mutex_lock(&pci_pme_list_mutex);
2414 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2415 		struct pci_dev *pdev = pme_dev->dev;
2416 
2417 		if (pdev->pme_poll) {
2418 			struct pci_dev *bridge = pdev->bus->self;
2419 			struct device *dev = &pdev->dev;
2420 			struct device *bdev = bridge ? &bridge->dev : NULL;
2421 			int bref = 0;
2422 
2423 			/*
2424 			 * If we have a bridge, it should be in an active/D0
2425 			 * state or the configuration space of subordinate
2426 			 * devices may not be accessible or stable over the
2427 			 * course of the call.
2428 			 */
2429 			if (bdev) {
2430 				bref = pm_runtime_get_if_active(bdev);
2431 				if (!bref)
2432 					continue;
2433 
2434 				if (bridge->current_state != PCI_D0)
2435 					goto put_bridge;
2436 			}
2437 
2438 			/*
2439 			 * The device itself should be suspended but config
2440 			 * space must be accessible, therefore it cannot be in
2441 			 * D3cold.
2442 			 */
2443 			if (pm_runtime_suspended(dev) &&
2444 			    pdev->current_state != PCI_D3cold)
2445 				pci_pme_wakeup(pdev, NULL);
2446 
2447 put_bridge:
2448 			if (bref > 0)
2449 				pm_runtime_put(bdev);
2450 		} else {
2451 			list_del(&pme_dev->list);
2452 			kfree(pme_dev);
2453 		}
2454 	}
2455 	if (!list_empty(&pci_pme_list))
2456 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2457 				   msecs_to_jiffies(PME_TIMEOUT));
2458 	mutex_unlock(&pci_pme_list_mutex);
2459 }
2460 
2461 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2462 {
2463 	u16 pmcsr;
2464 
2465 	if (!dev->pme_support)
2466 		return;
2467 
2468 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2469 	/* Clear PME_Status by writing 1 to it and enable PME# */
2470 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2471 	if (!enable)
2472 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2473 
2474 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2475 }
2476 
2477 /**
2478  * pci_pme_restore - Restore PME configuration after config space restore.
2479  * @dev: PCI device to update.
2480  */
2481 void pci_pme_restore(struct pci_dev *dev)
2482 {
2483 	u16 pmcsr;
2484 
2485 	if (!dev->pme_support)
2486 		return;
2487 
2488 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2489 	if (dev->wakeup_prepared) {
2490 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2491 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2492 	} else {
2493 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2494 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2495 	}
2496 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2497 }
2498 
2499 /**
2500  * pci_pme_active - enable or disable PCI device's PME# function
2501  * @dev: PCI device to handle.
2502  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2503  *
2504  * The caller must verify that the device is capable of generating PME# before
2505  * calling this function with @enable equal to 'true'.
2506  */
2507 void pci_pme_active(struct pci_dev *dev, bool enable)
2508 {
2509 	__pci_pme_active(dev, enable);
2510 
2511 	/*
2512 	 * PCI (as opposed to PCIe) PME requires that the device have
2513 	 * its PME# line hooked up correctly. Not all hardware vendors
2514 	 * do this, so the PME never gets delivered and the device
2515 	 * remains asleep. The easiest way around this is to
2516 	 * periodically walk the list of suspended devices and check
2517 	 * whether any have their PME flag set. The assumption is that
2518 	 * we'll wake up often enough anyway that this won't be a huge
2519 	 * hit, and the power savings from the devices will still be a
2520 	 * win.
2521 	 *
2522 	 * Although PCIe uses in-band PME message instead of PME# line
2523 	 * to report PME, PME does not work for some PCIe devices in
2524 	 * reality.  For example, there are devices that set their PME
2525 	 * status bits, but don't really bother to send a PME message;
2526 	 * there are PCI Express Root Ports that don't bother to
2527 	 * trigger interrupts when they receive PME messages from the
2528 	 * devices below.  So PME poll is used for PCIe devices too.
2529 	 */
2530 
2531 	if (dev->pme_poll) {
2532 		struct pci_pme_device *pme_dev;
2533 		if (enable) {
2534 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2535 					  GFP_KERNEL);
2536 			if (!pme_dev) {
2537 				pci_warn(dev, "can't enable PME#\n");
2538 				return;
2539 			}
2540 			pme_dev->dev = dev;
2541 			mutex_lock(&pci_pme_list_mutex);
2542 			list_add(&pme_dev->list, &pci_pme_list);
2543 			if (list_is_singular(&pci_pme_list))
2544 				queue_delayed_work(system_freezable_wq,
2545 						   &pci_pme_work,
2546 						   msecs_to_jiffies(PME_TIMEOUT));
2547 			mutex_unlock(&pci_pme_list_mutex);
2548 		} else {
2549 			mutex_lock(&pci_pme_list_mutex);
2550 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2551 				if (pme_dev->dev == dev) {
2552 					list_del(&pme_dev->list);
2553 					kfree(pme_dev);
2554 					break;
2555 				}
2556 			}
2557 			mutex_unlock(&pci_pme_list_mutex);
2558 		}
2559 	}
2560 
2561 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2562 }
2563 EXPORT_SYMBOL(pci_pme_active);
2564 
2565 /**
2566  * __pci_enable_wake - enable PCI device as wakeup event source
2567  * @dev: PCI device affected
2568  * @state: PCI state from which device will issue wakeup events
2569  * @enable: True to enable event generation; false to disable
2570  *
2571  * This enables the device as a wakeup event source, or disables it.
2572  * When such events involves platform-specific hooks, those hooks are
2573  * called automatically by this routine.
2574  *
2575  * Devices with legacy power management (no standard PCI PM capabilities)
2576  * always require such platform hooks.
2577  *
2578  * RETURN VALUE:
2579  * 0 is returned on success
2580  * -EINVAL is returned if device is not supposed to wake up the system
2581  * Error code depending on the platform is returned if both the platform and
2582  * the native mechanism fail to enable the generation of wake-up events
2583  */
2584 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2585 {
2586 	int ret = 0;
2587 
2588 	/*
2589 	 * Bridges that are not power-manageable directly only signal
2590 	 * wakeup on behalf of subordinate devices which is set up
2591 	 * elsewhere, so skip them. However, bridges that are
2592 	 * power-manageable may signal wakeup for themselves (for example,
2593 	 * on a hotplug event) and they need to be covered here.
2594 	 */
2595 	if (!pci_power_manageable(dev))
2596 		return 0;
2597 
2598 	/* Don't do the same thing twice in a row for one device. */
2599 	if (!!enable == !!dev->wakeup_prepared)
2600 		return 0;
2601 
2602 	/*
2603 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2604 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2605 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2606 	 */
2607 
2608 	if (enable) {
2609 		int error;
2610 
2611 		/*
2612 		 * Enable PME signaling if the device can signal PME from
2613 		 * D3cold regardless of whether or not it can signal PME from
2614 		 * the current target state, because that will allow it to
2615 		 * signal PME when the hierarchy above it goes into D3cold and
2616 		 * the device itself ends up in D3cold as a result of that.
2617 		 */
2618 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2619 			pci_pme_active(dev, true);
2620 		else
2621 			ret = 1;
2622 		error = platform_pci_set_wakeup(dev, true);
2623 		if (ret)
2624 			ret = error;
2625 		if (!ret)
2626 			dev->wakeup_prepared = true;
2627 	} else {
2628 		platform_pci_set_wakeup(dev, false);
2629 		pci_pme_active(dev, false);
2630 		dev->wakeup_prepared = false;
2631 	}
2632 
2633 	return ret;
2634 }
2635 
2636 /**
2637  * pci_enable_wake - change wakeup settings for a PCI device
2638  * @pci_dev: Target device
2639  * @state: PCI state from which device will issue wakeup events
2640  * @enable: Whether or not to enable event generation
2641  *
2642  * If @enable is set, check device_may_wakeup() for the device before calling
2643  * __pci_enable_wake() for it.
2644  */
2645 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2646 {
2647 	if (enable && !device_may_wakeup(&pci_dev->dev))
2648 		return -EINVAL;
2649 
2650 	return __pci_enable_wake(pci_dev, state, enable);
2651 }
2652 EXPORT_SYMBOL(pci_enable_wake);
2653 
2654 /**
2655  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2656  * @dev: PCI device to prepare
2657  * @enable: True to enable wake-up event generation; false to disable
2658  *
2659  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2660  * and this function allows them to set that up cleanly - pci_enable_wake()
2661  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2662  * ordering constraints.
2663  *
2664  * This function only returns error code if the device is not allowed to wake
2665  * up the system from sleep or it is not capable of generating PME# from both
2666  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2667  */
2668 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2669 {
2670 	return pci_pme_capable(dev, PCI_D3cold) ?
2671 			pci_enable_wake(dev, PCI_D3cold, enable) :
2672 			pci_enable_wake(dev, PCI_D3hot, enable);
2673 }
2674 EXPORT_SYMBOL(pci_wake_from_d3);
2675 
2676 /**
2677  * pci_target_state - find an appropriate low power state for a given PCI dev
2678  * @dev: PCI device
2679  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2680  *
2681  * Use underlying platform code to find a supported low power state for @dev.
2682  * If the platform can't manage @dev, return the deepest state from which it
2683  * can generate wake events, based on any available PME info.
2684  */
2685 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2686 {
2687 	if (platform_pci_power_manageable(dev)) {
2688 		/*
2689 		 * Call the platform to find the target state for the device.
2690 		 */
2691 		pci_power_t state = platform_pci_choose_state(dev);
2692 
2693 		switch (state) {
2694 		case PCI_POWER_ERROR:
2695 		case PCI_UNKNOWN:
2696 			return PCI_D3hot;
2697 
2698 		case PCI_D1:
2699 		case PCI_D2:
2700 			if (pci_no_d1d2(dev))
2701 				return PCI_D3hot;
2702 		}
2703 
2704 		return state;
2705 	}
2706 
2707 	/*
2708 	 * If the device is in D3cold even though it's not power-manageable by
2709 	 * the platform, it may have been powered down by non-standard means.
2710 	 * Best to let it slumber.
2711 	 */
2712 	if (dev->current_state == PCI_D3cold)
2713 		return PCI_D3cold;
2714 	else if (!dev->pm_cap)
2715 		return PCI_D0;
2716 
2717 	if (wakeup && dev->pme_support) {
2718 		pci_power_t state = PCI_D3hot;
2719 
2720 		/*
2721 		 * Find the deepest state from which the device can generate
2722 		 * PME#.
2723 		 */
2724 		while (state && !(dev->pme_support & (1 << state)))
2725 			state--;
2726 
2727 		if (state)
2728 			return state;
2729 		else if (dev->pme_support & 1)
2730 			return PCI_D0;
2731 	}
2732 
2733 	return PCI_D3hot;
2734 }
2735 
2736 /**
2737  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2738  *			  into a sleep state
2739  * @dev: Device to handle.
2740  *
2741  * Choose the power state appropriate for the device depending on whether
2742  * it can wake up the system and/or is power manageable by the platform
2743  * (PCI_D3hot is the default) and put the device into that state.
2744  */
2745 int pci_prepare_to_sleep(struct pci_dev *dev)
2746 {
2747 	bool wakeup = device_may_wakeup(&dev->dev);
2748 	pci_power_t target_state = pci_target_state(dev, wakeup);
2749 	int error;
2750 
2751 	if (target_state == PCI_POWER_ERROR)
2752 		return -EIO;
2753 
2754 	pci_enable_wake(dev, target_state, wakeup);
2755 
2756 	error = pci_set_power_state(dev, target_state);
2757 
2758 	if (error)
2759 		pci_enable_wake(dev, target_state, false);
2760 
2761 	return error;
2762 }
2763 EXPORT_SYMBOL(pci_prepare_to_sleep);
2764 
2765 /**
2766  * pci_back_from_sleep - turn PCI device on during system-wide transition
2767  *			 into working state
2768  * @dev: Device to handle.
2769  *
2770  * Disable device's system wake-up capability and put it into D0.
2771  */
2772 int pci_back_from_sleep(struct pci_dev *dev)
2773 {
2774 	int ret = pci_set_power_state(dev, PCI_D0);
2775 
2776 	if (ret)
2777 		return ret;
2778 
2779 	pci_enable_wake(dev, PCI_D0, false);
2780 	return 0;
2781 }
2782 EXPORT_SYMBOL(pci_back_from_sleep);
2783 
2784 /**
2785  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2786  * @dev: PCI device being suspended.
2787  *
2788  * Prepare @dev to generate wake-up events at run time and put it into a low
2789  * power state.
2790  */
2791 int pci_finish_runtime_suspend(struct pci_dev *dev)
2792 {
2793 	pci_power_t target_state;
2794 	int error;
2795 
2796 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2797 	if (target_state == PCI_POWER_ERROR)
2798 		return -EIO;
2799 
2800 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2801 
2802 	error = pci_set_power_state(dev, target_state);
2803 
2804 	if (error)
2805 		pci_enable_wake(dev, target_state, false);
2806 
2807 	return error;
2808 }
2809 
2810 /**
2811  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2812  * @dev: Device to check.
2813  *
2814  * Return true if the device itself is capable of generating wake-up events
2815  * (through the platform or using the native PCIe PME) or if the device supports
2816  * PME and one of its upstream bridges can generate wake-up events.
2817  */
2818 bool pci_dev_run_wake(struct pci_dev *dev)
2819 {
2820 	struct pci_bus *bus = dev->bus;
2821 
2822 	if (!dev->pme_support)
2823 		return false;
2824 
2825 	/* PME-capable in principle, but not from the target power state */
2826 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2827 		return false;
2828 
2829 	if (device_can_wakeup(&dev->dev))
2830 		return true;
2831 
2832 	while (bus->parent) {
2833 		struct pci_dev *bridge = bus->self;
2834 
2835 		if (device_can_wakeup(&bridge->dev))
2836 			return true;
2837 
2838 		bus = bus->parent;
2839 	}
2840 
2841 	/* We have reached the root bus. */
2842 	if (bus->bridge)
2843 		return device_can_wakeup(bus->bridge);
2844 
2845 	return false;
2846 }
2847 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2848 
2849 /**
2850  * pci_dev_need_resume - Check if it is necessary to resume the device.
2851  * @pci_dev: Device to check.
2852  *
2853  * Return 'true' if the device is not runtime-suspended or it has to be
2854  * reconfigured due to wakeup settings difference between system and runtime
2855  * suspend, or the current power state of it is not suitable for the upcoming
2856  * (system-wide) transition.
2857  */
2858 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2859 {
2860 	struct device *dev = &pci_dev->dev;
2861 	pci_power_t target_state;
2862 
2863 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2864 		return true;
2865 
2866 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2867 
2868 	/*
2869 	 * If the earlier platform check has not triggered, D3cold is just power
2870 	 * removal on top of D3hot, so no need to resume the device in that
2871 	 * case.
2872 	 */
2873 	return target_state != pci_dev->current_state &&
2874 		target_state != PCI_D3cold &&
2875 		pci_dev->current_state != PCI_D3hot;
2876 }
2877 
2878 /**
2879  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2880  * @pci_dev: Device to check.
2881  *
2882  * If the device is suspended and it is not configured for system wakeup,
2883  * disable PME for it to prevent it from waking up the system unnecessarily.
2884  *
2885  * Note that if the device's power state is D3cold and the platform check in
2886  * pci_dev_need_resume() has not triggered, the device's configuration need not
2887  * be changed.
2888  */
2889 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2890 {
2891 	struct device *dev = &pci_dev->dev;
2892 
2893 	spin_lock_irq(&dev->power.lock);
2894 
2895 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2896 	    pci_dev->current_state < PCI_D3cold)
2897 		__pci_pme_active(pci_dev, false);
2898 
2899 	spin_unlock_irq(&dev->power.lock);
2900 }
2901 
2902 /**
2903  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2904  * @pci_dev: Device to handle.
2905  *
2906  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2907  * it might have been disabled during the prepare phase of system suspend if
2908  * the device was not configured for system wakeup.
2909  */
2910 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2911 {
2912 	struct device *dev = &pci_dev->dev;
2913 
2914 	if (!pci_dev_run_wake(pci_dev))
2915 		return;
2916 
2917 	spin_lock_irq(&dev->power.lock);
2918 
2919 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2920 		__pci_pme_active(pci_dev, true);
2921 
2922 	spin_unlock_irq(&dev->power.lock);
2923 }
2924 
2925 /**
2926  * pci_choose_state - Choose the power state of a PCI device.
2927  * @dev: Target PCI device.
2928  * @state: Target state for the whole system.
2929  *
2930  * Returns PCI power state suitable for @dev and @state.
2931  */
2932 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2933 {
2934 	if (state.event == PM_EVENT_ON)
2935 		return PCI_D0;
2936 
2937 	return pci_target_state(dev, false);
2938 }
2939 EXPORT_SYMBOL(pci_choose_state);
2940 
2941 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2942 {
2943 	struct device *dev = &pdev->dev;
2944 	struct device *parent = dev->parent;
2945 
2946 	if (parent)
2947 		pm_runtime_get_sync(parent);
2948 	pm_runtime_get_noresume(dev);
2949 	/*
2950 	 * pdev->current_state is set to PCI_D3cold during suspending,
2951 	 * so wait until suspending completes
2952 	 */
2953 	pm_runtime_barrier(dev);
2954 	/*
2955 	 * Only need to resume devices in D3cold, because config
2956 	 * registers are still accessible for devices suspended but
2957 	 * not in D3cold.
2958 	 */
2959 	if (pdev->current_state == PCI_D3cold)
2960 		pm_runtime_resume(dev);
2961 }
2962 
2963 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2964 {
2965 	struct device *dev = &pdev->dev;
2966 	struct device *parent = dev->parent;
2967 
2968 	pm_runtime_put(dev);
2969 	if (parent)
2970 		pm_runtime_put_sync(parent);
2971 }
2972 
2973 static const struct dmi_system_id bridge_d3_blacklist[] = {
2974 #ifdef CONFIG_X86
2975 	{
2976 		/*
2977 		 * Gigabyte X299 root port is not marked as hotplug capable
2978 		 * which allows Linux to power manage it.  However, this
2979 		 * confuses the BIOS SMI handler so don't power manage root
2980 		 * ports on that system.
2981 		 */
2982 		.ident = "X299 DESIGNARE EX-CF",
2983 		.matches = {
2984 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2985 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2986 		},
2987 	},
2988 	{
2989 		/*
2990 		 * Downstream device is not accessible after putting a root port
2991 		 * into D3cold and back into D0 on Elo Continental Z2 board
2992 		 */
2993 		.ident = "Elo Continental Z2",
2994 		.matches = {
2995 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2996 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2997 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2998 		},
2999 	},
3000 	{
3001 		/*
3002 		 * Changing power state of root port dGPU is connected fails
3003 		 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
3004 		 */
3005 		.ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
3006 		.matches = {
3007 			DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
3008 			DMI_MATCH(DMI_BOARD_NAME, "1972"),
3009 			DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
3010 		},
3011 	},
3012 #endif
3013 	{ }
3014 };
3015 
3016 /**
3017  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3018  * @bridge: Bridge to check
3019  *
3020  * This function checks if it is possible to move the bridge to D3.
3021  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3022  */
3023 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3024 {
3025 	if (!pci_is_pcie(bridge))
3026 		return false;
3027 
3028 	switch (pci_pcie_type(bridge)) {
3029 	case PCI_EXP_TYPE_ROOT_PORT:
3030 	case PCI_EXP_TYPE_UPSTREAM:
3031 	case PCI_EXP_TYPE_DOWNSTREAM:
3032 		if (pci_bridge_d3_disable)
3033 			return false;
3034 
3035 		/*
3036 		 * Hotplug ports handled by firmware in System Management Mode
3037 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3038 		 */
3039 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3040 			return false;
3041 
3042 		if (pci_bridge_d3_force)
3043 			return true;
3044 
3045 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3046 		if (bridge->is_thunderbolt)
3047 			return true;
3048 
3049 		/* Platform might know better if the bridge supports D3 */
3050 		if (platform_pci_bridge_d3(bridge))
3051 			return true;
3052 
3053 		/*
3054 		 * Hotplug ports handled natively by the OS were not validated
3055 		 * by vendors for runtime D3 at least until 2018 because there
3056 		 * was no OS support.
3057 		 */
3058 		if (bridge->is_hotplug_bridge)
3059 			return false;
3060 
3061 		if (dmi_check_system(bridge_d3_blacklist))
3062 			return false;
3063 
3064 		/*
3065 		 * It should be safe to put PCIe ports from 2015 or newer
3066 		 * to D3.
3067 		 */
3068 		if (dmi_get_bios_year() >= 2015)
3069 			return true;
3070 		break;
3071 	}
3072 
3073 	return false;
3074 }
3075 
3076 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3077 {
3078 	bool *d3cold_ok = data;
3079 
3080 	if (/* The device needs to be allowed to go D3cold ... */
3081 	    dev->no_d3cold || !dev->d3cold_allowed ||
3082 
3083 	    /* ... and if it is wakeup capable to do so from D3cold. */
3084 	    (device_may_wakeup(&dev->dev) &&
3085 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3086 
3087 	    /* If it is a bridge it must be allowed to go to D3. */
3088 	    !pci_power_manageable(dev))
3089 
3090 		*d3cold_ok = false;
3091 
3092 	return !*d3cold_ok;
3093 }
3094 
3095 /*
3096  * pci_bridge_d3_update - Update bridge D3 capabilities
3097  * @dev: PCI device which is changed
3098  *
3099  * Update upstream bridge PM capabilities accordingly depending on if the
3100  * device PM configuration was changed or the device is being removed.  The
3101  * change is also propagated upstream.
3102  */
3103 void pci_bridge_d3_update(struct pci_dev *dev)
3104 {
3105 	bool remove = !device_is_registered(&dev->dev);
3106 	struct pci_dev *bridge;
3107 	bool d3cold_ok = true;
3108 
3109 	bridge = pci_upstream_bridge(dev);
3110 	if (!bridge || !pci_bridge_d3_possible(bridge))
3111 		return;
3112 
3113 	/*
3114 	 * If D3 is currently allowed for the bridge, removing one of its
3115 	 * children won't change that.
3116 	 */
3117 	if (remove && bridge->bridge_d3)
3118 		return;
3119 
3120 	/*
3121 	 * If D3 is currently allowed for the bridge and a child is added or
3122 	 * changed, disallowance of D3 can only be caused by that child, so
3123 	 * we only need to check that single device, not any of its siblings.
3124 	 *
3125 	 * If D3 is currently not allowed for the bridge, checking the device
3126 	 * first may allow us to skip checking its siblings.
3127 	 */
3128 	if (!remove)
3129 		pci_dev_check_d3cold(dev, &d3cold_ok);
3130 
3131 	/*
3132 	 * If D3 is currently not allowed for the bridge, this may be caused
3133 	 * either by the device being changed/removed or any of its siblings,
3134 	 * so we need to go through all children to find out if one of them
3135 	 * continues to block D3.
3136 	 */
3137 	if (d3cold_ok && !bridge->bridge_d3)
3138 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3139 			     &d3cold_ok);
3140 
3141 	if (bridge->bridge_d3 != d3cold_ok) {
3142 		bridge->bridge_d3 = d3cold_ok;
3143 		/* Propagate change to upstream bridges */
3144 		pci_bridge_d3_update(bridge);
3145 	}
3146 }
3147 
3148 /**
3149  * pci_d3cold_enable - Enable D3cold for device
3150  * @dev: PCI device to handle
3151  *
3152  * This function can be used in drivers to enable D3cold from the device
3153  * they handle.  It also updates upstream PCI bridge PM capabilities
3154  * accordingly.
3155  */
3156 void pci_d3cold_enable(struct pci_dev *dev)
3157 {
3158 	if (dev->no_d3cold) {
3159 		dev->no_d3cold = false;
3160 		pci_bridge_d3_update(dev);
3161 	}
3162 }
3163 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3164 
3165 /**
3166  * pci_d3cold_disable - Disable D3cold for device
3167  * @dev: PCI device to handle
3168  *
3169  * This function can be used in drivers to disable D3cold from the device
3170  * they handle.  It also updates upstream PCI bridge PM capabilities
3171  * accordingly.
3172  */
3173 void pci_d3cold_disable(struct pci_dev *dev)
3174 {
3175 	if (!dev->no_d3cold) {
3176 		dev->no_d3cold = true;
3177 		pci_bridge_d3_update(dev);
3178 	}
3179 }
3180 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3181 
3182 /**
3183  * pci_pm_init - Initialize PM functions of given PCI device
3184  * @dev: PCI device to handle.
3185  */
3186 void pci_pm_init(struct pci_dev *dev)
3187 {
3188 	int pm;
3189 	u16 status;
3190 	u16 pmc;
3191 
3192 	pm_runtime_forbid(&dev->dev);
3193 	pm_runtime_set_active(&dev->dev);
3194 	pm_runtime_enable(&dev->dev);
3195 	device_enable_async_suspend(&dev->dev);
3196 	dev->wakeup_prepared = false;
3197 
3198 	dev->pm_cap = 0;
3199 	dev->pme_support = 0;
3200 
3201 	/* find PCI PM capability in list */
3202 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3203 	if (!pm)
3204 		return;
3205 	/* Check device's ability to generate PME# */
3206 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3207 
3208 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3209 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3210 			pmc & PCI_PM_CAP_VER_MASK);
3211 		return;
3212 	}
3213 
3214 	dev->pm_cap = pm;
3215 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3216 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3217 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3218 	dev->d3cold_allowed = true;
3219 
3220 	dev->d1_support = false;
3221 	dev->d2_support = false;
3222 	if (!pci_no_d1d2(dev)) {
3223 		if (pmc & PCI_PM_CAP_D1)
3224 			dev->d1_support = true;
3225 		if (pmc & PCI_PM_CAP_D2)
3226 			dev->d2_support = true;
3227 
3228 		if (dev->d1_support || dev->d2_support)
3229 			pci_info(dev, "supports%s%s\n",
3230 				   dev->d1_support ? " D1" : "",
3231 				   dev->d2_support ? " D2" : "");
3232 	}
3233 
3234 	pmc &= PCI_PM_CAP_PME_MASK;
3235 	if (pmc) {
3236 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3237 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3238 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3239 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3240 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3241 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3242 		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3243 		dev->pme_poll = true;
3244 		/*
3245 		 * Make device's PM flags reflect the wake-up capability, but
3246 		 * let the user space enable it to wake up the system as needed.
3247 		 */
3248 		device_set_wakeup_capable(&dev->dev, true);
3249 		/* Disable the PME# generation functionality */
3250 		pci_pme_active(dev, false);
3251 	}
3252 
3253 	pci_read_config_word(dev, PCI_STATUS, &status);
3254 	if (status & PCI_STATUS_IMM_READY)
3255 		dev->imm_ready = 1;
3256 }
3257 
3258 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3259 {
3260 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3261 
3262 	switch (prop) {
3263 	case PCI_EA_P_MEM:
3264 	case PCI_EA_P_VF_MEM:
3265 		flags |= IORESOURCE_MEM;
3266 		break;
3267 	case PCI_EA_P_MEM_PREFETCH:
3268 	case PCI_EA_P_VF_MEM_PREFETCH:
3269 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3270 		break;
3271 	case PCI_EA_P_IO:
3272 		flags |= IORESOURCE_IO;
3273 		break;
3274 	default:
3275 		return 0;
3276 	}
3277 
3278 	return flags;
3279 }
3280 
3281 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3282 					    u8 prop)
3283 {
3284 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3285 		return &dev->resource[bei];
3286 #ifdef CONFIG_PCI_IOV
3287 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3288 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3289 		return &dev->resource[PCI_IOV_RESOURCES +
3290 				      bei - PCI_EA_BEI_VF_BAR0];
3291 #endif
3292 	else if (bei == PCI_EA_BEI_ROM)
3293 		return &dev->resource[PCI_ROM_RESOURCE];
3294 	else
3295 		return NULL;
3296 }
3297 
3298 /* Read an Enhanced Allocation (EA) entry */
3299 static int pci_ea_read(struct pci_dev *dev, int offset)
3300 {
3301 	struct resource *res;
3302 	const char *res_name;
3303 	int ent_size, ent_offset = offset;
3304 	resource_size_t start, end;
3305 	unsigned long flags;
3306 	u32 dw0, bei, base, max_offset;
3307 	u8 prop;
3308 	bool support_64 = (sizeof(resource_size_t) >= 8);
3309 
3310 	pci_read_config_dword(dev, ent_offset, &dw0);
3311 	ent_offset += 4;
3312 
3313 	/* Entry size field indicates DWORDs after 1st */
3314 	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3315 
3316 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3317 		goto out;
3318 
3319 	bei = FIELD_GET(PCI_EA_BEI, dw0);
3320 	prop = FIELD_GET(PCI_EA_PP, dw0);
3321 
3322 	/*
3323 	 * If the Property is in the reserved range, try the Secondary
3324 	 * Property instead.
3325 	 */
3326 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3327 		prop = FIELD_GET(PCI_EA_SP, dw0);
3328 	if (prop > PCI_EA_P_BRIDGE_IO)
3329 		goto out;
3330 
3331 	res = pci_ea_get_resource(dev, bei, prop);
3332 	res_name = pci_resource_name(dev, bei);
3333 	if (!res) {
3334 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3335 		goto out;
3336 	}
3337 
3338 	flags = pci_ea_flags(dev, prop);
3339 	if (!flags) {
3340 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3341 		goto out;
3342 	}
3343 
3344 	/* Read Base */
3345 	pci_read_config_dword(dev, ent_offset, &base);
3346 	start = (base & PCI_EA_FIELD_MASK);
3347 	ent_offset += 4;
3348 
3349 	/* Read MaxOffset */
3350 	pci_read_config_dword(dev, ent_offset, &max_offset);
3351 	ent_offset += 4;
3352 
3353 	/* Read Base MSBs (if 64-bit entry) */
3354 	if (base & PCI_EA_IS_64) {
3355 		u32 base_upper;
3356 
3357 		pci_read_config_dword(dev, ent_offset, &base_upper);
3358 		ent_offset += 4;
3359 
3360 		flags |= IORESOURCE_MEM_64;
3361 
3362 		/* entry starts above 32-bit boundary, can't use */
3363 		if (!support_64 && base_upper)
3364 			goto out;
3365 
3366 		if (support_64)
3367 			start |= ((u64)base_upper << 32);
3368 	}
3369 
3370 	end = start + (max_offset | 0x03);
3371 
3372 	/* Read MaxOffset MSBs (if 64-bit entry) */
3373 	if (max_offset & PCI_EA_IS_64) {
3374 		u32 max_offset_upper;
3375 
3376 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3377 		ent_offset += 4;
3378 
3379 		flags |= IORESOURCE_MEM_64;
3380 
3381 		/* entry too big, can't use */
3382 		if (!support_64 && max_offset_upper)
3383 			goto out;
3384 
3385 		if (support_64)
3386 			end += ((u64)max_offset_upper << 32);
3387 	}
3388 
3389 	if (end < start) {
3390 		pci_err(dev, "EA Entry crosses address boundary\n");
3391 		goto out;
3392 	}
3393 
3394 	if (ent_size != ent_offset - offset) {
3395 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3396 			ent_size, ent_offset - offset);
3397 		goto out;
3398 	}
3399 
3400 	res->name = pci_name(dev);
3401 	res->start = start;
3402 	res->end = end;
3403 	res->flags = flags;
3404 
3405 	if (bei <= PCI_EA_BEI_BAR5)
3406 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3407 			 res_name, res, prop);
3408 	else if (bei == PCI_EA_BEI_ROM)
3409 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3410 			 res_name, res, prop);
3411 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3412 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3413 			 res_name, res, prop);
3414 	else
3415 		pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3416 			   bei, res, prop);
3417 
3418 out:
3419 	return offset + ent_size;
3420 }
3421 
3422 /* Enhanced Allocation Initialization */
3423 void pci_ea_init(struct pci_dev *dev)
3424 {
3425 	int ea;
3426 	u8 num_ent;
3427 	int offset;
3428 	int i;
3429 
3430 	/* find PCI EA capability in list */
3431 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3432 	if (!ea)
3433 		return;
3434 
3435 	/* determine the number of entries */
3436 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3437 					&num_ent);
3438 	num_ent &= PCI_EA_NUM_ENT_MASK;
3439 
3440 	offset = ea + PCI_EA_FIRST_ENT;
3441 
3442 	/* Skip DWORD 2 for type 1 functions */
3443 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3444 		offset += 4;
3445 
3446 	/* parse each EA entry */
3447 	for (i = 0; i < num_ent; ++i)
3448 		offset = pci_ea_read(dev, offset);
3449 }
3450 
3451 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3452 	struct pci_cap_saved_state *new_cap)
3453 {
3454 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3455 }
3456 
3457 /**
3458  * _pci_add_cap_save_buffer - allocate buffer for saving given
3459  *			      capability registers
3460  * @dev: the PCI device
3461  * @cap: the capability to allocate the buffer for
3462  * @extended: Standard or Extended capability ID
3463  * @size: requested size of the buffer
3464  */
3465 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3466 				    bool extended, unsigned int size)
3467 {
3468 	int pos;
3469 	struct pci_cap_saved_state *save_state;
3470 
3471 	if (extended)
3472 		pos = pci_find_ext_capability(dev, cap);
3473 	else
3474 		pos = pci_find_capability(dev, cap);
3475 
3476 	if (!pos)
3477 		return 0;
3478 
3479 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3480 	if (!save_state)
3481 		return -ENOMEM;
3482 
3483 	save_state->cap.cap_nr = cap;
3484 	save_state->cap.cap_extended = extended;
3485 	save_state->cap.size = size;
3486 	pci_add_saved_cap(dev, save_state);
3487 
3488 	return 0;
3489 }
3490 
3491 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3492 {
3493 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3494 }
3495 
3496 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3497 {
3498 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3499 }
3500 
3501 /**
3502  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3503  * @dev: the PCI device
3504  */
3505 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3506 {
3507 	int error;
3508 
3509 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3510 					PCI_EXP_SAVE_REGS * sizeof(u16));
3511 	if (error)
3512 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3513 
3514 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3515 	if (error)
3516 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3517 
3518 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3519 					    2 * sizeof(u16));
3520 	if (error)
3521 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3522 
3523 	pci_allocate_vc_save_buffers(dev);
3524 }
3525 
3526 void pci_free_cap_save_buffers(struct pci_dev *dev)
3527 {
3528 	struct pci_cap_saved_state *tmp;
3529 	struct hlist_node *n;
3530 
3531 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3532 		kfree(tmp);
3533 }
3534 
3535 /**
3536  * pci_configure_ari - enable or disable ARI forwarding
3537  * @dev: the PCI device
3538  *
3539  * If @dev and its upstream bridge both support ARI, enable ARI in the
3540  * bridge.  Otherwise, disable ARI in the bridge.
3541  */
3542 void pci_configure_ari(struct pci_dev *dev)
3543 {
3544 	u32 cap;
3545 	struct pci_dev *bridge;
3546 
3547 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3548 		return;
3549 
3550 	bridge = dev->bus->self;
3551 	if (!bridge)
3552 		return;
3553 
3554 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3555 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3556 		return;
3557 
3558 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3559 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3560 					 PCI_EXP_DEVCTL2_ARI);
3561 		bridge->ari_enabled = 1;
3562 	} else {
3563 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3564 					   PCI_EXP_DEVCTL2_ARI);
3565 		bridge->ari_enabled = 0;
3566 	}
3567 }
3568 
3569 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3570 {
3571 	int pos;
3572 	u16 cap, ctrl;
3573 
3574 	pos = pdev->acs_cap;
3575 	if (!pos)
3576 		return false;
3577 
3578 	/*
3579 	 * Except for egress control, capabilities are either required
3580 	 * or only required if controllable.  Features missing from the
3581 	 * capability field can therefore be assumed as hard-wired enabled.
3582 	 */
3583 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3584 	acs_flags &= (cap | PCI_ACS_EC);
3585 
3586 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3587 	return (ctrl & acs_flags) == acs_flags;
3588 }
3589 
3590 /**
3591  * pci_acs_enabled - test ACS against required flags for a given device
3592  * @pdev: device to test
3593  * @acs_flags: required PCI ACS flags
3594  *
3595  * Return true if the device supports the provided flags.  Automatically
3596  * filters out flags that are not implemented on multifunction devices.
3597  *
3598  * Note that this interface checks the effective ACS capabilities of the
3599  * device rather than the actual capabilities.  For instance, most single
3600  * function endpoints are not required to support ACS because they have no
3601  * opportunity for peer-to-peer access.  We therefore return 'true'
3602  * regardless of whether the device exposes an ACS capability.  This makes
3603  * it much easier for callers of this function to ignore the actual type
3604  * or topology of the device when testing ACS support.
3605  */
3606 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3607 {
3608 	int ret;
3609 
3610 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3611 	if (ret >= 0)
3612 		return ret > 0;
3613 
3614 	/*
3615 	 * Conventional PCI and PCI-X devices never support ACS, either
3616 	 * effectively or actually.  The shared bus topology implies that
3617 	 * any device on the bus can receive or snoop DMA.
3618 	 */
3619 	if (!pci_is_pcie(pdev))
3620 		return false;
3621 
3622 	switch (pci_pcie_type(pdev)) {
3623 	/*
3624 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3625 	 * but since their primary interface is PCI/X, we conservatively
3626 	 * handle them as we would a non-PCIe device.
3627 	 */
3628 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3629 	/*
3630 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3631 	 * applicable... must never implement an ACS Extended Capability...".
3632 	 * This seems arbitrary, but we take a conservative interpretation
3633 	 * of this statement.
3634 	 */
3635 	case PCI_EXP_TYPE_PCI_BRIDGE:
3636 	case PCI_EXP_TYPE_RC_EC:
3637 		return false;
3638 	/*
3639 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3640 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3641 	 * regardless of whether they are single- or multi-function devices.
3642 	 */
3643 	case PCI_EXP_TYPE_DOWNSTREAM:
3644 	case PCI_EXP_TYPE_ROOT_PORT:
3645 		return pci_acs_flags_enabled(pdev, acs_flags);
3646 	/*
3647 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3648 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3649 	 * capabilities, but only when they are part of a multifunction
3650 	 * device.  The footnote for section 6.12 indicates the specific
3651 	 * PCIe types included here.
3652 	 */
3653 	case PCI_EXP_TYPE_ENDPOINT:
3654 	case PCI_EXP_TYPE_UPSTREAM:
3655 	case PCI_EXP_TYPE_LEG_END:
3656 	case PCI_EXP_TYPE_RC_END:
3657 		if (!pdev->multifunction)
3658 			break;
3659 
3660 		return pci_acs_flags_enabled(pdev, acs_flags);
3661 	}
3662 
3663 	/*
3664 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3665 	 * to single function devices with the exception of downstream ports.
3666 	 */
3667 	return true;
3668 }
3669 
3670 /**
3671  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3672  * @start: starting downstream device
3673  * @end: ending upstream device or NULL to search to the root bus
3674  * @acs_flags: required flags
3675  *
3676  * Walk up a device tree from start to end testing PCI ACS support.  If
3677  * any step along the way does not support the required flags, return false.
3678  */
3679 bool pci_acs_path_enabled(struct pci_dev *start,
3680 			  struct pci_dev *end, u16 acs_flags)
3681 {
3682 	struct pci_dev *pdev, *parent = start;
3683 
3684 	do {
3685 		pdev = parent;
3686 
3687 		if (!pci_acs_enabled(pdev, acs_flags))
3688 			return false;
3689 
3690 		if (pci_is_root_bus(pdev->bus))
3691 			return (end == NULL);
3692 
3693 		parent = pdev->bus->self;
3694 	} while (pdev != end);
3695 
3696 	return true;
3697 }
3698 
3699 /**
3700  * pci_acs_init - Initialize ACS if hardware supports it
3701  * @dev: the PCI device
3702  */
3703 void pci_acs_init(struct pci_dev *dev)
3704 {
3705 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3706 
3707 	/*
3708 	 * Attempt to enable ACS regardless of capability because some Root
3709 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3710 	 * the standard ACS capability but still support ACS via those
3711 	 * quirks.
3712 	 */
3713 	pci_enable_acs(dev);
3714 }
3715 
3716 /**
3717  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3718  * @pdev: PCI device
3719  * @bar: BAR to find
3720  *
3721  * Helper to find the position of the ctrl register for a BAR.
3722  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3723  * Returns -ENOENT if no ctrl register for the BAR could be found.
3724  */
3725 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3726 {
3727 	unsigned int pos, nbars, i;
3728 	u32 ctrl;
3729 
3730 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3731 	if (!pos)
3732 		return -ENOTSUPP;
3733 
3734 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3735 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3736 
3737 	for (i = 0; i < nbars; i++, pos += 8) {
3738 		int bar_idx;
3739 
3740 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3741 		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3742 		if (bar_idx == bar)
3743 			return pos;
3744 	}
3745 
3746 	return -ENOENT;
3747 }
3748 
3749 /**
3750  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3751  * @pdev: PCI device
3752  * @bar: BAR to query
3753  *
3754  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3755  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3756  */
3757 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3758 {
3759 	int pos;
3760 	u32 cap;
3761 
3762 	pos = pci_rebar_find_pos(pdev, bar);
3763 	if (pos < 0)
3764 		return 0;
3765 
3766 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3767 	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3768 
3769 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3770 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3771 	    bar == 0 && cap == 0x700)
3772 		return 0x3f00;
3773 
3774 	return cap;
3775 }
3776 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3777 
3778 /**
3779  * pci_rebar_get_current_size - get the current size of a BAR
3780  * @pdev: PCI device
3781  * @bar: BAR to set size to
3782  *
3783  * Read the size of a BAR from the resizable BAR config.
3784  * Returns size if found or negative error code.
3785  */
3786 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3787 {
3788 	int pos;
3789 	u32 ctrl;
3790 
3791 	pos = pci_rebar_find_pos(pdev, bar);
3792 	if (pos < 0)
3793 		return pos;
3794 
3795 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3796 	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3797 }
3798 
3799 /**
3800  * pci_rebar_set_size - set a new size for a BAR
3801  * @pdev: PCI device
3802  * @bar: BAR to set size to
3803  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3804  *
3805  * Set the new size of a BAR as defined in the spec.
3806  * Returns zero if resizing was successful, error code otherwise.
3807  */
3808 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3809 {
3810 	int pos;
3811 	u32 ctrl;
3812 
3813 	pos = pci_rebar_find_pos(pdev, bar);
3814 	if (pos < 0)
3815 		return pos;
3816 
3817 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3818 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3819 	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3820 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3821 	return 0;
3822 }
3823 
3824 /**
3825  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3826  * @dev: the PCI device
3827  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3828  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3829  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3830  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3831  *
3832  * Return 0 if all upstream bridges support AtomicOp routing, egress
3833  * blocking is disabled on all upstream ports, and the root port supports
3834  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3835  * AtomicOp completion), or negative otherwise.
3836  */
3837 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3838 {
3839 	struct pci_bus *bus = dev->bus;
3840 	struct pci_dev *bridge;
3841 	u32 cap, ctl2;
3842 
3843 	/*
3844 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3845 	 * in Device Control 2 is reserved in VFs and the PF value applies
3846 	 * to all associated VFs.
3847 	 */
3848 	if (dev->is_virtfn)
3849 		return -EINVAL;
3850 
3851 	if (!pci_is_pcie(dev))
3852 		return -EINVAL;
3853 
3854 	/*
3855 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3856 	 * AtomicOp requesters.  For now, we only support endpoints as
3857 	 * requesters and root ports as completers.  No endpoints as
3858 	 * completers, and no peer-to-peer.
3859 	 */
3860 
3861 	switch (pci_pcie_type(dev)) {
3862 	case PCI_EXP_TYPE_ENDPOINT:
3863 	case PCI_EXP_TYPE_LEG_END:
3864 	case PCI_EXP_TYPE_RC_END:
3865 		break;
3866 	default:
3867 		return -EINVAL;
3868 	}
3869 
3870 	while (bus->parent) {
3871 		bridge = bus->self;
3872 
3873 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3874 
3875 		switch (pci_pcie_type(bridge)) {
3876 		/* Ensure switch ports support AtomicOp routing */
3877 		case PCI_EXP_TYPE_UPSTREAM:
3878 		case PCI_EXP_TYPE_DOWNSTREAM:
3879 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3880 				return -EINVAL;
3881 			break;
3882 
3883 		/* Ensure root port supports all the sizes we care about */
3884 		case PCI_EXP_TYPE_ROOT_PORT:
3885 			if ((cap & cap_mask) != cap_mask)
3886 				return -EINVAL;
3887 			break;
3888 		}
3889 
3890 		/* Ensure upstream ports don't block AtomicOps on egress */
3891 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3892 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3893 						   &ctl2);
3894 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3895 				return -EINVAL;
3896 		}
3897 
3898 		bus = bus->parent;
3899 	}
3900 
3901 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3902 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3903 	return 0;
3904 }
3905 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3906 
3907 /**
3908  * pci_release_region - Release a PCI bar
3909  * @pdev: PCI device whose resources were previously reserved by
3910  *	  pci_request_region()
3911  * @bar: BAR to release
3912  *
3913  * Releases the PCI I/O and memory resources previously reserved by a
3914  * successful call to pci_request_region().  Call this function only
3915  * after all use of the PCI regions has ceased.
3916  */
3917 void pci_release_region(struct pci_dev *pdev, int bar)
3918 {
3919 	/*
3920 	 * This is done for backwards compatibility, because the old PCI devres
3921 	 * API had a mode in which the function became managed if it had been
3922 	 * enabled with pcim_enable_device() instead of pci_enable_device().
3923 	 */
3924 	if (pci_is_managed(pdev)) {
3925 		pcim_release_region(pdev, bar);
3926 		return;
3927 	}
3928 
3929 	if (pci_resource_len(pdev, bar) == 0)
3930 		return;
3931 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3932 		release_region(pci_resource_start(pdev, bar),
3933 				pci_resource_len(pdev, bar));
3934 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3935 		release_mem_region(pci_resource_start(pdev, bar),
3936 				pci_resource_len(pdev, bar));
3937 }
3938 EXPORT_SYMBOL(pci_release_region);
3939 
3940 /**
3941  * __pci_request_region - Reserved PCI I/O and memory resource
3942  * @pdev: PCI device whose resources are to be reserved
3943  * @bar: BAR to be reserved
3944  * @res_name: Name to be associated with resource.
3945  * @exclusive: whether the region access is exclusive or not
3946  *
3947  * Returns: 0 on success, negative error code on failure.
3948  *
3949  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3950  * being reserved by owner @res_name.  Do not access any
3951  * address inside the PCI regions unless this call returns
3952  * successfully.
3953  *
3954  * If @exclusive is set, then the region is marked so that userspace
3955  * is explicitly not allowed to map the resource via /dev/mem or
3956  * sysfs MMIO access.
3957  *
3958  * Returns 0 on success, or %EBUSY on error.  A warning
3959  * message is also printed on failure.
3960  */
3961 static int __pci_request_region(struct pci_dev *pdev, int bar,
3962 				const char *res_name, int exclusive)
3963 {
3964 	if (pci_is_managed(pdev)) {
3965 		if (exclusive == IORESOURCE_EXCLUSIVE)
3966 			return pcim_request_region_exclusive(pdev, bar, res_name);
3967 
3968 		return pcim_request_region(pdev, bar, res_name);
3969 	}
3970 
3971 	if (pci_resource_len(pdev, bar) == 0)
3972 		return 0;
3973 
3974 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3975 		if (!request_region(pci_resource_start(pdev, bar),
3976 			    pci_resource_len(pdev, bar), res_name))
3977 			goto err_out;
3978 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3979 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3980 					pci_resource_len(pdev, bar), res_name,
3981 					exclusive))
3982 			goto err_out;
3983 	}
3984 
3985 	return 0;
3986 
3987 err_out:
3988 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3989 		 &pdev->resource[bar]);
3990 	return -EBUSY;
3991 }
3992 
3993 /**
3994  * pci_request_region - Reserve PCI I/O and memory resource
3995  * @pdev: PCI device whose resources are to be reserved
3996  * @bar: BAR to be reserved
3997  * @res_name: Name to be associated with resource
3998  *
3999  * Returns: 0 on success, negative error code on failure.
4000  *
4001  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4002  * being reserved by owner @res_name.  Do not access any
4003  * address inside the PCI regions unless this call returns
4004  * successfully.
4005  *
4006  * Returns 0 on success, or %EBUSY on error.  A warning
4007  * message is also printed on failure.
4008  *
4009  * NOTE:
4010  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4011  * when pcim_enable_device() has been called in advance. This hybrid feature is
4012  * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4013  */
4014 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4015 {
4016 	return __pci_request_region(pdev, bar, res_name, 0);
4017 }
4018 EXPORT_SYMBOL(pci_request_region);
4019 
4020 /**
4021  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4022  * @pdev: PCI device whose resources were previously reserved
4023  * @bars: Bitmask of BARs to be released
4024  *
4025  * Release selected PCI I/O and memory resources previously reserved.
4026  * Call this function only after all use of the PCI regions has ceased.
4027  */
4028 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4029 {
4030 	int i;
4031 
4032 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4033 		if (bars & (1 << i))
4034 			pci_release_region(pdev, i);
4035 }
4036 EXPORT_SYMBOL(pci_release_selected_regions);
4037 
4038 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4039 					  const char *res_name, int excl)
4040 {
4041 	int i;
4042 
4043 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4044 		if (bars & (1 << i))
4045 			if (__pci_request_region(pdev, i, res_name, excl))
4046 				goto err_out;
4047 	return 0;
4048 
4049 err_out:
4050 	while (--i >= 0)
4051 		if (bars & (1 << i))
4052 			pci_release_region(pdev, i);
4053 
4054 	return -EBUSY;
4055 }
4056 
4057 
4058 /**
4059  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4060  * @pdev: PCI device whose resources are to be reserved
4061  * @bars: Bitmask of BARs to be requested
4062  * @res_name: Name to be associated with resource
4063  *
4064  * Returns: 0 on success, negative error code on failure.
4065  *
4066  * NOTE:
4067  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4068  * when pcim_enable_device() has been called in advance. This hybrid feature is
4069  * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4070  */
4071 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4072 				 const char *res_name)
4073 {
4074 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4075 }
4076 EXPORT_SYMBOL(pci_request_selected_regions);
4077 
4078 /**
4079  * pci_request_selected_regions_exclusive - Request regions exclusively
4080  * @pdev: PCI device to request regions from
4081  * @bars: bit mask of BARs to request
4082  * @res_name: name to be associated with the requests
4083  *
4084  * Returns: 0 on success, negative error code on failure.
4085  *
4086  * NOTE:
4087  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4088  * when pcim_enable_device() has been called in advance. This hybrid feature is
4089  * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4090  */
4091 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4092 					   const char *res_name)
4093 {
4094 	return __pci_request_selected_regions(pdev, bars, res_name,
4095 			IORESOURCE_EXCLUSIVE);
4096 }
4097 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4098 
4099 /**
4100  * pci_release_regions - Release reserved PCI I/O and memory resources
4101  * @pdev: PCI device whose resources were previously reserved by
4102  *	  pci_request_regions()
4103  *
4104  * Releases all PCI I/O and memory resources previously reserved by a
4105  * successful call to pci_request_regions().  Call this function only
4106  * after all use of the PCI regions has ceased.
4107  */
4108 void pci_release_regions(struct pci_dev *pdev)
4109 {
4110 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4111 }
4112 EXPORT_SYMBOL(pci_release_regions);
4113 
4114 /**
4115  * pci_request_regions - Reserve PCI I/O and memory resources
4116  * @pdev: PCI device whose resources are to be reserved
4117  * @res_name: Name to be associated with resource.
4118  *
4119  * Mark all PCI regions associated with PCI device @pdev as
4120  * being reserved by owner @res_name.  Do not access any
4121  * address inside the PCI regions unless this call returns
4122  * successfully.
4123  *
4124  * Returns 0 on success, or %EBUSY on error.  A warning
4125  * message is also printed on failure.
4126  *
4127  * NOTE:
4128  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4129  * when pcim_enable_device() has been called in advance. This hybrid feature is
4130  * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4131  */
4132 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4133 {
4134 	return pci_request_selected_regions(pdev,
4135 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4136 }
4137 EXPORT_SYMBOL(pci_request_regions);
4138 
4139 /**
4140  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4141  * @pdev: PCI device whose resources are to be reserved
4142  * @res_name: Name to be associated with resource.
4143  *
4144  * Returns: 0 on success, negative error code on failure.
4145  *
4146  * Mark all PCI regions associated with PCI device @pdev as being reserved
4147  * by owner @res_name.  Do not access any address inside the PCI regions
4148  * unless this call returns successfully.
4149  *
4150  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4151  * and the sysfs MMIO access will not be allowed.
4152  *
4153  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4154  * printed on failure.
4155  *
4156  * NOTE:
4157  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4158  * when pcim_enable_device() has been called in advance. This hybrid feature is
4159  * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4160  */
4161 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4162 {
4163 	return pci_request_selected_regions_exclusive(pdev,
4164 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4165 }
4166 EXPORT_SYMBOL(pci_request_regions_exclusive);
4167 
4168 /*
4169  * Record the PCI IO range (expressed as CPU physical address + size).
4170  * Return a negative value if an error has occurred, zero otherwise
4171  */
4172 int pci_register_io_range(const struct fwnode_handle *fwnode, phys_addr_t addr,
4173 			resource_size_t	size)
4174 {
4175 	int ret = 0;
4176 #ifdef PCI_IOBASE
4177 	struct logic_pio_hwaddr *range;
4178 
4179 	if (!size || addr + size < addr)
4180 		return -EINVAL;
4181 
4182 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4183 	if (!range)
4184 		return -ENOMEM;
4185 
4186 	range->fwnode = fwnode;
4187 	range->size = size;
4188 	range->hw_start = addr;
4189 	range->flags = LOGIC_PIO_CPU_MMIO;
4190 
4191 	ret = logic_pio_register_range(range);
4192 	if (ret)
4193 		kfree(range);
4194 
4195 	/* Ignore duplicates due to deferred probing */
4196 	if (ret == -EEXIST)
4197 		ret = 0;
4198 #endif
4199 
4200 	return ret;
4201 }
4202 
4203 phys_addr_t pci_pio_to_address(unsigned long pio)
4204 {
4205 #ifdef PCI_IOBASE
4206 	if (pio < MMIO_UPPER_LIMIT)
4207 		return logic_pio_to_hwaddr(pio);
4208 #endif
4209 
4210 	return (phys_addr_t) OF_BAD_ADDR;
4211 }
4212 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4213 
4214 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4215 {
4216 #ifdef PCI_IOBASE
4217 	return logic_pio_trans_cpuaddr(address);
4218 #else
4219 	if (address > IO_SPACE_LIMIT)
4220 		return (unsigned long)-1;
4221 
4222 	return (unsigned long) address;
4223 #endif
4224 }
4225 
4226 /**
4227  * pci_remap_iospace - Remap the memory mapped I/O space
4228  * @res: Resource describing the I/O space
4229  * @phys_addr: physical address of range to be mapped
4230  *
4231  * Remap the memory mapped I/O space described by the @res and the CPU
4232  * physical address @phys_addr into virtual address space.  Only
4233  * architectures that have memory mapped IO functions defined (and the
4234  * PCI_IOBASE value defined) should call this function.
4235  */
4236 #ifndef pci_remap_iospace
4237 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4238 {
4239 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4240 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4241 
4242 	if (!(res->flags & IORESOURCE_IO))
4243 		return -EINVAL;
4244 
4245 	if (res->end > IO_SPACE_LIMIT)
4246 		return -EINVAL;
4247 
4248 	return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4249 			       pgprot_device(PAGE_KERNEL));
4250 #else
4251 	/*
4252 	 * This architecture does not have memory mapped I/O space,
4253 	 * so this function should never be called
4254 	 */
4255 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4256 	return -ENODEV;
4257 #endif
4258 }
4259 EXPORT_SYMBOL(pci_remap_iospace);
4260 #endif
4261 
4262 /**
4263  * pci_unmap_iospace - Unmap the memory mapped I/O space
4264  * @res: resource to be unmapped
4265  *
4266  * Unmap the CPU virtual address @res from virtual address space.  Only
4267  * architectures that have memory mapped IO functions defined (and the
4268  * PCI_IOBASE value defined) should call this function.
4269  */
4270 void pci_unmap_iospace(struct resource *res)
4271 {
4272 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4273 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4274 
4275 	vunmap_range(vaddr, vaddr + resource_size(res));
4276 #endif
4277 }
4278 EXPORT_SYMBOL(pci_unmap_iospace);
4279 
4280 static void __pci_set_master(struct pci_dev *dev, bool enable)
4281 {
4282 	u16 old_cmd, cmd;
4283 
4284 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4285 	if (enable)
4286 		cmd = old_cmd | PCI_COMMAND_MASTER;
4287 	else
4288 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4289 	if (cmd != old_cmd) {
4290 		pci_dbg(dev, "%s bus mastering\n",
4291 			enable ? "enabling" : "disabling");
4292 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4293 	}
4294 	dev->is_busmaster = enable;
4295 }
4296 
4297 /**
4298  * pcibios_setup - process "pci=" kernel boot arguments
4299  * @str: string used to pass in "pci=" kernel boot arguments
4300  *
4301  * Process kernel boot arguments.  This is the default implementation.
4302  * Architecture specific implementations can override this as necessary.
4303  */
4304 char * __weak __init pcibios_setup(char *str)
4305 {
4306 	return str;
4307 }
4308 
4309 /**
4310  * pcibios_set_master - enable PCI bus-mastering for device dev
4311  * @dev: the PCI device to enable
4312  *
4313  * Enables PCI bus-mastering for the device.  This is the default
4314  * implementation.  Architecture specific implementations can override
4315  * this if necessary.
4316  */
4317 void __weak pcibios_set_master(struct pci_dev *dev)
4318 {
4319 	u8 lat;
4320 
4321 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4322 	if (pci_is_pcie(dev))
4323 		return;
4324 
4325 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4326 	if (lat < 16)
4327 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4328 	else if (lat > pcibios_max_latency)
4329 		lat = pcibios_max_latency;
4330 	else
4331 		return;
4332 
4333 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4334 }
4335 
4336 /**
4337  * pci_set_master - enables bus-mastering for device dev
4338  * @dev: the PCI device to enable
4339  *
4340  * Enables bus-mastering on the device and calls pcibios_set_master()
4341  * to do the needed arch specific settings.
4342  */
4343 void pci_set_master(struct pci_dev *dev)
4344 {
4345 	__pci_set_master(dev, true);
4346 	pcibios_set_master(dev);
4347 }
4348 EXPORT_SYMBOL(pci_set_master);
4349 
4350 /**
4351  * pci_clear_master - disables bus-mastering for device dev
4352  * @dev: the PCI device to disable
4353  */
4354 void pci_clear_master(struct pci_dev *dev)
4355 {
4356 	__pci_set_master(dev, false);
4357 }
4358 EXPORT_SYMBOL(pci_clear_master);
4359 
4360 /**
4361  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4362  * @dev: the PCI device for which MWI is to be enabled
4363  *
4364  * Helper function for pci_set_mwi.
4365  * Originally copied from drivers/net/acenic.c.
4366  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4367  *
4368  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4369  */
4370 int pci_set_cacheline_size(struct pci_dev *dev)
4371 {
4372 	u8 cacheline_size;
4373 
4374 	if (!pci_cache_line_size)
4375 		return -EINVAL;
4376 
4377 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4378 	   equal to or multiple of the right value. */
4379 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4380 	if (cacheline_size >= pci_cache_line_size &&
4381 	    (cacheline_size % pci_cache_line_size) == 0)
4382 		return 0;
4383 
4384 	/* Write the correct value. */
4385 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4386 	/* Read it back. */
4387 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4388 	if (cacheline_size == pci_cache_line_size)
4389 		return 0;
4390 
4391 	pci_dbg(dev, "cache line size of %d is not supported\n",
4392 		   pci_cache_line_size << 2);
4393 
4394 	return -EINVAL;
4395 }
4396 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4397 
4398 /**
4399  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4400  * @dev: the PCI device for which MWI is enabled
4401  *
4402  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4403  *
4404  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4405  */
4406 int pci_set_mwi(struct pci_dev *dev)
4407 {
4408 #ifdef PCI_DISABLE_MWI
4409 	return 0;
4410 #else
4411 	int rc;
4412 	u16 cmd;
4413 
4414 	rc = pci_set_cacheline_size(dev);
4415 	if (rc)
4416 		return rc;
4417 
4418 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4419 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4420 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4421 		cmd |= PCI_COMMAND_INVALIDATE;
4422 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4423 	}
4424 	return 0;
4425 #endif
4426 }
4427 EXPORT_SYMBOL(pci_set_mwi);
4428 
4429 /**
4430  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4431  * @dev: the PCI device for which MWI is enabled
4432  *
4433  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4434  * Callers are not required to check the return value.
4435  *
4436  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4437  */
4438 int pci_try_set_mwi(struct pci_dev *dev)
4439 {
4440 #ifdef PCI_DISABLE_MWI
4441 	return 0;
4442 #else
4443 	return pci_set_mwi(dev);
4444 #endif
4445 }
4446 EXPORT_SYMBOL(pci_try_set_mwi);
4447 
4448 /**
4449  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4450  * @dev: the PCI device to disable
4451  *
4452  * Disables PCI Memory-Write-Invalidate transaction on the device
4453  */
4454 void pci_clear_mwi(struct pci_dev *dev)
4455 {
4456 #ifndef PCI_DISABLE_MWI
4457 	u16 cmd;
4458 
4459 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4460 	if (cmd & PCI_COMMAND_INVALIDATE) {
4461 		cmd &= ~PCI_COMMAND_INVALIDATE;
4462 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4463 	}
4464 #endif
4465 }
4466 EXPORT_SYMBOL(pci_clear_mwi);
4467 
4468 /**
4469  * pci_disable_parity - disable parity checking for device
4470  * @dev: the PCI device to operate on
4471  *
4472  * Disable parity checking for device @dev
4473  */
4474 void pci_disable_parity(struct pci_dev *dev)
4475 {
4476 	u16 cmd;
4477 
4478 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4479 	if (cmd & PCI_COMMAND_PARITY) {
4480 		cmd &= ~PCI_COMMAND_PARITY;
4481 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4482 	}
4483 }
4484 
4485 /**
4486  * pci_intx - enables/disables PCI INTx for device dev
4487  * @pdev: the PCI device to operate on
4488  * @enable: boolean: whether to enable or disable PCI INTx
4489  *
4490  * Enables/disables PCI INTx for device @pdev
4491  *
4492  * NOTE:
4493  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4494  * when pcim_enable_device() has been called in advance. This hybrid feature is
4495  * DEPRECATED! If you want managed cleanup, use pcim_intx() instead.
4496  */
4497 void pci_intx(struct pci_dev *pdev, int enable)
4498 {
4499 	u16 pci_command, new;
4500 
4501 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4502 
4503 	if (enable)
4504 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4505 	else
4506 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4507 
4508 	if (new != pci_command) {
4509 		/* Preserve the "hybrid" behavior for backwards compatibility */
4510 		if (pci_is_managed(pdev)) {
4511 			WARN_ON_ONCE(pcim_intx(pdev, enable) != 0);
4512 			return;
4513 		}
4514 
4515 		pci_write_config_word(pdev, PCI_COMMAND, new);
4516 	}
4517 }
4518 EXPORT_SYMBOL_GPL(pci_intx);
4519 
4520 /**
4521  * pci_wait_for_pending_transaction - wait for pending transaction
4522  * @dev: the PCI device to operate on
4523  *
4524  * Return 0 if transaction is pending 1 otherwise.
4525  */
4526 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4527 {
4528 	if (!pci_is_pcie(dev))
4529 		return 1;
4530 
4531 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4532 				    PCI_EXP_DEVSTA_TRPND);
4533 }
4534 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4535 
4536 /**
4537  * pcie_flr - initiate a PCIe function level reset
4538  * @dev: device to reset
4539  *
4540  * Initiate a function level reset unconditionally on @dev without
4541  * checking any flags and DEVCAP
4542  */
4543 int pcie_flr(struct pci_dev *dev)
4544 {
4545 	if (!pci_wait_for_pending_transaction(dev))
4546 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4547 
4548 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4549 
4550 	if (dev->imm_ready)
4551 		return 0;
4552 
4553 	/*
4554 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4555 	 * 100ms, but may silently discard requests while the FLR is in
4556 	 * progress.  Wait 100ms before trying to access the device.
4557 	 */
4558 	msleep(100);
4559 
4560 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4561 }
4562 EXPORT_SYMBOL_GPL(pcie_flr);
4563 
4564 /**
4565  * pcie_reset_flr - initiate a PCIe function level reset
4566  * @dev: device to reset
4567  * @probe: if true, return 0 if device can be reset this way
4568  *
4569  * Initiate a function level reset on @dev.
4570  */
4571 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4572 {
4573 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4574 		return -ENOTTY;
4575 
4576 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4577 		return -ENOTTY;
4578 
4579 	if (probe)
4580 		return 0;
4581 
4582 	return pcie_flr(dev);
4583 }
4584 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4585 
4586 static int pci_af_flr(struct pci_dev *dev, bool probe)
4587 {
4588 	int pos;
4589 	u8 cap;
4590 
4591 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4592 	if (!pos)
4593 		return -ENOTTY;
4594 
4595 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4596 		return -ENOTTY;
4597 
4598 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4599 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4600 		return -ENOTTY;
4601 
4602 	if (probe)
4603 		return 0;
4604 
4605 	/*
4606 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4607 	 * is used, so we use the control offset rather than status and shift
4608 	 * the test bit to match.
4609 	 */
4610 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4611 				 PCI_AF_STATUS_TP << 8))
4612 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4613 
4614 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4615 
4616 	if (dev->imm_ready)
4617 		return 0;
4618 
4619 	/*
4620 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4621 	 * updated 27 July 2006; a device must complete an FLR within
4622 	 * 100ms, but may silently discard requests while the FLR is in
4623 	 * progress.  Wait 100ms before trying to access the device.
4624 	 */
4625 	msleep(100);
4626 
4627 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4628 }
4629 
4630 /**
4631  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4632  * @dev: Device to reset.
4633  * @probe: if true, return 0 if the device can be reset this way.
4634  *
4635  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4636  * unset, it will be reinitialized internally when going from PCI_D3hot to
4637  * PCI_D0.  If that's the case and the device is not in a low-power state
4638  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4639  *
4640  * NOTE: This causes the caller to sleep for twice the device power transition
4641  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4642  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4643  * Moreover, only devices in D0 can be reset by this function.
4644  */
4645 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4646 {
4647 	u16 csr;
4648 
4649 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4650 		return -ENOTTY;
4651 
4652 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4653 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4654 		return -ENOTTY;
4655 
4656 	if (probe)
4657 		return 0;
4658 
4659 	if (dev->current_state != PCI_D0)
4660 		return -EINVAL;
4661 
4662 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4663 	csr |= PCI_D3hot;
4664 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4665 	pci_dev_d3_sleep(dev);
4666 
4667 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4668 	csr |= PCI_D0;
4669 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4670 	pci_dev_d3_sleep(dev);
4671 
4672 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4673 }
4674 
4675 /**
4676  * pcie_wait_for_link_status - Wait for link status change
4677  * @pdev: Device whose link to wait for.
4678  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4679  * @active: Waiting for active or inactive?
4680  *
4681  * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4682  * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4683  */
4684 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4685 				     bool use_lt, bool active)
4686 {
4687 	u16 lnksta_mask, lnksta_match;
4688 	unsigned long end_jiffies;
4689 	u16 lnksta;
4690 
4691 	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4692 	lnksta_match = active ? lnksta_mask : 0;
4693 
4694 	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4695 	do {
4696 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4697 		if ((lnksta & lnksta_mask) == lnksta_match)
4698 			return 0;
4699 		msleep(1);
4700 	} while (time_before(jiffies, end_jiffies));
4701 
4702 	return -ETIMEDOUT;
4703 }
4704 
4705 /**
4706  * pcie_retrain_link - Request a link retrain and wait for it to complete
4707  * @pdev: Device whose link to retrain.
4708  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4709  *
4710  * Retrain completion status is retrieved from the Link Status Register
4711  * according to @use_lt.  It is not verified whether the use of the DLLLA
4712  * bit is valid.
4713  *
4714  * Return 0 if successful, or -ETIMEDOUT if training has not completed
4715  * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4716  */
4717 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4718 {
4719 	int rc;
4720 
4721 	/*
4722 	 * Ensure the updated LNKCTL parameters are used during link
4723 	 * training by checking that there is no ongoing link training that
4724 	 * may have started before link parameters were changed, so as to
4725 	 * avoid LTSSM race as recommended in Implementation Note at the end
4726 	 * of PCIe r6.1 sec 7.5.3.7.
4727 	 */
4728 	rc = pcie_wait_for_link_status(pdev, true, false);
4729 	if (rc)
4730 		return rc;
4731 
4732 	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4733 	if (pdev->clear_retrain_link) {
4734 		/*
4735 		 * Due to an erratum in some devices the Retrain Link bit
4736 		 * needs to be cleared again manually to allow the link
4737 		 * training to succeed.
4738 		 */
4739 		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4740 	}
4741 
4742 	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4743 
4744 	/*
4745 	 * Clear LBMS after a manual retrain so that the bit can be used
4746 	 * to track link speed or width changes made by hardware itself
4747 	 * in attempt to correct unreliable link operation.
4748 	 */
4749 	pcie_reset_lbms_count(pdev);
4750 	return rc;
4751 }
4752 
4753 /**
4754  * pcie_wait_for_link_delay - Wait until link is active or inactive
4755  * @pdev: Bridge device
4756  * @active: waiting for active or inactive?
4757  * @delay: Delay to wait after link has become active (in ms)
4758  *
4759  * Use this to wait till link becomes active or inactive.
4760  */
4761 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4762 				     int delay)
4763 {
4764 	int rc;
4765 
4766 	/*
4767 	 * Some controllers might not implement link active reporting. In this
4768 	 * case, we wait for 1000 ms + any delay requested by the caller.
4769 	 */
4770 	if (!pdev->link_active_reporting) {
4771 		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4772 		return true;
4773 	}
4774 
4775 	/*
4776 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4777 	 * after which we should expect an link active if the reset was
4778 	 * successful. If so, software must wait a minimum 100ms before sending
4779 	 * configuration requests to devices downstream this port.
4780 	 *
4781 	 * If the link fails to activate, either the device was physically
4782 	 * removed or the link is permanently failed.
4783 	 */
4784 	if (active)
4785 		msleep(20);
4786 	rc = pcie_wait_for_link_status(pdev, false, active);
4787 	if (active) {
4788 		if (rc)
4789 			rc = pcie_failed_link_retrain(pdev);
4790 		if (rc)
4791 			return false;
4792 
4793 		msleep(delay);
4794 		return true;
4795 	}
4796 
4797 	if (rc)
4798 		return false;
4799 
4800 	return true;
4801 }
4802 
4803 /**
4804  * pcie_wait_for_link - Wait until link is active or inactive
4805  * @pdev: Bridge device
4806  * @active: waiting for active or inactive?
4807  *
4808  * Use this to wait till link becomes active or inactive.
4809  */
4810 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4811 {
4812 	return pcie_wait_for_link_delay(pdev, active, 100);
4813 }
4814 
4815 /*
4816  * Find maximum D3cold delay required by all the devices on the bus.  The
4817  * spec says 100 ms, but firmware can lower it and we allow drivers to
4818  * increase it as well.
4819  *
4820  * Called with @pci_bus_sem locked for reading.
4821  */
4822 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4823 {
4824 	const struct pci_dev *pdev;
4825 	int min_delay = 100;
4826 	int max_delay = 0;
4827 
4828 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4829 		if (pdev->d3cold_delay < min_delay)
4830 			min_delay = pdev->d3cold_delay;
4831 		if (pdev->d3cold_delay > max_delay)
4832 			max_delay = pdev->d3cold_delay;
4833 	}
4834 
4835 	return max(min_delay, max_delay);
4836 }
4837 
4838 /**
4839  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4840  * @dev: PCI bridge
4841  * @reset_type: reset type in human-readable form
4842  *
4843  * Handle necessary delays before access to the devices on the secondary
4844  * side of the bridge are permitted after D3cold to D0 transition
4845  * or Conventional Reset.
4846  *
4847  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4848  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4849  * 4.3.2.
4850  *
4851  * Return 0 on success or -ENOTTY if the first device on the secondary bus
4852  * failed to become accessible.
4853  */
4854 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4855 {
4856 	struct pci_dev *child __free(pci_dev_put) = NULL;
4857 	int delay;
4858 
4859 	if (pci_dev_is_disconnected(dev))
4860 		return 0;
4861 
4862 	if (!pci_is_bridge(dev))
4863 		return 0;
4864 
4865 	down_read(&pci_bus_sem);
4866 
4867 	/*
4868 	 * We only deal with devices that are present currently on the bus.
4869 	 * For any hot-added devices the access delay is handled in pciehp
4870 	 * board_added(). In case of ACPI hotplug the firmware is expected
4871 	 * to configure the devices before OS is notified.
4872 	 */
4873 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4874 		up_read(&pci_bus_sem);
4875 		return 0;
4876 	}
4877 
4878 	/* Take d3cold_delay requirements into account */
4879 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4880 	if (!delay) {
4881 		up_read(&pci_bus_sem);
4882 		return 0;
4883 	}
4884 
4885 	child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
4886 					     struct pci_dev, bus_list));
4887 	up_read(&pci_bus_sem);
4888 
4889 	/*
4890 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4891 	 * accessing the device after reset (that is 1000 ms + 100 ms).
4892 	 */
4893 	if (!pci_is_pcie(dev)) {
4894 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4895 		msleep(1000 + delay);
4896 		return 0;
4897 	}
4898 
4899 	/*
4900 	 * For PCIe downstream and root ports that do not support speeds
4901 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4902 	 * speeds (gen3) we need to wait first for the data link layer to
4903 	 * become active.
4904 	 *
4905 	 * However, 100 ms is the minimum and the PCIe spec says the
4906 	 * software must allow at least 1s before it can determine that the
4907 	 * device that did not respond is a broken device. Also device can
4908 	 * take longer than that to respond if it indicates so through Request
4909 	 * Retry Status completions.
4910 	 *
4911 	 * Therefore we wait for 100 ms and check for the device presence
4912 	 * until the timeout expires.
4913 	 */
4914 	if (!pcie_downstream_port(dev))
4915 		return 0;
4916 
4917 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4918 		u16 status;
4919 
4920 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4921 		msleep(delay);
4922 
4923 		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4924 			return 0;
4925 
4926 		/*
4927 		 * If the port supports active link reporting we now check
4928 		 * whether the link is active and if not bail out early with
4929 		 * the assumption that the device is not present anymore.
4930 		 */
4931 		if (!dev->link_active_reporting)
4932 			return -ENOTTY;
4933 
4934 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4935 		if (!(status & PCI_EXP_LNKSTA_DLLLA))
4936 			return -ENOTTY;
4937 
4938 		return pci_dev_wait(child, reset_type,
4939 				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4940 	}
4941 
4942 	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4943 		delay);
4944 	if (!pcie_wait_for_link_delay(dev, true, delay)) {
4945 		/* Did not train, no need to wait any further */
4946 		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4947 		return -ENOTTY;
4948 	}
4949 
4950 	return pci_dev_wait(child, reset_type,
4951 			    PCIE_RESET_READY_POLL_MS - delay);
4952 }
4953 
4954 void pci_reset_secondary_bus(struct pci_dev *dev)
4955 {
4956 	u16 ctrl;
4957 
4958 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4959 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4960 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4961 
4962 	/*
4963 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4964 	 * this to 2ms to ensure that we meet the minimum requirement.
4965 	 */
4966 	msleep(2);
4967 
4968 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4969 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4970 }
4971 
4972 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4973 {
4974 	pci_reset_secondary_bus(dev);
4975 }
4976 
4977 /**
4978  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4979  * @dev: Bridge device
4980  *
4981  * Use the bridge control register to assert reset on the secondary bus.
4982  * Devices on the secondary bus are left in power-on state.
4983  */
4984 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4985 {
4986 	if (!dev->block_cfg_access)
4987 		pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n",
4988 			      __builtin_return_address(0));
4989 	pcibios_reset_secondary_bus(dev);
4990 
4991 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4992 }
4993 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4994 
4995 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4996 {
4997 	struct pci_dev *pdev;
4998 
4999 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5000 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5001 		return -ENOTTY;
5002 
5003 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5004 		if (pdev != dev)
5005 			return -ENOTTY;
5006 
5007 	if (probe)
5008 		return 0;
5009 
5010 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5011 }
5012 
5013 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5014 {
5015 	int rc = -ENOTTY;
5016 
5017 	if (!hotplug || !try_module_get(hotplug->owner))
5018 		return rc;
5019 
5020 	if (hotplug->ops->reset_slot)
5021 		rc = hotplug->ops->reset_slot(hotplug, probe);
5022 
5023 	module_put(hotplug->owner);
5024 
5025 	return rc;
5026 }
5027 
5028 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5029 {
5030 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5031 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5032 		return -ENOTTY;
5033 
5034 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5035 }
5036 
5037 static u16 cxl_port_dvsec(struct pci_dev *dev)
5038 {
5039 	return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
5040 					 PCI_DVSEC_CXL_PORT);
5041 }
5042 
5043 static bool cxl_sbr_masked(struct pci_dev *dev)
5044 {
5045 	u16 dvsec, reg;
5046 	int rc;
5047 
5048 	dvsec = cxl_port_dvsec(dev);
5049 	if (!dvsec)
5050 		return false;
5051 
5052 	rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, &reg);
5053 	if (rc || PCI_POSSIBLE_ERROR(reg))
5054 		return false;
5055 
5056 	/*
5057 	 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
5058 	 * bit in Bridge Control has no effect.  When 1, the Port generates
5059 	 * hot reset when the SBR bit is set to 1.
5060 	 */
5061 	if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
5062 		return false;
5063 
5064 	return true;
5065 }
5066 
5067 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5068 {
5069 	struct pci_dev *bridge = pci_upstream_bridge(dev);
5070 	int rc;
5071 
5072 	/*
5073 	 * If "dev" is below a CXL port that has SBR control masked, SBR
5074 	 * won't do anything, so return error.
5075 	 */
5076 	if (bridge && cxl_sbr_masked(bridge)) {
5077 		if (probe)
5078 			return 0;
5079 
5080 		return -ENOTTY;
5081 	}
5082 
5083 	rc = pci_dev_reset_slot_function(dev, probe);
5084 	if (rc != -ENOTTY)
5085 		return rc;
5086 	return pci_parent_bus_reset(dev, probe);
5087 }
5088 
5089 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
5090 {
5091 	struct pci_dev *bridge;
5092 	u16 dvsec, reg, val;
5093 	int rc;
5094 
5095 	bridge = pci_upstream_bridge(dev);
5096 	if (!bridge)
5097 		return -ENOTTY;
5098 
5099 	dvsec = cxl_port_dvsec(bridge);
5100 	if (!dvsec)
5101 		return -ENOTTY;
5102 
5103 	if (probe)
5104 		return 0;
5105 
5106 	rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, &reg);
5107 	if (rc)
5108 		return -ENOTTY;
5109 
5110 	if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
5111 		val = reg;
5112 	} else {
5113 		val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
5114 		pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5115 				      val);
5116 	}
5117 
5118 	rc = pci_reset_bus_function(dev, probe);
5119 
5120 	if (reg != val)
5121 		pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5122 				      reg);
5123 
5124 	return rc;
5125 }
5126 
5127 void pci_dev_lock(struct pci_dev *dev)
5128 {
5129 	/* block PM suspend, driver probe, etc. */
5130 	device_lock(&dev->dev);
5131 	pci_cfg_access_lock(dev);
5132 }
5133 EXPORT_SYMBOL_GPL(pci_dev_lock);
5134 
5135 /* Return 1 on successful lock, 0 on contention */
5136 int pci_dev_trylock(struct pci_dev *dev)
5137 {
5138 	if (device_trylock(&dev->dev)) {
5139 		if (pci_cfg_access_trylock(dev))
5140 			return 1;
5141 		device_unlock(&dev->dev);
5142 	}
5143 
5144 	return 0;
5145 }
5146 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5147 
5148 void pci_dev_unlock(struct pci_dev *dev)
5149 {
5150 	pci_cfg_access_unlock(dev);
5151 	device_unlock(&dev->dev);
5152 }
5153 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5154 
5155 static void pci_dev_save_and_disable(struct pci_dev *dev)
5156 {
5157 	const struct pci_error_handlers *err_handler =
5158 			dev->driver ? dev->driver->err_handler : NULL;
5159 
5160 	/*
5161 	 * dev->driver->err_handler->reset_prepare() is protected against
5162 	 * races with ->remove() by the device lock, which must be held by
5163 	 * the caller.
5164 	 */
5165 	if (err_handler && err_handler->reset_prepare)
5166 		err_handler->reset_prepare(dev);
5167 	else if (dev->driver)
5168 		pci_warn(dev, "resetting");
5169 
5170 	/*
5171 	 * Wake-up device prior to save.  PM registers default to D0 after
5172 	 * reset and a simple register restore doesn't reliably return
5173 	 * to a non-D0 state anyway.
5174 	 */
5175 	pci_set_power_state(dev, PCI_D0);
5176 
5177 	pci_save_state(dev);
5178 	/*
5179 	 * Disable the device by clearing the Command register, except for
5180 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5181 	 * BARs, but also prevents the device from being Bus Master, preventing
5182 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5183 	 * compliant devices, INTx-disable prevents legacy interrupts.
5184 	 */
5185 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5186 }
5187 
5188 static void pci_dev_restore(struct pci_dev *dev)
5189 {
5190 	const struct pci_error_handlers *err_handler =
5191 			dev->driver ? dev->driver->err_handler : NULL;
5192 
5193 	pci_restore_state(dev);
5194 
5195 	/*
5196 	 * dev->driver->err_handler->reset_done() is protected against
5197 	 * races with ->remove() by the device lock, which must be held by
5198 	 * the caller.
5199 	 */
5200 	if (err_handler && err_handler->reset_done)
5201 		err_handler->reset_done(dev);
5202 	else if (dev->driver)
5203 		pci_warn(dev, "reset done");
5204 }
5205 
5206 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5207 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5208 	{ },
5209 	{ pci_dev_specific_reset, .name = "device_specific" },
5210 	{ pci_dev_acpi_reset, .name = "acpi" },
5211 	{ pcie_reset_flr, .name = "flr" },
5212 	{ pci_af_flr, .name = "af_flr" },
5213 	{ pci_pm_reset, .name = "pm" },
5214 	{ pci_reset_bus_function, .name = "bus" },
5215 	{ cxl_reset_bus_function, .name = "cxl_bus" },
5216 };
5217 
5218 static ssize_t reset_method_show(struct device *dev,
5219 				 struct device_attribute *attr, char *buf)
5220 {
5221 	struct pci_dev *pdev = to_pci_dev(dev);
5222 	ssize_t len = 0;
5223 	int i, m;
5224 
5225 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5226 		m = pdev->reset_methods[i];
5227 		if (!m)
5228 			break;
5229 
5230 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5231 				     pci_reset_fn_methods[m].name);
5232 	}
5233 
5234 	if (len)
5235 		len += sysfs_emit_at(buf, len, "\n");
5236 
5237 	return len;
5238 }
5239 
5240 static int reset_method_lookup(const char *name)
5241 {
5242 	int m;
5243 
5244 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5245 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5246 			return m;
5247 	}
5248 
5249 	return 0;	/* not found */
5250 }
5251 
5252 static ssize_t reset_method_store(struct device *dev,
5253 				  struct device_attribute *attr,
5254 				  const char *buf, size_t count)
5255 {
5256 	struct pci_dev *pdev = to_pci_dev(dev);
5257 	char *options, *tmp_options, *name;
5258 	int m, n;
5259 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5260 
5261 	if (sysfs_streq(buf, "")) {
5262 		pdev->reset_methods[0] = 0;
5263 		pci_warn(pdev, "All device reset methods disabled by user");
5264 		return count;
5265 	}
5266 
5267 	if (sysfs_streq(buf, "default")) {
5268 		pci_init_reset_methods(pdev);
5269 		return count;
5270 	}
5271 
5272 	options = kstrndup(buf, count, GFP_KERNEL);
5273 	if (!options)
5274 		return -ENOMEM;
5275 
5276 	n = 0;
5277 	tmp_options = options;
5278 	while ((name = strsep(&tmp_options, " ")) != NULL) {
5279 		if (sysfs_streq(name, ""))
5280 			continue;
5281 
5282 		name = strim(name);
5283 
5284 		m = reset_method_lookup(name);
5285 		if (!m) {
5286 			pci_err(pdev, "Invalid reset method '%s'", name);
5287 			goto error;
5288 		}
5289 
5290 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5291 			pci_err(pdev, "Unsupported reset method '%s'", name);
5292 			goto error;
5293 		}
5294 
5295 		if (n == PCI_NUM_RESET_METHODS - 1) {
5296 			pci_err(pdev, "Too many reset methods\n");
5297 			goto error;
5298 		}
5299 
5300 		reset_methods[n++] = m;
5301 	}
5302 
5303 	reset_methods[n] = 0;
5304 
5305 	/* Warn if dev-specific supported but not highest priority */
5306 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5307 	    reset_methods[0] != 1)
5308 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5309 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5310 	kfree(options);
5311 	return count;
5312 
5313 error:
5314 	/* Leave previous methods unchanged */
5315 	kfree(options);
5316 	return -EINVAL;
5317 }
5318 static DEVICE_ATTR_RW(reset_method);
5319 
5320 static struct attribute *pci_dev_reset_method_attrs[] = {
5321 	&dev_attr_reset_method.attr,
5322 	NULL,
5323 };
5324 
5325 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5326 						    struct attribute *a, int n)
5327 {
5328 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5329 
5330 	if (!pci_reset_supported(pdev))
5331 		return 0;
5332 
5333 	return a->mode;
5334 }
5335 
5336 const struct attribute_group pci_dev_reset_method_attr_group = {
5337 	.attrs = pci_dev_reset_method_attrs,
5338 	.is_visible = pci_dev_reset_method_attr_is_visible,
5339 };
5340 
5341 /**
5342  * __pci_reset_function_locked - reset a PCI device function while holding
5343  * the @dev mutex lock.
5344  * @dev: PCI device to reset
5345  *
5346  * Some devices allow an individual function to be reset without affecting
5347  * other functions in the same device.  The PCI device must be responsive
5348  * to PCI config space in order to use this function.
5349  *
5350  * The device function is presumed to be unused and the caller is holding
5351  * the device mutex lock when this function is called.
5352  *
5353  * Resetting the device will make the contents of PCI configuration space
5354  * random, so any caller of this must be prepared to reinitialise the
5355  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5356  * etc.
5357  *
5358  * Returns 0 if the device function was successfully reset or negative if the
5359  * device doesn't support resetting a single function.
5360  */
5361 int __pci_reset_function_locked(struct pci_dev *dev)
5362 {
5363 	int i, m, rc;
5364 
5365 	might_sleep();
5366 
5367 	/*
5368 	 * A reset method returns -ENOTTY if it doesn't support this device and
5369 	 * we should try the next method.
5370 	 *
5371 	 * If it returns 0 (success), we're finished.  If it returns any other
5372 	 * error, we're also finished: this indicates that further reset
5373 	 * mechanisms might be broken on the device.
5374 	 */
5375 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5376 		m = dev->reset_methods[i];
5377 		if (!m)
5378 			return -ENOTTY;
5379 
5380 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5381 		if (!rc)
5382 			return 0;
5383 		if (rc != -ENOTTY)
5384 			return rc;
5385 	}
5386 
5387 	return -ENOTTY;
5388 }
5389 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5390 
5391 /**
5392  * pci_init_reset_methods - check whether device can be safely reset
5393  * and store supported reset mechanisms.
5394  * @dev: PCI device to check for reset mechanisms
5395  *
5396  * Some devices allow an individual function to be reset without affecting
5397  * other functions in the same device.  The PCI device must be in D0-D3hot
5398  * state.
5399  *
5400  * Stores reset mechanisms supported by device in reset_methods byte array
5401  * which is a member of struct pci_dev.
5402  */
5403 void pci_init_reset_methods(struct pci_dev *dev)
5404 {
5405 	int m, i, rc;
5406 
5407 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5408 
5409 	might_sleep();
5410 
5411 	i = 0;
5412 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5413 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5414 		if (!rc)
5415 			dev->reset_methods[i++] = m;
5416 		else if (rc != -ENOTTY)
5417 			break;
5418 	}
5419 
5420 	dev->reset_methods[i] = 0;
5421 }
5422 
5423 /**
5424  * pci_reset_function - quiesce and reset a PCI device function
5425  * @dev: PCI device to reset
5426  *
5427  * Some devices allow an individual function to be reset without affecting
5428  * other functions in the same device.  The PCI device must be responsive
5429  * to PCI config space in order to use this function.
5430  *
5431  * This function does not just reset the PCI portion of a device, but
5432  * clears all the state associated with the device.  This function differs
5433  * from __pci_reset_function_locked() in that it saves and restores device state
5434  * over the reset and takes the PCI device lock.
5435  *
5436  * Returns 0 if the device function was successfully reset or negative if the
5437  * device doesn't support resetting a single function.
5438  */
5439 int pci_reset_function(struct pci_dev *dev)
5440 {
5441 	struct pci_dev *bridge;
5442 	int rc;
5443 
5444 	if (!pci_reset_supported(dev))
5445 		return -ENOTTY;
5446 
5447 	/*
5448 	 * If there's no upstream bridge, no locking is needed since there is
5449 	 * no upstream bridge configuration to hold consistent.
5450 	 */
5451 	bridge = pci_upstream_bridge(dev);
5452 	if (bridge)
5453 		pci_dev_lock(bridge);
5454 
5455 	pci_dev_lock(dev);
5456 	pci_dev_save_and_disable(dev);
5457 
5458 	rc = __pci_reset_function_locked(dev);
5459 
5460 	pci_dev_restore(dev);
5461 	pci_dev_unlock(dev);
5462 
5463 	if (bridge)
5464 		pci_dev_unlock(bridge);
5465 
5466 	return rc;
5467 }
5468 EXPORT_SYMBOL_GPL(pci_reset_function);
5469 
5470 /**
5471  * pci_reset_function_locked - quiesce and reset a PCI device function
5472  * @dev: PCI device to reset
5473  *
5474  * Some devices allow an individual function to be reset without affecting
5475  * other functions in the same device.  The PCI device must be responsive
5476  * to PCI config space in order to use this function.
5477  *
5478  * This function does not just reset the PCI portion of a device, but
5479  * clears all the state associated with the device.  This function differs
5480  * from __pci_reset_function_locked() in that it saves and restores device state
5481  * over the reset.  It also differs from pci_reset_function() in that it
5482  * requires the PCI device lock to be held.
5483  *
5484  * Returns 0 if the device function was successfully reset or negative if the
5485  * device doesn't support resetting a single function.
5486  */
5487 int pci_reset_function_locked(struct pci_dev *dev)
5488 {
5489 	int rc;
5490 
5491 	if (!pci_reset_supported(dev))
5492 		return -ENOTTY;
5493 
5494 	pci_dev_save_and_disable(dev);
5495 
5496 	rc = __pci_reset_function_locked(dev);
5497 
5498 	pci_dev_restore(dev);
5499 
5500 	return rc;
5501 }
5502 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5503 
5504 /**
5505  * pci_try_reset_function - quiesce and reset a PCI device function
5506  * @dev: PCI device to reset
5507  *
5508  * Same as above, except return -EAGAIN if unable to lock device.
5509  */
5510 int pci_try_reset_function(struct pci_dev *dev)
5511 {
5512 	int rc;
5513 
5514 	if (!pci_reset_supported(dev))
5515 		return -ENOTTY;
5516 
5517 	if (!pci_dev_trylock(dev))
5518 		return -EAGAIN;
5519 
5520 	pci_dev_save_and_disable(dev);
5521 	rc = __pci_reset_function_locked(dev);
5522 	pci_dev_restore(dev);
5523 	pci_dev_unlock(dev);
5524 
5525 	return rc;
5526 }
5527 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5528 
5529 /* Do any devices on or below this bus prevent a bus reset? */
5530 static bool pci_bus_resettable(struct pci_bus *bus)
5531 {
5532 	struct pci_dev *dev;
5533 
5534 
5535 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5536 		return false;
5537 
5538 	list_for_each_entry(dev, &bus->devices, bus_list) {
5539 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5540 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5541 			return false;
5542 	}
5543 
5544 	return true;
5545 }
5546 
5547 /* Lock devices from the top of the tree down */
5548 static void pci_bus_lock(struct pci_bus *bus)
5549 {
5550 	struct pci_dev *dev;
5551 
5552 	pci_dev_lock(bus->self);
5553 	list_for_each_entry(dev, &bus->devices, bus_list) {
5554 		if (dev->subordinate)
5555 			pci_bus_lock(dev->subordinate);
5556 		else
5557 			pci_dev_lock(dev);
5558 	}
5559 }
5560 
5561 /* Unlock devices from the bottom of the tree up */
5562 static void pci_bus_unlock(struct pci_bus *bus)
5563 {
5564 	struct pci_dev *dev;
5565 
5566 	list_for_each_entry(dev, &bus->devices, bus_list) {
5567 		if (dev->subordinate)
5568 			pci_bus_unlock(dev->subordinate);
5569 		else
5570 			pci_dev_unlock(dev);
5571 	}
5572 	pci_dev_unlock(bus->self);
5573 }
5574 
5575 /* Return 1 on successful lock, 0 on contention */
5576 static int pci_bus_trylock(struct pci_bus *bus)
5577 {
5578 	struct pci_dev *dev;
5579 
5580 	if (!pci_dev_trylock(bus->self))
5581 		return 0;
5582 
5583 	list_for_each_entry(dev, &bus->devices, bus_list) {
5584 		if (dev->subordinate) {
5585 			if (!pci_bus_trylock(dev->subordinate))
5586 				goto unlock;
5587 		} else if (!pci_dev_trylock(dev))
5588 			goto unlock;
5589 	}
5590 	return 1;
5591 
5592 unlock:
5593 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5594 		if (dev->subordinate)
5595 			pci_bus_unlock(dev->subordinate);
5596 		else
5597 			pci_dev_unlock(dev);
5598 	}
5599 	pci_dev_unlock(bus->self);
5600 	return 0;
5601 }
5602 
5603 /* Do any devices on or below this slot prevent a bus reset? */
5604 static bool pci_slot_resettable(struct pci_slot *slot)
5605 {
5606 	struct pci_dev *dev;
5607 
5608 	if (slot->bus->self &&
5609 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5610 		return false;
5611 
5612 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5613 		if (!dev->slot || dev->slot != slot)
5614 			continue;
5615 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5616 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5617 			return false;
5618 	}
5619 
5620 	return true;
5621 }
5622 
5623 /* Lock devices from the top of the tree down */
5624 static void pci_slot_lock(struct pci_slot *slot)
5625 {
5626 	struct pci_dev *dev;
5627 
5628 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5629 		if (!dev->slot || dev->slot != slot)
5630 			continue;
5631 		if (dev->subordinate)
5632 			pci_bus_lock(dev->subordinate);
5633 		else
5634 			pci_dev_lock(dev);
5635 	}
5636 }
5637 
5638 /* Unlock devices from the bottom of the tree up */
5639 static void pci_slot_unlock(struct pci_slot *slot)
5640 {
5641 	struct pci_dev *dev;
5642 
5643 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5644 		if (!dev->slot || dev->slot != slot)
5645 			continue;
5646 		if (dev->subordinate)
5647 			pci_bus_unlock(dev->subordinate);
5648 		pci_dev_unlock(dev);
5649 	}
5650 }
5651 
5652 /* Return 1 on successful lock, 0 on contention */
5653 static int pci_slot_trylock(struct pci_slot *slot)
5654 {
5655 	struct pci_dev *dev;
5656 
5657 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5658 		if (!dev->slot || dev->slot != slot)
5659 			continue;
5660 		if (dev->subordinate) {
5661 			if (!pci_bus_trylock(dev->subordinate)) {
5662 				pci_dev_unlock(dev);
5663 				goto unlock;
5664 			}
5665 		} else if (!pci_dev_trylock(dev))
5666 			goto unlock;
5667 	}
5668 	return 1;
5669 
5670 unlock:
5671 	list_for_each_entry_continue_reverse(dev,
5672 					     &slot->bus->devices, bus_list) {
5673 		if (!dev->slot || dev->slot != slot)
5674 			continue;
5675 		if (dev->subordinate)
5676 			pci_bus_unlock(dev->subordinate);
5677 		else
5678 			pci_dev_unlock(dev);
5679 	}
5680 	return 0;
5681 }
5682 
5683 /*
5684  * Save and disable devices from the top of the tree down while holding
5685  * the @dev mutex lock for the entire tree.
5686  */
5687 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5688 {
5689 	struct pci_dev *dev;
5690 
5691 	list_for_each_entry(dev, &bus->devices, bus_list) {
5692 		pci_dev_save_and_disable(dev);
5693 		if (dev->subordinate)
5694 			pci_bus_save_and_disable_locked(dev->subordinate);
5695 	}
5696 }
5697 
5698 /*
5699  * Restore devices from top of the tree down while holding @dev mutex lock
5700  * for the entire tree.  Parent bridges need to be restored before we can
5701  * get to subordinate devices.
5702  */
5703 static void pci_bus_restore_locked(struct pci_bus *bus)
5704 {
5705 	struct pci_dev *dev;
5706 
5707 	list_for_each_entry(dev, &bus->devices, bus_list) {
5708 		pci_dev_restore(dev);
5709 		if (dev->subordinate) {
5710 			pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5711 			pci_bus_restore_locked(dev->subordinate);
5712 		}
5713 	}
5714 }
5715 
5716 /*
5717  * Save and disable devices from the top of the tree down while holding
5718  * the @dev mutex lock for the entire tree.
5719  */
5720 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5721 {
5722 	struct pci_dev *dev;
5723 
5724 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5725 		if (!dev->slot || dev->slot != slot)
5726 			continue;
5727 		pci_dev_save_and_disable(dev);
5728 		if (dev->subordinate)
5729 			pci_bus_save_and_disable_locked(dev->subordinate);
5730 	}
5731 }
5732 
5733 /*
5734  * Restore devices from top of the tree down while holding @dev mutex lock
5735  * for the entire tree.  Parent bridges need to be restored before we can
5736  * get to subordinate devices.
5737  */
5738 static void pci_slot_restore_locked(struct pci_slot *slot)
5739 {
5740 	struct pci_dev *dev;
5741 
5742 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5743 		if (!dev->slot || dev->slot != slot)
5744 			continue;
5745 		pci_dev_restore(dev);
5746 		if (dev->subordinate) {
5747 			pci_bridge_wait_for_secondary_bus(dev, "slot reset");
5748 			pci_bus_restore_locked(dev->subordinate);
5749 		}
5750 	}
5751 }
5752 
5753 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5754 {
5755 	int rc;
5756 
5757 	if (!slot || !pci_slot_resettable(slot))
5758 		return -ENOTTY;
5759 
5760 	if (!probe)
5761 		pci_slot_lock(slot);
5762 
5763 	might_sleep();
5764 
5765 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5766 
5767 	if (!probe)
5768 		pci_slot_unlock(slot);
5769 
5770 	return rc;
5771 }
5772 
5773 /**
5774  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5775  * @slot: PCI slot to probe
5776  *
5777  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5778  */
5779 int pci_probe_reset_slot(struct pci_slot *slot)
5780 {
5781 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5782 }
5783 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5784 
5785 /**
5786  * __pci_reset_slot - Try to reset a PCI slot
5787  * @slot: PCI slot to reset
5788  *
5789  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5790  * independent of other slots.  For instance, some slots may support slot power
5791  * control.  In the case of a 1:1 bus to slot architecture, this function may
5792  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5793  * Generally a slot reset should be attempted before a bus reset.  All of the
5794  * function of the slot and any subordinate buses behind the slot are reset
5795  * through this function.  PCI config space of all devices in the slot and
5796  * behind the slot is saved before and restored after reset.
5797  *
5798  * Same as above except return -EAGAIN if the slot cannot be locked
5799  */
5800 static int __pci_reset_slot(struct pci_slot *slot)
5801 {
5802 	int rc;
5803 
5804 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5805 	if (rc)
5806 		return rc;
5807 
5808 	if (pci_slot_trylock(slot)) {
5809 		pci_slot_save_and_disable_locked(slot);
5810 		might_sleep();
5811 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5812 		pci_slot_restore_locked(slot);
5813 		pci_slot_unlock(slot);
5814 	} else
5815 		rc = -EAGAIN;
5816 
5817 	return rc;
5818 }
5819 
5820 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5821 {
5822 	int ret;
5823 
5824 	if (!bus->self || !pci_bus_resettable(bus))
5825 		return -ENOTTY;
5826 
5827 	if (probe)
5828 		return 0;
5829 
5830 	pci_bus_lock(bus);
5831 
5832 	might_sleep();
5833 
5834 	ret = pci_bridge_secondary_bus_reset(bus->self);
5835 
5836 	pci_bus_unlock(bus);
5837 
5838 	return ret;
5839 }
5840 
5841 /**
5842  * pci_bus_error_reset - reset the bridge's subordinate bus
5843  * @bridge: The parent device that connects to the bus to reset
5844  *
5845  * This function will first try to reset the slots on this bus if the method is
5846  * available. If slot reset fails or is not available, this will fall back to a
5847  * secondary bus reset.
5848  */
5849 int pci_bus_error_reset(struct pci_dev *bridge)
5850 {
5851 	struct pci_bus *bus = bridge->subordinate;
5852 	struct pci_slot *slot;
5853 
5854 	if (!bus)
5855 		return -ENOTTY;
5856 
5857 	mutex_lock(&pci_slot_mutex);
5858 	if (list_empty(&bus->slots))
5859 		goto bus_reset;
5860 
5861 	list_for_each_entry(slot, &bus->slots, list)
5862 		if (pci_probe_reset_slot(slot))
5863 			goto bus_reset;
5864 
5865 	list_for_each_entry(slot, &bus->slots, list)
5866 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5867 			goto bus_reset;
5868 
5869 	mutex_unlock(&pci_slot_mutex);
5870 	return 0;
5871 bus_reset:
5872 	mutex_unlock(&pci_slot_mutex);
5873 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5874 }
5875 
5876 /**
5877  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5878  * @bus: PCI bus to probe
5879  *
5880  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5881  */
5882 int pci_probe_reset_bus(struct pci_bus *bus)
5883 {
5884 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5885 }
5886 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5887 
5888 /**
5889  * __pci_reset_bus - Try to reset a PCI bus
5890  * @bus: top level PCI bus to reset
5891  *
5892  * Same as above except return -EAGAIN if the bus cannot be locked
5893  */
5894 int __pci_reset_bus(struct pci_bus *bus)
5895 {
5896 	int rc;
5897 
5898 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5899 	if (rc)
5900 		return rc;
5901 
5902 	if (pci_bus_trylock(bus)) {
5903 		pci_bus_save_and_disable_locked(bus);
5904 		might_sleep();
5905 		rc = pci_bridge_secondary_bus_reset(bus->self);
5906 		pci_bus_restore_locked(bus);
5907 		pci_bus_unlock(bus);
5908 	} else
5909 		rc = -EAGAIN;
5910 
5911 	return rc;
5912 }
5913 
5914 /**
5915  * pci_reset_bus - Try to reset a PCI bus
5916  * @pdev: top level PCI device to reset via slot/bus
5917  *
5918  * Same as above except return -EAGAIN if the bus cannot be locked
5919  */
5920 int pci_reset_bus(struct pci_dev *pdev)
5921 {
5922 	return (!pci_probe_reset_slot(pdev->slot)) ?
5923 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5924 }
5925 EXPORT_SYMBOL_GPL(pci_reset_bus);
5926 
5927 /**
5928  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5929  * @dev: PCI device to query
5930  *
5931  * Returns mmrbc: maximum designed memory read count in bytes or
5932  * appropriate error value.
5933  */
5934 int pcix_get_max_mmrbc(struct pci_dev *dev)
5935 {
5936 	int cap;
5937 	u32 stat;
5938 
5939 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5940 	if (!cap)
5941 		return -EINVAL;
5942 
5943 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5944 		return -EINVAL;
5945 
5946 	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5947 }
5948 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5949 
5950 /**
5951  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5952  * @dev: PCI device to query
5953  *
5954  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5955  * value.
5956  */
5957 int pcix_get_mmrbc(struct pci_dev *dev)
5958 {
5959 	int cap;
5960 	u16 cmd;
5961 
5962 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5963 	if (!cap)
5964 		return -EINVAL;
5965 
5966 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5967 		return -EINVAL;
5968 
5969 	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5970 }
5971 EXPORT_SYMBOL(pcix_get_mmrbc);
5972 
5973 /**
5974  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5975  * @dev: PCI device to query
5976  * @mmrbc: maximum memory read count in bytes
5977  *    valid values are 512, 1024, 2048, 4096
5978  *
5979  * If possible sets maximum memory read byte count, some bridges have errata
5980  * that prevent this.
5981  */
5982 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5983 {
5984 	int cap;
5985 	u32 stat, v, o;
5986 	u16 cmd;
5987 
5988 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5989 		return -EINVAL;
5990 
5991 	v = ffs(mmrbc) - 10;
5992 
5993 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5994 	if (!cap)
5995 		return -EINVAL;
5996 
5997 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5998 		return -EINVAL;
5999 
6000 	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
6001 		return -E2BIG;
6002 
6003 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6004 		return -EINVAL;
6005 
6006 	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6007 	if (o != v) {
6008 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6009 			return -EIO;
6010 
6011 		cmd &= ~PCI_X_CMD_MAX_READ;
6012 		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6013 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6014 			return -EIO;
6015 	}
6016 	return 0;
6017 }
6018 EXPORT_SYMBOL(pcix_set_mmrbc);
6019 
6020 /**
6021  * pcie_get_readrq - get PCI Express read request size
6022  * @dev: PCI device to query
6023  *
6024  * Returns maximum memory read request in bytes or appropriate error value.
6025  */
6026 int pcie_get_readrq(struct pci_dev *dev)
6027 {
6028 	u16 ctl;
6029 
6030 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6031 
6032 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6033 }
6034 EXPORT_SYMBOL(pcie_get_readrq);
6035 
6036 /**
6037  * pcie_set_readrq - set PCI Express maximum memory read request
6038  * @dev: PCI device to query
6039  * @rq: maximum memory read count in bytes
6040  *    valid values are 128, 256, 512, 1024, 2048, 4096
6041  *
6042  * If possible sets maximum memory read request in bytes
6043  */
6044 int pcie_set_readrq(struct pci_dev *dev, int rq)
6045 {
6046 	u16 v;
6047 	int ret;
6048 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6049 
6050 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6051 		return -EINVAL;
6052 
6053 	/*
6054 	 * If using the "performance" PCIe config, we clamp the read rq
6055 	 * size to the max packet size to keep the host bridge from
6056 	 * generating requests larger than we can cope with.
6057 	 */
6058 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6059 		int mps = pcie_get_mps(dev);
6060 
6061 		if (mps < rq)
6062 			rq = mps;
6063 	}
6064 
6065 	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6066 
6067 	if (bridge->no_inc_mrrs) {
6068 		int max_mrrs = pcie_get_readrq(dev);
6069 
6070 		if (rq > max_mrrs) {
6071 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6072 			return -EINVAL;
6073 		}
6074 	}
6075 
6076 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6077 						  PCI_EXP_DEVCTL_READRQ, v);
6078 
6079 	return pcibios_err_to_errno(ret);
6080 }
6081 EXPORT_SYMBOL(pcie_set_readrq);
6082 
6083 /**
6084  * pcie_get_mps - get PCI Express maximum payload size
6085  * @dev: PCI device to query
6086  *
6087  * Returns maximum payload size in bytes
6088  */
6089 int pcie_get_mps(struct pci_dev *dev)
6090 {
6091 	u16 ctl;
6092 
6093 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6094 
6095 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6096 }
6097 EXPORT_SYMBOL(pcie_get_mps);
6098 
6099 /**
6100  * pcie_set_mps - set PCI Express maximum payload size
6101  * @dev: PCI device to query
6102  * @mps: maximum payload size in bytes
6103  *    valid values are 128, 256, 512, 1024, 2048, 4096
6104  *
6105  * If possible sets maximum payload size
6106  */
6107 int pcie_set_mps(struct pci_dev *dev, int mps)
6108 {
6109 	u16 v;
6110 	int ret;
6111 
6112 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6113 		return -EINVAL;
6114 
6115 	v = ffs(mps) - 8;
6116 	if (v > dev->pcie_mpss)
6117 		return -EINVAL;
6118 	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6119 
6120 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6121 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6122 
6123 	return pcibios_err_to_errno(ret);
6124 }
6125 EXPORT_SYMBOL(pcie_set_mps);
6126 
6127 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6128 {
6129 	return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6130 }
6131 
6132 int pcie_link_speed_mbps(struct pci_dev *pdev)
6133 {
6134 	u16 lnksta;
6135 	int err;
6136 
6137 	err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6138 	if (err)
6139 		return err;
6140 
6141 	return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta));
6142 }
6143 EXPORT_SYMBOL(pcie_link_speed_mbps);
6144 
6145 /**
6146  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6147  *			      device and its bandwidth limitation
6148  * @dev: PCI device to query
6149  * @limiting_dev: storage for device causing the bandwidth limitation
6150  * @speed: storage for speed of limiting device
6151  * @width: storage for width of limiting device
6152  *
6153  * Walk up the PCI device chain and find the point where the minimum
6154  * bandwidth is available.  Return the bandwidth available there and (if
6155  * limiting_dev, speed, and width pointers are supplied) information about
6156  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6157  * raw bandwidth.
6158  */
6159 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6160 			     enum pci_bus_speed *speed,
6161 			     enum pcie_link_width *width)
6162 {
6163 	u16 lnksta;
6164 	enum pci_bus_speed next_speed;
6165 	enum pcie_link_width next_width;
6166 	u32 bw, next_bw;
6167 
6168 	if (speed)
6169 		*speed = PCI_SPEED_UNKNOWN;
6170 	if (width)
6171 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6172 
6173 	bw = 0;
6174 
6175 	while (dev) {
6176 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6177 
6178 		next_speed = to_pcie_link_speed(lnksta);
6179 		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6180 
6181 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6182 
6183 		/* Check if current device limits the total bandwidth */
6184 		if (!bw || next_bw <= bw) {
6185 			bw = next_bw;
6186 
6187 			if (limiting_dev)
6188 				*limiting_dev = dev;
6189 			if (speed)
6190 				*speed = next_speed;
6191 			if (width)
6192 				*width = next_width;
6193 		}
6194 
6195 		dev = pci_upstream_bridge(dev);
6196 	}
6197 
6198 	return bw;
6199 }
6200 EXPORT_SYMBOL(pcie_bandwidth_available);
6201 
6202 /**
6203  * pcie_get_supported_speeds - query Supported Link Speed Vector
6204  * @dev: PCI device to query
6205  *
6206  * Query @dev supported link speeds.
6207  *
6208  * Implementation Note in PCIe r6.0 sec 7.5.3.18 recommends determining
6209  * supported link speeds using the Supported Link Speeds Vector in the Link
6210  * Capabilities 2 Register (when available).
6211  *
6212  * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.
6213  *
6214  * Without Link Capabilities 2, i.e., prior to PCIe r3.0, Supported Link
6215  * Speeds field in Link Capabilities is used and only 2.5 GT/s and 5.0 GT/s
6216  * speeds were defined.
6217  *
6218  * For @dev without Supported Link Speed Vector, the field is synthesized
6219  * from the Max Link Speed field in the Link Capabilities Register.
6220  *
6221  * Return: Supported Link Speeds Vector (+ reserved 0 at LSB).
6222  */
6223 u8 pcie_get_supported_speeds(struct pci_dev *dev)
6224 {
6225 	u32 lnkcap2, lnkcap;
6226 	u8 speeds;
6227 
6228 	/*
6229 	 * Speeds retain the reserved 0 at LSB before PCIe Supported Link
6230 	 * Speeds Vector to allow using SLS Vector bit defines directly.
6231 	 */
6232 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6233 	speeds = lnkcap2 & PCI_EXP_LNKCAP2_SLS;
6234 
6235 	/* PCIe r3.0-compliant */
6236 	if (speeds)
6237 		return speeds;
6238 
6239 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6240 
6241 	/* Synthesize from the Max Link Speed field */
6242 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6243 		speeds = PCI_EXP_LNKCAP2_SLS_5_0GB | PCI_EXP_LNKCAP2_SLS_2_5GB;
6244 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6245 		speeds = PCI_EXP_LNKCAP2_SLS_2_5GB;
6246 
6247 	return speeds;
6248 }
6249 
6250 /**
6251  * pcie_get_speed_cap - query for the PCI device's link speed capability
6252  * @dev: PCI device to query
6253  *
6254  * Query the PCI device speed capability.
6255  *
6256  * Return: the maximum link speed supported by the device.
6257  */
6258 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6259 {
6260 	return PCIE_LNKCAP2_SLS2SPEED(dev->supported_speeds);
6261 }
6262 EXPORT_SYMBOL(pcie_get_speed_cap);
6263 
6264 /**
6265  * pcie_get_width_cap - query for the PCI device's link width capability
6266  * @dev: PCI device to query
6267  *
6268  * Query the PCI device width capability.  Return the maximum link width
6269  * supported by the device.
6270  */
6271 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6272 {
6273 	u32 lnkcap;
6274 
6275 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6276 	if (lnkcap)
6277 		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6278 
6279 	return PCIE_LNK_WIDTH_UNKNOWN;
6280 }
6281 EXPORT_SYMBOL(pcie_get_width_cap);
6282 
6283 /**
6284  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6285  * @dev: PCI device
6286  * @speed: storage for link speed
6287  * @width: storage for link width
6288  *
6289  * Calculate a PCI device's link bandwidth by querying for its link speed
6290  * and width, multiplying them, and applying encoding overhead.  The result
6291  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6292  */
6293 static u32 pcie_bandwidth_capable(struct pci_dev *dev,
6294 				  enum pci_bus_speed *speed,
6295 				  enum pcie_link_width *width)
6296 {
6297 	*speed = pcie_get_speed_cap(dev);
6298 	*width = pcie_get_width_cap(dev);
6299 
6300 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6301 		return 0;
6302 
6303 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6304 }
6305 
6306 /**
6307  * __pcie_print_link_status - Report the PCI device's link speed and width
6308  * @dev: PCI device to query
6309  * @verbose: Print info even when enough bandwidth is available
6310  *
6311  * If the available bandwidth at the device is less than the device is
6312  * capable of, report the device's maximum possible bandwidth and the
6313  * upstream link that limits its performance.  If @verbose, always print
6314  * the available bandwidth, even if the device isn't constrained.
6315  */
6316 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6317 {
6318 	enum pcie_link_width width, width_cap;
6319 	enum pci_bus_speed speed, speed_cap;
6320 	struct pci_dev *limiting_dev = NULL;
6321 	u32 bw_avail, bw_cap;
6322 
6323 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6324 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6325 
6326 	if (bw_avail >= bw_cap && verbose)
6327 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6328 			 bw_cap / 1000, bw_cap % 1000,
6329 			 pci_speed_string(speed_cap), width_cap);
6330 	else if (bw_avail < bw_cap)
6331 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6332 			 bw_avail / 1000, bw_avail % 1000,
6333 			 pci_speed_string(speed), width,
6334 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6335 			 bw_cap / 1000, bw_cap % 1000,
6336 			 pci_speed_string(speed_cap), width_cap);
6337 }
6338 
6339 /**
6340  * pcie_print_link_status - Report the PCI device's link speed and width
6341  * @dev: PCI device to query
6342  *
6343  * Report the available bandwidth at the device.
6344  */
6345 void pcie_print_link_status(struct pci_dev *dev)
6346 {
6347 	__pcie_print_link_status(dev, true);
6348 }
6349 EXPORT_SYMBOL(pcie_print_link_status);
6350 
6351 /**
6352  * pci_select_bars - Make BAR mask from the type of resource
6353  * @dev: the PCI device for which BAR mask is made
6354  * @flags: resource type mask to be selected
6355  *
6356  * This helper routine makes bar mask from the type of resource.
6357  */
6358 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6359 {
6360 	int i, bars = 0;
6361 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6362 		if (pci_resource_flags(dev, i) & flags)
6363 			bars |= (1 << i);
6364 	return bars;
6365 }
6366 EXPORT_SYMBOL(pci_select_bars);
6367 
6368 /* Some architectures require additional programming to enable VGA */
6369 static arch_set_vga_state_t arch_set_vga_state;
6370 
6371 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6372 {
6373 	arch_set_vga_state = func;	/* NULL disables */
6374 }
6375 
6376 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6377 				  unsigned int command_bits, u32 flags)
6378 {
6379 	if (arch_set_vga_state)
6380 		return arch_set_vga_state(dev, decode, command_bits,
6381 						flags);
6382 	return 0;
6383 }
6384 
6385 /**
6386  * pci_set_vga_state - set VGA decode state on device and parents if requested
6387  * @dev: the PCI device
6388  * @decode: true = enable decoding, false = disable decoding
6389  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6390  * @flags: traverse ancestors and change bridges
6391  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6392  */
6393 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6394 		      unsigned int command_bits, u32 flags)
6395 {
6396 	struct pci_bus *bus;
6397 	struct pci_dev *bridge;
6398 	u16 cmd;
6399 	int rc;
6400 
6401 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6402 
6403 	/* ARCH specific VGA enables */
6404 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6405 	if (rc)
6406 		return rc;
6407 
6408 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6409 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6410 		if (decode)
6411 			cmd |= command_bits;
6412 		else
6413 			cmd &= ~command_bits;
6414 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6415 	}
6416 
6417 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6418 		return 0;
6419 
6420 	bus = dev->bus;
6421 	while (bus) {
6422 		bridge = bus->self;
6423 		if (bridge) {
6424 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6425 					     &cmd);
6426 			if (decode)
6427 				cmd |= PCI_BRIDGE_CTL_VGA;
6428 			else
6429 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6430 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6431 					      cmd);
6432 		}
6433 		bus = bus->parent;
6434 	}
6435 	return 0;
6436 }
6437 
6438 #ifdef CONFIG_ACPI
6439 bool pci_pr3_present(struct pci_dev *pdev)
6440 {
6441 	struct acpi_device *adev;
6442 
6443 	if (acpi_disabled)
6444 		return false;
6445 
6446 	adev = ACPI_COMPANION(&pdev->dev);
6447 	if (!adev)
6448 		return false;
6449 
6450 	return adev->power.flags.power_resources &&
6451 		acpi_has_method(adev->handle, "_PR3");
6452 }
6453 EXPORT_SYMBOL_GPL(pci_pr3_present);
6454 #endif
6455 
6456 /**
6457  * pci_add_dma_alias - Add a DMA devfn alias for a device
6458  * @dev: the PCI device for which alias is added
6459  * @devfn_from: alias slot and function
6460  * @nr_devfns: number of subsequent devfns to alias
6461  *
6462  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6463  * which is used to program permissible bus-devfn source addresses for DMA
6464  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6465  * and are useful for devices generating DMA requests beyond or different
6466  * from their logical bus-devfn.  Examples include device quirks where the
6467  * device simply uses the wrong devfn, as well as non-transparent bridges
6468  * where the alias may be a proxy for devices in another domain.
6469  *
6470  * IOMMU group creation is performed during device discovery or addition,
6471  * prior to any potential DMA mapping and therefore prior to driver probing
6472  * (especially for userspace assigned devices where IOMMU group definition
6473  * cannot be left as a userspace activity).  DMA aliases should therefore
6474  * be configured via quirks, such as the PCI fixup header quirk.
6475  */
6476 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6477 		       unsigned int nr_devfns)
6478 {
6479 	int devfn_to;
6480 
6481 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6482 	devfn_to = devfn_from + nr_devfns - 1;
6483 
6484 	if (!dev->dma_alias_mask)
6485 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6486 	if (!dev->dma_alias_mask) {
6487 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6488 		return;
6489 	}
6490 
6491 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6492 
6493 	if (nr_devfns == 1)
6494 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6495 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6496 	else if (nr_devfns > 1)
6497 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6498 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6499 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6500 }
6501 
6502 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6503 {
6504 	return (dev1->dma_alias_mask &&
6505 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6506 	       (dev2->dma_alias_mask &&
6507 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6508 	       pci_real_dma_dev(dev1) == dev2 ||
6509 	       pci_real_dma_dev(dev2) == dev1;
6510 }
6511 
6512 bool pci_device_is_present(struct pci_dev *pdev)
6513 {
6514 	u32 v;
6515 
6516 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6517 	pdev = pci_physfn(pdev);
6518 	if (pci_dev_is_disconnected(pdev))
6519 		return false;
6520 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6521 }
6522 EXPORT_SYMBOL_GPL(pci_device_is_present);
6523 
6524 void pci_ignore_hotplug(struct pci_dev *dev)
6525 {
6526 	struct pci_dev *bridge = dev->bus->self;
6527 
6528 	dev->ignore_hotplug = 1;
6529 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6530 	if (bridge)
6531 		bridge->ignore_hotplug = 1;
6532 }
6533 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6534 
6535 /**
6536  * pci_real_dma_dev - Get PCI DMA device for PCI device
6537  * @dev: the PCI device that may have a PCI DMA alias
6538  *
6539  * Permits the platform to provide architecture-specific functionality to
6540  * devices needing to alias DMA to another PCI device on another PCI bus. If
6541  * the PCI device is on the same bus, it is recommended to use
6542  * pci_add_dma_alias(). This is the default implementation. Architecture
6543  * implementations can override this.
6544  */
6545 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6546 {
6547 	return dev;
6548 }
6549 
6550 resource_size_t __weak pcibios_default_alignment(void)
6551 {
6552 	return 0;
6553 }
6554 
6555 /*
6556  * Arches that don't want to expose struct resource to userland as-is in
6557  * sysfs and /proc can implement their own pci_resource_to_user().
6558  */
6559 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6560 				 const struct resource *rsrc,
6561 				 resource_size_t *start, resource_size_t *end)
6562 {
6563 	*start = rsrc->start;
6564 	*end = rsrc->end;
6565 }
6566 
6567 static char *resource_alignment_param;
6568 static DEFINE_SPINLOCK(resource_alignment_lock);
6569 
6570 /**
6571  * pci_specified_resource_alignment - get resource alignment specified by user.
6572  * @dev: the PCI device to get
6573  * @resize: whether or not to change resources' size when reassigning alignment
6574  *
6575  * RETURNS: Resource alignment if it is specified.
6576  *          Zero if it is not specified.
6577  */
6578 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6579 							bool *resize)
6580 {
6581 	int align_order, count;
6582 	resource_size_t align = pcibios_default_alignment();
6583 	const char *p;
6584 	int ret;
6585 
6586 	spin_lock(&resource_alignment_lock);
6587 	p = resource_alignment_param;
6588 	if (!p || !*p)
6589 		goto out;
6590 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6591 		align = 0;
6592 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6593 		goto out;
6594 	}
6595 
6596 	while (*p) {
6597 		count = 0;
6598 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6599 		    p[count] == '@') {
6600 			p += count + 1;
6601 			if (align_order > 63) {
6602 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6603 				       align_order);
6604 				align_order = PAGE_SHIFT;
6605 			}
6606 		} else {
6607 			align_order = PAGE_SHIFT;
6608 		}
6609 
6610 		ret = pci_dev_str_match(dev, p, &p);
6611 		if (ret == 1) {
6612 			*resize = true;
6613 			align = 1ULL << align_order;
6614 			break;
6615 		} else if (ret < 0) {
6616 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6617 			       p);
6618 			break;
6619 		}
6620 
6621 		if (*p != ';' && *p != ',') {
6622 			/* End of param or invalid format */
6623 			break;
6624 		}
6625 		p++;
6626 	}
6627 out:
6628 	spin_unlock(&resource_alignment_lock);
6629 	return align;
6630 }
6631 
6632 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6633 					   resource_size_t align, bool resize)
6634 {
6635 	struct resource *r = &dev->resource[bar];
6636 	const char *r_name = pci_resource_name(dev, bar);
6637 	resource_size_t size;
6638 
6639 	if (!(r->flags & IORESOURCE_MEM))
6640 		return;
6641 
6642 	if (r->flags & IORESOURCE_PCI_FIXED) {
6643 		pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6644 			 r_name, r, (unsigned long long)align);
6645 		return;
6646 	}
6647 
6648 	size = resource_size(r);
6649 	if (size >= align)
6650 		return;
6651 
6652 	/*
6653 	 * Increase the alignment of the resource.  There are two ways we
6654 	 * can do this:
6655 	 *
6656 	 * 1) Increase the size of the resource.  BARs are aligned on their
6657 	 *    size, so when we reallocate space for this resource, we'll
6658 	 *    allocate it with the larger alignment.  This also prevents
6659 	 *    assignment of any other BARs inside the alignment region, so
6660 	 *    if we're requesting page alignment, this means no other BARs
6661 	 *    will share the page.
6662 	 *
6663 	 *    The disadvantage is that this makes the resource larger than
6664 	 *    the hardware BAR, which may break drivers that compute things
6665 	 *    based on the resource size, e.g., to find registers at a
6666 	 *    fixed offset before the end of the BAR.
6667 	 *
6668 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6669 	 *    set r->start to the desired alignment.  By itself this
6670 	 *    doesn't prevent other BARs being put inside the alignment
6671 	 *    region, but if we realign *every* resource of every device in
6672 	 *    the system, none of them will share an alignment region.
6673 	 *
6674 	 * When the user has requested alignment for only some devices via
6675 	 * the "pci=resource_alignment" argument, "resize" is true and we
6676 	 * use the first method.  Otherwise we assume we're aligning all
6677 	 * devices and we use the second.
6678 	 */
6679 
6680 	pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6681 		 r_name, r, (unsigned long long)align);
6682 
6683 	if (resize) {
6684 		r->start = 0;
6685 		r->end = align - 1;
6686 	} else {
6687 		r->flags &= ~IORESOURCE_SIZEALIGN;
6688 		r->flags |= IORESOURCE_STARTALIGN;
6689 		resource_set_range(r, align, size);
6690 	}
6691 	r->flags |= IORESOURCE_UNSET;
6692 }
6693 
6694 /*
6695  * This function disables memory decoding and releases memory resources
6696  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6697  * It also rounds up size to specified alignment.
6698  * Later on, the kernel will assign page-aligned memory resource back
6699  * to the device.
6700  */
6701 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6702 {
6703 	int i;
6704 	struct resource *r;
6705 	resource_size_t align;
6706 	u16 command;
6707 	bool resize = false;
6708 
6709 	/*
6710 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6711 	 * 3.4.1.11.  Their resources are allocated from the space
6712 	 * described by the VF BARx register in the PF's SR-IOV capability.
6713 	 * We can't influence their alignment here.
6714 	 */
6715 	if (dev->is_virtfn)
6716 		return;
6717 
6718 	/* check if specified PCI is target device to reassign */
6719 	align = pci_specified_resource_alignment(dev, &resize);
6720 	if (!align)
6721 		return;
6722 
6723 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6724 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6725 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6726 		return;
6727 	}
6728 
6729 	pci_read_config_word(dev, PCI_COMMAND, &command);
6730 	command &= ~PCI_COMMAND_MEMORY;
6731 	pci_write_config_word(dev, PCI_COMMAND, command);
6732 
6733 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6734 		pci_request_resource_alignment(dev, i, align, resize);
6735 
6736 	/*
6737 	 * Need to disable bridge's resource window,
6738 	 * to enable the kernel to reassign new resource
6739 	 * window later on.
6740 	 */
6741 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6742 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6743 			r = &dev->resource[i];
6744 			if (!(r->flags & IORESOURCE_MEM))
6745 				continue;
6746 			r->flags |= IORESOURCE_UNSET;
6747 			r->end = resource_size(r) - 1;
6748 			r->start = 0;
6749 		}
6750 		pci_disable_bridge_window(dev);
6751 	}
6752 }
6753 
6754 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6755 {
6756 	size_t count = 0;
6757 
6758 	spin_lock(&resource_alignment_lock);
6759 	if (resource_alignment_param)
6760 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6761 	spin_unlock(&resource_alignment_lock);
6762 
6763 	return count;
6764 }
6765 
6766 static ssize_t resource_alignment_store(const struct bus_type *bus,
6767 					const char *buf, size_t count)
6768 {
6769 	char *param, *old, *end;
6770 
6771 	if (count >= (PAGE_SIZE - 1))
6772 		return -EINVAL;
6773 
6774 	param = kstrndup(buf, count, GFP_KERNEL);
6775 	if (!param)
6776 		return -ENOMEM;
6777 
6778 	end = strchr(param, '\n');
6779 	if (end)
6780 		*end = '\0';
6781 
6782 	spin_lock(&resource_alignment_lock);
6783 	old = resource_alignment_param;
6784 	if (strlen(param)) {
6785 		resource_alignment_param = param;
6786 	} else {
6787 		kfree(param);
6788 		resource_alignment_param = NULL;
6789 	}
6790 	spin_unlock(&resource_alignment_lock);
6791 
6792 	kfree(old);
6793 
6794 	return count;
6795 }
6796 
6797 static BUS_ATTR_RW(resource_alignment);
6798 
6799 static int __init pci_resource_alignment_sysfs_init(void)
6800 {
6801 	return bus_create_file(&pci_bus_type,
6802 					&bus_attr_resource_alignment);
6803 }
6804 late_initcall(pci_resource_alignment_sysfs_init);
6805 
6806 static void pci_no_domains(void)
6807 {
6808 #ifdef CONFIG_PCI_DOMAINS
6809 	pci_domains_supported = 0;
6810 #endif
6811 }
6812 
6813 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6814 static DEFINE_IDA(pci_domain_nr_static_ida);
6815 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6816 
6817 static void of_pci_reserve_static_domain_nr(void)
6818 {
6819 	struct device_node *np;
6820 	int domain_nr;
6821 
6822 	for_each_node_by_type(np, "pci") {
6823 		domain_nr = of_get_pci_domain_nr(np);
6824 		if (domain_nr < 0)
6825 			continue;
6826 		/*
6827 		 * Permanently allocate domain_nr in dynamic_ida
6828 		 * to prevent it from dynamic allocation.
6829 		 */
6830 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6831 				domain_nr, domain_nr, GFP_KERNEL);
6832 	}
6833 }
6834 
6835 static int of_pci_bus_find_domain_nr(struct device *parent)
6836 {
6837 	static bool static_domains_reserved = false;
6838 	int domain_nr;
6839 
6840 	/* On the first call scan device tree for static allocations. */
6841 	if (!static_domains_reserved) {
6842 		of_pci_reserve_static_domain_nr();
6843 		static_domains_reserved = true;
6844 	}
6845 
6846 	if (parent) {
6847 		/*
6848 		 * If domain is in DT, allocate it in static IDA.  This
6849 		 * prevents duplicate static allocations in case of errors
6850 		 * in DT.
6851 		 */
6852 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6853 		if (domain_nr >= 0)
6854 			return ida_alloc_range(&pci_domain_nr_static_ida,
6855 					       domain_nr, domain_nr,
6856 					       GFP_KERNEL);
6857 	}
6858 
6859 	/*
6860 	 * If domain was not specified in DT, choose a free ID from dynamic
6861 	 * allocations. All domain numbers from DT are permanently in
6862 	 * dynamic allocations to prevent assigning them to other DT nodes
6863 	 * without static domain.
6864 	 */
6865 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6866 }
6867 
6868 static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6869 {
6870 	if (domain_nr < 0)
6871 		return;
6872 
6873 	/* Release domain from IDA where it was allocated. */
6874 	if (of_get_pci_domain_nr(parent->of_node) == domain_nr)
6875 		ida_free(&pci_domain_nr_static_ida, domain_nr);
6876 	else
6877 		ida_free(&pci_domain_nr_dynamic_ida, domain_nr);
6878 }
6879 
6880 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6881 {
6882 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6883 			       acpi_pci_bus_find_domain_nr(bus);
6884 }
6885 
6886 void pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6887 {
6888 	if (!acpi_disabled)
6889 		return;
6890 	of_pci_bus_release_domain_nr(parent, domain_nr);
6891 }
6892 #endif
6893 
6894 /**
6895  * pci_ext_cfg_avail - can we access extended PCI config space?
6896  *
6897  * Returns 1 if we can access PCI extended config space (offsets
6898  * greater than 0xff). This is the default implementation. Architecture
6899  * implementations can override this.
6900  */
6901 int __weak pci_ext_cfg_avail(void)
6902 {
6903 	return 1;
6904 }
6905 
6906 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6907 {
6908 }
6909 EXPORT_SYMBOL(pci_fixup_cardbus);
6910 
6911 static int __init pci_setup(char *str)
6912 {
6913 	while (str) {
6914 		char *k = strchr(str, ',');
6915 		if (k)
6916 			*k++ = 0;
6917 		if (*str && (str = pcibios_setup(str)) && *str) {
6918 			if (!strcmp(str, "nomsi")) {
6919 				pci_no_msi();
6920 			} else if (!strncmp(str, "noats", 5)) {
6921 				pr_info("PCIe: ATS is disabled\n");
6922 				pcie_ats_disabled = true;
6923 			} else if (!strcmp(str, "noaer")) {
6924 				pci_no_aer();
6925 			} else if (!strcmp(str, "earlydump")) {
6926 				pci_early_dump = true;
6927 			} else if (!strncmp(str, "realloc=", 8)) {
6928 				pci_realloc_get_opt(str + 8);
6929 			} else if (!strncmp(str, "realloc", 7)) {
6930 				pci_realloc_get_opt("on");
6931 			} else if (!strcmp(str, "nodomains")) {
6932 				pci_no_domains();
6933 			} else if (!strncmp(str, "noari", 5)) {
6934 				pcie_ari_disabled = true;
6935 			} else if (!strncmp(str, "notph", 5)) {
6936 				pci_no_tph();
6937 			} else if (!strncmp(str, "cbiosize=", 9)) {
6938 				pci_cardbus_io_size = memparse(str + 9, &str);
6939 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6940 				pci_cardbus_mem_size = memparse(str + 10, &str);
6941 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6942 				resource_alignment_param = str + 19;
6943 			} else if (!strncmp(str, "ecrc=", 5)) {
6944 				pcie_ecrc_get_policy(str + 5);
6945 			} else if (!strncmp(str, "hpiosize=", 9)) {
6946 				pci_hotplug_io_size = memparse(str + 9, &str);
6947 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6948 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6949 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6950 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6951 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6952 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6953 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6954 			} else if (!strncmp(str, "hpbussize=", 10)) {
6955 				pci_hotplug_bus_size =
6956 					simple_strtoul(str + 10, &str, 0);
6957 				if (pci_hotplug_bus_size > 0xff)
6958 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6959 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6960 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6961 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6962 				pcie_bus_config = PCIE_BUS_SAFE;
6963 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6964 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6965 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6966 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6967 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6968 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6969 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6970 				disable_acs_redir_param = str + 18;
6971 			} else if (!strncmp(str, "config_acs=", 11)) {
6972 				config_acs_param = str + 11;
6973 			} else {
6974 				pr_err("PCI: Unknown option `%s'\n", str);
6975 			}
6976 		}
6977 		str = k;
6978 	}
6979 	return 0;
6980 }
6981 early_param("pci", pci_setup);
6982 
6983 /*
6984  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6985  * in pci_setup(), above, to point to data in the __initdata section which
6986  * will be freed after the init sequence is complete. We can't allocate memory
6987  * in pci_setup() because some architectures do not have any memory allocation
6988  * service available during an early_param() call. So we allocate memory and
6989  * copy the variable here before the init section is freed.
6990  *
6991  */
6992 static int __init pci_realloc_setup_params(void)
6993 {
6994 	resource_alignment_param = kstrdup(resource_alignment_param,
6995 					   GFP_KERNEL);
6996 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6997 	config_acs_param = kstrdup(config_acs_param, GFP_KERNEL);
6998 
6999 	return 0;
7000 }
7001 pure_initcall(pci_realloc_setup_params);
7002