1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/of_pci.h> 19 #include <linux/pci.h> 20 #include <linux/pm.h> 21 #include <linux/slab.h> 22 #include <linux/module.h> 23 #include <linux/spinlock.h> 24 #include <linux/string.h> 25 #include <linux/log2.h> 26 #include <linux/logic_pio.h> 27 #include <linux/pm_wakeup.h> 28 #include <linux/interrupt.h> 29 #include <linux/device.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/pci_hotplug.h> 32 #include <linux/vmalloc.h> 33 #include <linux/pci-ats.h> 34 #include <asm/setup.h> 35 #include <asm/dma.h> 36 #include <linux/aer.h> 37 #include "pci.h" 38 39 DEFINE_MUTEX(pci_slot_mutex); 40 41 const char *pci_power_names[] = { 42 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 43 }; 44 EXPORT_SYMBOL_GPL(pci_power_names); 45 46 int isa_dma_bridge_buggy; 47 EXPORT_SYMBOL(isa_dma_bridge_buggy); 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 static void pci_dev_d3_sleep(struct pci_dev *dev) 68 { 69 unsigned int delay = dev->d3_delay; 70 71 if (delay < pci_pm_d3_delay) 72 delay = pci_pm_d3_delay; 73 74 if (delay) 75 msleep(delay); 76 } 77 78 #ifdef CONFIG_PCI_DOMAINS 79 int pci_domains_supported = 1; 80 #endif 81 82 #define DEFAULT_CARDBUS_IO_SIZE (256) 83 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 85 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 86 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 87 88 #define DEFAULT_HOTPLUG_IO_SIZE (256) 89 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 91 /* hpiosize=nn can override this */ 92 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 93 /* 94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 96 * pci=hpmemsize=nnM overrides both 97 */ 98 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 99 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 100 101 #define DEFAULT_HOTPLUG_BUS_SIZE 1 102 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 103 104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 105 106 /* 107 * The default CLS is used if arch didn't set CLS explicitly and not 108 * all pci devices agree on the same value. Arch can override either 109 * the dfl or actual value as it sees fit. Don't forget this is 110 * measured in 32-bit words, not bytes. 111 */ 112 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 113 u8 pci_cache_line_size; 114 115 /* 116 * If we set up a device for bus mastering, we need to check the latency 117 * timer as certain BIOSes forget to set it properly. 118 */ 119 unsigned int pcibios_max_latency = 255; 120 121 /* If set, the PCIe ARI capability will not be used. */ 122 static bool pcie_ari_disabled; 123 124 /* If set, the PCIe ATS capability will not be used. */ 125 static bool pcie_ats_disabled; 126 127 /* If set, the PCI config space of each device is printed during boot. */ 128 bool pci_early_dump; 129 130 bool pci_ats_disabled(void) 131 { 132 return pcie_ats_disabled; 133 } 134 EXPORT_SYMBOL_GPL(pci_ats_disabled); 135 136 /* Disable bridge_d3 for all PCIe ports */ 137 static bool pci_bridge_d3_disable; 138 /* Force bridge_d3 for all PCIe ports */ 139 static bool pci_bridge_d3_force; 140 141 static int __init pcie_port_pm_setup(char *str) 142 { 143 if (!strcmp(str, "off")) 144 pci_bridge_d3_disable = true; 145 else if (!strcmp(str, "force")) 146 pci_bridge_d3_force = true; 147 return 1; 148 } 149 __setup("pcie_port_pm=", pcie_port_pm_setup); 150 151 /* Time to wait after a reset for device to become responsive */ 152 #define PCIE_RESET_READY_POLL_MS 60000 153 154 /** 155 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 156 * @bus: pointer to PCI bus structure to search 157 * 158 * Given a PCI bus, returns the highest PCI bus number present in the set 159 * including the given PCI bus and its list of child PCI buses. 160 */ 161 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 162 { 163 struct pci_bus *tmp; 164 unsigned char max, n; 165 166 max = bus->busn_res.end; 167 list_for_each_entry(tmp, &bus->children, node) { 168 n = pci_bus_max_busnr(tmp); 169 if (n > max) 170 max = n; 171 } 172 return max; 173 } 174 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 175 176 /** 177 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 178 * @pdev: the PCI device 179 * 180 * Returns error bits set in PCI_STATUS and clears them. 181 */ 182 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 183 { 184 u16 status; 185 int ret; 186 187 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 188 if (ret != PCIBIOS_SUCCESSFUL) 189 return -EIO; 190 191 status &= PCI_STATUS_ERROR_BITS; 192 if (status) 193 pci_write_config_word(pdev, PCI_STATUS, status); 194 195 return status; 196 } 197 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 198 199 #ifdef CONFIG_HAS_IOMEM 200 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 201 { 202 struct resource *res = &pdev->resource[bar]; 203 204 /* 205 * Make sure the BAR is actually a memory resource, not an IO resource 206 */ 207 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 208 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 209 return NULL; 210 } 211 return ioremap(res->start, resource_size(res)); 212 } 213 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 214 215 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 216 { 217 /* 218 * Make sure the BAR is actually a memory resource, not an IO resource 219 */ 220 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 221 WARN_ON(1); 222 return NULL; 223 } 224 return ioremap_wc(pci_resource_start(pdev, bar), 225 pci_resource_len(pdev, bar)); 226 } 227 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 228 #endif 229 230 /** 231 * pci_dev_str_match_path - test if a path string matches a device 232 * @dev: the PCI device to test 233 * @path: string to match the device against 234 * @endptr: pointer to the string after the match 235 * 236 * Test if a string (typically from a kernel parameter) formatted as a 237 * path of device/function addresses matches a PCI device. The string must 238 * be of the form: 239 * 240 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 241 * 242 * A path for a device can be obtained using 'lspci -t'. Using a path 243 * is more robust against bus renumbering than using only a single bus, 244 * device and function address. 245 * 246 * Returns 1 if the string matches the device, 0 if it does not and 247 * a negative error code if it fails to parse the string. 248 */ 249 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 250 const char **endptr) 251 { 252 int ret; 253 int seg, bus, slot, func; 254 char *wpath, *p; 255 char end; 256 257 *endptr = strchrnul(path, ';'); 258 259 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 260 if (!wpath) 261 return -ENOMEM; 262 263 while (1) { 264 p = strrchr(wpath, '/'); 265 if (!p) 266 break; 267 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 268 if (ret != 2) { 269 ret = -EINVAL; 270 goto free_and_exit; 271 } 272 273 if (dev->devfn != PCI_DEVFN(slot, func)) { 274 ret = 0; 275 goto free_and_exit; 276 } 277 278 /* 279 * Note: we don't need to get a reference to the upstream 280 * bridge because we hold a reference to the top level 281 * device which should hold a reference to the bridge, 282 * and so on. 283 */ 284 dev = pci_upstream_bridge(dev); 285 if (!dev) { 286 ret = 0; 287 goto free_and_exit; 288 } 289 290 *p = 0; 291 } 292 293 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 294 &func, &end); 295 if (ret != 4) { 296 seg = 0; 297 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 298 if (ret != 3) { 299 ret = -EINVAL; 300 goto free_and_exit; 301 } 302 } 303 304 ret = (seg == pci_domain_nr(dev->bus) && 305 bus == dev->bus->number && 306 dev->devfn == PCI_DEVFN(slot, func)); 307 308 free_and_exit: 309 kfree(wpath); 310 return ret; 311 } 312 313 /** 314 * pci_dev_str_match - test if a string matches a device 315 * @dev: the PCI device to test 316 * @p: string to match the device against 317 * @endptr: pointer to the string after the match 318 * 319 * Test if a string (typically from a kernel parameter) matches a specified 320 * PCI device. The string may be of one of the following formats: 321 * 322 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 323 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 324 * 325 * The first format specifies a PCI bus/device/function address which 326 * may change if new hardware is inserted, if motherboard firmware changes, 327 * or due to changes caused in kernel parameters. If the domain is 328 * left unspecified, it is taken to be 0. In order to be robust against 329 * bus renumbering issues, a path of PCI device/function numbers may be used 330 * to address the specific device. The path for a device can be determined 331 * through the use of 'lspci -t'. 332 * 333 * The second format matches devices using IDs in the configuration 334 * space which may match multiple devices in the system. A value of 0 335 * for any field will match all devices. (Note: this differs from 336 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 337 * legacy reasons and convenience so users don't have to specify 338 * FFFFFFFFs on the command line.) 339 * 340 * Returns 1 if the string matches the device, 0 if it does not and 341 * a negative error code if the string cannot be parsed. 342 */ 343 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 344 const char **endptr) 345 { 346 int ret; 347 int count; 348 unsigned short vendor, device, subsystem_vendor, subsystem_device; 349 350 if (strncmp(p, "pci:", 4) == 0) { 351 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 352 p += 4; 353 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 354 &subsystem_vendor, &subsystem_device, &count); 355 if (ret != 4) { 356 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 357 if (ret != 2) 358 return -EINVAL; 359 360 subsystem_vendor = 0; 361 subsystem_device = 0; 362 } 363 364 p += count; 365 366 if ((!vendor || vendor == dev->vendor) && 367 (!device || device == dev->device) && 368 (!subsystem_vendor || 369 subsystem_vendor == dev->subsystem_vendor) && 370 (!subsystem_device || 371 subsystem_device == dev->subsystem_device)) 372 goto found; 373 } else { 374 /* 375 * PCI Bus, Device, Function IDs are specified 376 * (optionally, may include a path of devfns following it) 377 */ 378 ret = pci_dev_str_match_path(dev, p, &p); 379 if (ret < 0) 380 return ret; 381 else if (ret) 382 goto found; 383 } 384 385 *endptr = p; 386 return 0; 387 388 found: 389 *endptr = p; 390 return 1; 391 } 392 393 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 394 u8 pos, int cap, int *ttl) 395 { 396 u8 id; 397 u16 ent; 398 399 pci_bus_read_config_byte(bus, devfn, pos, &pos); 400 401 while ((*ttl)--) { 402 if (pos < 0x40) 403 break; 404 pos &= ~3; 405 pci_bus_read_config_word(bus, devfn, pos, &ent); 406 407 id = ent & 0xff; 408 if (id == 0xff) 409 break; 410 if (id == cap) 411 return pos; 412 pos = (ent >> 8); 413 } 414 return 0; 415 } 416 417 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 418 u8 pos, int cap) 419 { 420 int ttl = PCI_FIND_CAP_TTL; 421 422 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 423 } 424 425 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 426 { 427 return __pci_find_next_cap(dev->bus, dev->devfn, 428 pos + PCI_CAP_LIST_NEXT, cap); 429 } 430 EXPORT_SYMBOL_GPL(pci_find_next_capability); 431 432 static int __pci_bus_find_cap_start(struct pci_bus *bus, 433 unsigned int devfn, u8 hdr_type) 434 { 435 u16 status; 436 437 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 438 if (!(status & PCI_STATUS_CAP_LIST)) 439 return 0; 440 441 switch (hdr_type) { 442 case PCI_HEADER_TYPE_NORMAL: 443 case PCI_HEADER_TYPE_BRIDGE: 444 return PCI_CAPABILITY_LIST; 445 case PCI_HEADER_TYPE_CARDBUS: 446 return PCI_CB_CAPABILITY_LIST; 447 } 448 449 return 0; 450 } 451 452 /** 453 * pci_find_capability - query for devices' capabilities 454 * @dev: PCI device to query 455 * @cap: capability code 456 * 457 * Tell if a device supports a given PCI capability. 458 * Returns the address of the requested capability structure within the 459 * device's PCI configuration space or 0 in case the device does not 460 * support it. Possible values for @cap include: 461 * 462 * %PCI_CAP_ID_PM Power Management 463 * %PCI_CAP_ID_AGP Accelerated Graphics Port 464 * %PCI_CAP_ID_VPD Vital Product Data 465 * %PCI_CAP_ID_SLOTID Slot Identification 466 * %PCI_CAP_ID_MSI Message Signalled Interrupts 467 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 468 * %PCI_CAP_ID_PCIX PCI-X 469 * %PCI_CAP_ID_EXP PCI Express 470 */ 471 int pci_find_capability(struct pci_dev *dev, int cap) 472 { 473 int pos; 474 475 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 476 if (pos) 477 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 478 479 return pos; 480 } 481 EXPORT_SYMBOL(pci_find_capability); 482 483 /** 484 * pci_bus_find_capability - query for devices' capabilities 485 * @bus: the PCI bus to query 486 * @devfn: PCI device to query 487 * @cap: capability code 488 * 489 * Like pci_find_capability() but works for PCI devices that do not have a 490 * pci_dev structure set up yet. 491 * 492 * Returns the address of the requested capability structure within the 493 * device's PCI configuration space or 0 in case the device does not 494 * support it. 495 */ 496 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 497 { 498 int pos; 499 u8 hdr_type; 500 501 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 502 503 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 504 if (pos) 505 pos = __pci_find_next_cap(bus, devfn, pos, cap); 506 507 return pos; 508 } 509 EXPORT_SYMBOL(pci_bus_find_capability); 510 511 /** 512 * pci_find_next_ext_capability - Find an extended capability 513 * @dev: PCI device to query 514 * @start: address at which to start looking (0 to start at beginning of list) 515 * @cap: capability code 516 * 517 * Returns the address of the next matching extended capability structure 518 * within the device's PCI configuration space or 0 if the device does 519 * not support it. Some capabilities can occur several times, e.g., the 520 * vendor-specific capability, and this provides a way to find them all. 521 */ 522 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 523 { 524 u32 header; 525 int ttl; 526 int pos = PCI_CFG_SPACE_SIZE; 527 528 /* minimum 8 bytes per capability */ 529 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 530 531 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 532 return 0; 533 534 if (start) 535 pos = start; 536 537 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 538 return 0; 539 540 /* 541 * If we have no capabilities, this is indicated by cap ID, 542 * cap version and next pointer all being 0. 543 */ 544 if (header == 0) 545 return 0; 546 547 while (ttl-- > 0) { 548 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 549 return pos; 550 551 pos = PCI_EXT_CAP_NEXT(header); 552 if (pos < PCI_CFG_SPACE_SIZE) 553 break; 554 555 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 556 break; 557 } 558 559 return 0; 560 } 561 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 562 563 /** 564 * pci_find_ext_capability - Find an extended capability 565 * @dev: PCI device to query 566 * @cap: capability code 567 * 568 * Returns the address of the requested extended capability structure 569 * within the device's PCI configuration space or 0 if the device does 570 * not support it. Possible values for @cap include: 571 * 572 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 573 * %PCI_EXT_CAP_ID_VC Virtual Channel 574 * %PCI_EXT_CAP_ID_DSN Device Serial Number 575 * %PCI_EXT_CAP_ID_PWR Power Budgeting 576 */ 577 int pci_find_ext_capability(struct pci_dev *dev, int cap) 578 { 579 return pci_find_next_ext_capability(dev, 0, cap); 580 } 581 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 582 583 /** 584 * pci_get_dsn - Read and return the 8-byte Device Serial Number 585 * @dev: PCI device to query 586 * 587 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 588 * Number. 589 * 590 * Returns the DSN, or zero if the capability does not exist. 591 */ 592 u64 pci_get_dsn(struct pci_dev *dev) 593 { 594 u32 dword; 595 u64 dsn; 596 int pos; 597 598 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 599 if (!pos) 600 return 0; 601 602 /* 603 * The Device Serial Number is two dwords offset 4 bytes from the 604 * capability position. The specification says that the first dword is 605 * the lower half, and the second dword is the upper half. 606 */ 607 pos += 4; 608 pci_read_config_dword(dev, pos, &dword); 609 dsn = (u64)dword; 610 pci_read_config_dword(dev, pos + 4, &dword); 611 dsn |= ((u64)dword) << 32; 612 613 return dsn; 614 } 615 EXPORT_SYMBOL_GPL(pci_get_dsn); 616 617 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 618 { 619 int rc, ttl = PCI_FIND_CAP_TTL; 620 u8 cap, mask; 621 622 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 623 mask = HT_3BIT_CAP_MASK; 624 else 625 mask = HT_5BIT_CAP_MASK; 626 627 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 628 PCI_CAP_ID_HT, &ttl); 629 while (pos) { 630 rc = pci_read_config_byte(dev, pos + 3, &cap); 631 if (rc != PCIBIOS_SUCCESSFUL) 632 return 0; 633 634 if ((cap & mask) == ht_cap) 635 return pos; 636 637 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 638 pos + PCI_CAP_LIST_NEXT, 639 PCI_CAP_ID_HT, &ttl); 640 } 641 642 return 0; 643 } 644 /** 645 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 646 * @dev: PCI device to query 647 * @pos: Position from which to continue searching 648 * @ht_cap: Hypertransport capability code 649 * 650 * To be used in conjunction with pci_find_ht_capability() to search for 651 * all capabilities matching @ht_cap. @pos should always be a value returned 652 * from pci_find_ht_capability(). 653 * 654 * NB. To be 100% safe against broken PCI devices, the caller should take 655 * steps to avoid an infinite loop. 656 */ 657 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 658 { 659 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 660 } 661 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 662 663 /** 664 * pci_find_ht_capability - query a device's Hypertransport capabilities 665 * @dev: PCI device to query 666 * @ht_cap: Hypertransport capability code 667 * 668 * Tell if a device supports a given Hypertransport capability. 669 * Returns an address within the device's PCI configuration space 670 * or 0 in case the device does not support the request capability. 671 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 672 * which has a Hypertransport capability matching @ht_cap. 673 */ 674 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 675 { 676 int pos; 677 678 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 679 if (pos) 680 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 681 682 return pos; 683 } 684 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 685 686 /** 687 * pci_find_parent_resource - return resource region of parent bus of given 688 * region 689 * @dev: PCI device structure contains resources to be searched 690 * @res: child resource record for which parent is sought 691 * 692 * For given resource region of given device, return the resource region of 693 * parent bus the given region is contained in. 694 */ 695 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 696 struct resource *res) 697 { 698 const struct pci_bus *bus = dev->bus; 699 struct resource *r; 700 int i; 701 702 pci_bus_for_each_resource(bus, r, i) { 703 if (!r) 704 continue; 705 if (resource_contains(r, res)) { 706 707 /* 708 * If the window is prefetchable but the BAR is 709 * not, the allocator made a mistake. 710 */ 711 if (r->flags & IORESOURCE_PREFETCH && 712 !(res->flags & IORESOURCE_PREFETCH)) 713 return NULL; 714 715 /* 716 * If we're below a transparent bridge, there may 717 * be both a positively-decoded aperture and a 718 * subtractively-decoded region that contain the BAR. 719 * We want the positively-decoded one, so this depends 720 * on pci_bus_for_each_resource() giving us those 721 * first. 722 */ 723 return r; 724 } 725 } 726 return NULL; 727 } 728 EXPORT_SYMBOL(pci_find_parent_resource); 729 730 /** 731 * pci_find_resource - Return matching PCI device resource 732 * @dev: PCI device to query 733 * @res: Resource to look for 734 * 735 * Goes over standard PCI resources (BARs) and checks if the given resource 736 * is partially or fully contained in any of them. In that case the 737 * matching resource is returned, %NULL otherwise. 738 */ 739 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 740 { 741 int i; 742 743 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 744 struct resource *r = &dev->resource[i]; 745 746 if (r->start && resource_contains(r, res)) 747 return r; 748 } 749 750 return NULL; 751 } 752 EXPORT_SYMBOL(pci_find_resource); 753 754 /** 755 * pci_find_pcie_root_port - return PCIe Root Port 756 * @dev: PCI device to query 757 * 758 * Traverse up the parent chain and return the PCIe Root Port PCI Device 759 * for a given PCI Device. 760 */ 761 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 762 { 763 struct pci_dev *bridge, *highest_pcie_bridge = dev; 764 765 bridge = pci_upstream_bridge(dev); 766 while (bridge && pci_is_pcie(bridge)) { 767 highest_pcie_bridge = bridge; 768 bridge = pci_upstream_bridge(bridge); 769 } 770 771 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 772 return NULL; 773 774 return highest_pcie_bridge; 775 } 776 EXPORT_SYMBOL(pci_find_pcie_root_port); 777 778 /** 779 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 780 * @dev: the PCI device to operate on 781 * @pos: config space offset of status word 782 * @mask: mask of bit(s) to care about in status word 783 * 784 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 785 */ 786 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 787 { 788 int i; 789 790 /* Wait for Transaction Pending bit clean */ 791 for (i = 0; i < 4; i++) { 792 u16 status; 793 if (i) 794 msleep((1 << (i - 1)) * 100); 795 796 pci_read_config_word(dev, pos, &status); 797 if (!(status & mask)) 798 return 1; 799 } 800 801 return 0; 802 } 803 804 /** 805 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 806 * @dev: PCI device to have its BARs restored 807 * 808 * Restore the BAR values for a given device, so as to make it 809 * accessible by its driver. 810 */ 811 static void pci_restore_bars(struct pci_dev *dev) 812 { 813 int i; 814 815 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 816 pci_update_resource(dev, i); 817 } 818 819 static const struct pci_platform_pm_ops *pci_platform_pm; 820 821 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 822 { 823 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 824 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 825 return -EINVAL; 826 pci_platform_pm = ops; 827 return 0; 828 } 829 830 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 831 { 832 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 833 } 834 835 static inline int platform_pci_set_power_state(struct pci_dev *dev, 836 pci_power_t t) 837 { 838 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 839 } 840 841 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 842 { 843 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 844 } 845 846 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 847 { 848 if (pci_platform_pm && pci_platform_pm->refresh_state) 849 pci_platform_pm->refresh_state(dev); 850 } 851 852 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 853 { 854 return pci_platform_pm ? 855 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 856 } 857 858 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 859 { 860 return pci_platform_pm ? 861 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 862 } 863 864 static inline bool platform_pci_need_resume(struct pci_dev *dev) 865 { 866 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 867 } 868 869 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 870 { 871 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false; 872 } 873 874 /** 875 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 876 * given PCI device 877 * @dev: PCI device to handle. 878 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 879 * 880 * RETURN VALUE: 881 * -EINVAL if the requested state is invalid. 882 * -EIO if device does not support PCI PM or its PM capabilities register has a 883 * wrong version, or device doesn't support the requested state. 884 * 0 if device already is in the requested state. 885 * 0 if device's power state has been successfully changed. 886 */ 887 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 888 { 889 u16 pmcsr; 890 bool need_restore = false; 891 892 /* Check if we're already there */ 893 if (dev->current_state == state) 894 return 0; 895 896 if (!dev->pm_cap) 897 return -EIO; 898 899 if (state < PCI_D0 || state > PCI_D3hot) 900 return -EINVAL; 901 902 /* 903 * Validate transition: We can enter D0 from any state, but if 904 * we're already in a low-power state, we can only go deeper. E.g., 905 * we can go from D1 to D3, but we can't go directly from D3 to D1; 906 * we'd have to go from D3 to D0, then to D1. 907 */ 908 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 909 && dev->current_state > state) { 910 pci_err(dev, "invalid power transition (from %s to %s)\n", 911 pci_power_name(dev->current_state), 912 pci_power_name(state)); 913 return -EINVAL; 914 } 915 916 /* Check if this device supports the desired state */ 917 if ((state == PCI_D1 && !dev->d1_support) 918 || (state == PCI_D2 && !dev->d2_support)) 919 return -EIO; 920 921 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 922 if (pmcsr == (u16) ~0) { 923 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 924 pci_power_name(dev->current_state), 925 pci_power_name(state)); 926 return -EIO; 927 } 928 929 /* 930 * If we're (effectively) in D3, force entire word to 0. 931 * This doesn't affect PME_Status, disables PME_En, and 932 * sets PowerState to 0. 933 */ 934 switch (dev->current_state) { 935 case PCI_D0: 936 case PCI_D1: 937 case PCI_D2: 938 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 939 pmcsr |= state; 940 break; 941 case PCI_D3hot: 942 case PCI_D3cold: 943 case PCI_UNKNOWN: /* Boot-up */ 944 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 945 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 946 need_restore = true; 947 /* Fall-through - force to D0 */ 948 default: 949 pmcsr = 0; 950 break; 951 } 952 953 /* Enter specified state */ 954 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 955 956 /* 957 * Mandatory power management transition delays; see PCI PM 1.1 958 * 5.6.1 table 18 959 */ 960 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 961 pci_dev_d3_sleep(dev); 962 else if (state == PCI_D2 || dev->current_state == PCI_D2) 963 msleep(PCI_PM_D2_DELAY); 964 965 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 966 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 967 if (dev->current_state != state) 968 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 969 pci_power_name(dev->current_state), 970 pci_power_name(state)); 971 972 /* 973 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 974 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 975 * from D3hot to D0 _may_ perform an internal reset, thereby 976 * going to "D0 Uninitialized" rather than "D0 Initialized". 977 * For example, at least some versions of the 3c905B and the 978 * 3c556B exhibit this behaviour. 979 * 980 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 981 * devices in a D3hot state at boot. Consequently, we need to 982 * restore at least the BARs so that the device will be 983 * accessible to its driver. 984 */ 985 if (need_restore) 986 pci_restore_bars(dev); 987 988 if (dev->bus->self) 989 pcie_aspm_pm_state_change(dev->bus->self); 990 991 return 0; 992 } 993 994 /** 995 * pci_update_current_state - Read power state of given device and cache it 996 * @dev: PCI device to handle. 997 * @state: State to cache in case the device doesn't have the PM capability 998 * 999 * The power state is read from the PMCSR register, which however is 1000 * inaccessible in D3cold. The platform firmware is therefore queried first 1001 * to detect accessibility of the register. In case the platform firmware 1002 * reports an incorrect state or the device isn't power manageable by the 1003 * platform at all, we try to detect D3cold by testing accessibility of the 1004 * vendor ID in config space. 1005 */ 1006 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1007 { 1008 if (platform_pci_get_power_state(dev) == PCI_D3cold || 1009 !pci_device_is_present(dev)) { 1010 dev->current_state = PCI_D3cold; 1011 } else if (dev->pm_cap) { 1012 u16 pmcsr; 1013 1014 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1015 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1016 } else { 1017 dev->current_state = state; 1018 } 1019 } 1020 1021 /** 1022 * pci_refresh_power_state - Refresh the given device's power state data 1023 * @dev: Target PCI device. 1024 * 1025 * Ask the platform to refresh the devices power state information and invoke 1026 * pci_update_current_state() to update its current PCI power state. 1027 */ 1028 void pci_refresh_power_state(struct pci_dev *dev) 1029 { 1030 if (platform_pci_power_manageable(dev)) 1031 platform_pci_refresh_power_state(dev); 1032 1033 pci_update_current_state(dev, dev->current_state); 1034 } 1035 1036 /** 1037 * pci_platform_power_transition - Use platform to change device power state 1038 * @dev: PCI device to handle. 1039 * @state: State to put the device into. 1040 */ 1041 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1042 { 1043 int error; 1044 1045 if (platform_pci_power_manageable(dev)) { 1046 error = platform_pci_set_power_state(dev, state); 1047 if (!error) 1048 pci_update_current_state(dev, state); 1049 } else 1050 error = -ENODEV; 1051 1052 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 1053 dev->current_state = PCI_D0; 1054 1055 return error; 1056 } 1057 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1058 1059 /** 1060 * pci_wakeup - Wake up a PCI device 1061 * @pci_dev: Device to handle. 1062 * @ign: ignored parameter 1063 */ 1064 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 1065 { 1066 pci_wakeup_event(pci_dev); 1067 pm_request_resume(&pci_dev->dev); 1068 return 0; 1069 } 1070 1071 /** 1072 * pci_wakeup_bus - Walk given bus and wake up devices on it 1073 * @bus: Top bus of the subtree to walk. 1074 */ 1075 void pci_wakeup_bus(struct pci_bus *bus) 1076 { 1077 if (bus) 1078 pci_walk_bus(bus, pci_wakeup, NULL); 1079 } 1080 1081 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1082 { 1083 int delay = 1; 1084 u32 id; 1085 1086 /* 1087 * After reset, the device should not silently discard config 1088 * requests, but it may still indicate that it needs more time by 1089 * responding to them with CRS completions. The Root Port will 1090 * generally synthesize ~0 data to complete the read (except when 1091 * CRS SV is enabled and the read was for the Vendor ID; in that 1092 * case it synthesizes 0x0001 data). 1093 * 1094 * Wait for the device to return a non-CRS completion. Read the 1095 * Command register instead of Vendor ID so we don't have to 1096 * contend with the CRS SV value. 1097 */ 1098 pci_read_config_dword(dev, PCI_COMMAND, &id); 1099 while (id == ~0) { 1100 if (delay > timeout) { 1101 pci_warn(dev, "not ready %dms after %s; giving up\n", 1102 delay - 1, reset_type); 1103 return -ENOTTY; 1104 } 1105 1106 if (delay > 1000) 1107 pci_info(dev, "not ready %dms after %s; waiting\n", 1108 delay - 1, reset_type); 1109 1110 msleep(delay); 1111 delay *= 2; 1112 pci_read_config_dword(dev, PCI_COMMAND, &id); 1113 } 1114 1115 if (delay > 1000) 1116 pci_info(dev, "ready %dms after %s\n", delay - 1, 1117 reset_type); 1118 1119 return 0; 1120 } 1121 1122 /** 1123 * pci_power_up - Put the given device into D0 1124 * @dev: PCI device to power up 1125 */ 1126 int pci_power_up(struct pci_dev *dev) 1127 { 1128 pci_platform_power_transition(dev, PCI_D0); 1129 1130 /* 1131 * Mandatory power management transition delays are handled in 1132 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1133 * corresponding bridge. 1134 */ 1135 if (dev->runtime_d3cold) { 1136 /* 1137 * When powering on a bridge from D3cold, the whole hierarchy 1138 * may be powered on into D0uninitialized state, resume them to 1139 * give them a chance to suspend again 1140 */ 1141 pci_wakeup_bus(dev->subordinate); 1142 } 1143 1144 return pci_raw_set_power_state(dev, PCI_D0); 1145 } 1146 1147 /** 1148 * __pci_dev_set_current_state - Set current state of a PCI device 1149 * @dev: Device to handle 1150 * @data: pointer to state to be set 1151 */ 1152 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1153 { 1154 pci_power_t state = *(pci_power_t *)data; 1155 1156 dev->current_state = state; 1157 return 0; 1158 } 1159 1160 /** 1161 * pci_bus_set_current_state - Walk given bus and set current state of devices 1162 * @bus: Top bus of the subtree to walk. 1163 * @state: state to be set 1164 */ 1165 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1166 { 1167 if (bus) 1168 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1169 } 1170 1171 /** 1172 * pci_set_power_state - Set the power state of a PCI device 1173 * @dev: PCI device to handle. 1174 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1175 * 1176 * Transition a device to a new power state, using the platform firmware and/or 1177 * the device's PCI PM registers. 1178 * 1179 * RETURN VALUE: 1180 * -EINVAL if the requested state is invalid. 1181 * -EIO if device does not support PCI PM or its PM capabilities register has a 1182 * wrong version, or device doesn't support the requested state. 1183 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1184 * 0 if device already is in the requested state. 1185 * 0 if the transition is to D3 but D3 is not supported. 1186 * 0 if device's power state has been successfully changed. 1187 */ 1188 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1189 { 1190 int error; 1191 1192 /* Bound the state we're entering */ 1193 if (state > PCI_D3cold) 1194 state = PCI_D3cold; 1195 else if (state < PCI_D0) 1196 state = PCI_D0; 1197 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1198 1199 /* 1200 * If the device or the parent bridge do not support PCI 1201 * PM, ignore the request if we're doing anything other 1202 * than putting it into D0 (which would only happen on 1203 * boot). 1204 */ 1205 return 0; 1206 1207 /* Check if we're already there */ 1208 if (dev->current_state == state) 1209 return 0; 1210 1211 if (state == PCI_D0) 1212 return pci_power_up(dev); 1213 1214 /* 1215 * This device is quirked not to be put into D3, so don't put it in 1216 * D3 1217 */ 1218 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1219 return 0; 1220 1221 /* 1222 * To put device in D3cold, we put device into D3hot in native 1223 * way, then put device into D3cold with platform ops 1224 */ 1225 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1226 PCI_D3hot : state); 1227 1228 if (pci_platform_power_transition(dev, state)) 1229 return error; 1230 1231 /* Powering off a bridge may power off the whole hierarchy */ 1232 if (state == PCI_D3cold) 1233 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1234 1235 return 0; 1236 } 1237 EXPORT_SYMBOL(pci_set_power_state); 1238 1239 /** 1240 * pci_choose_state - Choose the power state of a PCI device 1241 * @dev: PCI device to be suspended 1242 * @state: target sleep state for the whole system. This is the value 1243 * that is passed to suspend() function. 1244 * 1245 * Returns PCI power state suitable for given device and given system 1246 * message. 1247 */ 1248 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1249 { 1250 pci_power_t ret; 1251 1252 if (!dev->pm_cap) 1253 return PCI_D0; 1254 1255 ret = platform_pci_choose_state(dev); 1256 if (ret != PCI_POWER_ERROR) 1257 return ret; 1258 1259 switch (state.event) { 1260 case PM_EVENT_ON: 1261 return PCI_D0; 1262 case PM_EVENT_FREEZE: 1263 case PM_EVENT_PRETHAW: 1264 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1265 case PM_EVENT_SUSPEND: 1266 case PM_EVENT_HIBERNATE: 1267 return PCI_D3hot; 1268 default: 1269 pci_info(dev, "unrecognized suspend event %d\n", 1270 state.event); 1271 BUG(); 1272 } 1273 return PCI_D0; 1274 } 1275 EXPORT_SYMBOL(pci_choose_state); 1276 1277 #define PCI_EXP_SAVE_REGS 7 1278 1279 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1280 u16 cap, bool extended) 1281 { 1282 struct pci_cap_saved_state *tmp; 1283 1284 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1285 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1286 return tmp; 1287 } 1288 return NULL; 1289 } 1290 1291 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1292 { 1293 return _pci_find_saved_cap(dev, cap, false); 1294 } 1295 1296 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1297 { 1298 return _pci_find_saved_cap(dev, cap, true); 1299 } 1300 1301 static int pci_save_pcie_state(struct pci_dev *dev) 1302 { 1303 int i = 0; 1304 struct pci_cap_saved_state *save_state; 1305 u16 *cap; 1306 1307 if (!pci_is_pcie(dev)) 1308 return 0; 1309 1310 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1311 if (!save_state) { 1312 pci_err(dev, "buffer not found in %s\n", __func__); 1313 return -ENOMEM; 1314 } 1315 1316 cap = (u16 *)&save_state->cap.data[0]; 1317 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1318 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1319 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1320 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1321 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1322 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1323 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1324 1325 return 0; 1326 } 1327 1328 static void pci_restore_pcie_state(struct pci_dev *dev) 1329 { 1330 int i = 0; 1331 struct pci_cap_saved_state *save_state; 1332 u16 *cap; 1333 1334 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1335 if (!save_state) 1336 return; 1337 1338 cap = (u16 *)&save_state->cap.data[0]; 1339 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1340 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1341 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1342 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1343 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1344 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1345 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1346 } 1347 1348 static int pci_save_pcix_state(struct pci_dev *dev) 1349 { 1350 int pos; 1351 struct pci_cap_saved_state *save_state; 1352 1353 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1354 if (!pos) 1355 return 0; 1356 1357 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1358 if (!save_state) { 1359 pci_err(dev, "buffer not found in %s\n", __func__); 1360 return -ENOMEM; 1361 } 1362 1363 pci_read_config_word(dev, pos + PCI_X_CMD, 1364 (u16 *)save_state->cap.data); 1365 1366 return 0; 1367 } 1368 1369 static void pci_restore_pcix_state(struct pci_dev *dev) 1370 { 1371 int i = 0, pos; 1372 struct pci_cap_saved_state *save_state; 1373 u16 *cap; 1374 1375 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1376 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1377 if (!save_state || !pos) 1378 return; 1379 cap = (u16 *)&save_state->cap.data[0]; 1380 1381 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1382 } 1383 1384 static void pci_save_ltr_state(struct pci_dev *dev) 1385 { 1386 int ltr; 1387 struct pci_cap_saved_state *save_state; 1388 u16 *cap; 1389 1390 if (!pci_is_pcie(dev)) 1391 return; 1392 1393 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1394 if (!ltr) 1395 return; 1396 1397 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1398 if (!save_state) { 1399 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1400 return; 1401 } 1402 1403 cap = (u16 *)&save_state->cap.data[0]; 1404 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1405 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1406 } 1407 1408 static void pci_restore_ltr_state(struct pci_dev *dev) 1409 { 1410 struct pci_cap_saved_state *save_state; 1411 int ltr; 1412 u16 *cap; 1413 1414 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1415 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1416 if (!save_state || !ltr) 1417 return; 1418 1419 cap = (u16 *)&save_state->cap.data[0]; 1420 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1421 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1422 } 1423 1424 /** 1425 * pci_save_state - save the PCI configuration space of a device before 1426 * suspending 1427 * @dev: PCI device that we're dealing with 1428 */ 1429 int pci_save_state(struct pci_dev *dev) 1430 { 1431 int i; 1432 /* XXX: 100% dword access ok here? */ 1433 for (i = 0; i < 16; i++) { 1434 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1435 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1436 i * 4, dev->saved_config_space[i]); 1437 } 1438 dev->state_saved = true; 1439 1440 i = pci_save_pcie_state(dev); 1441 if (i != 0) 1442 return i; 1443 1444 i = pci_save_pcix_state(dev); 1445 if (i != 0) 1446 return i; 1447 1448 pci_save_ltr_state(dev); 1449 pci_save_dpc_state(dev); 1450 pci_save_aer_state(dev); 1451 return pci_save_vc_state(dev); 1452 } 1453 EXPORT_SYMBOL(pci_save_state); 1454 1455 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1456 u32 saved_val, int retry, bool force) 1457 { 1458 u32 val; 1459 1460 pci_read_config_dword(pdev, offset, &val); 1461 if (!force && val == saved_val) 1462 return; 1463 1464 for (;;) { 1465 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1466 offset, val, saved_val); 1467 pci_write_config_dword(pdev, offset, saved_val); 1468 if (retry-- <= 0) 1469 return; 1470 1471 pci_read_config_dword(pdev, offset, &val); 1472 if (val == saved_val) 1473 return; 1474 1475 mdelay(1); 1476 } 1477 } 1478 1479 static void pci_restore_config_space_range(struct pci_dev *pdev, 1480 int start, int end, int retry, 1481 bool force) 1482 { 1483 int index; 1484 1485 for (index = end; index >= start; index--) 1486 pci_restore_config_dword(pdev, 4 * index, 1487 pdev->saved_config_space[index], 1488 retry, force); 1489 } 1490 1491 static void pci_restore_config_space(struct pci_dev *pdev) 1492 { 1493 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1494 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1495 /* Restore BARs before the command register. */ 1496 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1497 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1498 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1499 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1500 1501 /* 1502 * Force rewriting of prefetch registers to avoid S3 resume 1503 * issues on Intel PCI bridges that occur when these 1504 * registers are not explicitly written. 1505 */ 1506 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1507 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1508 } else { 1509 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1510 } 1511 } 1512 1513 static void pci_restore_rebar_state(struct pci_dev *pdev) 1514 { 1515 unsigned int pos, nbars, i; 1516 u32 ctrl; 1517 1518 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1519 if (!pos) 1520 return; 1521 1522 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1523 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1524 PCI_REBAR_CTRL_NBAR_SHIFT; 1525 1526 for (i = 0; i < nbars; i++, pos += 8) { 1527 struct resource *res; 1528 int bar_idx, size; 1529 1530 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1531 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1532 res = pdev->resource + bar_idx; 1533 size = ilog2(resource_size(res)) - 20; 1534 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1535 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1536 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1537 } 1538 } 1539 1540 /** 1541 * pci_restore_state - Restore the saved state of a PCI device 1542 * @dev: PCI device that we're dealing with 1543 */ 1544 void pci_restore_state(struct pci_dev *dev) 1545 { 1546 if (!dev->state_saved) 1547 return; 1548 1549 /* 1550 * Restore max latencies (in the LTR capability) before enabling 1551 * LTR itself (in the PCIe capability). 1552 */ 1553 pci_restore_ltr_state(dev); 1554 1555 pci_restore_pcie_state(dev); 1556 pci_restore_pasid_state(dev); 1557 pci_restore_pri_state(dev); 1558 pci_restore_ats_state(dev); 1559 pci_restore_vc_state(dev); 1560 pci_restore_rebar_state(dev); 1561 pci_restore_dpc_state(dev); 1562 1563 pci_aer_clear_status(dev); 1564 pci_restore_aer_state(dev); 1565 1566 pci_restore_config_space(dev); 1567 1568 pci_restore_pcix_state(dev); 1569 pci_restore_msi_state(dev); 1570 1571 /* Restore ACS and IOV configuration state */ 1572 pci_enable_acs(dev); 1573 pci_restore_iov_state(dev); 1574 1575 dev->state_saved = false; 1576 } 1577 EXPORT_SYMBOL(pci_restore_state); 1578 1579 struct pci_saved_state { 1580 u32 config_space[16]; 1581 struct pci_cap_saved_data cap[0]; 1582 }; 1583 1584 /** 1585 * pci_store_saved_state - Allocate and return an opaque struct containing 1586 * the device saved state. 1587 * @dev: PCI device that we're dealing with 1588 * 1589 * Return NULL if no state or error. 1590 */ 1591 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1592 { 1593 struct pci_saved_state *state; 1594 struct pci_cap_saved_state *tmp; 1595 struct pci_cap_saved_data *cap; 1596 size_t size; 1597 1598 if (!dev->state_saved) 1599 return NULL; 1600 1601 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1602 1603 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1604 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1605 1606 state = kzalloc(size, GFP_KERNEL); 1607 if (!state) 1608 return NULL; 1609 1610 memcpy(state->config_space, dev->saved_config_space, 1611 sizeof(state->config_space)); 1612 1613 cap = state->cap; 1614 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1615 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1616 memcpy(cap, &tmp->cap, len); 1617 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1618 } 1619 /* Empty cap_save terminates list */ 1620 1621 return state; 1622 } 1623 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1624 1625 /** 1626 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1627 * @dev: PCI device that we're dealing with 1628 * @state: Saved state returned from pci_store_saved_state() 1629 */ 1630 int pci_load_saved_state(struct pci_dev *dev, 1631 struct pci_saved_state *state) 1632 { 1633 struct pci_cap_saved_data *cap; 1634 1635 dev->state_saved = false; 1636 1637 if (!state) 1638 return 0; 1639 1640 memcpy(dev->saved_config_space, state->config_space, 1641 sizeof(state->config_space)); 1642 1643 cap = state->cap; 1644 while (cap->size) { 1645 struct pci_cap_saved_state *tmp; 1646 1647 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1648 if (!tmp || tmp->cap.size != cap->size) 1649 return -EINVAL; 1650 1651 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1652 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1653 sizeof(struct pci_cap_saved_data) + cap->size); 1654 } 1655 1656 dev->state_saved = true; 1657 return 0; 1658 } 1659 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1660 1661 /** 1662 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1663 * and free the memory allocated for it. 1664 * @dev: PCI device that we're dealing with 1665 * @state: Pointer to saved state returned from pci_store_saved_state() 1666 */ 1667 int pci_load_and_free_saved_state(struct pci_dev *dev, 1668 struct pci_saved_state **state) 1669 { 1670 int ret = pci_load_saved_state(dev, *state); 1671 kfree(*state); 1672 *state = NULL; 1673 return ret; 1674 } 1675 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1676 1677 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1678 { 1679 return pci_enable_resources(dev, bars); 1680 } 1681 1682 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1683 { 1684 int err; 1685 struct pci_dev *bridge; 1686 u16 cmd; 1687 u8 pin; 1688 1689 err = pci_set_power_state(dev, PCI_D0); 1690 if (err < 0 && err != -EIO) 1691 return err; 1692 1693 bridge = pci_upstream_bridge(dev); 1694 if (bridge) 1695 pcie_aspm_powersave_config_link(bridge); 1696 1697 err = pcibios_enable_device(dev, bars); 1698 if (err < 0) 1699 return err; 1700 pci_fixup_device(pci_fixup_enable, dev); 1701 1702 if (dev->msi_enabled || dev->msix_enabled) 1703 return 0; 1704 1705 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1706 if (pin) { 1707 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1708 if (cmd & PCI_COMMAND_INTX_DISABLE) 1709 pci_write_config_word(dev, PCI_COMMAND, 1710 cmd & ~PCI_COMMAND_INTX_DISABLE); 1711 } 1712 1713 return 0; 1714 } 1715 1716 /** 1717 * pci_reenable_device - Resume abandoned device 1718 * @dev: PCI device to be resumed 1719 * 1720 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1721 * to be called by normal code, write proper resume handler and use it instead. 1722 */ 1723 int pci_reenable_device(struct pci_dev *dev) 1724 { 1725 if (pci_is_enabled(dev)) 1726 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1727 return 0; 1728 } 1729 EXPORT_SYMBOL(pci_reenable_device); 1730 1731 static void pci_enable_bridge(struct pci_dev *dev) 1732 { 1733 struct pci_dev *bridge; 1734 int retval; 1735 1736 bridge = pci_upstream_bridge(dev); 1737 if (bridge) 1738 pci_enable_bridge(bridge); 1739 1740 if (pci_is_enabled(dev)) { 1741 if (!dev->is_busmaster) 1742 pci_set_master(dev); 1743 return; 1744 } 1745 1746 retval = pci_enable_device(dev); 1747 if (retval) 1748 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1749 retval); 1750 pci_set_master(dev); 1751 } 1752 1753 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1754 { 1755 struct pci_dev *bridge; 1756 int err; 1757 int i, bars = 0; 1758 1759 /* 1760 * Power state could be unknown at this point, either due to a fresh 1761 * boot or a device removal call. So get the current power state 1762 * so that things like MSI message writing will behave as expected 1763 * (e.g. if the device really is in D0 at enable time). 1764 */ 1765 if (dev->pm_cap) { 1766 u16 pmcsr; 1767 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1768 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1769 } 1770 1771 if (atomic_inc_return(&dev->enable_cnt) > 1) 1772 return 0; /* already enabled */ 1773 1774 bridge = pci_upstream_bridge(dev); 1775 if (bridge) 1776 pci_enable_bridge(bridge); 1777 1778 /* only skip sriov related */ 1779 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1780 if (dev->resource[i].flags & flags) 1781 bars |= (1 << i); 1782 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1783 if (dev->resource[i].flags & flags) 1784 bars |= (1 << i); 1785 1786 err = do_pci_enable_device(dev, bars); 1787 if (err < 0) 1788 atomic_dec(&dev->enable_cnt); 1789 return err; 1790 } 1791 1792 /** 1793 * pci_enable_device_io - Initialize a device for use with IO space 1794 * @dev: PCI device to be initialized 1795 * 1796 * Initialize device before it's used by a driver. Ask low-level code 1797 * to enable I/O resources. Wake up the device if it was suspended. 1798 * Beware, this function can fail. 1799 */ 1800 int pci_enable_device_io(struct pci_dev *dev) 1801 { 1802 return pci_enable_device_flags(dev, IORESOURCE_IO); 1803 } 1804 EXPORT_SYMBOL(pci_enable_device_io); 1805 1806 /** 1807 * pci_enable_device_mem - Initialize a device for use with Memory space 1808 * @dev: PCI device to be initialized 1809 * 1810 * Initialize device before it's used by a driver. Ask low-level code 1811 * to enable Memory resources. Wake up the device if it was suspended. 1812 * Beware, this function can fail. 1813 */ 1814 int pci_enable_device_mem(struct pci_dev *dev) 1815 { 1816 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1817 } 1818 EXPORT_SYMBOL(pci_enable_device_mem); 1819 1820 /** 1821 * pci_enable_device - Initialize device before it's used by a driver. 1822 * @dev: PCI device to be initialized 1823 * 1824 * Initialize device before it's used by a driver. Ask low-level code 1825 * to enable I/O and memory. Wake up the device if it was suspended. 1826 * Beware, this function can fail. 1827 * 1828 * Note we don't actually enable the device many times if we call 1829 * this function repeatedly (we just increment the count). 1830 */ 1831 int pci_enable_device(struct pci_dev *dev) 1832 { 1833 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1834 } 1835 EXPORT_SYMBOL(pci_enable_device); 1836 1837 /* 1838 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1839 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1840 * there's no need to track it separately. pci_devres is initialized 1841 * when a device is enabled using managed PCI device enable interface. 1842 */ 1843 struct pci_devres { 1844 unsigned int enabled:1; 1845 unsigned int pinned:1; 1846 unsigned int orig_intx:1; 1847 unsigned int restore_intx:1; 1848 unsigned int mwi:1; 1849 u32 region_mask; 1850 }; 1851 1852 static void pcim_release(struct device *gendev, void *res) 1853 { 1854 struct pci_dev *dev = to_pci_dev(gendev); 1855 struct pci_devres *this = res; 1856 int i; 1857 1858 if (dev->msi_enabled) 1859 pci_disable_msi(dev); 1860 if (dev->msix_enabled) 1861 pci_disable_msix(dev); 1862 1863 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1864 if (this->region_mask & (1 << i)) 1865 pci_release_region(dev, i); 1866 1867 if (this->mwi) 1868 pci_clear_mwi(dev); 1869 1870 if (this->restore_intx) 1871 pci_intx(dev, this->orig_intx); 1872 1873 if (this->enabled && !this->pinned) 1874 pci_disable_device(dev); 1875 } 1876 1877 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1878 { 1879 struct pci_devres *dr, *new_dr; 1880 1881 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1882 if (dr) 1883 return dr; 1884 1885 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1886 if (!new_dr) 1887 return NULL; 1888 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1889 } 1890 1891 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1892 { 1893 if (pci_is_managed(pdev)) 1894 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1895 return NULL; 1896 } 1897 1898 /** 1899 * pcim_enable_device - Managed pci_enable_device() 1900 * @pdev: PCI device to be initialized 1901 * 1902 * Managed pci_enable_device(). 1903 */ 1904 int pcim_enable_device(struct pci_dev *pdev) 1905 { 1906 struct pci_devres *dr; 1907 int rc; 1908 1909 dr = get_pci_dr(pdev); 1910 if (unlikely(!dr)) 1911 return -ENOMEM; 1912 if (dr->enabled) 1913 return 0; 1914 1915 rc = pci_enable_device(pdev); 1916 if (!rc) { 1917 pdev->is_managed = 1; 1918 dr->enabled = 1; 1919 } 1920 return rc; 1921 } 1922 EXPORT_SYMBOL(pcim_enable_device); 1923 1924 /** 1925 * pcim_pin_device - Pin managed PCI device 1926 * @pdev: PCI device to pin 1927 * 1928 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1929 * driver detach. @pdev must have been enabled with 1930 * pcim_enable_device(). 1931 */ 1932 void pcim_pin_device(struct pci_dev *pdev) 1933 { 1934 struct pci_devres *dr; 1935 1936 dr = find_pci_dr(pdev); 1937 WARN_ON(!dr || !dr->enabled); 1938 if (dr) 1939 dr->pinned = 1; 1940 } 1941 EXPORT_SYMBOL(pcim_pin_device); 1942 1943 /* 1944 * pcibios_add_device - provide arch specific hooks when adding device dev 1945 * @dev: the PCI device being added 1946 * 1947 * Permits the platform to provide architecture specific functionality when 1948 * devices are added. This is the default implementation. Architecture 1949 * implementations can override this. 1950 */ 1951 int __weak pcibios_add_device(struct pci_dev *dev) 1952 { 1953 return 0; 1954 } 1955 1956 /** 1957 * pcibios_release_device - provide arch specific hooks when releasing 1958 * device dev 1959 * @dev: the PCI device being released 1960 * 1961 * Permits the platform to provide architecture specific functionality when 1962 * devices are released. This is the default implementation. Architecture 1963 * implementations can override this. 1964 */ 1965 void __weak pcibios_release_device(struct pci_dev *dev) {} 1966 1967 /** 1968 * pcibios_disable_device - disable arch specific PCI resources for device dev 1969 * @dev: the PCI device to disable 1970 * 1971 * Disables architecture specific PCI resources for the device. This 1972 * is the default implementation. Architecture implementations can 1973 * override this. 1974 */ 1975 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1976 1977 /** 1978 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1979 * @irq: ISA IRQ to penalize 1980 * @active: IRQ active or not 1981 * 1982 * Permits the platform to provide architecture-specific functionality when 1983 * penalizing ISA IRQs. This is the default implementation. Architecture 1984 * implementations can override this. 1985 */ 1986 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1987 1988 static void do_pci_disable_device(struct pci_dev *dev) 1989 { 1990 u16 pci_command; 1991 1992 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1993 if (pci_command & PCI_COMMAND_MASTER) { 1994 pci_command &= ~PCI_COMMAND_MASTER; 1995 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1996 } 1997 1998 pcibios_disable_device(dev); 1999 } 2000 2001 /** 2002 * pci_disable_enabled_device - Disable device without updating enable_cnt 2003 * @dev: PCI device to disable 2004 * 2005 * NOTE: This function is a backend of PCI power management routines and is 2006 * not supposed to be called drivers. 2007 */ 2008 void pci_disable_enabled_device(struct pci_dev *dev) 2009 { 2010 if (pci_is_enabled(dev)) 2011 do_pci_disable_device(dev); 2012 } 2013 2014 /** 2015 * pci_disable_device - Disable PCI device after use 2016 * @dev: PCI device to be disabled 2017 * 2018 * Signal to the system that the PCI device is not in use by the system 2019 * anymore. This only involves disabling PCI bus-mastering, if active. 2020 * 2021 * Note we don't actually disable the device until all callers of 2022 * pci_enable_device() have called pci_disable_device(). 2023 */ 2024 void pci_disable_device(struct pci_dev *dev) 2025 { 2026 struct pci_devres *dr; 2027 2028 dr = find_pci_dr(dev); 2029 if (dr) 2030 dr->enabled = 0; 2031 2032 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2033 "disabling already-disabled device"); 2034 2035 if (atomic_dec_return(&dev->enable_cnt) != 0) 2036 return; 2037 2038 do_pci_disable_device(dev); 2039 2040 dev->is_busmaster = 0; 2041 } 2042 EXPORT_SYMBOL(pci_disable_device); 2043 2044 /** 2045 * pcibios_set_pcie_reset_state - set reset state for device dev 2046 * @dev: the PCIe device reset 2047 * @state: Reset state to enter into 2048 * 2049 * Set the PCIe reset state for the device. This is the default 2050 * implementation. Architecture implementations can override this. 2051 */ 2052 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2053 enum pcie_reset_state state) 2054 { 2055 return -EINVAL; 2056 } 2057 2058 /** 2059 * pci_set_pcie_reset_state - set reset state for device dev 2060 * @dev: the PCIe device reset 2061 * @state: Reset state to enter into 2062 * 2063 * Sets the PCI reset state for the device. 2064 */ 2065 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2066 { 2067 return pcibios_set_pcie_reset_state(dev, state); 2068 } 2069 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2070 2071 /** 2072 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2073 * @dev: PCIe root port or event collector. 2074 */ 2075 void pcie_clear_root_pme_status(struct pci_dev *dev) 2076 { 2077 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2078 } 2079 2080 /** 2081 * pci_check_pme_status - Check if given device has generated PME. 2082 * @dev: Device to check. 2083 * 2084 * Check the PME status of the device and if set, clear it and clear PME enable 2085 * (if set). Return 'true' if PME status and PME enable were both set or 2086 * 'false' otherwise. 2087 */ 2088 bool pci_check_pme_status(struct pci_dev *dev) 2089 { 2090 int pmcsr_pos; 2091 u16 pmcsr; 2092 bool ret = false; 2093 2094 if (!dev->pm_cap) 2095 return false; 2096 2097 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2098 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2099 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2100 return false; 2101 2102 /* Clear PME status. */ 2103 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2104 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2105 /* Disable PME to avoid interrupt flood. */ 2106 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2107 ret = true; 2108 } 2109 2110 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2111 2112 return ret; 2113 } 2114 2115 /** 2116 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2117 * @dev: Device to handle. 2118 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2119 * 2120 * Check if @dev has generated PME and queue a resume request for it in that 2121 * case. 2122 */ 2123 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2124 { 2125 if (pme_poll_reset && dev->pme_poll) 2126 dev->pme_poll = false; 2127 2128 if (pci_check_pme_status(dev)) { 2129 pci_wakeup_event(dev); 2130 pm_request_resume(&dev->dev); 2131 } 2132 return 0; 2133 } 2134 2135 /** 2136 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2137 * @bus: Top bus of the subtree to walk. 2138 */ 2139 void pci_pme_wakeup_bus(struct pci_bus *bus) 2140 { 2141 if (bus) 2142 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2143 } 2144 2145 2146 /** 2147 * pci_pme_capable - check the capability of PCI device to generate PME# 2148 * @dev: PCI device to handle. 2149 * @state: PCI state from which device will issue PME#. 2150 */ 2151 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2152 { 2153 if (!dev->pm_cap) 2154 return false; 2155 2156 return !!(dev->pme_support & (1 << state)); 2157 } 2158 EXPORT_SYMBOL(pci_pme_capable); 2159 2160 static void pci_pme_list_scan(struct work_struct *work) 2161 { 2162 struct pci_pme_device *pme_dev, *n; 2163 2164 mutex_lock(&pci_pme_list_mutex); 2165 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2166 if (pme_dev->dev->pme_poll) { 2167 struct pci_dev *bridge; 2168 2169 bridge = pme_dev->dev->bus->self; 2170 /* 2171 * If bridge is in low power state, the 2172 * configuration space of subordinate devices 2173 * may be not accessible 2174 */ 2175 if (bridge && bridge->current_state != PCI_D0) 2176 continue; 2177 /* 2178 * If the device is in D3cold it should not be 2179 * polled either. 2180 */ 2181 if (pme_dev->dev->current_state == PCI_D3cold) 2182 continue; 2183 2184 pci_pme_wakeup(pme_dev->dev, NULL); 2185 } else { 2186 list_del(&pme_dev->list); 2187 kfree(pme_dev); 2188 } 2189 } 2190 if (!list_empty(&pci_pme_list)) 2191 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2192 msecs_to_jiffies(PME_TIMEOUT)); 2193 mutex_unlock(&pci_pme_list_mutex); 2194 } 2195 2196 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2197 { 2198 u16 pmcsr; 2199 2200 if (!dev->pme_support) 2201 return; 2202 2203 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2204 /* Clear PME_Status by writing 1 to it and enable PME# */ 2205 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2206 if (!enable) 2207 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2208 2209 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2210 } 2211 2212 /** 2213 * pci_pme_restore - Restore PME configuration after config space restore. 2214 * @dev: PCI device to update. 2215 */ 2216 void pci_pme_restore(struct pci_dev *dev) 2217 { 2218 u16 pmcsr; 2219 2220 if (!dev->pme_support) 2221 return; 2222 2223 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2224 if (dev->wakeup_prepared) { 2225 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2226 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2227 } else { 2228 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2229 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2230 } 2231 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2232 } 2233 2234 /** 2235 * pci_pme_active - enable or disable PCI device's PME# function 2236 * @dev: PCI device to handle. 2237 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2238 * 2239 * The caller must verify that the device is capable of generating PME# before 2240 * calling this function with @enable equal to 'true'. 2241 */ 2242 void pci_pme_active(struct pci_dev *dev, bool enable) 2243 { 2244 __pci_pme_active(dev, enable); 2245 2246 /* 2247 * PCI (as opposed to PCIe) PME requires that the device have 2248 * its PME# line hooked up correctly. Not all hardware vendors 2249 * do this, so the PME never gets delivered and the device 2250 * remains asleep. The easiest way around this is to 2251 * periodically walk the list of suspended devices and check 2252 * whether any have their PME flag set. The assumption is that 2253 * we'll wake up often enough anyway that this won't be a huge 2254 * hit, and the power savings from the devices will still be a 2255 * win. 2256 * 2257 * Although PCIe uses in-band PME message instead of PME# line 2258 * to report PME, PME does not work for some PCIe devices in 2259 * reality. For example, there are devices that set their PME 2260 * status bits, but don't really bother to send a PME message; 2261 * there are PCI Express Root Ports that don't bother to 2262 * trigger interrupts when they receive PME messages from the 2263 * devices below. So PME poll is used for PCIe devices too. 2264 */ 2265 2266 if (dev->pme_poll) { 2267 struct pci_pme_device *pme_dev; 2268 if (enable) { 2269 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2270 GFP_KERNEL); 2271 if (!pme_dev) { 2272 pci_warn(dev, "can't enable PME#\n"); 2273 return; 2274 } 2275 pme_dev->dev = dev; 2276 mutex_lock(&pci_pme_list_mutex); 2277 list_add(&pme_dev->list, &pci_pme_list); 2278 if (list_is_singular(&pci_pme_list)) 2279 queue_delayed_work(system_freezable_wq, 2280 &pci_pme_work, 2281 msecs_to_jiffies(PME_TIMEOUT)); 2282 mutex_unlock(&pci_pme_list_mutex); 2283 } else { 2284 mutex_lock(&pci_pme_list_mutex); 2285 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2286 if (pme_dev->dev == dev) { 2287 list_del(&pme_dev->list); 2288 kfree(pme_dev); 2289 break; 2290 } 2291 } 2292 mutex_unlock(&pci_pme_list_mutex); 2293 } 2294 } 2295 2296 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2297 } 2298 EXPORT_SYMBOL(pci_pme_active); 2299 2300 /** 2301 * __pci_enable_wake - enable PCI device as wakeup event source 2302 * @dev: PCI device affected 2303 * @state: PCI state from which device will issue wakeup events 2304 * @enable: True to enable event generation; false to disable 2305 * 2306 * This enables the device as a wakeup event source, or disables it. 2307 * When such events involves platform-specific hooks, those hooks are 2308 * called automatically by this routine. 2309 * 2310 * Devices with legacy power management (no standard PCI PM capabilities) 2311 * always require such platform hooks. 2312 * 2313 * RETURN VALUE: 2314 * 0 is returned on success 2315 * -EINVAL is returned if device is not supposed to wake up the system 2316 * Error code depending on the platform is returned if both the platform and 2317 * the native mechanism fail to enable the generation of wake-up events 2318 */ 2319 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2320 { 2321 int ret = 0; 2322 2323 /* 2324 * Bridges that are not power-manageable directly only signal 2325 * wakeup on behalf of subordinate devices which is set up 2326 * elsewhere, so skip them. However, bridges that are 2327 * power-manageable may signal wakeup for themselves (for example, 2328 * on a hotplug event) and they need to be covered here. 2329 */ 2330 if (!pci_power_manageable(dev)) 2331 return 0; 2332 2333 /* Don't do the same thing twice in a row for one device. */ 2334 if (!!enable == !!dev->wakeup_prepared) 2335 return 0; 2336 2337 /* 2338 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2339 * Anderson we should be doing PME# wake enable followed by ACPI wake 2340 * enable. To disable wake-up we call the platform first, for symmetry. 2341 */ 2342 2343 if (enable) { 2344 int error; 2345 2346 if (pci_pme_capable(dev, state)) 2347 pci_pme_active(dev, true); 2348 else 2349 ret = 1; 2350 error = platform_pci_set_wakeup(dev, true); 2351 if (ret) 2352 ret = error; 2353 if (!ret) 2354 dev->wakeup_prepared = true; 2355 } else { 2356 platform_pci_set_wakeup(dev, false); 2357 pci_pme_active(dev, false); 2358 dev->wakeup_prepared = false; 2359 } 2360 2361 return ret; 2362 } 2363 2364 /** 2365 * pci_enable_wake - change wakeup settings for a PCI device 2366 * @pci_dev: Target device 2367 * @state: PCI state from which device will issue wakeup events 2368 * @enable: Whether or not to enable event generation 2369 * 2370 * If @enable is set, check device_may_wakeup() for the device before calling 2371 * __pci_enable_wake() for it. 2372 */ 2373 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2374 { 2375 if (enable && !device_may_wakeup(&pci_dev->dev)) 2376 return -EINVAL; 2377 2378 return __pci_enable_wake(pci_dev, state, enable); 2379 } 2380 EXPORT_SYMBOL(pci_enable_wake); 2381 2382 /** 2383 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2384 * @dev: PCI device to prepare 2385 * @enable: True to enable wake-up event generation; false to disable 2386 * 2387 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2388 * and this function allows them to set that up cleanly - pci_enable_wake() 2389 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2390 * ordering constraints. 2391 * 2392 * This function only returns error code if the device is not allowed to wake 2393 * up the system from sleep or it is not capable of generating PME# from both 2394 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2395 */ 2396 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2397 { 2398 return pci_pme_capable(dev, PCI_D3cold) ? 2399 pci_enable_wake(dev, PCI_D3cold, enable) : 2400 pci_enable_wake(dev, PCI_D3hot, enable); 2401 } 2402 EXPORT_SYMBOL(pci_wake_from_d3); 2403 2404 /** 2405 * pci_target_state - find an appropriate low power state for a given PCI dev 2406 * @dev: PCI device 2407 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2408 * 2409 * Use underlying platform code to find a supported low power state for @dev. 2410 * If the platform can't manage @dev, return the deepest state from which it 2411 * can generate wake events, based on any available PME info. 2412 */ 2413 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2414 { 2415 pci_power_t target_state = PCI_D3hot; 2416 2417 if (platform_pci_power_manageable(dev)) { 2418 /* 2419 * Call the platform to find the target state for the device. 2420 */ 2421 pci_power_t state = platform_pci_choose_state(dev); 2422 2423 switch (state) { 2424 case PCI_POWER_ERROR: 2425 case PCI_UNKNOWN: 2426 break; 2427 case PCI_D1: 2428 case PCI_D2: 2429 if (pci_no_d1d2(dev)) 2430 break; 2431 /* else, fall through */ 2432 default: 2433 target_state = state; 2434 } 2435 2436 return target_state; 2437 } 2438 2439 if (!dev->pm_cap) 2440 target_state = PCI_D0; 2441 2442 /* 2443 * If the device is in D3cold even though it's not power-manageable by 2444 * the platform, it may have been powered down by non-standard means. 2445 * Best to let it slumber. 2446 */ 2447 if (dev->current_state == PCI_D3cold) 2448 target_state = PCI_D3cold; 2449 2450 if (wakeup) { 2451 /* 2452 * Find the deepest state from which the device can generate 2453 * PME#. 2454 */ 2455 if (dev->pme_support) { 2456 while (target_state 2457 && !(dev->pme_support & (1 << target_state))) 2458 target_state--; 2459 } 2460 } 2461 2462 return target_state; 2463 } 2464 2465 /** 2466 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2467 * into a sleep state 2468 * @dev: Device to handle. 2469 * 2470 * Choose the power state appropriate for the device depending on whether 2471 * it can wake up the system and/or is power manageable by the platform 2472 * (PCI_D3hot is the default) and put the device into that state. 2473 */ 2474 int pci_prepare_to_sleep(struct pci_dev *dev) 2475 { 2476 bool wakeup = device_may_wakeup(&dev->dev); 2477 pci_power_t target_state = pci_target_state(dev, wakeup); 2478 int error; 2479 2480 if (target_state == PCI_POWER_ERROR) 2481 return -EIO; 2482 2483 pci_enable_wake(dev, target_state, wakeup); 2484 2485 error = pci_set_power_state(dev, target_state); 2486 2487 if (error) 2488 pci_enable_wake(dev, target_state, false); 2489 2490 return error; 2491 } 2492 EXPORT_SYMBOL(pci_prepare_to_sleep); 2493 2494 /** 2495 * pci_back_from_sleep - turn PCI device on during system-wide transition 2496 * into working state 2497 * @dev: Device to handle. 2498 * 2499 * Disable device's system wake-up capability and put it into D0. 2500 */ 2501 int pci_back_from_sleep(struct pci_dev *dev) 2502 { 2503 pci_enable_wake(dev, PCI_D0, false); 2504 return pci_set_power_state(dev, PCI_D0); 2505 } 2506 EXPORT_SYMBOL(pci_back_from_sleep); 2507 2508 /** 2509 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2510 * @dev: PCI device being suspended. 2511 * 2512 * Prepare @dev to generate wake-up events at run time and put it into a low 2513 * power state. 2514 */ 2515 int pci_finish_runtime_suspend(struct pci_dev *dev) 2516 { 2517 pci_power_t target_state; 2518 int error; 2519 2520 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2521 if (target_state == PCI_POWER_ERROR) 2522 return -EIO; 2523 2524 dev->runtime_d3cold = target_state == PCI_D3cold; 2525 2526 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2527 2528 error = pci_set_power_state(dev, target_state); 2529 2530 if (error) { 2531 pci_enable_wake(dev, target_state, false); 2532 dev->runtime_d3cold = false; 2533 } 2534 2535 return error; 2536 } 2537 2538 /** 2539 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2540 * @dev: Device to check. 2541 * 2542 * Return true if the device itself is capable of generating wake-up events 2543 * (through the platform or using the native PCIe PME) or if the device supports 2544 * PME and one of its upstream bridges can generate wake-up events. 2545 */ 2546 bool pci_dev_run_wake(struct pci_dev *dev) 2547 { 2548 struct pci_bus *bus = dev->bus; 2549 2550 if (!dev->pme_support) 2551 return false; 2552 2553 /* PME-capable in principle, but not from the target power state */ 2554 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2555 return false; 2556 2557 if (device_can_wakeup(&dev->dev)) 2558 return true; 2559 2560 while (bus->parent) { 2561 struct pci_dev *bridge = bus->self; 2562 2563 if (device_can_wakeup(&bridge->dev)) 2564 return true; 2565 2566 bus = bus->parent; 2567 } 2568 2569 /* We have reached the root bus. */ 2570 if (bus->bridge) 2571 return device_can_wakeup(bus->bridge); 2572 2573 return false; 2574 } 2575 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2576 2577 /** 2578 * pci_dev_need_resume - Check if it is necessary to resume the device. 2579 * @pci_dev: Device to check. 2580 * 2581 * Return 'true' if the device is not runtime-suspended or it has to be 2582 * reconfigured due to wakeup settings difference between system and runtime 2583 * suspend, or the current power state of it is not suitable for the upcoming 2584 * (system-wide) transition. 2585 */ 2586 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2587 { 2588 struct device *dev = &pci_dev->dev; 2589 pci_power_t target_state; 2590 2591 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2592 return true; 2593 2594 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2595 2596 /* 2597 * If the earlier platform check has not triggered, D3cold is just power 2598 * removal on top of D3hot, so no need to resume the device in that 2599 * case. 2600 */ 2601 return target_state != pci_dev->current_state && 2602 target_state != PCI_D3cold && 2603 pci_dev->current_state != PCI_D3hot; 2604 } 2605 2606 /** 2607 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2608 * @pci_dev: Device to check. 2609 * 2610 * If the device is suspended and it is not configured for system wakeup, 2611 * disable PME for it to prevent it from waking up the system unnecessarily. 2612 * 2613 * Note that if the device's power state is D3cold and the platform check in 2614 * pci_dev_need_resume() has not triggered, the device's configuration need not 2615 * be changed. 2616 */ 2617 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2618 { 2619 struct device *dev = &pci_dev->dev; 2620 2621 spin_lock_irq(&dev->power.lock); 2622 2623 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2624 pci_dev->current_state < PCI_D3cold) 2625 __pci_pme_active(pci_dev, false); 2626 2627 spin_unlock_irq(&dev->power.lock); 2628 } 2629 2630 /** 2631 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2632 * @pci_dev: Device to handle. 2633 * 2634 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2635 * it might have been disabled during the prepare phase of system suspend if 2636 * the device was not configured for system wakeup. 2637 */ 2638 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2639 { 2640 struct device *dev = &pci_dev->dev; 2641 2642 if (!pci_dev_run_wake(pci_dev)) 2643 return; 2644 2645 spin_lock_irq(&dev->power.lock); 2646 2647 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2648 __pci_pme_active(pci_dev, true); 2649 2650 spin_unlock_irq(&dev->power.lock); 2651 } 2652 2653 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2654 { 2655 struct device *dev = &pdev->dev; 2656 struct device *parent = dev->parent; 2657 2658 if (parent) 2659 pm_runtime_get_sync(parent); 2660 pm_runtime_get_noresume(dev); 2661 /* 2662 * pdev->current_state is set to PCI_D3cold during suspending, 2663 * so wait until suspending completes 2664 */ 2665 pm_runtime_barrier(dev); 2666 /* 2667 * Only need to resume devices in D3cold, because config 2668 * registers are still accessible for devices suspended but 2669 * not in D3cold. 2670 */ 2671 if (pdev->current_state == PCI_D3cold) 2672 pm_runtime_resume(dev); 2673 } 2674 2675 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2676 { 2677 struct device *dev = &pdev->dev; 2678 struct device *parent = dev->parent; 2679 2680 pm_runtime_put(dev); 2681 if (parent) 2682 pm_runtime_put_sync(parent); 2683 } 2684 2685 static const struct dmi_system_id bridge_d3_blacklist[] = { 2686 #ifdef CONFIG_X86 2687 { 2688 /* 2689 * Gigabyte X299 root port is not marked as hotplug capable 2690 * which allows Linux to power manage it. However, this 2691 * confuses the BIOS SMI handler so don't power manage root 2692 * ports on that system. 2693 */ 2694 .ident = "X299 DESIGNARE EX-CF", 2695 .matches = { 2696 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2697 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2698 }, 2699 }, 2700 #endif 2701 { } 2702 }; 2703 2704 /** 2705 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2706 * @bridge: Bridge to check 2707 * 2708 * This function checks if it is possible to move the bridge to D3. 2709 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2710 */ 2711 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2712 { 2713 if (!pci_is_pcie(bridge)) 2714 return false; 2715 2716 switch (pci_pcie_type(bridge)) { 2717 case PCI_EXP_TYPE_ROOT_PORT: 2718 case PCI_EXP_TYPE_UPSTREAM: 2719 case PCI_EXP_TYPE_DOWNSTREAM: 2720 if (pci_bridge_d3_disable) 2721 return false; 2722 2723 /* 2724 * Hotplug ports handled by firmware in System Management Mode 2725 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2726 */ 2727 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2728 return false; 2729 2730 if (pci_bridge_d3_force) 2731 return true; 2732 2733 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2734 if (bridge->is_thunderbolt) 2735 return true; 2736 2737 /* Platform might know better if the bridge supports D3 */ 2738 if (platform_pci_bridge_d3(bridge)) 2739 return true; 2740 2741 /* 2742 * Hotplug ports handled natively by the OS were not validated 2743 * by vendors for runtime D3 at least until 2018 because there 2744 * was no OS support. 2745 */ 2746 if (bridge->is_hotplug_bridge) 2747 return false; 2748 2749 if (dmi_check_system(bridge_d3_blacklist)) 2750 return false; 2751 2752 /* 2753 * It should be safe to put PCIe ports from 2015 or newer 2754 * to D3. 2755 */ 2756 if (dmi_get_bios_year() >= 2015) 2757 return true; 2758 break; 2759 } 2760 2761 return false; 2762 } 2763 2764 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2765 { 2766 bool *d3cold_ok = data; 2767 2768 if (/* The device needs to be allowed to go D3cold ... */ 2769 dev->no_d3cold || !dev->d3cold_allowed || 2770 2771 /* ... and if it is wakeup capable to do so from D3cold. */ 2772 (device_may_wakeup(&dev->dev) && 2773 !pci_pme_capable(dev, PCI_D3cold)) || 2774 2775 /* If it is a bridge it must be allowed to go to D3. */ 2776 !pci_power_manageable(dev)) 2777 2778 *d3cold_ok = false; 2779 2780 return !*d3cold_ok; 2781 } 2782 2783 /* 2784 * pci_bridge_d3_update - Update bridge D3 capabilities 2785 * @dev: PCI device which is changed 2786 * 2787 * Update upstream bridge PM capabilities accordingly depending on if the 2788 * device PM configuration was changed or the device is being removed. The 2789 * change is also propagated upstream. 2790 */ 2791 void pci_bridge_d3_update(struct pci_dev *dev) 2792 { 2793 bool remove = !device_is_registered(&dev->dev); 2794 struct pci_dev *bridge; 2795 bool d3cold_ok = true; 2796 2797 bridge = pci_upstream_bridge(dev); 2798 if (!bridge || !pci_bridge_d3_possible(bridge)) 2799 return; 2800 2801 /* 2802 * If D3 is currently allowed for the bridge, removing one of its 2803 * children won't change that. 2804 */ 2805 if (remove && bridge->bridge_d3) 2806 return; 2807 2808 /* 2809 * If D3 is currently allowed for the bridge and a child is added or 2810 * changed, disallowance of D3 can only be caused by that child, so 2811 * we only need to check that single device, not any of its siblings. 2812 * 2813 * If D3 is currently not allowed for the bridge, checking the device 2814 * first may allow us to skip checking its siblings. 2815 */ 2816 if (!remove) 2817 pci_dev_check_d3cold(dev, &d3cold_ok); 2818 2819 /* 2820 * If D3 is currently not allowed for the bridge, this may be caused 2821 * either by the device being changed/removed or any of its siblings, 2822 * so we need to go through all children to find out if one of them 2823 * continues to block D3. 2824 */ 2825 if (d3cold_ok && !bridge->bridge_d3) 2826 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2827 &d3cold_ok); 2828 2829 if (bridge->bridge_d3 != d3cold_ok) { 2830 bridge->bridge_d3 = d3cold_ok; 2831 /* Propagate change to upstream bridges */ 2832 pci_bridge_d3_update(bridge); 2833 } 2834 } 2835 2836 /** 2837 * pci_d3cold_enable - Enable D3cold for device 2838 * @dev: PCI device to handle 2839 * 2840 * This function can be used in drivers to enable D3cold from the device 2841 * they handle. It also updates upstream PCI bridge PM capabilities 2842 * accordingly. 2843 */ 2844 void pci_d3cold_enable(struct pci_dev *dev) 2845 { 2846 if (dev->no_d3cold) { 2847 dev->no_d3cold = false; 2848 pci_bridge_d3_update(dev); 2849 } 2850 } 2851 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2852 2853 /** 2854 * pci_d3cold_disable - Disable D3cold for device 2855 * @dev: PCI device to handle 2856 * 2857 * This function can be used in drivers to disable D3cold from the device 2858 * they handle. It also updates upstream PCI bridge PM capabilities 2859 * accordingly. 2860 */ 2861 void pci_d3cold_disable(struct pci_dev *dev) 2862 { 2863 if (!dev->no_d3cold) { 2864 dev->no_d3cold = true; 2865 pci_bridge_d3_update(dev); 2866 } 2867 } 2868 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2869 2870 /** 2871 * pci_pm_init - Initialize PM functions of given PCI device 2872 * @dev: PCI device to handle. 2873 */ 2874 void pci_pm_init(struct pci_dev *dev) 2875 { 2876 int pm; 2877 u16 status; 2878 u16 pmc; 2879 2880 pm_runtime_forbid(&dev->dev); 2881 pm_runtime_set_active(&dev->dev); 2882 pm_runtime_enable(&dev->dev); 2883 device_enable_async_suspend(&dev->dev); 2884 dev->wakeup_prepared = false; 2885 2886 dev->pm_cap = 0; 2887 dev->pme_support = 0; 2888 2889 /* find PCI PM capability in list */ 2890 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2891 if (!pm) 2892 return; 2893 /* Check device's ability to generate PME# */ 2894 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2895 2896 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2897 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2898 pmc & PCI_PM_CAP_VER_MASK); 2899 return; 2900 } 2901 2902 dev->pm_cap = pm; 2903 dev->d3_delay = PCI_PM_D3_WAIT; 2904 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2905 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2906 dev->d3cold_allowed = true; 2907 2908 dev->d1_support = false; 2909 dev->d2_support = false; 2910 if (!pci_no_d1d2(dev)) { 2911 if (pmc & PCI_PM_CAP_D1) 2912 dev->d1_support = true; 2913 if (pmc & PCI_PM_CAP_D2) 2914 dev->d2_support = true; 2915 2916 if (dev->d1_support || dev->d2_support) 2917 pci_info(dev, "supports%s%s\n", 2918 dev->d1_support ? " D1" : "", 2919 dev->d2_support ? " D2" : ""); 2920 } 2921 2922 pmc &= PCI_PM_CAP_PME_MASK; 2923 if (pmc) { 2924 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 2925 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2926 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2927 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2928 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2929 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2930 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2931 dev->pme_poll = true; 2932 /* 2933 * Make device's PM flags reflect the wake-up capability, but 2934 * let the user space enable it to wake up the system as needed. 2935 */ 2936 device_set_wakeup_capable(&dev->dev, true); 2937 /* Disable the PME# generation functionality */ 2938 pci_pme_active(dev, false); 2939 } 2940 2941 pci_read_config_word(dev, PCI_STATUS, &status); 2942 if (status & PCI_STATUS_IMM_READY) 2943 dev->imm_ready = 1; 2944 } 2945 2946 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2947 { 2948 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2949 2950 switch (prop) { 2951 case PCI_EA_P_MEM: 2952 case PCI_EA_P_VF_MEM: 2953 flags |= IORESOURCE_MEM; 2954 break; 2955 case PCI_EA_P_MEM_PREFETCH: 2956 case PCI_EA_P_VF_MEM_PREFETCH: 2957 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2958 break; 2959 case PCI_EA_P_IO: 2960 flags |= IORESOURCE_IO; 2961 break; 2962 default: 2963 return 0; 2964 } 2965 2966 return flags; 2967 } 2968 2969 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2970 u8 prop) 2971 { 2972 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2973 return &dev->resource[bei]; 2974 #ifdef CONFIG_PCI_IOV 2975 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2976 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2977 return &dev->resource[PCI_IOV_RESOURCES + 2978 bei - PCI_EA_BEI_VF_BAR0]; 2979 #endif 2980 else if (bei == PCI_EA_BEI_ROM) 2981 return &dev->resource[PCI_ROM_RESOURCE]; 2982 else 2983 return NULL; 2984 } 2985 2986 /* Read an Enhanced Allocation (EA) entry */ 2987 static int pci_ea_read(struct pci_dev *dev, int offset) 2988 { 2989 struct resource *res; 2990 int ent_size, ent_offset = offset; 2991 resource_size_t start, end; 2992 unsigned long flags; 2993 u32 dw0, bei, base, max_offset; 2994 u8 prop; 2995 bool support_64 = (sizeof(resource_size_t) >= 8); 2996 2997 pci_read_config_dword(dev, ent_offset, &dw0); 2998 ent_offset += 4; 2999 3000 /* Entry size field indicates DWORDs after 1st */ 3001 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3002 3003 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3004 goto out; 3005 3006 bei = (dw0 & PCI_EA_BEI) >> 4; 3007 prop = (dw0 & PCI_EA_PP) >> 8; 3008 3009 /* 3010 * If the Property is in the reserved range, try the Secondary 3011 * Property instead. 3012 */ 3013 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3014 prop = (dw0 & PCI_EA_SP) >> 16; 3015 if (prop > PCI_EA_P_BRIDGE_IO) 3016 goto out; 3017 3018 res = pci_ea_get_resource(dev, bei, prop); 3019 if (!res) { 3020 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3021 goto out; 3022 } 3023 3024 flags = pci_ea_flags(dev, prop); 3025 if (!flags) { 3026 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3027 goto out; 3028 } 3029 3030 /* Read Base */ 3031 pci_read_config_dword(dev, ent_offset, &base); 3032 start = (base & PCI_EA_FIELD_MASK); 3033 ent_offset += 4; 3034 3035 /* Read MaxOffset */ 3036 pci_read_config_dword(dev, ent_offset, &max_offset); 3037 ent_offset += 4; 3038 3039 /* Read Base MSBs (if 64-bit entry) */ 3040 if (base & PCI_EA_IS_64) { 3041 u32 base_upper; 3042 3043 pci_read_config_dword(dev, ent_offset, &base_upper); 3044 ent_offset += 4; 3045 3046 flags |= IORESOURCE_MEM_64; 3047 3048 /* entry starts above 32-bit boundary, can't use */ 3049 if (!support_64 && base_upper) 3050 goto out; 3051 3052 if (support_64) 3053 start |= ((u64)base_upper << 32); 3054 } 3055 3056 end = start + (max_offset | 0x03); 3057 3058 /* Read MaxOffset MSBs (if 64-bit entry) */ 3059 if (max_offset & PCI_EA_IS_64) { 3060 u32 max_offset_upper; 3061 3062 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3063 ent_offset += 4; 3064 3065 flags |= IORESOURCE_MEM_64; 3066 3067 /* entry too big, can't use */ 3068 if (!support_64 && max_offset_upper) 3069 goto out; 3070 3071 if (support_64) 3072 end += ((u64)max_offset_upper << 32); 3073 } 3074 3075 if (end < start) { 3076 pci_err(dev, "EA Entry crosses address boundary\n"); 3077 goto out; 3078 } 3079 3080 if (ent_size != ent_offset - offset) { 3081 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3082 ent_size, ent_offset - offset); 3083 goto out; 3084 } 3085 3086 res->name = pci_name(dev); 3087 res->start = start; 3088 res->end = end; 3089 res->flags = flags; 3090 3091 if (bei <= PCI_EA_BEI_BAR5) 3092 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3093 bei, res, prop); 3094 else if (bei == PCI_EA_BEI_ROM) 3095 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3096 res, prop); 3097 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3098 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3099 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3100 else 3101 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3102 bei, res, prop); 3103 3104 out: 3105 return offset + ent_size; 3106 } 3107 3108 /* Enhanced Allocation Initialization */ 3109 void pci_ea_init(struct pci_dev *dev) 3110 { 3111 int ea; 3112 u8 num_ent; 3113 int offset; 3114 int i; 3115 3116 /* find PCI EA capability in list */ 3117 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3118 if (!ea) 3119 return; 3120 3121 /* determine the number of entries */ 3122 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3123 &num_ent); 3124 num_ent &= PCI_EA_NUM_ENT_MASK; 3125 3126 offset = ea + PCI_EA_FIRST_ENT; 3127 3128 /* Skip DWORD 2 for type 1 functions */ 3129 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3130 offset += 4; 3131 3132 /* parse each EA entry */ 3133 for (i = 0; i < num_ent; ++i) 3134 offset = pci_ea_read(dev, offset); 3135 } 3136 3137 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3138 struct pci_cap_saved_state *new_cap) 3139 { 3140 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3141 } 3142 3143 /** 3144 * _pci_add_cap_save_buffer - allocate buffer for saving given 3145 * capability registers 3146 * @dev: the PCI device 3147 * @cap: the capability to allocate the buffer for 3148 * @extended: Standard or Extended capability ID 3149 * @size: requested size of the buffer 3150 */ 3151 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3152 bool extended, unsigned int size) 3153 { 3154 int pos; 3155 struct pci_cap_saved_state *save_state; 3156 3157 if (extended) 3158 pos = pci_find_ext_capability(dev, cap); 3159 else 3160 pos = pci_find_capability(dev, cap); 3161 3162 if (!pos) 3163 return 0; 3164 3165 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3166 if (!save_state) 3167 return -ENOMEM; 3168 3169 save_state->cap.cap_nr = cap; 3170 save_state->cap.cap_extended = extended; 3171 save_state->cap.size = size; 3172 pci_add_saved_cap(dev, save_state); 3173 3174 return 0; 3175 } 3176 3177 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3178 { 3179 return _pci_add_cap_save_buffer(dev, cap, false, size); 3180 } 3181 3182 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3183 { 3184 return _pci_add_cap_save_buffer(dev, cap, true, size); 3185 } 3186 3187 /** 3188 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3189 * @dev: the PCI device 3190 */ 3191 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3192 { 3193 int error; 3194 3195 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3196 PCI_EXP_SAVE_REGS * sizeof(u16)); 3197 if (error) 3198 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3199 3200 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3201 if (error) 3202 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3203 3204 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3205 2 * sizeof(u16)); 3206 if (error) 3207 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3208 3209 pci_allocate_vc_save_buffers(dev); 3210 } 3211 3212 void pci_free_cap_save_buffers(struct pci_dev *dev) 3213 { 3214 struct pci_cap_saved_state *tmp; 3215 struct hlist_node *n; 3216 3217 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3218 kfree(tmp); 3219 } 3220 3221 /** 3222 * pci_configure_ari - enable or disable ARI forwarding 3223 * @dev: the PCI device 3224 * 3225 * If @dev and its upstream bridge both support ARI, enable ARI in the 3226 * bridge. Otherwise, disable ARI in the bridge. 3227 */ 3228 void pci_configure_ari(struct pci_dev *dev) 3229 { 3230 u32 cap; 3231 struct pci_dev *bridge; 3232 3233 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3234 return; 3235 3236 bridge = dev->bus->self; 3237 if (!bridge) 3238 return; 3239 3240 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3241 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3242 return; 3243 3244 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3245 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3246 PCI_EXP_DEVCTL2_ARI); 3247 bridge->ari_enabled = 1; 3248 } else { 3249 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3250 PCI_EXP_DEVCTL2_ARI); 3251 bridge->ari_enabled = 0; 3252 } 3253 } 3254 3255 static int pci_acs_enable; 3256 3257 /** 3258 * pci_request_acs - ask for ACS to be enabled if supported 3259 */ 3260 void pci_request_acs(void) 3261 { 3262 pci_acs_enable = 1; 3263 } 3264 3265 static const char *disable_acs_redir_param; 3266 3267 /** 3268 * pci_disable_acs_redir - disable ACS redirect capabilities 3269 * @dev: the PCI device 3270 * 3271 * For only devices specified in the disable_acs_redir parameter. 3272 */ 3273 static void pci_disable_acs_redir(struct pci_dev *dev) 3274 { 3275 int ret = 0; 3276 const char *p; 3277 int pos; 3278 u16 ctrl; 3279 3280 if (!disable_acs_redir_param) 3281 return; 3282 3283 p = disable_acs_redir_param; 3284 while (*p) { 3285 ret = pci_dev_str_match(dev, p, &p); 3286 if (ret < 0) { 3287 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 3288 disable_acs_redir_param); 3289 3290 break; 3291 } else if (ret == 1) { 3292 /* Found a match */ 3293 break; 3294 } 3295 3296 if (*p != ';' && *p != ',') { 3297 /* End of param or invalid format */ 3298 break; 3299 } 3300 p++; 3301 } 3302 3303 if (ret != 1) 3304 return; 3305 3306 if (!pci_dev_specific_disable_acs_redir(dev)) 3307 return; 3308 3309 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3310 if (!pos) { 3311 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 3312 return; 3313 } 3314 3315 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3316 3317 /* P2P Request & Completion Redirect */ 3318 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 3319 3320 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3321 3322 pci_info(dev, "disabled ACS redirect\n"); 3323 } 3324 3325 /** 3326 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 3327 * @dev: the PCI device 3328 */ 3329 static void pci_std_enable_acs(struct pci_dev *dev) 3330 { 3331 int pos; 3332 u16 cap; 3333 u16 ctrl; 3334 3335 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3336 if (!pos) 3337 return; 3338 3339 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 3340 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3341 3342 /* Source Validation */ 3343 ctrl |= (cap & PCI_ACS_SV); 3344 3345 /* P2P Request Redirect */ 3346 ctrl |= (cap & PCI_ACS_RR); 3347 3348 /* P2P Completion Redirect */ 3349 ctrl |= (cap & PCI_ACS_CR); 3350 3351 /* Upstream Forwarding */ 3352 ctrl |= (cap & PCI_ACS_UF); 3353 3354 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3355 } 3356 3357 /** 3358 * pci_enable_acs - enable ACS if hardware support it 3359 * @dev: the PCI device 3360 */ 3361 void pci_enable_acs(struct pci_dev *dev) 3362 { 3363 if (!pci_acs_enable) 3364 goto disable_acs_redir; 3365 3366 if (!pci_dev_specific_enable_acs(dev)) 3367 goto disable_acs_redir; 3368 3369 pci_std_enable_acs(dev); 3370 3371 disable_acs_redir: 3372 /* 3373 * Note: pci_disable_acs_redir() must be called even if ACS was not 3374 * enabled by the kernel because it may have been enabled by 3375 * platform firmware. So if we are told to disable it, we should 3376 * always disable it after setting the kernel's default 3377 * preferences. 3378 */ 3379 pci_disable_acs_redir(dev); 3380 } 3381 3382 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3383 { 3384 int pos; 3385 u16 cap, ctrl; 3386 3387 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 3388 if (!pos) 3389 return false; 3390 3391 /* 3392 * Except for egress control, capabilities are either required 3393 * or only required if controllable. Features missing from the 3394 * capability field can therefore be assumed as hard-wired enabled. 3395 */ 3396 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3397 acs_flags &= (cap | PCI_ACS_EC); 3398 3399 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3400 return (ctrl & acs_flags) == acs_flags; 3401 } 3402 3403 /** 3404 * pci_acs_enabled - test ACS against required flags for a given device 3405 * @pdev: device to test 3406 * @acs_flags: required PCI ACS flags 3407 * 3408 * Return true if the device supports the provided flags. Automatically 3409 * filters out flags that are not implemented on multifunction devices. 3410 * 3411 * Note that this interface checks the effective ACS capabilities of the 3412 * device rather than the actual capabilities. For instance, most single 3413 * function endpoints are not required to support ACS because they have no 3414 * opportunity for peer-to-peer access. We therefore return 'true' 3415 * regardless of whether the device exposes an ACS capability. This makes 3416 * it much easier for callers of this function to ignore the actual type 3417 * or topology of the device when testing ACS support. 3418 */ 3419 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3420 { 3421 int ret; 3422 3423 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3424 if (ret >= 0) 3425 return ret > 0; 3426 3427 /* 3428 * Conventional PCI and PCI-X devices never support ACS, either 3429 * effectively or actually. The shared bus topology implies that 3430 * any device on the bus can receive or snoop DMA. 3431 */ 3432 if (!pci_is_pcie(pdev)) 3433 return false; 3434 3435 switch (pci_pcie_type(pdev)) { 3436 /* 3437 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3438 * but since their primary interface is PCI/X, we conservatively 3439 * handle them as we would a non-PCIe device. 3440 */ 3441 case PCI_EXP_TYPE_PCIE_BRIDGE: 3442 /* 3443 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3444 * applicable... must never implement an ACS Extended Capability...". 3445 * This seems arbitrary, but we take a conservative interpretation 3446 * of this statement. 3447 */ 3448 case PCI_EXP_TYPE_PCI_BRIDGE: 3449 case PCI_EXP_TYPE_RC_EC: 3450 return false; 3451 /* 3452 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3453 * implement ACS in order to indicate their peer-to-peer capabilities, 3454 * regardless of whether they are single- or multi-function devices. 3455 */ 3456 case PCI_EXP_TYPE_DOWNSTREAM: 3457 case PCI_EXP_TYPE_ROOT_PORT: 3458 return pci_acs_flags_enabled(pdev, acs_flags); 3459 /* 3460 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3461 * implemented by the remaining PCIe types to indicate peer-to-peer 3462 * capabilities, but only when they are part of a multifunction 3463 * device. The footnote for section 6.12 indicates the specific 3464 * PCIe types included here. 3465 */ 3466 case PCI_EXP_TYPE_ENDPOINT: 3467 case PCI_EXP_TYPE_UPSTREAM: 3468 case PCI_EXP_TYPE_LEG_END: 3469 case PCI_EXP_TYPE_RC_END: 3470 if (!pdev->multifunction) 3471 break; 3472 3473 return pci_acs_flags_enabled(pdev, acs_flags); 3474 } 3475 3476 /* 3477 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3478 * to single function devices with the exception of downstream ports. 3479 */ 3480 return true; 3481 } 3482 3483 /** 3484 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 3485 * @start: starting downstream device 3486 * @end: ending upstream device or NULL to search to the root bus 3487 * @acs_flags: required flags 3488 * 3489 * Walk up a device tree from start to end testing PCI ACS support. If 3490 * any step along the way does not support the required flags, return false. 3491 */ 3492 bool pci_acs_path_enabled(struct pci_dev *start, 3493 struct pci_dev *end, u16 acs_flags) 3494 { 3495 struct pci_dev *pdev, *parent = start; 3496 3497 do { 3498 pdev = parent; 3499 3500 if (!pci_acs_enabled(pdev, acs_flags)) 3501 return false; 3502 3503 if (pci_is_root_bus(pdev->bus)) 3504 return (end == NULL); 3505 3506 parent = pdev->bus->self; 3507 } while (pdev != end); 3508 3509 return true; 3510 } 3511 3512 /** 3513 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3514 * @pdev: PCI device 3515 * @bar: BAR to find 3516 * 3517 * Helper to find the position of the ctrl register for a BAR. 3518 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3519 * Returns -ENOENT if no ctrl register for the BAR could be found. 3520 */ 3521 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3522 { 3523 unsigned int pos, nbars, i; 3524 u32 ctrl; 3525 3526 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3527 if (!pos) 3528 return -ENOTSUPP; 3529 3530 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3531 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3532 PCI_REBAR_CTRL_NBAR_SHIFT; 3533 3534 for (i = 0; i < nbars; i++, pos += 8) { 3535 int bar_idx; 3536 3537 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3538 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3539 if (bar_idx == bar) 3540 return pos; 3541 } 3542 3543 return -ENOENT; 3544 } 3545 3546 /** 3547 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3548 * @pdev: PCI device 3549 * @bar: BAR to query 3550 * 3551 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3552 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3553 */ 3554 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3555 { 3556 int pos; 3557 u32 cap; 3558 3559 pos = pci_rebar_find_pos(pdev, bar); 3560 if (pos < 0) 3561 return 0; 3562 3563 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3564 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3565 } 3566 3567 /** 3568 * pci_rebar_get_current_size - get the current size of a BAR 3569 * @pdev: PCI device 3570 * @bar: BAR to set size to 3571 * 3572 * Read the size of a BAR from the resizable BAR config. 3573 * Returns size if found or negative error code. 3574 */ 3575 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3576 { 3577 int pos; 3578 u32 ctrl; 3579 3580 pos = pci_rebar_find_pos(pdev, bar); 3581 if (pos < 0) 3582 return pos; 3583 3584 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3585 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3586 } 3587 3588 /** 3589 * pci_rebar_set_size - set a new size for a BAR 3590 * @pdev: PCI device 3591 * @bar: BAR to set size to 3592 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3593 * 3594 * Set the new size of a BAR as defined in the spec. 3595 * Returns zero if resizing was successful, error code otherwise. 3596 */ 3597 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3598 { 3599 int pos; 3600 u32 ctrl; 3601 3602 pos = pci_rebar_find_pos(pdev, bar); 3603 if (pos < 0) 3604 return pos; 3605 3606 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3607 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3608 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3609 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3610 return 0; 3611 } 3612 3613 /** 3614 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3615 * @dev: the PCI device 3616 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3617 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3618 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3619 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3620 * 3621 * Return 0 if all upstream bridges support AtomicOp routing, egress 3622 * blocking is disabled on all upstream ports, and the root port supports 3623 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3624 * AtomicOp completion), or negative otherwise. 3625 */ 3626 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3627 { 3628 struct pci_bus *bus = dev->bus; 3629 struct pci_dev *bridge; 3630 u32 cap, ctl2; 3631 3632 if (!pci_is_pcie(dev)) 3633 return -EINVAL; 3634 3635 /* 3636 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3637 * AtomicOp requesters. For now, we only support endpoints as 3638 * requesters and root ports as completers. No endpoints as 3639 * completers, and no peer-to-peer. 3640 */ 3641 3642 switch (pci_pcie_type(dev)) { 3643 case PCI_EXP_TYPE_ENDPOINT: 3644 case PCI_EXP_TYPE_LEG_END: 3645 case PCI_EXP_TYPE_RC_END: 3646 break; 3647 default: 3648 return -EINVAL; 3649 } 3650 3651 while (bus->parent) { 3652 bridge = bus->self; 3653 3654 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3655 3656 switch (pci_pcie_type(bridge)) { 3657 /* Ensure switch ports support AtomicOp routing */ 3658 case PCI_EXP_TYPE_UPSTREAM: 3659 case PCI_EXP_TYPE_DOWNSTREAM: 3660 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3661 return -EINVAL; 3662 break; 3663 3664 /* Ensure root port supports all the sizes we care about */ 3665 case PCI_EXP_TYPE_ROOT_PORT: 3666 if ((cap & cap_mask) != cap_mask) 3667 return -EINVAL; 3668 break; 3669 } 3670 3671 /* Ensure upstream ports don't block AtomicOps on egress */ 3672 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3673 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3674 &ctl2); 3675 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3676 return -EINVAL; 3677 } 3678 3679 bus = bus->parent; 3680 } 3681 3682 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3683 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3684 return 0; 3685 } 3686 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3687 3688 /** 3689 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3690 * @dev: the PCI device 3691 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3692 * 3693 * Perform INTx swizzling for a device behind one level of bridge. This is 3694 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3695 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3696 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3697 * the PCI Express Base Specification, Revision 2.1) 3698 */ 3699 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3700 { 3701 int slot; 3702 3703 if (pci_ari_enabled(dev->bus)) 3704 slot = 0; 3705 else 3706 slot = PCI_SLOT(dev->devfn); 3707 3708 return (((pin - 1) + slot) % 4) + 1; 3709 } 3710 3711 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3712 { 3713 u8 pin; 3714 3715 pin = dev->pin; 3716 if (!pin) 3717 return -1; 3718 3719 while (!pci_is_root_bus(dev->bus)) { 3720 pin = pci_swizzle_interrupt_pin(dev, pin); 3721 dev = dev->bus->self; 3722 } 3723 *bridge = dev; 3724 return pin; 3725 } 3726 3727 /** 3728 * pci_common_swizzle - swizzle INTx all the way to root bridge 3729 * @dev: the PCI device 3730 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3731 * 3732 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3733 * bridges all the way up to a PCI root bus. 3734 */ 3735 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3736 { 3737 u8 pin = *pinp; 3738 3739 while (!pci_is_root_bus(dev->bus)) { 3740 pin = pci_swizzle_interrupt_pin(dev, pin); 3741 dev = dev->bus->self; 3742 } 3743 *pinp = pin; 3744 return PCI_SLOT(dev->devfn); 3745 } 3746 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3747 3748 /** 3749 * pci_release_region - Release a PCI bar 3750 * @pdev: PCI device whose resources were previously reserved by 3751 * pci_request_region() 3752 * @bar: BAR to release 3753 * 3754 * Releases the PCI I/O and memory resources previously reserved by a 3755 * successful call to pci_request_region(). Call this function only 3756 * after all use of the PCI regions has ceased. 3757 */ 3758 void pci_release_region(struct pci_dev *pdev, int bar) 3759 { 3760 struct pci_devres *dr; 3761 3762 if (pci_resource_len(pdev, bar) == 0) 3763 return; 3764 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3765 release_region(pci_resource_start(pdev, bar), 3766 pci_resource_len(pdev, bar)); 3767 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3768 release_mem_region(pci_resource_start(pdev, bar), 3769 pci_resource_len(pdev, bar)); 3770 3771 dr = find_pci_dr(pdev); 3772 if (dr) 3773 dr->region_mask &= ~(1 << bar); 3774 } 3775 EXPORT_SYMBOL(pci_release_region); 3776 3777 /** 3778 * __pci_request_region - Reserved PCI I/O and memory resource 3779 * @pdev: PCI device whose resources are to be reserved 3780 * @bar: BAR to be reserved 3781 * @res_name: Name to be associated with resource. 3782 * @exclusive: whether the region access is exclusive or not 3783 * 3784 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3785 * being reserved by owner @res_name. Do not access any 3786 * address inside the PCI regions unless this call returns 3787 * successfully. 3788 * 3789 * If @exclusive is set, then the region is marked so that userspace 3790 * is explicitly not allowed to map the resource via /dev/mem or 3791 * sysfs MMIO access. 3792 * 3793 * Returns 0 on success, or %EBUSY on error. A warning 3794 * message is also printed on failure. 3795 */ 3796 static int __pci_request_region(struct pci_dev *pdev, int bar, 3797 const char *res_name, int exclusive) 3798 { 3799 struct pci_devres *dr; 3800 3801 if (pci_resource_len(pdev, bar) == 0) 3802 return 0; 3803 3804 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3805 if (!request_region(pci_resource_start(pdev, bar), 3806 pci_resource_len(pdev, bar), res_name)) 3807 goto err_out; 3808 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3809 if (!__request_mem_region(pci_resource_start(pdev, bar), 3810 pci_resource_len(pdev, bar), res_name, 3811 exclusive)) 3812 goto err_out; 3813 } 3814 3815 dr = find_pci_dr(pdev); 3816 if (dr) 3817 dr->region_mask |= 1 << bar; 3818 3819 return 0; 3820 3821 err_out: 3822 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3823 &pdev->resource[bar]); 3824 return -EBUSY; 3825 } 3826 3827 /** 3828 * pci_request_region - Reserve PCI I/O and memory resource 3829 * @pdev: PCI device whose resources are to be reserved 3830 * @bar: BAR to be reserved 3831 * @res_name: Name to be associated with resource 3832 * 3833 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3834 * being reserved by owner @res_name. Do not access any 3835 * address inside the PCI regions unless this call returns 3836 * successfully. 3837 * 3838 * Returns 0 on success, or %EBUSY on error. A warning 3839 * message is also printed on failure. 3840 */ 3841 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3842 { 3843 return __pci_request_region(pdev, bar, res_name, 0); 3844 } 3845 EXPORT_SYMBOL(pci_request_region); 3846 3847 /** 3848 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3849 * @pdev: PCI device whose resources were previously reserved 3850 * @bars: Bitmask of BARs to be released 3851 * 3852 * Release selected PCI I/O and memory resources previously reserved. 3853 * Call this function only after all use of the PCI regions has ceased. 3854 */ 3855 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3856 { 3857 int i; 3858 3859 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3860 if (bars & (1 << i)) 3861 pci_release_region(pdev, i); 3862 } 3863 EXPORT_SYMBOL(pci_release_selected_regions); 3864 3865 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3866 const char *res_name, int excl) 3867 { 3868 int i; 3869 3870 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3871 if (bars & (1 << i)) 3872 if (__pci_request_region(pdev, i, res_name, excl)) 3873 goto err_out; 3874 return 0; 3875 3876 err_out: 3877 while (--i >= 0) 3878 if (bars & (1 << i)) 3879 pci_release_region(pdev, i); 3880 3881 return -EBUSY; 3882 } 3883 3884 3885 /** 3886 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3887 * @pdev: PCI device whose resources are to be reserved 3888 * @bars: Bitmask of BARs to be requested 3889 * @res_name: Name to be associated with resource 3890 */ 3891 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3892 const char *res_name) 3893 { 3894 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3895 } 3896 EXPORT_SYMBOL(pci_request_selected_regions); 3897 3898 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3899 const char *res_name) 3900 { 3901 return __pci_request_selected_regions(pdev, bars, res_name, 3902 IORESOURCE_EXCLUSIVE); 3903 } 3904 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3905 3906 /** 3907 * pci_release_regions - Release reserved PCI I/O and memory resources 3908 * @pdev: PCI device whose resources were previously reserved by 3909 * pci_request_regions() 3910 * 3911 * Releases all PCI I/O and memory resources previously reserved by a 3912 * successful call to pci_request_regions(). Call this function only 3913 * after all use of the PCI regions has ceased. 3914 */ 3915 3916 void pci_release_regions(struct pci_dev *pdev) 3917 { 3918 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 3919 } 3920 EXPORT_SYMBOL(pci_release_regions); 3921 3922 /** 3923 * pci_request_regions - Reserve PCI I/O and memory resources 3924 * @pdev: PCI device whose resources are to be reserved 3925 * @res_name: Name to be associated with resource. 3926 * 3927 * Mark all PCI regions associated with PCI device @pdev as 3928 * being reserved by owner @res_name. Do not access any 3929 * address inside the PCI regions unless this call returns 3930 * successfully. 3931 * 3932 * Returns 0 on success, or %EBUSY on error. A warning 3933 * message is also printed on failure. 3934 */ 3935 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3936 { 3937 return pci_request_selected_regions(pdev, 3938 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3939 } 3940 EXPORT_SYMBOL(pci_request_regions); 3941 3942 /** 3943 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 3944 * @pdev: PCI device whose resources are to be reserved 3945 * @res_name: Name to be associated with resource. 3946 * 3947 * Mark all PCI regions associated with PCI device @pdev as being reserved 3948 * by owner @res_name. Do not access any address inside the PCI regions 3949 * unless this call returns successfully. 3950 * 3951 * pci_request_regions_exclusive() will mark the region so that /dev/mem 3952 * and the sysfs MMIO access will not be allowed. 3953 * 3954 * Returns 0 on success, or %EBUSY on error. A warning message is also 3955 * printed on failure. 3956 */ 3957 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3958 { 3959 return pci_request_selected_regions_exclusive(pdev, 3960 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3961 } 3962 EXPORT_SYMBOL(pci_request_regions_exclusive); 3963 3964 /* 3965 * Record the PCI IO range (expressed as CPU physical address + size). 3966 * Return a negative value if an error has occurred, zero otherwise 3967 */ 3968 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3969 resource_size_t size) 3970 { 3971 int ret = 0; 3972 #ifdef PCI_IOBASE 3973 struct logic_pio_hwaddr *range; 3974 3975 if (!size || addr + size < addr) 3976 return -EINVAL; 3977 3978 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3979 if (!range) 3980 return -ENOMEM; 3981 3982 range->fwnode = fwnode; 3983 range->size = size; 3984 range->hw_start = addr; 3985 range->flags = LOGIC_PIO_CPU_MMIO; 3986 3987 ret = logic_pio_register_range(range); 3988 if (ret) 3989 kfree(range); 3990 #endif 3991 3992 return ret; 3993 } 3994 3995 phys_addr_t pci_pio_to_address(unsigned long pio) 3996 { 3997 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3998 3999 #ifdef PCI_IOBASE 4000 if (pio >= MMIO_UPPER_LIMIT) 4001 return address; 4002 4003 address = logic_pio_to_hwaddr(pio); 4004 #endif 4005 4006 return address; 4007 } 4008 4009 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4010 { 4011 #ifdef PCI_IOBASE 4012 return logic_pio_trans_cpuaddr(address); 4013 #else 4014 if (address > IO_SPACE_LIMIT) 4015 return (unsigned long)-1; 4016 4017 return (unsigned long) address; 4018 #endif 4019 } 4020 4021 /** 4022 * pci_remap_iospace - Remap the memory mapped I/O space 4023 * @res: Resource describing the I/O space 4024 * @phys_addr: physical address of range to be mapped 4025 * 4026 * Remap the memory mapped I/O space described by the @res and the CPU 4027 * physical address @phys_addr into virtual address space. Only 4028 * architectures that have memory mapped IO functions defined (and the 4029 * PCI_IOBASE value defined) should call this function. 4030 */ 4031 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4032 { 4033 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4034 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4035 4036 if (!(res->flags & IORESOURCE_IO)) 4037 return -EINVAL; 4038 4039 if (res->end > IO_SPACE_LIMIT) 4040 return -EINVAL; 4041 4042 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4043 pgprot_device(PAGE_KERNEL)); 4044 #else 4045 /* 4046 * This architecture does not have memory mapped I/O space, 4047 * so this function should never be called 4048 */ 4049 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4050 return -ENODEV; 4051 #endif 4052 } 4053 EXPORT_SYMBOL(pci_remap_iospace); 4054 4055 /** 4056 * pci_unmap_iospace - Unmap the memory mapped I/O space 4057 * @res: resource to be unmapped 4058 * 4059 * Unmap the CPU virtual address @res from virtual address space. Only 4060 * architectures that have memory mapped IO functions defined (and the 4061 * PCI_IOBASE value defined) should call this function. 4062 */ 4063 void pci_unmap_iospace(struct resource *res) 4064 { 4065 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4066 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4067 4068 unmap_kernel_range(vaddr, resource_size(res)); 4069 #endif 4070 } 4071 EXPORT_SYMBOL(pci_unmap_iospace); 4072 4073 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4074 { 4075 struct resource **res = ptr; 4076 4077 pci_unmap_iospace(*res); 4078 } 4079 4080 /** 4081 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4082 * @dev: Generic device to remap IO address for 4083 * @res: Resource describing the I/O space 4084 * @phys_addr: physical address of range to be mapped 4085 * 4086 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4087 * detach. 4088 */ 4089 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4090 phys_addr_t phys_addr) 4091 { 4092 const struct resource **ptr; 4093 int error; 4094 4095 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4096 if (!ptr) 4097 return -ENOMEM; 4098 4099 error = pci_remap_iospace(res, phys_addr); 4100 if (error) { 4101 devres_free(ptr); 4102 } else { 4103 *ptr = res; 4104 devres_add(dev, ptr); 4105 } 4106 4107 return error; 4108 } 4109 EXPORT_SYMBOL(devm_pci_remap_iospace); 4110 4111 /** 4112 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4113 * @dev: Generic device to remap IO address for 4114 * @offset: Resource address to map 4115 * @size: Size of map 4116 * 4117 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4118 * detach. 4119 */ 4120 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4121 resource_size_t offset, 4122 resource_size_t size) 4123 { 4124 void __iomem **ptr, *addr; 4125 4126 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4127 if (!ptr) 4128 return NULL; 4129 4130 addr = pci_remap_cfgspace(offset, size); 4131 if (addr) { 4132 *ptr = addr; 4133 devres_add(dev, ptr); 4134 } else 4135 devres_free(ptr); 4136 4137 return addr; 4138 } 4139 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4140 4141 /** 4142 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4143 * @dev: generic device to handle the resource for 4144 * @res: configuration space resource to be handled 4145 * 4146 * Checks that a resource is a valid memory region, requests the memory 4147 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4148 * proper PCI configuration space memory attributes are guaranteed. 4149 * 4150 * All operations are managed and will be undone on driver detach. 4151 * 4152 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4153 * on failure. Usage example:: 4154 * 4155 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4156 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4157 * if (IS_ERR(base)) 4158 * return PTR_ERR(base); 4159 */ 4160 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4161 struct resource *res) 4162 { 4163 resource_size_t size; 4164 const char *name; 4165 void __iomem *dest_ptr; 4166 4167 BUG_ON(!dev); 4168 4169 if (!res || resource_type(res) != IORESOURCE_MEM) { 4170 dev_err(dev, "invalid resource\n"); 4171 return IOMEM_ERR_PTR(-EINVAL); 4172 } 4173 4174 size = resource_size(res); 4175 name = res->name ?: dev_name(dev); 4176 4177 if (!devm_request_mem_region(dev, res->start, size, name)) { 4178 dev_err(dev, "can't request region for resource %pR\n", res); 4179 return IOMEM_ERR_PTR(-EBUSY); 4180 } 4181 4182 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4183 if (!dest_ptr) { 4184 dev_err(dev, "ioremap failed for resource %pR\n", res); 4185 devm_release_mem_region(dev, res->start, size); 4186 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4187 } 4188 4189 return dest_ptr; 4190 } 4191 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4192 4193 static void __pci_set_master(struct pci_dev *dev, bool enable) 4194 { 4195 u16 old_cmd, cmd; 4196 4197 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4198 if (enable) 4199 cmd = old_cmd | PCI_COMMAND_MASTER; 4200 else 4201 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4202 if (cmd != old_cmd) { 4203 pci_dbg(dev, "%s bus mastering\n", 4204 enable ? "enabling" : "disabling"); 4205 pci_write_config_word(dev, PCI_COMMAND, cmd); 4206 } 4207 dev->is_busmaster = enable; 4208 } 4209 4210 /** 4211 * pcibios_setup - process "pci=" kernel boot arguments 4212 * @str: string used to pass in "pci=" kernel boot arguments 4213 * 4214 * Process kernel boot arguments. This is the default implementation. 4215 * Architecture specific implementations can override this as necessary. 4216 */ 4217 char * __weak __init pcibios_setup(char *str) 4218 { 4219 return str; 4220 } 4221 4222 /** 4223 * pcibios_set_master - enable PCI bus-mastering for device dev 4224 * @dev: the PCI device to enable 4225 * 4226 * Enables PCI bus-mastering for the device. This is the default 4227 * implementation. Architecture specific implementations can override 4228 * this if necessary. 4229 */ 4230 void __weak pcibios_set_master(struct pci_dev *dev) 4231 { 4232 u8 lat; 4233 4234 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4235 if (pci_is_pcie(dev)) 4236 return; 4237 4238 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4239 if (lat < 16) 4240 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4241 else if (lat > pcibios_max_latency) 4242 lat = pcibios_max_latency; 4243 else 4244 return; 4245 4246 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4247 } 4248 4249 /** 4250 * pci_set_master - enables bus-mastering for device dev 4251 * @dev: the PCI device to enable 4252 * 4253 * Enables bus-mastering on the device and calls pcibios_set_master() 4254 * to do the needed arch specific settings. 4255 */ 4256 void pci_set_master(struct pci_dev *dev) 4257 { 4258 __pci_set_master(dev, true); 4259 pcibios_set_master(dev); 4260 } 4261 EXPORT_SYMBOL(pci_set_master); 4262 4263 /** 4264 * pci_clear_master - disables bus-mastering for device dev 4265 * @dev: the PCI device to disable 4266 */ 4267 void pci_clear_master(struct pci_dev *dev) 4268 { 4269 __pci_set_master(dev, false); 4270 } 4271 EXPORT_SYMBOL(pci_clear_master); 4272 4273 /** 4274 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4275 * @dev: the PCI device for which MWI is to be enabled 4276 * 4277 * Helper function for pci_set_mwi. 4278 * Originally copied from drivers/net/acenic.c. 4279 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4280 * 4281 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4282 */ 4283 int pci_set_cacheline_size(struct pci_dev *dev) 4284 { 4285 u8 cacheline_size; 4286 4287 if (!pci_cache_line_size) 4288 return -EINVAL; 4289 4290 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4291 equal to or multiple of the right value. */ 4292 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4293 if (cacheline_size >= pci_cache_line_size && 4294 (cacheline_size % pci_cache_line_size) == 0) 4295 return 0; 4296 4297 /* Write the correct value. */ 4298 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4299 /* Read it back. */ 4300 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4301 if (cacheline_size == pci_cache_line_size) 4302 return 0; 4303 4304 pci_info(dev, "cache line size of %d is not supported\n", 4305 pci_cache_line_size << 2); 4306 4307 return -EINVAL; 4308 } 4309 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4310 4311 /** 4312 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4313 * @dev: the PCI device for which MWI is enabled 4314 * 4315 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4316 * 4317 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4318 */ 4319 int pci_set_mwi(struct pci_dev *dev) 4320 { 4321 #ifdef PCI_DISABLE_MWI 4322 return 0; 4323 #else 4324 int rc; 4325 u16 cmd; 4326 4327 rc = pci_set_cacheline_size(dev); 4328 if (rc) 4329 return rc; 4330 4331 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4332 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4333 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4334 cmd |= PCI_COMMAND_INVALIDATE; 4335 pci_write_config_word(dev, PCI_COMMAND, cmd); 4336 } 4337 return 0; 4338 #endif 4339 } 4340 EXPORT_SYMBOL(pci_set_mwi); 4341 4342 /** 4343 * pcim_set_mwi - a device-managed pci_set_mwi() 4344 * @dev: the PCI device for which MWI is enabled 4345 * 4346 * Managed pci_set_mwi(). 4347 * 4348 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4349 */ 4350 int pcim_set_mwi(struct pci_dev *dev) 4351 { 4352 struct pci_devres *dr; 4353 4354 dr = find_pci_dr(dev); 4355 if (!dr) 4356 return -ENOMEM; 4357 4358 dr->mwi = 1; 4359 return pci_set_mwi(dev); 4360 } 4361 EXPORT_SYMBOL(pcim_set_mwi); 4362 4363 /** 4364 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4365 * @dev: the PCI device for which MWI is enabled 4366 * 4367 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4368 * Callers are not required to check the return value. 4369 * 4370 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4371 */ 4372 int pci_try_set_mwi(struct pci_dev *dev) 4373 { 4374 #ifdef PCI_DISABLE_MWI 4375 return 0; 4376 #else 4377 return pci_set_mwi(dev); 4378 #endif 4379 } 4380 EXPORT_SYMBOL(pci_try_set_mwi); 4381 4382 /** 4383 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4384 * @dev: the PCI device to disable 4385 * 4386 * Disables PCI Memory-Write-Invalidate transaction on the device 4387 */ 4388 void pci_clear_mwi(struct pci_dev *dev) 4389 { 4390 #ifndef PCI_DISABLE_MWI 4391 u16 cmd; 4392 4393 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4394 if (cmd & PCI_COMMAND_INVALIDATE) { 4395 cmd &= ~PCI_COMMAND_INVALIDATE; 4396 pci_write_config_word(dev, PCI_COMMAND, cmd); 4397 } 4398 #endif 4399 } 4400 EXPORT_SYMBOL(pci_clear_mwi); 4401 4402 /** 4403 * pci_intx - enables/disables PCI INTx for device dev 4404 * @pdev: the PCI device to operate on 4405 * @enable: boolean: whether to enable or disable PCI INTx 4406 * 4407 * Enables/disables PCI INTx for device @pdev 4408 */ 4409 void pci_intx(struct pci_dev *pdev, int enable) 4410 { 4411 u16 pci_command, new; 4412 4413 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4414 4415 if (enable) 4416 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4417 else 4418 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4419 4420 if (new != pci_command) { 4421 struct pci_devres *dr; 4422 4423 pci_write_config_word(pdev, PCI_COMMAND, new); 4424 4425 dr = find_pci_dr(pdev); 4426 if (dr && !dr->restore_intx) { 4427 dr->restore_intx = 1; 4428 dr->orig_intx = !enable; 4429 } 4430 } 4431 } 4432 EXPORT_SYMBOL_GPL(pci_intx); 4433 4434 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4435 { 4436 struct pci_bus *bus = dev->bus; 4437 bool mask_updated = true; 4438 u32 cmd_status_dword; 4439 u16 origcmd, newcmd; 4440 unsigned long flags; 4441 bool irq_pending; 4442 4443 /* 4444 * We do a single dword read to retrieve both command and status. 4445 * Document assumptions that make this possible. 4446 */ 4447 BUILD_BUG_ON(PCI_COMMAND % 4); 4448 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4449 4450 raw_spin_lock_irqsave(&pci_lock, flags); 4451 4452 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4453 4454 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4455 4456 /* 4457 * Check interrupt status register to see whether our device 4458 * triggered the interrupt (when masking) or the next IRQ is 4459 * already pending (when unmasking). 4460 */ 4461 if (mask != irq_pending) { 4462 mask_updated = false; 4463 goto done; 4464 } 4465 4466 origcmd = cmd_status_dword; 4467 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4468 if (mask) 4469 newcmd |= PCI_COMMAND_INTX_DISABLE; 4470 if (newcmd != origcmd) 4471 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4472 4473 done: 4474 raw_spin_unlock_irqrestore(&pci_lock, flags); 4475 4476 return mask_updated; 4477 } 4478 4479 /** 4480 * pci_check_and_mask_intx - mask INTx on pending interrupt 4481 * @dev: the PCI device to operate on 4482 * 4483 * Check if the device dev has its INTx line asserted, mask it and return 4484 * true in that case. False is returned if no interrupt was pending. 4485 */ 4486 bool pci_check_and_mask_intx(struct pci_dev *dev) 4487 { 4488 return pci_check_and_set_intx_mask(dev, true); 4489 } 4490 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4491 4492 /** 4493 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4494 * @dev: the PCI device to operate on 4495 * 4496 * Check if the device dev has its INTx line asserted, unmask it if not and 4497 * return true. False is returned and the mask remains active if there was 4498 * still an interrupt pending. 4499 */ 4500 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4501 { 4502 return pci_check_and_set_intx_mask(dev, false); 4503 } 4504 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4505 4506 /** 4507 * pci_wait_for_pending_transaction - wait for pending transaction 4508 * @dev: the PCI device to operate on 4509 * 4510 * Return 0 if transaction is pending 1 otherwise. 4511 */ 4512 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4513 { 4514 if (!pci_is_pcie(dev)) 4515 return 1; 4516 4517 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4518 PCI_EXP_DEVSTA_TRPND); 4519 } 4520 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4521 4522 /** 4523 * pcie_has_flr - check if a device supports function level resets 4524 * @dev: device to check 4525 * 4526 * Returns true if the device advertises support for PCIe function level 4527 * resets. 4528 */ 4529 bool pcie_has_flr(struct pci_dev *dev) 4530 { 4531 u32 cap; 4532 4533 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4534 return false; 4535 4536 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4537 return cap & PCI_EXP_DEVCAP_FLR; 4538 } 4539 EXPORT_SYMBOL_GPL(pcie_has_flr); 4540 4541 /** 4542 * pcie_flr - initiate a PCIe function level reset 4543 * @dev: device to reset 4544 * 4545 * Initiate a function level reset on @dev. The caller should ensure the 4546 * device supports FLR before calling this function, e.g. by using the 4547 * pcie_has_flr() helper. 4548 */ 4549 int pcie_flr(struct pci_dev *dev) 4550 { 4551 if (!pci_wait_for_pending_transaction(dev)) 4552 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4553 4554 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4555 4556 if (dev->imm_ready) 4557 return 0; 4558 4559 /* 4560 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4561 * 100ms, but may silently discard requests while the FLR is in 4562 * progress. Wait 100ms before trying to access the device. 4563 */ 4564 msleep(100); 4565 4566 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4567 } 4568 EXPORT_SYMBOL_GPL(pcie_flr); 4569 4570 static int pci_af_flr(struct pci_dev *dev, int probe) 4571 { 4572 int pos; 4573 u8 cap; 4574 4575 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4576 if (!pos) 4577 return -ENOTTY; 4578 4579 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4580 return -ENOTTY; 4581 4582 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4583 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4584 return -ENOTTY; 4585 4586 if (probe) 4587 return 0; 4588 4589 /* 4590 * Wait for Transaction Pending bit to clear. A word-aligned test 4591 * is used, so we use the control offset rather than status and shift 4592 * the test bit to match. 4593 */ 4594 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4595 PCI_AF_STATUS_TP << 8)) 4596 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4597 4598 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4599 4600 if (dev->imm_ready) 4601 return 0; 4602 4603 /* 4604 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4605 * updated 27 July 2006; a device must complete an FLR within 4606 * 100ms, but may silently discard requests while the FLR is in 4607 * progress. Wait 100ms before trying to access the device. 4608 */ 4609 msleep(100); 4610 4611 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4612 } 4613 4614 /** 4615 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4616 * @dev: Device to reset. 4617 * @probe: If set, only check if the device can be reset this way. 4618 * 4619 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4620 * unset, it will be reinitialized internally when going from PCI_D3hot to 4621 * PCI_D0. If that's the case and the device is not in a low-power state 4622 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4623 * 4624 * NOTE: This causes the caller to sleep for twice the device power transition 4625 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4626 * by default (i.e. unless the @dev's d3_delay field has a different value). 4627 * Moreover, only devices in D0 can be reset by this function. 4628 */ 4629 static int pci_pm_reset(struct pci_dev *dev, int probe) 4630 { 4631 u16 csr; 4632 4633 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4634 return -ENOTTY; 4635 4636 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4637 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4638 return -ENOTTY; 4639 4640 if (probe) 4641 return 0; 4642 4643 if (dev->current_state != PCI_D0) 4644 return -EINVAL; 4645 4646 csr &= ~PCI_PM_CTRL_STATE_MASK; 4647 csr |= PCI_D3hot; 4648 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4649 pci_dev_d3_sleep(dev); 4650 4651 csr &= ~PCI_PM_CTRL_STATE_MASK; 4652 csr |= PCI_D0; 4653 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4654 pci_dev_d3_sleep(dev); 4655 4656 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4657 } 4658 4659 /** 4660 * pcie_wait_for_link_delay - Wait until link is active or inactive 4661 * @pdev: Bridge device 4662 * @active: waiting for active or inactive? 4663 * @delay: Delay to wait after link has become active (in ms) 4664 * 4665 * Use this to wait till link becomes active or inactive. 4666 */ 4667 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4668 int delay) 4669 { 4670 int timeout = 1000; 4671 bool ret; 4672 u16 lnk_status; 4673 4674 /* 4675 * Some controllers might not implement link active reporting. In this 4676 * case, we wait for 1000 + 100 ms. 4677 */ 4678 if (!pdev->link_active_reporting) { 4679 msleep(1100); 4680 return true; 4681 } 4682 4683 /* 4684 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4685 * after which we should expect an link active if the reset was 4686 * successful. If so, software must wait a minimum 100ms before sending 4687 * configuration requests to devices downstream this port. 4688 * 4689 * If the link fails to activate, either the device was physically 4690 * removed or the link is permanently failed. 4691 */ 4692 if (active) 4693 msleep(20); 4694 for (;;) { 4695 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4696 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4697 if (ret == active) 4698 break; 4699 if (timeout <= 0) 4700 break; 4701 msleep(10); 4702 timeout -= 10; 4703 } 4704 if (active && ret) 4705 msleep(delay); 4706 else if (ret != active) 4707 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n", 4708 active ? "set" : "cleared"); 4709 return ret == active; 4710 } 4711 4712 /** 4713 * pcie_wait_for_link - Wait until link is active or inactive 4714 * @pdev: Bridge device 4715 * @active: waiting for active or inactive? 4716 * 4717 * Use this to wait till link becomes active or inactive. 4718 */ 4719 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4720 { 4721 return pcie_wait_for_link_delay(pdev, active, 100); 4722 } 4723 4724 /* 4725 * Find maximum D3cold delay required by all the devices on the bus. The 4726 * spec says 100 ms, but firmware can lower it and we allow drivers to 4727 * increase it as well. 4728 * 4729 * Called with @pci_bus_sem locked for reading. 4730 */ 4731 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4732 { 4733 const struct pci_dev *pdev; 4734 int min_delay = 100; 4735 int max_delay = 0; 4736 4737 list_for_each_entry(pdev, &bus->devices, bus_list) { 4738 if (pdev->d3cold_delay < min_delay) 4739 min_delay = pdev->d3cold_delay; 4740 if (pdev->d3cold_delay > max_delay) 4741 max_delay = pdev->d3cold_delay; 4742 } 4743 4744 return max(min_delay, max_delay); 4745 } 4746 4747 /** 4748 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4749 * @dev: PCI bridge 4750 * 4751 * Handle necessary delays before access to the devices on the secondary 4752 * side of the bridge are permitted after D3cold to D0 transition. 4753 * 4754 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4755 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4756 * 4.3.2. 4757 */ 4758 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4759 { 4760 struct pci_dev *child; 4761 int delay; 4762 4763 if (pci_dev_is_disconnected(dev)) 4764 return; 4765 4766 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4767 return; 4768 4769 down_read(&pci_bus_sem); 4770 4771 /* 4772 * We only deal with devices that are present currently on the bus. 4773 * For any hot-added devices the access delay is handled in pciehp 4774 * board_added(). In case of ACPI hotplug the firmware is expected 4775 * to configure the devices before OS is notified. 4776 */ 4777 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4778 up_read(&pci_bus_sem); 4779 return; 4780 } 4781 4782 /* Take d3cold_delay requirements into account */ 4783 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4784 if (!delay) { 4785 up_read(&pci_bus_sem); 4786 return; 4787 } 4788 4789 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4790 bus_list); 4791 up_read(&pci_bus_sem); 4792 4793 /* 4794 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4795 * accessing the device after reset (that is 1000 ms + 100 ms). In 4796 * practice this should not be needed because we don't do power 4797 * management for them (see pci_bridge_d3_possible()). 4798 */ 4799 if (!pci_is_pcie(dev)) { 4800 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4801 msleep(1000 + delay); 4802 return; 4803 } 4804 4805 /* 4806 * For PCIe downstream and root ports that do not support speeds 4807 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4808 * speeds (gen3) we need to wait first for the data link layer to 4809 * become active. 4810 * 4811 * However, 100 ms is the minimum and the PCIe spec says the 4812 * software must allow at least 1s before it can determine that the 4813 * device that did not respond is a broken device. There is 4814 * evidence that 100 ms is not always enough, for example certain 4815 * Titan Ridge xHCI controller does not always respond to 4816 * configuration requests if we only wait for 100 ms (see 4817 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4818 * 4819 * Therefore we wait for 100 ms and check for the device presence. 4820 * If it is still not present give it an additional 100 ms. 4821 */ 4822 if (!pcie_downstream_port(dev)) 4823 return; 4824 4825 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4826 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4827 msleep(delay); 4828 } else { 4829 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4830 delay); 4831 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4832 /* Did not train, no need to wait any further */ 4833 return; 4834 } 4835 } 4836 4837 if (!pci_device_is_present(child)) { 4838 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 4839 msleep(delay); 4840 } 4841 } 4842 4843 void pci_reset_secondary_bus(struct pci_dev *dev) 4844 { 4845 u16 ctrl; 4846 4847 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4848 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4849 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4850 4851 /* 4852 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4853 * this to 2ms to ensure that we meet the minimum requirement. 4854 */ 4855 msleep(2); 4856 4857 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4858 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4859 4860 /* 4861 * Trhfa for conventional PCI is 2^25 clock cycles. 4862 * Assuming a minimum 33MHz clock this results in a 1s 4863 * delay before we can consider subordinate devices to 4864 * be re-initialized. PCIe has some ways to shorten this, 4865 * but we don't make use of them yet. 4866 */ 4867 ssleep(1); 4868 } 4869 4870 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4871 { 4872 pci_reset_secondary_bus(dev); 4873 } 4874 4875 /** 4876 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4877 * @dev: Bridge device 4878 * 4879 * Use the bridge control register to assert reset on the secondary bus. 4880 * Devices on the secondary bus are left in power-on state. 4881 */ 4882 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4883 { 4884 pcibios_reset_secondary_bus(dev); 4885 4886 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4887 } 4888 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4889 4890 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4891 { 4892 struct pci_dev *pdev; 4893 4894 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4895 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4896 return -ENOTTY; 4897 4898 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4899 if (pdev != dev) 4900 return -ENOTTY; 4901 4902 if (probe) 4903 return 0; 4904 4905 return pci_bridge_secondary_bus_reset(dev->bus->self); 4906 } 4907 4908 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4909 { 4910 int rc = -ENOTTY; 4911 4912 if (!hotplug || !try_module_get(hotplug->owner)) 4913 return rc; 4914 4915 if (hotplug->ops->reset_slot) 4916 rc = hotplug->ops->reset_slot(hotplug, probe); 4917 4918 module_put(hotplug->owner); 4919 4920 return rc; 4921 } 4922 4923 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4924 { 4925 struct pci_dev *pdev; 4926 4927 if (dev->subordinate || !dev->slot || 4928 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4929 return -ENOTTY; 4930 4931 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4932 if (pdev != dev && pdev->slot == dev->slot) 4933 return -ENOTTY; 4934 4935 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4936 } 4937 4938 static void pci_dev_lock(struct pci_dev *dev) 4939 { 4940 pci_cfg_access_lock(dev); 4941 /* block PM suspend, driver probe, etc. */ 4942 device_lock(&dev->dev); 4943 } 4944 4945 /* Return 1 on successful lock, 0 on contention */ 4946 static int pci_dev_trylock(struct pci_dev *dev) 4947 { 4948 if (pci_cfg_access_trylock(dev)) { 4949 if (device_trylock(&dev->dev)) 4950 return 1; 4951 pci_cfg_access_unlock(dev); 4952 } 4953 4954 return 0; 4955 } 4956 4957 static void pci_dev_unlock(struct pci_dev *dev) 4958 { 4959 device_unlock(&dev->dev); 4960 pci_cfg_access_unlock(dev); 4961 } 4962 4963 static void pci_dev_save_and_disable(struct pci_dev *dev) 4964 { 4965 const struct pci_error_handlers *err_handler = 4966 dev->driver ? dev->driver->err_handler : NULL; 4967 4968 /* 4969 * dev->driver->err_handler->reset_prepare() is protected against 4970 * races with ->remove() by the device lock, which must be held by 4971 * the caller. 4972 */ 4973 if (err_handler && err_handler->reset_prepare) 4974 err_handler->reset_prepare(dev); 4975 4976 /* 4977 * Wake-up device prior to save. PM registers default to D0 after 4978 * reset and a simple register restore doesn't reliably return 4979 * to a non-D0 state anyway. 4980 */ 4981 pci_set_power_state(dev, PCI_D0); 4982 4983 pci_save_state(dev); 4984 /* 4985 * Disable the device by clearing the Command register, except for 4986 * INTx-disable which is set. This not only disables MMIO and I/O port 4987 * BARs, but also prevents the device from being Bus Master, preventing 4988 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4989 * compliant devices, INTx-disable prevents legacy interrupts. 4990 */ 4991 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4992 } 4993 4994 static void pci_dev_restore(struct pci_dev *dev) 4995 { 4996 const struct pci_error_handlers *err_handler = 4997 dev->driver ? dev->driver->err_handler : NULL; 4998 4999 pci_restore_state(dev); 5000 5001 /* 5002 * dev->driver->err_handler->reset_done() is protected against 5003 * races with ->remove() by the device lock, which must be held by 5004 * the caller. 5005 */ 5006 if (err_handler && err_handler->reset_done) 5007 err_handler->reset_done(dev); 5008 } 5009 5010 /** 5011 * __pci_reset_function_locked - reset a PCI device function while holding 5012 * the @dev mutex lock. 5013 * @dev: PCI device to reset 5014 * 5015 * Some devices allow an individual function to be reset without affecting 5016 * other functions in the same device. The PCI device must be responsive 5017 * to PCI config space in order to use this function. 5018 * 5019 * The device function is presumed to be unused and the caller is holding 5020 * the device mutex lock when this function is called. 5021 * 5022 * Resetting the device will make the contents of PCI configuration space 5023 * random, so any caller of this must be prepared to reinitialise the 5024 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5025 * etc. 5026 * 5027 * Returns 0 if the device function was successfully reset or negative if the 5028 * device doesn't support resetting a single function. 5029 */ 5030 int __pci_reset_function_locked(struct pci_dev *dev) 5031 { 5032 int rc; 5033 5034 might_sleep(); 5035 5036 /* 5037 * A reset method returns -ENOTTY if it doesn't support this device 5038 * and we should try the next method. 5039 * 5040 * If it returns 0 (success), we're finished. If it returns any 5041 * other error, we're also finished: this indicates that further 5042 * reset mechanisms might be broken on the device. 5043 */ 5044 rc = pci_dev_specific_reset(dev, 0); 5045 if (rc != -ENOTTY) 5046 return rc; 5047 if (pcie_has_flr(dev)) { 5048 rc = pcie_flr(dev); 5049 if (rc != -ENOTTY) 5050 return rc; 5051 } 5052 rc = pci_af_flr(dev, 0); 5053 if (rc != -ENOTTY) 5054 return rc; 5055 rc = pci_pm_reset(dev, 0); 5056 if (rc != -ENOTTY) 5057 return rc; 5058 rc = pci_dev_reset_slot_function(dev, 0); 5059 if (rc != -ENOTTY) 5060 return rc; 5061 return pci_parent_bus_reset(dev, 0); 5062 } 5063 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5064 5065 /** 5066 * pci_probe_reset_function - check whether the device can be safely reset 5067 * @dev: PCI device to reset 5068 * 5069 * Some devices allow an individual function to be reset without affecting 5070 * other functions in the same device. The PCI device must be responsive 5071 * to PCI config space in order to use this function. 5072 * 5073 * Returns 0 if the device function can be reset or negative if the 5074 * device doesn't support resetting a single function. 5075 */ 5076 int pci_probe_reset_function(struct pci_dev *dev) 5077 { 5078 int rc; 5079 5080 might_sleep(); 5081 5082 rc = pci_dev_specific_reset(dev, 1); 5083 if (rc != -ENOTTY) 5084 return rc; 5085 if (pcie_has_flr(dev)) 5086 return 0; 5087 rc = pci_af_flr(dev, 1); 5088 if (rc != -ENOTTY) 5089 return rc; 5090 rc = pci_pm_reset(dev, 1); 5091 if (rc != -ENOTTY) 5092 return rc; 5093 rc = pci_dev_reset_slot_function(dev, 1); 5094 if (rc != -ENOTTY) 5095 return rc; 5096 5097 return pci_parent_bus_reset(dev, 1); 5098 } 5099 5100 /** 5101 * pci_reset_function - quiesce and reset a PCI device function 5102 * @dev: PCI device to reset 5103 * 5104 * Some devices allow an individual function to be reset without affecting 5105 * other functions in the same device. The PCI device must be responsive 5106 * to PCI config space in order to use this function. 5107 * 5108 * This function does not just reset the PCI portion of a device, but 5109 * clears all the state associated with the device. This function differs 5110 * from __pci_reset_function_locked() in that it saves and restores device state 5111 * over the reset and takes the PCI device lock. 5112 * 5113 * Returns 0 if the device function was successfully reset or negative if the 5114 * device doesn't support resetting a single function. 5115 */ 5116 int pci_reset_function(struct pci_dev *dev) 5117 { 5118 int rc; 5119 5120 if (!dev->reset_fn) 5121 return -ENOTTY; 5122 5123 pci_dev_lock(dev); 5124 pci_dev_save_and_disable(dev); 5125 5126 rc = __pci_reset_function_locked(dev); 5127 5128 pci_dev_restore(dev); 5129 pci_dev_unlock(dev); 5130 5131 return rc; 5132 } 5133 EXPORT_SYMBOL_GPL(pci_reset_function); 5134 5135 /** 5136 * pci_reset_function_locked - quiesce and reset a PCI device function 5137 * @dev: PCI device to reset 5138 * 5139 * Some devices allow an individual function to be reset without affecting 5140 * other functions in the same device. The PCI device must be responsive 5141 * to PCI config space in order to use this function. 5142 * 5143 * This function does not just reset the PCI portion of a device, but 5144 * clears all the state associated with the device. This function differs 5145 * from __pci_reset_function_locked() in that it saves and restores device state 5146 * over the reset. It also differs from pci_reset_function() in that it 5147 * requires the PCI device lock to be held. 5148 * 5149 * Returns 0 if the device function was successfully reset or negative if the 5150 * device doesn't support resetting a single function. 5151 */ 5152 int pci_reset_function_locked(struct pci_dev *dev) 5153 { 5154 int rc; 5155 5156 if (!dev->reset_fn) 5157 return -ENOTTY; 5158 5159 pci_dev_save_and_disable(dev); 5160 5161 rc = __pci_reset_function_locked(dev); 5162 5163 pci_dev_restore(dev); 5164 5165 return rc; 5166 } 5167 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5168 5169 /** 5170 * pci_try_reset_function - quiesce and reset a PCI device function 5171 * @dev: PCI device to reset 5172 * 5173 * Same as above, except return -EAGAIN if unable to lock device. 5174 */ 5175 int pci_try_reset_function(struct pci_dev *dev) 5176 { 5177 int rc; 5178 5179 if (!dev->reset_fn) 5180 return -ENOTTY; 5181 5182 if (!pci_dev_trylock(dev)) 5183 return -EAGAIN; 5184 5185 pci_dev_save_and_disable(dev); 5186 rc = __pci_reset_function_locked(dev); 5187 pci_dev_restore(dev); 5188 pci_dev_unlock(dev); 5189 5190 return rc; 5191 } 5192 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5193 5194 /* Do any devices on or below this bus prevent a bus reset? */ 5195 static bool pci_bus_resetable(struct pci_bus *bus) 5196 { 5197 struct pci_dev *dev; 5198 5199 5200 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5201 return false; 5202 5203 list_for_each_entry(dev, &bus->devices, bus_list) { 5204 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5205 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5206 return false; 5207 } 5208 5209 return true; 5210 } 5211 5212 /* Lock devices from the top of the tree down */ 5213 static void pci_bus_lock(struct pci_bus *bus) 5214 { 5215 struct pci_dev *dev; 5216 5217 list_for_each_entry(dev, &bus->devices, bus_list) { 5218 pci_dev_lock(dev); 5219 if (dev->subordinate) 5220 pci_bus_lock(dev->subordinate); 5221 } 5222 } 5223 5224 /* Unlock devices from the bottom of the tree up */ 5225 static void pci_bus_unlock(struct pci_bus *bus) 5226 { 5227 struct pci_dev *dev; 5228 5229 list_for_each_entry(dev, &bus->devices, bus_list) { 5230 if (dev->subordinate) 5231 pci_bus_unlock(dev->subordinate); 5232 pci_dev_unlock(dev); 5233 } 5234 } 5235 5236 /* Return 1 on successful lock, 0 on contention */ 5237 static int pci_bus_trylock(struct pci_bus *bus) 5238 { 5239 struct pci_dev *dev; 5240 5241 list_for_each_entry(dev, &bus->devices, bus_list) { 5242 if (!pci_dev_trylock(dev)) 5243 goto unlock; 5244 if (dev->subordinate) { 5245 if (!pci_bus_trylock(dev->subordinate)) { 5246 pci_dev_unlock(dev); 5247 goto unlock; 5248 } 5249 } 5250 } 5251 return 1; 5252 5253 unlock: 5254 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5255 if (dev->subordinate) 5256 pci_bus_unlock(dev->subordinate); 5257 pci_dev_unlock(dev); 5258 } 5259 return 0; 5260 } 5261 5262 /* Do any devices on or below this slot prevent a bus reset? */ 5263 static bool pci_slot_resetable(struct pci_slot *slot) 5264 { 5265 struct pci_dev *dev; 5266 5267 if (slot->bus->self && 5268 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5269 return false; 5270 5271 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5272 if (!dev->slot || dev->slot != slot) 5273 continue; 5274 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5275 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5276 return false; 5277 } 5278 5279 return true; 5280 } 5281 5282 /* Lock devices from the top of the tree down */ 5283 static void pci_slot_lock(struct pci_slot *slot) 5284 { 5285 struct pci_dev *dev; 5286 5287 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5288 if (!dev->slot || dev->slot != slot) 5289 continue; 5290 pci_dev_lock(dev); 5291 if (dev->subordinate) 5292 pci_bus_lock(dev->subordinate); 5293 } 5294 } 5295 5296 /* Unlock devices from the bottom of the tree up */ 5297 static void pci_slot_unlock(struct pci_slot *slot) 5298 { 5299 struct pci_dev *dev; 5300 5301 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5302 if (!dev->slot || dev->slot != slot) 5303 continue; 5304 if (dev->subordinate) 5305 pci_bus_unlock(dev->subordinate); 5306 pci_dev_unlock(dev); 5307 } 5308 } 5309 5310 /* Return 1 on successful lock, 0 on contention */ 5311 static int pci_slot_trylock(struct pci_slot *slot) 5312 { 5313 struct pci_dev *dev; 5314 5315 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5316 if (!dev->slot || dev->slot != slot) 5317 continue; 5318 if (!pci_dev_trylock(dev)) 5319 goto unlock; 5320 if (dev->subordinate) { 5321 if (!pci_bus_trylock(dev->subordinate)) { 5322 pci_dev_unlock(dev); 5323 goto unlock; 5324 } 5325 } 5326 } 5327 return 1; 5328 5329 unlock: 5330 list_for_each_entry_continue_reverse(dev, 5331 &slot->bus->devices, bus_list) { 5332 if (!dev->slot || dev->slot != slot) 5333 continue; 5334 if (dev->subordinate) 5335 pci_bus_unlock(dev->subordinate); 5336 pci_dev_unlock(dev); 5337 } 5338 return 0; 5339 } 5340 5341 /* 5342 * Save and disable devices from the top of the tree down while holding 5343 * the @dev mutex lock for the entire tree. 5344 */ 5345 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5346 { 5347 struct pci_dev *dev; 5348 5349 list_for_each_entry(dev, &bus->devices, bus_list) { 5350 pci_dev_save_and_disable(dev); 5351 if (dev->subordinate) 5352 pci_bus_save_and_disable_locked(dev->subordinate); 5353 } 5354 } 5355 5356 /* 5357 * Restore devices from top of the tree down while holding @dev mutex lock 5358 * for the entire tree. Parent bridges need to be restored before we can 5359 * get to subordinate devices. 5360 */ 5361 static void pci_bus_restore_locked(struct pci_bus *bus) 5362 { 5363 struct pci_dev *dev; 5364 5365 list_for_each_entry(dev, &bus->devices, bus_list) { 5366 pci_dev_restore(dev); 5367 if (dev->subordinate) 5368 pci_bus_restore_locked(dev->subordinate); 5369 } 5370 } 5371 5372 /* 5373 * Save and disable devices from the top of the tree down while holding 5374 * the @dev mutex lock for the entire tree. 5375 */ 5376 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5377 { 5378 struct pci_dev *dev; 5379 5380 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5381 if (!dev->slot || dev->slot != slot) 5382 continue; 5383 pci_dev_save_and_disable(dev); 5384 if (dev->subordinate) 5385 pci_bus_save_and_disable_locked(dev->subordinate); 5386 } 5387 } 5388 5389 /* 5390 * Restore devices from top of the tree down while holding @dev mutex lock 5391 * for the entire tree. Parent bridges need to be restored before we can 5392 * get to subordinate devices. 5393 */ 5394 static void pci_slot_restore_locked(struct pci_slot *slot) 5395 { 5396 struct pci_dev *dev; 5397 5398 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5399 if (!dev->slot || dev->slot != slot) 5400 continue; 5401 pci_dev_restore(dev); 5402 if (dev->subordinate) 5403 pci_bus_restore_locked(dev->subordinate); 5404 } 5405 } 5406 5407 static int pci_slot_reset(struct pci_slot *slot, int probe) 5408 { 5409 int rc; 5410 5411 if (!slot || !pci_slot_resetable(slot)) 5412 return -ENOTTY; 5413 5414 if (!probe) 5415 pci_slot_lock(slot); 5416 5417 might_sleep(); 5418 5419 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5420 5421 if (!probe) 5422 pci_slot_unlock(slot); 5423 5424 return rc; 5425 } 5426 5427 /** 5428 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5429 * @slot: PCI slot to probe 5430 * 5431 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5432 */ 5433 int pci_probe_reset_slot(struct pci_slot *slot) 5434 { 5435 return pci_slot_reset(slot, 1); 5436 } 5437 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5438 5439 /** 5440 * __pci_reset_slot - Try to reset a PCI slot 5441 * @slot: PCI slot to reset 5442 * 5443 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5444 * independent of other slots. For instance, some slots may support slot power 5445 * control. In the case of a 1:1 bus to slot architecture, this function may 5446 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5447 * Generally a slot reset should be attempted before a bus reset. All of the 5448 * function of the slot and any subordinate buses behind the slot are reset 5449 * through this function. PCI config space of all devices in the slot and 5450 * behind the slot is saved before and restored after reset. 5451 * 5452 * Same as above except return -EAGAIN if the slot cannot be locked 5453 */ 5454 static int __pci_reset_slot(struct pci_slot *slot) 5455 { 5456 int rc; 5457 5458 rc = pci_slot_reset(slot, 1); 5459 if (rc) 5460 return rc; 5461 5462 if (pci_slot_trylock(slot)) { 5463 pci_slot_save_and_disable_locked(slot); 5464 might_sleep(); 5465 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5466 pci_slot_restore_locked(slot); 5467 pci_slot_unlock(slot); 5468 } else 5469 rc = -EAGAIN; 5470 5471 return rc; 5472 } 5473 5474 static int pci_bus_reset(struct pci_bus *bus, int probe) 5475 { 5476 int ret; 5477 5478 if (!bus->self || !pci_bus_resetable(bus)) 5479 return -ENOTTY; 5480 5481 if (probe) 5482 return 0; 5483 5484 pci_bus_lock(bus); 5485 5486 might_sleep(); 5487 5488 ret = pci_bridge_secondary_bus_reset(bus->self); 5489 5490 pci_bus_unlock(bus); 5491 5492 return ret; 5493 } 5494 5495 /** 5496 * pci_bus_error_reset - reset the bridge's subordinate bus 5497 * @bridge: The parent device that connects to the bus to reset 5498 * 5499 * This function will first try to reset the slots on this bus if the method is 5500 * available. If slot reset fails or is not available, this will fall back to a 5501 * secondary bus reset. 5502 */ 5503 int pci_bus_error_reset(struct pci_dev *bridge) 5504 { 5505 struct pci_bus *bus = bridge->subordinate; 5506 struct pci_slot *slot; 5507 5508 if (!bus) 5509 return -ENOTTY; 5510 5511 mutex_lock(&pci_slot_mutex); 5512 if (list_empty(&bus->slots)) 5513 goto bus_reset; 5514 5515 list_for_each_entry(slot, &bus->slots, list) 5516 if (pci_probe_reset_slot(slot)) 5517 goto bus_reset; 5518 5519 list_for_each_entry(slot, &bus->slots, list) 5520 if (pci_slot_reset(slot, 0)) 5521 goto bus_reset; 5522 5523 mutex_unlock(&pci_slot_mutex); 5524 return 0; 5525 bus_reset: 5526 mutex_unlock(&pci_slot_mutex); 5527 return pci_bus_reset(bridge->subordinate, 0); 5528 } 5529 5530 /** 5531 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5532 * @bus: PCI bus to probe 5533 * 5534 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5535 */ 5536 int pci_probe_reset_bus(struct pci_bus *bus) 5537 { 5538 return pci_bus_reset(bus, 1); 5539 } 5540 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5541 5542 /** 5543 * __pci_reset_bus - Try to reset a PCI bus 5544 * @bus: top level PCI bus to reset 5545 * 5546 * Same as above except return -EAGAIN if the bus cannot be locked 5547 */ 5548 static int __pci_reset_bus(struct pci_bus *bus) 5549 { 5550 int rc; 5551 5552 rc = pci_bus_reset(bus, 1); 5553 if (rc) 5554 return rc; 5555 5556 if (pci_bus_trylock(bus)) { 5557 pci_bus_save_and_disable_locked(bus); 5558 might_sleep(); 5559 rc = pci_bridge_secondary_bus_reset(bus->self); 5560 pci_bus_restore_locked(bus); 5561 pci_bus_unlock(bus); 5562 } else 5563 rc = -EAGAIN; 5564 5565 return rc; 5566 } 5567 5568 /** 5569 * pci_reset_bus - Try to reset a PCI bus 5570 * @pdev: top level PCI device to reset via slot/bus 5571 * 5572 * Same as above except return -EAGAIN if the bus cannot be locked 5573 */ 5574 int pci_reset_bus(struct pci_dev *pdev) 5575 { 5576 return (!pci_probe_reset_slot(pdev->slot)) ? 5577 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5578 } 5579 EXPORT_SYMBOL_GPL(pci_reset_bus); 5580 5581 /** 5582 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5583 * @dev: PCI device to query 5584 * 5585 * Returns mmrbc: maximum designed memory read count in bytes or 5586 * appropriate error value. 5587 */ 5588 int pcix_get_max_mmrbc(struct pci_dev *dev) 5589 { 5590 int cap; 5591 u32 stat; 5592 5593 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5594 if (!cap) 5595 return -EINVAL; 5596 5597 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5598 return -EINVAL; 5599 5600 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5601 } 5602 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5603 5604 /** 5605 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5606 * @dev: PCI device to query 5607 * 5608 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5609 * value. 5610 */ 5611 int pcix_get_mmrbc(struct pci_dev *dev) 5612 { 5613 int cap; 5614 u16 cmd; 5615 5616 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5617 if (!cap) 5618 return -EINVAL; 5619 5620 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5621 return -EINVAL; 5622 5623 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5624 } 5625 EXPORT_SYMBOL(pcix_get_mmrbc); 5626 5627 /** 5628 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5629 * @dev: PCI device to query 5630 * @mmrbc: maximum memory read count in bytes 5631 * valid values are 512, 1024, 2048, 4096 5632 * 5633 * If possible sets maximum memory read byte count, some bridges have errata 5634 * that prevent this. 5635 */ 5636 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5637 { 5638 int cap; 5639 u32 stat, v, o; 5640 u16 cmd; 5641 5642 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5643 return -EINVAL; 5644 5645 v = ffs(mmrbc) - 10; 5646 5647 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5648 if (!cap) 5649 return -EINVAL; 5650 5651 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5652 return -EINVAL; 5653 5654 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5655 return -E2BIG; 5656 5657 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5658 return -EINVAL; 5659 5660 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5661 if (o != v) { 5662 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5663 return -EIO; 5664 5665 cmd &= ~PCI_X_CMD_MAX_READ; 5666 cmd |= v << 2; 5667 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5668 return -EIO; 5669 } 5670 return 0; 5671 } 5672 EXPORT_SYMBOL(pcix_set_mmrbc); 5673 5674 /** 5675 * pcie_get_readrq - get PCI Express read request size 5676 * @dev: PCI device to query 5677 * 5678 * Returns maximum memory read request in bytes or appropriate error value. 5679 */ 5680 int pcie_get_readrq(struct pci_dev *dev) 5681 { 5682 u16 ctl; 5683 5684 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5685 5686 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5687 } 5688 EXPORT_SYMBOL(pcie_get_readrq); 5689 5690 /** 5691 * pcie_set_readrq - set PCI Express maximum memory read request 5692 * @dev: PCI device to query 5693 * @rq: maximum memory read count in bytes 5694 * valid values are 128, 256, 512, 1024, 2048, 4096 5695 * 5696 * If possible sets maximum memory read request in bytes 5697 */ 5698 int pcie_set_readrq(struct pci_dev *dev, int rq) 5699 { 5700 u16 v; 5701 5702 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5703 return -EINVAL; 5704 5705 /* 5706 * If using the "performance" PCIe config, we clamp the read rq 5707 * size to the max packet size to keep the host bridge from 5708 * generating requests larger than we can cope with. 5709 */ 5710 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5711 int mps = pcie_get_mps(dev); 5712 5713 if (mps < rq) 5714 rq = mps; 5715 } 5716 5717 v = (ffs(rq) - 8) << 12; 5718 5719 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5720 PCI_EXP_DEVCTL_READRQ, v); 5721 } 5722 EXPORT_SYMBOL(pcie_set_readrq); 5723 5724 /** 5725 * pcie_get_mps - get PCI Express maximum payload size 5726 * @dev: PCI device to query 5727 * 5728 * Returns maximum payload size in bytes 5729 */ 5730 int pcie_get_mps(struct pci_dev *dev) 5731 { 5732 u16 ctl; 5733 5734 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5735 5736 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5737 } 5738 EXPORT_SYMBOL(pcie_get_mps); 5739 5740 /** 5741 * pcie_set_mps - set PCI Express maximum payload size 5742 * @dev: PCI device to query 5743 * @mps: maximum payload size in bytes 5744 * valid values are 128, 256, 512, 1024, 2048, 4096 5745 * 5746 * If possible sets maximum payload size 5747 */ 5748 int pcie_set_mps(struct pci_dev *dev, int mps) 5749 { 5750 u16 v; 5751 5752 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5753 return -EINVAL; 5754 5755 v = ffs(mps) - 8; 5756 if (v > dev->pcie_mpss) 5757 return -EINVAL; 5758 v <<= 5; 5759 5760 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5761 PCI_EXP_DEVCTL_PAYLOAD, v); 5762 } 5763 EXPORT_SYMBOL(pcie_set_mps); 5764 5765 /** 5766 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5767 * device and its bandwidth limitation 5768 * @dev: PCI device to query 5769 * @limiting_dev: storage for device causing the bandwidth limitation 5770 * @speed: storage for speed of limiting device 5771 * @width: storage for width of limiting device 5772 * 5773 * Walk up the PCI device chain and find the point where the minimum 5774 * bandwidth is available. Return the bandwidth available there and (if 5775 * limiting_dev, speed, and width pointers are supplied) information about 5776 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5777 * raw bandwidth. 5778 */ 5779 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5780 enum pci_bus_speed *speed, 5781 enum pcie_link_width *width) 5782 { 5783 u16 lnksta; 5784 enum pci_bus_speed next_speed; 5785 enum pcie_link_width next_width; 5786 u32 bw, next_bw; 5787 5788 if (speed) 5789 *speed = PCI_SPEED_UNKNOWN; 5790 if (width) 5791 *width = PCIE_LNK_WIDTH_UNKNOWN; 5792 5793 bw = 0; 5794 5795 while (dev) { 5796 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5797 5798 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5799 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5800 PCI_EXP_LNKSTA_NLW_SHIFT; 5801 5802 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5803 5804 /* Check if current device limits the total bandwidth */ 5805 if (!bw || next_bw <= bw) { 5806 bw = next_bw; 5807 5808 if (limiting_dev) 5809 *limiting_dev = dev; 5810 if (speed) 5811 *speed = next_speed; 5812 if (width) 5813 *width = next_width; 5814 } 5815 5816 dev = pci_upstream_bridge(dev); 5817 } 5818 5819 return bw; 5820 } 5821 EXPORT_SYMBOL(pcie_bandwidth_available); 5822 5823 /** 5824 * pcie_get_speed_cap - query for the PCI device's link speed capability 5825 * @dev: PCI device to query 5826 * 5827 * Query the PCI device speed capability. Return the maximum link speed 5828 * supported by the device. 5829 */ 5830 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5831 { 5832 u32 lnkcap2, lnkcap; 5833 5834 /* 5835 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5836 * implementation note there recommends using the Supported Link 5837 * Speeds Vector in Link Capabilities 2 when supported. 5838 * 5839 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5840 * should use the Supported Link Speeds field in Link Capabilities, 5841 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5842 */ 5843 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5844 5845 /* PCIe r3.0-compliant */ 5846 if (lnkcap2) 5847 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 5848 5849 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5850 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5851 return PCIE_SPEED_5_0GT; 5852 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5853 return PCIE_SPEED_2_5GT; 5854 5855 return PCI_SPEED_UNKNOWN; 5856 } 5857 EXPORT_SYMBOL(pcie_get_speed_cap); 5858 5859 /** 5860 * pcie_get_width_cap - query for the PCI device's link width capability 5861 * @dev: PCI device to query 5862 * 5863 * Query the PCI device width capability. Return the maximum link width 5864 * supported by the device. 5865 */ 5866 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5867 { 5868 u32 lnkcap; 5869 5870 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5871 if (lnkcap) 5872 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5873 5874 return PCIE_LNK_WIDTH_UNKNOWN; 5875 } 5876 EXPORT_SYMBOL(pcie_get_width_cap); 5877 5878 /** 5879 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5880 * @dev: PCI device 5881 * @speed: storage for link speed 5882 * @width: storage for link width 5883 * 5884 * Calculate a PCI device's link bandwidth by querying for its link speed 5885 * and width, multiplying them, and applying encoding overhead. The result 5886 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5887 */ 5888 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5889 enum pcie_link_width *width) 5890 { 5891 *speed = pcie_get_speed_cap(dev); 5892 *width = pcie_get_width_cap(dev); 5893 5894 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5895 return 0; 5896 5897 return *width * PCIE_SPEED2MBS_ENC(*speed); 5898 } 5899 5900 /** 5901 * __pcie_print_link_status - Report the PCI device's link speed and width 5902 * @dev: PCI device to query 5903 * @verbose: Print info even when enough bandwidth is available 5904 * 5905 * If the available bandwidth at the device is less than the device is 5906 * capable of, report the device's maximum possible bandwidth and the 5907 * upstream link that limits its performance. If @verbose, always print 5908 * the available bandwidth, even if the device isn't constrained. 5909 */ 5910 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5911 { 5912 enum pcie_link_width width, width_cap; 5913 enum pci_bus_speed speed, speed_cap; 5914 struct pci_dev *limiting_dev = NULL; 5915 u32 bw_avail, bw_cap; 5916 5917 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5918 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5919 5920 if (bw_avail >= bw_cap && verbose) 5921 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5922 bw_cap / 1000, bw_cap % 1000, 5923 pci_speed_string(speed_cap), width_cap); 5924 else if (bw_avail < bw_cap) 5925 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5926 bw_avail / 1000, bw_avail % 1000, 5927 pci_speed_string(speed), width, 5928 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5929 bw_cap / 1000, bw_cap % 1000, 5930 pci_speed_string(speed_cap), width_cap); 5931 } 5932 5933 /** 5934 * pcie_print_link_status - Report the PCI device's link speed and width 5935 * @dev: PCI device to query 5936 * 5937 * Report the available bandwidth at the device. 5938 */ 5939 void pcie_print_link_status(struct pci_dev *dev) 5940 { 5941 __pcie_print_link_status(dev, true); 5942 } 5943 EXPORT_SYMBOL(pcie_print_link_status); 5944 5945 /** 5946 * pci_select_bars - Make BAR mask from the type of resource 5947 * @dev: the PCI device for which BAR mask is made 5948 * @flags: resource type mask to be selected 5949 * 5950 * This helper routine makes bar mask from the type of resource. 5951 */ 5952 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5953 { 5954 int i, bars = 0; 5955 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5956 if (pci_resource_flags(dev, i) & flags) 5957 bars |= (1 << i); 5958 return bars; 5959 } 5960 EXPORT_SYMBOL(pci_select_bars); 5961 5962 /* Some architectures require additional programming to enable VGA */ 5963 static arch_set_vga_state_t arch_set_vga_state; 5964 5965 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5966 { 5967 arch_set_vga_state = func; /* NULL disables */ 5968 } 5969 5970 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5971 unsigned int command_bits, u32 flags) 5972 { 5973 if (arch_set_vga_state) 5974 return arch_set_vga_state(dev, decode, command_bits, 5975 flags); 5976 return 0; 5977 } 5978 5979 /** 5980 * pci_set_vga_state - set VGA decode state on device and parents if requested 5981 * @dev: the PCI device 5982 * @decode: true = enable decoding, false = disable decoding 5983 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5984 * @flags: traverse ancestors and change bridges 5985 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5986 */ 5987 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5988 unsigned int command_bits, u32 flags) 5989 { 5990 struct pci_bus *bus; 5991 struct pci_dev *bridge; 5992 u16 cmd; 5993 int rc; 5994 5995 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5996 5997 /* ARCH specific VGA enables */ 5998 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5999 if (rc) 6000 return rc; 6001 6002 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6003 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6004 if (decode == true) 6005 cmd |= command_bits; 6006 else 6007 cmd &= ~command_bits; 6008 pci_write_config_word(dev, PCI_COMMAND, cmd); 6009 } 6010 6011 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6012 return 0; 6013 6014 bus = dev->bus; 6015 while (bus) { 6016 bridge = bus->self; 6017 if (bridge) { 6018 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6019 &cmd); 6020 if (decode == true) 6021 cmd |= PCI_BRIDGE_CTL_VGA; 6022 else 6023 cmd &= ~PCI_BRIDGE_CTL_VGA; 6024 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6025 cmd); 6026 } 6027 bus = bus->parent; 6028 } 6029 return 0; 6030 } 6031 6032 #ifdef CONFIG_ACPI 6033 bool pci_pr3_present(struct pci_dev *pdev) 6034 { 6035 struct acpi_device *adev; 6036 6037 if (acpi_disabled) 6038 return false; 6039 6040 adev = ACPI_COMPANION(&pdev->dev); 6041 if (!adev) 6042 return false; 6043 6044 return adev->power.flags.power_resources && 6045 acpi_has_method(adev->handle, "_PR3"); 6046 } 6047 EXPORT_SYMBOL_GPL(pci_pr3_present); 6048 #endif 6049 6050 /** 6051 * pci_add_dma_alias - Add a DMA devfn alias for a device 6052 * @dev: the PCI device for which alias is added 6053 * @devfn_from: alias slot and function 6054 * @nr_devfns: number of subsequent devfns to alias 6055 * 6056 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6057 * which is used to program permissible bus-devfn source addresses for DMA 6058 * requests in an IOMMU. These aliases factor into IOMMU group creation 6059 * and are useful for devices generating DMA requests beyond or different 6060 * from their logical bus-devfn. Examples include device quirks where the 6061 * device simply uses the wrong devfn, as well as non-transparent bridges 6062 * where the alias may be a proxy for devices in another domain. 6063 * 6064 * IOMMU group creation is performed during device discovery or addition, 6065 * prior to any potential DMA mapping and therefore prior to driver probing 6066 * (especially for userspace assigned devices where IOMMU group definition 6067 * cannot be left as a userspace activity). DMA aliases should therefore 6068 * be configured via quirks, such as the PCI fixup header quirk. 6069 */ 6070 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns) 6071 { 6072 int devfn_to; 6073 6074 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from); 6075 devfn_to = devfn_from + nr_devfns - 1; 6076 6077 if (!dev->dma_alias_mask) 6078 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6079 if (!dev->dma_alias_mask) { 6080 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6081 return; 6082 } 6083 6084 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6085 6086 if (nr_devfns == 1) 6087 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6088 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6089 else if (nr_devfns > 1) 6090 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6091 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6092 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6093 } 6094 6095 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6096 { 6097 return (dev1->dma_alias_mask && 6098 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6099 (dev2->dma_alias_mask && 6100 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6101 pci_real_dma_dev(dev1) == dev2 || 6102 pci_real_dma_dev(dev2) == dev1; 6103 } 6104 6105 bool pci_device_is_present(struct pci_dev *pdev) 6106 { 6107 u32 v; 6108 6109 if (pci_dev_is_disconnected(pdev)) 6110 return false; 6111 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6112 } 6113 EXPORT_SYMBOL_GPL(pci_device_is_present); 6114 6115 void pci_ignore_hotplug(struct pci_dev *dev) 6116 { 6117 struct pci_dev *bridge = dev->bus->self; 6118 6119 dev->ignore_hotplug = 1; 6120 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6121 if (bridge) 6122 bridge->ignore_hotplug = 1; 6123 } 6124 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6125 6126 /** 6127 * pci_real_dma_dev - Get PCI DMA device for PCI device 6128 * @dev: the PCI device that may have a PCI DMA alias 6129 * 6130 * Permits the platform to provide architecture-specific functionality to 6131 * devices needing to alias DMA to another PCI device on another PCI bus. If 6132 * the PCI device is on the same bus, it is recommended to use 6133 * pci_add_dma_alias(). This is the default implementation. Architecture 6134 * implementations can override this. 6135 */ 6136 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6137 { 6138 return dev; 6139 } 6140 6141 resource_size_t __weak pcibios_default_alignment(void) 6142 { 6143 return 0; 6144 } 6145 6146 /* 6147 * Arches that don't want to expose struct resource to userland as-is in 6148 * sysfs and /proc can implement their own pci_resource_to_user(). 6149 */ 6150 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6151 const struct resource *rsrc, 6152 resource_size_t *start, resource_size_t *end) 6153 { 6154 *start = rsrc->start; 6155 *end = rsrc->end; 6156 } 6157 6158 static char *resource_alignment_param; 6159 static DEFINE_SPINLOCK(resource_alignment_lock); 6160 6161 /** 6162 * pci_specified_resource_alignment - get resource alignment specified by user. 6163 * @dev: the PCI device to get 6164 * @resize: whether or not to change resources' size when reassigning alignment 6165 * 6166 * RETURNS: Resource alignment if it is specified. 6167 * Zero if it is not specified. 6168 */ 6169 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6170 bool *resize) 6171 { 6172 int align_order, count; 6173 resource_size_t align = pcibios_default_alignment(); 6174 const char *p; 6175 int ret; 6176 6177 spin_lock(&resource_alignment_lock); 6178 p = resource_alignment_param; 6179 if (!p || !*p) 6180 goto out; 6181 if (pci_has_flag(PCI_PROBE_ONLY)) { 6182 align = 0; 6183 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6184 goto out; 6185 } 6186 6187 while (*p) { 6188 count = 0; 6189 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6190 p[count] == '@') { 6191 p += count + 1; 6192 } else { 6193 align_order = -1; 6194 } 6195 6196 ret = pci_dev_str_match(dev, p, &p); 6197 if (ret == 1) { 6198 *resize = true; 6199 if (align_order == -1) 6200 align = PAGE_SIZE; 6201 else 6202 align = 1 << align_order; 6203 break; 6204 } else if (ret < 0) { 6205 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6206 p); 6207 break; 6208 } 6209 6210 if (*p != ';' && *p != ',') { 6211 /* End of param or invalid format */ 6212 break; 6213 } 6214 p++; 6215 } 6216 out: 6217 spin_unlock(&resource_alignment_lock); 6218 return align; 6219 } 6220 6221 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6222 resource_size_t align, bool resize) 6223 { 6224 struct resource *r = &dev->resource[bar]; 6225 resource_size_t size; 6226 6227 if (!(r->flags & IORESOURCE_MEM)) 6228 return; 6229 6230 if (r->flags & IORESOURCE_PCI_FIXED) { 6231 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6232 bar, r, (unsigned long long)align); 6233 return; 6234 } 6235 6236 size = resource_size(r); 6237 if (size >= align) 6238 return; 6239 6240 /* 6241 * Increase the alignment of the resource. There are two ways we 6242 * can do this: 6243 * 6244 * 1) Increase the size of the resource. BARs are aligned on their 6245 * size, so when we reallocate space for this resource, we'll 6246 * allocate it with the larger alignment. This also prevents 6247 * assignment of any other BARs inside the alignment region, so 6248 * if we're requesting page alignment, this means no other BARs 6249 * will share the page. 6250 * 6251 * The disadvantage is that this makes the resource larger than 6252 * the hardware BAR, which may break drivers that compute things 6253 * based on the resource size, e.g., to find registers at a 6254 * fixed offset before the end of the BAR. 6255 * 6256 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6257 * set r->start to the desired alignment. By itself this 6258 * doesn't prevent other BARs being put inside the alignment 6259 * region, but if we realign *every* resource of every device in 6260 * the system, none of them will share an alignment region. 6261 * 6262 * When the user has requested alignment for only some devices via 6263 * the "pci=resource_alignment" argument, "resize" is true and we 6264 * use the first method. Otherwise we assume we're aligning all 6265 * devices and we use the second. 6266 */ 6267 6268 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6269 bar, r, (unsigned long long)align); 6270 6271 if (resize) { 6272 r->start = 0; 6273 r->end = align - 1; 6274 } else { 6275 r->flags &= ~IORESOURCE_SIZEALIGN; 6276 r->flags |= IORESOURCE_STARTALIGN; 6277 r->start = align; 6278 r->end = r->start + size - 1; 6279 } 6280 r->flags |= IORESOURCE_UNSET; 6281 } 6282 6283 /* 6284 * This function disables memory decoding and releases memory resources 6285 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6286 * It also rounds up size to specified alignment. 6287 * Later on, the kernel will assign page-aligned memory resource back 6288 * to the device. 6289 */ 6290 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6291 { 6292 int i; 6293 struct resource *r; 6294 resource_size_t align; 6295 u16 command; 6296 bool resize = false; 6297 6298 /* 6299 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6300 * 3.4.1.11. Their resources are allocated from the space 6301 * described by the VF BARx register in the PF's SR-IOV capability. 6302 * We can't influence their alignment here. 6303 */ 6304 if (dev->is_virtfn) 6305 return; 6306 6307 /* check if specified PCI is target device to reassign */ 6308 align = pci_specified_resource_alignment(dev, &resize); 6309 if (!align) 6310 return; 6311 6312 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6313 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6314 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6315 return; 6316 } 6317 6318 pci_read_config_word(dev, PCI_COMMAND, &command); 6319 command &= ~PCI_COMMAND_MEMORY; 6320 pci_write_config_word(dev, PCI_COMMAND, command); 6321 6322 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6323 pci_request_resource_alignment(dev, i, align, resize); 6324 6325 /* 6326 * Need to disable bridge's resource window, 6327 * to enable the kernel to reassign new resource 6328 * window later on. 6329 */ 6330 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6331 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6332 r = &dev->resource[i]; 6333 if (!(r->flags & IORESOURCE_MEM)) 6334 continue; 6335 r->flags |= IORESOURCE_UNSET; 6336 r->end = resource_size(r) - 1; 6337 r->start = 0; 6338 } 6339 pci_disable_bridge_window(dev); 6340 } 6341 } 6342 6343 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6344 { 6345 size_t count = 0; 6346 6347 spin_lock(&resource_alignment_lock); 6348 if (resource_alignment_param) 6349 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param); 6350 spin_unlock(&resource_alignment_lock); 6351 6352 /* 6353 * When set by the command line, resource_alignment_param will not 6354 * have a trailing line feed, which is ugly. So conditionally add 6355 * it here. 6356 */ 6357 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) { 6358 buf[count - 1] = '\n'; 6359 buf[count++] = 0; 6360 } 6361 6362 return count; 6363 } 6364 6365 static ssize_t resource_alignment_store(struct bus_type *bus, 6366 const char *buf, size_t count) 6367 { 6368 char *param = kstrndup(buf, count, GFP_KERNEL); 6369 6370 if (!param) 6371 return -ENOMEM; 6372 6373 spin_lock(&resource_alignment_lock); 6374 kfree(resource_alignment_param); 6375 resource_alignment_param = param; 6376 spin_unlock(&resource_alignment_lock); 6377 return count; 6378 } 6379 6380 static BUS_ATTR_RW(resource_alignment); 6381 6382 static int __init pci_resource_alignment_sysfs_init(void) 6383 { 6384 return bus_create_file(&pci_bus_type, 6385 &bus_attr_resource_alignment); 6386 } 6387 late_initcall(pci_resource_alignment_sysfs_init); 6388 6389 static void pci_no_domains(void) 6390 { 6391 #ifdef CONFIG_PCI_DOMAINS 6392 pci_domains_supported = 0; 6393 #endif 6394 } 6395 6396 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6397 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6398 6399 static int pci_get_new_domain_nr(void) 6400 { 6401 return atomic_inc_return(&__domain_nr); 6402 } 6403 6404 static int of_pci_bus_find_domain_nr(struct device *parent) 6405 { 6406 static int use_dt_domains = -1; 6407 int domain = -1; 6408 6409 if (parent) 6410 domain = of_get_pci_domain_nr(parent->of_node); 6411 6412 /* 6413 * Check DT domain and use_dt_domains values. 6414 * 6415 * If DT domain property is valid (domain >= 0) and 6416 * use_dt_domains != 0, the DT assignment is valid since this means 6417 * we have not previously allocated a domain number by using 6418 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6419 * 1, to indicate that we have just assigned a domain number from 6420 * DT. 6421 * 6422 * If DT domain property value is not valid (ie domain < 0), and we 6423 * have not previously assigned a domain number from DT 6424 * (use_dt_domains != 1) we should assign a domain number by 6425 * using the: 6426 * 6427 * pci_get_new_domain_nr() 6428 * 6429 * API and update the use_dt_domains value to keep track of method we 6430 * are using to assign domain numbers (use_dt_domains = 0). 6431 * 6432 * All other combinations imply we have a platform that is trying 6433 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6434 * which is a recipe for domain mishandling and it is prevented by 6435 * invalidating the domain value (domain = -1) and printing a 6436 * corresponding error. 6437 */ 6438 if (domain >= 0 && use_dt_domains) { 6439 use_dt_domains = 1; 6440 } else if (domain < 0 && use_dt_domains != 1) { 6441 use_dt_domains = 0; 6442 domain = pci_get_new_domain_nr(); 6443 } else { 6444 if (parent) 6445 pr_err("Node %pOF has ", parent->of_node); 6446 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6447 domain = -1; 6448 } 6449 6450 return domain; 6451 } 6452 6453 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6454 { 6455 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6456 acpi_pci_bus_find_domain_nr(bus); 6457 } 6458 #endif 6459 6460 /** 6461 * pci_ext_cfg_avail - can we access extended PCI config space? 6462 * 6463 * Returns 1 if we can access PCI extended config space (offsets 6464 * greater than 0xff). This is the default implementation. Architecture 6465 * implementations can override this. 6466 */ 6467 int __weak pci_ext_cfg_avail(void) 6468 { 6469 return 1; 6470 } 6471 6472 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6473 { 6474 } 6475 EXPORT_SYMBOL(pci_fixup_cardbus); 6476 6477 static int __init pci_setup(char *str) 6478 { 6479 while (str) { 6480 char *k = strchr(str, ','); 6481 if (k) 6482 *k++ = 0; 6483 if (*str && (str = pcibios_setup(str)) && *str) { 6484 if (!strcmp(str, "nomsi")) { 6485 pci_no_msi(); 6486 } else if (!strncmp(str, "noats", 5)) { 6487 pr_info("PCIe: ATS is disabled\n"); 6488 pcie_ats_disabled = true; 6489 } else if (!strcmp(str, "noaer")) { 6490 pci_no_aer(); 6491 } else if (!strcmp(str, "earlydump")) { 6492 pci_early_dump = true; 6493 } else if (!strncmp(str, "realloc=", 8)) { 6494 pci_realloc_get_opt(str + 8); 6495 } else if (!strncmp(str, "realloc", 7)) { 6496 pci_realloc_get_opt("on"); 6497 } else if (!strcmp(str, "nodomains")) { 6498 pci_no_domains(); 6499 } else if (!strncmp(str, "noari", 5)) { 6500 pcie_ari_disabled = true; 6501 } else if (!strncmp(str, "cbiosize=", 9)) { 6502 pci_cardbus_io_size = memparse(str + 9, &str); 6503 } else if (!strncmp(str, "cbmemsize=", 10)) { 6504 pci_cardbus_mem_size = memparse(str + 10, &str); 6505 } else if (!strncmp(str, "resource_alignment=", 19)) { 6506 resource_alignment_param = str + 19; 6507 } else if (!strncmp(str, "ecrc=", 5)) { 6508 pcie_ecrc_get_policy(str + 5); 6509 } else if (!strncmp(str, "hpiosize=", 9)) { 6510 pci_hotplug_io_size = memparse(str + 9, &str); 6511 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6512 pci_hotplug_mmio_size = memparse(str + 11, &str); 6513 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6514 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6515 } else if (!strncmp(str, "hpmemsize=", 10)) { 6516 pci_hotplug_mmio_size = memparse(str + 10, &str); 6517 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6518 } else if (!strncmp(str, "hpbussize=", 10)) { 6519 pci_hotplug_bus_size = 6520 simple_strtoul(str + 10, &str, 0); 6521 if (pci_hotplug_bus_size > 0xff) 6522 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6523 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6524 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6525 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6526 pcie_bus_config = PCIE_BUS_SAFE; 6527 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6528 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6529 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6530 pcie_bus_config = PCIE_BUS_PEER2PEER; 6531 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6532 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6533 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6534 disable_acs_redir_param = str + 18; 6535 } else { 6536 pr_err("PCI: Unknown option `%s'\n", str); 6537 } 6538 } 6539 str = k; 6540 } 6541 return 0; 6542 } 6543 early_param("pci", pci_setup); 6544 6545 /* 6546 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6547 * in pci_setup(), above, to point to data in the __initdata section which 6548 * will be freed after the init sequence is complete. We can't allocate memory 6549 * in pci_setup() because some architectures do not have any memory allocation 6550 * service available during an early_param() call. So we allocate memory and 6551 * copy the variable here before the init section is freed. 6552 * 6553 */ 6554 static int __init pci_realloc_setup_params(void) 6555 { 6556 resource_alignment_param = kstrdup(resource_alignment_param, 6557 GFP_KERNEL); 6558 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6559 6560 return 0; 6561 } 6562 pure_initcall(pci_realloc_setup_params); 6563