xref: /linux/drivers/pci/pci.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/of.h>
14 #include <linux/of_pci.h>
15 #include <linux/pci.h>
16 #include <linux/pm.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/log2.h>
22 #include <linux/pci-aspm.h>
23 #include <linux/pm_wakeup.h>
24 #include <linux/interrupt.h>
25 #include <linux/device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pci_hotplug.h>
28 #include <asm-generic/pci-bridge.h>
29 #include <asm/setup.h>
30 #include "pci.h"
31 
32 const char *pci_power_names[] = {
33 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
34 };
35 EXPORT_SYMBOL_GPL(pci_power_names);
36 
37 int isa_dma_bridge_buggy;
38 EXPORT_SYMBOL(isa_dma_bridge_buggy);
39 
40 int pci_pci_problems;
41 EXPORT_SYMBOL(pci_pci_problems);
42 
43 unsigned int pci_pm_d3_delay;
44 
45 static void pci_pme_list_scan(struct work_struct *work);
46 
47 static LIST_HEAD(pci_pme_list);
48 static DEFINE_MUTEX(pci_pme_list_mutex);
49 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
50 
51 struct pci_pme_device {
52 	struct list_head list;
53 	struct pci_dev *dev;
54 };
55 
56 #define PME_TIMEOUT 1000 /* How long between PME checks */
57 
58 static void pci_dev_d3_sleep(struct pci_dev *dev)
59 {
60 	unsigned int delay = dev->d3_delay;
61 
62 	if (delay < pci_pm_d3_delay)
63 		delay = pci_pm_d3_delay;
64 
65 	msleep(delay);
66 }
67 
68 #ifdef CONFIG_PCI_DOMAINS
69 int pci_domains_supported = 1;
70 #endif
71 
72 #define DEFAULT_CARDBUS_IO_SIZE		(256)
73 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
74 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
75 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
76 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
77 
78 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
79 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
80 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
81 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
82 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
83 
84 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
85 
86 /*
87  * The default CLS is used if arch didn't set CLS explicitly and not
88  * all pci devices agree on the same value.  Arch can override either
89  * the dfl or actual value as it sees fit.  Don't forget this is
90  * measured in 32-bit words, not bytes.
91  */
92 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
93 u8 pci_cache_line_size;
94 
95 /*
96  * If we set up a device for bus mastering, we need to check the latency
97  * timer as certain BIOSes forget to set it properly.
98  */
99 unsigned int pcibios_max_latency = 255;
100 
101 /* If set, the PCIe ARI capability will not be used. */
102 static bool pcie_ari_disabled;
103 
104 /**
105  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
106  * @bus: pointer to PCI bus structure to search
107  *
108  * Given a PCI bus, returns the highest PCI bus number present in the set
109  * including the given PCI bus and its list of child PCI buses.
110  */
111 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
112 {
113 	struct pci_bus *tmp;
114 	unsigned char max, n;
115 
116 	max = bus->busn_res.end;
117 	list_for_each_entry(tmp, &bus->children, node) {
118 		n = pci_bus_max_busnr(tmp);
119 		if (n > max)
120 			max = n;
121 	}
122 	return max;
123 }
124 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
125 
126 #ifdef CONFIG_HAS_IOMEM
127 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
128 {
129 	/*
130 	 * Make sure the BAR is actually a memory resource, not an IO resource
131 	 */
132 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
133 		WARN_ON(1);
134 		return NULL;
135 	}
136 	return ioremap_nocache(pci_resource_start(pdev, bar),
137 				     pci_resource_len(pdev, bar));
138 }
139 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
140 #endif
141 
142 #define PCI_FIND_CAP_TTL	48
143 
144 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
145 				   u8 pos, int cap, int *ttl)
146 {
147 	u8 id;
148 
149 	while ((*ttl)--) {
150 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
151 		if (pos < 0x40)
152 			break;
153 		pos &= ~3;
154 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
155 					 &id);
156 		if (id == 0xff)
157 			break;
158 		if (id == cap)
159 			return pos;
160 		pos += PCI_CAP_LIST_NEXT;
161 	}
162 	return 0;
163 }
164 
165 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
166 			       u8 pos, int cap)
167 {
168 	int ttl = PCI_FIND_CAP_TTL;
169 
170 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
171 }
172 
173 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
174 {
175 	return __pci_find_next_cap(dev->bus, dev->devfn,
176 				   pos + PCI_CAP_LIST_NEXT, cap);
177 }
178 EXPORT_SYMBOL_GPL(pci_find_next_capability);
179 
180 static int __pci_bus_find_cap_start(struct pci_bus *bus,
181 				    unsigned int devfn, u8 hdr_type)
182 {
183 	u16 status;
184 
185 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
186 	if (!(status & PCI_STATUS_CAP_LIST))
187 		return 0;
188 
189 	switch (hdr_type) {
190 	case PCI_HEADER_TYPE_NORMAL:
191 	case PCI_HEADER_TYPE_BRIDGE:
192 		return PCI_CAPABILITY_LIST;
193 	case PCI_HEADER_TYPE_CARDBUS:
194 		return PCI_CB_CAPABILITY_LIST;
195 	default:
196 		return 0;
197 	}
198 
199 	return 0;
200 }
201 
202 /**
203  * pci_find_capability - query for devices' capabilities
204  * @dev: PCI device to query
205  * @cap: capability code
206  *
207  * Tell if a device supports a given PCI capability.
208  * Returns the address of the requested capability structure within the
209  * device's PCI configuration space or 0 in case the device does not
210  * support it.  Possible values for @cap:
211  *
212  *  %PCI_CAP_ID_PM           Power Management
213  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
214  *  %PCI_CAP_ID_VPD          Vital Product Data
215  *  %PCI_CAP_ID_SLOTID       Slot Identification
216  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
217  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
218  *  %PCI_CAP_ID_PCIX         PCI-X
219  *  %PCI_CAP_ID_EXP          PCI Express
220  */
221 int pci_find_capability(struct pci_dev *dev, int cap)
222 {
223 	int pos;
224 
225 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
226 	if (pos)
227 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
228 
229 	return pos;
230 }
231 EXPORT_SYMBOL(pci_find_capability);
232 
233 /**
234  * pci_bus_find_capability - query for devices' capabilities
235  * @bus:   the PCI bus to query
236  * @devfn: PCI device to query
237  * @cap:   capability code
238  *
239  * Like pci_find_capability() but works for pci devices that do not have a
240  * pci_dev structure set up yet.
241  *
242  * Returns the address of the requested capability structure within the
243  * device's PCI configuration space or 0 in case the device does not
244  * support it.
245  */
246 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
247 {
248 	int pos;
249 	u8 hdr_type;
250 
251 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
252 
253 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
254 	if (pos)
255 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
256 
257 	return pos;
258 }
259 EXPORT_SYMBOL(pci_bus_find_capability);
260 
261 /**
262  * pci_find_next_ext_capability - Find an extended capability
263  * @dev: PCI device to query
264  * @start: address at which to start looking (0 to start at beginning of list)
265  * @cap: capability code
266  *
267  * Returns the address of the next matching extended capability structure
268  * within the device's PCI configuration space or 0 if the device does
269  * not support it.  Some capabilities can occur several times, e.g., the
270  * vendor-specific capability, and this provides a way to find them all.
271  */
272 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
273 {
274 	u32 header;
275 	int ttl;
276 	int pos = PCI_CFG_SPACE_SIZE;
277 
278 	/* minimum 8 bytes per capability */
279 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
280 
281 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
282 		return 0;
283 
284 	if (start)
285 		pos = start;
286 
287 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
288 		return 0;
289 
290 	/*
291 	 * If we have no capabilities, this is indicated by cap ID,
292 	 * cap version and next pointer all being 0.
293 	 */
294 	if (header == 0)
295 		return 0;
296 
297 	while (ttl-- > 0) {
298 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
299 			return pos;
300 
301 		pos = PCI_EXT_CAP_NEXT(header);
302 		if (pos < PCI_CFG_SPACE_SIZE)
303 			break;
304 
305 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
306 			break;
307 	}
308 
309 	return 0;
310 }
311 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
312 
313 /**
314  * pci_find_ext_capability - Find an extended capability
315  * @dev: PCI device to query
316  * @cap: capability code
317  *
318  * Returns the address of the requested extended capability structure
319  * within the device's PCI configuration space or 0 if the device does
320  * not support it.  Possible values for @cap:
321  *
322  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
323  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
324  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
325  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
326  */
327 int pci_find_ext_capability(struct pci_dev *dev, int cap)
328 {
329 	return pci_find_next_ext_capability(dev, 0, cap);
330 }
331 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
332 
333 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
334 {
335 	int rc, ttl = PCI_FIND_CAP_TTL;
336 	u8 cap, mask;
337 
338 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
339 		mask = HT_3BIT_CAP_MASK;
340 	else
341 		mask = HT_5BIT_CAP_MASK;
342 
343 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
344 				      PCI_CAP_ID_HT, &ttl);
345 	while (pos) {
346 		rc = pci_read_config_byte(dev, pos + 3, &cap);
347 		if (rc != PCIBIOS_SUCCESSFUL)
348 			return 0;
349 
350 		if ((cap & mask) == ht_cap)
351 			return pos;
352 
353 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
354 					      pos + PCI_CAP_LIST_NEXT,
355 					      PCI_CAP_ID_HT, &ttl);
356 	}
357 
358 	return 0;
359 }
360 /**
361  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
362  * @dev: PCI device to query
363  * @pos: Position from which to continue searching
364  * @ht_cap: Hypertransport capability code
365  *
366  * To be used in conjunction with pci_find_ht_capability() to search for
367  * all capabilities matching @ht_cap. @pos should always be a value returned
368  * from pci_find_ht_capability().
369  *
370  * NB. To be 100% safe against broken PCI devices, the caller should take
371  * steps to avoid an infinite loop.
372  */
373 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
374 {
375 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
376 }
377 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
378 
379 /**
380  * pci_find_ht_capability - query a device's Hypertransport capabilities
381  * @dev: PCI device to query
382  * @ht_cap: Hypertransport capability code
383  *
384  * Tell if a device supports a given Hypertransport capability.
385  * Returns an address within the device's PCI configuration space
386  * or 0 in case the device does not support the request capability.
387  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
388  * which has a Hypertransport capability matching @ht_cap.
389  */
390 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
391 {
392 	int pos;
393 
394 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
395 	if (pos)
396 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
397 
398 	return pos;
399 }
400 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
401 
402 /**
403  * pci_find_parent_resource - return resource region of parent bus of given region
404  * @dev: PCI device structure contains resources to be searched
405  * @res: child resource record for which parent is sought
406  *
407  *  For given resource region of given device, return the resource
408  *  region of parent bus the given region is contained in.
409  */
410 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
411 					  struct resource *res)
412 {
413 	const struct pci_bus *bus = dev->bus;
414 	struct resource *r;
415 	int i;
416 
417 	pci_bus_for_each_resource(bus, r, i) {
418 		if (!r)
419 			continue;
420 		if (res->start && resource_contains(r, res)) {
421 
422 			/*
423 			 * If the window is prefetchable but the BAR is
424 			 * not, the allocator made a mistake.
425 			 */
426 			if (r->flags & IORESOURCE_PREFETCH &&
427 			    !(res->flags & IORESOURCE_PREFETCH))
428 				return NULL;
429 
430 			/*
431 			 * If we're below a transparent bridge, there may
432 			 * be both a positively-decoded aperture and a
433 			 * subtractively-decoded region that contain the BAR.
434 			 * We want the positively-decoded one, so this depends
435 			 * on pci_bus_for_each_resource() giving us those
436 			 * first.
437 			 */
438 			return r;
439 		}
440 	}
441 	return NULL;
442 }
443 EXPORT_SYMBOL(pci_find_parent_resource);
444 
445 /**
446  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
447  * @dev: the PCI device to operate on
448  * @pos: config space offset of status word
449  * @mask: mask of bit(s) to care about in status word
450  *
451  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
452  */
453 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
454 {
455 	int i;
456 
457 	/* Wait for Transaction Pending bit clean */
458 	for (i = 0; i < 4; i++) {
459 		u16 status;
460 		if (i)
461 			msleep((1 << (i - 1)) * 100);
462 
463 		pci_read_config_word(dev, pos, &status);
464 		if (!(status & mask))
465 			return 1;
466 	}
467 
468 	return 0;
469 }
470 
471 /**
472  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
473  * @dev: PCI device to have its BARs restored
474  *
475  * Restore the BAR values for a given device, so as to make it
476  * accessible by its driver.
477  */
478 static void pci_restore_bars(struct pci_dev *dev)
479 {
480 	int i;
481 
482 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
483 		pci_update_resource(dev, i);
484 }
485 
486 static struct pci_platform_pm_ops *pci_platform_pm;
487 
488 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
489 {
490 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
491 	    || !ops->sleep_wake)
492 		return -EINVAL;
493 	pci_platform_pm = ops;
494 	return 0;
495 }
496 
497 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
498 {
499 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
500 }
501 
502 static inline int platform_pci_set_power_state(struct pci_dev *dev,
503 					       pci_power_t t)
504 {
505 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
506 }
507 
508 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
509 {
510 	return pci_platform_pm ?
511 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
512 }
513 
514 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
515 {
516 	return pci_platform_pm ?
517 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
518 }
519 
520 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
521 {
522 	return pci_platform_pm ?
523 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
524 }
525 
526 static inline bool platform_pci_need_resume(struct pci_dev *dev)
527 {
528 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
529 }
530 
531 /**
532  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
533  *                           given PCI device
534  * @dev: PCI device to handle.
535  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
536  *
537  * RETURN VALUE:
538  * -EINVAL if the requested state is invalid.
539  * -EIO if device does not support PCI PM or its PM capabilities register has a
540  * wrong version, or device doesn't support the requested state.
541  * 0 if device already is in the requested state.
542  * 0 if device's power state has been successfully changed.
543  */
544 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
545 {
546 	u16 pmcsr;
547 	bool need_restore = false;
548 
549 	/* Check if we're already there */
550 	if (dev->current_state == state)
551 		return 0;
552 
553 	if (!dev->pm_cap)
554 		return -EIO;
555 
556 	if (state < PCI_D0 || state > PCI_D3hot)
557 		return -EINVAL;
558 
559 	/* Validate current state:
560 	 * Can enter D0 from any state, but if we can only go deeper
561 	 * to sleep if we're already in a low power state
562 	 */
563 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
564 	    && dev->current_state > state) {
565 		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
566 			dev->current_state, state);
567 		return -EINVAL;
568 	}
569 
570 	/* check if this device supports the desired state */
571 	if ((state == PCI_D1 && !dev->d1_support)
572 	   || (state == PCI_D2 && !dev->d2_support))
573 		return -EIO;
574 
575 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
576 
577 	/* If we're (effectively) in D3, force entire word to 0.
578 	 * This doesn't affect PME_Status, disables PME_En, and
579 	 * sets PowerState to 0.
580 	 */
581 	switch (dev->current_state) {
582 	case PCI_D0:
583 	case PCI_D1:
584 	case PCI_D2:
585 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
586 		pmcsr |= state;
587 		break;
588 	case PCI_D3hot:
589 	case PCI_D3cold:
590 	case PCI_UNKNOWN: /* Boot-up */
591 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
592 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
593 			need_restore = true;
594 		/* Fall-through: force to D0 */
595 	default:
596 		pmcsr = 0;
597 		break;
598 	}
599 
600 	/* enter specified state */
601 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
602 
603 	/* Mandatory power management transition delays */
604 	/* see PCI PM 1.1 5.6.1 table 18 */
605 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
606 		pci_dev_d3_sleep(dev);
607 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
608 		udelay(PCI_PM_D2_DELAY);
609 
610 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
611 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
612 	if (dev->current_state != state && printk_ratelimit())
613 		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
614 			 dev->current_state);
615 
616 	/*
617 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
618 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
619 	 * from D3hot to D0 _may_ perform an internal reset, thereby
620 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
621 	 * For example, at least some versions of the 3c905B and the
622 	 * 3c556B exhibit this behaviour.
623 	 *
624 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
625 	 * devices in a D3hot state at boot.  Consequently, we need to
626 	 * restore at least the BARs so that the device will be
627 	 * accessible to its driver.
628 	 */
629 	if (need_restore)
630 		pci_restore_bars(dev);
631 
632 	if (dev->bus->self)
633 		pcie_aspm_pm_state_change(dev->bus->self);
634 
635 	return 0;
636 }
637 
638 /**
639  * pci_update_current_state - Read PCI power state of given device from its
640  *                            PCI PM registers and cache it
641  * @dev: PCI device to handle.
642  * @state: State to cache in case the device doesn't have the PM capability
643  */
644 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
645 {
646 	if (dev->pm_cap) {
647 		u16 pmcsr;
648 
649 		/*
650 		 * Configuration space is not accessible for device in
651 		 * D3cold, so just keep or set D3cold for safety
652 		 */
653 		if (dev->current_state == PCI_D3cold)
654 			return;
655 		if (state == PCI_D3cold) {
656 			dev->current_state = PCI_D3cold;
657 			return;
658 		}
659 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
660 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
661 	} else {
662 		dev->current_state = state;
663 	}
664 }
665 
666 /**
667  * pci_power_up - Put the given device into D0 forcibly
668  * @dev: PCI device to power up
669  */
670 void pci_power_up(struct pci_dev *dev)
671 {
672 	if (platform_pci_power_manageable(dev))
673 		platform_pci_set_power_state(dev, PCI_D0);
674 
675 	pci_raw_set_power_state(dev, PCI_D0);
676 	pci_update_current_state(dev, PCI_D0);
677 }
678 
679 /**
680  * pci_platform_power_transition - Use platform to change device power state
681  * @dev: PCI device to handle.
682  * @state: State to put the device into.
683  */
684 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
685 {
686 	int error;
687 
688 	if (platform_pci_power_manageable(dev)) {
689 		error = platform_pci_set_power_state(dev, state);
690 		if (!error)
691 			pci_update_current_state(dev, state);
692 	} else
693 		error = -ENODEV;
694 
695 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
696 		dev->current_state = PCI_D0;
697 
698 	return error;
699 }
700 
701 /**
702  * pci_wakeup - Wake up a PCI device
703  * @pci_dev: Device to handle.
704  * @ign: ignored parameter
705  */
706 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
707 {
708 	pci_wakeup_event(pci_dev);
709 	pm_request_resume(&pci_dev->dev);
710 	return 0;
711 }
712 
713 /**
714  * pci_wakeup_bus - Walk given bus and wake up devices on it
715  * @bus: Top bus of the subtree to walk.
716  */
717 static void pci_wakeup_bus(struct pci_bus *bus)
718 {
719 	if (bus)
720 		pci_walk_bus(bus, pci_wakeup, NULL);
721 }
722 
723 /**
724  * __pci_start_power_transition - Start power transition of a PCI device
725  * @dev: PCI device to handle.
726  * @state: State to put the device into.
727  */
728 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
729 {
730 	if (state == PCI_D0) {
731 		pci_platform_power_transition(dev, PCI_D0);
732 		/*
733 		 * Mandatory power management transition delays, see
734 		 * PCI Express Base Specification Revision 2.0 Section
735 		 * 6.6.1: Conventional Reset.  Do not delay for
736 		 * devices powered on/off by corresponding bridge,
737 		 * because have already delayed for the bridge.
738 		 */
739 		if (dev->runtime_d3cold) {
740 			msleep(dev->d3cold_delay);
741 			/*
742 			 * When powering on a bridge from D3cold, the
743 			 * whole hierarchy may be powered on into
744 			 * D0uninitialized state, resume them to give
745 			 * them a chance to suspend again
746 			 */
747 			pci_wakeup_bus(dev->subordinate);
748 		}
749 	}
750 }
751 
752 /**
753  * __pci_dev_set_current_state - Set current state of a PCI device
754  * @dev: Device to handle
755  * @data: pointer to state to be set
756  */
757 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
758 {
759 	pci_power_t state = *(pci_power_t *)data;
760 
761 	dev->current_state = state;
762 	return 0;
763 }
764 
765 /**
766  * __pci_bus_set_current_state - Walk given bus and set current state of devices
767  * @bus: Top bus of the subtree to walk.
768  * @state: state to be set
769  */
770 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
771 {
772 	if (bus)
773 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
774 }
775 
776 /**
777  * __pci_complete_power_transition - Complete power transition of a PCI device
778  * @dev: PCI device to handle.
779  * @state: State to put the device into.
780  *
781  * This function should not be called directly by device drivers.
782  */
783 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
784 {
785 	int ret;
786 
787 	if (state <= PCI_D0)
788 		return -EINVAL;
789 	ret = pci_platform_power_transition(dev, state);
790 	/* Power off the bridge may power off the whole hierarchy */
791 	if (!ret && state == PCI_D3cold)
792 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
793 	return ret;
794 }
795 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
796 
797 /**
798  * pci_set_power_state - Set the power state of a PCI device
799  * @dev: PCI device to handle.
800  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
801  *
802  * Transition a device to a new power state, using the platform firmware and/or
803  * the device's PCI PM registers.
804  *
805  * RETURN VALUE:
806  * -EINVAL if the requested state is invalid.
807  * -EIO if device does not support PCI PM or its PM capabilities register has a
808  * wrong version, or device doesn't support the requested state.
809  * 0 if device already is in the requested state.
810  * 0 if device's power state has been successfully changed.
811  */
812 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
813 {
814 	int error;
815 
816 	/* bound the state we're entering */
817 	if (state > PCI_D3cold)
818 		state = PCI_D3cold;
819 	else if (state < PCI_D0)
820 		state = PCI_D0;
821 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
822 		/*
823 		 * If the device or the parent bridge do not support PCI PM,
824 		 * ignore the request if we're doing anything other than putting
825 		 * it into D0 (which would only happen on boot).
826 		 */
827 		return 0;
828 
829 	/* Check if we're already there */
830 	if (dev->current_state == state)
831 		return 0;
832 
833 	__pci_start_power_transition(dev, state);
834 
835 	/* This device is quirked not to be put into D3, so
836 	   don't put it in D3 */
837 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
838 		return 0;
839 
840 	/*
841 	 * To put device in D3cold, we put device into D3hot in native
842 	 * way, then put device into D3cold with platform ops
843 	 */
844 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
845 					PCI_D3hot : state);
846 
847 	if (!__pci_complete_power_transition(dev, state))
848 		error = 0;
849 
850 	return error;
851 }
852 EXPORT_SYMBOL(pci_set_power_state);
853 
854 /**
855  * pci_choose_state - Choose the power state of a PCI device
856  * @dev: PCI device to be suspended
857  * @state: target sleep state for the whole system. This is the value
858  *	that is passed to suspend() function.
859  *
860  * Returns PCI power state suitable for given device and given system
861  * message.
862  */
863 
864 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
865 {
866 	pci_power_t ret;
867 
868 	if (!dev->pm_cap)
869 		return PCI_D0;
870 
871 	ret = platform_pci_choose_state(dev);
872 	if (ret != PCI_POWER_ERROR)
873 		return ret;
874 
875 	switch (state.event) {
876 	case PM_EVENT_ON:
877 		return PCI_D0;
878 	case PM_EVENT_FREEZE:
879 	case PM_EVENT_PRETHAW:
880 		/* REVISIT both freeze and pre-thaw "should" use D0 */
881 	case PM_EVENT_SUSPEND:
882 	case PM_EVENT_HIBERNATE:
883 		return PCI_D3hot;
884 	default:
885 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
886 			 state.event);
887 		BUG();
888 	}
889 	return PCI_D0;
890 }
891 EXPORT_SYMBOL(pci_choose_state);
892 
893 #define PCI_EXP_SAVE_REGS	7
894 
895 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
896 						       u16 cap, bool extended)
897 {
898 	struct pci_cap_saved_state *tmp;
899 
900 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
901 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
902 			return tmp;
903 	}
904 	return NULL;
905 }
906 
907 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
908 {
909 	return _pci_find_saved_cap(dev, cap, false);
910 }
911 
912 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
913 {
914 	return _pci_find_saved_cap(dev, cap, true);
915 }
916 
917 static int pci_save_pcie_state(struct pci_dev *dev)
918 {
919 	int i = 0;
920 	struct pci_cap_saved_state *save_state;
921 	u16 *cap;
922 
923 	if (!pci_is_pcie(dev))
924 		return 0;
925 
926 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
927 	if (!save_state) {
928 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
929 		return -ENOMEM;
930 	}
931 
932 	cap = (u16 *)&save_state->cap.data[0];
933 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
934 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
935 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
936 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
937 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
938 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
939 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
940 
941 	return 0;
942 }
943 
944 static void pci_restore_pcie_state(struct pci_dev *dev)
945 {
946 	int i = 0;
947 	struct pci_cap_saved_state *save_state;
948 	u16 *cap;
949 
950 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
951 	if (!save_state)
952 		return;
953 
954 	cap = (u16 *)&save_state->cap.data[0];
955 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
956 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
957 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
958 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
959 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
960 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
961 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
962 }
963 
964 
965 static int pci_save_pcix_state(struct pci_dev *dev)
966 {
967 	int pos;
968 	struct pci_cap_saved_state *save_state;
969 
970 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
971 	if (pos <= 0)
972 		return 0;
973 
974 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
975 	if (!save_state) {
976 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
977 		return -ENOMEM;
978 	}
979 
980 	pci_read_config_word(dev, pos + PCI_X_CMD,
981 			     (u16 *)save_state->cap.data);
982 
983 	return 0;
984 }
985 
986 static void pci_restore_pcix_state(struct pci_dev *dev)
987 {
988 	int i = 0, pos;
989 	struct pci_cap_saved_state *save_state;
990 	u16 *cap;
991 
992 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
993 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
994 	if (!save_state || pos <= 0)
995 		return;
996 	cap = (u16 *)&save_state->cap.data[0];
997 
998 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
999 }
1000 
1001 
1002 /**
1003  * pci_save_state - save the PCI configuration space of a device before suspending
1004  * @dev: - PCI device that we're dealing with
1005  */
1006 int pci_save_state(struct pci_dev *dev)
1007 {
1008 	int i;
1009 	/* XXX: 100% dword access ok here? */
1010 	for (i = 0; i < 16; i++)
1011 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1012 	dev->state_saved = true;
1013 
1014 	i = pci_save_pcie_state(dev);
1015 	if (i != 0)
1016 		return i;
1017 
1018 	i = pci_save_pcix_state(dev);
1019 	if (i != 0)
1020 		return i;
1021 
1022 	return pci_save_vc_state(dev);
1023 }
1024 EXPORT_SYMBOL(pci_save_state);
1025 
1026 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1027 				     u32 saved_val, int retry)
1028 {
1029 	u32 val;
1030 
1031 	pci_read_config_dword(pdev, offset, &val);
1032 	if (val == saved_val)
1033 		return;
1034 
1035 	for (;;) {
1036 		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1037 			offset, val, saved_val);
1038 		pci_write_config_dword(pdev, offset, saved_val);
1039 		if (retry-- <= 0)
1040 			return;
1041 
1042 		pci_read_config_dword(pdev, offset, &val);
1043 		if (val == saved_val)
1044 			return;
1045 
1046 		mdelay(1);
1047 	}
1048 }
1049 
1050 static void pci_restore_config_space_range(struct pci_dev *pdev,
1051 					   int start, int end, int retry)
1052 {
1053 	int index;
1054 
1055 	for (index = end; index >= start; index--)
1056 		pci_restore_config_dword(pdev, 4 * index,
1057 					 pdev->saved_config_space[index],
1058 					 retry);
1059 }
1060 
1061 static void pci_restore_config_space(struct pci_dev *pdev)
1062 {
1063 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1064 		pci_restore_config_space_range(pdev, 10, 15, 0);
1065 		/* Restore BARs before the command register. */
1066 		pci_restore_config_space_range(pdev, 4, 9, 10);
1067 		pci_restore_config_space_range(pdev, 0, 3, 0);
1068 	} else {
1069 		pci_restore_config_space_range(pdev, 0, 15, 0);
1070 	}
1071 }
1072 
1073 /**
1074  * pci_restore_state - Restore the saved state of a PCI device
1075  * @dev: - PCI device that we're dealing with
1076  */
1077 void pci_restore_state(struct pci_dev *dev)
1078 {
1079 	if (!dev->state_saved)
1080 		return;
1081 
1082 	/* PCI Express register must be restored first */
1083 	pci_restore_pcie_state(dev);
1084 	pci_restore_ats_state(dev);
1085 	pci_restore_vc_state(dev);
1086 
1087 	pci_restore_config_space(dev);
1088 
1089 	pci_restore_pcix_state(dev);
1090 	pci_restore_msi_state(dev);
1091 	pci_restore_iov_state(dev);
1092 
1093 	dev->state_saved = false;
1094 }
1095 EXPORT_SYMBOL(pci_restore_state);
1096 
1097 struct pci_saved_state {
1098 	u32 config_space[16];
1099 	struct pci_cap_saved_data cap[0];
1100 };
1101 
1102 /**
1103  * pci_store_saved_state - Allocate and return an opaque struct containing
1104  *			   the device saved state.
1105  * @dev: PCI device that we're dealing with
1106  *
1107  * Return NULL if no state or error.
1108  */
1109 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1110 {
1111 	struct pci_saved_state *state;
1112 	struct pci_cap_saved_state *tmp;
1113 	struct pci_cap_saved_data *cap;
1114 	size_t size;
1115 
1116 	if (!dev->state_saved)
1117 		return NULL;
1118 
1119 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1120 
1121 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1122 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1123 
1124 	state = kzalloc(size, GFP_KERNEL);
1125 	if (!state)
1126 		return NULL;
1127 
1128 	memcpy(state->config_space, dev->saved_config_space,
1129 	       sizeof(state->config_space));
1130 
1131 	cap = state->cap;
1132 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1133 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1134 		memcpy(cap, &tmp->cap, len);
1135 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1136 	}
1137 	/* Empty cap_save terminates list */
1138 
1139 	return state;
1140 }
1141 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1142 
1143 /**
1144  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1145  * @dev: PCI device that we're dealing with
1146  * @state: Saved state returned from pci_store_saved_state()
1147  */
1148 int pci_load_saved_state(struct pci_dev *dev,
1149 			 struct pci_saved_state *state)
1150 {
1151 	struct pci_cap_saved_data *cap;
1152 
1153 	dev->state_saved = false;
1154 
1155 	if (!state)
1156 		return 0;
1157 
1158 	memcpy(dev->saved_config_space, state->config_space,
1159 	       sizeof(state->config_space));
1160 
1161 	cap = state->cap;
1162 	while (cap->size) {
1163 		struct pci_cap_saved_state *tmp;
1164 
1165 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1166 		if (!tmp || tmp->cap.size != cap->size)
1167 			return -EINVAL;
1168 
1169 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1170 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1171 		       sizeof(struct pci_cap_saved_data) + cap->size);
1172 	}
1173 
1174 	dev->state_saved = true;
1175 	return 0;
1176 }
1177 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1178 
1179 /**
1180  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1181  *				   and free the memory allocated for it.
1182  * @dev: PCI device that we're dealing with
1183  * @state: Pointer to saved state returned from pci_store_saved_state()
1184  */
1185 int pci_load_and_free_saved_state(struct pci_dev *dev,
1186 				  struct pci_saved_state **state)
1187 {
1188 	int ret = pci_load_saved_state(dev, *state);
1189 	kfree(*state);
1190 	*state = NULL;
1191 	return ret;
1192 }
1193 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1194 
1195 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1196 {
1197 	return pci_enable_resources(dev, bars);
1198 }
1199 
1200 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1201 {
1202 	int err;
1203 	struct pci_dev *bridge;
1204 	u16 cmd;
1205 	u8 pin;
1206 
1207 	err = pci_set_power_state(dev, PCI_D0);
1208 	if (err < 0 && err != -EIO)
1209 		return err;
1210 
1211 	bridge = pci_upstream_bridge(dev);
1212 	if (bridge)
1213 		pcie_aspm_powersave_config_link(bridge);
1214 
1215 	err = pcibios_enable_device(dev, bars);
1216 	if (err < 0)
1217 		return err;
1218 	pci_fixup_device(pci_fixup_enable, dev);
1219 
1220 	if (dev->msi_enabled || dev->msix_enabled)
1221 		return 0;
1222 
1223 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1224 	if (pin) {
1225 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1226 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1227 			pci_write_config_word(dev, PCI_COMMAND,
1228 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1229 	}
1230 
1231 	return 0;
1232 }
1233 
1234 /**
1235  * pci_reenable_device - Resume abandoned device
1236  * @dev: PCI device to be resumed
1237  *
1238  *  Note this function is a backend of pci_default_resume and is not supposed
1239  *  to be called by normal code, write proper resume handler and use it instead.
1240  */
1241 int pci_reenable_device(struct pci_dev *dev)
1242 {
1243 	if (pci_is_enabled(dev))
1244 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1245 	return 0;
1246 }
1247 EXPORT_SYMBOL(pci_reenable_device);
1248 
1249 static void pci_enable_bridge(struct pci_dev *dev)
1250 {
1251 	struct pci_dev *bridge;
1252 	int retval;
1253 
1254 	bridge = pci_upstream_bridge(dev);
1255 	if (bridge)
1256 		pci_enable_bridge(bridge);
1257 
1258 	if (pci_is_enabled(dev)) {
1259 		if (!dev->is_busmaster)
1260 			pci_set_master(dev);
1261 		return;
1262 	}
1263 
1264 	retval = pci_enable_device(dev);
1265 	if (retval)
1266 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1267 			retval);
1268 	pci_set_master(dev);
1269 }
1270 
1271 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1272 {
1273 	struct pci_dev *bridge;
1274 	int err;
1275 	int i, bars = 0;
1276 
1277 	/*
1278 	 * Power state could be unknown at this point, either due to a fresh
1279 	 * boot or a device removal call.  So get the current power state
1280 	 * so that things like MSI message writing will behave as expected
1281 	 * (e.g. if the device really is in D0 at enable time).
1282 	 */
1283 	if (dev->pm_cap) {
1284 		u16 pmcsr;
1285 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1286 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1287 	}
1288 
1289 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1290 		return 0;		/* already enabled */
1291 
1292 	bridge = pci_upstream_bridge(dev);
1293 	if (bridge)
1294 		pci_enable_bridge(bridge);
1295 
1296 	/* only skip sriov related */
1297 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1298 		if (dev->resource[i].flags & flags)
1299 			bars |= (1 << i);
1300 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1301 		if (dev->resource[i].flags & flags)
1302 			bars |= (1 << i);
1303 
1304 	err = do_pci_enable_device(dev, bars);
1305 	if (err < 0)
1306 		atomic_dec(&dev->enable_cnt);
1307 	return err;
1308 }
1309 
1310 /**
1311  * pci_enable_device_io - Initialize a device for use with IO space
1312  * @dev: PCI device to be initialized
1313  *
1314  *  Initialize device before it's used by a driver. Ask low-level code
1315  *  to enable I/O resources. Wake up the device if it was suspended.
1316  *  Beware, this function can fail.
1317  */
1318 int pci_enable_device_io(struct pci_dev *dev)
1319 {
1320 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1321 }
1322 EXPORT_SYMBOL(pci_enable_device_io);
1323 
1324 /**
1325  * pci_enable_device_mem - Initialize a device for use with Memory space
1326  * @dev: PCI device to be initialized
1327  *
1328  *  Initialize device before it's used by a driver. Ask low-level code
1329  *  to enable Memory resources. Wake up the device if it was suspended.
1330  *  Beware, this function can fail.
1331  */
1332 int pci_enable_device_mem(struct pci_dev *dev)
1333 {
1334 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1335 }
1336 EXPORT_SYMBOL(pci_enable_device_mem);
1337 
1338 /**
1339  * pci_enable_device - Initialize device before it's used by a driver.
1340  * @dev: PCI device to be initialized
1341  *
1342  *  Initialize device before it's used by a driver. Ask low-level code
1343  *  to enable I/O and memory. Wake up the device if it was suspended.
1344  *  Beware, this function can fail.
1345  *
1346  *  Note we don't actually enable the device many times if we call
1347  *  this function repeatedly (we just increment the count).
1348  */
1349 int pci_enable_device(struct pci_dev *dev)
1350 {
1351 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1352 }
1353 EXPORT_SYMBOL(pci_enable_device);
1354 
1355 /*
1356  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1357  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1358  * there's no need to track it separately.  pci_devres is initialized
1359  * when a device is enabled using managed PCI device enable interface.
1360  */
1361 struct pci_devres {
1362 	unsigned int enabled:1;
1363 	unsigned int pinned:1;
1364 	unsigned int orig_intx:1;
1365 	unsigned int restore_intx:1;
1366 	u32 region_mask;
1367 };
1368 
1369 static void pcim_release(struct device *gendev, void *res)
1370 {
1371 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1372 	struct pci_devres *this = res;
1373 	int i;
1374 
1375 	if (dev->msi_enabled)
1376 		pci_disable_msi(dev);
1377 	if (dev->msix_enabled)
1378 		pci_disable_msix(dev);
1379 
1380 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1381 		if (this->region_mask & (1 << i))
1382 			pci_release_region(dev, i);
1383 
1384 	if (this->restore_intx)
1385 		pci_intx(dev, this->orig_intx);
1386 
1387 	if (this->enabled && !this->pinned)
1388 		pci_disable_device(dev);
1389 }
1390 
1391 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1392 {
1393 	struct pci_devres *dr, *new_dr;
1394 
1395 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1396 	if (dr)
1397 		return dr;
1398 
1399 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1400 	if (!new_dr)
1401 		return NULL;
1402 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1403 }
1404 
1405 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1406 {
1407 	if (pci_is_managed(pdev))
1408 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1409 	return NULL;
1410 }
1411 
1412 /**
1413  * pcim_enable_device - Managed pci_enable_device()
1414  * @pdev: PCI device to be initialized
1415  *
1416  * Managed pci_enable_device().
1417  */
1418 int pcim_enable_device(struct pci_dev *pdev)
1419 {
1420 	struct pci_devres *dr;
1421 	int rc;
1422 
1423 	dr = get_pci_dr(pdev);
1424 	if (unlikely(!dr))
1425 		return -ENOMEM;
1426 	if (dr->enabled)
1427 		return 0;
1428 
1429 	rc = pci_enable_device(pdev);
1430 	if (!rc) {
1431 		pdev->is_managed = 1;
1432 		dr->enabled = 1;
1433 	}
1434 	return rc;
1435 }
1436 EXPORT_SYMBOL(pcim_enable_device);
1437 
1438 /**
1439  * pcim_pin_device - Pin managed PCI device
1440  * @pdev: PCI device to pin
1441  *
1442  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1443  * driver detach.  @pdev must have been enabled with
1444  * pcim_enable_device().
1445  */
1446 void pcim_pin_device(struct pci_dev *pdev)
1447 {
1448 	struct pci_devres *dr;
1449 
1450 	dr = find_pci_dr(pdev);
1451 	WARN_ON(!dr || !dr->enabled);
1452 	if (dr)
1453 		dr->pinned = 1;
1454 }
1455 EXPORT_SYMBOL(pcim_pin_device);
1456 
1457 /*
1458  * pcibios_add_device - provide arch specific hooks when adding device dev
1459  * @dev: the PCI device being added
1460  *
1461  * Permits the platform to provide architecture specific functionality when
1462  * devices are added. This is the default implementation. Architecture
1463  * implementations can override this.
1464  */
1465 int __weak pcibios_add_device(struct pci_dev *dev)
1466 {
1467 	return 0;
1468 }
1469 
1470 /**
1471  * pcibios_release_device - provide arch specific hooks when releasing device dev
1472  * @dev: the PCI device being released
1473  *
1474  * Permits the platform to provide architecture specific functionality when
1475  * devices are released. This is the default implementation. Architecture
1476  * implementations can override this.
1477  */
1478 void __weak pcibios_release_device(struct pci_dev *dev) {}
1479 
1480 /**
1481  * pcibios_disable_device - disable arch specific PCI resources for device dev
1482  * @dev: the PCI device to disable
1483  *
1484  * Disables architecture specific PCI resources for the device. This
1485  * is the default implementation. Architecture implementations can
1486  * override this.
1487  */
1488 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1489 
1490 /**
1491  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1492  * @irq: ISA IRQ to penalize
1493  * @active: IRQ active or not
1494  *
1495  * Permits the platform to provide architecture-specific functionality when
1496  * penalizing ISA IRQs. This is the default implementation. Architecture
1497  * implementations can override this.
1498  */
1499 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1500 
1501 static void do_pci_disable_device(struct pci_dev *dev)
1502 {
1503 	u16 pci_command;
1504 
1505 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1506 	if (pci_command & PCI_COMMAND_MASTER) {
1507 		pci_command &= ~PCI_COMMAND_MASTER;
1508 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1509 	}
1510 
1511 	pcibios_disable_device(dev);
1512 }
1513 
1514 /**
1515  * pci_disable_enabled_device - Disable device without updating enable_cnt
1516  * @dev: PCI device to disable
1517  *
1518  * NOTE: This function is a backend of PCI power management routines and is
1519  * not supposed to be called drivers.
1520  */
1521 void pci_disable_enabled_device(struct pci_dev *dev)
1522 {
1523 	if (pci_is_enabled(dev))
1524 		do_pci_disable_device(dev);
1525 }
1526 
1527 /**
1528  * pci_disable_device - Disable PCI device after use
1529  * @dev: PCI device to be disabled
1530  *
1531  * Signal to the system that the PCI device is not in use by the system
1532  * anymore.  This only involves disabling PCI bus-mastering, if active.
1533  *
1534  * Note we don't actually disable the device until all callers of
1535  * pci_enable_device() have called pci_disable_device().
1536  */
1537 void pci_disable_device(struct pci_dev *dev)
1538 {
1539 	struct pci_devres *dr;
1540 
1541 	dr = find_pci_dr(dev);
1542 	if (dr)
1543 		dr->enabled = 0;
1544 
1545 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1546 		      "disabling already-disabled device");
1547 
1548 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1549 		return;
1550 
1551 	do_pci_disable_device(dev);
1552 
1553 	dev->is_busmaster = 0;
1554 }
1555 EXPORT_SYMBOL(pci_disable_device);
1556 
1557 /**
1558  * pcibios_set_pcie_reset_state - set reset state for device dev
1559  * @dev: the PCIe device reset
1560  * @state: Reset state to enter into
1561  *
1562  *
1563  * Sets the PCIe reset state for the device. This is the default
1564  * implementation. Architecture implementations can override this.
1565  */
1566 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1567 					enum pcie_reset_state state)
1568 {
1569 	return -EINVAL;
1570 }
1571 
1572 /**
1573  * pci_set_pcie_reset_state - set reset state for device dev
1574  * @dev: the PCIe device reset
1575  * @state: Reset state to enter into
1576  *
1577  *
1578  * Sets the PCI reset state for the device.
1579  */
1580 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1581 {
1582 	return pcibios_set_pcie_reset_state(dev, state);
1583 }
1584 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1585 
1586 /**
1587  * pci_check_pme_status - Check if given device has generated PME.
1588  * @dev: Device to check.
1589  *
1590  * Check the PME status of the device and if set, clear it and clear PME enable
1591  * (if set).  Return 'true' if PME status and PME enable were both set or
1592  * 'false' otherwise.
1593  */
1594 bool pci_check_pme_status(struct pci_dev *dev)
1595 {
1596 	int pmcsr_pos;
1597 	u16 pmcsr;
1598 	bool ret = false;
1599 
1600 	if (!dev->pm_cap)
1601 		return false;
1602 
1603 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1604 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1605 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1606 		return false;
1607 
1608 	/* Clear PME status. */
1609 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1610 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1611 		/* Disable PME to avoid interrupt flood. */
1612 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1613 		ret = true;
1614 	}
1615 
1616 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1617 
1618 	return ret;
1619 }
1620 
1621 /**
1622  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1623  * @dev: Device to handle.
1624  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1625  *
1626  * Check if @dev has generated PME and queue a resume request for it in that
1627  * case.
1628  */
1629 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1630 {
1631 	if (pme_poll_reset && dev->pme_poll)
1632 		dev->pme_poll = false;
1633 
1634 	if (pci_check_pme_status(dev)) {
1635 		pci_wakeup_event(dev);
1636 		pm_request_resume(&dev->dev);
1637 	}
1638 	return 0;
1639 }
1640 
1641 /**
1642  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1643  * @bus: Top bus of the subtree to walk.
1644  */
1645 void pci_pme_wakeup_bus(struct pci_bus *bus)
1646 {
1647 	if (bus)
1648 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1649 }
1650 
1651 
1652 /**
1653  * pci_pme_capable - check the capability of PCI device to generate PME#
1654  * @dev: PCI device to handle.
1655  * @state: PCI state from which device will issue PME#.
1656  */
1657 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1658 {
1659 	if (!dev->pm_cap)
1660 		return false;
1661 
1662 	return !!(dev->pme_support & (1 << state));
1663 }
1664 EXPORT_SYMBOL(pci_pme_capable);
1665 
1666 static void pci_pme_list_scan(struct work_struct *work)
1667 {
1668 	struct pci_pme_device *pme_dev, *n;
1669 
1670 	mutex_lock(&pci_pme_list_mutex);
1671 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1672 		if (pme_dev->dev->pme_poll) {
1673 			struct pci_dev *bridge;
1674 
1675 			bridge = pme_dev->dev->bus->self;
1676 			/*
1677 			 * If bridge is in low power state, the
1678 			 * configuration space of subordinate devices
1679 			 * may be not accessible
1680 			 */
1681 			if (bridge && bridge->current_state != PCI_D0)
1682 				continue;
1683 			pci_pme_wakeup(pme_dev->dev, NULL);
1684 		} else {
1685 			list_del(&pme_dev->list);
1686 			kfree(pme_dev);
1687 		}
1688 	}
1689 	if (!list_empty(&pci_pme_list))
1690 		schedule_delayed_work(&pci_pme_work,
1691 				      msecs_to_jiffies(PME_TIMEOUT));
1692 	mutex_unlock(&pci_pme_list_mutex);
1693 }
1694 
1695 /**
1696  * pci_pme_active - enable or disable PCI device's PME# function
1697  * @dev: PCI device to handle.
1698  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1699  *
1700  * The caller must verify that the device is capable of generating PME# before
1701  * calling this function with @enable equal to 'true'.
1702  */
1703 void pci_pme_active(struct pci_dev *dev, bool enable)
1704 {
1705 	u16 pmcsr;
1706 
1707 	if (!dev->pme_support)
1708 		return;
1709 
1710 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1711 	/* Clear PME_Status by writing 1 to it and enable PME# */
1712 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1713 	if (!enable)
1714 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1715 
1716 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1717 
1718 	/*
1719 	 * PCI (as opposed to PCIe) PME requires that the device have
1720 	 * its PME# line hooked up correctly. Not all hardware vendors
1721 	 * do this, so the PME never gets delivered and the device
1722 	 * remains asleep. The easiest way around this is to
1723 	 * periodically walk the list of suspended devices and check
1724 	 * whether any have their PME flag set. The assumption is that
1725 	 * we'll wake up often enough anyway that this won't be a huge
1726 	 * hit, and the power savings from the devices will still be a
1727 	 * win.
1728 	 *
1729 	 * Although PCIe uses in-band PME message instead of PME# line
1730 	 * to report PME, PME does not work for some PCIe devices in
1731 	 * reality.  For example, there are devices that set their PME
1732 	 * status bits, but don't really bother to send a PME message;
1733 	 * there are PCI Express Root Ports that don't bother to
1734 	 * trigger interrupts when they receive PME messages from the
1735 	 * devices below.  So PME poll is used for PCIe devices too.
1736 	 */
1737 
1738 	if (dev->pme_poll) {
1739 		struct pci_pme_device *pme_dev;
1740 		if (enable) {
1741 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1742 					  GFP_KERNEL);
1743 			if (!pme_dev) {
1744 				dev_warn(&dev->dev, "can't enable PME#\n");
1745 				return;
1746 			}
1747 			pme_dev->dev = dev;
1748 			mutex_lock(&pci_pme_list_mutex);
1749 			list_add(&pme_dev->list, &pci_pme_list);
1750 			if (list_is_singular(&pci_pme_list))
1751 				schedule_delayed_work(&pci_pme_work,
1752 						      msecs_to_jiffies(PME_TIMEOUT));
1753 			mutex_unlock(&pci_pme_list_mutex);
1754 		} else {
1755 			mutex_lock(&pci_pme_list_mutex);
1756 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1757 				if (pme_dev->dev == dev) {
1758 					list_del(&pme_dev->list);
1759 					kfree(pme_dev);
1760 					break;
1761 				}
1762 			}
1763 			mutex_unlock(&pci_pme_list_mutex);
1764 		}
1765 	}
1766 
1767 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1768 }
1769 EXPORT_SYMBOL(pci_pme_active);
1770 
1771 /**
1772  * __pci_enable_wake - enable PCI device as wakeup event source
1773  * @dev: PCI device affected
1774  * @state: PCI state from which device will issue wakeup events
1775  * @runtime: True if the events are to be generated at run time
1776  * @enable: True to enable event generation; false to disable
1777  *
1778  * This enables the device as a wakeup event source, or disables it.
1779  * When such events involves platform-specific hooks, those hooks are
1780  * called automatically by this routine.
1781  *
1782  * Devices with legacy power management (no standard PCI PM capabilities)
1783  * always require such platform hooks.
1784  *
1785  * RETURN VALUE:
1786  * 0 is returned on success
1787  * -EINVAL is returned if device is not supposed to wake up the system
1788  * Error code depending on the platform is returned if both the platform and
1789  * the native mechanism fail to enable the generation of wake-up events
1790  */
1791 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1792 		      bool runtime, bool enable)
1793 {
1794 	int ret = 0;
1795 
1796 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1797 		return -EINVAL;
1798 
1799 	/* Don't do the same thing twice in a row for one device. */
1800 	if (!!enable == !!dev->wakeup_prepared)
1801 		return 0;
1802 
1803 	/*
1804 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1805 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1806 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1807 	 */
1808 
1809 	if (enable) {
1810 		int error;
1811 
1812 		if (pci_pme_capable(dev, state))
1813 			pci_pme_active(dev, true);
1814 		else
1815 			ret = 1;
1816 		error = runtime ? platform_pci_run_wake(dev, true) :
1817 					platform_pci_sleep_wake(dev, true);
1818 		if (ret)
1819 			ret = error;
1820 		if (!ret)
1821 			dev->wakeup_prepared = true;
1822 	} else {
1823 		if (runtime)
1824 			platform_pci_run_wake(dev, false);
1825 		else
1826 			platform_pci_sleep_wake(dev, false);
1827 		pci_pme_active(dev, false);
1828 		dev->wakeup_prepared = false;
1829 	}
1830 
1831 	return ret;
1832 }
1833 EXPORT_SYMBOL(__pci_enable_wake);
1834 
1835 /**
1836  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1837  * @dev: PCI device to prepare
1838  * @enable: True to enable wake-up event generation; false to disable
1839  *
1840  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1841  * and this function allows them to set that up cleanly - pci_enable_wake()
1842  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1843  * ordering constraints.
1844  *
1845  * This function only returns error code if the device is not capable of
1846  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1847  * enable wake-up power for it.
1848  */
1849 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1850 {
1851 	return pci_pme_capable(dev, PCI_D3cold) ?
1852 			pci_enable_wake(dev, PCI_D3cold, enable) :
1853 			pci_enable_wake(dev, PCI_D3hot, enable);
1854 }
1855 EXPORT_SYMBOL(pci_wake_from_d3);
1856 
1857 /**
1858  * pci_target_state - find an appropriate low power state for a given PCI dev
1859  * @dev: PCI device
1860  *
1861  * Use underlying platform code to find a supported low power state for @dev.
1862  * If the platform can't manage @dev, return the deepest state from which it
1863  * can generate wake events, based on any available PME info.
1864  */
1865 static pci_power_t pci_target_state(struct pci_dev *dev)
1866 {
1867 	pci_power_t target_state = PCI_D3hot;
1868 
1869 	if (platform_pci_power_manageable(dev)) {
1870 		/*
1871 		 * Call the platform to choose the target state of the device
1872 		 * and enable wake-up from this state if supported.
1873 		 */
1874 		pci_power_t state = platform_pci_choose_state(dev);
1875 
1876 		switch (state) {
1877 		case PCI_POWER_ERROR:
1878 		case PCI_UNKNOWN:
1879 			break;
1880 		case PCI_D1:
1881 		case PCI_D2:
1882 			if (pci_no_d1d2(dev))
1883 				break;
1884 		default:
1885 			target_state = state;
1886 		}
1887 	} else if (!dev->pm_cap) {
1888 		target_state = PCI_D0;
1889 	} else if (device_may_wakeup(&dev->dev)) {
1890 		/*
1891 		 * Find the deepest state from which the device can generate
1892 		 * wake-up events, make it the target state and enable device
1893 		 * to generate PME#.
1894 		 */
1895 		if (dev->pme_support) {
1896 			while (target_state
1897 			      && !(dev->pme_support & (1 << target_state)))
1898 				target_state--;
1899 		}
1900 	}
1901 
1902 	return target_state;
1903 }
1904 
1905 /**
1906  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1907  * @dev: Device to handle.
1908  *
1909  * Choose the power state appropriate for the device depending on whether
1910  * it can wake up the system and/or is power manageable by the platform
1911  * (PCI_D3hot is the default) and put the device into that state.
1912  */
1913 int pci_prepare_to_sleep(struct pci_dev *dev)
1914 {
1915 	pci_power_t target_state = pci_target_state(dev);
1916 	int error;
1917 
1918 	if (target_state == PCI_POWER_ERROR)
1919 		return -EIO;
1920 
1921 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1922 
1923 	error = pci_set_power_state(dev, target_state);
1924 
1925 	if (error)
1926 		pci_enable_wake(dev, target_state, false);
1927 
1928 	return error;
1929 }
1930 EXPORT_SYMBOL(pci_prepare_to_sleep);
1931 
1932 /**
1933  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1934  * @dev: Device to handle.
1935  *
1936  * Disable device's system wake-up capability and put it into D0.
1937  */
1938 int pci_back_from_sleep(struct pci_dev *dev)
1939 {
1940 	pci_enable_wake(dev, PCI_D0, false);
1941 	return pci_set_power_state(dev, PCI_D0);
1942 }
1943 EXPORT_SYMBOL(pci_back_from_sleep);
1944 
1945 /**
1946  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1947  * @dev: PCI device being suspended.
1948  *
1949  * Prepare @dev to generate wake-up events at run time and put it into a low
1950  * power state.
1951  */
1952 int pci_finish_runtime_suspend(struct pci_dev *dev)
1953 {
1954 	pci_power_t target_state = pci_target_state(dev);
1955 	int error;
1956 
1957 	if (target_state == PCI_POWER_ERROR)
1958 		return -EIO;
1959 
1960 	dev->runtime_d3cold = target_state == PCI_D3cold;
1961 
1962 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1963 
1964 	error = pci_set_power_state(dev, target_state);
1965 
1966 	if (error) {
1967 		__pci_enable_wake(dev, target_state, true, false);
1968 		dev->runtime_d3cold = false;
1969 	}
1970 
1971 	return error;
1972 }
1973 
1974 /**
1975  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1976  * @dev: Device to check.
1977  *
1978  * Return true if the device itself is capable of generating wake-up events
1979  * (through the platform or using the native PCIe PME) or if the device supports
1980  * PME and one of its upstream bridges can generate wake-up events.
1981  */
1982 bool pci_dev_run_wake(struct pci_dev *dev)
1983 {
1984 	struct pci_bus *bus = dev->bus;
1985 
1986 	if (device_run_wake(&dev->dev))
1987 		return true;
1988 
1989 	if (!dev->pme_support)
1990 		return false;
1991 
1992 	while (bus->parent) {
1993 		struct pci_dev *bridge = bus->self;
1994 
1995 		if (device_run_wake(&bridge->dev))
1996 			return true;
1997 
1998 		bus = bus->parent;
1999 	}
2000 
2001 	/* We have reached the root bus. */
2002 	if (bus->bridge)
2003 		return device_run_wake(bus->bridge);
2004 
2005 	return false;
2006 }
2007 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2008 
2009 /**
2010  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2011  * @pci_dev: Device to check.
2012  *
2013  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2014  * reconfigured due to wakeup settings difference between system and runtime
2015  * suspend and the current power state of it is suitable for the upcoming
2016  * (system) transition.
2017  */
2018 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2019 {
2020 	struct device *dev = &pci_dev->dev;
2021 
2022 	if (!pm_runtime_suspended(dev)
2023 	    || (device_can_wakeup(dev) && !device_may_wakeup(dev))
2024 	    || platform_pci_need_resume(pci_dev))
2025 		return false;
2026 
2027 	return pci_target_state(pci_dev) == pci_dev->current_state;
2028 }
2029 
2030 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2031 {
2032 	struct device *dev = &pdev->dev;
2033 	struct device *parent = dev->parent;
2034 
2035 	if (parent)
2036 		pm_runtime_get_sync(parent);
2037 	pm_runtime_get_noresume(dev);
2038 	/*
2039 	 * pdev->current_state is set to PCI_D3cold during suspending,
2040 	 * so wait until suspending completes
2041 	 */
2042 	pm_runtime_barrier(dev);
2043 	/*
2044 	 * Only need to resume devices in D3cold, because config
2045 	 * registers are still accessible for devices suspended but
2046 	 * not in D3cold.
2047 	 */
2048 	if (pdev->current_state == PCI_D3cold)
2049 		pm_runtime_resume(dev);
2050 }
2051 
2052 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2053 {
2054 	struct device *dev = &pdev->dev;
2055 	struct device *parent = dev->parent;
2056 
2057 	pm_runtime_put(dev);
2058 	if (parent)
2059 		pm_runtime_put_sync(parent);
2060 }
2061 
2062 /**
2063  * pci_pm_init - Initialize PM functions of given PCI device
2064  * @dev: PCI device to handle.
2065  */
2066 void pci_pm_init(struct pci_dev *dev)
2067 {
2068 	int pm;
2069 	u16 pmc;
2070 
2071 	pm_runtime_forbid(&dev->dev);
2072 	pm_runtime_set_active(&dev->dev);
2073 	pm_runtime_enable(&dev->dev);
2074 	device_enable_async_suspend(&dev->dev);
2075 	dev->wakeup_prepared = false;
2076 
2077 	dev->pm_cap = 0;
2078 	dev->pme_support = 0;
2079 
2080 	/* find PCI PM capability in list */
2081 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2082 	if (!pm)
2083 		return;
2084 	/* Check device's ability to generate PME# */
2085 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2086 
2087 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2088 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2089 			pmc & PCI_PM_CAP_VER_MASK);
2090 		return;
2091 	}
2092 
2093 	dev->pm_cap = pm;
2094 	dev->d3_delay = PCI_PM_D3_WAIT;
2095 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2096 	dev->d3cold_allowed = true;
2097 
2098 	dev->d1_support = false;
2099 	dev->d2_support = false;
2100 	if (!pci_no_d1d2(dev)) {
2101 		if (pmc & PCI_PM_CAP_D1)
2102 			dev->d1_support = true;
2103 		if (pmc & PCI_PM_CAP_D2)
2104 			dev->d2_support = true;
2105 
2106 		if (dev->d1_support || dev->d2_support)
2107 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2108 				   dev->d1_support ? " D1" : "",
2109 				   dev->d2_support ? " D2" : "");
2110 	}
2111 
2112 	pmc &= PCI_PM_CAP_PME_MASK;
2113 	if (pmc) {
2114 		dev_printk(KERN_DEBUG, &dev->dev,
2115 			 "PME# supported from%s%s%s%s%s\n",
2116 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2117 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2118 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2119 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2120 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2121 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2122 		dev->pme_poll = true;
2123 		/*
2124 		 * Make device's PM flags reflect the wake-up capability, but
2125 		 * let the user space enable it to wake up the system as needed.
2126 		 */
2127 		device_set_wakeup_capable(&dev->dev, true);
2128 		/* Disable the PME# generation functionality */
2129 		pci_pme_active(dev, false);
2130 	}
2131 }
2132 
2133 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2134 	struct pci_cap_saved_state *new_cap)
2135 {
2136 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2137 }
2138 
2139 /**
2140  * _pci_add_cap_save_buffer - allocate buffer for saving given
2141  *                            capability registers
2142  * @dev: the PCI device
2143  * @cap: the capability to allocate the buffer for
2144  * @extended: Standard or Extended capability ID
2145  * @size: requested size of the buffer
2146  */
2147 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2148 				    bool extended, unsigned int size)
2149 {
2150 	int pos;
2151 	struct pci_cap_saved_state *save_state;
2152 
2153 	if (extended)
2154 		pos = pci_find_ext_capability(dev, cap);
2155 	else
2156 		pos = pci_find_capability(dev, cap);
2157 
2158 	if (pos <= 0)
2159 		return 0;
2160 
2161 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2162 	if (!save_state)
2163 		return -ENOMEM;
2164 
2165 	save_state->cap.cap_nr = cap;
2166 	save_state->cap.cap_extended = extended;
2167 	save_state->cap.size = size;
2168 	pci_add_saved_cap(dev, save_state);
2169 
2170 	return 0;
2171 }
2172 
2173 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2174 {
2175 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2176 }
2177 
2178 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2179 {
2180 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2181 }
2182 
2183 /**
2184  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2185  * @dev: the PCI device
2186  */
2187 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2188 {
2189 	int error;
2190 
2191 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2192 					PCI_EXP_SAVE_REGS * sizeof(u16));
2193 	if (error)
2194 		dev_err(&dev->dev,
2195 			"unable to preallocate PCI Express save buffer\n");
2196 
2197 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2198 	if (error)
2199 		dev_err(&dev->dev,
2200 			"unable to preallocate PCI-X save buffer\n");
2201 
2202 	pci_allocate_vc_save_buffers(dev);
2203 }
2204 
2205 void pci_free_cap_save_buffers(struct pci_dev *dev)
2206 {
2207 	struct pci_cap_saved_state *tmp;
2208 	struct hlist_node *n;
2209 
2210 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2211 		kfree(tmp);
2212 }
2213 
2214 /**
2215  * pci_configure_ari - enable or disable ARI forwarding
2216  * @dev: the PCI device
2217  *
2218  * If @dev and its upstream bridge both support ARI, enable ARI in the
2219  * bridge.  Otherwise, disable ARI in the bridge.
2220  */
2221 void pci_configure_ari(struct pci_dev *dev)
2222 {
2223 	u32 cap;
2224 	struct pci_dev *bridge;
2225 
2226 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2227 		return;
2228 
2229 	bridge = dev->bus->self;
2230 	if (!bridge)
2231 		return;
2232 
2233 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2234 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2235 		return;
2236 
2237 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2238 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2239 					 PCI_EXP_DEVCTL2_ARI);
2240 		bridge->ari_enabled = 1;
2241 	} else {
2242 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2243 					   PCI_EXP_DEVCTL2_ARI);
2244 		bridge->ari_enabled = 0;
2245 	}
2246 }
2247 
2248 static int pci_acs_enable;
2249 
2250 /**
2251  * pci_request_acs - ask for ACS to be enabled if supported
2252  */
2253 void pci_request_acs(void)
2254 {
2255 	pci_acs_enable = 1;
2256 }
2257 
2258 /**
2259  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2260  * @dev: the PCI device
2261  */
2262 static int pci_std_enable_acs(struct pci_dev *dev)
2263 {
2264 	int pos;
2265 	u16 cap;
2266 	u16 ctrl;
2267 
2268 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2269 	if (!pos)
2270 		return -ENODEV;
2271 
2272 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2273 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2274 
2275 	/* Source Validation */
2276 	ctrl |= (cap & PCI_ACS_SV);
2277 
2278 	/* P2P Request Redirect */
2279 	ctrl |= (cap & PCI_ACS_RR);
2280 
2281 	/* P2P Completion Redirect */
2282 	ctrl |= (cap & PCI_ACS_CR);
2283 
2284 	/* Upstream Forwarding */
2285 	ctrl |= (cap & PCI_ACS_UF);
2286 
2287 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2288 
2289 	return 0;
2290 }
2291 
2292 /**
2293  * pci_enable_acs - enable ACS if hardware support it
2294  * @dev: the PCI device
2295  */
2296 void pci_enable_acs(struct pci_dev *dev)
2297 {
2298 	if (!pci_acs_enable)
2299 		return;
2300 
2301 	if (!pci_std_enable_acs(dev))
2302 		return;
2303 
2304 	pci_dev_specific_enable_acs(dev);
2305 }
2306 
2307 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2308 {
2309 	int pos;
2310 	u16 cap, ctrl;
2311 
2312 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2313 	if (!pos)
2314 		return false;
2315 
2316 	/*
2317 	 * Except for egress control, capabilities are either required
2318 	 * or only required if controllable.  Features missing from the
2319 	 * capability field can therefore be assumed as hard-wired enabled.
2320 	 */
2321 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2322 	acs_flags &= (cap | PCI_ACS_EC);
2323 
2324 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2325 	return (ctrl & acs_flags) == acs_flags;
2326 }
2327 
2328 /**
2329  * pci_acs_enabled - test ACS against required flags for a given device
2330  * @pdev: device to test
2331  * @acs_flags: required PCI ACS flags
2332  *
2333  * Return true if the device supports the provided flags.  Automatically
2334  * filters out flags that are not implemented on multifunction devices.
2335  *
2336  * Note that this interface checks the effective ACS capabilities of the
2337  * device rather than the actual capabilities.  For instance, most single
2338  * function endpoints are not required to support ACS because they have no
2339  * opportunity for peer-to-peer access.  We therefore return 'true'
2340  * regardless of whether the device exposes an ACS capability.  This makes
2341  * it much easier for callers of this function to ignore the actual type
2342  * or topology of the device when testing ACS support.
2343  */
2344 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2345 {
2346 	int ret;
2347 
2348 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2349 	if (ret >= 0)
2350 		return ret > 0;
2351 
2352 	/*
2353 	 * Conventional PCI and PCI-X devices never support ACS, either
2354 	 * effectively or actually.  The shared bus topology implies that
2355 	 * any device on the bus can receive or snoop DMA.
2356 	 */
2357 	if (!pci_is_pcie(pdev))
2358 		return false;
2359 
2360 	switch (pci_pcie_type(pdev)) {
2361 	/*
2362 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2363 	 * but since their primary interface is PCI/X, we conservatively
2364 	 * handle them as we would a non-PCIe device.
2365 	 */
2366 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2367 	/*
2368 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2369 	 * applicable... must never implement an ACS Extended Capability...".
2370 	 * This seems arbitrary, but we take a conservative interpretation
2371 	 * of this statement.
2372 	 */
2373 	case PCI_EXP_TYPE_PCI_BRIDGE:
2374 	case PCI_EXP_TYPE_RC_EC:
2375 		return false;
2376 	/*
2377 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2378 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2379 	 * regardless of whether they are single- or multi-function devices.
2380 	 */
2381 	case PCI_EXP_TYPE_DOWNSTREAM:
2382 	case PCI_EXP_TYPE_ROOT_PORT:
2383 		return pci_acs_flags_enabled(pdev, acs_flags);
2384 	/*
2385 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2386 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2387 	 * capabilities, but only when they are part of a multifunction
2388 	 * device.  The footnote for section 6.12 indicates the specific
2389 	 * PCIe types included here.
2390 	 */
2391 	case PCI_EXP_TYPE_ENDPOINT:
2392 	case PCI_EXP_TYPE_UPSTREAM:
2393 	case PCI_EXP_TYPE_LEG_END:
2394 	case PCI_EXP_TYPE_RC_END:
2395 		if (!pdev->multifunction)
2396 			break;
2397 
2398 		return pci_acs_flags_enabled(pdev, acs_flags);
2399 	}
2400 
2401 	/*
2402 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2403 	 * to single function devices with the exception of downstream ports.
2404 	 */
2405 	return true;
2406 }
2407 
2408 /**
2409  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2410  * @start: starting downstream device
2411  * @end: ending upstream device or NULL to search to the root bus
2412  * @acs_flags: required flags
2413  *
2414  * Walk up a device tree from start to end testing PCI ACS support.  If
2415  * any step along the way does not support the required flags, return false.
2416  */
2417 bool pci_acs_path_enabled(struct pci_dev *start,
2418 			  struct pci_dev *end, u16 acs_flags)
2419 {
2420 	struct pci_dev *pdev, *parent = start;
2421 
2422 	do {
2423 		pdev = parent;
2424 
2425 		if (!pci_acs_enabled(pdev, acs_flags))
2426 			return false;
2427 
2428 		if (pci_is_root_bus(pdev->bus))
2429 			return (end == NULL);
2430 
2431 		parent = pdev->bus->self;
2432 	} while (pdev != end);
2433 
2434 	return true;
2435 }
2436 
2437 /**
2438  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2439  * @dev: the PCI device
2440  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2441  *
2442  * Perform INTx swizzling for a device behind one level of bridge.  This is
2443  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2444  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2445  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2446  * the PCI Express Base Specification, Revision 2.1)
2447  */
2448 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2449 {
2450 	int slot;
2451 
2452 	if (pci_ari_enabled(dev->bus))
2453 		slot = 0;
2454 	else
2455 		slot = PCI_SLOT(dev->devfn);
2456 
2457 	return (((pin - 1) + slot) % 4) + 1;
2458 }
2459 
2460 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2461 {
2462 	u8 pin;
2463 
2464 	pin = dev->pin;
2465 	if (!pin)
2466 		return -1;
2467 
2468 	while (!pci_is_root_bus(dev->bus)) {
2469 		pin = pci_swizzle_interrupt_pin(dev, pin);
2470 		dev = dev->bus->self;
2471 	}
2472 	*bridge = dev;
2473 	return pin;
2474 }
2475 
2476 /**
2477  * pci_common_swizzle - swizzle INTx all the way to root bridge
2478  * @dev: the PCI device
2479  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2480  *
2481  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2482  * bridges all the way up to a PCI root bus.
2483  */
2484 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2485 {
2486 	u8 pin = *pinp;
2487 
2488 	while (!pci_is_root_bus(dev->bus)) {
2489 		pin = pci_swizzle_interrupt_pin(dev, pin);
2490 		dev = dev->bus->self;
2491 	}
2492 	*pinp = pin;
2493 	return PCI_SLOT(dev->devfn);
2494 }
2495 
2496 /**
2497  *	pci_release_region - Release a PCI bar
2498  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2499  *	@bar: BAR to release
2500  *
2501  *	Releases the PCI I/O and memory resources previously reserved by a
2502  *	successful call to pci_request_region.  Call this function only
2503  *	after all use of the PCI regions has ceased.
2504  */
2505 void pci_release_region(struct pci_dev *pdev, int bar)
2506 {
2507 	struct pci_devres *dr;
2508 
2509 	if (pci_resource_len(pdev, bar) == 0)
2510 		return;
2511 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2512 		release_region(pci_resource_start(pdev, bar),
2513 				pci_resource_len(pdev, bar));
2514 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2515 		release_mem_region(pci_resource_start(pdev, bar),
2516 				pci_resource_len(pdev, bar));
2517 
2518 	dr = find_pci_dr(pdev);
2519 	if (dr)
2520 		dr->region_mask &= ~(1 << bar);
2521 }
2522 EXPORT_SYMBOL(pci_release_region);
2523 
2524 /**
2525  *	__pci_request_region - Reserved PCI I/O and memory resource
2526  *	@pdev: PCI device whose resources are to be reserved
2527  *	@bar: BAR to be reserved
2528  *	@res_name: Name to be associated with resource.
2529  *	@exclusive: whether the region access is exclusive or not
2530  *
2531  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2532  *	being reserved by owner @res_name.  Do not access any
2533  *	address inside the PCI regions unless this call returns
2534  *	successfully.
2535  *
2536  *	If @exclusive is set, then the region is marked so that userspace
2537  *	is explicitly not allowed to map the resource via /dev/mem or
2538  *	sysfs MMIO access.
2539  *
2540  *	Returns 0 on success, or %EBUSY on error.  A warning
2541  *	message is also printed on failure.
2542  */
2543 static int __pci_request_region(struct pci_dev *pdev, int bar,
2544 				const char *res_name, int exclusive)
2545 {
2546 	struct pci_devres *dr;
2547 
2548 	if (pci_resource_len(pdev, bar) == 0)
2549 		return 0;
2550 
2551 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2552 		if (!request_region(pci_resource_start(pdev, bar),
2553 			    pci_resource_len(pdev, bar), res_name))
2554 			goto err_out;
2555 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2556 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2557 					pci_resource_len(pdev, bar), res_name,
2558 					exclusive))
2559 			goto err_out;
2560 	}
2561 
2562 	dr = find_pci_dr(pdev);
2563 	if (dr)
2564 		dr->region_mask |= 1 << bar;
2565 
2566 	return 0;
2567 
2568 err_out:
2569 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2570 		 &pdev->resource[bar]);
2571 	return -EBUSY;
2572 }
2573 
2574 /**
2575  *	pci_request_region - Reserve PCI I/O and memory resource
2576  *	@pdev: PCI device whose resources are to be reserved
2577  *	@bar: BAR to be reserved
2578  *	@res_name: Name to be associated with resource
2579  *
2580  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2581  *	being reserved by owner @res_name.  Do not access any
2582  *	address inside the PCI regions unless this call returns
2583  *	successfully.
2584  *
2585  *	Returns 0 on success, or %EBUSY on error.  A warning
2586  *	message is also printed on failure.
2587  */
2588 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2589 {
2590 	return __pci_request_region(pdev, bar, res_name, 0);
2591 }
2592 EXPORT_SYMBOL(pci_request_region);
2593 
2594 /**
2595  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2596  *	@pdev: PCI device whose resources are to be reserved
2597  *	@bar: BAR to be reserved
2598  *	@res_name: Name to be associated with resource.
2599  *
2600  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2601  *	being reserved by owner @res_name.  Do not access any
2602  *	address inside the PCI regions unless this call returns
2603  *	successfully.
2604  *
2605  *	Returns 0 on success, or %EBUSY on error.  A warning
2606  *	message is also printed on failure.
2607  *
2608  *	The key difference that _exclusive makes it that userspace is
2609  *	explicitly not allowed to map the resource via /dev/mem or
2610  *	sysfs.
2611  */
2612 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2613 				 const char *res_name)
2614 {
2615 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2616 }
2617 EXPORT_SYMBOL(pci_request_region_exclusive);
2618 
2619 /**
2620  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2621  * @pdev: PCI device whose resources were previously reserved
2622  * @bars: Bitmask of BARs to be released
2623  *
2624  * Release selected PCI I/O and memory resources previously reserved.
2625  * Call this function only after all use of the PCI regions has ceased.
2626  */
2627 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2628 {
2629 	int i;
2630 
2631 	for (i = 0; i < 6; i++)
2632 		if (bars & (1 << i))
2633 			pci_release_region(pdev, i);
2634 }
2635 EXPORT_SYMBOL(pci_release_selected_regions);
2636 
2637 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2638 					  const char *res_name, int excl)
2639 {
2640 	int i;
2641 
2642 	for (i = 0; i < 6; i++)
2643 		if (bars & (1 << i))
2644 			if (__pci_request_region(pdev, i, res_name, excl))
2645 				goto err_out;
2646 	return 0;
2647 
2648 err_out:
2649 	while (--i >= 0)
2650 		if (bars & (1 << i))
2651 			pci_release_region(pdev, i);
2652 
2653 	return -EBUSY;
2654 }
2655 
2656 
2657 /**
2658  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2659  * @pdev: PCI device whose resources are to be reserved
2660  * @bars: Bitmask of BARs to be requested
2661  * @res_name: Name to be associated with resource
2662  */
2663 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2664 				 const char *res_name)
2665 {
2666 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2667 }
2668 EXPORT_SYMBOL(pci_request_selected_regions);
2669 
2670 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2671 					   const char *res_name)
2672 {
2673 	return __pci_request_selected_regions(pdev, bars, res_name,
2674 			IORESOURCE_EXCLUSIVE);
2675 }
2676 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2677 
2678 /**
2679  *	pci_release_regions - Release reserved PCI I/O and memory resources
2680  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2681  *
2682  *	Releases all PCI I/O and memory resources previously reserved by a
2683  *	successful call to pci_request_regions.  Call this function only
2684  *	after all use of the PCI regions has ceased.
2685  */
2686 
2687 void pci_release_regions(struct pci_dev *pdev)
2688 {
2689 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2690 }
2691 EXPORT_SYMBOL(pci_release_regions);
2692 
2693 /**
2694  *	pci_request_regions - Reserved PCI I/O and memory resources
2695  *	@pdev: PCI device whose resources are to be reserved
2696  *	@res_name: Name to be associated with resource.
2697  *
2698  *	Mark all PCI regions associated with PCI device @pdev as
2699  *	being reserved by owner @res_name.  Do not access any
2700  *	address inside the PCI regions unless this call returns
2701  *	successfully.
2702  *
2703  *	Returns 0 on success, or %EBUSY on error.  A warning
2704  *	message is also printed on failure.
2705  */
2706 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2707 {
2708 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2709 }
2710 EXPORT_SYMBOL(pci_request_regions);
2711 
2712 /**
2713  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2714  *	@pdev: PCI device whose resources are to be reserved
2715  *	@res_name: Name to be associated with resource.
2716  *
2717  *	Mark all PCI regions associated with PCI device @pdev as
2718  *	being reserved by owner @res_name.  Do not access any
2719  *	address inside the PCI regions unless this call returns
2720  *	successfully.
2721  *
2722  *	pci_request_regions_exclusive() will mark the region so that
2723  *	/dev/mem and the sysfs MMIO access will not be allowed.
2724  *
2725  *	Returns 0 on success, or %EBUSY on error.  A warning
2726  *	message is also printed on failure.
2727  */
2728 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2729 {
2730 	return pci_request_selected_regions_exclusive(pdev,
2731 					((1 << 6) - 1), res_name);
2732 }
2733 EXPORT_SYMBOL(pci_request_regions_exclusive);
2734 
2735 /**
2736  *	pci_remap_iospace - Remap the memory mapped I/O space
2737  *	@res: Resource describing the I/O space
2738  *	@phys_addr: physical address of range to be mapped
2739  *
2740  *	Remap the memory mapped I/O space described by the @res
2741  *	and the CPU physical address @phys_addr into virtual address space.
2742  *	Only architectures that have memory mapped IO functions defined
2743  *	(and the PCI_IOBASE value defined) should call this function.
2744  */
2745 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
2746 {
2747 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
2748 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
2749 
2750 	if (!(res->flags & IORESOURCE_IO))
2751 		return -EINVAL;
2752 
2753 	if (res->end > IO_SPACE_LIMIT)
2754 		return -EINVAL;
2755 
2756 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
2757 				  pgprot_device(PAGE_KERNEL));
2758 #else
2759 	/* this architecture does not have memory mapped I/O space,
2760 	   so this function should never be called */
2761 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
2762 	return -ENODEV;
2763 #endif
2764 }
2765 
2766 static void __pci_set_master(struct pci_dev *dev, bool enable)
2767 {
2768 	u16 old_cmd, cmd;
2769 
2770 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2771 	if (enable)
2772 		cmd = old_cmd | PCI_COMMAND_MASTER;
2773 	else
2774 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2775 	if (cmd != old_cmd) {
2776 		dev_dbg(&dev->dev, "%s bus mastering\n",
2777 			enable ? "enabling" : "disabling");
2778 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2779 	}
2780 	dev->is_busmaster = enable;
2781 }
2782 
2783 /**
2784  * pcibios_setup - process "pci=" kernel boot arguments
2785  * @str: string used to pass in "pci=" kernel boot arguments
2786  *
2787  * Process kernel boot arguments.  This is the default implementation.
2788  * Architecture specific implementations can override this as necessary.
2789  */
2790 char * __weak __init pcibios_setup(char *str)
2791 {
2792 	return str;
2793 }
2794 
2795 /**
2796  * pcibios_set_master - enable PCI bus-mastering for device dev
2797  * @dev: the PCI device to enable
2798  *
2799  * Enables PCI bus-mastering for the device.  This is the default
2800  * implementation.  Architecture specific implementations can override
2801  * this if necessary.
2802  */
2803 void __weak pcibios_set_master(struct pci_dev *dev)
2804 {
2805 	u8 lat;
2806 
2807 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2808 	if (pci_is_pcie(dev))
2809 		return;
2810 
2811 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2812 	if (lat < 16)
2813 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2814 	else if (lat > pcibios_max_latency)
2815 		lat = pcibios_max_latency;
2816 	else
2817 		return;
2818 
2819 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2820 }
2821 
2822 /**
2823  * pci_set_master - enables bus-mastering for device dev
2824  * @dev: the PCI device to enable
2825  *
2826  * Enables bus-mastering on the device and calls pcibios_set_master()
2827  * to do the needed arch specific settings.
2828  */
2829 void pci_set_master(struct pci_dev *dev)
2830 {
2831 	__pci_set_master(dev, true);
2832 	pcibios_set_master(dev);
2833 }
2834 EXPORT_SYMBOL(pci_set_master);
2835 
2836 /**
2837  * pci_clear_master - disables bus-mastering for device dev
2838  * @dev: the PCI device to disable
2839  */
2840 void pci_clear_master(struct pci_dev *dev)
2841 {
2842 	__pci_set_master(dev, false);
2843 }
2844 EXPORT_SYMBOL(pci_clear_master);
2845 
2846 /**
2847  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2848  * @dev: the PCI device for which MWI is to be enabled
2849  *
2850  * Helper function for pci_set_mwi.
2851  * Originally copied from drivers/net/acenic.c.
2852  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2853  *
2854  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2855  */
2856 int pci_set_cacheline_size(struct pci_dev *dev)
2857 {
2858 	u8 cacheline_size;
2859 
2860 	if (!pci_cache_line_size)
2861 		return -EINVAL;
2862 
2863 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2864 	   equal to or multiple of the right value. */
2865 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2866 	if (cacheline_size >= pci_cache_line_size &&
2867 	    (cacheline_size % pci_cache_line_size) == 0)
2868 		return 0;
2869 
2870 	/* Write the correct value. */
2871 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2872 	/* Read it back. */
2873 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2874 	if (cacheline_size == pci_cache_line_size)
2875 		return 0;
2876 
2877 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
2878 		   pci_cache_line_size << 2);
2879 
2880 	return -EINVAL;
2881 }
2882 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2883 
2884 /**
2885  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2886  * @dev: the PCI device for which MWI is enabled
2887  *
2888  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2889  *
2890  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2891  */
2892 int pci_set_mwi(struct pci_dev *dev)
2893 {
2894 #ifdef PCI_DISABLE_MWI
2895 	return 0;
2896 #else
2897 	int rc;
2898 	u16 cmd;
2899 
2900 	rc = pci_set_cacheline_size(dev);
2901 	if (rc)
2902 		return rc;
2903 
2904 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2905 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
2906 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2907 		cmd |= PCI_COMMAND_INVALIDATE;
2908 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2909 	}
2910 	return 0;
2911 #endif
2912 }
2913 EXPORT_SYMBOL(pci_set_mwi);
2914 
2915 /**
2916  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2917  * @dev: the PCI device for which MWI is enabled
2918  *
2919  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2920  * Callers are not required to check the return value.
2921  *
2922  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2923  */
2924 int pci_try_set_mwi(struct pci_dev *dev)
2925 {
2926 #ifdef PCI_DISABLE_MWI
2927 	return 0;
2928 #else
2929 	return pci_set_mwi(dev);
2930 #endif
2931 }
2932 EXPORT_SYMBOL(pci_try_set_mwi);
2933 
2934 /**
2935  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2936  * @dev: the PCI device to disable
2937  *
2938  * Disables PCI Memory-Write-Invalidate transaction on the device
2939  */
2940 void pci_clear_mwi(struct pci_dev *dev)
2941 {
2942 #ifndef PCI_DISABLE_MWI
2943 	u16 cmd;
2944 
2945 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2946 	if (cmd & PCI_COMMAND_INVALIDATE) {
2947 		cmd &= ~PCI_COMMAND_INVALIDATE;
2948 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2949 	}
2950 #endif
2951 }
2952 EXPORT_SYMBOL(pci_clear_mwi);
2953 
2954 /**
2955  * pci_intx - enables/disables PCI INTx for device dev
2956  * @pdev: the PCI device to operate on
2957  * @enable: boolean: whether to enable or disable PCI INTx
2958  *
2959  * Enables/disables PCI INTx for device dev
2960  */
2961 void pci_intx(struct pci_dev *pdev, int enable)
2962 {
2963 	u16 pci_command, new;
2964 
2965 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2966 
2967 	if (enable)
2968 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2969 	else
2970 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2971 
2972 	if (new != pci_command) {
2973 		struct pci_devres *dr;
2974 
2975 		pci_write_config_word(pdev, PCI_COMMAND, new);
2976 
2977 		dr = find_pci_dr(pdev);
2978 		if (dr && !dr->restore_intx) {
2979 			dr->restore_intx = 1;
2980 			dr->orig_intx = !enable;
2981 		}
2982 	}
2983 }
2984 EXPORT_SYMBOL_GPL(pci_intx);
2985 
2986 /**
2987  * pci_intx_mask_supported - probe for INTx masking support
2988  * @dev: the PCI device to operate on
2989  *
2990  * Check if the device dev support INTx masking via the config space
2991  * command word.
2992  */
2993 bool pci_intx_mask_supported(struct pci_dev *dev)
2994 {
2995 	bool mask_supported = false;
2996 	u16 orig, new;
2997 
2998 	if (dev->broken_intx_masking)
2999 		return false;
3000 
3001 	pci_cfg_access_lock(dev);
3002 
3003 	pci_read_config_word(dev, PCI_COMMAND, &orig);
3004 	pci_write_config_word(dev, PCI_COMMAND,
3005 			      orig ^ PCI_COMMAND_INTX_DISABLE);
3006 	pci_read_config_word(dev, PCI_COMMAND, &new);
3007 
3008 	/*
3009 	 * There's no way to protect against hardware bugs or detect them
3010 	 * reliably, but as long as we know what the value should be, let's
3011 	 * go ahead and check it.
3012 	 */
3013 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3014 		dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3015 			orig, new);
3016 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3017 		mask_supported = true;
3018 		pci_write_config_word(dev, PCI_COMMAND, orig);
3019 	}
3020 
3021 	pci_cfg_access_unlock(dev);
3022 	return mask_supported;
3023 }
3024 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3025 
3026 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3027 {
3028 	struct pci_bus *bus = dev->bus;
3029 	bool mask_updated = true;
3030 	u32 cmd_status_dword;
3031 	u16 origcmd, newcmd;
3032 	unsigned long flags;
3033 	bool irq_pending;
3034 
3035 	/*
3036 	 * We do a single dword read to retrieve both command and status.
3037 	 * Document assumptions that make this possible.
3038 	 */
3039 	BUILD_BUG_ON(PCI_COMMAND % 4);
3040 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3041 
3042 	raw_spin_lock_irqsave(&pci_lock, flags);
3043 
3044 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3045 
3046 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3047 
3048 	/*
3049 	 * Check interrupt status register to see whether our device
3050 	 * triggered the interrupt (when masking) or the next IRQ is
3051 	 * already pending (when unmasking).
3052 	 */
3053 	if (mask != irq_pending) {
3054 		mask_updated = false;
3055 		goto done;
3056 	}
3057 
3058 	origcmd = cmd_status_dword;
3059 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3060 	if (mask)
3061 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3062 	if (newcmd != origcmd)
3063 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3064 
3065 done:
3066 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3067 
3068 	return mask_updated;
3069 }
3070 
3071 /**
3072  * pci_check_and_mask_intx - mask INTx on pending interrupt
3073  * @dev: the PCI device to operate on
3074  *
3075  * Check if the device dev has its INTx line asserted, mask it and
3076  * return true in that case. False is returned if not interrupt was
3077  * pending.
3078  */
3079 bool pci_check_and_mask_intx(struct pci_dev *dev)
3080 {
3081 	return pci_check_and_set_intx_mask(dev, true);
3082 }
3083 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3084 
3085 /**
3086  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3087  * @dev: the PCI device to operate on
3088  *
3089  * Check if the device dev has its INTx line asserted, unmask it if not
3090  * and return true. False is returned and the mask remains active if
3091  * there was still an interrupt pending.
3092  */
3093 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3094 {
3095 	return pci_check_and_set_intx_mask(dev, false);
3096 }
3097 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3098 
3099 /**
3100  * pci_msi_off - disables any MSI or MSI-X capabilities
3101  * @dev: the PCI device to operate on
3102  *
3103  * If you want to use MSI, see pci_enable_msi() and friends.
3104  * This is a lower-level primitive that allows us to disable
3105  * MSI operation at the device level.
3106  */
3107 void pci_msi_off(struct pci_dev *dev)
3108 {
3109 	int pos;
3110 	u16 control;
3111 
3112 	/*
3113 	 * This looks like it could go in msi.c, but we need it even when
3114 	 * CONFIG_PCI_MSI=n.  For the same reason, we can't use
3115 	 * dev->msi_cap or dev->msix_cap here.
3116 	 */
3117 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3118 	if (pos) {
3119 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3120 		control &= ~PCI_MSI_FLAGS_ENABLE;
3121 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3122 	}
3123 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3124 	if (pos) {
3125 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3126 		control &= ~PCI_MSIX_FLAGS_ENABLE;
3127 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3128 	}
3129 }
3130 EXPORT_SYMBOL_GPL(pci_msi_off);
3131 
3132 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3133 {
3134 	return dma_set_max_seg_size(&dev->dev, size);
3135 }
3136 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3137 
3138 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3139 {
3140 	return dma_set_seg_boundary(&dev->dev, mask);
3141 }
3142 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3143 
3144 /**
3145  * pci_wait_for_pending_transaction - waits for pending transaction
3146  * @dev: the PCI device to operate on
3147  *
3148  * Return 0 if transaction is pending 1 otherwise.
3149  */
3150 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3151 {
3152 	if (!pci_is_pcie(dev))
3153 		return 1;
3154 
3155 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3156 				    PCI_EXP_DEVSTA_TRPND);
3157 }
3158 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3159 
3160 static int pcie_flr(struct pci_dev *dev, int probe)
3161 {
3162 	u32 cap;
3163 
3164 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3165 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3166 		return -ENOTTY;
3167 
3168 	if (probe)
3169 		return 0;
3170 
3171 	if (!pci_wait_for_pending_transaction(dev))
3172 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3173 
3174 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3175 	msleep(100);
3176 	return 0;
3177 }
3178 
3179 static int pci_af_flr(struct pci_dev *dev, int probe)
3180 {
3181 	int pos;
3182 	u8 cap;
3183 
3184 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3185 	if (!pos)
3186 		return -ENOTTY;
3187 
3188 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3189 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3190 		return -ENOTTY;
3191 
3192 	if (probe)
3193 		return 0;
3194 
3195 	/*
3196 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3197 	 * is used, so we use the conrol offset rather than status and shift
3198 	 * the test bit to match.
3199 	 */
3200 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3201 				 PCI_AF_STATUS_TP << 8))
3202 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3203 
3204 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3205 	msleep(100);
3206 	return 0;
3207 }
3208 
3209 /**
3210  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3211  * @dev: Device to reset.
3212  * @probe: If set, only check if the device can be reset this way.
3213  *
3214  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3215  * unset, it will be reinitialized internally when going from PCI_D3hot to
3216  * PCI_D0.  If that's the case and the device is not in a low-power state
3217  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3218  *
3219  * NOTE: This causes the caller to sleep for twice the device power transition
3220  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3221  * by default (i.e. unless the @dev's d3_delay field has a different value).
3222  * Moreover, only devices in D0 can be reset by this function.
3223  */
3224 static int pci_pm_reset(struct pci_dev *dev, int probe)
3225 {
3226 	u16 csr;
3227 
3228 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3229 		return -ENOTTY;
3230 
3231 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3232 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3233 		return -ENOTTY;
3234 
3235 	if (probe)
3236 		return 0;
3237 
3238 	if (dev->current_state != PCI_D0)
3239 		return -EINVAL;
3240 
3241 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3242 	csr |= PCI_D3hot;
3243 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3244 	pci_dev_d3_sleep(dev);
3245 
3246 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3247 	csr |= PCI_D0;
3248 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3249 	pci_dev_d3_sleep(dev);
3250 
3251 	return 0;
3252 }
3253 
3254 void pci_reset_secondary_bus(struct pci_dev *dev)
3255 {
3256 	u16 ctrl;
3257 
3258 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3259 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3260 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3261 	/*
3262 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3263 	 * this to 2ms to ensure that we meet the minimum requirement.
3264 	 */
3265 	msleep(2);
3266 
3267 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3268 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3269 
3270 	/*
3271 	 * Trhfa for conventional PCI is 2^25 clock cycles.
3272 	 * Assuming a minimum 33MHz clock this results in a 1s
3273 	 * delay before we can consider subordinate devices to
3274 	 * be re-initialized.  PCIe has some ways to shorten this,
3275 	 * but we don't make use of them yet.
3276 	 */
3277 	ssleep(1);
3278 }
3279 
3280 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3281 {
3282 	pci_reset_secondary_bus(dev);
3283 }
3284 
3285 /**
3286  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3287  * @dev: Bridge device
3288  *
3289  * Use the bridge control register to assert reset on the secondary bus.
3290  * Devices on the secondary bus are left in power-on state.
3291  */
3292 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3293 {
3294 	pcibios_reset_secondary_bus(dev);
3295 }
3296 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3297 
3298 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3299 {
3300 	struct pci_dev *pdev;
3301 
3302 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3303 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3304 		return -ENOTTY;
3305 
3306 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3307 		if (pdev != dev)
3308 			return -ENOTTY;
3309 
3310 	if (probe)
3311 		return 0;
3312 
3313 	pci_reset_bridge_secondary_bus(dev->bus->self);
3314 
3315 	return 0;
3316 }
3317 
3318 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3319 {
3320 	int rc = -ENOTTY;
3321 
3322 	if (!hotplug || !try_module_get(hotplug->ops->owner))
3323 		return rc;
3324 
3325 	if (hotplug->ops->reset_slot)
3326 		rc = hotplug->ops->reset_slot(hotplug, probe);
3327 
3328 	module_put(hotplug->ops->owner);
3329 
3330 	return rc;
3331 }
3332 
3333 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3334 {
3335 	struct pci_dev *pdev;
3336 
3337 	if (dev->subordinate || !dev->slot ||
3338 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3339 		return -ENOTTY;
3340 
3341 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3342 		if (pdev != dev && pdev->slot == dev->slot)
3343 			return -ENOTTY;
3344 
3345 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3346 }
3347 
3348 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3349 {
3350 	int rc;
3351 
3352 	might_sleep();
3353 
3354 	rc = pci_dev_specific_reset(dev, probe);
3355 	if (rc != -ENOTTY)
3356 		goto done;
3357 
3358 	rc = pcie_flr(dev, probe);
3359 	if (rc != -ENOTTY)
3360 		goto done;
3361 
3362 	rc = pci_af_flr(dev, probe);
3363 	if (rc != -ENOTTY)
3364 		goto done;
3365 
3366 	rc = pci_pm_reset(dev, probe);
3367 	if (rc != -ENOTTY)
3368 		goto done;
3369 
3370 	rc = pci_dev_reset_slot_function(dev, probe);
3371 	if (rc != -ENOTTY)
3372 		goto done;
3373 
3374 	rc = pci_parent_bus_reset(dev, probe);
3375 done:
3376 	return rc;
3377 }
3378 
3379 static void pci_dev_lock(struct pci_dev *dev)
3380 {
3381 	pci_cfg_access_lock(dev);
3382 	/* block PM suspend, driver probe, etc. */
3383 	device_lock(&dev->dev);
3384 }
3385 
3386 /* Return 1 on successful lock, 0 on contention */
3387 static int pci_dev_trylock(struct pci_dev *dev)
3388 {
3389 	if (pci_cfg_access_trylock(dev)) {
3390 		if (device_trylock(&dev->dev))
3391 			return 1;
3392 		pci_cfg_access_unlock(dev);
3393 	}
3394 
3395 	return 0;
3396 }
3397 
3398 static void pci_dev_unlock(struct pci_dev *dev)
3399 {
3400 	device_unlock(&dev->dev);
3401 	pci_cfg_access_unlock(dev);
3402 }
3403 
3404 /**
3405  * pci_reset_notify - notify device driver of reset
3406  * @dev: device to be notified of reset
3407  * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3408  *           completed
3409  *
3410  * Must be called prior to device access being disabled and after device
3411  * access is restored.
3412  */
3413 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3414 {
3415 	const struct pci_error_handlers *err_handler =
3416 			dev->driver ? dev->driver->err_handler : NULL;
3417 	if (err_handler && err_handler->reset_notify)
3418 		err_handler->reset_notify(dev, prepare);
3419 }
3420 
3421 static void pci_dev_save_and_disable(struct pci_dev *dev)
3422 {
3423 	pci_reset_notify(dev, true);
3424 
3425 	/*
3426 	 * Wake-up device prior to save.  PM registers default to D0 after
3427 	 * reset and a simple register restore doesn't reliably return
3428 	 * to a non-D0 state anyway.
3429 	 */
3430 	pci_set_power_state(dev, PCI_D0);
3431 
3432 	pci_save_state(dev);
3433 	/*
3434 	 * Disable the device by clearing the Command register, except for
3435 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
3436 	 * BARs, but also prevents the device from being Bus Master, preventing
3437 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3438 	 * compliant devices, INTx-disable prevents legacy interrupts.
3439 	 */
3440 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3441 }
3442 
3443 static void pci_dev_restore(struct pci_dev *dev)
3444 {
3445 	pci_restore_state(dev);
3446 	pci_reset_notify(dev, false);
3447 }
3448 
3449 static int pci_dev_reset(struct pci_dev *dev, int probe)
3450 {
3451 	int rc;
3452 
3453 	if (!probe)
3454 		pci_dev_lock(dev);
3455 
3456 	rc = __pci_dev_reset(dev, probe);
3457 
3458 	if (!probe)
3459 		pci_dev_unlock(dev);
3460 
3461 	return rc;
3462 }
3463 
3464 /**
3465  * __pci_reset_function - reset a PCI device function
3466  * @dev: PCI device to reset
3467  *
3468  * Some devices allow an individual function to be reset without affecting
3469  * other functions in the same device.  The PCI device must be responsive
3470  * to PCI config space in order to use this function.
3471  *
3472  * The device function is presumed to be unused when this function is called.
3473  * Resetting the device will make the contents of PCI configuration space
3474  * random, so any caller of this must be prepared to reinitialise the
3475  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3476  * etc.
3477  *
3478  * Returns 0 if the device function was successfully reset or negative if the
3479  * device doesn't support resetting a single function.
3480  */
3481 int __pci_reset_function(struct pci_dev *dev)
3482 {
3483 	return pci_dev_reset(dev, 0);
3484 }
3485 EXPORT_SYMBOL_GPL(__pci_reset_function);
3486 
3487 /**
3488  * __pci_reset_function_locked - reset a PCI device function while holding
3489  * the @dev mutex lock.
3490  * @dev: PCI device to reset
3491  *
3492  * Some devices allow an individual function to be reset without affecting
3493  * other functions in the same device.  The PCI device must be responsive
3494  * to PCI config space in order to use this function.
3495  *
3496  * The device function is presumed to be unused and the caller is holding
3497  * the device mutex lock when this function is called.
3498  * Resetting the device will make the contents of PCI configuration space
3499  * random, so any caller of this must be prepared to reinitialise the
3500  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3501  * etc.
3502  *
3503  * Returns 0 if the device function was successfully reset or negative if the
3504  * device doesn't support resetting a single function.
3505  */
3506 int __pci_reset_function_locked(struct pci_dev *dev)
3507 {
3508 	return __pci_dev_reset(dev, 0);
3509 }
3510 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3511 
3512 /**
3513  * pci_probe_reset_function - check whether the device can be safely reset
3514  * @dev: PCI device to reset
3515  *
3516  * Some devices allow an individual function to be reset without affecting
3517  * other functions in the same device.  The PCI device must be responsive
3518  * to PCI config space in order to use this function.
3519  *
3520  * Returns 0 if the device function can be reset or negative if the
3521  * device doesn't support resetting a single function.
3522  */
3523 int pci_probe_reset_function(struct pci_dev *dev)
3524 {
3525 	return pci_dev_reset(dev, 1);
3526 }
3527 
3528 /**
3529  * pci_reset_function - quiesce and reset a PCI device function
3530  * @dev: PCI device to reset
3531  *
3532  * Some devices allow an individual function to be reset without affecting
3533  * other functions in the same device.  The PCI device must be responsive
3534  * to PCI config space in order to use this function.
3535  *
3536  * This function does not just reset the PCI portion of a device, but
3537  * clears all the state associated with the device.  This function differs
3538  * from __pci_reset_function in that it saves and restores device state
3539  * over the reset.
3540  *
3541  * Returns 0 if the device function was successfully reset or negative if the
3542  * device doesn't support resetting a single function.
3543  */
3544 int pci_reset_function(struct pci_dev *dev)
3545 {
3546 	int rc;
3547 
3548 	rc = pci_dev_reset(dev, 1);
3549 	if (rc)
3550 		return rc;
3551 
3552 	pci_dev_save_and_disable(dev);
3553 
3554 	rc = pci_dev_reset(dev, 0);
3555 
3556 	pci_dev_restore(dev);
3557 
3558 	return rc;
3559 }
3560 EXPORT_SYMBOL_GPL(pci_reset_function);
3561 
3562 /**
3563  * pci_try_reset_function - quiesce and reset a PCI device function
3564  * @dev: PCI device to reset
3565  *
3566  * Same as above, except return -EAGAIN if unable to lock device.
3567  */
3568 int pci_try_reset_function(struct pci_dev *dev)
3569 {
3570 	int rc;
3571 
3572 	rc = pci_dev_reset(dev, 1);
3573 	if (rc)
3574 		return rc;
3575 
3576 	pci_dev_save_and_disable(dev);
3577 
3578 	if (pci_dev_trylock(dev)) {
3579 		rc = __pci_dev_reset(dev, 0);
3580 		pci_dev_unlock(dev);
3581 	} else
3582 		rc = -EAGAIN;
3583 
3584 	pci_dev_restore(dev);
3585 
3586 	return rc;
3587 }
3588 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3589 
3590 /* Do any devices on or below this bus prevent a bus reset? */
3591 static bool pci_bus_resetable(struct pci_bus *bus)
3592 {
3593 	struct pci_dev *dev;
3594 
3595 	list_for_each_entry(dev, &bus->devices, bus_list) {
3596 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3597 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3598 			return false;
3599 	}
3600 
3601 	return true;
3602 }
3603 
3604 /* Lock devices from the top of the tree down */
3605 static void pci_bus_lock(struct pci_bus *bus)
3606 {
3607 	struct pci_dev *dev;
3608 
3609 	list_for_each_entry(dev, &bus->devices, bus_list) {
3610 		pci_dev_lock(dev);
3611 		if (dev->subordinate)
3612 			pci_bus_lock(dev->subordinate);
3613 	}
3614 }
3615 
3616 /* Unlock devices from the bottom of the tree up */
3617 static void pci_bus_unlock(struct pci_bus *bus)
3618 {
3619 	struct pci_dev *dev;
3620 
3621 	list_for_each_entry(dev, &bus->devices, bus_list) {
3622 		if (dev->subordinate)
3623 			pci_bus_unlock(dev->subordinate);
3624 		pci_dev_unlock(dev);
3625 	}
3626 }
3627 
3628 /* Return 1 on successful lock, 0 on contention */
3629 static int pci_bus_trylock(struct pci_bus *bus)
3630 {
3631 	struct pci_dev *dev;
3632 
3633 	list_for_each_entry(dev, &bus->devices, bus_list) {
3634 		if (!pci_dev_trylock(dev))
3635 			goto unlock;
3636 		if (dev->subordinate) {
3637 			if (!pci_bus_trylock(dev->subordinate)) {
3638 				pci_dev_unlock(dev);
3639 				goto unlock;
3640 			}
3641 		}
3642 	}
3643 	return 1;
3644 
3645 unlock:
3646 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3647 		if (dev->subordinate)
3648 			pci_bus_unlock(dev->subordinate);
3649 		pci_dev_unlock(dev);
3650 	}
3651 	return 0;
3652 }
3653 
3654 /* Do any devices on or below this slot prevent a bus reset? */
3655 static bool pci_slot_resetable(struct pci_slot *slot)
3656 {
3657 	struct pci_dev *dev;
3658 
3659 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3660 		if (!dev->slot || dev->slot != slot)
3661 			continue;
3662 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3663 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3664 			return false;
3665 	}
3666 
3667 	return true;
3668 }
3669 
3670 /* Lock devices from the top of the tree down */
3671 static void pci_slot_lock(struct pci_slot *slot)
3672 {
3673 	struct pci_dev *dev;
3674 
3675 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3676 		if (!dev->slot || dev->slot != slot)
3677 			continue;
3678 		pci_dev_lock(dev);
3679 		if (dev->subordinate)
3680 			pci_bus_lock(dev->subordinate);
3681 	}
3682 }
3683 
3684 /* Unlock devices from the bottom of the tree up */
3685 static void pci_slot_unlock(struct pci_slot *slot)
3686 {
3687 	struct pci_dev *dev;
3688 
3689 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3690 		if (!dev->slot || dev->slot != slot)
3691 			continue;
3692 		if (dev->subordinate)
3693 			pci_bus_unlock(dev->subordinate);
3694 		pci_dev_unlock(dev);
3695 	}
3696 }
3697 
3698 /* Return 1 on successful lock, 0 on contention */
3699 static int pci_slot_trylock(struct pci_slot *slot)
3700 {
3701 	struct pci_dev *dev;
3702 
3703 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3704 		if (!dev->slot || dev->slot != slot)
3705 			continue;
3706 		if (!pci_dev_trylock(dev))
3707 			goto unlock;
3708 		if (dev->subordinate) {
3709 			if (!pci_bus_trylock(dev->subordinate)) {
3710 				pci_dev_unlock(dev);
3711 				goto unlock;
3712 			}
3713 		}
3714 	}
3715 	return 1;
3716 
3717 unlock:
3718 	list_for_each_entry_continue_reverse(dev,
3719 					     &slot->bus->devices, bus_list) {
3720 		if (!dev->slot || dev->slot != slot)
3721 			continue;
3722 		if (dev->subordinate)
3723 			pci_bus_unlock(dev->subordinate);
3724 		pci_dev_unlock(dev);
3725 	}
3726 	return 0;
3727 }
3728 
3729 /* Save and disable devices from the top of the tree down */
3730 static void pci_bus_save_and_disable(struct pci_bus *bus)
3731 {
3732 	struct pci_dev *dev;
3733 
3734 	list_for_each_entry(dev, &bus->devices, bus_list) {
3735 		pci_dev_save_and_disable(dev);
3736 		if (dev->subordinate)
3737 			pci_bus_save_and_disable(dev->subordinate);
3738 	}
3739 }
3740 
3741 /*
3742  * Restore devices from top of the tree down - parent bridges need to be
3743  * restored before we can get to subordinate devices.
3744  */
3745 static void pci_bus_restore(struct pci_bus *bus)
3746 {
3747 	struct pci_dev *dev;
3748 
3749 	list_for_each_entry(dev, &bus->devices, bus_list) {
3750 		pci_dev_restore(dev);
3751 		if (dev->subordinate)
3752 			pci_bus_restore(dev->subordinate);
3753 	}
3754 }
3755 
3756 /* Save and disable devices from the top of the tree down */
3757 static void pci_slot_save_and_disable(struct pci_slot *slot)
3758 {
3759 	struct pci_dev *dev;
3760 
3761 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3762 		if (!dev->slot || dev->slot != slot)
3763 			continue;
3764 		pci_dev_save_and_disable(dev);
3765 		if (dev->subordinate)
3766 			pci_bus_save_and_disable(dev->subordinate);
3767 	}
3768 }
3769 
3770 /*
3771  * Restore devices from top of the tree down - parent bridges need to be
3772  * restored before we can get to subordinate devices.
3773  */
3774 static void pci_slot_restore(struct pci_slot *slot)
3775 {
3776 	struct pci_dev *dev;
3777 
3778 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3779 		if (!dev->slot || dev->slot != slot)
3780 			continue;
3781 		pci_dev_restore(dev);
3782 		if (dev->subordinate)
3783 			pci_bus_restore(dev->subordinate);
3784 	}
3785 }
3786 
3787 static int pci_slot_reset(struct pci_slot *slot, int probe)
3788 {
3789 	int rc;
3790 
3791 	if (!slot || !pci_slot_resetable(slot))
3792 		return -ENOTTY;
3793 
3794 	if (!probe)
3795 		pci_slot_lock(slot);
3796 
3797 	might_sleep();
3798 
3799 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3800 
3801 	if (!probe)
3802 		pci_slot_unlock(slot);
3803 
3804 	return rc;
3805 }
3806 
3807 /**
3808  * pci_probe_reset_slot - probe whether a PCI slot can be reset
3809  * @slot: PCI slot to probe
3810  *
3811  * Return 0 if slot can be reset, negative if a slot reset is not supported.
3812  */
3813 int pci_probe_reset_slot(struct pci_slot *slot)
3814 {
3815 	return pci_slot_reset(slot, 1);
3816 }
3817 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3818 
3819 /**
3820  * pci_reset_slot - reset a PCI slot
3821  * @slot: PCI slot to reset
3822  *
3823  * A PCI bus may host multiple slots, each slot may support a reset mechanism
3824  * independent of other slots.  For instance, some slots may support slot power
3825  * control.  In the case of a 1:1 bus to slot architecture, this function may
3826  * wrap the bus reset to avoid spurious slot related events such as hotplug.
3827  * Generally a slot reset should be attempted before a bus reset.  All of the
3828  * function of the slot and any subordinate buses behind the slot are reset
3829  * through this function.  PCI config space of all devices in the slot and
3830  * behind the slot is saved before and restored after reset.
3831  *
3832  * Return 0 on success, non-zero on error.
3833  */
3834 int pci_reset_slot(struct pci_slot *slot)
3835 {
3836 	int rc;
3837 
3838 	rc = pci_slot_reset(slot, 1);
3839 	if (rc)
3840 		return rc;
3841 
3842 	pci_slot_save_and_disable(slot);
3843 
3844 	rc = pci_slot_reset(slot, 0);
3845 
3846 	pci_slot_restore(slot);
3847 
3848 	return rc;
3849 }
3850 EXPORT_SYMBOL_GPL(pci_reset_slot);
3851 
3852 /**
3853  * pci_try_reset_slot - Try to reset a PCI slot
3854  * @slot: PCI slot to reset
3855  *
3856  * Same as above except return -EAGAIN if the slot cannot be locked
3857  */
3858 int pci_try_reset_slot(struct pci_slot *slot)
3859 {
3860 	int rc;
3861 
3862 	rc = pci_slot_reset(slot, 1);
3863 	if (rc)
3864 		return rc;
3865 
3866 	pci_slot_save_and_disable(slot);
3867 
3868 	if (pci_slot_trylock(slot)) {
3869 		might_sleep();
3870 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3871 		pci_slot_unlock(slot);
3872 	} else
3873 		rc = -EAGAIN;
3874 
3875 	pci_slot_restore(slot);
3876 
3877 	return rc;
3878 }
3879 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3880 
3881 static int pci_bus_reset(struct pci_bus *bus, int probe)
3882 {
3883 	if (!bus->self || !pci_bus_resetable(bus))
3884 		return -ENOTTY;
3885 
3886 	if (probe)
3887 		return 0;
3888 
3889 	pci_bus_lock(bus);
3890 
3891 	might_sleep();
3892 
3893 	pci_reset_bridge_secondary_bus(bus->self);
3894 
3895 	pci_bus_unlock(bus);
3896 
3897 	return 0;
3898 }
3899 
3900 /**
3901  * pci_probe_reset_bus - probe whether a PCI bus can be reset
3902  * @bus: PCI bus to probe
3903  *
3904  * Return 0 if bus can be reset, negative if a bus reset is not supported.
3905  */
3906 int pci_probe_reset_bus(struct pci_bus *bus)
3907 {
3908 	return pci_bus_reset(bus, 1);
3909 }
3910 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3911 
3912 /**
3913  * pci_reset_bus - reset a PCI bus
3914  * @bus: top level PCI bus to reset
3915  *
3916  * Do a bus reset on the given bus and any subordinate buses, saving
3917  * and restoring state of all devices.
3918  *
3919  * Return 0 on success, non-zero on error.
3920  */
3921 int pci_reset_bus(struct pci_bus *bus)
3922 {
3923 	int rc;
3924 
3925 	rc = pci_bus_reset(bus, 1);
3926 	if (rc)
3927 		return rc;
3928 
3929 	pci_bus_save_and_disable(bus);
3930 
3931 	rc = pci_bus_reset(bus, 0);
3932 
3933 	pci_bus_restore(bus);
3934 
3935 	return rc;
3936 }
3937 EXPORT_SYMBOL_GPL(pci_reset_bus);
3938 
3939 /**
3940  * pci_try_reset_bus - Try to reset a PCI bus
3941  * @bus: top level PCI bus to reset
3942  *
3943  * Same as above except return -EAGAIN if the bus cannot be locked
3944  */
3945 int pci_try_reset_bus(struct pci_bus *bus)
3946 {
3947 	int rc;
3948 
3949 	rc = pci_bus_reset(bus, 1);
3950 	if (rc)
3951 		return rc;
3952 
3953 	pci_bus_save_and_disable(bus);
3954 
3955 	if (pci_bus_trylock(bus)) {
3956 		might_sleep();
3957 		pci_reset_bridge_secondary_bus(bus->self);
3958 		pci_bus_unlock(bus);
3959 	} else
3960 		rc = -EAGAIN;
3961 
3962 	pci_bus_restore(bus);
3963 
3964 	return rc;
3965 }
3966 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3967 
3968 /**
3969  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3970  * @dev: PCI device to query
3971  *
3972  * Returns mmrbc: maximum designed memory read count in bytes
3973  *    or appropriate error value.
3974  */
3975 int pcix_get_max_mmrbc(struct pci_dev *dev)
3976 {
3977 	int cap;
3978 	u32 stat;
3979 
3980 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3981 	if (!cap)
3982 		return -EINVAL;
3983 
3984 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3985 		return -EINVAL;
3986 
3987 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3988 }
3989 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3990 
3991 /**
3992  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3993  * @dev: PCI device to query
3994  *
3995  * Returns mmrbc: maximum memory read count in bytes
3996  *    or appropriate error value.
3997  */
3998 int pcix_get_mmrbc(struct pci_dev *dev)
3999 {
4000 	int cap;
4001 	u16 cmd;
4002 
4003 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4004 	if (!cap)
4005 		return -EINVAL;
4006 
4007 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4008 		return -EINVAL;
4009 
4010 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4011 }
4012 EXPORT_SYMBOL(pcix_get_mmrbc);
4013 
4014 /**
4015  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4016  * @dev: PCI device to query
4017  * @mmrbc: maximum memory read count in bytes
4018  *    valid values are 512, 1024, 2048, 4096
4019  *
4020  * If possible sets maximum memory read byte count, some bridges have erratas
4021  * that prevent this.
4022  */
4023 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4024 {
4025 	int cap;
4026 	u32 stat, v, o;
4027 	u16 cmd;
4028 
4029 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4030 		return -EINVAL;
4031 
4032 	v = ffs(mmrbc) - 10;
4033 
4034 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4035 	if (!cap)
4036 		return -EINVAL;
4037 
4038 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4039 		return -EINVAL;
4040 
4041 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4042 		return -E2BIG;
4043 
4044 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4045 		return -EINVAL;
4046 
4047 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4048 	if (o != v) {
4049 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4050 			return -EIO;
4051 
4052 		cmd &= ~PCI_X_CMD_MAX_READ;
4053 		cmd |= v << 2;
4054 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4055 			return -EIO;
4056 	}
4057 	return 0;
4058 }
4059 EXPORT_SYMBOL(pcix_set_mmrbc);
4060 
4061 /**
4062  * pcie_get_readrq - get PCI Express read request size
4063  * @dev: PCI device to query
4064  *
4065  * Returns maximum memory read request in bytes
4066  *    or appropriate error value.
4067  */
4068 int pcie_get_readrq(struct pci_dev *dev)
4069 {
4070 	u16 ctl;
4071 
4072 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4073 
4074 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4075 }
4076 EXPORT_SYMBOL(pcie_get_readrq);
4077 
4078 /**
4079  * pcie_set_readrq - set PCI Express maximum memory read request
4080  * @dev: PCI device to query
4081  * @rq: maximum memory read count in bytes
4082  *    valid values are 128, 256, 512, 1024, 2048, 4096
4083  *
4084  * If possible sets maximum memory read request in bytes
4085  */
4086 int pcie_set_readrq(struct pci_dev *dev, int rq)
4087 {
4088 	u16 v;
4089 
4090 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4091 		return -EINVAL;
4092 
4093 	/*
4094 	 * If using the "performance" PCIe config, we clamp the
4095 	 * read rq size to the max packet size to prevent the
4096 	 * host bridge generating requests larger than we can
4097 	 * cope with
4098 	 */
4099 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4100 		int mps = pcie_get_mps(dev);
4101 
4102 		if (mps < rq)
4103 			rq = mps;
4104 	}
4105 
4106 	v = (ffs(rq) - 8) << 12;
4107 
4108 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4109 						  PCI_EXP_DEVCTL_READRQ, v);
4110 }
4111 EXPORT_SYMBOL(pcie_set_readrq);
4112 
4113 /**
4114  * pcie_get_mps - get PCI Express maximum payload size
4115  * @dev: PCI device to query
4116  *
4117  * Returns maximum payload size in bytes
4118  */
4119 int pcie_get_mps(struct pci_dev *dev)
4120 {
4121 	u16 ctl;
4122 
4123 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4124 
4125 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4126 }
4127 EXPORT_SYMBOL(pcie_get_mps);
4128 
4129 /**
4130  * pcie_set_mps - set PCI Express maximum payload size
4131  * @dev: PCI device to query
4132  * @mps: maximum payload size in bytes
4133  *    valid values are 128, 256, 512, 1024, 2048, 4096
4134  *
4135  * If possible sets maximum payload size
4136  */
4137 int pcie_set_mps(struct pci_dev *dev, int mps)
4138 {
4139 	u16 v;
4140 
4141 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4142 		return -EINVAL;
4143 
4144 	v = ffs(mps) - 8;
4145 	if (v > dev->pcie_mpss)
4146 		return -EINVAL;
4147 	v <<= 5;
4148 
4149 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4150 						  PCI_EXP_DEVCTL_PAYLOAD, v);
4151 }
4152 EXPORT_SYMBOL(pcie_set_mps);
4153 
4154 /**
4155  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4156  * @dev: PCI device to query
4157  * @speed: storage for minimum speed
4158  * @width: storage for minimum width
4159  *
4160  * This function will walk up the PCI device chain and determine the minimum
4161  * link width and speed of the device.
4162  */
4163 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4164 			  enum pcie_link_width *width)
4165 {
4166 	int ret;
4167 
4168 	*speed = PCI_SPEED_UNKNOWN;
4169 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4170 
4171 	while (dev) {
4172 		u16 lnksta;
4173 		enum pci_bus_speed next_speed;
4174 		enum pcie_link_width next_width;
4175 
4176 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4177 		if (ret)
4178 			return ret;
4179 
4180 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4181 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4182 			PCI_EXP_LNKSTA_NLW_SHIFT;
4183 
4184 		if (next_speed < *speed)
4185 			*speed = next_speed;
4186 
4187 		if (next_width < *width)
4188 			*width = next_width;
4189 
4190 		dev = dev->bus->self;
4191 	}
4192 
4193 	return 0;
4194 }
4195 EXPORT_SYMBOL(pcie_get_minimum_link);
4196 
4197 /**
4198  * pci_select_bars - Make BAR mask from the type of resource
4199  * @dev: the PCI device for which BAR mask is made
4200  * @flags: resource type mask to be selected
4201  *
4202  * This helper routine makes bar mask from the type of resource.
4203  */
4204 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4205 {
4206 	int i, bars = 0;
4207 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4208 		if (pci_resource_flags(dev, i) & flags)
4209 			bars |= (1 << i);
4210 	return bars;
4211 }
4212 EXPORT_SYMBOL(pci_select_bars);
4213 
4214 /**
4215  * pci_resource_bar - get position of the BAR associated with a resource
4216  * @dev: the PCI device
4217  * @resno: the resource number
4218  * @type: the BAR type to be filled in
4219  *
4220  * Returns BAR position in config space, or 0 if the BAR is invalid.
4221  */
4222 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4223 {
4224 	int reg;
4225 
4226 	if (resno < PCI_ROM_RESOURCE) {
4227 		*type = pci_bar_unknown;
4228 		return PCI_BASE_ADDRESS_0 + 4 * resno;
4229 	} else if (resno == PCI_ROM_RESOURCE) {
4230 		*type = pci_bar_mem32;
4231 		return dev->rom_base_reg;
4232 	} else if (resno < PCI_BRIDGE_RESOURCES) {
4233 		/* device specific resource */
4234 		*type = pci_bar_unknown;
4235 		reg = pci_iov_resource_bar(dev, resno);
4236 		if (reg)
4237 			return reg;
4238 	}
4239 
4240 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4241 	return 0;
4242 }
4243 
4244 /* Some architectures require additional programming to enable VGA */
4245 static arch_set_vga_state_t arch_set_vga_state;
4246 
4247 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4248 {
4249 	arch_set_vga_state = func;	/* NULL disables */
4250 }
4251 
4252 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4253 				  unsigned int command_bits, u32 flags)
4254 {
4255 	if (arch_set_vga_state)
4256 		return arch_set_vga_state(dev, decode, command_bits,
4257 						flags);
4258 	return 0;
4259 }
4260 
4261 /**
4262  * pci_set_vga_state - set VGA decode state on device and parents if requested
4263  * @dev: the PCI device
4264  * @decode: true = enable decoding, false = disable decoding
4265  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4266  * @flags: traverse ancestors and change bridges
4267  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4268  */
4269 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4270 		      unsigned int command_bits, u32 flags)
4271 {
4272 	struct pci_bus *bus;
4273 	struct pci_dev *bridge;
4274 	u16 cmd;
4275 	int rc;
4276 
4277 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4278 
4279 	/* ARCH specific VGA enables */
4280 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4281 	if (rc)
4282 		return rc;
4283 
4284 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4285 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4286 		if (decode == true)
4287 			cmd |= command_bits;
4288 		else
4289 			cmd &= ~command_bits;
4290 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4291 	}
4292 
4293 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4294 		return 0;
4295 
4296 	bus = dev->bus;
4297 	while (bus) {
4298 		bridge = bus->self;
4299 		if (bridge) {
4300 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4301 					     &cmd);
4302 			if (decode == true)
4303 				cmd |= PCI_BRIDGE_CTL_VGA;
4304 			else
4305 				cmd &= ~PCI_BRIDGE_CTL_VGA;
4306 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4307 					      cmd);
4308 		}
4309 		bus = bus->parent;
4310 	}
4311 	return 0;
4312 }
4313 
4314 bool pci_device_is_present(struct pci_dev *pdev)
4315 {
4316 	u32 v;
4317 
4318 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4319 }
4320 EXPORT_SYMBOL_GPL(pci_device_is_present);
4321 
4322 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4323 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4324 static DEFINE_SPINLOCK(resource_alignment_lock);
4325 
4326 /**
4327  * pci_specified_resource_alignment - get resource alignment specified by user.
4328  * @dev: the PCI device to get
4329  *
4330  * RETURNS: Resource alignment if it is specified.
4331  *          Zero if it is not specified.
4332  */
4333 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4334 {
4335 	int seg, bus, slot, func, align_order, count;
4336 	resource_size_t align = 0;
4337 	char *p;
4338 
4339 	spin_lock(&resource_alignment_lock);
4340 	p = resource_alignment_param;
4341 	while (*p) {
4342 		count = 0;
4343 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4344 							p[count] == '@') {
4345 			p += count + 1;
4346 		} else {
4347 			align_order = -1;
4348 		}
4349 		if (sscanf(p, "%x:%x:%x.%x%n",
4350 			&seg, &bus, &slot, &func, &count) != 4) {
4351 			seg = 0;
4352 			if (sscanf(p, "%x:%x.%x%n",
4353 					&bus, &slot, &func, &count) != 3) {
4354 				/* Invalid format */
4355 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4356 					p);
4357 				break;
4358 			}
4359 		}
4360 		p += count;
4361 		if (seg == pci_domain_nr(dev->bus) &&
4362 			bus == dev->bus->number &&
4363 			slot == PCI_SLOT(dev->devfn) &&
4364 			func == PCI_FUNC(dev->devfn)) {
4365 			if (align_order == -1)
4366 				align = PAGE_SIZE;
4367 			else
4368 				align = 1 << align_order;
4369 			/* Found */
4370 			break;
4371 		}
4372 		if (*p != ';' && *p != ',') {
4373 			/* End of param or invalid format */
4374 			break;
4375 		}
4376 		p++;
4377 	}
4378 	spin_unlock(&resource_alignment_lock);
4379 	return align;
4380 }
4381 
4382 /*
4383  * This function disables memory decoding and releases memory resources
4384  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4385  * It also rounds up size to specified alignment.
4386  * Later on, the kernel will assign page-aligned memory resource back
4387  * to the device.
4388  */
4389 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4390 {
4391 	int i;
4392 	struct resource *r;
4393 	resource_size_t align, size;
4394 	u16 command;
4395 
4396 	/* check if specified PCI is target device to reassign */
4397 	align = pci_specified_resource_alignment(dev);
4398 	if (!align)
4399 		return;
4400 
4401 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4402 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4403 		dev_warn(&dev->dev,
4404 			"Can't reassign resources to host bridge.\n");
4405 		return;
4406 	}
4407 
4408 	dev_info(&dev->dev,
4409 		"Disabling memory decoding and releasing memory resources.\n");
4410 	pci_read_config_word(dev, PCI_COMMAND, &command);
4411 	command &= ~PCI_COMMAND_MEMORY;
4412 	pci_write_config_word(dev, PCI_COMMAND, command);
4413 
4414 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4415 		r = &dev->resource[i];
4416 		if (!(r->flags & IORESOURCE_MEM))
4417 			continue;
4418 		size = resource_size(r);
4419 		if (size < align) {
4420 			size = align;
4421 			dev_info(&dev->dev,
4422 				"Rounding up size of resource #%d to %#llx.\n",
4423 				i, (unsigned long long)size);
4424 		}
4425 		r->flags |= IORESOURCE_UNSET;
4426 		r->end = size - 1;
4427 		r->start = 0;
4428 	}
4429 	/* Need to disable bridge's resource window,
4430 	 * to enable the kernel to reassign new resource
4431 	 * window later on.
4432 	 */
4433 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4434 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4435 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4436 			r = &dev->resource[i];
4437 			if (!(r->flags & IORESOURCE_MEM))
4438 				continue;
4439 			r->flags |= IORESOURCE_UNSET;
4440 			r->end = resource_size(r) - 1;
4441 			r->start = 0;
4442 		}
4443 		pci_disable_bridge_window(dev);
4444 	}
4445 }
4446 
4447 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4448 {
4449 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4450 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4451 	spin_lock(&resource_alignment_lock);
4452 	strncpy(resource_alignment_param, buf, count);
4453 	resource_alignment_param[count] = '\0';
4454 	spin_unlock(&resource_alignment_lock);
4455 	return count;
4456 }
4457 
4458 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4459 {
4460 	size_t count;
4461 	spin_lock(&resource_alignment_lock);
4462 	count = snprintf(buf, size, "%s", resource_alignment_param);
4463 	spin_unlock(&resource_alignment_lock);
4464 	return count;
4465 }
4466 
4467 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4468 {
4469 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4470 }
4471 
4472 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4473 					const char *buf, size_t count)
4474 {
4475 	return pci_set_resource_alignment_param(buf, count);
4476 }
4477 
4478 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4479 					pci_resource_alignment_store);
4480 
4481 static int __init pci_resource_alignment_sysfs_init(void)
4482 {
4483 	return bus_create_file(&pci_bus_type,
4484 					&bus_attr_resource_alignment);
4485 }
4486 late_initcall(pci_resource_alignment_sysfs_init);
4487 
4488 static void pci_no_domains(void)
4489 {
4490 #ifdef CONFIG_PCI_DOMAINS
4491 	pci_domains_supported = 0;
4492 #endif
4493 }
4494 
4495 #ifdef CONFIG_PCI_DOMAINS
4496 static atomic_t __domain_nr = ATOMIC_INIT(-1);
4497 
4498 int pci_get_new_domain_nr(void)
4499 {
4500 	return atomic_inc_return(&__domain_nr);
4501 }
4502 
4503 #ifdef CONFIG_PCI_DOMAINS_GENERIC
4504 void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent)
4505 {
4506 	static int use_dt_domains = -1;
4507 	int domain = of_get_pci_domain_nr(parent->of_node);
4508 
4509 	/*
4510 	 * Check DT domain and use_dt_domains values.
4511 	 *
4512 	 * If DT domain property is valid (domain >= 0) and
4513 	 * use_dt_domains != 0, the DT assignment is valid since this means
4514 	 * we have not previously allocated a domain number by using
4515 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4516 	 * 1, to indicate that we have just assigned a domain number from
4517 	 * DT.
4518 	 *
4519 	 * If DT domain property value is not valid (ie domain < 0), and we
4520 	 * have not previously assigned a domain number from DT
4521 	 * (use_dt_domains != 1) we should assign a domain number by
4522 	 * using the:
4523 	 *
4524 	 * pci_get_new_domain_nr()
4525 	 *
4526 	 * API and update the use_dt_domains value to keep track of method we
4527 	 * are using to assign domain numbers (use_dt_domains = 0).
4528 	 *
4529 	 * All other combinations imply we have a platform that is trying
4530 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4531 	 * which is a recipe for domain mishandling and it is prevented by
4532 	 * invalidating the domain value (domain = -1) and printing a
4533 	 * corresponding error.
4534 	 */
4535 	if (domain >= 0 && use_dt_domains) {
4536 		use_dt_domains = 1;
4537 	} else if (domain < 0 && use_dt_domains != 1) {
4538 		use_dt_domains = 0;
4539 		domain = pci_get_new_domain_nr();
4540 	} else {
4541 		dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4542 			parent->of_node->full_name);
4543 		domain = -1;
4544 	}
4545 
4546 	bus->domain_nr = domain;
4547 }
4548 #endif
4549 #endif
4550 
4551 /**
4552  * pci_ext_cfg_avail - can we access extended PCI config space?
4553  *
4554  * Returns 1 if we can access PCI extended config space (offsets
4555  * greater than 0xff). This is the default implementation. Architecture
4556  * implementations can override this.
4557  */
4558 int __weak pci_ext_cfg_avail(void)
4559 {
4560 	return 1;
4561 }
4562 
4563 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4564 {
4565 }
4566 EXPORT_SYMBOL(pci_fixup_cardbus);
4567 
4568 static int __init pci_setup(char *str)
4569 {
4570 	while (str) {
4571 		char *k = strchr(str, ',');
4572 		if (k)
4573 			*k++ = 0;
4574 		if (*str && (str = pcibios_setup(str)) && *str) {
4575 			if (!strcmp(str, "nomsi")) {
4576 				pci_no_msi();
4577 			} else if (!strcmp(str, "noaer")) {
4578 				pci_no_aer();
4579 			} else if (!strncmp(str, "realloc=", 8)) {
4580 				pci_realloc_get_opt(str + 8);
4581 			} else if (!strncmp(str, "realloc", 7)) {
4582 				pci_realloc_get_opt("on");
4583 			} else if (!strcmp(str, "nodomains")) {
4584 				pci_no_domains();
4585 			} else if (!strncmp(str, "noari", 5)) {
4586 				pcie_ari_disabled = true;
4587 			} else if (!strncmp(str, "cbiosize=", 9)) {
4588 				pci_cardbus_io_size = memparse(str + 9, &str);
4589 			} else if (!strncmp(str, "cbmemsize=", 10)) {
4590 				pci_cardbus_mem_size = memparse(str + 10, &str);
4591 			} else if (!strncmp(str, "resource_alignment=", 19)) {
4592 				pci_set_resource_alignment_param(str + 19,
4593 							strlen(str + 19));
4594 			} else if (!strncmp(str, "ecrc=", 5)) {
4595 				pcie_ecrc_get_policy(str + 5);
4596 			} else if (!strncmp(str, "hpiosize=", 9)) {
4597 				pci_hotplug_io_size = memparse(str + 9, &str);
4598 			} else if (!strncmp(str, "hpmemsize=", 10)) {
4599 				pci_hotplug_mem_size = memparse(str + 10, &str);
4600 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4601 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
4602 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
4603 				pcie_bus_config = PCIE_BUS_SAFE;
4604 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
4605 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
4606 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4607 				pcie_bus_config = PCIE_BUS_PEER2PEER;
4608 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
4609 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4610 			} else {
4611 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
4612 						str);
4613 			}
4614 		}
4615 		str = k;
4616 	}
4617 	return 0;
4618 }
4619 early_param("pci", pci_setup);
4620