1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/of.h> 14 #include <linux/of_pci.h> 15 #include <linux/pci.h> 16 #include <linux/pm.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/spinlock.h> 20 #include <linux/string.h> 21 #include <linux/log2.h> 22 #include <linux/pci-aspm.h> 23 #include <linux/pm_wakeup.h> 24 #include <linux/interrupt.h> 25 #include <linux/device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/pci_hotplug.h> 28 #include <asm-generic/pci-bridge.h> 29 #include <asm/setup.h> 30 #include "pci.h" 31 32 const char *pci_power_names[] = { 33 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 34 }; 35 EXPORT_SYMBOL_GPL(pci_power_names); 36 37 int isa_dma_bridge_buggy; 38 EXPORT_SYMBOL(isa_dma_bridge_buggy); 39 40 int pci_pci_problems; 41 EXPORT_SYMBOL(pci_pci_problems); 42 43 unsigned int pci_pm_d3_delay; 44 45 static void pci_pme_list_scan(struct work_struct *work); 46 47 static LIST_HEAD(pci_pme_list); 48 static DEFINE_MUTEX(pci_pme_list_mutex); 49 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 50 51 struct pci_pme_device { 52 struct list_head list; 53 struct pci_dev *dev; 54 }; 55 56 #define PME_TIMEOUT 1000 /* How long between PME checks */ 57 58 static void pci_dev_d3_sleep(struct pci_dev *dev) 59 { 60 unsigned int delay = dev->d3_delay; 61 62 if (delay < pci_pm_d3_delay) 63 delay = pci_pm_d3_delay; 64 65 msleep(delay); 66 } 67 68 #ifdef CONFIG_PCI_DOMAINS 69 int pci_domains_supported = 1; 70 #endif 71 72 #define DEFAULT_CARDBUS_IO_SIZE (256) 73 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 74 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 75 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 76 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 77 78 #define DEFAULT_HOTPLUG_IO_SIZE (256) 79 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 80 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 81 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 82 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 83 84 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 85 86 /* 87 * The default CLS is used if arch didn't set CLS explicitly and not 88 * all pci devices agree on the same value. Arch can override either 89 * the dfl or actual value as it sees fit. Don't forget this is 90 * measured in 32-bit words, not bytes. 91 */ 92 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 93 u8 pci_cache_line_size; 94 95 /* 96 * If we set up a device for bus mastering, we need to check the latency 97 * timer as certain BIOSes forget to set it properly. 98 */ 99 unsigned int pcibios_max_latency = 255; 100 101 /* If set, the PCIe ARI capability will not be used. */ 102 static bool pcie_ari_disabled; 103 104 /** 105 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 106 * @bus: pointer to PCI bus structure to search 107 * 108 * Given a PCI bus, returns the highest PCI bus number present in the set 109 * including the given PCI bus and its list of child PCI buses. 110 */ 111 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 112 { 113 struct pci_bus *tmp; 114 unsigned char max, n; 115 116 max = bus->busn_res.end; 117 list_for_each_entry(tmp, &bus->children, node) { 118 n = pci_bus_max_busnr(tmp); 119 if (n > max) 120 max = n; 121 } 122 return max; 123 } 124 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 125 126 #ifdef CONFIG_HAS_IOMEM 127 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 128 { 129 /* 130 * Make sure the BAR is actually a memory resource, not an IO resource 131 */ 132 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 133 WARN_ON(1); 134 return NULL; 135 } 136 return ioremap_nocache(pci_resource_start(pdev, bar), 137 pci_resource_len(pdev, bar)); 138 } 139 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 140 #endif 141 142 #define PCI_FIND_CAP_TTL 48 143 144 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 145 u8 pos, int cap, int *ttl) 146 { 147 u8 id; 148 149 while ((*ttl)--) { 150 pci_bus_read_config_byte(bus, devfn, pos, &pos); 151 if (pos < 0x40) 152 break; 153 pos &= ~3; 154 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID, 155 &id); 156 if (id == 0xff) 157 break; 158 if (id == cap) 159 return pos; 160 pos += PCI_CAP_LIST_NEXT; 161 } 162 return 0; 163 } 164 165 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 166 u8 pos, int cap) 167 { 168 int ttl = PCI_FIND_CAP_TTL; 169 170 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 171 } 172 173 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 174 { 175 return __pci_find_next_cap(dev->bus, dev->devfn, 176 pos + PCI_CAP_LIST_NEXT, cap); 177 } 178 EXPORT_SYMBOL_GPL(pci_find_next_capability); 179 180 static int __pci_bus_find_cap_start(struct pci_bus *bus, 181 unsigned int devfn, u8 hdr_type) 182 { 183 u16 status; 184 185 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 186 if (!(status & PCI_STATUS_CAP_LIST)) 187 return 0; 188 189 switch (hdr_type) { 190 case PCI_HEADER_TYPE_NORMAL: 191 case PCI_HEADER_TYPE_BRIDGE: 192 return PCI_CAPABILITY_LIST; 193 case PCI_HEADER_TYPE_CARDBUS: 194 return PCI_CB_CAPABILITY_LIST; 195 default: 196 return 0; 197 } 198 199 return 0; 200 } 201 202 /** 203 * pci_find_capability - query for devices' capabilities 204 * @dev: PCI device to query 205 * @cap: capability code 206 * 207 * Tell if a device supports a given PCI capability. 208 * Returns the address of the requested capability structure within the 209 * device's PCI configuration space or 0 in case the device does not 210 * support it. Possible values for @cap: 211 * 212 * %PCI_CAP_ID_PM Power Management 213 * %PCI_CAP_ID_AGP Accelerated Graphics Port 214 * %PCI_CAP_ID_VPD Vital Product Data 215 * %PCI_CAP_ID_SLOTID Slot Identification 216 * %PCI_CAP_ID_MSI Message Signalled Interrupts 217 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 218 * %PCI_CAP_ID_PCIX PCI-X 219 * %PCI_CAP_ID_EXP PCI Express 220 */ 221 int pci_find_capability(struct pci_dev *dev, int cap) 222 { 223 int pos; 224 225 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 226 if (pos) 227 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 228 229 return pos; 230 } 231 EXPORT_SYMBOL(pci_find_capability); 232 233 /** 234 * pci_bus_find_capability - query for devices' capabilities 235 * @bus: the PCI bus to query 236 * @devfn: PCI device to query 237 * @cap: capability code 238 * 239 * Like pci_find_capability() but works for pci devices that do not have a 240 * pci_dev structure set up yet. 241 * 242 * Returns the address of the requested capability structure within the 243 * device's PCI configuration space or 0 in case the device does not 244 * support it. 245 */ 246 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 247 { 248 int pos; 249 u8 hdr_type; 250 251 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 252 253 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 254 if (pos) 255 pos = __pci_find_next_cap(bus, devfn, pos, cap); 256 257 return pos; 258 } 259 EXPORT_SYMBOL(pci_bus_find_capability); 260 261 /** 262 * pci_find_next_ext_capability - Find an extended capability 263 * @dev: PCI device to query 264 * @start: address at which to start looking (0 to start at beginning of list) 265 * @cap: capability code 266 * 267 * Returns the address of the next matching extended capability structure 268 * within the device's PCI configuration space or 0 if the device does 269 * not support it. Some capabilities can occur several times, e.g., the 270 * vendor-specific capability, and this provides a way to find them all. 271 */ 272 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 273 { 274 u32 header; 275 int ttl; 276 int pos = PCI_CFG_SPACE_SIZE; 277 278 /* minimum 8 bytes per capability */ 279 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 280 281 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 282 return 0; 283 284 if (start) 285 pos = start; 286 287 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 288 return 0; 289 290 /* 291 * If we have no capabilities, this is indicated by cap ID, 292 * cap version and next pointer all being 0. 293 */ 294 if (header == 0) 295 return 0; 296 297 while (ttl-- > 0) { 298 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 299 return pos; 300 301 pos = PCI_EXT_CAP_NEXT(header); 302 if (pos < PCI_CFG_SPACE_SIZE) 303 break; 304 305 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 306 break; 307 } 308 309 return 0; 310 } 311 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 312 313 /** 314 * pci_find_ext_capability - Find an extended capability 315 * @dev: PCI device to query 316 * @cap: capability code 317 * 318 * Returns the address of the requested extended capability structure 319 * within the device's PCI configuration space or 0 if the device does 320 * not support it. Possible values for @cap: 321 * 322 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 323 * %PCI_EXT_CAP_ID_VC Virtual Channel 324 * %PCI_EXT_CAP_ID_DSN Device Serial Number 325 * %PCI_EXT_CAP_ID_PWR Power Budgeting 326 */ 327 int pci_find_ext_capability(struct pci_dev *dev, int cap) 328 { 329 return pci_find_next_ext_capability(dev, 0, cap); 330 } 331 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 332 333 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 334 { 335 int rc, ttl = PCI_FIND_CAP_TTL; 336 u8 cap, mask; 337 338 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 339 mask = HT_3BIT_CAP_MASK; 340 else 341 mask = HT_5BIT_CAP_MASK; 342 343 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 344 PCI_CAP_ID_HT, &ttl); 345 while (pos) { 346 rc = pci_read_config_byte(dev, pos + 3, &cap); 347 if (rc != PCIBIOS_SUCCESSFUL) 348 return 0; 349 350 if ((cap & mask) == ht_cap) 351 return pos; 352 353 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 354 pos + PCI_CAP_LIST_NEXT, 355 PCI_CAP_ID_HT, &ttl); 356 } 357 358 return 0; 359 } 360 /** 361 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 362 * @dev: PCI device to query 363 * @pos: Position from which to continue searching 364 * @ht_cap: Hypertransport capability code 365 * 366 * To be used in conjunction with pci_find_ht_capability() to search for 367 * all capabilities matching @ht_cap. @pos should always be a value returned 368 * from pci_find_ht_capability(). 369 * 370 * NB. To be 100% safe against broken PCI devices, the caller should take 371 * steps to avoid an infinite loop. 372 */ 373 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 374 { 375 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 376 } 377 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 378 379 /** 380 * pci_find_ht_capability - query a device's Hypertransport capabilities 381 * @dev: PCI device to query 382 * @ht_cap: Hypertransport capability code 383 * 384 * Tell if a device supports a given Hypertransport capability. 385 * Returns an address within the device's PCI configuration space 386 * or 0 in case the device does not support the request capability. 387 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 388 * which has a Hypertransport capability matching @ht_cap. 389 */ 390 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 391 { 392 int pos; 393 394 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 395 if (pos) 396 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 397 398 return pos; 399 } 400 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 401 402 /** 403 * pci_find_parent_resource - return resource region of parent bus of given region 404 * @dev: PCI device structure contains resources to be searched 405 * @res: child resource record for which parent is sought 406 * 407 * For given resource region of given device, return the resource 408 * region of parent bus the given region is contained in. 409 */ 410 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 411 struct resource *res) 412 { 413 const struct pci_bus *bus = dev->bus; 414 struct resource *r; 415 int i; 416 417 pci_bus_for_each_resource(bus, r, i) { 418 if (!r) 419 continue; 420 if (res->start && resource_contains(r, res)) { 421 422 /* 423 * If the window is prefetchable but the BAR is 424 * not, the allocator made a mistake. 425 */ 426 if (r->flags & IORESOURCE_PREFETCH && 427 !(res->flags & IORESOURCE_PREFETCH)) 428 return NULL; 429 430 /* 431 * If we're below a transparent bridge, there may 432 * be both a positively-decoded aperture and a 433 * subtractively-decoded region that contain the BAR. 434 * We want the positively-decoded one, so this depends 435 * on pci_bus_for_each_resource() giving us those 436 * first. 437 */ 438 return r; 439 } 440 } 441 return NULL; 442 } 443 EXPORT_SYMBOL(pci_find_parent_resource); 444 445 /** 446 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 447 * @dev: the PCI device to operate on 448 * @pos: config space offset of status word 449 * @mask: mask of bit(s) to care about in status word 450 * 451 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 452 */ 453 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 454 { 455 int i; 456 457 /* Wait for Transaction Pending bit clean */ 458 for (i = 0; i < 4; i++) { 459 u16 status; 460 if (i) 461 msleep((1 << (i - 1)) * 100); 462 463 pci_read_config_word(dev, pos, &status); 464 if (!(status & mask)) 465 return 1; 466 } 467 468 return 0; 469 } 470 471 /** 472 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up) 473 * @dev: PCI device to have its BARs restored 474 * 475 * Restore the BAR values for a given device, so as to make it 476 * accessible by its driver. 477 */ 478 static void pci_restore_bars(struct pci_dev *dev) 479 { 480 int i; 481 482 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 483 pci_update_resource(dev, i); 484 } 485 486 static struct pci_platform_pm_ops *pci_platform_pm; 487 488 int pci_set_platform_pm(struct pci_platform_pm_ops *ops) 489 { 490 if (!ops->is_manageable || !ops->set_state || !ops->choose_state 491 || !ops->sleep_wake) 492 return -EINVAL; 493 pci_platform_pm = ops; 494 return 0; 495 } 496 497 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 498 { 499 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 500 } 501 502 static inline int platform_pci_set_power_state(struct pci_dev *dev, 503 pci_power_t t) 504 { 505 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 506 } 507 508 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 509 { 510 return pci_platform_pm ? 511 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 512 } 513 514 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 515 { 516 return pci_platform_pm ? 517 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 518 } 519 520 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 521 { 522 return pci_platform_pm ? 523 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 524 } 525 526 static inline bool platform_pci_need_resume(struct pci_dev *dev) 527 { 528 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 529 } 530 531 /** 532 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 533 * given PCI device 534 * @dev: PCI device to handle. 535 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 536 * 537 * RETURN VALUE: 538 * -EINVAL if the requested state is invalid. 539 * -EIO if device does not support PCI PM or its PM capabilities register has a 540 * wrong version, or device doesn't support the requested state. 541 * 0 if device already is in the requested state. 542 * 0 if device's power state has been successfully changed. 543 */ 544 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 545 { 546 u16 pmcsr; 547 bool need_restore = false; 548 549 /* Check if we're already there */ 550 if (dev->current_state == state) 551 return 0; 552 553 if (!dev->pm_cap) 554 return -EIO; 555 556 if (state < PCI_D0 || state > PCI_D3hot) 557 return -EINVAL; 558 559 /* Validate current state: 560 * Can enter D0 from any state, but if we can only go deeper 561 * to sleep if we're already in a low power state 562 */ 563 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 564 && dev->current_state > state) { 565 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n", 566 dev->current_state, state); 567 return -EINVAL; 568 } 569 570 /* check if this device supports the desired state */ 571 if ((state == PCI_D1 && !dev->d1_support) 572 || (state == PCI_D2 && !dev->d2_support)) 573 return -EIO; 574 575 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 576 577 /* If we're (effectively) in D3, force entire word to 0. 578 * This doesn't affect PME_Status, disables PME_En, and 579 * sets PowerState to 0. 580 */ 581 switch (dev->current_state) { 582 case PCI_D0: 583 case PCI_D1: 584 case PCI_D2: 585 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 586 pmcsr |= state; 587 break; 588 case PCI_D3hot: 589 case PCI_D3cold: 590 case PCI_UNKNOWN: /* Boot-up */ 591 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 592 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 593 need_restore = true; 594 /* Fall-through: force to D0 */ 595 default: 596 pmcsr = 0; 597 break; 598 } 599 600 /* enter specified state */ 601 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 602 603 /* Mandatory power management transition delays */ 604 /* see PCI PM 1.1 5.6.1 table 18 */ 605 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 606 pci_dev_d3_sleep(dev); 607 else if (state == PCI_D2 || dev->current_state == PCI_D2) 608 udelay(PCI_PM_D2_DELAY); 609 610 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 611 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 612 if (dev->current_state != state && printk_ratelimit()) 613 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n", 614 dev->current_state); 615 616 /* 617 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 618 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 619 * from D3hot to D0 _may_ perform an internal reset, thereby 620 * going to "D0 Uninitialized" rather than "D0 Initialized". 621 * For example, at least some versions of the 3c905B and the 622 * 3c556B exhibit this behaviour. 623 * 624 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 625 * devices in a D3hot state at boot. Consequently, we need to 626 * restore at least the BARs so that the device will be 627 * accessible to its driver. 628 */ 629 if (need_restore) 630 pci_restore_bars(dev); 631 632 if (dev->bus->self) 633 pcie_aspm_pm_state_change(dev->bus->self); 634 635 return 0; 636 } 637 638 /** 639 * pci_update_current_state - Read PCI power state of given device from its 640 * PCI PM registers and cache it 641 * @dev: PCI device to handle. 642 * @state: State to cache in case the device doesn't have the PM capability 643 */ 644 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 645 { 646 if (dev->pm_cap) { 647 u16 pmcsr; 648 649 /* 650 * Configuration space is not accessible for device in 651 * D3cold, so just keep or set D3cold for safety 652 */ 653 if (dev->current_state == PCI_D3cold) 654 return; 655 if (state == PCI_D3cold) { 656 dev->current_state = PCI_D3cold; 657 return; 658 } 659 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 660 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 661 } else { 662 dev->current_state = state; 663 } 664 } 665 666 /** 667 * pci_power_up - Put the given device into D0 forcibly 668 * @dev: PCI device to power up 669 */ 670 void pci_power_up(struct pci_dev *dev) 671 { 672 if (platform_pci_power_manageable(dev)) 673 platform_pci_set_power_state(dev, PCI_D0); 674 675 pci_raw_set_power_state(dev, PCI_D0); 676 pci_update_current_state(dev, PCI_D0); 677 } 678 679 /** 680 * pci_platform_power_transition - Use platform to change device power state 681 * @dev: PCI device to handle. 682 * @state: State to put the device into. 683 */ 684 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 685 { 686 int error; 687 688 if (platform_pci_power_manageable(dev)) { 689 error = platform_pci_set_power_state(dev, state); 690 if (!error) 691 pci_update_current_state(dev, state); 692 } else 693 error = -ENODEV; 694 695 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 696 dev->current_state = PCI_D0; 697 698 return error; 699 } 700 701 /** 702 * pci_wakeup - Wake up a PCI device 703 * @pci_dev: Device to handle. 704 * @ign: ignored parameter 705 */ 706 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 707 { 708 pci_wakeup_event(pci_dev); 709 pm_request_resume(&pci_dev->dev); 710 return 0; 711 } 712 713 /** 714 * pci_wakeup_bus - Walk given bus and wake up devices on it 715 * @bus: Top bus of the subtree to walk. 716 */ 717 static void pci_wakeup_bus(struct pci_bus *bus) 718 { 719 if (bus) 720 pci_walk_bus(bus, pci_wakeup, NULL); 721 } 722 723 /** 724 * __pci_start_power_transition - Start power transition of a PCI device 725 * @dev: PCI device to handle. 726 * @state: State to put the device into. 727 */ 728 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 729 { 730 if (state == PCI_D0) { 731 pci_platform_power_transition(dev, PCI_D0); 732 /* 733 * Mandatory power management transition delays, see 734 * PCI Express Base Specification Revision 2.0 Section 735 * 6.6.1: Conventional Reset. Do not delay for 736 * devices powered on/off by corresponding bridge, 737 * because have already delayed for the bridge. 738 */ 739 if (dev->runtime_d3cold) { 740 msleep(dev->d3cold_delay); 741 /* 742 * When powering on a bridge from D3cold, the 743 * whole hierarchy may be powered on into 744 * D0uninitialized state, resume them to give 745 * them a chance to suspend again 746 */ 747 pci_wakeup_bus(dev->subordinate); 748 } 749 } 750 } 751 752 /** 753 * __pci_dev_set_current_state - Set current state of a PCI device 754 * @dev: Device to handle 755 * @data: pointer to state to be set 756 */ 757 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 758 { 759 pci_power_t state = *(pci_power_t *)data; 760 761 dev->current_state = state; 762 return 0; 763 } 764 765 /** 766 * __pci_bus_set_current_state - Walk given bus and set current state of devices 767 * @bus: Top bus of the subtree to walk. 768 * @state: state to be set 769 */ 770 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 771 { 772 if (bus) 773 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 774 } 775 776 /** 777 * __pci_complete_power_transition - Complete power transition of a PCI device 778 * @dev: PCI device to handle. 779 * @state: State to put the device into. 780 * 781 * This function should not be called directly by device drivers. 782 */ 783 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 784 { 785 int ret; 786 787 if (state <= PCI_D0) 788 return -EINVAL; 789 ret = pci_platform_power_transition(dev, state); 790 /* Power off the bridge may power off the whole hierarchy */ 791 if (!ret && state == PCI_D3cold) 792 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 793 return ret; 794 } 795 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 796 797 /** 798 * pci_set_power_state - Set the power state of a PCI device 799 * @dev: PCI device to handle. 800 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 801 * 802 * Transition a device to a new power state, using the platform firmware and/or 803 * the device's PCI PM registers. 804 * 805 * RETURN VALUE: 806 * -EINVAL if the requested state is invalid. 807 * -EIO if device does not support PCI PM or its PM capabilities register has a 808 * wrong version, or device doesn't support the requested state. 809 * 0 if device already is in the requested state. 810 * 0 if device's power state has been successfully changed. 811 */ 812 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 813 { 814 int error; 815 816 /* bound the state we're entering */ 817 if (state > PCI_D3cold) 818 state = PCI_D3cold; 819 else if (state < PCI_D0) 820 state = PCI_D0; 821 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 822 /* 823 * If the device or the parent bridge do not support PCI PM, 824 * ignore the request if we're doing anything other than putting 825 * it into D0 (which would only happen on boot). 826 */ 827 return 0; 828 829 /* Check if we're already there */ 830 if (dev->current_state == state) 831 return 0; 832 833 __pci_start_power_transition(dev, state); 834 835 /* This device is quirked not to be put into D3, so 836 don't put it in D3 */ 837 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 838 return 0; 839 840 /* 841 * To put device in D3cold, we put device into D3hot in native 842 * way, then put device into D3cold with platform ops 843 */ 844 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 845 PCI_D3hot : state); 846 847 if (!__pci_complete_power_transition(dev, state)) 848 error = 0; 849 850 return error; 851 } 852 EXPORT_SYMBOL(pci_set_power_state); 853 854 /** 855 * pci_choose_state - Choose the power state of a PCI device 856 * @dev: PCI device to be suspended 857 * @state: target sleep state for the whole system. This is the value 858 * that is passed to suspend() function. 859 * 860 * Returns PCI power state suitable for given device and given system 861 * message. 862 */ 863 864 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 865 { 866 pci_power_t ret; 867 868 if (!dev->pm_cap) 869 return PCI_D0; 870 871 ret = platform_pci_choose_state(dev); 872 if (ret != PCI_POWER_ERROR) 873 return ret; 874 875 switch (state.event) { 876 case PM_EVENT_ON: 877 return PCI_D0; 878 case PM_EVENT_FREEZE: 879 case PM_EVENT_PRETHAW: 880 /* REVISIT both freeze and pre-thaw "should" use D0 */ 881 case PM_EVENT_SUSPEND: 882 case PM_EVENT_HIBERNATE: 883 return PCI_D3hot; 884 default: 885 dev_info(&dev->dev, "unrecognized suspend event %d\n", 886 state.event); 887 BUG(); 888 } 889 return PCI_D0; 890 } 891 EXPORT_SYMBOL(pci_choose_state); 892 893 #define PCI_EXP_SAVE_REGS 7 894 895 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 896 u16 cap, bool extended) 897 { 898 struct pci_cap_saved_state *tmp; 899 900 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 901 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 902 return tmp; 903 } 904 return NULL; 905 } 906 907 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 908 { 909 return _pci_find_saved_cap(dev, cap, false); 910 } 911 912 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 913 { 914 return _pci_find_saved_cap(dev, cap, true); 915 } 916 917 static int pci_save_pcie_state(struct pci_dev *dev) 918 { 919 int i = 0; 920 struct pci_cap_saved_state *save_state; 921 u16 *cap; 922 923 if (!pci_is_pcie(dev)) 924 return 0; 925 926 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 927 if (!save_state) { 928 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 929 return -ENOMEM; 930 } 931 932 cap = (u16 *)&save_state->cap.data[0]; 933 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 934 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 935 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 936 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 937 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 938 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 939 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 940 941 return 0; 942 } 943 944 static void pci_restore_pcie_state(struct pci_dev *dev) 945 { 946 int i = 0; 947 struct pci_cap_saved_state *save_state; 948 u16 *cap; 949 950 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 951 if (!save_state) 952 return; 953 954 cap = (u16 *)&save_state->cap.data[0]; 955 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 956 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 957 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 958 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 959 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 960 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 961 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 962 } 963 964 965 static int pci_save_pcix_state(struct pci_dev *dev) 966 { 967 int pos; 968 struct pci_cap_saved_state *save_state; 969 970 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 971 if (pos <= 0) 972 return 0; 973 974 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 975 if (!save_state) { 976 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 977 return -ENOMEM; 978 } 979 980 pci_read_config_word(dev, pos + PCI_X_CMD, 981 (u16 *)save_state->cap.data); 982 983 return 0; 984 } 985 986 static void pci_restore_pcix_state(struct pci_dev *dev) 987 { 988 int i = 0, pos; 989 struct pci_cap_saved_state *save_state; 990 u16 *cap; 991 992 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 993 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 994 if (!save_state || pos <= 0) 995 return; 996 cap = (u16 *)&save_state->cap.data[0]; 997 998 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 999 } 1000 1001 1002 /** 1003 * pci_save_state - save the PCI configuration space of a device before suspending 1004 * @dev: - PCI device that we're dealing with 1005 */ 1006 int pci_save_state(struct pci_dev *dev) 1007 { 1008 int i; 1009 /* XXX: 100% dword access ok here? */ 1010 for (i = 0; i < 16; i++) 1011 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1012 dev->state_saved = true; 1013 1014 i = pci_save_pcie_state(dev); 1015 if (i != 0) 1016 return i; 1017 1018 i = pci_save_pcix_state(dev); 1019 if (i != 0) 1020 return i; 1021 1022 return pci_save_vc_state(dev); 1023 } 1024 EXPORT_SYMBOL(pci_save_state); 1025 1026 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1027 u32 saved_val, int retry) 1028 { 1029 u32 val; 1030 1031 pci_read_config_dword(pdev, offset, &val); 1032 if (val == saved_val) 1033 return; 1034 1035 for (;;) { 1036 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1037 offset, val, saved_val); 1038 pci_write_config_dword(pdev, offset, saved_val); 1039 if (retry-- <= 0) 1040 return; 1041 1042 pci_read_config_dword(pdev, offset, &val); 1043 if (val == saved_val) 1044 return; 1045 1046 mdelay(1); 1047 } 1048 } 1049 1050 static void pci_restore_config_space_range(struct pci_dev *pdev, 1051 int start, int end, int retry) 1052 { 1053 int index; 1054 1055 for (index = end; index >= start; index--) 1056 pci_restore_config_dword(pdev, 4 * index, 1057 pdev->saved_config_space[index], 1058 retry); 1059 } 1060 1061 static void pci_restore_config_space(struct pci_dev *pdev) 1062 { 1063 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1064 pci_restore_config_space_range(pdev, 10, 15, 0); 1065 /* Restore BARs before the command register. */ 1066 pci_restore_config_space_range(pdev, 4, 9, 10); 1067 pci_restore_config_space_range(pdev, 0, 3, 0); 1068 } else { 1069 pci_restore_config_space_range(pdev, 0, 15, 0); 1070 } 1071 } 1072 1073 /** 1074 * pci_restore_state - Restore the saved state of a PCI device 1075 * @dev: - PCI device that we're dealing with 1076 */ 1077 void pci_restore_state(struct pci_dev *dev) 1078 { 1079 if (!dev->state_saved) 1080 return; 1081 1082 /* PCI Express register must be restored first */ 1083 pci_restore_pcie_state(dev); 1084 pci_restore_ats_state(dev); 1085 pci_restore_vc_state(dev); 1086 1087 pci_restore_config_space(dev); 1088 1089 pci_restore_pcix_state(dev); 1090 pci_restore_msi_state(dev); 1091 pci_restore_iov_state(dev); 1092 1093 dev->state_saved = false; 1094 } 1095 EXPORT_SYMBOL(pci_restore_state); 1096 1097 struct pci_saved_state { 1098 u32 config_space[16]; 1099 struct pci_cap_saved_data cap[0]; 1100 }; 1101 1102 /** 1103 * pci_store_saved_state - Allocate and return an opaque struct containing 1104 * the device saved state. 1105 * @dev: PCI device that we're dealing with 1106 * 1107 * Return NULL if no state or error. 1108 */ 1109 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1110 { 1111 struct pci_saved_state *state; 1112 struct pci_cap_saved_state *tmp; 1113 struct pci_cap_saved_data *cap; 1114 size_t size; 1115 1116 if (!dev->state_saved) 1117 return NULL; 1118 1119 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1120 1121 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1122 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1123 1124 state = kzalloc(size, GFP_KERNEL); 1125 if (!state) 1126 return NULL; 1127 1128 memcpy(state->config_space, dev->saved_config_space, 1129 sizeof(state->config_space)); 1130 1131 cap = state->cap; 1132 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1133 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1134 memcpy(cap, &tmp->cap, len); 1135 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1136 } 1137 /* Empty cap_save terminates list */ 1138 1139 return state; 1140 } 1141 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1142 1143 /** 1144 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1145 * @dev: PCI device that we're dealing with 1146 * @state: Saved state returned from pci_store_saved_state() 1147 */ 1148 int pci_load_saved_state(struct pci_dev *dev, 1149 struct pci_saved_state *state) 1150 { 1151 struct pci_cap_saved_data *cap; 1152 1153 dev->state_saved = false; 1154 1155 if (!state) 1156 return 0; 1157 1158 memcpy(dev->saved_config_space, state->config_space, 1159 sizeof(state->config_space)); 1160 1161 cap = state->cap; 1162 while (cap->size) { 1163 struct pci_cap_saved_state *tmp; 1164 1165 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1166 if (!tmp || tmp->cap.size != cap->size) 1167 return -EINVAL; 1168 1169 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1170 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1171 sizeof(struct pci_cap_saved_data) + cap->size); 1172 } 1173 1174 dev->state_saved = true; 1175 return 0; 1176 } 1177 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1178 1179 /** 1180 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1181 * and free the memory allocated for it. 1182 * @dev: PCI device that we're dealing with 1183 * @state: Pointer to saved state returned from pci_store_saved_state() 1184 */ 1185 int pci_load_and_free_saved_state(struct pci_dev *dev, 1186 struct pci_saved_state **state) 1187 { 1188 int ret = pci_load_saved_state(dev, *state); 1189 kfree(*state); 1190 *state = NULL; 1191 return ret; 1192 } 1193 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1194 1195 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1196 { 1197 return pci_enable_resources(dev, bars); 1198 } 1199 1200 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1201 { 1202 int err; 1203 struct pci_dev *bridge; 1204 u16 cmd; 1205 u8 pin; 1206 1207 err = pci_set_power_state(dev, PCI_D0); 1208 if (err < 0 && err != -EIO) 1209 return err; 1210 1211 bridge = pci_upstream_bridge(dev); 1212 if (bridge) 1213 pcie_aspm_powersave_config_link(bridge); 1214 1215 err = pcibios_enable_device(dev, bars); 1216 if (err < 0) 1217 return err; 1218 pci_fixup_device(pci_fixup_enable, dev); 1219 1220 if (dev->msi_enabled || dev->msix_enabled) 1221 return 0; 1222 1223 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1224 if (pin) { 1225 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1226 if (cmd & PCI_COMMAND_INTX_DISABLE) 1227 pci_write_config_word(dev, PCI_COMMAND, 1228 cmd & ~PCI_COMMAND_INTX_DISABLE); 1229 } 1230 1231 return 0; 1232 } 1233 1234 /** 1235 * pci_reenable_device - Resume abandoned device 1236 * @dev: PCI device to be resumed 1237 * 1238 * Note this function is a backend of pci_default_resume and is not supposed 1239 * to be called by normal code, write proper resume handler and use it instead. 1240 */ 1241 int pci_reenable_device(struct pci_dev *dev) 1242 { 1243 if (pci_is_enabled(dev)) 1244 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1245 return 0; 1246 } 1247 EXPORT_SYMBOL(pci_reenable_device); 1248 1249 static void pci_enable_bridge(struct pci_dev *dev) 1250 { 1251 struct pci_dev *bridge; 1252 int retval; 1253 1254 bridge = pci_upstream_bridge(dev); 1255 if (bridge) 1256 pci_enable_bridge(bridge); 1257 1258 if (pci_is_enabled(dev)) { 1259 if (!dev->is_busmaster) 1260 pci_set_master(dev); 1261 return; 1262 } 1263 1264 retval = pci_enable_device(dev); 1265 if (retval) 1266 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1267 retval); 1268 pci_set_master(dev); 1269 } 1270 1271 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1272 { 1273 struct pci_dev *bridge; 1274 int err; 1275 int i, bars = 0; 1276 1277 /* 1278 * Power state could be unknown at this point, either due to a fresh 1279 * boot or a device removal call. So get the current power state 1280 * so that things like MSI message writing will behave as expected 1281 * (e.g. if the device really is in D0 at enable time). 1282 */ 1283 if (dev->pm_cap) { 1284 u16 pmcsr; 1285 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1286 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1287 } 1288 1289 if (atomic_inc_return(&dev->enable_cnt) > 1) 1290 return 0; /* already enabled */ 1291 1292 bridge = pci_upstream_bridge(dev); 1293 if (bridge) 1294 pci_enable_bridge(bridge); 1295 1296 /* only skip sriov related */ 1297 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1298 if (dev->resource[i].flags & flags) 1299 bars |= (1 << i); 1300 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1301 if (dev->resource[i].flags & flags) 1302 bars |= (1 << i); 1303 1304 err = do_pci_enable_device(dev, bars); 1305 if (err < 0) 1306 atomic_dec(&dev->enable_cnt); 1307 return err; 1308 } 1309 1310 /** 1311 * pci_enable_device_io - Initialize a device for use with IO space 1312 * @dev: PCI device to be initialized 1313 * 1314 * Initialize device before it's used by a driver. Ask low-level code 1315 * to enable I/O resources. Wake up the device if it was suspended. 1316 * Beware, this function can fail. 1317 */ 1318 int pci_enable_device_io(struct pci_dev *dev) 1319 { 1320 return pci_enable_device_flags(dev, IORESOURCE_IO); 1321 } 1322 EXPORT_SYMBOL(pci_enable_device_io); 1323 1324 /** 1325 * pci_enable_device_mem - Initialize a device for use with Memory space 1326 * @dev: PCI device to be initialized 1327 * 1328 * Initialize device before it's used by a driver. Ask low-level code 1329 * to enable Memory resources. Wake up the device if it was suspended. 1330 * Beware, this function can fail. 1331 */ 1332 int pci_enable_device_mem(struct pci_dev *dev) 1333 { 1334 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1335 } 1336 EXPORT_SYMBOL(pci_enable_device_mem); 1337 1338 /** 1339 * pci_enable_device - Initialize device before it's used by a driver. 1340 * @dev: PCI device to be initialized 1341 * 1342 * Initialize device before it's used by a driver. Ask low-level code 1343 * to enable I/O and memory. Wake up the device if it was suspended. 1344 * Beware, this function can fail. 1345 * 1346 * Note we don't actually enable the device many times if we call 1347 * this function repeatedly (we just increment the count). 1348 */ 1349 int pci_enable_device(struct pci_dev *dev) 1350 { 1351 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1352 } 1353 EXPORT_SYMBOL(pci_enable_device); 1354 1355 /* 1356 * Managed PCI resources. This manages device on/off, intx/msi/msix 1357 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1358 * there's no need to track it separately. pci_devres is initialized 1359 * when a device is enabled using managed PCI device enable interface. 1360 */ 1361 struct pci_devres { 1362 unsigned int enabled:1; 1363 unsigned int pinned:1; 1364 unsigned int orig_intx:1; 1365 unsigned int restore_intx:1; 1366 u32 region_mask; 1367 }; 1368 1369 static void pcim_release(struct device *gendev, void *res) 1370 { 1371 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); 1372 struct pci_devres *this = res; 1373 int i; 1374 1375 if (dev->msi_enabled) 1376 pci_disable_msi(dev); 1377 if (dev->msix_enabled) 1378 pci_disable_msix(dev); 1379 1380 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1381 if (this->region_mask & (1 << i)) 1382 pci_release_region(dev, i); 1383 1384 if (this->restore_intx) 1385 pci_intx(dev, this->orig_intx); 1386 1387 if (this->enabled && !this->pinned) 1388 pci_disable_device(dev); 1389 } 1390 1391 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1392 { 1393 struct pci_devres *dr, *new_dr; 1394 1395 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1396 if (dr) 1397 return dr; 1398 1399 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1400 if (!new_dr) 1401 return NULL; 1402 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1403 } 1404 1405 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1406 { 1407 if (pci_is_managed(pdev)) 1408 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1409 return NULL; 1410 } 1411 1412 /** 1413 * pcim_enable_device - Managed pci_enable_device() 1414 * @pdev: PCI device to be initialized 1415 * 1416 * Managed pci_enable_device(). 1417 */ 1418 int pcim_enable_device(struct pci_dev *pdev) 1419 { 1420 struct pci_devres *dr; 1421 int rc; 1422 1423 dr = get_pci_dr(pdev); 1424 if (unlikely(!dr)) 1425 return -ENOMEM; 1426 if (dr->enabled) 1427 return 0; 1428 1429 rc = pci_enable_device(pdev); 1430 if (!rc) { 1431 pdev->is_managed = 1; 1432 dr->enabled = 1; 1433 } 1434 return rc; 1435 } 1436 EXPORT_SYMBOL(pcim_enable_device); 1437 1438 /** 1439 * pcim_pin_device - Pin managed PCI device 1440 * @pdev: PCI device to pin 1441 * 1442 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1443 * driver detach. @pdev must have been enabled with 1444 * pcim_enable_device(). 1445 */ 1446 void pcim_pin_device(struct pci_dev *pdev) 1447 { 1448 struct pci_devres *dr; 1449 1450 dr = find_pci_dr(pdev); 1451 WARN_ON(!dr || !dr->enabled); 1452 if (dr) 1453 dr->pinned = 1; 1454 } 1455 EXPORT_SYMBOL(pcim_pin_device); 1456 1457 /* 1458 * pcibios_add_device - provide arch specific hooks when adding device dev 1459 * @dev: the PCI device being added 1460 * 1461 * Permits the platform to provide architecture specific functionality when 1462 * devices are added. This is the default implementation. Architecture 1463 * implementations can override this. 1464 */ 1465 int __weak pcibios_add_device(struct pci_dev *dev) 1466 { 1467 return 0; 1468 } 1469 1470 /** 1471 * pcibios_release_device - provide arch specific hooks when releasing device dev 1472 * @dev: the PCI device being released 1473 * 1474 * Permits the platform to provide architecture specific functionality when 1475 * devices are released. This is the default implementation. Architecture 1476 * implementations can override this. 1477 */ 1478 void __weak pcibios_release_device(struct pci_dev *dev) {} 1479 1480 /** 1481 * pcibios_disable_device - disable arch specific PCI resources for device dev 1482 * @dev: the PCI device to disable 1483 * 1484 * Disables architecture specific PCI resources for the device. This 1485 * is the default implementation. Architecture implementations can 1486 * override this. 1487 */ 1488 void __weak pcibios_disable_device (struct pci_dev *dev) {} 1489 1490 /** 1491 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1492 * @irq: ISA IRQ to penalize 1493 * @active: IRQ active or not 1494 * 1495 * Permits the platform to provide architecture-specific functionality when 1496 * penalizing ISA IRQs. This is the default implementation. Architecture 1497 * implementations can override this. 1498 */ 1499 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1500 1501 static void do_pci_disable_device(struct pci_dev *dev) 1502 { 1503 u16 pci_command; 1504 1505 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1506 if (pci_command & PCI_COMMAND_MASTER) { 1507 pci_command &= ~PCI_COMMAND_MASTER; 1508 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1509 } 1510 1511 pcibios_disable_device(dev); 1512 } 1513 1514 /** 1515 * pci_disable_enabled_device - Disable device without updating enable_cnt 1516 * @dev: PCI device to disable 1517 * 1518 * NOTE: This function is a backend of PCI power management routines and is 1519 * not supposed to be called drivers. 1520 */ 1521 void pci_disable_enabled_device(struct pci_dev *dev) 1522 { 1523 if (pci_is_enabled(dev)) 1524 do_pci_disable_device(dev); 1525 } 1526 1527 /** 1528 * pci_disable_device - Disable PCI device after use 1529 * @dev: PCI device to be disabled 1530 * 1531 * Signal to the system that the PCI device is not in use by the system 1532 * anymore. This only involves disabling PCI bus-mastering, if active. 1533 * 1534 * Note we don't actually disable the device until all callers of 1535 * pci_enable_device() have called pci_disable_device(). 1536 */ 1537 void pci_disable_device(struct pci_dev *dev) 1538 { 1539 struct pci_devres *dr; 1540 1541 dr = find_pci_dr(dev); 1542 if (dr) 1543 dr->enabled = 0; 1544 1545 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1546 "disabling already-disabled device"); 1547 1548 if (atomic_dec_return(&dev->enable_cnt) != 0) 1549 return; 1550 1551 do_pci_disable_device(dev); 1552 1553 dev->is_busmaster = 0; 1554 } 1555 EXPORT_SYMBOL(pci_disable_device); 1556 1557 /** 1558 * pcibios_set_pcie_reset_state - set reset state for device dev 1559 * @dev: the PCIe device reset 1560 * @state: Reset state to enter into 1561 * 1562 * 1563 * Sets the PCIe reset state for the device. This is the default 1564 * implementation. Architecture implementations can override this. 1565 */ 1566 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1567 enum pcie_reset_state state) 1568 { 1569 return -EINVAL; 1570 } 1571 1572 /** 1573 * pci_set_pcie_reset_state - set reset state for device dev 1574 * @dev: the PCIe device reset 1575 * @state: Reset state to enter into 1576 * 1577 * 1578 * Sets the PCI reset state for the device. 1579 */ 1580 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1581 { 1582 return pcibios_set_pcie_reset_state(dev, state); 1583 } 1584 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1585 1586 /** 1587 * pci_check_pme_status - Check if given device has generated PME. 1588 * @dev: Device to check. 1589 * 1590 * Check the PME status of the device and if set, clear it and clear PME enable 1591 * (if set). Return 'true' if PME status and PME enable were both set or 1592 * 'false' otherwise. 1593 */ 1594 bool pci_check_pme_status(struct pci_dev *dev) 1595 { 1596 int pmcsr_pos; 1597 u16 pmcsr; 1598 bool ret = false; 1599 1600 if (!dev->pm_cap) 1601 return false; 1602 1603 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1604 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1605 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1606 return false; 1607 1608 /* Clear PME status. */ 1609 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1610 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1611 /* Disable PME to avoid interrupt flood. */ 1612 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1613 ret = true; 1614 } 1615 1616 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1617 1618 return ret; 1619 } 1620 1621 /** 1622 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1623 * @dev: Device to handle. 1624 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1625 * 1626 * Check if @dev has generated PME and queue a resume request for it in that 1627 * case. 1628 */ 1629 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1630 { 1631 if (pme_poll_reset && dev->pme_poll) 1632 dev->pme_poll = false; 1633 1634 if (pci_check_pme_status(dev)) { 1635 pci_wakeup_event(dev); 1636 pm_request_resume(&dev->dev); 1637 } 1638 return 0; 1639 } 1640 1641 /** 1642 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1643 * @bus: Top bus of the subtree to walk. 1644 */ 1645 void pci_pme_wakeup_bus(struct pci_bus *bus) 1646 { 1647 if (bus) 1648 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1649 } 1650 1651 1652 /** 1653 * pci_pme_capable - check the capability of PCI device to generate PME# 1654 * @dev: PCI device to handle. 1655 * @state: PCI state from which device will issue PME#. 1656 */ 1657 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1658 { 1659 if (!dev->pm_cap) 1660 return false; 1661 1662 return !!(dev->pme_support & (1 << state)); 1663 } 1664 EXPORT_SYMBOL(pci_pme_capable); 1665 1666 static void pci_pme_list_scan(struct work_struct *work) 1667 { 1668 struct pci_pme_device *pme_dev, *n; 1669 1670 mutex_lock(&pci_pme_list_mutex); 1671 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1672 if (pme_dev->dev->pme_poll) { 1673 struct pci_dev *bridge; 1674 1675 bridge = pme_dev->dev->bus->self; 1676 /* 1677 * If bridge is in low power state, the 1678 * configuration space of subordinate devices 1679 * may be not accessible 1680 */ 1681 if (bridge && bridge->current_state != PCI_D0) 1682 continue; 1683 pci_pme_wakeup(pme_dev->dev, NULL); 1684 } else { 1685 list_del(&pme_dev->list); 1686 kfree(pme_dev); 1687 } 1688 } 1689 if (!list_empty(&pci_pme_list)) 1690 schedule_delayed_work(&pci_pme_work, 1691 msecs_to_jiffies(PME_TIMEOUT)); 1692 mutex_unlock(&pci_pme_list_mutex); 1693 } 1694 1695 /** 1696 * pci_pme_active - enable or disable PCI device's PME# function 1697 * @dev: PCI device to handle. 1698 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1699 * 1700 * The caller must verify that the device is capable of generating PME# before 1701 * calling this function with @enable equal to 'true'. 1702 */ 1703 void pci_pme_active(struct pci_dev *dev, bool enable) 1704 { 1705 u16 pmcsr; 1706 1707 if (!dev->pme_support) 1708 return; 1709 1710 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1711 /* Clear PME_Status by writing 1 to it and enable PME# */ 1712 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1713 if (!enable) 1714 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1715 1716 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1717 1718 /* 1719 * PCI (as opposed to PCIe) PME requires that the device have 1720 * its PME# line hooked up correctly. Not all hardware vendors 1721 * do this, so the PME never gets delivered and the device 1722 * remains asleep. The easiest way around this is to 1723 * periodically walk the list of suspended devices and check 1724 * whether any have their PME flag set. The assumption is that 1725 * we'll wake up often enough anyway that this won't be a huge 1726 * hit, and the power savings from the devices will still be a 1727 * win. 1728 * 1729 * Although PCIe uses in-band PME message instead of PME# line 1730 * to report PME, PME does not work for some PCIe devices in 1731 * reality. For example, there are devices that set their PME 1732 * status bits, but don't really bother to send a PME message; 1733 * there are PCI Express Root Ports that don't bother to 1734 * trigger interrupts when they receive PME messages from the 1735 * devices below. So PME poll is used for PCIe devices too. 1736 */ 1737 1738 if (dev->pme_poll) { 1739 struct pci_pme_device *pme_dev; 1740 if (enable) { 1741 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1742 GFP_KERNEL); 1743 if (!pme_dev) { 1744 dev_warn(&dev->dev, "can't enable PME#\n"); 1745 return; 1746 } 1747 pme_dev->dev = dev; 1748 mutex_lock(&pci_pme_list_mutex); 1749 list_add(&pme_dev->list, &pci_pme_list); 1750 if (list_is_singular(&pci_pme_list)) 1751 schedule_delayed_work(&pci_pme_work, 1752 msecs_to_jiffies(PME_TIMEOUT)); 1753 mutex_unlock(&pci_pme_list_mutex); 1754 } else { 1755 mutex_lock(&pci_pme_list_mutex); 1756 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1757 if (pme_dev->dev == dev) { 1758 list_del(&pme_dev->list); 1759 kfree(pme_dev); 1760 break; 1761 } 1762 } 1763 mutex_unlock(&pci_pme_list_mutex); 1764 } 1765 } 1766 1767 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1768 } 1769 EXPORT_SYMBOL(pci_pme_active); 1770 1771 /** 1772 * __pci_enable_wake - enable PCI device as wakeup event source 1773 * @dev: PCI device affected 1774 * @state: PCI state from which device will issue wakeup events 1775 * @runtime: True if the events are to be generated at run time 1776 * @enable: True to enable event generation; false to disable 1777 * 1778 * This enables the device as a wakeup event source, or disables it. 1779 * When such events involves platform-specific hooks, those hooks are 1780 * called automatically by this routine. 1781 * 1782 * Devices with legacy power management (no standard PCI PM capabilities) 1783 * always require such platform hooks. 1784 * 1785 * RETURN VALUE: 1786 * 0 is returned on success 1787 * -EINVAL is returned if device is not supposed to wake up the system 1788 * Error code depending on the platform is returned if both the platform and 1789 * the native mechanism fail to enable the generation of wake-up events 1790 */ 1791 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1792 bool runtime, bool enable) 1793 { 1794 int ret = 0; 1795 1796 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1797 return -EINVAL; 1798 1799 /* Don't do the same thing twice in a row for one device. */ 1800 if (!!enable == !!dev->wakeup_prepared) 1801 return 0; 1802 1803 /* 1804 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1805 * Anderson we should be doing PME# wake enable followed by ACPI wake 1806 * enable. To disable wake-up we call the platform first, for symmetry. 1807 */ 1808 1809 if (enable) { 1810 int error; 1811 1812 if (pci_pme_capable(dev, state)) 1813 pci_pme_active(dev, true); 1814 else 1815 ret = 1; 1816 error = runtime ? platform_pci_run_wake(dev, true) : 1817 platform_pci_sleep_wake(dev, true); 1818 if (ret) 1819 ret = error; 1820 if (!ret) 1821 dev->wakeup_prepared = true; 1822 } else { 1823 if (runtime) 1824 platform_pci_run_wake(dev, false); 1825 else 1826 platform_pci_sleep_wake(dev, false); 1827 pci_pme_active(dev, false); 1828 dev->wakeup_prepared = false; 1829 } 1830 1831 return ret; 1832 } 1833 EXPORT_SYMBOL(__pci_enable_wake); 1834 1835 /** 1836 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1837 * @dev: PCI device to prepare 1838 * @enable: True to enable wake-up event generation; false to disable 1839 * 1840 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1841 * and this function allows them to set that up cleanly - pci_enable_wake() 1842 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1843 * ordering constraints. 1844 * 1845 * This function only returns error code if the device is not capable of 1846 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1847 * enable wake-up power for it. 1848 */ 1849 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1850 { 1851 return pci_pme_capable(dev, PCI_D3cold) ? 1852 pci_enable_wake(dev, PCI_D3cold, enable) : 1853 pci_enable_wake(dev, PCI_D3hot, enable); 1854 } 1855 EXPORT_SYMBOL(pci_wake_from_d3); 1856 1857 /** 1858 * pci_target_state - find an appropriate low power state for a given PCI dev 1859 * @dev: PCI device 1860 * 1861 * Use underlying platform code to find a supported low power state for @dev. 1862 * If the platform can't manage @dev, return the deepest state from which it 1863 * can generate wake events, based on any available PME info. 1864 */ 1865 static pci_power_t pci_target_state(struct pci_dev *dev) 1866 { 1867 pci_power_t target_state = PCI_D3hot; 1868 1869 if (platform_pci_power_manageable(dev)) { 1870 /* 1871 * Call the platform to choose the target state of the device 1872 * and enable wake-up from this state if supported. 1873 */ 1874 pci_power_t state = platform_pci_choose_state(dev); 1875 1876 switch (state) { 1877 case PCI_POWER_ERROR: 1878 case PCI_UNKNOWN: 1879 break; 1880 case PCI_D1: 1881 case PCI_D2: 1882 if (pci_no_d1d2(dev)) 1883 break; 1884 default: 1885 target_state = state; 1886 } 1887 } else if (!dev->pm_cap) { 1888 target_state = PCI_D0; 1889 } else if (device_may_wakeup(&dev->dev)) { 1890 /* 1891 * Find the deepest state from which the device can generate 1892 * wake-up events, make it the target state and enable device 1893 * to generate PME#. 1894 */ 1895 if (dev->pme_support) { 1896 while (target_state 1897 && !(dev->pme_support & (1 << target_state))) 1898 target_state--; 1899 } 1900 } 1901 1902 return target_state; 1903 } 1904 1905 /** 1906 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 1907 * @dev: Device to handle. 1908 * 1909 * Choose the power state appropriate for the device depending on whether 1910 * it can wake up the system and/or is power manageable by the platform 1911 * (PCI_D3hot is the default) and put the device into that state. 1912 */ 1913 int pci_prepare_to_sleep(struct pci_dev *dev) 1914 { 1915 pci_power_t target_state = pci_target_state(dev); 1916 int error; 1917 1918 if (target_state == PCI_POWER_ERROR) 1919 return -EIO; 1920 1921 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 1922 1923 error = pci_set_power_state(dev, target_state); 1924 1925 if (error) 1926 pci_enable_wake(dev, target_state, false); 1927 1928 return error; 1929 } 1930 EXPORT_SYMBOL(pci_prepare_to_sleep); 1931 1932 /** 1933 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 1934 * @dev: Device to handle. 1935 * 1936 * Disable device's system wake-up capability and put it into D0. 1937 */ 1938 int pci_back_from_sleep(struct pci_dev *dev) 1939 { 1940 pci_enable_wake(dev, PCI_D0, false); 1941 return pci_set_power_state(dev, PCI_D0); 1942 } 1943 EXPORT_SYMBOL(pci_back_from_sleep); 1944 1945 /** 1946 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 1947 * @dev: PCI device being suspended. 1948 * 1949 * Prepare @dev to generate wake-up events at run time and put it into a low 1950 * power state. 1951 */ 1952 int pci_finish_runtime_suspend(struct pci_dev *dev) 1953 { 1954 pci_power_t target_state = pci_target_state(dev); 1955 int error; 1956 1957 if (target_state == PCI_POWER_ERROR) 1958 return -EIO; 1959 1960 dev->runtime_d3cold = target_state == PCI_D3cold; 1961 1962 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 1963 1964 error = pci_set_power_state(dev, target_state); 1965 1966 if (error) { 1967 __pci_enable_wake(dev, target_state, true, false); 1968 dev->runtime_d3cold = false; 1969 } 1970 1971 return error; 1972 } 1973 1974 /** 1975 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 1976 * @dev: Device to check. 1977 * 1978 * Return true if the device itself is capable of generating wake-up events 1979 * (through the platform or using the native PCIe PME) or if the device supports 1980 * PME and one of its upstream bridges can generate wake-up events. 1981 */ 1982 bool pci_dev_run_wake(struct pci_dev *dev) 1983 { 1984 struct pci_bus *bus = dev->bus; 1985 1986 if (device_run_wake(&dev->dev)) 1987 return true; 1988 1989 if (!dev->pme_support) 1990 return false; 1991 1992 while (bus->parent) { 1993 struct pci_dev *bridge = bus->self; 1994 1995 if (device_run_wake(&bridge->dev)) 1996 return true; 1997 1998 bus = bus->parent; 1999 } 2000 2001 /* We have reached the root bus. */ 2002 if (bus->bridge) 2003 return device_run_wake(bus->bridge); 2004 2005 return false; 2006 } 2007 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2008 2009 /** 2010 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2011 * @pci_dev: Device to check. 2012 * 2013 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2014 * reconfigured due to wakeup settings difference between system and runtime 2015 * suspend and the current power state of it is suitable for the upcoming 2016 * (system) transition. 2017 */ 2018 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2019 { 2020 struct device *dev = &pci_dev->dev; 2021 2022 if (!pm_runtime_suspended(dev) 2023 || (device_can_wakeup(dev) && !device_may_wakeup(dev)) 2024 || platform_pci_need_resume(pci_dev)) 2025 return false; 2026 2027 return pci_target_state(pci_dev) == pci_dev->current_state; 2028 } 2029 2030 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2031 { 2032 struct device *dev = &pdev->dev; 2033 struct device *parent = dev->parent; 2034 2035 if (parent) 2036 pm_runtime_get_sync(parent); 2037 pm_runtime_get_noresume(dev); 2038 /* 2039 * pdev->current_state is set to PCI_D3cold during suspending, 2040 * so wait until suspending completes 2041 */ 2042 pm_runtime_barrier(dev); 2043 /* 2044 * Only need to resume devices in D3cold, because config 2045 * registers are still accessible for devices suspended but 2046 * not in D3cold. 2047 */ 2048 if (pdev->current_state == PCI_D3cold) 2049 pm_runtime_resume(dev); 2050 } 2051 2052 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2053 { 2054 struct device *dev = &pdev->dev; 2055 struct device *parent = dev->parent; 2056 2057 pm_runtime_put(dev); 2058 if (parent) 2059 pm_runtime_put_sync(parent); 2060 } 2061 2062 /** 2063 * pci_pm_init - Initialize PM functions of given PCI device 2064 * @dev: PCI device to handle. 2065 */ 2066 void pci_pm_init(struct pci_dev *dev) 2067 { 2068 int pm; 2069 u16 pmc; 2070 2071 pm_runtime_forbid(&dev->dev); 2072 pm_runtime_set_active(&dev->dev); 2073 pm_runtime_enable(&dev->dev); 2074 device_enable_async_suspend(&dev->dev); 2075 dev->wakeup_prepared = false; 2076 2077 dev->pm_cap = 0; 2078 dev->pme_support = 0; 2079 2080 /* find PCI PM capability in list */ 2081 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2082 if (!pm) 2083 return; 2084 /* Check device's ability to generate PME# */ 2085 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2086 2087 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2088 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 2089 pmc & PCI_PM_CAP_VER_MASK); 2090 return; 2091 } 2092 2093 dev->pm_cap = pm; 2094 dev->d3_delay = PCI_PM_D3_WAIT; 2095 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2096 dev->d3cold_allowed = true; 2097 2098 dev->d1_support = false; 2099 dev->d2_support = false; 2100 if (!pci_no_d1d2(dev)) { 2101 if (pmc & PCI_PM_CAP_D1) 2102 dev->d1_support = true; 2103 if (pmc & PCI_PM_CAP_D2) 2104 dev->d2_support = true; 2105 2106 if (dev->d1_support || dev->d2_support) 2107 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 2108 dev->d1_support ? " D1" : "", 2109 dev->d2_support ? " D2" : ""); 2110 } 2111 2112 pmc &= PCI_PM_CAP_PME_MASK; 2113 if (pmc) { 2114 dev_printk(KERN_DEBUG, &dev->dev, 2115 "PME# supported from%s%s%s%s%s\n", 2116 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2117 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2118 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2119 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2120 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2121 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2122 dev->pme_poll = true; 2123 /* 2124 * Make device's PM flags reflect the wake-up capability, but 2125 * let the user space enable it to wake up the system as needed. 2126 */ 2127 device_set_wakeup_capable(&dev->dev, true); 2128 /* Disable the PME# generation functionality */ 2129 pci_pme_active(dev, false); 2130 } 2131 } 2132 2133 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2134 struct pci_cap_saved_state *new_cap) 2135 { 2136 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2137 } 2138 2139 /** 2140 * _pci_add_cap_save_buffer - allocate buffer for saving given 2141 * capability registers 2142 * @dev: the PCI device 2143 * @cap: the capability to allocate the buffer for 2144 * @extended: Standard or Extended capability ID 2145 * @size: requested size of the buffer 2146 */ 2147 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2148 bool extended, unsigned int size) 2149 { 2150 int pos; 2151 struct pci_cap_saved_state *save_state; 2152 2153 if (extended) 2154 pos = pci_find_ext_capability(dev, cap); 2155 else 2156 pos = pci_find_capability(dev, cap); 2157 2158 if (pos <= 0) 2159 return 0; 2160 2161 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2162 if (!save_state) 2163 return -ENOMEM; 2164 2165 save_state->cap.cap_nr = cap; 2166 save_state->cap.cap_extended = extended; 2167 save_state->cap.size = size; 2168 pci_add_saved_cap(dev, save_state); 2169 2170 return 0; 2171 } 2172 2173 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2174 { 2175 return _pci_add_cap_save_buffer(dev, cap, false, size); 2176 } 2177 2178 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2179 { 2180 return _pci_add_cap_save_buffer(dev, cap, true, size); 2181 } 2182 2183 /** 2184 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2185 * @dev: the PCI device 2186 */ 2187 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2188 { 2189 int error; 2190 2191 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2192 PCI_EXP_SAVE_REGS * sizeof(u16)); 2193 if (error) 2194 dev_err(&dev->dev, 2195 "unable to preallocate PCI Express save buffer\n"); 2196 2197 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2198 if (error) 2199 dev_err(&dev->dev, 2200 "unable to preallocate PCI-X save buffer\n"); 2201 2202 pci_allocate_vc_save_buffers(dev); 2203 } 2204 2205 void pci_free_cap_save_buffers(struct pci_dev *dev) 2206 { 2207 struct pci_cap_saved_state *tmp; 2208 struct hlist_node *n; 2209 2210 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2211 kfree(tmp); 2212 } 2213 2214 /** 2215 * pci_configure_ari - enable or disable ARI forwarding 2216 * @dev: the PCI device 2217 * 2218 * If @dev and its upstream bridge both support ARI, enable ARI in the 2219 * bridge. Otherwise, disable ARI in the bridge. 2220 */ 2221 void pci_configure_ari(struct pci_dev *dev) 2222 { 2223 u32 cap; 2224 struct pci_dev *bridge; 2225 2226 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2227 return; 2228 2229 bridge = dev->bus->self; 2230 if (!bridge) 2231 return; 2232 2233 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2234 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2235 return; 2236 2237 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2238 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2239 PCI_EXP_DEVCTL2_ARI); 2240 bridge->ari_enabled = 1; 2241 } else { 2242 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2243 PCI_EXP_DEVCTL2_ARI); 2244 bridge->ari_enabled = 0; 2245 } 2246 } 2247 2248 static int pci_acs_enable; 2249 2250 /** 2251 * pci_request_acs - ask for ACS to be enabled if supported 2252 */ 2253 void pci_request_acs(void) 2254 { 2255 pci_acs_enable = 1; 2256 } 2257 2258 /** 2259 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2260 * @dev: the PCI device 2261 */ 2262 static int pci_std_enable_acs(struct pci_dev *dev) 2263 { 2264 int pos; 2265 u16 cap; 2266 u16 ctrl; 2267 2268 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2269 if (!pos) 2270 return -ENODEV; 2271 2272 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2273 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2274 2275 /* Source Validation */ 2276 ctrl |= (cap & PCI_ACS_SV); 2277 2278 /* P2P Request Redirect */ 2279 ctrl |= (cap & PCI_ACS_RR); 2280 2281 /* P2P Completion Redirect */ 2282 ctrl |= (cap & PCI_ACS_CR); 2283 2284 /* Upstream Forwarding */ 2285 ctrl |= (cap & PCI_ACS_UF); 2286 2287 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2288 2289 return 0; 2290 } 2291 2292 /** 2293 * pci_enable_acs - enable ACS if hardware support it 2294 * @dev: the PCI device 2295 */ 2296 void pci_enable_acs(struct pci_dev *dev) 2297 { 2298 if (!pci_acs_enable) 2299 return; 2300 2301 if (!pci_std_enable_acs(dev)) 2302 return; 2303 2304 pci_dev_specific_enable_acs(dev); 2305 } 2306 2307 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2308 { 2309 int pos; 2310 u16 cap, ctrl; 2311 2312 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2313 if (!pos) 2314 return false; 2315 2316 /* 2317 * Except for egress control, capabilities are either required 2318 * or only required if controllable. Features missing from the 2319 * capability field can therefore be assumed as hard-wired enabled. 2320 */ 2321 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2322 acs_flags &= (cap | PCI_ACS_EC); 2323 2324 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2325 return (ctrl & acs_flags) == acs_flags; 2326 } 2327 2328 /** 2329 * pci_acs_enabled - test ACS against required flags for a given device 2330 * @pdev: device to test 2331 * @acs_flags: required PCI ACS flags 2332 * 2333 * Return true if the device supports the provided flags. Automatically 2334 * filters out flags that are not implemented on multifunction devices. 2335 * 2336 * Note that this interface checks the effective ACS capabilities of the 2337 * device rather than the actual capabilities. For instance, most single 2338 * function endpoints are not required to support ACS because they have no 2339 * opportunity for peer-to-peer access. We therefore return 'true' 2340 * regardless of whether the device exposes an ACS capability. This makes 2341 * it much easier for callers of this function to ignore the actual type 2342 * or topology of the device when testing ACS support. 2343 */ 2344 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2345 { 2346 int ret; 2347 2348 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2349 if (ret >= 0) 2350 return ret > 0; 2351 2352 /* 2353 * Conventional PCI and PCI-X devices never support ACS, either 2354 * effectively or actually. The shared bus topology implies that 2355 * any device on the bus can receive or snoop DMA. 2356 */ 2357 if (!pci_is_pcie(pdev)) 2358 return false; 2359 2360 switch (pci_pcie_type(pdev)) { 2361 /* 2362 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2363 * but since their primary interface is PCI/X, we conservatively 2364 * handle them as we would a non-PCIe device. 2365 */ 2366 case PCI_EXP_TYPE_PCIE_BRIDGE: 2367 /* 2368 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2369 * applicable... must never implement an ACS Extended Capability...". 2370 * This seems arbitrary, but we take a conservative interpretation 2371 * of this statement. 2372 */ 2373 case PCI_EXP_TYPE_PCI_BRIDGE: 2374 case PCI_EXP_TYPE_RC_EC: 2375 return false; 2376 /* 2377 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2378 * implement ACS in order to indicate their peer-to-peer capabilities, 2379 * regardless of whether they are single- or multi-function devices. 2380 */ 2381 case PCI_EXP_TYPE_DOWNSTREAM: 2382 case PCI_EXP_TYPE_ROOT_PORT: 2383 return pci_acs_flags_enabled(pdev, acs_flags); 2384 /* 2385 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2386 * implemented by the remaining PCIe types to indicate peer-to-peer 2387 * capabilities, but only when they are part of a multifunction 2388 * device. The footnote for section 6.12 indicates the specific 2389 * PCIe types included here. 2390 */ 2391 case PCI_EXP_TYPE_ENDPOINT: 2392 case PCI_EXP_TYPE_UPSTREAM: 2393 case PCI_EXP_TYPE_LEG_END: 2394 case PCI_EXP_TYPE_RC_END: 2395 if (!pdev->multifunction) 2396 break; 2397 2398 return pci_acs_flags_enabled(pdev, acs_flags); 2399 } 2400 2401 /* 2402 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2403 * to single function devices with the exception of downstream ports. 2404 */ 2405 return true; 2406 } 2407 2408 /** 2409 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2410 * @start: starting downstream device 2411 * @end: ending upstream device or NULL to search to the root bus 2412 * @acs_flags: required flags 2413 * 2414 * Walk up a device tree from start to end testing PCI ACS support. If 2415 * any step along the way does not support the required flags, return false. 2416 */ 2417 bool pci_acs_path_enabled(struct pci_dev *start, 2418 struct pci_dev *end, u16 acs_flags) 2419 { 2420 struct pci_dev *pdev, *parent = start; 2421 2422 do { 2423 pdev = parent; 2424 2425 if (!pci_acs_enabled(pdev, acs_flags)) 2426 return false; 2427 2428 if (pci_is_root_bus(pdev->bus)) 2429 return (end == NULL); 2430 2431 parent = pdev->bus->self; 2432 } while (pdev != end); 2433 2434 return true; 2435 } 2436 2437 /** 2438 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2439 * @dev: the PCI device 2440 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 2441 * 2442 * Perform INTx swizzling for a device behind one level of bridge. This is 2443 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2444 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2445 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2446 * the PCI Express Base Specification, Revision 2.1) 2447 */ 2448 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2449 { 2450 int slot; 2451 2452 if (pci_ari_enabled(dev->bus)) 2453 slot = 0; 2454 else 2455 slot = PCI_SLOT(dev->devfn); 2456 2457 return (((pin - 1) + slot) % 4) + 1; 2458 } 2459 2460 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2461 { 2462 u8 pin; 2463 2464 pin = dev->pin; 2465 if (!pin) 2466 return -1; 2467 2468 while (!pci_is_root_bus(dev->bus)) { 2469 pin = pci_swizzle_interrupt_pin(dev, pin); 2470 dev = dev->bus->self; 2471 } 2472 *bridge = dev; 2473 return pin; 2474 } 2475 2476 /** 2477 * pci_common_swizzle - swizzle INTx all the way to root bridge 2478 * @dev: the PCI device 2479 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2480 * 2481 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 2482 * bridges all the way up to a PCI root bus. 2483 */ 2484 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 2485 { 2486 u8 pin = *pinp; 2487 2488 while (!pci_is_root_bus(dev->bus)) { 2489 pin = pci_swizzle_interrupt_pin(dev, pin); 2490 dev = dev->bus->self; 2491 } 2492 *pinp = pin; 2493 return PCI_SLOT(dev->devfn); 2494 } 2495 2496 /** 2497 * pci_release_region - Release a PCI bar 2498 * @pdev: PCI device whose resources were previously reserved by pci_request_region 2499 * @bar: BAR to release 2500 * 2501 * Releases the PCI I/O and memory resources previously reserved by a 2502 * successful call to pci_request_region. Call this function only 2503 * after all use of the PCI regions has ceased. 2504 */ 2505 void pci_release_region(struct pci_dev *pdev, int bar) 2506 { 2507 struct pci_devres *dr; 2508 2509 if (pci_resource_len(pdev, bar) == 0) 2510 return; 2511 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 2512 release_region(pci_resource_start(pdev, bar), 2513 pci_resource_len(pdev, bar)); 2514 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 2515 release_mem_region(pci_resource_start(pdev, bar), 2516 pci_resource_len(pdev, bar)); 2517 2518 dr = find_pci_dr(pdev); 2519 if (dr) 2520 dr->region_mask &= ~(1 << bar); 2521 } 2522 EXPORT_SYMBOL(pci_release_region); 2523 2524 /** 2525 * __pci_request_region - Reserved PCI I/O and memory resource 2526 * @pdev: PCI device whose resources are to be reserved 2527 * @bar: BAR to be reserved 2528 * @res_name: Name to be associated with resource. 2529 * @exclusive: whether the region access is exclusive or not 2530 * 2531 * Mark the PCI region associated with PCI device @pdev BR @bar as 2532 * being reserved by owner @res_name. Do not access any 2533 * address inside the PCI regions unless this call returns 2534 * successfully. 2535 * 2536 * If @exclusive is set, then the region is marked so that userspace 2537 * is explicitly not allowed to map the resource via /dev/mem or 2538 * sysfs MMIO access. 2539 * 2540 * Returns 0 on success, or %EBUSY on error. A warning 2541 * message is also printed on failure. 2542 */ 2543 static int __pci_request_region(struct pci_dev *pdev, int bar, 2544 const char *res_name, int exclusive) 2545 { 2546 struct pci_devres *dr; 2547 2548 if (pci_resource_len(pdev, bar) == 0) 2549 return 0; 2550 2551 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 2552 if (!request_region(pci_resource_start(pdev, bar), 2553 pci_resource_len(pdev, bar), res_name)) 2554 goto err_out; 2555 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 2556 if (!__request_mem_region(pci_resource_start(pdev, bar), 2557 pci_resource_len(pdev, bar), res_name, 2558 exclusive)) 2559 goto err_out; 2560 } 2561 2562 dr = find_pci_dr(pdev); 2563 if (dr) 2564 dr->region_mask |= 1 << bar; 2565 2566 return 0; 2567 2568 err_out: 2569 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 2570 &pdev->resource[bar]); 2571 return -EBUSY; 2572 } 2573 2574 /** 2575 * pci_request_region - Reserve PCI I/O and memory resource 2576 * @pdev: PCI device whose resources are to be reserved 2577 * @bar: BAR to be reserved 2578 * @res_name: Name to be associated with resource 2579 * 2580 * Mark the PCI region associated with PCI device @pdev BAR @bar as 2581 * being reserved by owner @res_name. Do not access any 2582 * address inside the PCI regions unless this call returns 2583 * successfully. 2584 * 2585 * Returns 0 on success, or %EBUSY on error. A warning 2586 * message is also printed on failure. 2587 */ 2588 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 2589 { 2590 return __pci_request_region(pdev, bar, res_name, 0); 2591 } 2592 EXPORT_SYMBOL(pci_request_region); 2593 2594 /** 2595 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 2596 * @pdev: PCI device whose resources are to be reserved 2597 * @bar: BAR to be reserved 2598 * @res_name: Name to be associated with resource. 2599 * 2600 * Mark the PCI region associated with PCI device @pdev BR @bar as 2601 * being reserved by owner @res_name. Do not access any 2602 * address inside the PCI regions unless this call returns 2603 * successfully. 2604 * 2605 * Returns 0 on success, or %EBUSY on error. A warning 2606 * message is also printed on failure. 2607 * 2608 * The key difference that _exclusive makes it that userspace is 2609 * explicitly not allowed to map the resource via /dev/mem or 2610 * sysfs. 2611 */ 2612 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 2613 const char *res_name) 2614 { 2615 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 2616 } 2617 EXPORT_SYMBOL(pci_request_region_exclusive); 2618 2619 /** 2620 * pci_release_selected_regions - Release selected PCI I/O and memory resources 2621 * @pdev: PCI device whose resources were previously reserved 2622 * @bars: Bitmask of BARs to be released 2623 * 2624 * Release selected PCI I/O and memory resources previously reserved. 2625 * Call this function only after all use of the PCI regions has ceased. 2626 */ 2627 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 2628 { 2629 int i; 2630 2631 for (i = 0; i < 6; i++) 2632 if (bars & (1 << i)) 2633 pci_release_region(pdev, i); 2634 } 2635 EXPORT_SYMBOL(pci_release_selected_regions); 2636 2637 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 2638 const char *res_name, int excl) 2639 { 2640 int i; 2641 2642 for (i = 0; i < 6; i++) 2643 if (bars & (1 << i)) 2644 if (__pci_request_region(pdev, i, res_name, excl)) 2645 goto err_out; 2646 return 0; 2647 2648 err_out: 2649 while (--i >= 0) 2650 if (bars & (1 << i)) 2651 pci_release_region(pdev, i); 2652 2653 return -EBUSY; 2654 } 2655 2656 2657 /** 2658 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 2659 * @pdev: PCI device whose resources are to be reserved 2660 * @bars: Bitmask of BARs to be requested 2661 * @res_name: Name to be associated with resource 2662 */ 2663 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 2664 const char *res_name) 2665 { 2666 return __pci_request_selected_regions(pdev, bars, res_name, 0); 2667 } 2668 EXPORT_SYMBOL(pci_request_selected_regions); 2669 2670 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 2671 const char *res_name) 2672 { 2673 return __pci_request_selected_regions(pdev, bars, res_name, 2674 IORESOURCE_EXCLUSIVE); 2675 } 2676 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 2677 2678 /** 2679 * pci_release_regions - Release reserved PCI I/O and memory resources 2680 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 2681 * 2682 * Releases all PCI I/O and memory resources previously reserved by a 2683 * successful call to pci_request_regions. Call this function only 2684 * after all use of the PCI regions has ceased. 2685 */ 2686 2687 void pci_release_regions(struct pci_dev *pdev) 2688 { 2689 pci_release_selected_regions(pdev, (1 << 6) - 1); 2690 } 2691 EXPORT_SYMBOL(pci_release_regions); 2692 2693 /** 2694 * pci_request_regions - Reserved PCI I/O and memory resources 2695 * @pdev: PCI device whose resources are to be reserved 2696 * @res_name: Name to be associated with resource. 2697 * 2698 * Mark all PCI regions associated with PCI device @pdev as 2699 * being reserved by owner @res_name. Do not access any 2700 * address inside the PCI regions unless this call returns 2701 * successfully. 2702 * 2703 * Returns 0 on success, or %EBUSY on error. A warning 2704 * message is also printed on failure. 2705 */ 2706 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 2707 { 2708 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 2709 } 2710 EXPORT_SYMBOL(pci_request_regions); 2711 2712 /** 2713 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 2714 * @pdev: PCI device whose resources are to be reserved 2715 * @res_name: Name to be associated with resource. 2716 * 2717 * Mark all PCI regions associated with PCI device @pdev as 2718 * being reserved by owner @res_name. Do not access any 2719 * address inside the PCI regions unless this call returns 2720 * successfully. 2721 * 2722 * pci_request_regions_exclusive() will mark the region so that 2723 * /dev/mem and the sysfs MMIO access will not be allowed. 2724 * 2725 * Returns 0 on success, or %EBUSY on error. A warning 2726 * message is also printed on failure. 2727 */ 2728 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 2729 { 2730 return pci_request_selected_regions_exclusive(pdev, 2731 ((1 << 6) - 1), res_name); 2732 } 2733 EXPORT_SYMBOL(pci_request_regions_exclusive); 2734 2735 /** 2736 * pci_remap_iospace - Remap the memory mapped I/O space 2737 * @res: Resource describing the I/O space 2738 * @phys_addr: physical address of range to be mapped 2739 * 2740 * Remap the memory mapped I/O space described by the @res 2741 * and the CPU physical address @phys_addr into virtual address space. 2742 * Only architectures that have memory mapped IO functions defined 2743 * (and the PCI_IOBASE value defined) should call this function. 2744 */ 2745 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 2746 { 2747 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 2748 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 2749 2750 if (!(res->flags & IORESOURCE_IO)) 2751 return -EINVAL; 2752 2753 if (res->end > IO_SPACE_LIMIT) 2754 return -EINVAL; 2755 2756 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 2757 pgprot_device(PAGE_KERNEL)); 2758 #else 2759 /* this architecture does not have memory mapped I/O space, 2760 so this function should never be called */ 2761 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 2762 return -ENODEV; 2763 #endif 2764 } 2765 2766 static void __pci_set_master(struct pci_dev *dev, bool enable) 2767 { 2768 u16 old_cmd, cmd; 2769 2770 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 2771 if (enable) 2772 cmd = old_cmd | PCI_COMMAND_MASTER; 2773 else 2774 cmd = old_cmd & ~PCI_COMMAND_MASTER; 2775 if (cmd != old_cmd) { 2776 dev_dbg(&dev->dev, "%s bus mastering\n", 2777 enable ? "enabling" : "disabling"); 2778 pci_write_config_word(dev, PCI_COMMAND, cmd); 2779 } 2780 dev->is_busmaster = enable; 2781 } 2782 2783 /** 2784 * pcibios_setup - process "pci=" kernel boot arguments 2785 * @str: string used to pass in "pci=" kernel boot arguments 2786 * 2787 * Process kernel boot arguments. This is the default implementation. 2788 * Architecture specific implementations can override this as necessary. 2789 */ 2790 char * __weak __init pcibios_setup(char *str) 2791 { 2792 return str; 2793 } 2794 2795 /** 2796 * pcibios_set_master - enable PCI bus-mastering for device dev 2797 * @dev: the PCI device to enable 2798 * 2799 * Enables PCI bus-mastering for the device. This is the default 2800 * implementation. Architecture specific implementations can override 2801 * this if necessary. 2802 */ 2803 void __weak pcibios_set_master(struct pci_dev *dev) 2804 { 2805 u8 lat; 2806 2807 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 2808 if (pci_is_pcie(dev)) 2809 return; 2810 2811 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 2812 if (lat < 16) 2813 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 2814 else if (lat > pcibios_max_latency) 2815 lat = pcibios_max_latency; 2816 else 2817 return; 2818 2819 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 2820 } 2821 2822 /** 2823 * pci_set_master - enables bus-mastering for device dev 2824 * @dev: the PCI device to enable 2825 * 2826 * Enables bus-mastering on the device and calls pcibios_set_master() 2827 * to do the needed arch specific settings. 2828 */ 2829 void pci_set_master(struct pci_dev *dev) 2830 { 2831 __pci_set_master(dev, true); 2832 pcibios_set_master(dev); 2833 } 2834 EXPORT_SYMBOL(pci_set_master); 2835 2836 /** 2837 * pci_clear_master - disables bus-mastering for device dev 2838 * @dev: the PCI device to disable 2839 */ 2840 void pci_clear_master(struct pci_dev *dev) 2841 { 2842 __pci_set_master(dev, false); 2843 } 2844 EXPORT_SYMBOL(pci_clear_master); 2845 2846 /** 2847 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 2848 * @dev: the PCI device for which MWI is to be enabled 2849 * 2850 * Helper function for pci_set_mwi. 2851 * Originally copied from drivers/net/acenic.c. 2852 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 2853 * 2854 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2855 */ 2856 int pci_set_cacheline_size(struct pci_dev *dev) 2857 { 2858 u8 cacheline_size; 2859 2860 if (!pci_cache_line_size) 2861 return -EINVAL; 2862 2863 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 2864 equal to or multiple of the right value. */ 2865 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2866 if (cacheline_size >= pci_cache_line_size && 2867 (cacheline_size % pci_cache_line_size) == 0) 2868 return 0; 2869 2870 /* Write the correct value. */ 2871 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 2872 /* Read it back. */ 2873 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2874 if (cacheline_size == pci_cache_line_size) 2875 return 0; 2876 2877 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n", 2878 pci_cache_line_size << 2); 2879 2880 return -EINVAL; 2881 } 2882 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 2883 2884 /** 2885 * pci_set_mwi - enables memory-write-invalidate PCI transaction 2886 * @dev: the PCI device for which MWI is enabled 2887 * 2888 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2889 * 2890 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2891 */ 2892 int pci_set_mwi(struct pci_dev *dev) 2893 { 2894 #ifdef PCI_DISABLE_MWI 2895 return 0; 2896 #else 2897 int rc; 2898 u16 cmd; 2899 2900 rc = pci_set_cacheline_size(dev); 2901 if (rc) 2902 return rc; 2903 2904 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2905 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 2906 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 2907 cmd |= PCI_COMMAND_INVALIDATE; 2908 pci_write_config_word(dev, PCI_COMMAND, cmd); 2909 } 2910 return 0; 2911 #endif 2912 } 2913 EXPORT_SYMBOL(pci_set_mwi); 2914 2915 /** 2916 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 2917 * @dev: the PCI device for which MWI is enabled 2918 * 2919 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2920 * Callers are not required to check the return value. 2921 * 2922 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2923 */ 2924 int pci_try_set_mwi(struct pci_dev *dev) 2925 { 2926 #ifdef PCI_DISABLE_MWI 2927 return 0; 2928 #else 2929 return pci_set_mwi(dev); 2930 #endif 2931 } 2932 EXPORT_SYMBOL(pci_try_set_mwi); 2933 2934 /** 2935 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 2936 * @dev: the PCI device to disable 2937 * 2938 * Disables PCI Memory-Write-Invalidate transaction on the device 2939 */ 2940 void pci_clear_mwi(struct pci_dev *dev) 2941 { 2942 #ifndef PCI_DISABLE_MWI 2943 u16 cmd; 2944 2945 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2946 if (cmd & PCI_COMMAND_INVALIDATE) { 2947 cmd &= ~PCI_COMMAND_INVALIDATE; 2948 pci_write_config_word(dev, PCI_COMMAND, cmd); 2949 } 2950 #endif 2951 } 2952 EXPORT_SYMBOL(pci_clear_mwi); 2953 2954 /** 2955 * pci_intx - enables/disables PCI INTx for device dev 2956 * @pdev: the PCI device to operate on 2957 * @enable: boolean: whether to enable or disable PCI INTx 2958 * 2959 * Enables/disables PCI INTx for device dev 2960 */ 2961 void pci_intx(struct pci_dev *pdev, int enable) 2962 { 2963 u16 pci_command, new; 2964 2965 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 2966 2967 if (enable) 2968 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 2969 else 2970 new = pci_command | PCI_COMMAND_INTX_DISABLE; 2971 2972 if (new != pci_command) { 2973 struct pci_devres *dr; 2974 2975 pci_write_config_word(pdev, PCI_COMMAND, new); 2976 2977 dr = find_pci_dr(pdev); 2978 if (dr && !dr->restore_intx) { 2979 dr->restore_intx = 1; 2980 dr->orig_intx = !enable; 2981 } 2982 } 2983 } 2984 EXPORT_SYMBOL_GPL(pci_intx); 2985 2986 /** 2987 * pci_intx_mask_supported - probe for INTx masking support 2988 * @dev: the PCI device to operate on 2989 * 2990 * Check if the device dev support INTx masking via the config space 2991 * command word. 2992 */ 2993 bool pci_intx_mask_supported(struct pci_dev *dev) 2994 { 2995 bool mask_supported = false; 2996 u16 orig, new; 2997 2998 if (dev->broken_intx_masking) 2999 return false; 3000 3001 pci_cfg_access_lock(dev); 3002 3003 pci_read_config_word(dev, PCI_COMMAND, &orig); 3004 pci_write_config_word(dev, PCI_COMMAND, 3005 orig ^ PCI_COMMAND_INTX_DISABLE); 3006 pci_read_config_word(dev, PCI_COMMAND, &new); 3007 3008 /* 3009 * There's no way to protect against hardware bugs or detect them 3010 * reliably, but as long as we know what the value should be, let's 3011 * go ahead and check it. 3012 */ 3013 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) { 3014 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n", 3015 orig, new); 3016 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) { 3017 mask_supported = true; 3018 pci_write_config_word(dev, PCI_COMMAND, orig); 3019 } 3020 3021 pci_cfg_access_unlock(dev); 3022 return mask_supported; 3023 } 3024 EXPORT_SYMBOL_GPL(pci_intx_mask_supported); 3025 3026 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3027 { 3028 struct pci_bus *bus = dev->bus; 3029 bool mask_updated = true; 3030 u32 cmd_status_dword; 3031 u16 origcmd, newcmd; 3032 unsigned long flags; 3033 bool irq_pending; 3034 3035 /* 3036 * We do a single dword read to retrieve both command and status. 3037 * Document assumptions that make this possible. 3038 */ 3039 BUILD_BUG_ON(PCI_COMMAND % 4); 3040 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3041 3042 raw_spin_lock_irqsave(&pci_lock, flags); 3043 3044 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3045 3046 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3047 3048 /* 3049 * Check interrupt status register to see whether our device 3050 * triggered the interrupt (when masking) or the next IRQ is 3051 * already pending (when unmasking). 3052 */ 3053 if (mask != irq_pending) { 3054 mask_updated = false; 3055 goto done; 3056 } 3057 3058 origcmd = cmd_status_dword; 3059 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3060 if (mask) 3061 newcmd |= PCI_COMMAND_INTX_DISABLE; 3062 if (newcmd != origcmd) 3063 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3064 3065 done: 3066 raw_spin_unlock_irqrestore(&pci_lock, flags); 3067 3068 return mask_updated; 3069 } 3070 3071 /** 3072 * pci_check_and_mask_intx - mask INTx on pending interrupt 3073 * @dev: the PCI device to operate on 3074 * 3075 * Check if the device dev has its INTx line asserted, mask it and 3076 * return true in that case. False is returned if not interrupt was 3077 * pending. 3078 */ 3079 bool pci_check_and_mask_intx(struct pci_dev *dev) 3080 { 3081 return pci_check_and_set_intx_mask(dev, true); 3082 } 3083 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3084 3085 /** 3086 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3087 * @dev: the PCI device to operate on 3088 * 3089 * Check if the device dev has its INTx line asserted, unmask it if not 3090 * and return true. False is returned and the mask remains active if 3091 * there was still an interrupt pending. 3092 */ 3093 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3094 { 3095 return pci_check_and_set_intx_mask(dev, false); 3096 } 3097 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3098 3099 /** 3100 * pci_msi_off - disables any MSI or MSI-X capabilities 3101 * @dev: the PCI device to operate on 3102 * 3103 * If you want to use MSI, see pci_enable_msi() and friends. 3104 * This is a lower-level primitive that allows us to disable 3105 * MSI operation at the device level. 3106 */ 3107 void pci_msi_off(struct pci_dev *dev) 3108 { 3109 int pos; 3110 u16 control; 3111 3112 /* 3113 * This looks like it could go in msi.c, but we need it even when 3114 * CONFIG_PCI_MSI=n. For the same reason, we can't use 3115 * dev->msi_cap or dev->msix_cap here. 3116 */ 3117 pos = pci_find_capability(dev, PCI_CAP_ID_MSI); 3118 if (pos) { 3119 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control); 3120 control &= ~PCI_MSI_FLAGS_ENABLE; 3121 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control); 3122 } 3123 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); 3124 if (pos) { 3125 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control); 3126 control &= ~PCI_MSIX_FLAGS_ENABLE; 3127 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control); 3128 } 3129 } 3130 EXPORT_SYMBOL_GPL(pci_msi_off); 3131 3132 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size) 3133 { 3134 return dma_set_max_seg_size(&dev->dev, size); 3135 } 3136 EXPORT_SYMBOL(pci_set_dma_max_seg_size); 3137 3138 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask) 3139 { 3140 return dma_set_seg_boundary(&dev->dev, mask); 3141 } 3142 EXPORT_SYMBOL(pci_set_dma_seg_boundary); 3143 3144 /** 3145 * pci_wait_for_pending_transaction - waits for pending transaction 3146 * @dev: the PCI device to operate on 3147 * 3148 * Return 0 if transaction is pending 1 otherwise. 3149 */ 3150 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3151 { 3152 if (!pci_is_pcie(dev)) 3153 return 1; 3154 3155 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 3156 PCI_EXP_DEVSTA_TRPND); 3157 } 3158 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3159 3160 static int pcie_flr(struct pci_dev *dev, int probe) 3161 { 3162 u32 cap; 3163 3164 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3165 if (!(cap & PCI_EXP_DEVCAP_FLR)) 3166 return -ENOTTY; 3167 3168 if (probe) 3169 return 0; 3170 3171 if (!pci_wait_for_pending_transaction(dev)) 3172 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 3173 3174 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 3175 msleep(100); 3176 return 0; 3177 } 3178 3179 static int pci_af_flr(struct pci_dev *dev, int probe) 3180 { 3181 int pos; 3182 u8 cap; 3183 3184 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3185 if (!pos) 3186 return -ENOTTY; 3187 3188 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3189 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3190 return -ENOTTY; 3191 3192 if (probe) 3193 return 0; 3194 3195 /* 3196 * Wait for Transaction Pending bit to clear. A word-aligned test 3197 * is used, so we use the conrol offset rather than status and shift 3198 * the test bit to match. 3199 */ 3200 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 3201 PCI_AF_STATUS_TP << 8)) 3202 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 3203 3204 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3205 msleep(100); 3206 return 0; 3207 } 3208 3209 /** 3210 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3211 * @dev: Device to reset. 3212 * @probe: If set, only check if the device can be reset this way. 3213 * 3214 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3215 * unset, it will be reinitialized internally when going from PCI_D3hot to 3216 * PCI_D0. If that's the case and the device is not in a low-power state 3217 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3218 * 3219 * NOTE: This causes the caller to sleep for twice the device power transition 3220 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3221 * by default (i.e. unless the @dev's d3_delay field has a different value). 3222 * Moreover, only devices in D0 can be reset by this function. 3223 */ 3224 static int pci_pm_reset(struct pci_dev *dev, int probe) 3225 { 3226 u16 csr; 3227 3228 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 3229 return -ENOTTY; 3230 3231 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3232 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3233 return -ENOTTY; 3234 3235 if (probe) 3236 return 0; 3237 3238 if (dev->current_state != PCI_D0) 3239 return -EINVAL; 3240 3241 csr &= ~PCI_PM_CTRL_STATE_MASK; 3242 csr |= PCI_D3hot; 3243 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3244 pci_dev_d3_sleep(dev); 3245 3246 csr &= ~PCI_PM_CTRL_STATE_MASK; 3247 csr |= PCI_D0; 3248 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3249 pci_dev_d3_sleep(dev); 3250 3251 return 0; 3252 } 3253 3254 void pci_reset_secondary_bus(struct pci_dev *dev) 3255 { 3256 u16 ctrl; 3257 3258 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 3259 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3260 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3261 /* 3262 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 3263 * this to 2ms to ensure that we meet the minimum requirement. 3264 */ 3265 msleep(2); 3266 3267 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3268 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3269 3270 /* 3271 * Trhfa for conventional PCI is 2^25 clock cycles. 3272 * Assuming a minimum 33MHz clock this results in a 1s 3273 * delay before we can consider subordinate devices to 3274 * be re-initialized. PCIe has some ways to shorten this, 3275 * but we don't make use of them yet. 3276 */ 3277 ssleep(1); 3278 } 3279 3280 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 3281 { 3282 pci_reset_secondary_bus(dev); 3283 } 3284 3285 /** 3286 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 3287 * @dev: Bridge device 3288 * 3289 * Use the bridge control register to assert reset on the secondary bus. 3290 * Devices on the secondary bus are left in power-on state. 3291 */ 3292 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 3293 { 3294 pcibios_reset_secondary_bus(dev); 3295 } 3296 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 3297 3298 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 3299 { 3300 struct pci_dev *pdev; 3301 3302 if (pci_is_root_bus(dev->bus) || dev->subordinate || 3303 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 3304 return -ENOTTY; 3305 3306 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3307 if (pdev != dev) 3308 return -ENOTTY; 3309 3310 if (probe) 3311 return 0; 3312 3313 pci_reset_bridge_secondary_bus(dev->bus->self); 3314 3315 return 0; 3316 } 3317 3318 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 3319 { 3320 int rc = -ENOTTY; 3321 3322 if (!hotplug || !try_module_get(hotplug->ops->owner)) 3323 return rc; 3324 3325 if (hotplug->ops->reset_slot) 3326 rc = hotplug->ops->reset_slot(hotplug, probe); 3327 3328 module_put(hotplug->ops->owner); 3329 3330 return rc; 3331 } 3332 3333 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 3334 { 3335 struct pci_dev *pdev; 3336 3337 if (dev->subordinate || !dev->slot || 3338 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 3339 return -ENOTTY; 3340 3341 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3342 if (pdev != dev && pdev->slot == dev->slot) 3343 return -ENOTTY; 3344 3345 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 3346 } 3347 3348 static int __pci_dev_reset(struct pci_dev *dev, int probe) 3349 { 3350 int rc; 3351 3352 might_sleep(); 3353 3354 rc = pci_dev_specific_reset(dev, probe); 3355 if (rc != -ENOTTY) 3356 goto done; 3357 3358 rc = pcie_flr(dev, probe); 3359 if (rc != -ENOTTY) 3360 goto done; 3361 3362 rc = pci_af_flr(dev, probe); 3363 if (rc != -ENOTTY) 3364 goto done; 3365 3366 rc = pci_pm_reset(dev, probe); 3367 if (rc != -ENOTTY) 3368 goto done; 3369 3370 rc = pci_dev_reset_slot_function(dev, probe); 3371 if (rc != -ENOTTY) 3372 goto done; 3373 3374 rc = pci_parent_bus_reset(dev, probe); 3375 done: 3376 return rc; 3377 } 3378 3379 static void pci_dev_lock(struct pci_dev *dev) 3380 { 3381 pci_cfg_access_lock(dev); 3382 /* block PM suspend, driver probe, etc. */ 3383 device_lock(&dev->dev); 3384 } 3385 3386 /* Return 1 on successful lock, 0 on contention */ 3387 static int pci_dev_trylock(struct pci_dev *dev) 3388 { 3389 if (pci_cfg_access_trylock(dev)) { 3390 if (device_trylock(&dev->dev)) 3391 return 1; 3392 pci_cfg_access_unlock(dev); 3393 } 3394 3395 return 0; 3396 } 3397 3398 static void pci_dev_unlock(struct pci_dev *dev) 3399 { 3400 device_unlock(&dev->dev); 3401 pci_cfg_access_unlock(dev); 3402 } 3403 3404 /** 3405 * pci_reset_notify - notify device driver of reset 3406 * @dev: device to be notified of reset 3407 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt 3408 * completed 3409 * 3410 * Must be called prior to device access being disabled and after device 3411 * access is restored. 3412 */ 3413 static void pci_reset_notify(struct pci_dev *dev, bool prepare) 3414 { 3415 const struct pci_error_handlers *err_handler = 3416 dev->driver ? dev->driver->err_handler : NULL; 3417 if (err_handler && err_handler->reset_notify) 3418 err_handler->reset_notify(dev, prepare); 3419 } 3420 3421 static void pci_dev_save_and_disable(struct pci_dev *dev) 3422 { 3423 pci_reset_notify(dev, true); 3424 3425 /* 3426 * Wake-up device prior to save. PM registers default to D0 after 3427 * reset and a simple register restore doesn't reliably return 3428 * to a non-D0 state anyway. 3429 */ 3430 pci_set_power_state(dev, PCI_D0); 3431 3432 pci_save_state(dev); 3433 /* 3434 * Disable the device by clearing the Command register, except for 3435 * INTx-disable which is set. This not only disables MMIO and I/O port 3436 * BARs, but also prevents the device from being Bus Master, preventing 3437 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 3438 * compliant devices, INTx-disable prevents legacy interrupts. 3439 */ 3440 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 3441 } 3442 3443 static void pci_dev_restore(struct pci_dev *dev) 3444 { 3445 pci_restore_state(dev); 3446 pci_reset_notify(dev, false); 3447 } 3448 3449 static int pci_dev_reset(struct pci_dev *dev, int probe) 3450 { 3451 int rc; 3452 3453 if (!probe) 3454 pci_dev_lock(dev); 3455 3456 rc = __pci_dev_reset(dev, probe); 3457 3458 if (!probe) 3459 pci_dev_unlock(dev); 3460 3461 return rc; 3462 } 3463 3464 /** 3465 * __pci_reset_function - reset a PCI device function 3466 * @dev: PCI device to reset 3467 * 3468 * Some devices allow an individual function to be reset without affecting 3469 * other functions in the same device. The PCI device must be responsive 3470 * to PCI config space in order to use this function. 3471 * 3472 * The device function is presumed to be unused when this function is called. 3473 * Resetting the device will make the contents of PCI configuration space 3474 * random, so any caller of this must be prepared to reinitialise the 3475 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3476 * etc. 3477 * 3478 * Returns 0 if the device function was successfully reset or negative if the 3479 * device doesn't support resetting a single function. 3480 */ 3481 int __pci_reset_function(struct pci_dev *dev) 3482 { 3483 return pci_dev_reset(dev, 0); 3484 } 3485 EXPORT_SYMBOL_GPL(__pci_reset_function); 3486 3487 /** 3488 * __pci_reset_function_locked - reset a PCI device function while holding 3489 * the @dev mutex lock. 3490 * @dev: PCI device to reset 3491 * 3492 * Some devices allow an individual function to be reset without affecting 3493 * other functions in the same device. The PCI device must be responsive 3494 * to PCI config space in order to use this function. 3495 * 3496 * The device function is presumed to be unused and the caller is holding 3497 * the device mutex lock when this function is called. 3498 * Resetting the device will make the contents of PCI configuration space 3499 * random, so any caller of this must be prepared to reinitialise the 3500 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3501 * etc. 3502 * 3503 * Returns 0 if the device function was successfully reset or negative if the 3504 * device doesn't support resetting a single function. 3505 */ 3506 int __pci_reset_function_locked(struct pci_dev *dev) 3507 { 3508 return __pci_dev_reset(dev, 0); 3509 } 3510 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 3511 3512 /** 3513 * pci_probe_reset_function - check whether the device can be safely reset 3514 * @dev: PCI device to reset 3515 * 3516 * Some devices allow an individual function to be reset without affecting 3517 * other functions in the same device. The PCI device must be responsive 3518 * to PCI config space in order to use this function. 3519 * 3520 * Returns 0 if the device function can be reset or negative if the 3521 * device doesn't support resetting a single function. 3522 */ 3523 int pci_probe_reset_function(struct pci_dev *dev) 3524 { 3525 return pci_dev_reset(dev, 1); 3526 } 3527 3528 /** 3529 * pci_reset_function - quiesce and reset a PCI device function 3530 * @dev: PCI device to reset 3531 * 3532 * Some devices allow an individual function to be reset without affecting 3533 * other functions in the same device. The PCI device must be responsive 3534 * to PCI config space in order to use this function. 3535 * 3536 * This function does not just reset the PCI portion of a device, but 3537 * clears all the state associated with the device. This function differs 3538 * from __pci_reset_function in that it saves and restores device state 3539 * over the reset. 3540 * 3541 * Returns 0 if the device function was successfully reset or negative if the 3542 * device doesn't support resetting a single function. 3543 */ 3544 int pci_reset_function(struct pci_dev *dev) 3545 { 3546 int rc; 3547 3548 rc = pci_dev_reset(dev, 1); 3549 if (rc) 3550 return rc; 3551 3552 pci_dev_save_and_disable(dev); 3553 3554 rc = pci_dev_reset(dev, 0); 3555 3556 pci_dev_restore(dev); 3557 3558 return rc; 3559 } 3560 EXPORT_SYMBOL_GPL(pci_reset_function); 3561 3562 /** 3563 * pci_try_reset_function - quiesce and reset a PCI device function 3564 * @dev: PCI device to reset 3565 * 3566 * Same as above, except return -EAGAIN if unable to lock device. 3567 */ 3568 int pci_try_reset_function(struct pci_dev *dev) 3569 { 3570 int rc; 3571 3572 rc = pci_dev_reset(dev, 1); 3573 if (rc) 3574 return rc; 3575 3576 pci_dev_save_and_disable(dev); 3577 3578 if (pci_dev_trylock(dev)) { 3579 rc = __pci_dev_reset(dev, 0); 3580 pci_dev_unlock(dev); 3581 } else 3582 rc = -EAGAIN; 3583 3584 pci_dev_restore(dev); 3585 3586 return rc; 3587 } 3588 EXPORT_SYMBOL_GPL(pci_try_reset_function); 3589 3590 /* Do any devices on or below this bus prevent a bus reset? */ 3591 static bool pci_bus_resetable(struct pci_bus *bus) 3592 { 3593 struct pci_dev *dev; 3594 3595 list_for_each_entry(dev, &bus->devices, bus_list) { 3596 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 3597 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 3598 return false; 3599 } 3600 3601 return true; 3602 } 3603 3604 /* Lock devices from the top of the tree down */ 3605 static void pci_bus_lock(struct pci_bus *bus) 3606 { 3607 struct pci_dev *dev; 3608 3609 list_for_each_entry(dev, &bus->devices, bus_list) { 3610 pci_dev_lock(dev); 3611 if (dev->subordinate) 3612 pci_bus_lock(dev->subordinate); 3613 } 3614 } 3615 3616 /* Unlock devices from the bottom of the tree up */ 3617 static void pci_bus_unlock(struct pci_bus *bus) 3618 { 3619 struct pci_dev *dev; 3620 3621 list_for_each_entry(dev, &bus->devices, bus_list) { 3622 if (dev->subordinate) 3623 pci_bus_unlock(dev->subordinate); 3624 pci_dev_unlock(dev); 3625 } 3626 } 3627 3628 /* Return 1 on successful lock, 0 on contention */ 3629 static int pci_bus_trylock(struct pci_bus *bus) 3630 { 3631 struct pci_dev *dev; 3632 3633 list_for_each_entry(dev, &bus->devices, bus_list) { 3634 if (!pci_dev_trylock(dev)) 3635 goto unlock; 3636 if (dev->subordinate) { 3637 if (!pci_bus_trylock(dev->subordinate)) { 3638 pci_dev_unlock(dev); 3639 goto unlock; 3640 } 3641 } 3642 } 3643 return 1; 3644 3645 unlock: 3646 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 3647 if (dev->subordinate) 3648 pci_bus_unlock(dev->subordinate); 3649 pci_dev_unlock(dev); 3650 } 3651 return 0; 3652 } 3653 3654 /* Do any devices on or below this slot prevent a bus reset? */ 3655 static bool pci_slot_resetable(struct pci_slot *slot) 3656 { 3657 struct pci_dev *dev; 3658 3659 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3660 if (!dev->slot || dev->slot != slot) 3661 continue; 3662 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 3663 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 3664 return false; 3665 } 3666 3667 return true; 3668 } 3669 3670 /* Lock devices from the top of the tree down */ 3671 static void pci_slot_lock(struct pci_slot *slot) 3672 { 3673 struct pci_dev *dev; 3674 3675 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3676 if (!dev->slot || dev->slot != slot) 3677 continue; 3678 pci_dev_lock(dev); 3679 if (dev->subordinate) 3680 pci_bus_lock(dev->subordinate); 3681 } 3682 } 3683 3684 /* Unlock devices from the bottom of the tree up */ 3685 static void pci_slot_unlock(struct pci_slot *slot) 3686 { 3687 struct pci_dev *dev; 3688 3689 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3690 if (!dev->slot || dev->slot != slot) 3691 continue; 3692 if (dev->subordinate) 3693 pci_bus_unlock(dev->subordinate); 3694 pci_dev_unlock(dev); 3695 } 3696 } 3697 3698 /* Return 1 on successful lock, 0 on contention */ 3699 static int pci_slot_trylock(struct pci_slot *slot) 3700 { 3701 struct pci_dev *dev; 3702 3703 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3704 if (!dev->slot || dev->slot != slot) 3705 continue; 3706 if (!pci_dev_trylock(dev)) 3707 goto unlock; 3708 if (dev->subordinate) { 3709 if (!pci_bus_trylock(dev->subordinate)) { 3710 pci_dev_unlock(dev); 3711 goto unlock; 3712 } 3713 } 3714 } 3715 return 1; 3716 3717 unlock: 3718 list_for_each_entry_continue_reverse(dev, 3719 &slot->bus->devices, bus_list) { 3720 if (!dev->slot || dev->slot != slot) 3721 continue; 3722 if (dev->subordinate) 3723 pci_bus_unlock(dev->subordinate); 3724 pci_dev_unlock(dev); 3725 } 3726 return 0; 3727 } 3728 3729 /* Save and disable devices from the top of the tree down */ 3730 static void pci_bus_save_and_disable(struct pci_bus *bus) 3731 { 3732 struct pci_dev *dev; 3733 3734 list_for_each_entry(dev, &bus->devices, bus_list) { 3735 pci_dev_save_and_disable(dev); 3736 if (dev->subordinate) 3737 pci_bus_save_and_disable(dev->subordinate); 3738 } 3739 } 3740 3741 /* 3742 * Restore devices from top of the tree down - parent bridges need to be 3743 * restored before we can get to subordinate devices. 3744 */ 3745 static void pci_bus_restore(struct pci_bus *bus) 3746 { 3747 struct pci_dev *dev; 3748 3749 list_for_each_entry(dev, &bus->devices, bus_list) { 3750 pci_dev_restore(dev); 3751 if (dev->subordinate) 3752 pci_bus_restore(dev->subordinate); 3753 } 3754 } 3755 3756 /* Save and disable devices from the top of the tree down */ 3757 static void pci_slot_save_and_disable(struct pci_slot *slot) 3758 { 3759 struct pci_dev *dev; 3760 3761 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3762 if (!dev->slot || dev->slot != slot) 3763 continue; 3764 pci_dev_save_and_disable(dev); 3765 if (dev->subordinate) 3766 pci_bus_save_and_disable(dev->subordinate); 3767 } 3768 } 3769 3770 /* 3771 * Restore devices from top of the tree down - parent bridges need to be 3772 * restored before we can get to subordinate devices. 3773 */ 3774 static void pci_slot_restore(struct pci_slot *slot) 3775 { 3776 struct pci_dev *dev; 3777 3778 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3779 if (!dev->slot || dev->slot != slot) 3780 continue; 3781 pci_dev_restore(dev); 3782 if (dev->subordinate) 3783 pci_bus_restore(dev->subordinate); 3784 } 3785 } 3786 3787 static int pci_slot_reset(struct pci_slot *slot, int probe) 3788 { 3789 int rc; 3790 3791 if (!slot || !pci_slot_resetable(slot)) 3792 return -ENOTTY; 3793 3794 if (!probe) 3795 pci_slot_lock(slot); 3796 3797 might_sleep(); 3798 3799 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 3800 3801 if (!probe) 3802 pci_slot_unlock(slot); 3803 3804 return rc; 3805 } 3806 3807 /** 3808 * pci_probe_reset_slot - probe whether a PCI slot can be reset 3809 * @slot: PCI slot to probe 3810 * 3811 * Return 0 if slot can be reset, negative if a slot reset is not supported. 3812 */ 3813 int pci_probe_reset_slot(struct pci_slot *slot) 3814 { 3815 return pci_slot_reset(slot, 1); 3816 } 3817 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 3818 3819 /** 3820 * pci_reset_slot - reset a PCI slot 3821 * @slot: PCI slot to reset 3822 * 3823 * A PCI bus may host multiple slots, each slot may support a reset mechanism 3824 * independent of other slots. For instance, some slots may support slot power 3825 * control. In the case of a 1:1 bus to slot architecture, this function may 3826 * wrap the bus reset to avoid spurious slot related events such as hotplug. 3827 * Generally a slot reset should be attempted before a bus reset. All of the 3828 * function of the slot and any subordinate buses behind the slot are reset 3829 * through this function. PCI config space of all devices in the slot and 3830 * behind the slot is saved before and restored after reset. 3831 * 3832 * Return 0 on success, non-zero on error. 3833 */ 3834 int pci_reset_slot(struct pci_slot *slot) 3835 { 3836 int rc; 3837 3838 rc = pci_slot_reset(slot, 1); 3839 if (rc) 3840 return rc; 3841 3842 pci_slot_save_and_disable(slot); 3843 3844 rc = pci_slot_reset(slot, 0); 3845 3846 pci_slot_restore(slot); 3847 3848 return rc; 3849 } 3850 EXPORT_SYMBOL_GPL(pci_reset_slot); 3851 3852 /** 3853 * pci_try_reset_slot - Try to reset a PCI slot 3854 * @slot: PCI slot to reset 3855 * 3856 * Same as above except return -EAGAIN if the slot cannot be locked 3857 */ 3858 int pci_try_reset_slot(struct pci_slot *slot) 3859 { 3860 int rc; 3861 3862 rc = pci_slot_reset(slot, 1); 3863 if (rc) 3864 return rc; 3865 3866 pci_slot_save_and_disable(slot); 3867 3868 if (pci_slot_trylock(slot)) { 3869 might_sleep(); 3870 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 3871 pci_slot_unlock(slot); 3872 } else 3873 rc = -EAGAIN; 3874 3875 pci_slot_restore(slot); 3876 3877 return rc; 3878 } 3879 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 3880 3881 static int pci_bus_reset(struct pci_bus *bus, int probe) 3882 { 3883 if (!bus->self || !pci_bus_resetable(bus)) 3884 return -ENOTTY; 3885 3886 if (probe) 3887 return 0; 3888 3889 pci_bus_lock(bus); 3890 3891 might_sleep(); 3892 3893 pci_reset_bridge_secondary_bus(bus->self); 3894 3895 pci_bus_unlock(bus); 3896 3897 return 0; 3898 } 3899 3900 /** 3901 * pci_probe_reset_bus - probe whether a PCI bus can be reset 3902 * @bus: PCI bus to probe 3903 * 3904 * Return 0 if bus can be reset, negative if a bus reset is not supported. 3905 */ 3906 int pci_probe_reset_bus(struct pci_bus *bus) 3907 { 3908 return pci_bus_reset(bus, 1); 3909 } 3910 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 3911 3912 /** 3913 * pci_reset_bus - reset a PCI bus 3914 * @bus: top level PCI bus to reset 3915 * 3916 * Do a bus reset on the given bus and any subordinate buses, saving 3917 * and restoring state of all devices. 3918 * 3919 * Return 0 on success, non-zero on error. 3920 */ 3921 int pci_reset_bus(struct pci_bus *bus) 3922 { 3923 int rc; 3924 3925 rc = pci_bus_reset(bus, 1); 3926 if (rc) 3927 return rc; 3928 3929 pci_bus_save_and_disable(bus); 3930 3931 rc = pci_bus_reset(bus, 0); 3932 3933 pci_bus_restore(bus); 3934 3935 return rc; 3936 } 3937 EXPORT_SYMBOL_GPL(pci_reset_bus); 3938 3939 /** 3940 * pci_try_reset_bus - Try to reset a PCI bus 3941 * @bus: top level PCI bus to reset 3942 * 3943 * Same as above except return -EAGAIN if the bus cannot be locked 3944 */ 3945 int pci_try_reset_bus(struct pci_bus *bus) 3946 { 3947 int rc; 3948 3949 rc = pci_bus_reset(bus, 1); 3950 if (rc) 3951 return rc; 3952 3953 pci_bus_save_and_disable(bus); 3954 3955 if (pci_bus_trylock(bus)) { 3956 might_sleep(); 3957 pci_reset_bridge_secondary_bus(bus->self); 3958 pci_bus_unlock(bus); 3959 } else 3960 rc = -EAGAIN; 3961 3962 pci_bus_restore(bus); 3963 3964 return rc; 3965 } 3966 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 3967 3968 /** 3969 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 3970 * @dev: PCI device to query 3971 * 3972 * Returns mmrbc: maximum designed memory read count in bytes 3973 * or appropriate error value. 3974 */ 3975 int pcix_get_max_mmrbc(struct pci_dev *dev) 3976 { 3977 int cap; 3978 u32 stat; 3979 3980 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3981 if (!cap) 3982 return -EINVAL; 3983 3984 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3985 return -EINVAL; 3986 3987 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 3988 } 3989 EXPORT_SYMBOL(pcix_get_max_mmrbc); 3990 3991 /** 3992 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 3993 * @dev: PCI device to query 3994 * 3995 * Returns mmrbc: maximum memory read count in bytes 3996 * or appropriate error value. 3997 */ 3998 int pcix_get_mmrbc(struct pci_dev *dev) 3999 { 4000 int cap; 4001 u16 cmd; 4002 4003 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4004 if (!cap) 4005 return -EINVAL; 4006 4007 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4008 return -EINVAL; 4009 4010 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 4011 } 4012 EXPORT_SYMBOL(pcix_get_mmrbc); 4013 4014 /** 4015 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 4016 * @dev: PCI device to query 4017 * @mmrbc: maximum memory read count in bytes 4018 * valid values are 512, 1024, 2048, 4096 4019 * 4020 * If possible sets maximum memory read byte count, some bridges have erratas 4021 * that prevent this. 4022 */ 4023 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 4024 { 4025 int cap; 4026 u32 stat, v, o; 4027 u16 cmd; 4028 4029 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 4030 return -EINVAL; 4031 4032 v = ffs(mmrbc) - 10; 4033 4034 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4035 if (!cap) 4036 return -EINVAL; 4037 4038 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4039 return -EINVAL; 4040 4041 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 4042 return -E2BIG; 4043 4044 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4045 return -EINVAL; 4046 4047 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 4048 if (o != v) { 4049 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 4050 return -EIO; 4051 4052 cmd &= ~PCI_X_CMD_MAX_READ; 4053 cmd |= v << 2; 4054 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 4055 return -EIO; 4056 } 4057 return 0; 4058 } 4059 EXPORT_SYMBOL(pcix_set_mmrbc); 4060 4061 /** 4062 * pcie_get_readrq - get PCI Express read request size 4063 * @dev: PCI device to query 4064 * 4065 * Returns maximum memory read request in bytes 4066 * or appropriate error value. 4067 */ 4068 int pcie_get_readrq(struct pci_dev *dev) 4069 { 4070 u16 ctl; 4071 4072 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4073 4074 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 4075 } 4076 EXPORT_SYMBOL(pcie_get_readrq); 4077 4078 /** 4079 * pcie_set_readrq - set PCI Express maximum memory read request 4080 * @dev: PCI device to query 4081 * @rq: maximum memory read count in bytes 4082 * valid values are 128, 256, 512, 1024, 2048, 4096 4083 * 4084 * If possible sets maximum memory read request in bytes 4085 */ 4086 int pcie_set_readrq(struct pci_dev *dev, int rq) 4087 { 4088 u16 v; 4089 4090 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 4091 return -EINVAL; 4092 4093 /* 4094 * If using the "performance" PCIe config, we clamp the 4095 * read rq size to the max packet size to prevent the 4096 * host bridge generating requests larger than we can 4097 * cope with 4098 */ 4099 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 4100 int mps = pcie_get_mps(dev); 4101 4102 if (mps < rq) 4103 rq = mps; 4104 } 4105 4106 v = (ffs(rq) - 8) << 12; 4107 4108 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4109 PCI_EXP_DEVCTL_READRQ, v); 4110 } 4111 EXPORT_SYMBOL(pcie_set_readrq); 4112 4113 /** 4114 * pcie_get_mps - get PCI Express maximum payload size 4115 * @dev: PCI device to query 4116 * 4117 * Returns maximum payload size in bytes 4118 */ 4119 int pcie_get_mps(struct pci_dev *dev) 4120 { 4121 u16 ctl; 4122 4123 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4124 4125 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 4126 } 4127 EXPORT_SYMBOL(pcie_get_mps); 4128 4129 /** 4130 * pcie_set_mps - set PCI Express maximum payload size 4131 * @dev: PCI device to query 4132 * @mps: maximum payload size in bytes 4133 * valid values are 128, 256, 512, 1024, 2048, 4096 4134 * 4135 * If possible sets maximum payload size 4136 */ 4137 int pcie_set_mps(struct pci_dev *dev, int mps) 4138 { 4139 u16 v; 4140 4141 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 4142 return -EINVAL; 4143 4144 v = ffs(mps) - 8; 4145 if (v > dev->pcie_mpss) 4146 return -EINVAL; 4147 v <<= 5; 4148 4149 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4150 PCI_EXP_DEVCTL_PAYLOAD, v); 4151 } 4152 EXPORT_SYMBOL(pcie_set_mps); 4153 4154 /** 4155 * pcie_get_minimum_link - determine minimum link settings of a PCI device 4156 * @dev: PCI device to query 4157 * @speed: storage for minimum speed 4158 * @width: storage for minimum width 4159 * 4160 * This function will walk up the PCI device chain and determine the minimum 4161 * link width and speed of the device. 4162 */ 4163 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 4164 enum pcie_link_width *width) 4165 { 4166 int ret; 4167 4168 *speed = PCI_SPEED_UNKNOWN; 4169 *width = PCIE_LNK_WIDTH_UNKNOWN; 4170 4171 while (dev) { 4172 u16 lnksta; 4173 enum pci_bus_speed next_speed; 4174 enum pcie_link_width next_width; 4175 4176 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 4177 if (ret) 4178 return ret; 4179 4180 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 4181 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 4182 PCI_EXP_LNKSTA_NLW_SHIFT; 4183 4184 if (next_speed < *speed) 4185 *speed = next_speed; 4186 4187 if (next_width < *width) 4188 *width = next_width; 4189 4190 dev = dev->bus->self; 4191 } 4192 4193 return 0; 4194 } 4195 EXPORT_SYMBOL(pcie_get_minimum_link); 4196 4197 /** 4198 * pci_select_bars - Make BAR mask from the type of resource 4199 * @dev: the PCI device for which BAR mask is made 4200 * @flags: resource type mask to be selected 4201 * 4202 * This helper routine makes bar mask from the type of resource. 4203 */ 4204 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 4205 { 4206 int i, bars = 0; 4207 for (i = 0; i < PCI_NUM_RESOURCES; i++) 4208 if (pci_resource_flags(dev, i) & flags) 4209 bars |= (1 << i); 4210 return bars; 4211 } 4212 EXPORT_SYMBOL(pci_select_bars); 4213 4214 /** 4215 * pci_resource_bar - get position of the BAR associated with a resource 4216 * @dev: the PCI device 4217 * @resno: the resource number 4218 * @type: the BAR type to be filled in 4219 * 4220 * Returns BAR position in config space, or 0 if the BAR is invalid. 4221 */ 4222 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 4223 { 4224 int reg; 4225 4226 if (resno < PCI_ROM_RESOURCE) { 4227 *type = pci_bar_unknown; 4228 return PCI_BASE_ADDRESS_0 + 4 * resno; 4229 } else if (resno == PCI_ROM_RESOURCE) { 4230 *type = pci_bar_mem32; 4231 return dev->rom_base_reg; 4232 } else if (resno < PCI_BRIDGE_RESOURCES) { 4233 /* device specific resource */ 4234 *type = pci_bar_unknown; 4235 reg = pci_iov_resource_bar(dev, resno); 4236 if (reg) 4237 return reg; 4238 } 4239 4240 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno); 4241 return 0; 4242 } 4243 4244 /* Some architectures require additional programming to enable VGA */ 4245 static arch_set_vga_state_t arch_set_vga_state; 4246 4247 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 4248 { 4249 arch_set_vga_state = func; /* NULL disables */ 4250 } 4251 4252 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 4253 unsigned int command_bits, u32 flags) 4254 { 4255 if (arch_set_vga_state) 4256 return arch_set_vga_state(dev, decode, command_bits, 4257 flags); 4258 return 0; 4259 } 4260 4261 /** 4262 * pci_set_vga_state - set VGA decode state on device and parents if requested 4263 * @dev: the PCI device 4264 * @decode: true = enable decoding, false = disable decoding 4265 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 4266 * @flags: traverse ancestors and change bridges 4267 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 4268 */ 4269 int pci_set_vga_state(struct pci_dev *dev, bool decode, 4270 unsigned int command_bits, u32 flags) 4271 { 4272 struct pci_bus *bus; 4273 struct pci_dev *bridge; 4274 u16 cmd; 4275 int rc; 4276 4277 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 4278 4279 /* ARCH specific VGA enables */ 4280 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 4281 if (rc) 4282 return rc; 4283 4284 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 4285 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4286 if (decode == true) 4287 cmd |= command_bits; 4288 else 4289 cmd &= ~command_bits; 4290 pci_write_config_word(dev, PCI_COMMAND, cmd); 4291 } 4292 4293 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 4294 return 0; 4295 4296 bus = dev->bus; 4297 while (bus) { 4298 bridge = bus->self; 4299 if (bridge) { 4300 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 4301 &cmd); 4302 if (decode == true) 4303 cmd |= PCI_BRIDGE_CTL_VGA; 4304 else 4305 cmd &= ~PCI_BRIDGE_CTL_VGA; 4306 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 4307 cmd); 4308 } 4309 bus = bus->parent; 4310 } 4311 return 0; 4312 } 4313 4314 bool pci_device_is_present(struct pci_dev *pdev) 4315 { 4316 u32 v; 4317 4318 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 4319 } 4320 EXPORT_SYMBOL_GPL(pci_device_is_present); 4321 4322 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 4323 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 4324 static DEFINE_SPINLOCK(resource_alignment_lock); 4325 4326 /** 4327 * pci_specified_resource_alignment - get resource alignment specified by user. 4328 * @dev: the PCI device to get 4329 * 4330 * RETURNS: Resource alignment if it is specified. 4331 * Zero if it is not specified. 4332 */ 4333 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 4334 { 4335 int seg, bus, slot, func, align_order, count; 4336 resource_size_t align = 0; 4337 char *p; 4338 4339 spin_lock(&resource_alignment_lock); 4340 p = resource_alignment_param; 4341 while (*p) { 4342 count = 0; 4343 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 4344 p[count] == '@') { 4345 p += count + 1; 4346 } else { 4347 align_order = -1; 4348 } 4349 if (sscanf(p, "%x:%x:%x.%x%n", 4350 &seg, &bus, &slot, &func, &count) != 4) { 4351 seg = 0; 4352 if (sscanf(p, "%x:%x.%x%n", 4353 &bus, &slot, &func, &count) != 3) { 4354 /* Invalid format */ 4355 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 4356 p); 4357 break; 4358 } 4359 } 4360 p += count; 4361 if (seg == pci_domain_nr(dev->bus) && 4362 bus == dev->bus->number && 4363 slot == PCI_SLOT(dev->devfn) && 4364 func == PCI_FUNC(dev->devfn)) { 4365 if (align_order == -1) 4366 align = PAGE_SIZE; 4367 else 4368 align = 1 << align_order; 4369 /* Found */ 4370 break; 4371 } 4372 if (*p != ';' && *p != ',') { 4373 /* End of param or invalid format */ 4374 break; 4375 } 4376 p++; 4377 } 4378 spin_unlock(&resource_alignment_lock); 4379 return align; 4380 } 4381 4382 /* 4383 * This function disables memory decoding and releases memory resources 4384 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 4385 * It also rounds up size to specified alignment. 4386 * Later on, the kernel will assign page-aligned memory resource back 4387 * to the device. 4388 */ 4389 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 4390 { 4391 int i; 4392 struct resource *r; 4393 resource_size_t align, size; 4394 u16 command; 4395 4396 /* check if specified PCI is target device to reassign */ 4397 align = pci_specified_resource_alignment(dev); 4398 if (!align) 4399 return; 4400 4401 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 4402 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 4403 dev_warn(&dev->dev, 4404 "Can't reassign resources to host bridge.\n"); 4405 return; 4406 } 4407 4408 dev_info(&dev->dev, 4409 "Disabling memory decoding and releasing memory resources.\n"); 4410 pci_read_config_word(dev, PCI_COMMAND, &command); 4411 command &= ~PCI_COMMAND_MEMORY; 4412 pci_write_config_word(dev, PCI_COMMAND, command); 4413 4414 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { 4415 r = &dev->resource[i]; 4416 if (!(r->flags & IORESOURCE_MEM)) 4417 continue; 4418 size = resource_size(r); 4419 if (size < align) { 4420 size = align; 4421 dev_info(&dev->dev, 4422 "Rounding up size of resource #%d to %#llx.\n", 4423 i, (unsigned long long)size); 4424 } 4425 r->flags |= IORESOURCE_UNSET; 4426 r->end = size - 1; 4427 r->start = 0; 4428 } 4429 /* Need to disable bridge's resource window, 4430 * to enable the kernel to reassign new resource 4431 * window later on. 4432 */ 4433 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 4434 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 4435 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 4436 r = &dev->resource[i]; 4437 if (!(r->flags & IORESOURCE_MEM)) 4438 continue; 4439 r->flags |= IORESOURCE_UNSET; 4440 r->end = resource_size(r) - 1; 4441 r->start = 0; 4442 } 4443 pci_disable_bridge_window(dev); 4444 } 4445 } 4446 4447 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 4448 { 4449 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 4450 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 4451 spin_lock(&resource_alignment_lock); 4452 strncpy(resource_alignment_param, buf, count); 4453 resource_alignment_param[count] = '\0'; 4454 spin_unlock(&resource_alignment_lock); 4455 return count; 4456 } 4457 4458 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 4459 { 4460 size_t count; 4461 spin_lock(&resource_alignment_lock); 4462 count = snprintf(buf, size, "%s", resource_alignment_param); 4463 spin_unlock(&resource_alignment_lock); 4464 return count; 4465 } 4466 4467 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 4468 { 4469 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 4470 } 4471 4472 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 4473 const char *buf, size_t count) 4474 { 4475 return pci_set_resource_alignment_param(buf, count); 4476 } 4477 4478 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 4479 pci_resource_alignment_store); 4480 4481 static int __init pci_resource_alignment_sysfs_init(void) 4482 { 4483 return bus_create_file(&pci_bus_type, 4484 &bus_attr_resource_alignment); 4485 } 4486 late_initcall(pci_resource_alignment_sysfs_init); 4487 4488 static void pci_no_domains(void) 4489 { 4490 #ifdef CONFIG_PCI_DOMAINS 4491 pci_domains_supported = 0; 4492 #endif 4493 } 4494 4495 #ifdef CONFIG_PCI_DOMAINS 4496 static atomic_t __domain_nr = ATOMIC_INIT(-1); 4497 4498 int pci_get_new_domain_nr(void) 4499 { 4500 return atomic_inc_return(&__domain_nr); 4501 } 4502 4503 #ifdef CONFIG_PCI_DOMAINS_GENERIC 4504 void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent) 4505 { 4506 static int use_dt_domains = -1; 4507 int domain = of_get_pci_domain_nr(parent->of_node); 4508 4509 /* 4510 * Check DT domain and use_dt_domains values. 4511 * 4512 * If DT domain property is valid (domain >= 0) and 4513 * use_dt_domains != 0, the DT assignment is valid since this means 4514 * we have not previously allocated a domain number by using 4515 * pci_get_new_domain_nr(); we should also update use_dt_domains to 4516 * 1, to indicate that we have just assigned a domain number from 4517 * DT. 4518 * 4519 * If DT domain property value is not valid (ie domain < 0), and we 4520 * have not previously assigned a domain number from DT 4521 * (use_dt_domains != 1) we should assign a domain number by 4522 * using the: 4523 * 4524 * pci_get_new_domain_nr() 4525 * 4526 * API and update the use_dt_domains value to keep track of method we 4527 * are using to assign domain numbers (use_dt_domains = 0). 4528 * 4529 * All other combinations imply we have a platform that is trying 4530 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 4531 * which is a recipe for domain mishandling and it is prevented by 4532 * invalidating the domain value (domain = -1) and printing a 4533 * corresponding error. 4534 */ 4535 if (domain >= 0 && use_dt_domains) { 4536 use_dt_domains = 1; 4537 } else if (domain < 0 && use_dt_domains != 1) { 4538 use_dt_domains = 0; 4539 domain = pci_get_new_domain_nr(); 4540 } else { 4541 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n", 4542 parent->of_node->full_name); 4543 domain = -1; 4544 } 4545 4546 bus->domain_nr = domain; 4547 } 4548 #endif 4549 #endif 4550 4551 /** 4552 * pci_ext_cfg_avail - can we access extended PCI config space? 4553 * 4554 * Returns 1 if we can access PCI extended config space (offsets 4555 * greater than 0xff). This is the default implementation. Architecture 4556 * implementations can override this. 4557 */ 4558 int __weak pci_ext_cfg_avail(void) 4559 { 4560 return 1; 4561 } 4562 4563 void __weak pci_fixup_cardbus(struct pci_bus *bus) 4564 { 4565 } 4566 EXPORT_SYMBOL(pci_fixup_cardbus); 4567 4568 static int __init pci_setup(char *str) 4569 { 4570 while (str) { 4571 char *k = strchr(str, ','); 4572 if (k) 4573 *k++ = 0; 4574 if (*str && (str = pcibios_setup(str)) && *str) { 4575 if (!strcmp(str, "nomsi")) { 4576 pci_no_msi(); 4577 } else if (!strcmp(str, "noaer")) { 4578 pci_no_aer(); 4579 } else if (!strncmp(str, "realloc=", 8)) { 4580 pci_realloc_get_opt(str + 8); 4581 } else if (!strncmp(str, "realloc", 7)) { 4582 pci_realloc_get_opt("on"); 4583 } else if (!strcmp(str, "nodomains")) { 4584 pci_no_domains(); 4585 } else if (!strncmp(str, "noari", 5)) { 4586 pcie_ari_disabled = true; 4587 } else if (!strncmp(str, "cbiosize=", 9)) { 4588 pci_cardbus_io_size = memparse(str + 9, &str); 4589 } else if (!strncmp(str, "cbmemsize=", 10)) { 4590 pci_cardbus_mem_size = memparse(str + 10, &str); 4591 } else if (!strncmp(str, "resource_alignment=", 19)) { 4592 pci_set_resource_alignment_param(str + 19, 4593 strlen(str + 19)); 4594 } else if (!strncmp(str, "ecrc=", 5)) { 4595 pcie_ecrc_get_policy(str + 5); 4596 } else if (!strncmp(str, "hpiosize=", 9)) { 4597 pci_hotplug_io_size = memparse(str + 9, &str); 4598 } else if (!strncmp(str, "hpmemsize=", 10)) { 4599 pci_hotplug_mem_size = memparse(str + 10, &str); 4600 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 4601 pcie_bus_config = PCIE_BUS_TUNE_OFF; 4602 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 4603 pcie_bus_config = PCIE_BUS_SAFE; 4604 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 4605 pcie_bus_config = PCIE_BUS_PERFORMANCE; 4606 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 4607 pcie_bus_config = PCIE_BUS_PEER2PEER; 4608 } else if (!strncmp(str, "pcie_scan_all", 13)) { 4609 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 4610 } else { 4611 printk(KERN_ERR "PCI: Unknown option `%s'\n", 4612 str); 4613 } 4614 } 4615 str = k; 4616 } 4617 return 0; 4618 } 4619 early_param("pci", pci_setup); 4620