xref: /linux/drivers/pci/pci.c (revision 2dbc0838bcf24ca59cabc3130cf3b1d6809cdcd4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
34 #include <asm/dma.h>
35 #include <linux/aer.h>
36 #include "pci.h"
37 
38 DEFINE_MUTEX(pci_slot_mutex);
39 
40 const char *pci_power_names[] = {
41 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 };
43 EXPORT_SYMBOL_GPL(pci_power_names);
44 
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
50 
51 unsigned int pci_pm_d3_delay;
52 
53 static void pci_pme_list_scan(struct work_struct *work);
54 
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 
59 struct pci_pme_device {
60 	struct list_head list;
61 	struct pci_dev *dev;
62 };
63 
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 
66 static void pci_dev_d3_sleep(struct pci_dev *dev)
67 {
68 	unsigned int delay = dev->d3_delay;
69 
70 	if (delay < pci_pm_d3_delay)
71 		delay = pci_pm_d3_delay;
72 
73 	if (delay)
74 		msleep(delay);
75 }
76 
77 #ifdef CONFIG_PCI_DOMAINS
78 int pci_domains_supported = 1;
79 #endif
80 
81 #define DEFAULT_CARDBUS_IO_SIZE		(256)
82 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
84 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
85 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
86 
87 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
88 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
90 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
91 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
92 
93 #define DEFAULT_HOTPLUG_BUS_SIZE	1
94 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
95 
96 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
97 
98 /*
99  * The default CLS is used if arch didn't set CLS explicitly and not
100  * all pci devices agree on the same value.  Arch can override either
101  * the dfl or actual value as it sees fit.  Don't forget this is
102  * measured in 32-bit words, not bytes.
103  */
104 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
105 u8 pci_cache_line_size;
106 
107 /*
108  * If we set up a device for bus mastering, we need to check the latency
109  * timer as certain BIOSes forget to set it properly.
110  */
111 unsigned int pcibios_max_latency = 255;
112 
113 /* If set, the PCIe ARI capability will not be used. */
114 static bool pcie_ari_disabled;
115 
116 /* If set, the PCIe ATS capability will not be used. */
117 static bool pcie_ats_disabled;
118 
119 /* If set, the PCI config space of each device is printed during boot. */
120 bool pci_early_dump;
121 
122 bool pci_ats_disabled(void)
123 {
124 	return pcie_ats_disabled;
125 }
126 
127 /* Disable bridge_d3 for all PCIe ports */
128 static bool pci_bridge_d3_disable;
129 /* Force bridge_d3 for all PCIe ports */
130 static bool pci_bridge_d3_force;
131 
132 static int __init pcie_port_pm_setup(char *str)
133 {
134 	if (!strcmp(str, "off"))
135 		pci_bridge_d3_disable = true;
136 	else if (!strcmp(str, "force"))
137 		pci_bridge_d3_force = true;
138 	return 1;
139 }
140 __setup("pcie_port_pm=", pcie_port_pm_setup);
141 
142 /* Time to wait after a reset for device to become responsive */
143 #define PCIE_RESET_READY_POLL_MS 60000
144 
145 /**
146  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
147  * @bus: pointer to PCI bus structure to search
148  *
149  * Given a PCI bus, returns the highest PCI bus number present in the set
150  * including the given PCI bus and its list of child PCI buses.
151  */
152 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
153 {
154 	struct pci_bus *tmp;
155 	unsigned char max, n;
156 
157 	max = bus->busn_res.end;
158 	list_for_each_entry(tmp, &bus->children, node) {
159 		n = pci_bus_max_busnr(tmp);
160 		if (n > max)
161 			max = n;
162 	}
163 	return max;
164 }
165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
166 
167 #ifdef CONFIG_HAS_IOMEM
168 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
169 {
170 	struct resource *res = &pdev->resource[bar];
171 
172 	/*
173 	 * Make sure the BAR is actually a memory resource, not an IO resource
174 	 */
175 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
176 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
177 		return NULL;
178 	}
179 	return ioremap_nocache(res->start, resource_size(res));
180 }
181 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
182 
183 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
184 {
185 	/*
186 	 * Make sure the BAR is actually a memory resource, not an IO resource
187 	 */
188 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
189 		WARN_ON(1);
190 		return NULL;
191 	}
192 	return ioremap_wc(pci_resource_start(pdev, bar),
193 			  pci_resource_len(pdev, bar));
194 }
195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
196 #endif
197 
198 /**
199  * pci_dev_str_match_path - test if a path string matches a device
200  * @dev: the PCI device to test
201  * @path: string to match the device against
202  * @endptr: pointer to the string after the match
203  *
204  * Test if a string (typically from a kernel parameter) formatted as a
205  * path of device/function addresses matches a PCI device. The string must
206  * be of the form:
207  *
208  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
209  *
210  * A path for a device can be obtained using 'lspci -t'.  Using a path
211  * is more robust against bus renumbering than using only a single bus,
212  * device and function address.
213  *
214  * Returns 1 if the string matches the device, 0 if it does not and
215  * a negative error code if it fails to parse the string.
216  */
217 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
218 				  const char **endptr)
219 {
220 	int ret;
221 	int seg, bus, slot, func;
222 	char *wpath, *p;
223 	char end;
224 
225 	*endptr = strchrnul(path, ';');
226 
227 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
228 	if (!wpath)
229 		return -ENOMEM;
230 
231 	while (1) {
232 		p = strrchr(wpath, '/');
233 		if (!p)
234 			break;
235 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
236 		if (ret != 2) {
237 			ret = -EINVAL;
238 			goto free_and_exit;
239 		}
240 
241 		if (dev->devfn != PCI_DEVFN(slot, func)) {
242 			ret = 0;
243 			goto free_and_exit;
244 		}
245 
246 		/*
247 		 * Note: we don't need to get a reference to the upstream
248 		 * bridge because we hold a reference to the top level
249 		 * device which should hold a reference to the bridge,
250 		 * and so on.
251 		 */
252 		dev = pci_upstream_bridge(dev);
253 		if (!dev) {
254 			ret = 0;
255 			goto free_and_exit;
256 		}
257 
258 		*p = 0;
259 	}
260 
261 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
262 		     &func, &end);
263 	if (ret != 4) {
264 		seg = 0;
265 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
266 		if (ret != 3) {
267 			ret = -EINVAL;
268 			goto free_and_exit;
269 		}
270 	}
271 
272 	ret = (seg == pci_domain_nr(dev->bus) &&
273 	       bus == dev->bus->number &&
274 	       dev->devfn == PCI_DEVFN(slot, func));
275 
276 free_and_exit:
277 	kfree(wpath);
278 	return ret;
279 }
280 
281 /**
282  * pci_dev_str_match - test if a string matches a device
283  * @dev: the PCI device to test
284  * @p: string to match the device against
285  * @endptr: pointer to the string after the match
286  *
287  * Test if a string (typically from a kernel parameter) matches a specified
288  * PCI device. The string may be of one of the following formats:
289  *
290  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
291  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
292  *
293  * The first format specifies a PCI bus/device/function address which
294  * may change if new hardware is inserted, if motherboard firmware changes,
295  * or due to changes caused in kernel parameters. If the domain is
296  * left unspecified, it is taken to be 0.  In order to be robust against
297  * bus renumbering issues, a path of PCI device/function numbers may be used
298  * to address the specific device.  The path for a device can be determined
299  * through the use of 'lspci -t'.
300  *
301  * The second format matches devices using IDs in the configuration
302  * space which may match multiple devices in the system. A value of 0
303  * for any field will match all devices. (Note: this differs from
304  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
305  * legacy reasons and convenience so users don't have to specify
306  * FFFFFFFFs on the command line.)
307  *
308  * Returns 1 if the string matches the device, 0 if it does not and
309  * a negative error code if the string cannot be parsed.
310  */
311 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
312 			     const char **endptr)
313 {
314 	int ret;
315 	int count;
316 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
317 
318 	if (strncmp(p, "pci:", 4) == 0) {
319 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
320 		p += 4;
321 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
322 			     &subsystem_vendor, &subsystem_device, &count);
323 		if (ret != 4) {
324 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
325 			if (ret != 2)
326 				return -EINVAL;
327 
328 			subsystem_vendor = 0;
329 			subsystem_device = 0;
330 		}
331 
332 		p += count;
333 
334 		if ((!vendor || vendor == dev->vendor) &&
335 		    (!device || device == dev->device) &&
336 		    (!subsystem_vendor ||
337 			    subsystem_vendor == dev->subsystem_vendor) &&
338 		    (!subsystem_device ||
339 			    subsystem_device == dev->subsystem_device))
340 			goto found;
341 	} else {
342 		/*
343 		 * PCI Bus, Device, Function IDs are specified
344 		 * (optionally, may include a path of devfns following it)
345 		 */
346 		ret = pci_dev_str_match_path(dev, p, &p);
347 		if (ret < 0)
348 			return ret;
349 		else if (ret)
350 			goto found;
351 	}
352 
353 	*endptr = p;
354 	return 0;
355 
356 found:
357 	*endptr = p;
358 	return 1;
359 }
360 
361 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
362 				   u8 pos, int cap, int *ttl)
363 {
364 	u8 id;
365 	u16 ent;
366 
367 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
368 
369 	while ((*ttl)--) {
370 		if (pos < 0x40)
371 			break;
372 		pos &= ~3;
373 		pci_bus_read_config_word(bus, devfn, pos, &ent);
374 
375 		id = ent & 0xff;
376 		if (id == 0xff)
377 			break;
378 		if (id == cap)
379 			return pos;
380 		pos = (ent >> 8);
381 	}
382 	return 0;
383 }
384 
385 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
386 			       u8 pos, int cap)
387 {
388 	int ttl = PCI_FIND_CAP_TTL;
389 
390 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
391 }
392 
393 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
394 {
395 	return __pci_find_next_cap(dev->bus, dev->devfn,
396 				   pos + PCI_CAP_LIST_NEXT, cap);
397 }
398 EXPORT_SYMBOL_GPL(pci_find_next_capability);
399 
400 static int __pci_bus_find_cap_start(struct pci_bus *bus,
401 				    unsigned int devfn, u8 hdr_type)
402 {
403 	u16 status;
404 
405 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
406 	if (!(status & PCI_STATUS_CAP_LIST))
407 		return 0;
408 
409 	switch (hdr_type) {
410 	case PCI_HEADER_TYPE_NORMAL:
411 	case PCI_HEADER_TYPE_BRIDGE:
412 		return PCI_CAPABILITY_LIST;
413 	case PCI_HEADER_TYPE_CARDBUS:
414 		return PCI_CB_CAPABILITY_LIST;
415 	}
416 
417 	return 0;
418 }
419 
420 /**
421  * pci_find_capability - query for devices' capabilities
422  * @dev: PCI device to query
423  * @cap: capability code
424  *
425  * Tell if a device supports a given PCI capability.
426  * Returns the address of the requested capability structure within the
427  * device's PCI configuration space or 0 in case the device does not
428  * support it.  Possible values for @cap include:
429  *
430  *  %PCI_CAP_ID_PM           Power Management
431  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
432  *  %PCI_CAP_ID_VPD          Vital Product Data
433  *  %PCI_CAP_ID_SLOTID       Slot Identification
434  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
435  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
436  *  %PCI_CAP_ID_PCIX         PCI-X
437  *  %PCI_CAP_ID_EXP          PCI Express
438  */
439 int pci_find_capability(struct pci_dev *dev, int cap)
440 {
441 	int pos;
442 
443 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
444 	if (pos)
445 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
446 
447 	return pos;
448 }
449 EXPORT_SYMBOL(pci_find_capability);
450 
451 /**
452  * pci_bus_find_capability - query for devices' capabilities
453  * @bus: the PCI bus to query
454  * @devfn: PCI device to query
455  * @cap: capability code
456  *
457  * Like pci_find_capability() but works for PCI devices that do not have a
458  * pci_dev structure set up yet.
459  *
460  * Returns the address of the requested capability structure within the
461  * device's PCI configuration space or 0 in case the device does not
462  * support it.
463  */
464 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
465 {
466 	int pos;
467 	u8 hdr_type;
468 
469 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
470 
471 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
472 	if (pos)
473 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
474 
475 	return pos;
476 }
477 EXPORT_SYMBOL(pci_bus_find_capability);
478 
479 /**
480  * pci_find_next_ext_capability - Find an extended capability
481  * @dev: PCI device to query
482  * @start: address at which to start looking (0 to start at beginning of list)
483  * @cap: capability code
484  *
485  * Returns the address of the next matching extended capability structure
486  * within the device's PCI configuration space or 0 if the device does
487  * not support it.  Some capabilities can occur several times, e.g., the
488  * vendor-specific capability, and this provides a way to find them all.
489  */
490 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
491 {
492 	u32 header;
493 	int ttl;
494 	int pos = PCI_CFG_SPACE_SIZE;
495 
496 	/* minimum 8 bytes per capability */
497 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
498 
499 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
500 		return 0;
501 
502 	if (start)
503 		pos = start;
504 
505 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
506 		return 0;
507 
508 	/*
509 	 * If we have no capabilities, this is indicated by cap ID,
510 	 * cap version and next pointer all being 0.
511 	 */
512 	if (header == 0)
513 		return 0;
514 
515 	while (ttl-- > 0) {
516 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
517 			return pos;
518 
519 		pos = PCI_EXT_CAP_NEXT(header);
520 		if (pos < PCI_CFG_SPACE_SIZE)
521 			break;
522 
523 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
524 			break;
525 	}
526 
527 	return 0;
528 }
529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
530 
531 /**
532  * pci_find_ext_capability - Find an extended capability
533  * @dev: PCI device to query
534  * @cap: capability code
535  *
536  * Returns the address of the requested extended capability structure
537  * within the device's PCI configuration space or 0 if the device does
538  * not support it.  Possible values for @cap include:
539  *
540  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
541  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
542  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
543  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
544  */
545 int pci_find_ext_capability(struct pci_dev *dev, int cap)
546 {
547 	return pci_find_next_ext_capability(dev, 0, cap);
548 }
549 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
550 
551 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
552 {
553 	int rc, ttl = PCI_FIND_CAP_TTL;
554 	u8 cap, mask;
555 
556 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
557 		mask = HT_3BIT_CAP_MASK;
558 	else
559 		mask = HT_5BIT_CAP_MASK;
560 
561 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
562 				      PCI_CAP_ID_HT, &ttl);
563 	while (pos) {
564 		rc = pci_read_config_byte(dev, pos + 3, &cap);
565 		if (rc != PCIBIOS_SUCCESSFUL)
566 			return 0;
567 
568 		if ((cap & mask) == ht_cap)
569 			return pos;
570 
571 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
572 					      pos + PCI_CAP_LIST_NEXT,
573 					      PCI_CAP_ID_HT, &ttl);
574 	}
575 
576 	return 0;
577 }
578 /**
579  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
580  * @dev: PCI device to query
581  * @pos: Position from which to continue searching
582  * @ht_cap: Hypertransport capability code
583  *
584  * To be used in conjunction with pci_find_ht_capability() to search for
585  * all capabilities matching @ht_cap. @pos should always be a value returned
586  * from pci_find_ht_capability().
587  *
588  * NB. To be 100% safe against broken PCI devices, the caller should take
589  * steps to avoid an infinite loop.
590  */
591 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
592 {
593 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
596 
597 /**
598  * pci_find_ht_capability - query a device's Hypertransport capabilities
599  * @dev: PCI device to query
600  * @ht_cap: Hypertransport capability code
601  *
602  * Tell if a device supports a given Hypertransport capability.
603  * Returns an address within the device's PCI configuration space
604  * or 0 in case the device does not support the request capability.
605  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
606  * which has a Hypertransport capability matching @ht_cap.
607  */
608 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
609 {
610 	int pos;
611 
612 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
613 	if (pos)
614 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
615 
616 	return pos;
617 }
618 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
619 
620 /**
621  * pci_find_parent_resource - return resource region of parent bus of given
622  *			      region
623  * @dev: PCI device structure contains resources to be searched
624  * @res: child resource record for which parent is sought
625  *
626  * For given resource region of given device, return the resource region of
627  * parent bus the given region is contained in.
628  */
629 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
630 					  struct resource *res)
631 {
632 	const struct pci_bus *bus = dev->bus;
633 	struct resource *r;
634 	int i;
635 
636 	pci_bus_for_each_resource(bus, r, i) {
637 		if (!r)
638 			continue;
639 		if (resource_contains(r, res)) {
640 
641 			/*
642 			 * If the window is prefetchable but the BAR is
643 			 * not, the allocator made a mistake.
644 			 */
645 			if (r->flags & IORESOURCE_PREFETCH &&
646 			    !(res->flags & IORESOURCE_PREFETCH))
647 				return NULL;
648 
649 			/*
650 			 * If we're below a transparent bridge, there may
651 			 * be both a positively-decoded aperture and a
652 			 * subtractively-decoded region that contain the BAR.
653 			 * We want the positively-decoded one, so this depends
654 			 * on pci_bus_for_each_resource() giving us those
655 			 * first.
656 			 */
657 			return r;
658 		}
659 	}
660 	return NULL;
661 }
662 EXPORT_SYMBOL(pci_find_parent_resource);
663 
664 /**
665  * pci_find_resource - Return matching PCI device resource
666  * @dev: PCI device to query
667  * @res: Resource to look for
668  *
669  * Goes over standard PCI resources (BARs) and checks if the given resource
670  * is partially or fully contained in any of them. In that case the
671  * matching resource is returned, %NULL otherwise.
672  */
673 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
674 {
675 	int i;
676 
677 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
678 		struct resource *r = &dev->resource[i];
679 
680 		if (r->start && resource_contains(r, res))
681 			return r;
682 	}
683 
684 	return NULL;
685 }
686 EXPORT_SYMBOL(pci_find_resource);
687 
688 /**
689  * pci_find_pcie_root_port - return PCIe Root Port
690  * @dev: PCI device to query
691  *
692  * Traverse up the parent chain and return the PCIe Root Port PCI Device
693  * for a given PCI Device.
694  */
695 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
696 {
697 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
698 
699 	bridge = pci_upstream_bridge(dev);
700 	while (bridge && pci_is_pcie(bridge)) {
701 		highest_pcie_bridge = bridge;
702 		bridge = pci_upstream_bridge(bridge);
703 	}
704 
705 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
706 		return NULL;
707 
708 	return highest_pcie_bridge;
709 }
710 EXPORT_SYMBOL(pci_find_pcie_root_port);
711 
712 /**
713  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
714  * @dev: the PCI device to operate on
715  * @pos: config space offset of status word
716  * @mask: mask of bit(s) to care about in status word
717  *
718  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
719  */
720 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
721 {
722 	int i;
723 
724 	/* Wait for Transaction Pending bit clean */
725 	for (i = 0; i < 4; i++) {
726 		u16 status;
727 		if (i)
728 			msleep((1 << (i - 1)) * 100);
729 
730 		pci_read_config_word(dev, pos, &status);
731 		if (!(status & mask))
732 			return 1;
733 	}
734 
735 	return 0;
736 }
737 
738 /**
739  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
740  * @dev: PCI device to have its BARs restored
741  *
742  * Restore the BAR values for a given device, so as to make it
743  * accessible by its driver.
744  */
745 static void pci_restore_bars(struct pci_dev *dev)
746 {
747 	int i;
748 
749 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
750 		pci_update_resource(dev, i);
751 }
752 
753 static const struct pci_platform_pm_ops *pci_platform_pm;
754 
755 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
756 {
757 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
758 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
759 		return -EINVAL;
760 	pci_platform_pm = ops;
761 	return 0;
762 }
763 
764 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
765 {
766 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
767 }
768 
769 static inline int platform_pci_set_power_state(struct pci_dev *dev,
770 					       pci_power_t t)
771 {
772 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
773 }
774 
775 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
776 {
777 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
778 }
779 
780 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
781 {
782 	if (pci_platform_pm && pci_platform_pm->refresh_state)
783 		pci_platform_pm->refresh_state(dev);
784 }
785 
786 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
787 {
788 	return pci_platform_pm ?
789 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
790 }
791 
792 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
793 {
794 	return pci_platform_pm ?
795 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
796 }
797 
798 static inline bool platform_pci_need_resume(struct pci_dev *dev)
799 {
800 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
801 }
802 
803 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
804 {
805 	return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
806 }
807 
808 /**
809  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
810  *			     given PCI device
811  * @dev: PCI device to handle.
812  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
813  *
814  * RETURN VALUE:
815  * -EINVAL if the requested state is invalid.
816  * -EIO if device does not support PCI PM or its PM capabilities register has a
817  * wrong version, or device doesn't support the requested state.
818  * 0 if device already is in the requested state.
819  * 0 if device's power state has been successfully changed.
820  */
821 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
822 {
823 	u16 pmcsr;
824 	bool need_restore = false;
825 
826 	/* Check if we're already there */
827 	if (dev->current_state == state)
828 		return 0;
829 
830 	if (!dev->pm_cap)
831 		return -EIO;
832 
833 	if (state < PCI_D0 || state > PCI_D3hot)
834 		return -EINVAL;
835 
836 	/*
837 	 * Validate current state:
838 	 * Can enter D0 from any state, but if we can only go deeper
839 	 * to sleep if we're already in a low power state
840 	 */
841 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
842 	    && dev->current_state > state) {
843 		pci_err(dev, "invalid power transition (from state %d to %d)\n",
844 			dev->current_state, state);
845 		return -EINVAL;
846 	}
847 
848 	/* Check if this device supports the desired state */
849 	if ((state == PCI_D1 && !dev->d1_support)
850 	   || (state == PCI_D2 && !dev->d2_support))
851 		return -EIO;
852 
853 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
854 
855 	/*
856 	 * If we're (effectively) in D3, force entire word to 0.
857 	 * This doesn't affect PME_Status, disables PME_En, and
858 	 * sets PowerState to 0.
859 	 */
860 	switch (dev->current_state) {
861 	case PCI_D0:
862 	case PCI_D1:
863 	case PCI_D2:
864 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
865 		pmcsr |= state;
866 		break;
867 	case PCI_D3hot:
868 	case PCI_D3cold:
869 	case PCI_UNKNOWN: /* Boot-up */
870 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
871 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
872 			need_restore = true;
873 		/* Fall-through - force to D0 */
874 	default:
875 		pmcsr = 0;
876 		break;
877 	}
878 
879 	/* Enter specified state */
880 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
881 
882 	/*
883 	 * Mandatory power management transition delays; see PCI PM 1.1
884 	 * 5.6.1 table 18
885 	 */
886 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
887 		pci_dev_d3_sleep(dev);
888 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
889 		udelay(PCI_PM_D2_DELAY);
890 
891 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
892 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
893 	if (dev->current_state != state && printk_ratelimit())
894 		pci_info(dev, "Refused to change power state, currently in D%d\n",
895 			 dev->current_state);
896 
897 	/*
898 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
899 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
900 	 * from D3hot to D0 _may_ perform an internal reset, thereby
901 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
902 	 * For example, at least some versions of the 3c905B and the
903 	 * 3c556B exhibit this behaviour.
904 	 *
905 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
906 	 * devices in a D3hot state at boot.  Consequently, we need to
907 	 * restore at least the BARs so that the device will be
908 	 * accessible to its driver.
909 	 */
910 	if (need_restore)
911 		pci_restore_bars(dev);
912 
913 	if (dev->bus->self)
914 		pcie_aspm_pm_state_change(dev->bus->self);
915 
916 	return 0;
917 }
918 
919 /**
920  * pci_update_current_state - Read power state of given device and cache it
921  * @dev: PCI device to handle.
922  * @state: State to cache in case the device doesn't have the PM capability
923  *
924  * The power state is read from the PMCSR register, which however is
925  * inaccessible in D3cold.  The platform firmware is therefore queried first
926  * to detect accessibility of the register.  In case the platform firmware
927  * reports an incorrect state or the device isn't power manageable by the
928  * platform at all, we try to detect D3cold by testing accessibility of the
929  * vendor ID in config space.
930  */
931 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
932 {
933 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
934 	    !pci_device_is_present(dev)) {
935 		dev->current_state = PCI_D3cold;
936 	} else if (dev->pm_cap) {
937 		u16 pmcsr;
938 
939 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
940 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
941 	} else {
942 		dev->current_state = state;
943 	}
944 }
945 
946 /**
947  * pci_refresh_power_state - Refresh the given device's power state data
948  * @dev: Target PCI device.
949  *
950  * Ask the platform to refresh the devices power state information and invoke
951  * pci_update_current_state() to update its current PCI power state.
952  */
953 void pci_refresh_power_state(struct pci_dev *dev)
954 {
955 	if (platform_pci_power_manageable(dev))
956 		platform_pci_refresh_power_state(dev);
957 
958 	pci_update_current_state(dev, dev->current_state);
959 }
960 
961 /**
962  * pci_power_up - Put the given device into D0 forcibly
963  * @dev: PCI device to power up
964  */
965 void pci_power_up(struct pci_dev *dev)
966 {
967 	if (platform_pci_power_manageable(dev))
968 		platform_pci_set_power_state(dev, PCI_D0);
969 
970 	pci_raw_set_power_state(dev, PCI_D0);
971 	pci_update_current_state(dev, PCI_D0);
972 }
973 
974 /**
975  * pci_platform_power_transition - Use platform to change device power state
976  * @dev: PCI device to handle.
977  * @state: State to put the device into.
978  */
979 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
980 {
981 	int error;
982 
983 	if (platform_pci_power_manageable(dev)) {
984 		error = platform_pci_set_power_state(dev, state);
985 		if (!error)
986 			pci_update_current_state(dev, state);
987 	} else
988 		error = -ENODEV;
989 
990 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
991 		dev->current_state = PCI_D0;
992 
993 	return error;
994 }
995 
996 /**
997  * pci_wakeup - Wake up a PCI device
998  * @pci_dev: Device to handle.
999  * @ign: ignored parameter
1000  */
1001 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1002 {
1003 	pci_wakeup_event(pci_dev);
1004 	pm_request_resume(&pci_dev->dev);
1005 	return 0;
1006 }
1007 
1008 /**
1009  * pci_wakeup_bus - Walk given bus and wake up devices on it
1010  * @bus: Top bus of the subtree to walk.
1011  */
1012 void pci_wakeup_bus(struct pci_bus *bus)
1013 {
1014 	if (bus)
1015 		pci_walk_bus(bus, pci_wakeup, NULL);
1016 }
1017 
1018 /**
1019  * __pci_start_power_transition - Start power transition of a PCI device
1020  * @dev: PCI device to handle.
1021  * @state: State to put the device into.
1022  */
1023 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
1024 {
1025 	if (state == PCI_D0) {
1026 		pci_platform_power_transition(dev, PCI_D0);
1027 		/*
1028 		 * Mandatory power management transition delays are
1029 		 * handled in the PCIe portdrv resume hooks.
1030 		 */
1031 		if (dev->runtime_d3cold) {
1032 			/*
1033 			 * When powering on a bridge from D3cold, the
1034 			 * whole hierarchy may be powered on into
1035 			 * D0uninitialized state, resume them to give
1036 			 * them a chance to suspend again
1037 			 */
1038 			pci_wakeup_bus(dev->subordinate);
1039 		}
1040 	}
1041 }
1042 
1043 /**
1044  * __pci_dev_set_current_state - Set current state of a PCI device
1045  * @dev: Device to handle
1046  * @data: pointer to state to be set
1047  */
1048 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1049 {
1050 	pci_power_t state = *(pci_power_t *)data;
1051 
1052 	dev->current_state = state;
1053 	return 0;
1054 }
1055 
1056 /**
1057  * pci_bus_set_current_state - Walk given bus and set current state of devices
1058  * @bus: Top bus of the subtree to walk.
1059  * @state: state to be set
1060  */
1061 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1062 {
1063 	if (bus)
1064 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1065 }
1066 
1067 /**
1068  * __pci_complete_power_transition - Complete power transition of a PCI device
1069  * @dev: PCI device to handle.
1070  * @state: State to put the device into.
1071  *
1072  * This function should not be called directly by device drivers.
1073  */
1074 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1075 {
1076 	int ret;
1077 
1078 	if (state <= PCI_D0)
1079 		return -EINVAL;
1080 	ret = pci_platform_power_transition(dev, state);
1081 	/* Power off the bridge may power off the whole hierarchy */
1082 	if (!ret && state == PCI_D3cold)
1083 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1084 	return ret;
1085 }
1086 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1087 
1088 /**
1089  * pci_set_power_state - Set the power state of a PCI device
1090  * @dev: PCI device to handle.
1091  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1092  *
1093  * Transition a device to a new power state, using the platform firmware and/or
1094  * the device's PCI PM registers.
1095  *
1096  * RETURN VALUE:
1097  * -EINVAL if the requested state is invalid.
1098  * -EIO if device does not support PCI PM or its PM capabilities register has a
1099  * wrong version, or device doesn't support the requested state.
1100  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1101  * 0 if device already is in the requested state.
1102  * 0 if the transition is to D3 but D3 is not supported.
1103  * 0 if device's power state has been successfully changed.
1104  */
1105 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1106 {
1107 	int error;
1108 
1109 	/* Bound the state we're entering */
1110 	if (state > PCI_D3cold)
1111 		state = PCI_D3cold;
1112 	else if (state < PCI_D0)
1113 		state = PCI_D0;
1114 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1115 
1116 		/*
1117 		 * If the device or the parent bridge do not support PCI
1118 		 * PM, ignore the request if we're doing anything other
1119 		 * than putting it into D0 (which would only happen on
1120 		 * boot).
1121 		 */
1122 		return 0;
1123 
1124 	/* Check if we're already there */
1125 	if (dev->current_state == state)
1126 		return 0;
1127 
1128 	__pci_start_power_transition(dev, state);
1129 
1130 	/*
1131 	 * This device is quirked not to be put into D3, so don't put it in
1132 	 * D3
1133 	 */
1134 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1135 		return 0;
1136 
1137 	/*
1138 	 * To put device in D3cold, we put device into D3hot in native
1139 	 * way, then put device into D3cold with platform ops
1140 	 */
1141 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1142 					PCI_D3hot : state);
1143 
1144 	if (!__pci_complete_power_transition(dev, state))
1145 		error = 0;
1146 
1147 	return error;
1148 }
1149 EXPORT_SYMBOL(pci_set_power_state);
1150 
1151 /**
1152  * pci_choose_state - Choose the power state of a PCI device
1153  * @dev: PCI device to be suspended
1154  * @state: target sleep state for the whole system. This is the value
1155  *	   that is passed to suspend() function.
1156  *
1157  * Returns PCI power state suitable for given device and given system
1158  * message.
1159  */
1160 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1161 {
1162 	pci_power_t ret;
1163 
1164 	if (!dev->pm_cap)
1165 		return PCI_D0;
1166 
1167 	ret = platform_pci_choose_state(dev);
1168 	if (ret != PCI_POWER_ERROR)
1169 		return ret;
1170 
1171 	switch (state.event) {
1172 	case PM_EVENT_ON:
1173 		return PCI_D0;
1174 	case PM_EVENT_FREEZE:
1175 	case PM_EVENT_PRETHAW:
1176 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1177 	case PM_EVENT_SUSPEND:
1178 	case PM_EVENT_HIBERNATE:
1179 		return PCI_D3hot;
1180 	default:
1181 		pci_info(dev, "unrecognized suspend event %d\n",
1182 			 state.event);
1183 		BUG();
1184 	}
1185 	return PCI_D0;
1186 }
1187 EXPORT_SYMBOL(pci_choose_state);
1188 
1189 #define PCI_EXP_SAVE_REGS	7
1190 
1191 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1192 						       u16 cap, bool extended)
1193 {
1194 	struct pci_cap_saved_state *tmp;
1195 
1196 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1197 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1198 			return tmp;
1199 	}
1200 	return NULL;
1201 }
1202 
1203 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1204 {
1205 	return _pci_find_saved_cap(dev, cap, false);
1206 }
1207 
1208 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1209 {
1210 	return _pci_find_saved_cap(dev, cap, true);
1211 }
1212 
1213 static int pci_save_pcie_state(struct pci_dev *dev)
1214 {
1215 	int i = 0;
1216 	struct pci_cap_saved_state *save_state;
1217 	u16 *cap;
1218 
1219 	if (!pci_is_pcie(dev))
1220 		return 0;
1221 
1222 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1223 	if (!save_state) {
1224 		pci_err(dev, "buffer not found in %s\n", __func__);
1225 		return -ENOMEM;
1226 	}
1227 
1228 	cap = (u16 *)&save_state->cap.data[0];
1229 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1230 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1231 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1232 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1233 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1234 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1235 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1236 
1237 	return 0;
1238 }
1239 
1240 static void pci_restore_pcie_state(struct pci_dev *dev)
1241 {
1242 	int i = 0;
1243 	struct pci_cap_saved_state *save_state;
1244 	u16 *cap;
1245 
1246 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1247 	if (!save_state)
1248 		return;
1249 
1250 	cap = (u16 *)&save_state->cap.data[0];
1251 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1252 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1253 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1254 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1255 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1256 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1257 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1258 }
1259 
1260 static int pci_save_pcix_state(struct pci_dev *dev)
1261 {
1262 	int pos;
1263 	struct pci_cap_saved_state *save_state;
1264 
1265 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1266 	if (!pos)
1267 		return 0;
1268 
1269 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1270 	if (!save_state) {
1271 		pci_err(dev, "buffer not found in %s\n", __func__);
1272 		return -ENOMEM;
1273 	}
1274 
1275 	pci_read_config_word(dev, pos + PCI_X_CMD,
1276 			     (u16 *)save_state->cap.data);
1277 
1278 	return 0;
1279 }
1280 
1281 static void pci_restore_pcix_state(struct pci_dev *dev)
1282 {
1283 	int i = 0, pos;
1284 	struct pci_cap_saved_state *save_state;
1285 	u16 *cap;
1286 
1287 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1288 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1289 	if (!save_state || !pos)
1290 		return;
1291 	cap = (u16 *)&save_state->cap.data[0];
1292 
1293 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1294 }
1295 
1296 static void pci_save_ltr_state(struct pci_dev *dev)
1297 {
1298 	int ltr;
1299 	struct pci_cap_saved_state *save_state;
1300 	u16 *cap;
1301 
1302 	if (!pci_is_pcie(dev))
1303 		return;
1304 
1305 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1306 	if (!ltr)
1307 		return;
1308 
1309 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1310 	if (!save_state) {
1311 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1312 		return;
1313 	}
1314 
1315 	cap = (u16 *)&save_state->cap.data[0];
1316 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1317 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1318 }
1319 
1320 static void pci_restore_ltr_state(struct pci_dev *dev)
1321 {
1322 	struct pci_cap_saved_state *save_state;
1323 	int ltr;
1324 	u16 *cap;
1325 
1326 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1327 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1328 	if (!save_state || !ltr)
1329 		return;
1330 
1331 	cap = (u16 *)&save_state->cap.data[0];
1332 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1333 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1334 }
1335 
1336 /**
1337  * pci_save_state - save the PCI configuration space of a device before
1338  *		    suspending
1339  * @dev: PCI device that we're dealing with
1340  */
1341 int pci_save_state(struct pci_dev *dev)
1342 {
1343 	int i;
1344 	/* XXX: 100% dword access ok here? */
1345 	for (i = 0; i < 16; i++)
1346 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1347 	dev->state_saved = true;
1348 
1349 	i = pci_save_pcie_state(dev);
1350 	if (i != 0)
1351 		return i;
1352 
1353 	i = pci_save_pcix_state(dev);
1354 	if (i != 0)
1355 		return i;
1356 
1357 	pci_save_ltr_state(dev);
1358 	pci_save_dpc_state(dev);
1359 	return pci_save_vc_state(dev);
1360 }
1361 EXPORT_SYMBOL(pci_save_state);
1362 
1363 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1364 				     u32 saved_val, int retry, bool force)
1365 {
1366 	u32 val;
1367 
1368 	pci_read_config_dword(pdev, offset, &val);
1369 	if (!force && val == saved_val)
1370 		return;
1371 
1372 	for (;;) {
1373 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1374 			offset, val, saved_val);
1375 		pci_write_config_dword(pdev, offset, saved_val);
1376 		if (retry-- <= 0)
1377 			return;
1378 
1379 		pci_read_config_dword(pdev, offset, &val);
1380 		if (val == saved_val)
1381 			return;
1382 
1383 		mdelay(1);
1384 	}
1385 }
1386 
1387 static void pci_restore_config_space_range(struct pci_dev *pdev,
1388 					   int start, int end, int retry,
1389 					   bool force)
1390 {
1391 	int index;
1392 
1393 	for (index = end; index >= start; index--)
1394 		pci_restore_config_dword(pdev, 4 * index,
1395 					 pdev->saved_config_space[index],
1396 					 retry, force);
1397 }
1398 
1399 static void pci_restore_config_space(struct pci_dev *pdev)
1400 {
1401 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1402 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1403 		/* Restore BARs before the command register. */
1404 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1405 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1406 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1407 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1408 
1409 		/*
1410 		 * Force rewriting of prefetch registers to avoid S3 resume
1411 		 * issues on Intel PCI bridges that occur when these
1412 		 * registers are not explicitly written.
1413 		 */
1414 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1415 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1416 	} else {
1417 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1418 	}
1419 }
1420 
1421 static void pci_restore_rebar_state(struct pci_dev *pdev)
1422 {
1423 	unsigned int pos, nbars, i;
1424 	u32 ctrl;
1425 
1426 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1427 	if (!pos)
1428 		return;
1429 
1430 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1431 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1432 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1433 
1434 	for (i = 0; i < nbars; i++, pos += 8) {
1435 		struct resource *res;
1436 		int bar_idx, size;
1437 
1438 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1439 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1440 		res = pdev->resource + bar_idx;
1441 		size = order_base_2((resource_size(res) >> 20) | 1) - 1;
1442 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1443 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1444 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1445 	}
1446 }
1447 
1448 /**
1449  * pci_restore_state - Restore the saved state of a PCI device
1450  * @dev: PCI device that we're dealing with
1451  */
1452 void pci_restore_state(struct pci_dev *dev)
1453 {
1454 	if (!dev->state_saved)
1455 		return;
1456 
1457 	/*
1458 	 * Restore max latencies (in the LTR capability) before enabling
1459 	 * LTR itself (in the PCIe capability).
1460 	 */
1461 	pci_restore_ltr_state(dev);
1462 
1463 	pci_restore_pcie_state(dev);
1464 	pci_restore_pasid_state(dev);
1465 	pci_restore_pri_state(dev);
1466 	pci_restore_ats_state(dev);
1467 	pci_restore_vc_state(dev);
1468 	pci_restore_rebar_state(dev);
1469 	pci_restore_dpc_state(dev);
1470 
1471 	pci_cleanup_aer_error_status_regs(dev);
1472 
1473 	pci_restore_config_space(dev);
1474 
1475 	pci_restore_pcix_state(dev);
1476 	pci_restore_msi_state(dev);
1477 
1478 	/* Restore ACS and IOV configuration state */
1479 	pci_enable_acs(dev);
1480 	pci_restore_iov_state(dev);
1481 
1482 	dev->state_saved = false;
1483 }
1484 EXPORT_SYMBOL(pci_restore_state);
1485 
1486 struct pci_saved_state {
1487 	u32 config_space[16];
1488 	struct pci_cap_saved_data cap[0];
1489 };
1490 
1491 /**
1492  * pci_store_saved_state - Allocate and return an opaque struct containing
1493  *			   the device saved state.
1494  * @dev: PCI device that we're dealing with
1495  *
1496  * Return NULL if no state or error.
1497  */
1498 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1499 {
1500 	struct pci_saved_state *state;
1501 	struct pci_cap_saved_state *tmp;
1502 	struct pci_cap_saved_data *cap;
1503 	size_t size;
1504 
1505 	if (!dev->state_saved)
1506 		return NULL;
1507 
1508 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1509 
1510 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1511 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1512 
1513 	state = kzalloc(size, GFP_KERNEL);
1514 	if (!state)
1515 		return NULL;
1516 
1517 	memcpy(state->config_space, dev->saved_config_space,
1518 	       sizeof(state->config_space));
1519 
1520 	cap = state->cap;
1521 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1522 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1523 		memcpy(cap, &tmp->cap, len);
1524 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1525 	}
1526 	/* Empty cap_save terminates list */
1527 
1528 	return state;
1529 }
1530 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1531 
1532 /**
1533  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1534  * @dev: PCI device that we're dealing with
1535  * @state: Saved state returned from pci_store_saved_state()
1536  */
1537 int pci_load_saved_state(struct pci_dev *dev,
1538 			 struct pci_saved_state *state)
1539 {
1540 	struct pci_cap_saved_data *cap;
1541 
1542 	dev->state_saved = false;
1543 
1544 	if (!state)
1545 		return 0;
1546 
1547 	memcpy(dev->saved_config_space, state->config_space,
1548 	       sizeof(state->config_space));
1549 
1550 	cap = state->cap;
1551 	while (cap->size) {
1552 		struct pci_cap_saved_state *tmp;
1553 
1554 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1555 		if (!tmp || tmp->cap.size != cap->size)
1556 			return -EINVAL;
1557 
1558 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1559 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1560 		       sizeof(struct pci_cap_saved_data) + cap->size);
1561 	}
1562 
1563 	dev->state_saved = true;
1564 	return 0;
1565 }
1566 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1567 
1568 /**
1569  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1570  *				   and free the memory allocated for it.
1571  * @dev: PCI device that we're dealing with
1572  * @state: Pointer to saved state returned from pci_store_saved_state()
1573  */
1574 int pci_load_and_free_saved_state(struct pci_dev *dev,
1575 				  struct pci_saved_state **state)
1576 {
1577 	int ret = pci_load_saved_state(dev, *state);
1578 	kfree(*state);
1579 	*state = NULL;
1580 	return ret;
1581 }
1582 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1583 
1584 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1585 {
1586 	return pci_enable_resources(dev, bars);
1587 }
1588 
1589 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1590 {
1591 	int err;
1592 	struct pci_dev *bridge;
1593 	u16 cmd;
1594 	u8 pin;
1595 
1596 	err = pci_set_power_state(dev, PCI_D0);
1597 	if (err < 0 && err != -EIO)
1598 		return err;
1599 
1600 	bridge = pci_upstream_bridge(dev);
1601 	if (bridge)
1602 		pcie_aspm_powersave_config_link(bridge);
1603 
1604 	err = pcibios_enable_device(dev, bars);
1605 	if (err < 0)
1606 		return err;
1607 	pci_fixup_device(pci_fixup_enable, dev);
1608 
1609 	if (dev->msi_enabled || dev->msix_enabled)
1610 		return 0;
1611 
1612 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1613 	if (pin) {
1614 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1615 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1616 			pci_write_config_word(dev, PCI_COMMAND,
1617 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1618 	}
1619 
1620 	return 0;
1621 }
1622 
1623 /**
1624  * pci_reenable_device - Resume abandoned device
1625  * @dev: PCI device to be resumed
1626  *
1627  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1628  * to be called by normal code, write proper resume handler and use it instead.
1629  */
1630 int pci_reenable_device(struct pci_dev *dev)
1631 {
1632 	if (pci_is_enabled(dev))
1633 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1634 	return 0;
1635 }
1636 EXPORT_SYMBOL(pci_reenable_device);
1637 
1638 static void pci_enable_bridge(struct pci_dev *dev)
1639 {
1640 	struct pci_dev *bridge;
1641 	int retval;
1642 
1643 	bridge = pci_upstream_bridge(dev);
1644 	if (bridge)
1645 		pci_enable_bridge(bridge);
1646 
1647 	if (pci_is_enabled(dev)) {
1648 		if (!dev->is_busmaster)
1649 			pci_set_master(dev);
1650 		return;
1651 	}
1652 
1653 	retval = pci_enable_device(dev);
1654 	if (retval)
1655 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1656 			retval);
1657 	pci_set_master(dev);
1658 }
1659 
1660 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1661 {
1662 	struct pci_dev *bridge;
1663 	int err;
1664 	int i, bars = 0;
1665 
1666 	/*
1667 	 * Power state could be unknown at this point, either due to a fresh
1668 	 * boot or a device removal call.  So get the current power state
1669 	 * so that things like MSI message writing will behave as expected
1670 	 * (e.g. if the device really is in D0 at enable time).
1671 	 */
1672 	if (dev->pm_cap) {
1673 		u16 pmcsr;
1674 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1675 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1676 	}
1677 
1678 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1679 		return 0;		/* already enabled */
1680 
1681 	bridge = pci_upstream_bridge(dev);
1682 	if (bridge)
1683 		pci_enable_bridge(bridge);
1684 
1685 	/* only skip sriov related */
1686 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1687 		if (dev->resource[i].flags & flags)
1688 			bars |= (1 << i);
1689 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1690 		if (dev->resource[i].flags & flags)
1691 			bars |= (1 << i);
1692 
1693 	err = do_pci_enable_device(dev, bars);
1694 	if (err < 0)
1695 		atomic_dec(&dev->enable_cnt);
1696 	return err;
1697 }
1698 
1699 /**
1700  * pci_enable_device_io - Initialize a device for use with IO space
1701  * @dev: PCI device to be initialized
1702  *
1703  * Initialize device before it's used by a driver. Ask low-level code
1704  * to enable I/O resources. Wake up the device if it was suspended.
1705  * Beware, this function can fail.
1706  */
1707 int pci_enable_device_io(struct pci_dev *dev)
1708 {
1709 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1710 }
1711 EXPORT_SYMBOL(pci_enable_device_io);
1712 
1713 /**
1714  * pci_enable_device_mem - Initialize a device for use with Memory space
1715  * @dev: PCI device to be initialized
1716  *
1717  * Initialize device before it's used by a driver. Ask low-level code
1718  * to enable Memory resources. Wake up the device if it was suspended.
1719  * Beware, this function can fail.
1720  */
1721 int pci_enable_device_mem(struct pci_dev *dev)
1722 {
1723 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1724 }
1725 EXPORT_SYMBOL(pci_enable_device_mem);
1726 
1727 /**
1728  * pci_enable_device - Initialize device before it's used by a driver.
1729  * @dev: PCI device to be initialized
1730  *
1731  * Initialize device before it's used by a driver. Ask low-level code
1732  * to enable I/O and memory. Wake up the device if it was suspended.
1733  * Beware, this function can fail.
1734  *
1735  * Note we don't actually enable the device many times if we call
1736  * this function repeatedly (we just increment the count).
1737  */
1738 int pci_enable_device(struct pci_dev *dev)
1739 {
1740 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1741 }
1742 EXPORT_SYMBOL(pci_enable_device);
1743 
1744 /*
1745  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1746  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1747  * there's no need to track it separately.  pci_devres is initialized
1748  * when a device is enabled using managed PCI device enable interface.
1749  */
1750 struct pci_devres {
1751 	unsigned int enabled:1;
1752 	unsigned int pinned:1;
1753 	unsigned int orig_intx:1;
1754 	unsigned int restore_intx:1;
1755 	unsigned int mwi:1;
1756 	u32 region_mask;
1757 };
1758 
1759 static void pcim_release(struct device *gendev, void *res)
1760 {
1761 	struct pci_dev *dev = to_pci_dev(gendev);
1762 	struct pci_devres *this = res;
1763 	int i;
1764 
1765 	if (dev->msi_enabled)
1766 		pci_disable_msi(dev);
1767 	if (dev->msix_enabled)
1768 		pci_disable_msix(dev);
1769 
1770 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1771 		if (this->region_mask & (1 << i))
1772 			pci_release_region(dev, i);
1773 
1774 	if (this->mwi)
1775 		pci_clear_mwi(dev);
1776 
1777 	if (this->restore_intx)
1778 		pci_intx(dev, this->orig_intx);
1779 
1780 	if (this->enabled && !this->pinned)
1781 		pci_disable_device(dev);
1782 }
1783 
1784 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1785 {
1786 	struct pci_devres *dr, *new_dr;
1787 
1788 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1789 	if (dr)
1790 		return dr;
1791 
1792 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1793 	if (!new_dr)
1794 		return NULL;
1795 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1796 }
1797 
1798 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1799 {
1800 	if (pci_is_managed(pdev))
1801 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1802 	return NULL;
1803 }
1804 
1805 /**
1806  * pcim_enable_device - Managed pci_enable_device()
1807  * @pdev: PCI device to be initialized
1808  *
1809  * Managed pci_enable_device().
1810  */
1811 int pcim_enable_device(struct pci_dev *pdev)
1812 {
1813 	struct pci_devres *dr;
1814 	int rc;
1815 
1816 	dr = get_pci_dr(pdev);
1817 	if (unlikely(!dr))
1818 		return -ENOMEM;
1819 	if (dr->enabled)
1820 		return 0;
1821 
1822 	rc = pci_enable_device(pdev);
1823 	if (!rc) {
1824 		pdev->is_managed = 1;
1825 		dr->enabled = 1;
1826 	}
1827 	return rc;
1828 }
1829 EXPORT_SYMBOL(pcim_enable_device);
1830 
1831 /**
1832  * pcim_pin_device - Pin managed PCI device
1833  * @pdev: PCI device to pin
1834  *
1835  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1836  * driver detach.  @pdev must have been enabled with
1837  * pcim_enable_device().
1838  */
1839 void pcim_pin_device(struct pci_dev *pdev)
1840 {
1841 	struct pci_devres *dr;
1842 
1843 	dr = find_pci_dr(pdev);
1844 	WARN_ON(!dr || !dr->enabled);
1845 	if (dr)
1846 		dr->pinned = 1;
1847 }
1848 EXPORT_SYMBOL(pcim_pin_device);
1849 
1850 /*
1851  * pcibios_add_device - provide arch specific hooks when adding device dev
1852  * @dev: the PCI device being added
1853  *
1854  * Permits the platform to provide architecture specific functionality when
1855  * devices are added. This is the default implementation. Architecture
1856  * implementations can override this.
1857  */
1858 int __weak pcibios_add_device(struct pci_dev *dev)
1859 {
1860 	return 0;
1861 }
1862 
1863 /**
1864  * pcibios_release_device - provide arch specific hooks when releasing
1865  *			    device dev
1866  * @dev: the PCI device being released
1867  *
1868  * Permits the platform to provide architecture specific functionality when
1869  * devices are released. This is the default implementation. Architecture
1870  * implementations can override this.
1871  */
1872 void __weak pcibios_release_device(struct pci_dev *dev) {}
1873 
1874 /**
1875  * pcibios_disable_device - disable arch specific PCI resources for device dev
1876  * @dev: the PCI device to disable
1877  *
1878  * Disables architecture specific PCI resources for the device. This
1879  * is the default implementation. Architecture implementations can
1880  * override this.
1881  */
1882 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1883 
1884 /**
1885  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1886  * @irq: ISA IRQ to penalize
1887  * @active: IRQ active or not
1888  *
1889  * Permits the platform to provide architecture-specific functionality when
1890  * penalizing ISA IRQs. This is the default implementation. Architecture
1891  * implementations can override this.
1892  */
1893 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1894 
1895 static void do_pci_disable_device(struct pci_dev *dev)
1896 {
1897 	u16 pci_command;
1898 
1899 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1900 	if (pci_command & PCI_COMMAND_MASTER) {
1901 		pci_command &= ~PCI_COMMAND_MASTER;
1902 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1903 	}
1904 
1905 	pcibios_disable_device(dev);
1906 }
1907 
1908 /**
1909  * pci_disable_enabled_device - Disable device without updating enable_cnt
1910  * @dev: PCI device to disable
1911  *
1912  * NOTE: This function is a backend of PCI power management routines and is
1913  * not supposed to be called drivers.
1914  */
1915 void pci_disable_enabled_device(struct pci_dev *dev)
1916 {
1917 	if (pci_is_enabled(dev))
1918 		do_pci_disable_device(dev);
1919 }
1920 
1921 /**
1922  * pci_disable_device - Disable PCI device after use
1923  * @dev: PCI device to be disabled
1924  *
1925  * Signal to the system that the PCI device is not in use by the system
1926  * anymore.  This only involves disabling PCI bus-mastering, if active.
1927  *
1928  * Note we don't actually disable the device until all callers of
1929  * pci_enable_device() have called pci_disable_device().
1930  */
1931 void pci_disable_device(struct pci_dev *dev)
1932 {
1933 	struct pci_devres *dr;
1934 
1935 	dr = find_pci_dr(dev);
1936 	if (dr)
1937 		dr->enabled = 0;
1938 
1939 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1940 		      "disabling already-disabled device");
1941 
1942 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1943 		return;
1944 
1945 	do_pci_disable_device(dev);
1946 
1947 	dev->is_busmaster = 0;
1948 }
1949 EXPORT_SYMBOL(pci_disable_device);
1950 
1951 /**
1952  * pcibios_set_pcie_reset_state - set reset state for device dev
1953  * @dev: the PCIe device reset
1954  * @state: Reset state to enter into
1955  *
1956  * Set the PCIe reset state for the device. This is the default
1957  * implementation. Architecture implementations can override this.
1958  */
1959 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1960 					enum pcie_reset_state state)
1961 {
1962 	return -EINVAL;
1963 }
1964 
1965 /**
1966  * pci_set_pcie_reset_state - set reset state for device dev
1967  * @dev: the PCIe device reset
1968  * @state: Reset state to enter into
1969  *
1970  * Sets the PCI reset state for the device.
1971  */
1972 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1973 {
1974 	return pcibios_set_pcie_reset_state(dev, state);
1975 }
1976 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1977 
1978 /**
1979  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1980  * @dev: PCIe root port or event collector.
1981  */
1982 void pcie_clear_root_pme_status(struct pci_dev *dev)
1983 {
1984 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1985 }
1986 
1987 /**
1988  * pci_check_pme_status - Check if given device has generated PME.
1989  * @dev: Device to check.
1990  *
1991  * Check the PME status of the device and if set, clear it and clear PME enable
1992  * (if set).  Return 'true' if PME status and PME enable were both set or
1993  * 'false' otherwise.
1994  */
1995 bool pci_check_pme_status(struct pci_dev *dev)
1996 {
1997 	int pmcsr_pos;
1998 	u16 pmcsr;
1999 	bool ret = false;
2000 
2001 	if (!dev->pm_cap)
2002 		return false;
2003 
2004 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2005 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2006 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2007 		return false;
2008 
2009 	/* Clear PME status. */
2010 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2011 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2012 		/* Disable PME to avoid interrupt flood. */
2013 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2014 		ret = true;
2015 	}
2016 
2017 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2018 
2019 	return ret;
2020 }
2021 
2022 /**
2023  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2024  * @dev: Device to handle.
2025  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2026  *
2027  * Check if @dev has generated PME and queue a resume request for it in that
2028  * case.
2029  */
2030 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2031 {
2032 	if (pme_poll_reset && dev->pme_poll)
2033 		dev->pme_poll = false;
2034 
2035 	if (pci_check_pme_status(dev)) {
2036 		pci_wakeup_event(dev);
2037 		pm_request_resume(&dev->dev);
2038 	}
2039 	return 0;
2040 }
2041 
2042 /**
2043  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2044  * @bus: Top bus of the subtree to walk.
2045  */
2046 void pci_pme_wakeup_bus(struct pci_bus *bus)
2047 {
2048 	if (bus)
2049 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2050 }
2051 
2052 
2053 /**
2054  * pci_pme_capable - check the capability of PCI device to generate PME#
2055  * @dev: PCI device to handle.
2056  * @state: PCI state from which device will issue PME#.
2057  */
2058 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2059 {
2060 	if (!dev->pm_cap)
2061 		return false;
2062 
2063 	return !!(dev->pme_support & (1 << state));
2064 }
2065 EXPORT_SYMBOL(pci_pme_capable);
2066 
2067 static void pci_pme_list_scan(struct work_struct *work)
2068 {
2069 	struct pci_pme_device *pme_dev, *n;
2070 
2071 	mutex_lock(&pci_pme_list_mutex);
2072 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2073 		if (pme_dev->dev->pme_poll) {
2074 			struct pci_dev *bridge;
2075 
2076 			bridge = pme_dev->dev->bus->self;
2077 			/*
2078 			 * If bridge is in low power state, the
2079 			 * configuration space of subordinate devices
2080 			 * may be not accessible
2081 			 */
2082 			if (bridge && bridge->current_state != PCI_D0)
2083 				continue;
2084 			/*
2085 			 * If the device is in D3cold it should not be
2086 			 * polled either.
2087 			 */
2088 			if (pme_dev->dev->current_state == PCI_D3cold)
2089 				continue;
2090 
2091 			pci_pme_wakeup(pme_dev->dev, NULL);
2092 		} else {
2093 			list_del(&pme_dev->list);
2094 			kfree(pme_dev);
2095 		}
2096 	}
2097 	if (!list_empty(&pci_pme_list))
2098 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2099 				   msecs_to_jiffies(PME_TIMEOUT));
2100 	mutex_unlock(&pci_pme_list_mutex);
2101 }
2102 
2103 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2104 {
2105 	u16 pmcsr;
2106 
2107 	if (!dev->pme_support)
2108 		return;
2109 
2110 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2111 	/* Clear PME_Status by writing 1 to it and enable PME# */
2112 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2113 	if (!enable)
2114 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2115 
2116 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2117 }
2118 
2119 /**
2120  * pci_pme_restore - Restore PME configuration after config space restore.
2121  * @dev: PCI device to update.
2122  */
2123 void pci_pme_restore(struct pci_dev *dev)
2124 {
2125 	u16 pmcsr;
2126 
2127 	if (!dev->pme_support)
2128 		return;
2129 
2130 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2131 	if (dev->wakeup_prepared) {
2132 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2133 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2134 	} else {
2135 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2136 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2137 	}
2138 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2139 }
2140 
2141 /**
2142  * pci_pme_active - enable or disable PCI device's PME# function
2143  * @dev: PCI device to handle.
2144  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2145  *
2146  * The caller must verify that the device is capable of generating PME# before
2147  * calling this function with @enable equal to 'true'.
2148  */
2149 void pci_pme_active(struct pci_dev *dev, bool enable)
2150 {
2151 	__pci_pme_active(dev, enable);
2152 
2153 	/*
2154 	 * PCI (as opposed to PCIe) PME requires that the device have
2155 	 * its PME# line hooked up correctly. Not all hardware vendors
2156 	 * do this, so the PME never gets delivered and the device
2157 	 * remains asleep. The easiest way around this is to
2158 	 * periodically walk the list of suspended devices and check
2159 	 * whether any have their PME flag set. The assumption is that
2160 	 * we'll wake up often enough anyway that this won't be a huge
2161 	 * hit, and the power savings from the devices will still be a
2162 	 * win.
2163 	 *
2164 	 * Although PCIe uses in-band PME message instead of PME# line
2165 	 * to report PME, PME does not work for some PCIe devices in
2166 	 * reality.  For example, there are devices that set their PME
2167 	 * status bits, but don't really bother to send a PME message;
2168 	 * there are PCI Express Root Ports that don't bother to
2169 	 * trigger interrupts when they receive PME messages from the
2170 	 * devices below.  So PME poll is used for PCIe devices too.
2171 	 */
2172 
2173 	if (dev->pme_poll) {
2174 		struct pci_pme_device *pme_dev;
2175 		if (enable) {
2176 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2177 					  GFP_KERNEL);
2178 			if (!pme_dev) {
2179 				pci_warn(dev, "can't enable PME#\n");
2180 				return;
2181 			}
2182 			pme_dev->dev = dev;
2183 			mutex_lock(&pci_pme_list_mutex);
2184 			list_add(&pme_dev->list, &pci_pme_list);
2185 			if (list_is_singular(&pci_pme_list))
2186 				queue_delayed_work(system_freezable_wq,
2187 						   &pci_pme_work,
2188 						   msecs_to_jiffies(PME_TIMEOUT));
2189 			mutex_unlock(&pci_pme_list_mutex);
2190 		} else {
2191 			mutex_lock(&pci_pme_list_mutex);
2192 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2193 				if (pme_dev->dev == dev) {
2194 					list_del(&pme_dev->list);
2195 					kfree(pme_dev);
2196 					break;
2197 				}
2198 			}
2199 			mutex_unlock(&pci_pme_list_mutex);
2200 		}
2201 	}
2202 
2203 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2204 }
2205 EXPORT_SYMBOL(pci_pme_active);
2206 
2207 /**
2208  * __pci_enable_wake - enable PCI device as wakeup event source
2209  * @dev: PCI device affected
2210  * @state: PCI state from which device will issue wakeup events
2211  * @enable: True to enable event generation; false to disable
2212  *
2213  * This enables the device as a wakeup event source, or disables it.
2214  * When such events involves platform-specific hooks, those hooks are
2215  * called automatically by this routine.
2216  *
2217  * Devices with legacy power management (no standard PCI PM capabilities)
2218  * always require such platform hooks.
2219  *
2220  * RETURN VALUE:
2221  * 0 is returned on success
2222  * -EINVAL is returned if device is not supposed to wake up the system
2223  * Error code depending on the platform is returned if both the platform and
2224  * the native mechanism fail to enable the generation of wake-up events
2225  */
2226 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2227 {
2228 	int ret = 0;
2229 
2230 	/*
2231 	 * Bridges that are not power-manageable directly only signal
2232 	 * wakeup on behalf of subordinate devices which is set up
2233 	 * elsewhere, so skip them. However, bridges that are
2234 	 * power-manageable may signal wakeup for themselves (for example,
2235 	 * on a hotplug event) and they need to be covered here.
2236 	 */
2237 	if (!pci_power_manageable(dev))
2238 		return 0;
2239 
2240 	/* Don't do the same thing twice in a row for one device. */
2241 	if (!!enable == !!dev->wakeup_prepared)
2242 		return 0;
2243 
2244 	/*
2245 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2246 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2247 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2248 	 */
2249 
2250 	if (enable) {
2251 		int error;
2252 
2253 		if (pci_pme_capable(dev, state))
2254 			pci_pme_active(dev, true);
2255 		else
2256 			ret = 1;
2257 		error = platform_pci_set_wakeup(dev, true);
2258 		if (ret)
2259 			ret = error;
2260 		if (!ret)
2261 			dev->wakeup_prepared = true;
2262 	} else {
2263 		platform_pci_set_wakeup(dev, false);
2264 		pci_pme_active(dev, false);
2265 		dev->wakeup_prepared = false;
2266 	}
2267 
2268 	return ret;
2269 }
2270 
2271 /**
2272  * pci_enable_wake - change wakeup settings for a PCI device
2273  * @pci_dev: Target device
2274  * @state: PCI state from which device will issue wakeup events
2275  * @enable: Whether or not to enable event generation
2276  *
2277  * If @enable is set, check device_may_wakeup() for the device before calling
2278  * __pci_enable_wake() for it.
2279  */
2280 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2281 {
2282 	if (enable && !device_may_wakeup(&pci_dev->dev))
2283 		return -EINVAL;
2284 
2285 	return __pci_enable_wake(pci_dev, state, enable);
2286 }
2287 EXPORT_SYMBOL(pci_enable_wake);
2288 
2289 /**
2290  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2291  * @dev: PCI device to prepare
2292  * @enable: True to enable wake-up event generation; false to disable
2293  *
2294  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2295  * and this function allows them to set that up cleanly - pci_enable_wake()
2296  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2297  * ordering constraints.
2298  *
2299  * This function only returns error code if the device is not allowed to wake
2300  * up the system from sleep or it is not capable of generating PME# from both
2301  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2302  */
2303 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2304 {
2305 	return pci_pme_capable(dev, PCI_D3cold) ?
2306 			pci_enable_wake(dev, PCI_D3cold, enable) :
2307 			pci_enable_wake(dev, PCI_D3hot, enable);
2308 }
2309 EXPORT_SYMBOL(pci_wake_from_d3);
2310 
2311 /**
2312  * pci_target_state - find an appropriate low power state for a given PCI dev
2313  * @dev: PCI device
2314  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2315  *
2316  * Use underlying platform code to find a supported low power state for @dev.
2317  * If the platform can't manage @dev, return the deepest state from which it
2318  * can generate wake events, based on any available PME info.
2319  */
2320 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2321 {
2322 	pci_power_t target_state = PCI_D3hot;
2323 
2324 	if (platform_pci_power_manageable(dev)) {
2325 		/*
2326 		 * Call the platform to find the target state for the device.
2327 		 */
2328 		pci_power_t state = platform_pci_choose_state(dev);
2329 
2330 		switch (state) {
2331 		case PCI_POWER_ERROR:
2332 		case PCI_UNKNOWN:
2333 			break;
2334 		case PCI_D1:
2335 		case PCI_D2:
2336 			if (pci_no_d1d2(dev))
2337 				break;
2338 			/* else, fall through */
2339 		default:
2340 			target_state = state;
2341 		}
2342 
2343 		return target_state;
2344 	}
2345 
2346 	if (!dev->pm_cap)
2347 		target_state = PCI_D0;
2348 
2349 	/*
2350 	 * If the device is in D3cold even though it's not power-manageable by
2351 	 * the platform, it may have been powered down by non-standard means.
2352 	 * Best to let it slumber.
2353 	 */
2354 	if (dev->current_state == PCI_D3cold)
2355 		target_state = PCI_D3cold;
2356 
2357 	if (wakeup) {
2358 		/*
2359 		 * Find the deepest state from which the device can generate
2360 		 * PME#.
2361 		 */
2362 		if (dev->pme_support) {
2363 			while (target_state
2364 			      && !(dev->pme_support & (1 << target_state)))
2365 				target_state--;
2366 		}
2367 	}
2368 
2369 	return target_state;
2370 }
2371 
2372 /**
2373  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2374  *			  into a sleep state
2375  * @dev: Device to handle.
2376  *
2377  * Choose the power state appropriate for the device depending on whether
2378  * it can wake up the system and/or is power manageable by the platform
2379  * (PCI_D3hot is the default) and put the device into that state.
2380  */
2381 int pci_prepare_to_sleep(struct pci_dev *dev)
2382 {
2383 	bool wakeup = device_may_wakeup(&dev->dev);
2384 	pci_power_t target_state = pci_target_state(dev, wakeup);
2385 	int error;
2386 
2387 	if (target_state == PCI_POWER_ERROR)
2388 		return -EIO;
2389 
2390 	pci_enable_wake(dev, target_state, wakeup);
2391 
2392 	error = pci_set_power_state(dev, target_state);
2393 
2394 	if (error)
2395 		pci_enable_wake(dev, target_state, false);
2396 
2397 	return error;
2398 }
2399 EXPORT_SYMBOL(pci_prepare_to_sleep);
2400 
2401 /**
2402  * pci_back_from_sleep - turn PCI device on during system-wide transition
2403  *			 into working state
2404  * @dev: Device to handle.
2405  *
2406  * Disable device's system wake-up capability and put it into D0.
2407  */
2408 int pci_back_from_sleep(struct pci_dev *dev)
2409 {
2410 	pci_enable_wake(dev, PCI_D0, false);
2411 	return pci_set_power_state(dev, PCI_D0);
2412 }
2413 EXPORT_SYMBOL(pci_back_from_sleep);
2414 
2415 /**
2416  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2417  * @dev: PCI device being suspended.
2418  *
2419  * Prepare @dev to generate wake-up events at run time and put it into a low
2420  * power state.
2421  */
2422 int pci_finish_runtime_suspend(struct pci_dev *dev)
2423 {
2424 	pci_power_t target_state;
2425 	int error;
2426 
2427 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2428 	if (target_state == PCI_POWER_ERROR)
2429 		return -EIO;
2430 
2431 	dev->runtime_d3cold = target_state == PCI_D3cold;
2432 
2433 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2434 
2435 	error = pci_set_power_state(dev, target_state);
2436 
2437 	if (error) {
2438 		pci_enable_wake(dev, target_state, false);
2439 		dev->runtime_d3cold = false;
2440 	}
2441 
2442 	return error;
2443 }
2444 
2445 /**
2446  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2447  * @dev: Device to check.
2448  *
2449  * Return true if the device itself is capable of generating wake-up events
2450  * (through the platform or using the native PCIe PME) or if the device supports
2451  * PME and one of its upstream bridges can generate wake-up events.
2452  */
2453 bool pci_dev_run_wake(struct pci_dev *dev)
2454 {
2455 	struct pci_bus *bus = dev->bus;
2456 
2457 	if (!dev->pme_support)
2458 		return false;
2459 
2460 	/* PME-capable in principle, but not from the target power state */
2461 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2462 		return false;
2463 
2464 	if (device_can_wakeup(&dev->dev))
2465 		return true;
2466 
2467 	while (bus->parent) {
2468 		struct pci_dev *bridge = bus->self;
2469 
2470 		if (device_can_wakeup(&bridge->dev))
2471 			return true;
2472 
2473 		bus = bus->parent;
2474 	}
2475 
2476 	/* We have reached the root bus. */
2477 	if (bus->bridge)
2478 		return device_can_wakeup(bus->bridge);
2479 
2480 	return false;
2481 }
2482 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2483 
2484 /**
2485  * pci_dev_need_resume - Check if it is necessary to resume the device.
2486  * @pci_dev: Device to check.
2487  *
2488  * Return 'true' if the device is not runtime-suspended or it has to be
2489  * reconfigured due to wakeup settings difference between system and runtime
2490  * suspend, or the current power state of it is not suitable for the upcoming
2491  * (system-wide) transition.
2492  */
2493 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2494 {
2495 	struct device *dev = &pci_dev->dev;
2496 	pci_power_t target_state;
2497 
2498 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2499 		return true;
2500 
2501 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2502 
2503 	/*
2504 	 * If the earlier platform check has not triggered, D3cold is just power
2505 	 * removal on top of D3hot, so no need to resume the device in that
2506 	 * case.
2507 	 */
2508 	return target_state != pci_dev->current_state &&
2509 		target_state != PCI_D3cold &&
2510 		pci_dev->current_state != PCI_D3hot;
2511 }
2512 
2513 /**
2514  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2515  * @pci_dev: Device to check.
2516  *
2517  * If the device is suspended and it is not configured for system wakeup,
2518  * disable PME for it to prevent it from waking up the system unnecessarily.
2519  *
2520  * Note that if the device's power state is D3cold and the platform check in
2521  * pci_dev_need_resume() has not triggered, the device's configuration need not
2522  * be changed.
2523  */
2524 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2525 {
2526 	struct device *dev = &pci_dev->dev;
2527 
2528 	spin_lock_irq(&dev->power.lock);
2529 
2530 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2531 	    pci_dev->current_state < PCI_D3cold)
2532 		__pci_pme_active(pci_dev, false);
2533 
2534 	spin_unlock_irq(&dev->power.lock);
2535 }
2536 
2537 /**
2538  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2539  * @pci_dev: Device to handle.
2540  *
2541  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2542  * it might have been disabled during the prepare phase of system suspend if
2543  * the device was not configured for system wakeup.
2544  */
2545 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2546 {
2547 	struct device *dev = &pci_dev->dev;
2548 
2549 	if (!pci_dev_run_wake(pci_dev))
2550 		return;
2551 
2552 	spin_lock_irq(&dev->power.lock);
2553 
2554 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2555 		__pci_pme_active(pci_dev, true);
2556 
2557 	spin_unlock_irq(&dev->power.lock);
2558 }
2559 
2560 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2561 {
2562 	struct device *dev = &pdev->dev;
2563 	struct device *parent = dev->parent;
2564 
2565 	if (parent)
2566 		pm_runtime_get_sync(parent);
2567 	pm_runtime_get_noresume(dev);
2568 	/*
2569 	 * pdev->current_state is set to PCI_D3cold during suspending,
2570 	 * so wait until suspending completes
2571 	 */
2572 	pm_runtime_barrier(dev);
2573 	/*
2574 	 * Only need to resume devices in D3cold, because config
2575 	 * registers are still accessible for devices suspended but
2576 	 * not in D3cold.
2577 	 */
2578 	if (pdev->current_state == PCI_D3cold)
2579 		pm_runtime_resume(dev);
2580 }
2581 
2582 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2583 {
2584 	struct device *dev = &pdev->dev;
2585 	struct device *parent = dev->parent;
2586 
2587 	pm_runtime_put(dev);
2588 	if (parent)
2589 		pm_runtime_put_sync(parent);
2590 }
2591 
2592 static const struct dmi_system_id bridge_d3_blacklist[] = {
2593 #ifdef CONFIG_X86
2594 	{
2595 		/*
2596 		 * Gigabyte X299 root port is not marked as hotplug capable
2597 		 * which allows Linux to power manage it.  However, this
2598 		 * confuses the BIOS SMI handler so don't power manage root
2599 		 * ports on that system.
2600 		 */
2601 		.ident = "X299 DESIGNARE EX-CF",
2602 		.matches = {
2603 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2604 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2605 		},
2606 	},
2607 #endif
2608 	{ }
2609 };
2610 
2611 /**
2612  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2613  * @bridge: Bridge to check
2614  *
2615  * This function checks if it is possible to move the bridge to D3.
2616  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2617  */
2618 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2619 {
2620 	if (!pci_is_pcie(bridge))
2621 		return false;
2622 
2623 	switch (pci_pcie_type(bridge)) {
2624 	case PCI_EXP_TYPE_ROOT_PORT:
2625 	case PCI_EXP_TYPE_UPSTREAM:
2626 	case PCI_EXP_TYPE_DOWNSTREAM:
2627 		if (pci_bridge_d3_disable)
2628 			return false;
2629 
2630 		/*
2631 		 * Hotplug ports handled by firmware in System Management Mode
2632 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2633 		 */
2634 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2635 			return false;
2636 
2637 		if (pci_bridge_d3_force)
2638 			return true;
2639 
2640 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2641 		if (bridge->is_thunderbolt)
2642 			return true;
2643 
2644 		/* Platform might know better if the bridge supports D3 */
2645 		if (platform_pci_bridge_d3(bridge))
2646 			return true;
2647 
2648 		/*
2649 		 * Hotplug ports handled natively by the OS were not validated
2650 		 * by vendors for runtime D3 at least until 2018 because there
2651 		 * was no OS support.
2652 		 */
2653 		if (bridge->is_hotplug_bridge)
2654 			return false;
2655 
2656 		if (dmi_check_system(bridge_d3_blacklist))
2657 			return false;
2658 
2659 		/*
2660 		 * It should be safe to put PCIe ports from 2015 or newer
2661 		 * to D3.
2662 		 */
2663 		if (dmi_get_bios_year() >= 2015)
2664 			return true;
2665 		break;
2666 	}
2667 
2668 	return false;
2669 }
2670 
2671 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2672 {
2673 	bool *d3cold_ok = data;
2674 
2675 	if (/* The device needs to be allowed to go D3cold ... */
2676 	    dev->no_d3cold || !dev->d3cold_allowed ||
2677 
2678 	    /* ... and if it is wakeup capable to do so from D3cold. */
2679 	    (device_may_wakeup(&dev->dev) &&
2680 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2681 
2682 	    /* If it is a bridge it must be allowed to go to D3. */
2683 	    !pci_power_manageable(dev))
2684 
2685 		*d3cold_ok = false;
2686 
2687 	return !*d3cold_ok;
2688 }
2689 
2690 /*
2691  * pci_bridge_d3_update - Update bridge D3 capabilities
2692  * @dev: PCI device which is changed
2693  *
2694  * Update upstream bridge PM capabilities accordingly depending on if the
2695  * device PM configuration was changed or the device is being removed.  The
2696  * change is also propagated upstream.
2697  */
2698 void pci_bridge_d3_update(struct pci_dev *dev)
2699 {
2700 	bool remove = !device_is_registered(&dev->dev);
2701 	struct pci_dev *bridge;
2702 	bool d3cold_ok = true;
2703 
2704 	bridge = pci_upstream_bridge(dev);
2705 	if (!bridge || !pci_bridge_d3_possible(bridge))
2706 		return;
2707 
2708 	/*
2709 	 * If D3 is currently allowed for the bridge, removing one of its
2710 	 * children won't change that.
2711 	 */
2712 	if (remove && bridge->bridge_d3)
2713 		return;
2714 
2715 	/*
2716 	 * If D3 is currently allowed for the bridge and a child is added or
2717 	 * changed, disallowance of D3 can only be caused by that child, so
2718 	 * we only need to check that single device, not any of its siblings.
2719 	 *
2720 	 * If D3 is currently not allowed for the bridge, checking the device
2721 	 * first may allow us to skip checking its siblings.
2722 	 */
2723 	if (!remove)
2724 		pci_dev_check_d3cold(dev, &d3cold_ok);
2725 
2726 	/*
2727 	 * If D3 is currently not allowed for the bridge, this may be caused
2728 	 * either by the device being changed/removed or any of its siblings,
2729 	 * so we need to go through all children to find out if one of them
2730 	 * continues to block D3.
2731 	 */
2732 	if (d3cold_ok && !bridge->bridge_d3)
2733 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2734 			     &d3cold_ok);
2735 
2736 	if (bridge->bridge_d3 != d3cold_ok) {
2737 		bridge->bridge_d3 = d3cold_ok;
2738 		/* Propagate change to upstream bridges */
2739 		pci_bridge_d3_update(bridge);
2740 	}
2741 }
2742 
2743 /**
2744  * pci_d3cold_enable - Enable D3cold for device
2745  * @dev: PCI device to handle
2746  *
2747  * This function can be used in drivers to enable D3cold from the device
2748  * they handle.  It also updates upstream PCI bridge PM capabilities
2749  * accordingly.
2750  */
2751 void pci_d3cold_enable(struct pci_dev *dev)
2752 {
2753 	if (dev->no_d3cold) {
2754 		dev->no_d3cold = false;
2755 		pci_bridge_d3_update(dev);
2756 	}
2757 }
2758 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2759 
2760 /**
2761  * pci_d3cold_disable - Disable D3cold for device
2762  * @dev: PCI device to handle
2763  *
2764  * This function can be used in drivers to disable D3cold from the device
2765  * they handle.  It also updates upstream PCI bridge PM capabilities
2766  * accordingly.
2767  */
2768 void pci_d3cold_disable(struct pci_dev *dev)
2769 {
2770 	if (!dev->no_d3cold) {
2771 		dev->no_d3cold = true;
2772 		pci_bridge_d3_update(dev);
2773 	}
2774 }
2775 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2776 
2777 /**
2778  * pci_pm_init - Initialize PM functions of given PCI device
2779  * @dev: PCI device to handle.
2780  */
2781 void pci_pm_init(struct pci_dev *dev)
2782 {
2783 	int pm;
2784 	u16 status;
2785 	u16 pmc;
2786 
2787 	pm_runtime_forbid(&dev->dev);
2788 	pm_runtime_set_active(&dev->dev);
2789 	pm_runtime_enable(&dev->dev);
2790 	device_enable_async_suspend(&dev->dev);
2791 	dev->wakeup_prepared = false;
2792 
2793 	dev->pm_cap = 0;
2794 	dev->pme_support = 0;
2795 
2796 	/* find PCI PM capability in list */
2797 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2798 	if (!pm)
2799 		return;
2800 	/* Check device's ability to generate PME# */
2801 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2802 
2803 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2804 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2805 			pmc & PCI_PM_CAP_VER_MASK);
2806 		return;
2807 	}
2808 
2809 	dev->pm_cap = pm;
2810 	dev->d3_delay = PCI_PM_D3_WAIT;
2811 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2812 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2813 	dev->d3cold_allowed = true;
2814 
2815 	dev->d1_support = false;
2816 	dev->d2_support = false;
2817 	if (!pci_no_d1d2(dev)) {
2818 		if (pmc & PCI_PM_CAP_D1)
2819 			dev->d1_support = true;
2820 		if (pmc & PCI_PM_CAP_D2)
2821 			dev->d2_support = true;
2822 
2823 		if (dev->d1_support || dev->d2_support)
2824 			pci_info(dev, "supports%s%s\n",
2825 				   dev->d1_support ? " D1" : "",
2826 				   dev->d2_support ? " D2" : "");
2827 	}
2828 
2829 	pmc &= PCI_PM_CAP_PME_MASK;
2830 	if (pmc) {
2831 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2832 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2833 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2834 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2835 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2836 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2837 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2838 		dev->pme_poll = true;
2839 		/*
2840 		 * Make device's PM flags reflect the wake-up capability, but
2841 		 * let the user space enable it to wake up the system as needed.
2842 		 */
2843 		device_set_wakeup_capable(&dev->dev, true);
2844 		/* Disable the PME# generation functionality */
2845 		pci_pme_active(dev, false);
2846 	}
2847 
2848 	pci_read_config_word(dev, PCI_STATUS, &status);
2849 	if (status & PCI_STATUS_IMM_READY)
2850 		dev->imm_ready = 1;
2851 }
2852 
2853 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2854 {
2855 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2856 
2857 	switch (prop) {
2858 	case PCI_EA_P_MEM:
2859 	case PCI_EA_P_VF_MEM:
2860 		flags |= IORESOURCE_MEM;
2861 		break;
2862 	case PCI_EA_P_MEM_PREFETCH:
2863 	case PCI_EA_P_VF_MEM_PREFETCH:
2864 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2865 		break;
2866 	case PCI_EA_P_IO:
2867 		flags |= IORESOURCE_IO;
2868 		break;
2869 	default:
2870 		return 0;
2871 	}
2872 
2873 	return flags;
2874 }
2875 
2876 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2877 					    u8 prop)
2878 {
2879 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2880 		return &dev->resource[bei];
2881 #ifdef CONFIG_PCI_IOV
2882 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2883 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2884 		return &dev->resource[PCI_IOV_RESOURCES +
2885 				      bei - PCI_EA_BEI_VF_BAR0];
2886 #endif
2887 	else if (bei == PCI_EA_BEI_ROM)
2888 		return &dev->resource[PCI_ROM_RESOURCE];
2889 	else
2890 		return NULL;
2891 }
2892 
2893 /* Read an Enhanced Allocation (EA) entry */
2894 static int pci_ea_read(struct pci_dev *dev, int offset)
2895 {
2896 	struct resource *res;
2897 	int ent_size, ent_offset = offset;
2898 	resource_size_t start, end;
2899 	unsigned long flags;
2900 	u32 dw0, bei, base, max_offset;
2901 	u8 prop;
2902 	bool support_64 = (sizeof(resource_size_t) >= 8);
2903 
2904 	pci_read_config_dword(dev, ent_offset, &dw0);
2905 	ent_offset += 4;
2906 
2907 	/* Entry size field indicates DWORDs after 1st */
2908 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2909 
2910 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2911 		goto out;
2912 
2913 	bei = (dw0 & PCI_EA_BEI) >> 4;
2914 	prop = (dw0 & PCI_EA_PP) >> 8;
2915 
2916 	/*
2917 	 * If the Property is in the reserved range, try the Secondary
2918 	 * Property instead.
2919 	 */
2920 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2921 		prop = (dw0 & PCI_EA_SP) >> 16;
2922 	if (prop > PCI_EA_P_BRIDGE_IO)
2923 		goto out;
2924 
2925 	res = pci_ea_get_resource(dev, bei, prop);
2926 	if (!res) {
2927 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2928 		goto out;
2929 	}
2930 
2931 	flags = pci_ea_flags(dev, prop);
2932 	if (!flags) {
2933 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2934 		goto out;
2935 	}
2936 
2937 	/* Read Base */
2938 	pci_read_config_dword(dev, ent_offset, &base);
2939 	start = (base & PCI_EA_FIELD_MASK);
2940 	ent_offset += 4;
2941 
2942 	/* Read MaxOffset */
2943 	pci_read_config_dword(dev, ent_offset, &max_offset);
2944 	ent_offset += 4;
2945 
2946 	/* Read Base MSBs (if 64-bit entry) */
2947 	if (base & PCI_EA_IS_64) {
2948 		u32 base_upper;
2949 
2950 		pci_read_config_dword(dev, ent_offset, &base_upper);
2951 		ent_offset += 4;
2952 
2953 		flags |= IORESOURCE_MEM_64;
2954 
2955 		/* entry starts above 32-bit boundary, can't use */
2956 		if (!support_64 && base_upper)
2957 			goto out;
2958 
2959 		if (support_64)
2960 			start |= ((u64)base_upper << 32);
2961 	}
2962 
2963 	end = start + (max_offset | 0x03);
2964 
2965 	/* Read MaxOffset MSBs (if 64-bit entry) */
2966 	if (max_offset & PCI_EA_IS_64) {
2967 		u32 max_offset_upper;
2968 
2969 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2970 		ent_offset += 4;
2971 
2972 		flags |= IORESOURCE_MEM_64;
2973 
2974 		/* entry too big, can't use */
2975 		if (!support_64 && max_offset_upper)
2976 			goto out;
2977 
2978 		if (support_64)
2979 			end += ((u64)max_offset_upper << 32);
2980 	}
2981 
2982 	if (end < start) {
2983 		pci_err(dev, "EA Entry crosses address boundary\n");
2984 		goto out;
2985 	}
2986 
2987 	if (ent_size != ent_offset - offset) {
2988 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2989 			ent_size, ent_offset - offset);
2990 		goto out;
2991 	}
2992 
2993 	res->name = pci_name(dev);
2994 	res->start = start;
2995 	res->end = end;
2996 	res->flags = flags;
2997 
2998 	if (bei <= PCI_EA_BEI_BAR5)
2999 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3000 			   bei, res, prop);
3001 	else if (bei == PCI_EA_BEI_ROM)
3002 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3003 			   res, prop);
3004 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3005 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3006 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3007 	else
3008 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3009 			   bei, res, prop);
3010 
3011 out:
3012 	return offset + ent_size;
3013 }
3014 
3015 /* Enhanced Allocation Initialization */
3016 void pci_ea_init(struct pci_dev *dev)
3017 {
3018 	int ea;
3019 	u8 num_ent;
3020 	int offset;
3021 	int i;
3022 
3023 	/* find PCI EA capability in list */
3024 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3025 	if (!ea)
3026 		return;
3027 
3028 	/* determine the number of entries */
3029 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3030 					&num_ent);
3031 	num_ent &= PCI_EA_NUM_ENT_MASK;
3032 
3033 	offset = ea + PCI_EA_FIRST_ENT;
3034 
3035 	/* Skip DWORD 2 for type 1 functions */
3036 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3037 		offset += 4;
3038 
3039 	/* parse each EA entry */
3040 	for (i = 0; i < num_ent; ++i)
3041 		offset = pci_ea_read(dev, offset);
3042 }
3043 
3044 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3045 	struct pci_cap_saved_state *new_cap)
3046 {
3047 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3048 }
3049 
3050 /**
3051  * _pci_add_cap_save_buffer - allocate buffer for saving given
3052  *			      capability registers
3053  * @dev: the PCI device
3054  * @cap: the capability to allocate the buffer for
3055  * @extended: Standard or Extended capability ID
3056  * @size: requested size of the buffer
3057  */
3058 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3059 				    bool extended, unsigned int size)
3060 {
3061 	int pos;
3062 	struct pci_cap_saved_state *save_state;
3063 
3064 	if (extended)
3065 		pos = pci_find_ext_capability(dev, cap);
3066 	else
3067 		pos = pci_find_capability(dev, cap);
3068 
3069 	if (!pos)
3070 		return 0;
3071 
3072 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3073 	if (!save_state)
3074 		return -ENOMEM;
3075 
3076 	save_state->cap.cap_nr = cap;
3077 	save_state->cap.cap_extended = extended;
3078 	save_state->cap.size = size;
3079 	pci_add_saved_cap(dev, save_state);
3080 
3081 	return 0;
3082 }
3083 
3084 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3085 {
3086 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3087 }
3088 
3089 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3090 {
3091 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3092 }
3093 
3094 /**
3095  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3096  * @dev: the PCI device
3097  */
3098 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3099 {
3100 	int error;
3101 
3102 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3103 					PCI_EXP_SAVE_REGS * sizeof(u16));
3104 	if (error)
3105 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3106 
3107 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3108 	if (error)
3109 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3110 
3111 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3112 					    2 * sizeof(u16));
3113 	if (error)
3114 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3115 
3116 	pci_allocate_vc_save_buffers(dev);
3117 }
3118 
3119 void pci_free_cap_save_buffers(struct pci_dev *dev)
3120 {
3121 	struct pci_cap_saved_state *tmp;
3122 	struct hlist_node *n;
3123 
3124 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3125 		kfree(tmp);
3126 }
3127 
3128 /**
3129  * pci_configure_ari - enable or disable ARI forwarding
3130  * @dev: the PCI device
3131  *
3132  * If @dev and its upstream bridge both support ARI, enable ARI in the
3133  * bridge.  Otherwise, disable ARI in the bridge.
3134  */
3135 void pci_configure_ari(struct pci_dev *dev)
3136 {
3137 	u32 cap;
3138 	struct pci_dev *bridge;
3139 
3140 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3141 		return;
3142 
3143 	bridge = dev->bus->self;
3144 	if (!bridge)
3145 		return;
3146 
3147 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3148 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3149 		return;
3150 
3151 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3152 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3153 					 PCI_EXP_DEVCTL2_ARI);
3154 		bridge->ari_enabled = 1;
3155 	} else {
3156 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3157 					   PCI_EXP_DEVCTL2_ARI);
3158 		bridge->ari_enabled = 0;
3159 	}
3160 }
3161 
3162 static int pci_acs_enable;
3163 
3164 /**
3165  * pci_request_acs - ask for ACS to be enabled if supported
3166  */
3167 void pci_request_acs(void)
3168 {
3169 	pci_acs_enable = 1;
3170 }
3171 
3172 static const char *disable_acs_redir_param;
3173 
3174 /**
3175  * pci_disable_acs_redir - disable ACS redirect capabilities
3176  * @dev: the PCI device
3177  *
3178  * For only devices specified in the disable_acs_redir parameter.
3179  */
3180 static void pci_disable_acs_redir(struct pci_dev *dev)
3181 {
3182 	int ret = 0;
3183 	const char *p;
3184 	int pos;
3185 	u16 ctrl;
3186 
3187 	if (!disable_acs_redir_param)
3188 		return;
3189 
3190 	p = disable_acs_redir_param;
3191 	while (*p) {
3192 		ret = pci_dev_str_match(dev, p, &p);
3193 		if (ret < 0) {
3194 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3195 				     disable_acs_redir_param);
3196 
3197 			break;
3198 		} else if (ret == 1) {
3199 			/* Found a match */
3200 			break;
3201 		}
3202 
3203 		if (*p != ';' && *p != ',') {
3204 			/* End of param or invalid format */
3205 			break;
3206 		}
3207 		p++;
3208 	}
3209 
3210 	if (ret != 1)
3211 		return;
3212 
3213 	if (!pci_dev_specific_disable_acs_redir(dev))
3214 		return;
3215 
3216 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3217 	if (!pos) {
3218 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3219 		return;
3220 	}
3221 
3222 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3223 
3224 	/* P2P Request & Completion Redirect */
3225 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3226 
3227 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3228 
3229 	pci_info(dev, "disabled ACS redirect\n");
3230 }
3231 
3232 /**
3233  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3234  * @dev: the PCI device
3235  */
3236 static void pci_std_enable_acs(struct pci_dev *dev)
3237 {
3238 	int pos;
3239 	u16 cap;
3240 	u16 ctrl;
3241 
3242 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3243 	if (!pos)
3244 		return;
3245 
3246 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3247 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3248 
3249 	/* Source Validation */
3250 	ctrl |= (cap & PCI_ACS_SV);
3251 
3252 	/* P2P Request Redirect */
3253 	ctrl |= (cap & PCI_ACS_RR);
3254 
3255 	/* P2P Completion Redirect */
3256 	ctrl |= (cap & PCI_ACS_CR);
3257 
3258 	/* Upstream Forwarding */
3259 	ctrl |= (cap & PCI_ACS_UF);
3260 
3261 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3262 }
3263 
3264 /**
3265  * pci_enable_acs - enable ACS if hardware support it
3266  * @dev: the PCI device
3267  */
3268 void pci_enable_acs(struct pci_dev *dev)
3269 {
3270 	if (!pci_acs_enable)
3271 		goto disable_acs_redir;
3272 
3273 	if (!pci_dev_specific_enable_acs(dev))
3274 		goto disable_acs_redir;
3275 
3276 	pci_std_enable_acs(dev);
3277 
3278 disable_acs_redir:
3279 	/*
3280 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
3281 	 * enabled by the kernel because it may have been enabled by
3282 	 * platform firmware.  So if we are told to disable it, we should
3283 	 * always disable it after setting the kernel's default
3284 	 * preferences.
3285 	 */
3286 	pci_disable_acs_redir(dev);
3287 }
3288 
3289 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3290 {
3291 	int pos;
3292 	u16 cap, ctrl;
3293 
3294 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3295 	if (!pos)
3296 		return false;
3297 
3298 	/*
3299 	 * Except for egress control, capabilities are either required
3300 	 * or only required if controllable.  Features missing from the
3301 	 * capability field can therefore be assumed as hard-wired enabled.
3302 	 */
3303 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3304 	acs_flags &= (cap | PCI_ACS_EC);
3305 
3306 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3307 	return (ctrl & acs_flags) == acs_flags;
3308 }
3309 
3310 /**
3311  * pci_acs_enabled - test ACS against required flags for a given device
3312  * @pdev: device to test
3313  * @acs_flags: required PCI ACS flags
3314  *
3315  * Return true if the device supports the provided flags.  Automatically
3316  * filters out flags that are not implemented on multifunction devices.
3317  *
3318  * Note that this interface checks the effective ACS capabilities of the
3319  * device rather than the actual capabilities.  For instance, most single
3320  * function endpoints are not required to support ACS because they have no
3321  * opportunity for peer-to-peer access.  We therefore return 'true'
3322  * regardless of whether the device exposes an ACS capability.  This makes
3323  * it much easier for callers of this function to ignore the actual type
3324  * or topology of the device when testing ACS support.
3325  */
3326 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3327 {
3328 	int ret;
3329 
3330 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3331 	if (ret >= 0)
3332 		return ret > 0;
3333 
3334 	/*
3335 	 * Conventional PCI and PCI-X devices never support ACS, either
3336 	 * effectively or actually.  The shared bus topology implies that
3337 	 * any device on the bus can receive or snoop DMA.
3338 	 */
3339 	if (!pci_is_pcie(pdev))
3340 		return false;
3341 
3342 	switch (pci_pcie_type(pdev)) {
3343 	/*
3344 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3345 	 * but since their primary interface is PCI/X, we conservatively
3346 	 * handle them as we would a non-PCIe device.
3347 	 */
3348 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3349 	/*
3350 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3351 	 * applicable... must never implement an ACS Extended Capability...".
3352 	 * This seems arbitrary, but we take a conservative interpretation
3353 	 * of this statement.
3354 	 */
3355 	case PCI_EXP_TYPE_PCI_BRIDGE:
3356 	case PCI_EXP_TYPE_RC_EC:
3357 		return false;
3358 	/*
3359 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3360 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3361 	 * regardless of whether they are single- or multi-function devices.
3362 	 */
3363 	case PCI_EXP_TYPE_DOWNSTREAM:
3364 	case PCI_EXP_TYPE_ROOT_PORT:
3365 		return pci_acs_flags_enabled(pdev, acs_flags);
3366 	/*
3367 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3368 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3369 	 * capabilities, but only when they are part of a multifunction
3370 	 * device.  The footnote for section 6.12 indicates the specific
3371 	 * PCIe types included here.
3372 	 */
3373 	case PCI_EXP_TYPE_ENDPOINT:
3374 	case PCI_EXP_TYPE_UPSTREAM:
3375 	case PCI_EXP_TYPE_LEG_END:
3376 	case PCI_EXP_TYPE_RC_END:
3377 		if (!pdev->multifunction)
3378 			break;
3379 
3380 		return pci_acs_flags_enabled(pdev, acs_flags);
3381 	}
3382 
3383 	/*
3384 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3385 	 * to single function devices with the exception of downstream ports.
3386 	 */
3387 	return true;
3388 }
3389 
3390 /**
3391  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3392  * @start: starting downstream device
3393  * @end: ending upstream device or NULL to search to the root bus
3394  * @acs_flags: required flags
3395  *
3396  * Walk up a device tree from start to end testing PCI ACS support.  If
3397  * any step along the way does not support the required flags, return false.
3398  */
3399 bool pci_acs_path_enabled(struct pci_dev *start,
3400 			  struct pci_dev *end, u16 acs_flags)
3401 {
3402 	struct pci_dev *pdev, *parent = start;
3403 
3404 	do {
3405 		pdev = parent;
3406 
3407 		if (!pci_acs_enabled(pdev, acs_flags))
3408 			return false;
3409 
3410 		if (pci_is_root_bus(pdev->bus))
3411 			return (end == NULL);
3412 
3413 		parent = pdev->bus->self;
3414 	} while (pdev != end);
3415 
3416 	return true;
3417 }
3418 
3419 /**
3420  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3421  * @pdev: PCI device
3422  * @bar: BAR to find
3423  *
3424  * Helper to find the position of the ctrl register for a BAR.
3425  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3426  * Returns -ENOENT if no ctrl register for the BAR could be found.
3427  */
3428 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3429 {
3430 	unsigned int pos, nbars, i;
3431 	u32 ctrl;
3432 
3433 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3434 	if (!pos)
3435 		return -ENOTSUPP;
3436 
3437 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3438 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3439 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3440 
3441 	for (i = 0; i < nbars; i++, pos += 8) {
3442 		int bar_idx;
3443 
3444 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3445 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3446 		if (bar_idx == bar)
3447 			return pos;
3448 	}
3449 
3450 	return -ENOENT;
3451 }
3452 
3453 /**
3454  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3455  * @pdev: PCI device
3456  * @bar: BAR to query
3457  *
3458  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3459  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3460  */
3461 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3462 {
3463 	int pos;
3464 	u32 cap;
3465 
3466 	pos = pci_rebar_find_pos(pdev, bar);
3467 	if (pos < 0)
3468 		return 0;
3469 
3470 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3471 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3472 }
3473 
3474 /**
3475  * pci_rebar_get_current_size - get the current size of a BAR
3476  * @pdev: PCI device
3477  * @bar: BAR to set size to
3478  *
3479  * Read the size of a BAR from the resizable BAR config.
3480  * Returns size if found or negative error code.
3481  */
3482 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3483 {
3484 	int pos;
3485 	u32 ctrl;
3486 
3487 	pos = pci_rebar_find_pos(pdev, bar);
3488 	if (pos < 0)
3489 		return pos;
3490 
3491 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3492 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3493 }
3494 
3495 /**
3496  * pci_rebar_set_size - set a new size for a BAR
3497  * @pdev: PCI device
3498  * @bar: BAR to set size to
3499  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3500  *
3501  * Set the new size of a BAR as defined in the spec.
3502  * Returns zero if resizing was successful, error code otherwise.
3503  */
3504 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3505 {
3506 	int pos;
3507 	u32 ctrl;
3508 
3509 	pos = pci_rebar_find_pos(pdev, bar);
3510 	if (pos < 0)
3511 		return pos;
3512 
3513 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3514 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3515 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3516 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3517 	return 0;
3518 }
3519 
3520 /**
3521  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3522  * @dev: the PCI device
3523  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3524  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3525  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3526  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3527  *
3528  * Return 0 if all upstream bridges support AtomicOp routing, egress
3529  * blocking is disabled on all upstream ports, and the root port supports
3530  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3531  * AtomicOp completion), or negative otherwise.
3532  */
3533 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3534 {
3535 	struct pci_bus *bus = dev->bus;
3536 	struct pci_dev *bridge;
3537 	u32 cap, ctl2;
3538 
3539 	if (!pci_is_pcie(dev))
3540 		return -EINVAL;
3541 
3542 	/*
3543 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3544 	 * AtomicOp requesters.  For now, we only support endpoints as
3545 	 * requesters and root ports as completers.  No endpoints as
3546 	 * completers, and no peer-to-peer.
3547 	 */
3548 
3549 	switch (pci_pcie_type(dev)) {
3550 	case PCI_EXP_TYPE_ENDPOINT:
3551 	case PCI_EXP_TYPE_LEG_END:
3552 	case PCI_EXP_TYPE_RC_END:
3553 		break;
3554 	default:
3555 		return -EINVAL;
3556 	}
3557 
3558 	while (bus->parent) {
3559 		bridge = bus->self;
3560 
3561 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3562 
3563 		switch (pci_pcie_type(bridge)) {
3564 		/* Ensure switch ports support AtomicOp routing */
3565 		case PCI_EXP_TYPE_UPSTREAM:
3566 		case PCI_EXP_TYPE_DOWNSTREAM:
3567 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3568 				return -EINVAL;
3569 			break;
3570 
3571 		/* Ensure root port supports all the sizes we care about */
3572 		case PCI_EXP_TYPE_ROOT_PORT:
3573 			if ((cap & cap_mask) != cap_mask)
3574 				return -EINVAL;
3575 			break;
3576 		}
3577 
3578 		/* Ensure upstream ports don't block AtomicOps on egress */
3579 		if (!bridge->has_secondary_link) {
3580 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3581 						   &ctl2);
3582 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3583 				return -EINVAL;
3584 		}
3585 
3586 		bus = bus->parent;
3587 	}
3588 
3589 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3590 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3591 	return 0;
3592 }
3593 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3594 
3595 /**
3596  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3597  * @dev: the PCI device
3598  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3599  *
3600  * Perform INTx swizzling for a device behind one level of bridge.  This is
3601  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3602  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3603  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3604  * the PCI Express Base Specification, Revision 2.1)
3605  */
3606 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3607 {
3608 	int slot;
3609 
3610 	if (pci_ari_enabled(dev->bus))
3611 		slot = 0;
3612 	else
3613 		slot = PCI_SLOT(dev->devfn);
3614 
3615 	return (((pin - 1) + slot) % 4) + 1;
3616 }
3617 
3618 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3619 {
3620 	u8 pin;
3621 
3622 	pin = dev->pin;
3623 	if (!pin)
3624 		return -1;
3625 
3626 	while (!pci_is_root_bus(dev->bus)) {
3627 		pin = pci_swizzle_interrupt_pin(dev, pin);
3628 		dev = dev->bus->self;
3629 	}
3630 	*bridge = dev;
3631 	return pin;
3632 }
3633 
3634 /**
3635  * pci_common_swizzle - swizzle INTx all the way to root bridge
3636  * @dev: the PCI device
3637  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3638  *
3639  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3640  * bridges all the way up to a PCI root bus.
3641  */
3642 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3643 {
3644 	u8 pin = *pinp;
3645 
3646 	while (!pci_is_root_bus(dev->bus)) {
3647 		pin = pci_swizzle_interrupt_pin(dev, pin);
3648 		dev = dev->bus->self;
3649 	}
3650 	*pinp = pin;
3651 	return PCI_SLOT(dev->devfn);
3652 }
3653 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3654 
3655 /**
3656  * pci_release_region - Release a PCI bar
3657  * @pdev: PCI device whose resources were previously reserved by
3658  *	  pci_request_region()
3659  * @bar: BAR to release
3660  *
3661  * Releases the PCI I/O and memory resources previously reserved by a
3662  * successful call to pci_request_region().  Call this function only
3663  * after all use of the PCI regions has ceased.
3664  */
3665 void pci_release_region(struct pci_dev *pdev, int bar)
3666 {
3667 	struct pci_devres *dr;
3668 
3669 	if (pci_resource_len(pdev, bar) == 0)
3670 		return;
3671 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3672 		release_region(pci_resource_start(pdev, bar),
3673 				pci_resource_len(pdev, bar));
3674 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3675 		release_mem_region(pci_resource_start(pdev, bar),
3676 				pci_resource_len(pdev, bar));
3677 
3678 	dr = find_pci_dr(pdev);
3679 	if (dr)
3680 		dr->region_mask &= ~(1 << bar);
3681 }
3682 EXPORT_SYMBOL(pci_release_region);
3683 
3684 /**
3685  * __pci_request_region - Reserved PCI I/O and memory resource
3686  * @pdev: PCI device whose resources are to be reserved
3687  * @bar: BAR to be reserved
3688  * @res_name: Name to be associated with resource.
3689  * @exclusive: whether the region access is exclusive or not
3690  *
3691  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3692  * being reserved by owner @res_name.  Do not access any
3693  * address inside the PCI regions unless this call returns
3694  * successfully.
3695  *
3696  * If @exclusive is set, then the region is marked so that userspace
3697  * is explicitly not allowed to map the resource via /dev/mem or
3698  * sysfs MMIO access.
3699  *
3700  * Returns 0 on success, or %EBUSY on error.  A warning
3701  * message is also printed on failure.
3702  */
3703 static int __pci_request_region(struct pci_dev *pdev, int bar,
3704 				const char *res_name, int exclusive)
3705 {
3706 	struct pci_devres *dr;
3707 
3708 	if (pci_resource_len(pdev, bar) == 0)
3709 		return 0;
3710 
3711 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3712 		if (!request_region(pci_resource_start(pdev, bar),
3713 			    pci_resource_len(pdev, bar), res_name))
3714 			goto err_out;
3715 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3716 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3717 					pci_resource_len(pdev, bar), res_name,
3718 					exclusive))
3719 			goto err_out;
3720 	}
3721 
3722 	dr = find_pci_dr(pdev);
3723 	if (dr)
3724 		dr->region_mask |= 1 << bar;
3725 
3726 	return 0;
3727 
3728 err_out:
3729 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3730 		 &pdev->resource[bar]);
3731 	return -EBUSY;
3732 }
3733 
3734 /**
3735  * pci_request_region - Reserve PCI I/O and memory resource
3736  * @pdev: PCI device whose resources are to be reserved
3737  * @bar: BAR to be reserved
3738  * @res_name: Name to be associated with resource
3739  *
3740  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3741  * being reserved by owner @res_name.  Do not access any
3742  * address inside the PCI regions unless this call returns
3743  * successfully.
3744  *
3745  * Returns 0 on success, or %EBUSY on error.  A warning
3746  * message is also printed on failure.
3747  */
3748 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3749 {
3750 	return __pci_request_region(pdev, bar, res_name, 0);
3751 }
3752 EXPORT_SYMBOL(pci_request_region);
3753 
3754 /**
3755  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3756  * @pdev: PCI device whose resources were previously reserved
3757  * @bars: Bitmask of BARs to be released
3758  *
3759  * Release selected PCI I/O and memory resources previously reserved.
3760  * Call this function only after all use of the PCI regions has ceased.
3761  */
3762 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3763 {
3764 	int i;
3765 
3766 	for (i = 0; i < 6; i++)
3767 		if (bars & (1 << i))
3768 			pci_release_region(pdev, i);
3769 }
3770 EXPORT_SYMBOL(pci_release_selected_regions);
3771 
3772 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3773 					  const char *res_name, int excl)
3774 {
3775 	int i;
3776 
3777 	for (i = 0; i < 6; i++)
3778 		if (bars & (1 << i))
3779 			if (__pci_request_region(pdev, i, res_name, excl))
3780 				goto err_out;
3781 	return 0;
3782 
3783 err_out:
3784 	while (--i >= 0)
3785 		if (bars & (1 << i))
3786 			pci_release_region(pdev, i);
3787 
3788 	return -EBUSY;
3789 }
3790 
3791 
3792 /**
3793  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3794  * @pdev: PCI device whose resources are to be reserved
3795  * @bars: Bitmask of BARs to be requested
3796  * @res_name: Name to be associated with resource
3797  */
3798 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3799 				 const char *res_name)
3800 {
3801 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3802 }
3803 EXPORT_SYMBOL(pci_request_selected_regions);
3804 
3805 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3806 					   const char *res_name)
3807 {
3808 	return __pci_request_selected_regions(pdev, bars, res_name,
3809 			IORESOURCE_EXCLUSIVE);
3810 }
3811 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3812 
3813 /**
3814  * pci_release_regions - Release reserved PCI I/O and memory resources
3815  * @pdev: PCI device whose resources were previously reserved by
3816  *	  pci_request_regions()
3817  *
3818  * Releases all PCI I/O and memory resources previously reserved by a
3819  * successful call to pci_request_regions().  Call this function only
3820  * after all use of the PCI regions has ceased.
3821  */
3822 
3823 void pci_release_regions(struct pci_dev *pdev)
3824 {
3825 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3826 }
3827 EXPORT_SYMBOL(pci_release_regions);
3828 
3829 /**
3830  * pci_request_regions - Reserve PCI I/O and memory resources
3831  * @pdev: PCI device whose resources are to be reserved
3832  * @res_name: Name to be associated with resource.
3833  *
3834  * Mark all PCI regions associated with PCI device @pdev as
3835  * being reserved by owner @res_name.  Do not access any
3836  * address inside the PCI regions unless this call returns
3837  * successfully.
3838  *
3839  * Returns 0 on success, or %EBUSY on error.  A warning
3840  * message is also printed on failure.
3841  */
3842 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3843 {
3844 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3845 }
3846 EXPORT_SYMBOL(pci_request_regions);
3847 
3848 /**
3849  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3850  * @pdev: PCI device whose resources are to be reserved
3851  * @res_name: Name to be associated with resource.
3852  *
3853  * Mark all PCI regions associated with PCI device @pdev as being reserved
3854  * by owner @res_name.  Do not access any address inside the PCI regions
3855  * unless this call returns successfully.
3856  *
3857  * pci_request_regions_exclusive() will mark the region so that /dev/mem
3858  * and the sysfs MMIO access will not be allowed.
3859  *
3860  * Returns 0 on success, or %EBUSY on error.  A warning message is also
3861  * printed on failure.
3862  */
3863 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3864 {
3865 	return pci_request_selected_regions_exclusive(pdev,
3866 					((1 << 6) - 1), res_name);
3867 }
3868 EXPORT_SYMBOL(pci_request_regions_exclusive);
3869 
3870 /*
3871  * Record the PCI IO range (expressed as CPU physical address + size).
3872  * Return a negative value if an error has occurred, zero otherwise
3873  */
3874 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3875 			resource_size_t	size)
3876 {
3877 	int ret = 0;
3878 #ifdef PCI_IOBASE
3879 	struct logic_pio_hwaddr *range;
3880 
3881 	if (!size || addr + size < addr)
3882 		return -EINVAL;
3883 
3884 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3885 	if (!range)
3886 		return -ENOMEM;
3887 
3888 	range->fwnode = fwnode;
3889 	range->size = size;
3890 	range->hw_start = addr;
3891 	range->flags = LOGIC_PIO_CPU_MMIO;
3892 
3893 	ret = logic_pio_register_range(range);
3894 	if (ret)
3895 		kfree(range);
3896 #endif
3897 
3898 	return ret;
3899 }
3900 
3901 phys_addr_t pci_pio_to_address(unsigned long pio)
3902 {
3903 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3904 
3905 #ifdef PCI_IOBASE
3906 	if (pio >= MMIO_UPPER_LIMIT)
3907 		return address;
3908 
3909 	address = logic_pio_to_hwaddr(pio);
3910 #endif
3911 
3912 	return address;
3913 }
3914 
3915 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3916 {
3917 #ifdef PCI_IOBASE
3918 	return logic_pio_trans_cpuaddr(address);
3919 #else
3920 	if (address > IO_SPACE_LIMIT)
3921 		return (unsigned long)-1;
3922 
3923 	return (unsigned long) address;
3924 #endif
3925 }
3926 
3927 /**
3928  * pci_remap_iospace - Remap the memory mapped I/O space
3929  * @res: Resource describing the I/O space
3930  * @phys_addr: physical address of range to be mapped
3931  *
3932  * Remap the memory mapped I/O space described by the @res and the CPU
3933  * physical address @phys_addr into virtual address space.  Only
3934  * architectures that have memory mapped IO functions defined (and the
3935  * PCI_IOBASE value defined) should call this function.
3936  */
3937 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3938 {
3939 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3940 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3941 
3942 	if (!(res->flags & IORESOURCE_IO))
3943 		return -EINVAL;
3944 
3945 	if (res->end > IO_SPACE_LIMIT)
3946 		return -EINVAL;
3947 
3948 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3949 				  pgprot_device(PAGE_KERNEL));
3950 #else
3951 	/*
3952 	 * This architecture does not have memory mapped I/O space,
3953 	 * so this function should never be called
3954 	 */
3955 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3956 	return -ENODEV;
3957 #endif
3958 }
3959 EXPORT_SYMBOL(pci_remap_iospace);
3960 
3961 /**
3962  * pci_unmap_iospace - Unmap the memory mapped I/O space
3963  * @res: resource to be unmapped
3964  *
3965  * Unmap the CPU virtual address @res from virtual address space.  Only
3966  * architectures that have memory mapped IO functions defined (and the
3967  * PCI_IOBASE value defined) should call this function.
3968  */
3969 void pci_unmap_iospace(struct resource *res)
3970 {
3971 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3972 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3973 
3974 	unmap_kernel_range(vaddr, resource_size(res));
3975 #endif
3976 }
3977 EXPORT_SYMBOL(pci_unmap_iospace);
3978 
3979 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3980 {
3981 	struct resource **res = ptr;
3982 
3983 	pci_unmap_iospace(*res);
3984 }
3985 
3986 /**
3987  * devm_pci_remap_iospace - Managed pci_remap_iospace()
3988  * @dev: Generic device to remap IO address for
3989  * @res: Resource describing the I/O space
3990  * @phys_addr: physical address of range to be mapped
3991  *
3992  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
3993  * detach.
3994  */
3995 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3996 			   phys_addr_t phys_addr)
3997 {
3998 	const struct resource **ptr;
3999 	int error;
4000 
4001 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4002 	if (!ptr)
4003 		return -ENOMEM;
4004 
4005 	error = pci_remap_iospace(res, phys_addr);
4006 	if (error) {
4007 		devres_free(ptr);
4008 	} else	{
4009 		*ptr = res;
4010 		devres_add(dev, ptr);
4011 	}
4012 
4013 	return error;
4014 }
4015 EXPORT_SYMBOL(devm_pci_remap_iospace);
4016 
4017 /**
4018  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4019  * @dev: Generic device to remap IO address for
4020  * @offset: Resource address to map
4021  * @size: Size of map
4022  *
4023  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4024  * detach.
4025  */
4026 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4027 				      resource_size_t offset,
4028 				      resource_size_t size)
4029 {
4030 	void __iomem **ptr, *addr;
4031 
4032 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4033 	if (!ptr)
4034 		return NULL;
4035 
4036 	addr = pci_remap_cfgspace(offset, size);
4037 	if (addr) {
4038 		*ptr = addr;
4039 		devres_add(dev, ptr);
4040 	} else
4041 		devres_free(ptr);
4042 
4043 	return addr;
4044 }
4045 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4046 
4047 /**
4048  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4049  * @dev: generic device to handle the resource for
4050  * @res: configuration space resource to be handled
4051  *
4052  * Checks that a resource is a valid memory region, requests the memory
4053  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4054  * proper PCI configuration space memory attributes are guaranteed.
4055  *
4056  * All operations are managed and will be undone on driver detach.
4057  *
4058  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4059  * on failure. Usage example::
4060  *
4061  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4062  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4063  *	if (IS_ERR(base))
4064  *		return PTR_ERR(base);
4065  */
4066 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4067 					  struct resource *res)
4068 {
4069 	resource_size_t size;
4070 	const char *name;
4071 	void __iomem *dest_ptr;
4072 
4073 	BUG_ON(!dev);
4074 
4075 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4076 		dev_err(dev, "invalid resource\n");
4077 		return IOMEM_ERR_PTR(-EINVAL);
4078 	}
4079 
4080 	size = resource_size(res);
4081 	name = res->name ?: dev_name(dev);
4082 
4083 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4084 		dev_err(dev, "can't request region for resource %pR\n", res);
4085 		return IOMEM_ERR_PTR(-EBUSY);
4086 	}
4087 
4088 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4089 	if (!dest_ptr) {
4090 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4091 		devm_release_mem_region(dev, res->start, size);
4092 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4093 	}
4094 
4095 	return dest_ptr;
4096 }
4097 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4098 
4099 static void __pci_set_master(struct pci_dev *dev, bool enable)
4100 {
4101 	u16 old_cmd, cmd;
4102 
4103 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4104 	if (enable)
4105 		cmd = old_cmd | PCI_COMMAND_MASTER;
4106 	else
4107 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4108 	if (cmd != old_cmd) {
4109 		pci_dbg(dev, "%s bus mastering\n",
4110 			enable ? "enabling" : "disabling");
4111 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4112 	}
4113 	dev->is_busmaster = enable;
4114 }
4115 
4116 /**
4117  * pcibios_setup - process "pci=" kernel boot arguments
4118  * @str: string used to pass in "pci=" kernel boot arguments
4119  *
4120  * Process kernel boot arguments.  This is the default implementation.
4121  * Architecture specific implementations can override this as necessary.
4122  */
4123 char * __weak __init pcibios_setup(char *str)
4124 {
4125 	return str;
4126 }
4127 
4128 /**
4129  * pcibios_set_master - enable PCI bus-mastering for device dev
4130  * @dev: the PCI device to enable
4131  *
4132  * Enables PCI bus-mastering for the device.  This is the default
4133  * implementation.  Architecture specific implementations can override
4134  * this if necessary.
4135  */
4136 void __weak pcibios_set_master(struct pci_dev *dev)
4137 {
4138 	u8 lat;
4139 
4140 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4141 	if (pci_is_pcie(dev))
4142 		return;
4143 
4144 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4145 	if (lat < 16)
4146 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4147 	else if (lat > pcibios_max_latency)
4148 		lat = pcibios_max_latency;
4149 	else
4150 		return;
4151 
4152 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4153 }
4154 
4155 /**
4156  * pci_set_master - enables bus-mastering for device dev
4157  * @dev: the PCI device to enable
4158  *
4159  * Enables bus-mastering on the device and calls pcibios_set_master()
4160  * to do the needed arch specific settings.
4161  */
4162 void pci_set_master(struct pci_dev *dev)
4163 {
4164 	__pci_set_master(dev, true);
4165 	pcibios_set_master(dev);
4166 }
4167 EXPORT_SYMBOL(pci_set_master);
4168 
4169 /**
4170  * pci_clear_master - disables bus-mastering for device dev
4171  * @dev: the PCI device to disable
4172  */
4173 void pci_clear_master(struct pci_dev *dev)
4174 {
4175 	__pci_set_master(dev, false);
4176 }
4177 EXPORT_SYMBOL(pci_clear_master);
4178 
4179 /**
4180  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4181  * @dev: the PCI device for which MWI is to be enabled
4182  *
4183  * Helper function for pci_set_mwi.
4184  * Originally copied from drivers/net/acenic.c.
4185  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4186  *
4187  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4188  */
4189 int pci_set_cacheline_size(struct pci_dev *dev)
4190 {
4191 	u8 cacheline_size;
4192 
4193 	if (!pci_cache_line_size)
4194 		return -EINVAL;
4195 
4196 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4197 	   equal to or multiple of the right value. */
4198 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4199 	if (cacheline_size >= pci_cache_line_size &&
4200 	    (cacheline_size % pci_cache_line_size) == 0)
4201 		return 0;
4202 
4203 	/* Write the correct value. */
4204 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4205 	/* Read it back. */
4206 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4207 	if (cacheline_size == pci_cache_line_size)
4208 		return 0;
4209 
4210 	pci_info(dev, "cache line size of %d is not supported\n",
4211 		   pci_cache_line_size << 2);
4212 
4213 	return -EINVAL;
4214 }
4215 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4216 
4217 /**
4218  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4219  * @dev: the PCI device for which MWI is enabled
4220  *
4221  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4222  *
4223  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4224  */
4225 int pci_set_mwi(struct pci_dev *dev)
4226 {
4227 #ifdef PCI_DISABLE_MWI
4228 	return 0;
4229 #else
4230 	int rc;
4231 	u16 cmd;
4232 
4233 	rc = pci_set_cacheline_size(dev);
4234 	if (rc)
4235 		return rc;
4236 
4237 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4238 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4239 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4240 		cmd |= PCI_COMMAND_INVALIDATE;
4241 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4242 	}
4243 	return 0;
4244 #endif
4245 }
4246 EXPORT_SYMBOL(pci_set_mwi);
4247 
4248 /**
4249  * pcim_set_mwi - a device-managed pci_set_mwi()
4250  * @dev: the PCI device for which MWI is enabled
4251  *
4252  * Managed pci_set_mwi().
4253  *
4254  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4255  */
4256 int pcim_set_mwi(struct pci_dev *dev)
4257 {
4258 	struct pci_devres *dr;
4259 
4260 	dr = find_pci_dr(dev);
4261 	if (!dr)
4262 		return -ENOMEM;
4263 
4264 	dr->mwi = 1;
4265 	return pci_set_mwi(dev);
4266 }
4267 EXPORT_SYMBOL(pcim_set_mwi);
4268 
4269 /**
4270  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4271  * @dev: the PCI device for which MWI is enabled
4272  *
4273  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4274  * Callers are not required to check the return value.
4275  *
4276  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4277  */
4278 int pci_try_set_mwi(struct pci_dev *dev)
4279 {
4280 #ifdef PCI_DISABLE_MWI
4281 	return 0;
4282 #else
4283 	return pci_set_mwi(dev);
4284 #endif
4285 }
4286 EXPORT_SYMBOL(pci_try_set_mwi);
4287 
4288 /**
4289  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4290  * @dev: the PCI device to disable
4291  *
4292  * Disables PCI Memory-Write-Invalidate transaction on the device
4293  */
4294 void pci_clear_mwi(struct pci_dev *dev)
4295 {
4296 #ifndef PCI_DISABLE_MWI
4297 	u16 cmd;
4298 
4299 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4300 	if (cmd & PCI_COMMAND_INVALIDATE) {
4301 		cmd &= ~PCI_COMMAND_INVALIDATE;
4302 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4303 	}
4304 #endif
4305 }
4306 EXPORT_SYMBOL(pci_clear_mwi);
4307 
4308 /**
4309  * pci_intx - enables/disables PCI INTx for device dev
4310  * @pdev: the PCI device to operate on
4311  * @enable: boolean: whether to enable or disable PCI INTx
4312  *
4313  * Enables/disables PCI INTx for device @pdev
4314  */
4315 void pci_intx(struct pci_dev *pdev, int enable)
4316 {
4317 	u16 pci_command, new;
4318 
4319 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4320 
4321 	if (enable)
4322 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4323 	else
4324 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4325 
4326 	if (new != pci_command) {
4327 		struct pci_devres *dr;
4328 
4329 		pci_write_config_word(pdev, PCI_COMMAND, new);
4330 
4331 		dr = find_pci_dr(pdev);
4332 		if (dr && !dr->restore_intx) {
4333 			dr->restore_intx = 1;
4334 			dr->orig_intx = !enable;
4335 		}
4336 	}
4337 }
4338 EXPORT_SYMBOL_GPL(pci_intx);
4339 
4340 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4341 {
4342 	struct pci_bus *bus = dev->bus;
4343 	bool mask_updated = true;
4344 	u32 cmd_status_dword;
4345 	u16 origcmd, newcmd;
4346 	unsigned long flags;
4347 	bool irq_pending;
4348 
4349 	/*
4350 	 * We do a single dword read to retrieve both command and status.
4351 	 * Document assumptions that make this possible.
4352 	 */
4353 	BUILD_BUG_ON(PCI_COMMAND % 4);
4354 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4355 
4356 	raw_spin_lock_irqsave(&pci_lock, flags);
4357 
4358 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4359 
4360 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4361 
4362 	/*
4363 	 * Check interrupt status register to see whether our device
4364 	 * triggered the interrupt (when masking) or the next IRQ is
4365 	 * already pending (when unmasking).
4366 	 */
4367 	if (mask != irq_pending) {
4368 		mask_updated = false;
4369 		goto done;
4370 	}
4371 
4372 	origcmd = cmd_status_dword;
4373 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4374 	if (mask)
4375 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4376 	if (newcmd != origcmd)
4377 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4378 
4379 done:
4380 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4381 
4382 	return mask_updated;
4383 }
4384 
4385 /**
4386  * pci_check_and_mask_intx - mask INTx on pending interrupt
4387  * @dev: the PCI device to operate on
4388  *
4389  * Check if the device dev has its INTx line asserted, mask it and return
4390  * true in that case. False is returned if no interrupt was pending.
4391  */
4392 bool pci_check_and_mask_intx(struct pci_dev *dev)
4393 {
4394 	return pci_check_and_set_intx_mask(dev, true);
4395 }
4396 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4397 
4398 /**
4399  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4400  * @dev: the PCI device to operate on
4401  *
4402  * Check if the device dev has its INTx line asserted, unmask it if not and
4403  * return true. False is returned and the mask remains active if there was
4404  * still an interrupt pending.
4405  */
4406 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4407 {
4408 	return pci_check_and_set_intx_mask(dev, false);
4409 }
4410 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4411 
4412 /**
4413  * pci_wait_for_pending_transaction - wait for pending transaction
4414  * @dev: the PCI device to operate on
4415  *
4416  * Return 0 if transaction is pending 1 otherwise.
4417  */
4418 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4419 {
4420 	if (!pci_is_pcie(dev))
4421 		return 1;
4422 
4423 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4424 				    PCI_EXP_DEVSTA_TRPND);
4425 }
4426 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4427 
4428 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4429 {
4430 	int delay = 1;
4431 	u32 id;
4432 
4433 	/*
4434 	 * After reset, the device should not silently discard config
4435 	 * requests, but it may still indicate that it needs more time by
4436 	 * responding to them with CRS completions.  The Root Port will
4437 	 * generally synthesize ~0 data to complete the read (except when
4438 	 * CRS SV is enabled and the read was for the Vendor ID; in that
4439 	 * case it synthesizes 0x0001 data).
4440 	 *
4441 	 * Wait for the device to return a non-CRS completion.  Read the
4442 	 * Command register instead of Vendor ID so we don't have to
4443 	 * contend with the CRS SV value.
4444 	 */
4445 	pci_read_config_dword(dev, PCI_COMMAND, &id);
4446 	while (id == ~0) {
4447 		if (delay > timeout) {
4448 			pci_warn(dev, "not ready %dms after %s; giving up\n",
4449 				 delay - 1, reset_type);
4450 			return -ENOTTY;
4451 		}
4452 
4453 		if (delay > 1000)
4454 			pci_info(dev, "not ready %dms after %s; waiting\n",
4455 				 delay - 1, reset_type);
4456 
4457 		msleep(delay);
4458 		delay *= 2;
4459 		pci_read_config_dword(dev, PCI_COMMAND, &id);
4460 	}
4461 
4462 	if (delay > 1000)
4463 		pci_info(dev, "ready %dms after %s\n", delay - 1,
4464 			 reset_type);
4465 
4466 	return 0;
4467 }
4468 
4469 /**
4470  * pcie_has_flr - check if a device supports function level resets
4471  * @dev: device to check
4472  *
4473  * Returns true if the device advertises support for PCIe function level
4474  * resets.
4475  */
4476 bool pcie_has_flr(struct pci_dev *dev)
4477 {
4478 	u32 cap;
4479 
4480 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4481 		return false;
4482 
4483 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4484 	return cap & PCI_EXP_DEVCAP_FLR;
4485 }
4486 EXPORT_SYMBOL_GPL(pcie_has_flr);
4487 
4488 /**
4489  * pcie_flr - initiate a PCIe function level reset
4490  * @dev: device to reset
4491  *
4492  * Initiate a function level reset on @dev.  The caller should ensure the
4493  * device supports FLR before calling this function, e.g. by using the
4494  * pcie_has_flr() helper.
4495  */
4496 int pcie_flr(struct pci_dev *dev)
4497 {
4498 	if (!pci_wait_for_pending_transaction(dev))
4499 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4500 
4501 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4502 
4503 	if (dev->imm_ready)
4504 		return 0;
4505 
4506 	/*
4507 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4508 	 * 100ms, but may silently discard requests while the FLR is in
4509 	 * progress.  Wait 100ms before trying to access the device.
4510 	 */
4511 	msleep(100);
4512 
4513 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4514 }
4515 EXPORT_SYMBOL_GPL(pcie_flr);
4516 
4517 static int pci_af_flr(struct pci_dev *dev, int probe)
4518 {
4519 	int pos;
4520 	u8 cap;
4521 
4522 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4523 	if (!pos)
4524 		return -ENOTTY;
4525 
4526 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4527 		return -ENOTTY;
4528 
4529 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4530 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4531 		return -ENOTTY;
4532 
4533 	if (probe)
4534 		return 0;
4535 
4536 	/*
4537 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4538 	 * is used, so we use the conrol offset rather than status and shift
4539 	 * the test bit to match.
4540 	 */
4541 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4542 				 PCI_AF_STATUS_TP << 8))
4543 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4544 
4545 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4546 
4547 	if (dev->imm_ready)
4548 		return 0;
4549 
4550 	/*
4551 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4552 	 * updated 27 July 2006; a device must complete an FLR within
4553 	 * 100ms, but may silently discard requests while the FLR is in
4554 	 * progress.  Wait 100ms before trying to access the device.
4555 	 */
4556 	msleep(100);
4557 
4558 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4559 }
4560 
4561 /**
4562  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4563  * @dev: Device to reset.
4564  * @probe: If set, only check if the device can be reset this way.
4565  *
4566  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4567  * unset, it will be reinitialized internally when going from PCI_D3hot to
4568  * PCI_D0.  If that's the case and the device is not in a low-power state
4569  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4570  *
4571  * NOTE: This causes the caller to sleep for twice the device power transition
4572  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4573  * by default (i.e. unless the @dev's d3_delay field has a different value).
4574  * Moreover, only devices in D0 can be reset by this function.
4575  */
4576 static int pci_pm_reset(struct pci_dev *dev, int probe)
4577 {
4578 	u16 csr;
4579 
4580 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4581 		return -ENOTTY;
4582 
4583 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4584 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4585 		return -ENOTTY;
4586 
4587 	if (probe)
4588 		return 0;
4589 
4590 	if (dev->current_state != PCI_D0)
4591 		return -EINVAL;
4592 
4593 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4594 	csr |= PCI_D3hot;
4595 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4596 	pci_dev_d3_sleep(dev);
4597 
4598 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4599 	csr |= PCI_D0;
4600 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4601 	pci_dev_d3_sleep(dev);
4602 
4603 	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4604 }
4605 
4606 /**
4607  * pcie_wait_for_link_delay - Wait until link is active or inactive
4608  * @pdev: Bridge device
4609  * @active: waiting for active or inactive?
4610  * @delay: Delay to wait after link has become active (in ms)
4611  *
4612  * Use this to wait till link becomes active or inactive.
4613  */
4614 bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, int delay)
4615 {
4616 	int timeout = 1000;
4617 	bool ret;
4618 	u16 lnk_status;
4619 
4620 	/*
4621 	 * Some controllers might not implement link active reporting. In this
4622 	 * case, we wait for 1000 + 100 ms.
4623 	 */
4624 	if (!pdev->link_active_reporting) {
4625 		msleep(1100);
4626 		return true;
4627 	}
4628 
4629 	/*
4630 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4631 	 * after which we should expect an link active if the reset was
4632 	 * successful. If so, software must wait a minimum 100ms before sending
4633 	 * configuration requests to devices downstream this port.
4634 	 *
4635 	 * If the link fails to activate, either the device was physically
4636 	 * removed or the link is permanently failed.
4637 	 */
4638 	if (active)
4639 		msleep(20);
4640 	for (;;) {
4641 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4642 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4643 		if (ret == active)
4644 			break;
4645 		if (timeout <= 0)
4646 			break;
4647 		msleep(10);
4648 		timeout -= 10;
4649 	}
4650 	if (active && ret)
4651 		msleep(delay);
4652 	else if (ret != active)
4653 		pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4654 			active ? "set" : "cleared");
4655 	return ret == active;
4656 }
4657 
4658 /**
4659  * pcie_wait_for_link - Wait until link is active or inactive
4660  * @pdev: Bridge device
4661  * @active: waiting for active or inactive?
4662  *
4663  * Use this to wait till link becomes active or inactive.
4664  */
4665 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4666 {
4667 	return pcie_wait_for_link_delay(pdev, active, 100);
4668 }
4669 
4670 void pci_reset_secondary_bus(struct pci_dev *dev)
4671 {
4672 	u16 ctrl;
4673 
4674 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4675 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4676 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4677 
4678 	/*
4679 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4680 	 * this to 2ms to ensure that we meet the minimum requirement.
4681 	 */
4682 	msleep(2);
4683 
4684 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4685 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4686 
4687 	/*
4688 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4689 	 * Assuming a minimum 33MHz clock this results in a 1s
4690 	 * delay before we can consider subordinate devices to
4691 	 * be re-initialized.  PCIe has some ways to shorten this,
4692 	 * but we don't make use of them yet.
4693 	 */
4694 	ssleep(1);
4695 }
4696 
4697 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4698 {
4699 	pci_reset_secondary_bus(dev);
4700 }
4701 
4702 /**
4703  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4704  * @dev: Bridge device
4705  *
4706  * Use the bridge control register to assert reset on the secondary bus.
4707  * Devices on the secondary bus are left in power-on state.
4708  */
4709 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4710 {
4711 	pcibios_reset_secondary_bus(dev);
4712 
4713 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4714 }
4715 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4716 
4717 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4718 {
4719 	struct pci_dev *pdev;
4720 
4721 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4722 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4723 		return -ENOTTY;
4724 
4725 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4726 		if (pdev != dev)
4727 			return -ENOTTY;
4728 
4729 	if (probe)
4730 		return 0;
4731 
4732 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4733 }
4734 
4735 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4736 {
4737 	int rc = -ENOTTY;
4738 
4739 	if (!hotplug || !try_module_get(hotplug->owner))
4740 		return rc;
4741 
4742 	if (hotplug->ops->reset_slot)
4743 		rc = hotplug->ops->reset_slot(hotplug, probe);
4744 
4745 	module_put(hotplug->owner);
4746 
4747 	return rc;
4748 }
4749 
4750 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4751 {
4752 	struct pci_dev *pdev;
4753 
4754 	if (dev->subordinate || !dev->slot ||
4755 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4756 		return -ENOTTY;
4757 
4758 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4759 		if (pdev != dev && pdev->slot == dev->slot)
4760 			return -ENOTTY;
4761 
4762 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4763 }
4764 
4765 static void pci_dev_lock(struct pci_dev *dev)
4766 {
4767 	pci_cfg_access_lock(dev);
4768 	/* block PM suspend, driver probe, etc. */
4769 	device_lock(&dev->dev);
4770 }
4771 
4772 /* Return 1 on successful lock, 0 on contention */
4773 static int pci_dev_trylock(struct pci_dev *dev)
4774 {
4775 	if (pci_cfg_access_trylock(dev)) {
4776 		if (device_trylock(&dev->dev))
4777 			return 1;
4778 		pci_cfg_access_unlock(dev);
4779 	}
4780 
4781 	return 0;
4782 }
4783 
4784 static void pci_dev_unlock(struct pci_dev *dev)
4785 {
4786 	device_unlock(&dev->dev);
4787 	pci_cfg_access_unlock(dev);
4788 }
4789 
4790 static void pci_dev_save_and_disable(struct pci_dev *dev)
4791 {
4792 	const struct pci_error_handlers *err_handler =
4793 			dev->driver ? dev->driver->err_handler : NULL;
4794 
4795 	/*
4796 	 * dev->driver->err_handler->reset_prepare() is protected against
4797 	 * races with ->remove() by the device lock, which must be held by
4798 	 * the caller.
4799 	 */
4800 	if (err_handler && err_handler->reset_prepare)
4801 		err_handler->reset_prepare(dev);
4802 
4803 	/*
4804 	 * Wake-up device prior to save.  PM registers default to D0 after
4805 	 * reset and a simple register restore doesn't reliably return
4806 	 * to a non-D0 state anyway.
4807 	 */
4808 	pci_set_power_state(dev, PCI_D0);
4809 
4810 	pci_save_state(dev);
4811 	/*
4812 	 * Disable the device by clearing the Command register, except for
4813 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4814 	 * BARs, but also prevents the device from being Bus Master, preventing
4815 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4816 	 * compliant devices, INTx-disable prevents legacy interrupts.
4817 	 */
4818 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4819 }
4820 
4821 static void pci_dev_restore(struct pci_dev *dev)
4822 {
4823 	const struct pci_error_handlers *err_handler =
4824 			dev->driver ? dev->driver->err_handler : NULL;
4825 
4826 	pci_restore_state(dev);
4827 
4828 	/*
4829 	 * dev->driver->err_handler->reset_done() is protected against
4830 	 * races with ->remove() by the device lock, which must be held by
4831 	 * the caller.
4832 	 */
4833 	if (err_handler && err_handler->reset_done)
4834 		err_handler->reset_done(dev);
4835 }
4836 
4837 /**
4838  * __pci_reset_function_locked - reset a PCI device function while holding
4839  * the @dev mutex lock.
4840  * @dev: PCI device to reset
4841  *
4842  * Some devices allow an individual function to be reset without affecting
4843  * other functions in the same device.  The PCI device must be responsive
4844  * to PCI config space in order to use this function.
4845  *
4846  * The device function is presumed to be unused and the caller is holding
4847  * the device mutex lock when this function is called.
4848  *
4849  * Resetting the device will make the contents of PCI configuration space
4850  * random, so any caller of this must be prepared to reinitialise the
4851  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4852  * etc.
4853  *
4854  * Returns 0 if the device function was successfully reset or negative if the
4855  * device doesn't support resetting a single function.
4856  */
4857 int __pci_reset_function_locked(struct pci_dev *dev)
4858 {
4859 	int rc;
4860 
4861 	might_sleep();
4862 
4863 	/*
4864 	 * A reset method returns -ENOTTY if it doesn't support this device
4865 	 * and we should try the next method.
4866 	 *
4867 	 * If it returns 0 (success), we're finished.  If it returns any
4868 	 * other error, we're also finished: this indicates that further
4869 	 * reset mechanisms might be broken on the device.
4870 	 */
4871 	rc = pci_dev_specific_reset(dev, 0);
4872 	if (rc != -ENOTTY)
4873 		return rc;
4874 	if (pcie_has_flr(dev)) {
4875 		rc = pcie_flr(dev);
4876 		if (rc != -ENOTTY)
4877 			return rc;
4878 	}
4879 	rc = pci_af_flr(dev, 0);
4880 	if (rc != -ENOTTY)
4881 		return rc;
4882 	rc = pci_pm_reset(dev, 0);
4883 	if (rc != -ENOTTY)
4884 		return rc;
4885 	rc = pci_dev_reset_slot_function(dev, 0);
4886 	if (rc != -ENOTTY)
4887 		return rc;
4888 	return pci_parent_bus_reset(dev, 0);
4889 }
4890 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4891 
4892 /**
4893  * pci_probe_reset_function - check whether the device can be safely reset
4894  * @dev: PCI device to reset
4895  *
4896  * Some devices allow an individual function to be reset without affecting
4897  * other functions in the same device.  The PCI device must be responsive
4898  * to PCI config space in order to use this function.
4899  *
4900  * Returns 0 if the device function can be reset or negative if the
4901  * device doesn't support resetting a single function.
4902  */
4903 int pci_probe_reset_function(struct pci_dev *dev)
4904 {
4905 	int rc;
4906 
4907 	might_sleep();
4908 
4909 	rc = pci_dev_specific_reset(dev, 1);
4910 	if (rc != -ENOTTY)
4911 		return rc;
4912 	if (pcie_has_flr(dev))
4913 		return 0;
4914 	rc = pci_af_flr(dev, 1);
4915 	if (rc != -ENOTTY)
4916 		return rc;
4917 	rc = pci_pm_reset(dev, 1);
4918 	if (rc != -ENOTTY)
4919 		return rc;
4920 	rc = pci_dev_reset_slot_function(dev, 1);
4921 	if (rc != -ENOTTY)
4922 		return rc;
4923 
4924 	return pci_parent_bus_reset(dev, 1);
4925 }
4926 
4927 /**
4928  * pci_reset_function - quiesce and reset a PCI device function
4929  * @dev: PCI device to reset
4930  *
4931  * Some devices allow an individual function to be reset without affecting
4932  * other functions in the same device.  The PCI device must be responsive
4933  * to PCI config space in order to use this function.
4934  *
4935  * This function does not just reset the PCI portion of a device, but
4936  * clears all the state associated with the device.  This function differs
4937  * from __pci_reset_function_locked() in that it saves and restores device state
4938  * over the reset and takes the PCI device lock.
4939  *
4940  * Returns 0 if the device function was successfully reset or negative if the
4941  * device doesn't support resetting a single function.
4942  */
4943 int pci_reset_function(struct pci_dev *dev)
4944 {
4945 	int rc;
4946 
4947 	if (!dev->reset_fn)
4948 		return -ENOTTY;
4949 
4950 	pci_dev_lock(dev);
4951 	pci_dev_save_and_disable(dev);
4952 
4953 	rc = __pci_reset_function_locked(dev);
4954 
4955 	pci_dev_restore(dev);
4956 	pci_dev_unlock(dev);
4957 
4958 	return rc;
4959 }
4960 EXPORT_SYMBOL_GPL(pci_reset_function);
4961 
4962 /**
4963  * pci_reset_function_locked - quiesce and reset a PCI device function
4964  * @dev: PCI device to reset
4965  *
4966  * Some devices allow an individual function to be reset without affecting
4967  * other functions in the same device.  The PCI device must be responsive
4968  * to PCI config space in order to use this function.
4969  *
4970  * This function does not just reset the PCI portion of a device, but
4971  * clears all the state associated with the device.  This function differs
4972  * from __pci_reset_function_locked() in that it saves and restores device state
4973  * over the reset.  It also differs from pci_reset_function() in that it
4974  * requires the PCI device lock to be held.
4975  *
4976  * Returns 0 if the device function was successfully reset or negative if the
4977  * device doesn't support resetting a single function.
4978  */
4979 int pci_reset_function_locked(struct pci_dev *dev)
4980 {
4981 	int rc;
4982 
4983 	if (!dev->reset_fn)
4984 		return -ENOTTY;
4985 
4986 	pci_dev_save_and_disable(dev);
4987 
4988 	rc = __pci_reset_function_locked(dev);
4989 
4990 	pci_dev_restore(dev);
4991 
4992 	return rc;
4993 }
4994 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4995 
4996 /**
4997  * pci_try_reset_function - quiesce and reset a PCI device function
4998  * @dev: PCI device to reset
4999  *
5000  * Same as above, except return -EAGAIN if unable to lock device.
5001  */
5002 int pci_try_reset_function(struct pci_dev *dev)
5003 {
5004 	int rc;
5005 
5006 	if (!dev->reset_fn)
5007 		return -ENOTTY;
5008 
5009 	if (!pci_dev_trylock(dev))
5010 		return -EAGAIN;
5011 
5012 	pci_dev_save_and_disable(dev);
5013 	rc = __pci_reset_function_locked(dev);
5014 	pci_dev_restore(dev);
5015 	pci_dev_unlock(dev);
5016 
5017 	return rc;
5018 }
5019 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5020 
5021 /* Do any devices on or below this bus prevent a bus reset? */
5022 static bool pci_bus_resetable(struct pci_bus *bus)
5023 {
5024 	struct pci_dev *dev;
5025 
5026 
5027 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5028 		return false;
5029 
5030 	list_for_each_entry(dev, &bus->devices, bus_list) {
5031 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5032 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5033 			return false;
5034 	}
5035 
5036 	return true;
5037 }
5038 
5039 /* Lock devices from the top of the tree down */
5040 static void pci_bus_lock(struct pci_bus *bus)
5041 {
5042 	struct pci_dev *dev;
5043 
5044 	list_for_each_entry(dev, &bus->devices, bus_list) {
5045 		pci_dev_lock(dev);
5046 		if (dev->subordinate)
5047 			pci_bus_lock(dev->subordinate);
5048 	}
5049 }
5050 
5051 /* Unlock devices from the bottom of the tree up */
5052 static void pci_bus_unlock(struct pci_bus *bus)
5053 {
5054 	struct pci_dev *dev;
5055 
5056 	list_for_each_entry(dev, &bus->devices, bus_list) {
5057 		if (dev->subordinate)
5058 			pci_bus_unlock(dev->subordinate);
5059 		pci_dev_unlock(dev);
5060 	}
5061 }
5062 
5063 /* Return 1 on successful lock, 0 on contention */
5064 static int pci_bus_trylock(struct pci_bus *bus)
5065 {
5066 	struct pci_dev *dev;
5067 
5068 	list_for_each_entry(dev, &bus->devices, bus_list) {
5069 		if (!pci_dev_trylock(dev))
5070 			goto unlock;
5071 		if (dev->subordinate) {
5072 			if (!pci_bus_trylock(dev->subordinate)) {
5073 				pci_dev_unlock(dev);
5074 				goto unlock;
5075 			}
5076 		}
5077 	}
5078 	return 1;
5079 
5080 unlock:
5081 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5082 		if (dev->subordinate)
5083 			pci_bus_unlock(dev->subordinate);
5084 		pci_dev_unlock(dev);
5085 	}
5086 	return 0;
5087 }
5088 
5089 /* Do any devices on or below this slot prevent a bus reset? */
5090 static bool pci_slot_resetable(struct pci_slot *slot)
5091 {
5092 	struct pci_dev *dev;
5093 
5094 	if (slot->bus->self &&
5095 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5096 		return false;
5097 
5098 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5099 		if (!dev->slot || dev->slot != slot)
5100 			continue;
5101 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5102 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5103 			return false;
5104 	}
5105 
5106 	return true;
5107 }
5108 
5109 /* Lock devices from the top of the tree down */
5110 static void pci_slot_lock(struct pci_slot *slot)
5111 {
5112 	struct pci_dev *dev;
5113 
5114 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5115 		if (!dev->slot || dev->slot != slot)
5116 			continue;
5117 		pci_dev_lock(dev);
5118 		if (dev->subordinate)
5119 			pci_bus_lock(dev->subordinate);
5120 	}
5121 }
5122 
5123 /* Unlock devices from the bottom of the tree up */
5124 static void pci_slot_unlock(struct pci_slot *slot)
5125 {
5126 	struct pci_dev *dev;
5127 
5128 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5129 		if (!dev->slot || dev->slot != slot)
5130 			continue;
5131 		if (dev->subordinate)
5132 			pci_bus_unlock(dev->subordinate);
5133 		pci_dev_unlock(dev);
5134 	}
5135 }
5136 
5137 /* Return 1 on successful lock, 0 on contention */
5138 static int pci_slot_trylock(struct pci_slot *slot)
5139 {
5140 	struct pci_dev *dev;
5141 
5142 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5143 		if (!dev->slot || dev->slot != slot)
5144 			continue;
5145 		if (!pci_dev_trylock(dev))
5146 			goto unlock;
5147 		if (dev->subordinate) {
5148 			if (!pci_bus_trylock(dev->subordinate)) {
5149 				pci_dev_unlock(dev);
5150 				goto unlock;
5151 			}
5152 		}
5153 	}
5154 	return 1;
5155 
5156 unlock:
5157 	list_for_each_entry_continue_reverse(dev,
5158 					     &slot->bus->devices, bus_list) {
5159 		if (!dev->slot || dev->slot != slot)
5160 			continue;
5161 		if (dev->subordinate)
5162 			pci_bus_unlock(dev->subordinate);
5163 		pci_dev_unlock(dev);
5164 	}
5165 	return 0;
5166 }
5167 
5168 /*
5169  * Save and disable devices from the top of the tree down while holding
5170  * the @dev mutex lock for the entire tree.
5171  */
5172 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5173 {
5174 	struct pci_dev *dev;
5175 
5176 	list_for_each_entry(dev, &bus->devices, bus_list) {
5177 		pci_dev_save_and_disable(dev);
5178 		if (dev->subordinate)
5179 			pci_bus_save_and_disable_locked(dev->subordinate);
5180 	}
5181 }
5182 
5183 /*
5184  * Restore devices from top of the tree down while holding @dev mutex lock
5185  * for the entire tree.  Parent bridges need to be restored before we can
5186  * get to subordinate devices.
5187  */
5188 static void pci_bus_restore_locked(struct pci_bus *bus)
5189 {
5190 	struct pci_dev *dev;
5191 
5192 	list_for_each_entry(dev, &bus->devices, bus_list) {
5193 		pci_dev_restore(dev);
5194 		if (dev->subordinate)
5195 			pci_bus_restore_locked(dev->subordinate);
5196 	}
5197 }
5198 
5199 /*
5200  * Save and disable devices from the top of the tree down while holding
5201  * the @dev mutex lock for the entire tree.
5202  */
5203 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5204 {
5205 	struct pci_dev *dev;
5206 
5207 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5208 		if (!dev->slot || dev->slot != slot)
5209 			continue;
5210 		pci_dev_save_and_disable(dev);
5211 		if (dev->subordinate)
5212 			pci_bus_save_and_disable_locked(dev->subordinate);
5213 	}
5214 }
5215 
5216 /*
5217  * Restore devices from top of the tree down while holding @dev mutex lock
5218  * for the entire tree.  Parent bridges need to be restored before we can
5219  * get to subordinate devices.
5220  */
5221 static void pci_slot_restore_locked(struct pci_slot *slot)
5222 {
5223 	struct pci_dev *dev;
5224 
5225 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5226 		if (!dev->slot || dev->slot != slot)
5227 			continue;
5228 		pci_dev_restore(dev);
5229 		if (dev->subordinate)
5230 			pci_bus_restore_locked(dev->subordinate);
5231 	}
5232 }
5233 
5234 static int pci_slot_reset(struct pci_slot *slot, int probe)
5235 {
5236 	int rc;
5237 
5238 	if (!slot || !pci_slot_resetable(slot))
5239 		return -ENOTTY;
5240 
5241 	if (!probe)
5242 		pci_slot_lock(slot);
5243 
5244 	might_sleep();
5245 
5246 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5247 
5248 	if (!probe)
5249 		pci_slot_unlock(slot);
5250 
5251 	return rc;
5252 }
5253 
5254 /**
5255  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5256  * @slot: PCI slot to probe
5257  *
5258  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5259  */
5260 int pci_probe_reset_slot(struct pci_slot *slot)
5261 {
5262 	return pci_slot_reset(slot, 1);
5263 }
5264 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5265 
5266 /**
5267  * __pci_reset_slot - Try to reset a PCI slot
5268  * @slot: PCI slot to reset
5269  *
5270  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5271  * independent of other slots.  For instance, some slots may support slot power
5272  * control.  In the case of a 1:1 bus to slot architecture, this function may
5273  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5274  * Generally a slot reset should be attempted before a bus reset.  All of the
5275  * function of the slot and any subordinate buses behind the slot are reset
5276  * through this function.  PCI config space of all devices in the slot and
5277  * behind the slot is saved before and restored after reset.
5278  *
5279  * Same as above except return -EAGAIN if the slot cannot be locked
5280  */
5281 static int __pci_reset_slot(struct pci_slot *slot)
5282 {
5283 	int rc;
5284 
5285 	rc = pci_slot_reset(slot, 1);
5286 	if (rc)
5287 		return rc;
5288 
5289 	if (pci_slot_trylock(slot)) {
5290 		pci_slot_save_and_disable_locked(slot);
5291 		might_sleep();
5292 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5293 		pci_slot_restore_locked(slot);
5294 		pci_slot_unlock(slot);
5295 	} else
5296 		rc = -EAGAIN;
5297 
5298 	return rc;
5299 }
5300 
5301 static int pci_bus_reset(struct pci_bus *bus, int probe)
5302 {
5303 	int ret;
5304 
5305 	if (!bus->self || !pci_bus_resetable(bus))
5306 		return -ENOTTY;
5307 
5308 	if (probe)
5309 		return 0;
5310 
5311 	pci_bus_lock(bus);
5312 
5313 	might_sleep();
5314 
5315 	ret = pci_bridge_secondary_bus_reset(bus->self);
5316 
5317 	pci_bus_unlock(bus);
5318 
5319 	return ret;
5320 }
5321 
5322 /**
5323  * pci_bus_error_reset - reset the bridge's subordinate bus
5324  * @bridge: The parent device that connects to the bus to reset
5325  *
5326  * This function will first try to reset the slots on this bus if the method is
5327  * available. If slot reset fails or is not available, this will fall back to a
5328  * secondary bus reset.
5329  */
5330 int pci_bus_error_reset(struct pci_dev *bridge)
5331 {
5332 	struct pci_bus *bus = bridge->subordinate;
5333 	struct pci_slot *slot;
5334 
5335 	if (!bus)
5336 		return -ENOTTY;
5337 
5338 	mutex_lock(&pci_slot_mutex);
5339 	if (list_empty(&bus->slots))
5340 		goto bus_reset;
5341 
5342 	list_for_each_entry(slot, &bus->slots, list)
5343 		if (pci_probe_reset_slot(slot))
5344 			goto bus_reset;
5345 
5346 	list_for_each_entry(slot, &bus->slots, list)
5347 		if (pci_slot_reset(slot, 0))
5348 			goto bus_reset;
5349 
5350 	mutex_unlock(&pci_slot_mutex);
5351 	return 0;
5352 bus_reset:
5353 	mutex_unlock(&pci_slot_mutex);
5354 	return pci_bus_reset(bridge->subordinate, 0);
5355 }
5356 
5357 /**
5358  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5359  * @bus: PCI bus to probe
5360  *
5361  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5362  */
5363 int pci_probe_reset_bus(struct pci_bus *bus)
5364 {
5365 	return pci_bus_reset(bus, 1);
5366 }
5367 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5368 
5369 /**
5370  * __pci_reset_bus - Try to reset a PCI bus
5371  * @bus: top level PCI bus to reset
5372  *
5373  * Same as above except return -EAGAIN if the bus cannot be locked
5374  */
5375 static int __pci_reset_bus(struct pci_bus *bus)
5376 {
5377 	int rc;
5378 
5379 	rc = pci_bus_reset(bus, 1);
5380 	if (rc)
5381 		return rc;
5382 
5383 	if (pci_bus_trylock(bus)) {
5384 		pci_bus_save_and_disable_locked(bus);
5385 		might_sleep();
5386 		rc = pci_bridge_secondary_bus_reset(bus->self);
5387 		pci_bus_restore_locked(bus);
5388 		pci_bus_unlock(bus);
5389 	} else
5390 		rc = -EAGAIN;
5391 
5392 	return rc;
5393 }
5394 
5395 /**
5396  * pci_reset_bus - Try to reset a PCI bus
5397  * @pdev: top level PCI device to reset via slot/bus
5398  *
5399  * Same as above except return -EAGAIN if the bus cannot be locked
5400  */
5401 int pci_reset_bus(struct pci_dev *pdev)
5402 {
5403 	return (!pci_probe_reset_slot(pdev->slot)) ?
5404 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5405 }
5406 EXPORT_SYMBOL_GPL(pci_reset_bus);
5407 
5408 /**
5409  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5410  * @dev: PCI device to query
5411  *
5412  * Returns mmrbc: maximum designed memory read count in bytes or
5413  * appropriate error value.
5414  */
5415 int pcix_get_max_mmrbc(struct pci_dev *dev)
5416 {
5417 	int cap;
5418 	u32 stat;
5419 
5420 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5421 	if (!cap)
5422 		return -EINVAL;
5423 
5424 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5425 		return -EINVAL;
5426 
5427 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5428 }
5429 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5430 
5431 /**
5432  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5433  * @dev: PCI device to query
5434  *
5435  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5436  * value.
5437  */
5438 int pcix_get_mmrbc(struct pci_dev *dev)
5439 {
5440 	int cap;
5441 	u16 cmd;
5442 
5443 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5444 	if (!cap)
5445 		return -EINVAL;
5446 
5447 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5448 		return -EINVAL;
5449 
5450 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5451 }
5452 EXPORT_SYMBOL(pcix_get_mmrbc);
5453 
5454 /**
5455  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5456  * @dev: PCI device to query
5457  * @mmrbc: maximum memory read count in bytes
5458  *    valid values are 512, 1024, 2048, 4096
5459  *
5460  * If possible sets maximum memory read byte count, some bridges have errata
5461  * that prevent this.
5462  */
5463 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5464 {
5465 	int cap;
5466 	u32 stat, v, o;
5467 	u16 cmd;
5468 
5469 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5470 		return -EINVAL;
5471 
5472 	v = ffs(mmrbc) - 10;
5473 
5474 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5475 	if (!cap)
5476 		return -EINVAL;
5477 
5478 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5479 		return -EINVAL;
5480 
5481 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5482 		return -E2BIG;
5483 
5484 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5485 		return -EINVAL;
5486 
5487 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5488 	if (o != v) {
5489 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5490 			return -EIO;
5491 
5492 		cmd &= ~PCI_X_CMD_MAX_READ;
5493 		cmd |= v << 2;
5494 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5495 			return -EIO;
5496 	}
5497 	return 0;
5498 }
5499 EXPORT_SYMBOL(pcix_set_mmrbc);
5500 
5501 /**
5502  * pcie_get_readrq - get PCI Express read request size
5503  * @dev: PCI device to query
5504  *
5505  * Returns maximum memory read request in bytes or appropriate error value.
5506  */
5507 int pcie_get_readrq(struct pci_dev *dev)
5508 {
5509 	u16 ctl;
5510 
5511 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5512 
5513 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5514 }
5515 EXPORT_SYMBOL(pcie_get_readrq);
5516 
5517 /**
5518  * pcie_set_readrq - set PCI Express maximum memory read request
5519  * @dev: PCI device to query
5520  * @rq: maximum memory read count in bytes
5521  *    valid values are 128, 256, 512, 1024, 2048, 4096
5522  *
5523  * If possible sets maximum memory read request in bytes
5524  */
5525 int pcie_set_readrq(struct pci_dev *dev, int rq)
5526 {
5527 	u16 v;
5528 
5529 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5530 		return -EINVAL;
5531 
5532 	/*
5533 	 * If using the "performance" PCIe config, we clamp the read rq
5534 	 * size to the max packet size to keep the host bridge from
5535 	 * generating requests larger than we can cope with.
5536 	 */
5537 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5538 		int mps = pcie_get_mps(dev);
5539 
5540 		if (mps < rq)
5541 			rq = mps;
5542 	}
5543 
5544 	v = (ffs(rq) - 8) << 12;
5545 
5546 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5547 						  PCI_EXP_DEVCTL_READRQ, v);
5548 }
5549 EXPORT_SYMBOL(pcie_set_readrq);
5550 
5551 /**
5552  * pcie_get_mps - get PCI Express maximum payload size
5553  * @dev: PCI device to query
5554  *
5555  * Returns maximum payload size in bytes
5556  */
5557 int pcie_get_mps(struct pci_dev *dev)
5558 {
5559 	u16 ctl;
5560 
5561 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5562 
5563 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5564 }
5565 EXPORT_SYMBOL(pcie_get_mps);
5566 
5567 /**
5568  * pcie_set_mps - set PCI Express maximum payload size
5569  * @dev: PCI device to query
5570  * @mps: maximum payload size in bytes
5571  *    valid values are 128, 256, 512, 1024, 2048, 4096
5572  *
5573  * If possible sets maximum payload size
5574  */
5575 int pcie_set_mps(struct pci_dev *dev, int mps)
5576 {
5577 	u16 v;
5578 
5579 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5580 		return -EINVAL;
5581 
5582 	v = ffs(mps) - 8;
5583 	if (v > dev->pcie_mpss)
5584 		return -EINVAL;
5585 	v <<= 5;
5586 
5587 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5588 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5589 }
5590 EXPORT_SYMBOL(pcie_set_mps);
5591 
5592 /**
5593  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5594  *			      device and its bandwidth limitation
5595  * @dev: PCI device to query
5596  * @limiting_dev: storage for device causing the bandwidth limitation
5597  * @speed: storage for speed of limiting device
5598  * @width: storage for width of limiting device
5599  *
5600  * Walk up the PCI device chain and find the point where the minimum
5601  * bandwidth is available.  Return the bandwidth available there and (if
5602  * limiting_dev, speed, and width pointers are supplied) information about
5603  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5604  * raw bandwidth.
5605  */
5606 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5607 			     enum pci_bus_speed *speed,
5608 			     enum pcie_link_width *width)
5609 {
5610 	u16 lnksta;
5611 	enum pci_bus_speed next_speed;
5612 	enum pcie_link_width next_width;
5613 	u32 bw, next_bw;
5614 
5615 	if (speed)
5616 		*speed = PCI_SPEED_UNKNOWN;
5617 	if (width)
5618 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5619 
5620 	bw = 0;
5621 
5622 	while (dev) {
5623 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5624 
5625 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5626 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5627 			PCI_EXP_LNKSTA_NLW_SHIFT;
5628 
5629 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5630 
5631 		/* Check if current device limits the total bandwidth */
5632 		if (!bw || next_bw <= bw) {
5633 			bw = next_bw;
5634 
5635 			if (limiting_dev)
5636 				*limiting_dev = dev;
5637 			if (speed)
5638 				*speed = next_speed;
5639 			if (width)
5640 				*width = next_width;
5641 		}
5642 
5643 		dev = pci_upstream_bridge(dev);
5644 	}
5645 
5646 	return bw;
5647 }
5648 EXPORT_SYMBOL(pcie_bandwidth_available);
5649 
5650 /**
5651  * pcie_get_speed_cap - query for the PCI device's link speed capability
5652  * @dev: PCI device to query
5653  *
5654  * Query the PCI device speed capability.  Return the maximum link speed
5655  * supported by the device.
5656  */
5657 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5658 {
5659 	u32 lnkcap2, lnkcap;
5660 
5661 	/*
5662 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5663 	 * implementation note there recommends using the Supported Link
5664 	 * Speeds Vector in Link Capabilities 2 when supported.
5665 	 *
5666 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5667 	 * should use the Supported Link Speeds field in Link Capabilities,
5668 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5669 	 */
5670 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5671 	if (lnkcap2) { /* PCIe r3.0-compliant */
5672 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5673 			return PCIE_SPEED_16_0GT;
5674 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5675 			return PCIE_SPEED_8_0GT;
5676 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5677 			return PCIE_SPEED_5_0GT;
5678 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5679 			return PCIE_SPEED_2_5GT;
5680 		return PCI_SPEED_UNKNOWN;
5681 	}
5682 
5683 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5684 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5685 		return PCIE_SPEED_5_0GT;
5686 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5687 		return PCIE_SPEED_2_5GT;
5688 
5689 	return PCI_SPEED_UNKNOWN;
5690 }
5691 EXPORT_SYMBOL(pcie_get_speed_cap);
5692 
5693 /**
5694  * pcie_get_width_cap - query for the PCI device's link width capability
5695  * @dev: PCI device to query
5696  *
5697  * Query the PCI device width capability.  Return the maximum link width
5698  * supported by the device.
5699  */
5700 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5701 {
5702 	u32 lnkcap;
5703 
5704 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5705 	if (lnkcap)
5706 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5707 
5708 	return PCIE_LNK_WIDTH_UNKNOWN;
5709 }
5710 EXPORT_SYMBOL(pcie_get_width_cap);
5711 
5712 /**
5713  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5714  * @dev: PCI device
5715  * @speed: storage for link speed
5716  * @width: storage for link width
5717  *
5718  * Calculate a PCI device's link bandwidth by querying for its link speed
5719  * and width, multiplying them, and applying encoding overhead.  The result
5720  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5721  */
5722 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5723 			   enum pcie_link_width *width)
5724 {
5725 	*speed = pcie_get_speed_cap(dev);
5726 	*width = pcie_get_width_cap(dev);
5727 
5728 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5729 		return 0;
5730 
5731 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5732 }
5733 
5734 /**
5735  * __pcie_print_link_status - Report the PCI device's link speed and width
5736  * @dev: PCI device to query
5737  * @verbose: Print info even when enough bandwidth is available
5738  *
5739  * If the available bandwidth at the device is less than the device is
5740  * capable of, report the device's maximum possible bandwidth and the
5741  * upstream link that limits its performance.  If @verbose, always print
5742  * the available bandwidth, even if the device isn't constrained.
5743  */
5744 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5745 {
5746 	enum pcie_link_width width, width_cap;
5747 	enum pci_bus_speed speed, speed_cap;
5748 	struct pci_dev *limiting_dev = NULL;
5749 	u32 bw_avail, bw_cap;
5750 
5751 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5752 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5753 
5754 	if (bw_avail >= bw_cap && verbose)
5755 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5756 			 bw_cap / 1000, bw_cap % 1000,
5757 			 PCIE_SPEED2STR(speed_cap), width_cap);
5758 	else if (bw_avail < bw_cap)
5759 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5760 			 bw_avail / 1000, bw_avail % 1000,
5761 			 PCIE_SPEED2STR(speed), width,
5762 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5763 			 bw_cap / 1000, bw_cap % 1000,
5764 			 PCIE_SPEED2STR(speed_cap), width_cap);
5765 }
5766 
5767 /**
5768  * pcie_print_link_status - Report the PCI device's link speed and width
5769  * @dev: PCI device to query
5770  *
5771  * Report the available bandwidth at the device.
5772  */
5773 void pcie_print_link_status(struct pci_dev *dev)
5774 {
5775 	__pcie_print_link_status(dev, true);
5776 }
5777 EXPORT_SYMBOL(pcie_print_link_status);
5778 
5779 /**
5780  * pci_select_bars - Make BAR mask from the type of resource
5781  * @dev: the PCI device for which BAR mask is made
5782  * @flags: resource type mask to be selected
5783  *
5784  * This helper routine makes bar mask from the type of resource.
5785  */
5786 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5787 {
5788 	int i, bars = 0;
5789 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5790 		if (pci_resource_flags(dev, i) & flags)
5791 			bars |= (1 << i);
5792 	return bars;
5793 }
5794 EXPORT_SYMBOL(pci_select_bars);
5795 
5796 /* Some architectures require additional programming to enable VGA */
5797 static arch_set_vga_state_t arch_set_vga_state;
5798 
5799 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5800 {
5801 	arch_set_vga_state = func;	/* NULL disables */
5802 }
5803 
5804 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5805 				  unsigned int command_bits, u32 flags)
5806 {
5807 	if (arch_set_vga_state)
5808 		return arch_set_vga_state(dev, decode, command_bits,
5809 						flags);
5810 	return 0;
5811 }
5812 
5813 /**
5814  * pci_set_vga_state - set VGA decode state on device and parents if requested
5815  * @dev: the PCI device
5816  * @decode: true = enable decoding, false = disable decoding
5817  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5818  * @flags: traverse ancestors and change bridges
5819  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5820  */
5821 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5822 		      unsigned int command_bits, u32 flags)
5823 {
5824 	struct pci_bus *bus;
5825 	struct pci_dev *bridge;
5826 	u16 cmd;
5827 	int rc;
5828 
5829 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5830 
5831 	/* ARCH specific VGA enables */
5832 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5833 	if (rc)
5834 		return rc;
5835 
5836 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5837 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5838 		if (decode == true)
5839 			cmd |= command_bits;
5840 		else
5841 			cmd &= ~command_bits;
5842 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5843 	}
5844 
5845 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5846 		return 0;
5847 
5848 	bus = dev->bus;
5849 	while (bus) {
5850 		bridge = bus->self;
5851 		if (bridge) {
5852 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5853 					     &cmd);
5854 			if (decode == true)
5855 				cmd |= PCI_BRIDGE_CTL_VGA;
5856 			else
5857 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5858 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5859 					      cmd);
5860 		}
5861 		bus = bus->parent;
5862 	}
5863 	return 0;
5864 }
5865 
5866 /**
5867  * pci_add_dma_alias - Add a DMA devfn alias for a device
5868  * @dev: the PCI device for which alias is added
5869  * @devfn: alias slot and function
5870  *
5871  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5872  * which is used to program permissible bus-devfn source addresses for DMA
5873  * requests in an IOMMU.  These aliases factor into IOMMU group creation
5874  * and are useful for devices generating DMA requests beyond or different
5875  * from their logical bus-devfn.  Examples include device quirks where the
5876  * device simply uses the wrong devfn, as well as non-transparent bridges
5877  * where the alias may be a proxy for devices in another domain.
5878  *
5879  * IOMMU group creation is performed during device discovery or addition,
5880  * prior to any potential DMA mapping and therefore prior to driver probing
5881  * (especially for userspace assigned devices where IOMMU group definition
5882  * cannot be left as a userspace activity).  DMA aliases should therefore
5883  * be configured via quirks, such as the PCI fixup header quirk.
5884  */
5885 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5886 {
5887 	if (!dev->dma_alias_mask)
5888 		dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
5889 	if (!dev->dma_alias_mask) {
5890 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5891 		return;
5892 	}
5893 
5894 	set_bit(devfn, dev->dma_alias_mask);
5895 	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5896 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5897 }
5898 
5899 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5900 {
5901 	return (dev1->dma_alias_mask &&
5902 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5903 	       (dev2->dma_alias_mask &&
5904 		test_bit(dev1->devfn, dev2->dma_alias_mask));
5905 }
5906 
5907 bool pci_device_is_present(struct pci_dev *pdev)
5908 {
5909 	u32 v;
5910 
5911 	if (pci_dev_is_disconnected(pdev))
5912 		return false;
5913 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5914 }
5915 EXPORT_SYMBOL_GPL(pci_device_is_present);
5916 
5917 void pci_ignore_hotplug(struct pci_dev *dev)
5918 {
5919 	struct pci_dev *bridge = dev->bus->self;
5920 
5921 	dev->ignore_hotplug = 1;
5922 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5923 	if (bridge)
5924 		bridge->ignore_hotplug = 1;
5925 }
5926 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5927 
5928 resource_size_t __weak pcibios_default_alignment(void)
5929 {
5930 	return 0;
5931 }
5932 
5933 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5934 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5935 static DEFINE_SPINLOCK(resource_alignment_lock);
5936 
5937 /**
5938  * pci_specified_resource_alignment - get resource alignment specified by user.
5939  * @dev: the PCI device to get
5940  * @resize: whether or not to change resources' size when reassigning alignment
5941  *
5942  * RETURNS: Resource alignment if it is specified.
5943  *          Zero if it is not specified.
5944  */
5945 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5946 							bool *resize)
5947 {
5948 	int align_order, count;
5949 	resource_size_t align = pcibios_default_alignment();
5950 	const char *p;
5951 	int ret;
5952 
5953 	spin_lock(&resource_alignment_lock);
5954 	p = resource_alignment_param;
5955 	if (!*p && !align)
5956 		goto out;
5957 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5958 		align = 0;
5959 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5960 		goto out;
5961 	}
5962 
5963 	while (*p) {
5964 		count = 0;
5965 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5966 							p[count] == '@') {
5967 			p += count + 1;
5968 		} else {
5969 			align_order = -1;
5970 		}
5971 
5972 		ret = pci_dev_str_match(dev, p, &p);
5973 		if (ret == 1) {
5974 			*resize = true;
5975 			if (align_order == -1)
5976 				align = PAGE_SIZE;
5977 			else
5978 				align = 1 << align_order;
5979 			break;
5980 		} else if (ret < 0) {
5981 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5982 			       p);
5983 			break;
5984 		}
5985 
5986 		if (*p != ';' && *p != ',') {
5987 			/* End of param or invalid format */
5988 			break;
5989 		}
5990 		p++;
5991 	}
5992 out:
5993 	spin_unlock(&resource_alignment_lock);
5994 	return align;
5995 }
5996 
5997 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5998 					   resource_size_t align, bool resize)
5999 {
6000 	struct resource *r = &dev->resource[bar];
6001 	resource_size_t size;
6002 
6003 	if (!(r->flags & IORESOURCE_MEM))
6004 		return;
6005 
6006 	if (r->flags & IORESOURCE_PCI_FIXED) {
6007 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6008 			 bar, r, (unsigned long long)align);
6009 		return;
6010 	}
6011 
6012 	size = resource_size(r);
6013 	if (size >= align)
6014 		return;
6015 
6016 	/*
6017 	 * Increase the alignment of the resource.  There are two ways we
6018 	 * can do this:
6019 	 *
6020 	 * 1) Increase the size of the resource.  BARs are aligned on their
6021 	 *    size, so when we reallocate space for this resource, we'll
6022 	 *    allocate it with the larger alignment.  This also prevents
6023 	 *    assignment of any other BARs inside the alignment region, so
6024 	 *    if we're requesting page alignment, this means no other BARs
6025 	 *    will share the page.
6026 	 *
6027 	 *    The disadvantage is that this makes the resource larger than
6028 	 *    the hardware BAR, which may break drivers that compute things
6029 	 *    based on the resource size, e.g., to find registers at a
6030 	 *    fixed offset before the end of the BAR.
6031 	 *
6032 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6033 	 *    set r->start to the desired alignment.  By itself this
6034 	 *    doesn't prevent other BARs being put inside the alignment
6035 	 *    region, but if we realign *every* resource of every device in
6036 	 *    the system, none of them will share an alignment region.
6037 	 *
6038 	 * When the user has requested alignment for only some devices via
6039 	 * the "pci=resource_alignment" argument, "resize" is true and we
6040 	 * use the first method.  Otherwise we assume we're aligning all
6041 	 * devices and we use the second.
6042 	 */
6043 
6044 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6045 		 bar, r, (unsigned long long)align);
6046 
6047 	if (resize) {
6048 		r->start = 0;
6049 		r->end = align - 1;
6050 	} else {
6051 		r->flags &= ~IORESOURCE_SIZEALIGN;
6052 		r->flags |= IORESOURCE_STARTALIGN;
6053 		r->start = align;
6054 		r->end = r->start + size - 1;
6055 	}
6056 	r->flags |= IORESOURCE_UNSET;
6057 }
6058 
6059 /*
6060  * This function disables memory decoding and releases memory resources
6061  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6062  * It also rounds up size to specified alignment.
6063  * Later on, the kernel will assign page-aligned memory resource back
6064  * to the device.
6065  */
6066 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6067 {
6068 	int i;
6069 	struct resource *r;
6070 	resource_size_t align;
6071 	u16 command;
6072 	bool resize = false;
6073 
6074 	/*
6075 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6076 	 * 3.4.1.11.  Their resources are allocated from the space
6077 	 * described by the VF BARx register in the PF's SR-IOV capability.
6078 	 * We can't influence their alignment here.
6079 	 */
6080 	if (dev->is_virtfn)
6081 		return;
6082 
6083 	/* check if specified PCI is target device to reassign */
6084 	align = pci_specified_resource_alignment(dev, &resize);
6085 	if (!align)
6086 		return;
6087 
6088 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6089 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6090 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6091 		return;
6092 	}
6093 
6094 	pci_read_config_word(dev, PCI_COMMAND, &command);
6095 	command &= ~PCI_COMMAND_MEMORY;
6096 	pci_write_config_word(dev, PCI_COMMAND, command);
6097 
6098 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6099 		pci_request_resource_alignment(dev, i, align, resize);
6100 
6101 	/*
6102 	 * Need to disable bridge's resource window,
6103 	 * to enable the kernel to reassign new resource
6104 	 * window later on.
6105 	 */
6106 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6107 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6108 			r = &dev->resource[i];
6109 			if (!(r->flags & IORESOURCE_MEM))
6110 				continue;
6111 			r->flags |= IORESOURCE_UNSET;
6112 			r->end = resource_size(r) - 1;
6113 			r->start = 0;
6114 		}
6115 		pci_disable_bridge_window(dev);
6116 	}
6117 }
6118 
6119 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
6120 {
6121 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
6122 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
6123 	spin_lock(&resource_alignment_lock);
6124 	strncpy(resource_alignment_param, buf, count);
6125 	resource_alignment_param[count] = '\0';
6126 	spin_unlock(&resource_alignment_lock);
6127 	return count;
6128 }
6129 
6130 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
6131 {
6132 	size_t count;
6133 	spin_lock(&resource_alignment_lock);
6134 	count = snprintf(buf, size, "%s", resource_alignment_param);
6135 	spin_unlock(&resource_alignment_lock);
6136 	return count;
6137 }
6138 
6139 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6140 {
6141 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
6142 }
6143 
6144 static ssize_t resource_alignment_store(struct bus_type *bus,
6145 					const char *buf, size_t count)
6146 {
6147 	return pci_set_resource_alignment_param(buf, count);
6148 }
6149 
6150 static BUS_ATTR_RW(resource_alignment);
6151 
6152 static int __init pci_resource_alignment_sysfs_init(void)
6153 {
6154 	return bus_create_file(&pci_bus_type,
6155 					&bus_attr_resource_alignment);
6156 }
6157 late_initcall(pci_resource_alignment_sysfs_init);
6158 
6159 static void pci_no_domains(void)
6160 {
6161 #ifdef CONFIG_PCI_DOMAINS
6162 	pci_domains_supported = 0;
6163 #endif
6164 }
6165 
6166 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6167 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6168 
6169 static int pci_get_new_domain_nr(void)
6170 {
6171 	return atomic_inc_return(&__domain_nr);
6172 }
6173 
6174 static int of_pci_bus_find_domain_nr(struct device *parent)
6175 {
6176 	static int use_dt_domains = -1;
6177 	int domain = -1;
6178 
6179 	if (parent)
6180 		domain = of_get_pci_domain_nr(parent->of_node);
6181 
6182 	/*
6183 	 * Check DT domain and use_dt_domains values.
6184 	 *
6185 	 * If DT domain property is valid (domain >= 0) and
6186 	 * use_dt_domains != 0, the DT assignment is valid since this means
6187 	 * we have not previously allocated a domain number by using
6188 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6189 	 * 1, to indicate that we have just assigned a domain number from
6190 	 * DT.
6191 	 *
6192 	 * If DT domain property value is not valid (ie domain < 0), and we
6193 	 * have not previously assigned a domain number from DT
6194 	 * (use_dt_domains != 1) we should assign a domain number by
6195 	 * using the:
6196 	 *
6197 	 * pci_get_new_domain_nr()
6198 	 *
6199 	 * API and update the use_dt_domains value to keep track of method we
6200 	 * are using to assign domain numbers (use_dt_domains = 0).
6201 	 *
6202 	 * All other combinations imply we have a platform that is trying
6203 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6204 	 * which is a recipe for domain mishandling and it is prevented by
6205 	 * invalidating the domain value (domain = -1) and printing a
6206 	 * corresponding error.
6207 	 */
6208 	if (domain >= 0 && use_dt_domains) {
6209 		use_dt_domains = 1;
6210 	} else if (domain < 0 && use_dt_domains != 1) {
6211 		use_dt_domains = 0;
6212 		domain = pci_get_new_domain_nr();
6213 	} else {
6214 		if (parent)
6215 			pr_err("Node %pOF has ", parent->of_node);
6216 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6217 		domain = -1;
6218 	}
6219 
6220 	return domain;
6221 }
6222 
6223 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6224 {
6225 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6226 			       acpi_pci_bus_find_domain_nr(bus);
6227 }
6228 #endif
6229 
6230 /**
6231  * pci_ext_cfg_avail - can we access extended PCI config space?
6232  *
6233  * Returns 1 if we can access PCI extended config space (offsets
6234  * greater than 0xff). This is the default implementation. Architecture
6235  * implementations can override this.
6236  */
6237 int __weak pci_ext_cfg_avail(void)
6238 {
6239 	return 1;
6240 }
6241 
6242 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6243 {
6244 }
6245 EXPORT_SYMBOL(pci_fixup_cardbus);
6246 
6247 static int __init pci_setup(char *str)
6248 {
6249 	while (str) {
6250 		char *k = strchr(str, ',');
6251 		if (k)
6252 			*k++ = 0;
6253 		if (*str && (str = pcibios_setup(str)) && *str) {
6254 			if (!strcmp(str, "nomsi")) {
6255 				pci_no_msi();
6256 			} else if (!strncmp(str, "noats", 5)) {
6257 				pr_info("PCIe: ATS is disabled\n");
6258 				pcie_ats_disabled = true;
6259 			} else if (!strcmp(str, "noaer")) {
6260 				pci_no_aer();
6261 			} else if (!strcmp(str, "earlydump")) {
6262 				pci_early_dump = true;
6263 			} else if (!strncmp(str, "realloc=", 8)) {
6264 				pci_realloc_get_opt(str + 8);
6265 			} else if (!strncmp(str, "realloc", 7)) {
6266 				pci_realloc_get_opt("on");
6267 			} else if (!strcmp(str, "nodomains")) {
6268 				pci_no_domains();
6269 			} else if (!strncmp(str, "noari", 5)) {
6270 				pcie_ari_disabled = true;
6271 			} else if (!strncmp(str, "cbiosize=", 9)) {
6272 				pci_cardbus_io_size = memparse(str + 9, &str);
6273 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6274 				pci_cardbus_mem_size = memparse(str + 10, &str);
6275 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6276 				pci_set_resource_alignment_param(str + 19,
6277 							strlen(str + 19));
6278 			} else if (!strncmp(str, "ecrc=", 5)) {
6279 				pcie_ecrc_get_policy(str + 5);
6280 			} else if (!strncmp(str, "hpiosize=", 9)) {
6281 				pci_hotplug_io_size = memparse(str + 9, &str);
6282 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6283 				pci_hotplug_mem_size = memparse(str + 10, &str);
6284 			} else if (!strncmp(str, "hpbussize=", 10)) {
6285 				pci_hotplug_bus_size =
6286 					simple_strtoul(str + 10, &str, 0);
6287 				if (pci_hotplug_bus_size > 0xff)
6288 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6289 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6290 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6291 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6292 				pcie_bus_config = PCIE_BUS_SAFE;
6293 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6294 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6295 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6296 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6297 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6298 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6299 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6300 				disable_acs_redir_param = str + 18;
6301 			} else {
6302 				pr_err("PCI: Unknown option `%s'\n", str);
6303 			}
6304 		}
6305 		str = k;
6306 	}
6307 	return 0;
6308 }
6309 early_param("pci", pci_setup);
6310 
6311 /*
6312  * 'disable_acs_redir_param' is initialized in pci_setup(), above, to point
6313  * to data in the __initdata section which will be freed after the init
6314  * sequence is complete. We can't allocate memory in pci_setup() because some
6315  * architectures do not have any memory allocation service available during
6316  * an early_param() call. So we allocate memory and copy the variable here
6317  * before the init section is freed.
6318  */
6319 static int __init pci_realloc_setup_params(void)
6320 {
6321 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6322 
6323 	return 0;
6324 }
6325 pure_initcall(pci_realloc_setup_params);
6326