xref: /linux/drivers/pci/pci.c (revision 202779456dc5b75d07b214064161ef6a2421e8be)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3hot_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 static void pci_dev_d3_sleep(struct pci_dev *dev)
68 {
69 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
70 	unsigned int upper;
71 
72 	if (delay_ms) {
73 		/* Use a 20% upper bound, 1ms minimum */
74 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
75 		usleep_range(delay_ms * USEC_PER_MSEC,
76 			     (delay_ms + upper) * USEC_PER_MSEC);
77 	}
78 }
79 
80 bool pci_reset_supported(struct pci_dev *dev)
81 {
82 	return dev->reset_methods[0] != 0;
83 }
84 
85 #ifdef CONFIG_PCI_DOMAINS
86 int pci_domains_supported = 1;
87 #endif
88 
89 #define DEFAULT_CARDBUS_IO_SIZE		(256)
90 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
91 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
92 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
93 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
94 
95 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
96 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
97 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
98 /* hpiosize=nn can override this */
99 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
100 /*
101  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
102  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
103  * pci=hpmemsize=nnM overrides both
104  */
105 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
106 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
107 
108 #define DEFAULT_HOTPLUG_BUS_SIZE	1
109 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
110 
111 
112 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
113 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
115 #elif defined CONFIG_PCIE_BUS_SAFE
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
117 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
119 #elif defined CONFIG_PCIE_BUS_PEER2PEER
120 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
121 #else
122 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
123 #endif
124 
125 /*
126  * The default CLS is used if arch didn't set CLS explicitly and not
127  * all pci devices agree on the same value.  Arch can override either
128  * the dfl or actual value as it sees fit.  Don't forget this is
129  * measured in 32-bit words, not bytes.
130  */
131 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
132 u8 pci_cache_line_size;
133 
134 /*
135  * If we set up a device for bus mastering, we need to check the latency
136  * timer as certain BIOSes forget to set it properly.
137  */
138 unsigned int pcibios_max_latency = 255;
139 
140 /* If set, the PCIe ARI capability will not be used. */
141 static bool pcie_ari_disabled;
142 
143 /* If set, the PCIe ATS capability will not be used. */
144 static bool pcie_ats_disabled;
145 
146 /* If set, the PCI config space of each device is printed during boot. */
147 bool pci_early_dump;
148 
149 bool pci_ats_disabled(void)
150 {
151 	return pcie_ats_disabled;
152 }
153 EXPORT_SYMBOL_GPL(pci_ats_disabled);
154 
155 /* Disable bridge_d3 for all PCIe ports */
156 static bool pci_bridge_d3_disable;
157 /* Force bridge_d3 for all PCIe ports */
158 static bool pci_bridge_d3_force;
159 
160 static int __init pcie_port_pm_setup(char *str)
161 {
162 	if (!strcmp(str, "off"))
163 		pci_bridge_d3_disable = true;
164 	else if (!strcmp(str, "force"))
165 		pci_bridge_d3_force = true;
166 	return 1;
167 }
168 __setup("pcie_port_pm=", pcie_port_pm_setup);
169 
170 /**
171  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
172  * @bus: pointer to PCI bus structure to search
173  *
174  * Given a PCI bus, returns the highest PCI bus number present in the set
175  * including the given PCI bus and its list of child PCI buses.
176  */
177 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
178 {
179 	struct pci_bus *tmp;
180 	unsigned char max, n;
181 
182 	max = bus->busn_res.end;
183 	list_for_each_entry(tmp, &bus->children, node) {
184 		n = pci_bus_max_busnr(tmp);
185 		if (n > max)
186 			max = n;
187 	}
188 	return max;
189 }
190 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
191 
192 /**
193  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
194  * @pdev: the PCI device
195  *
196  * Returns error bits set in PCI_STATUS and clears them.
197  */
198 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
199 {
200 	u16 status;
201 	int ret;
202 
203 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
204 	if (ret != PCIBIOS_SUCCESSFUL)
205 		return -EIO;
206 
207 	status &= PCI_STATUS_ERROR_BITS;
208 	if (status)
209 		pci_write_config_word(pdev, PCI_STATUS, status);
210 
211 	return status;
212 }
213 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
214 
215 #ifdef CONFIG_HAS_IOMEM
216 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
217 					    bool write_combine)
218 {
219 	struct resource *res = &pdev->resource[bar];
220 	resource_size_t start = res->start;
221 	resource_size_t size = resource_size(res);
222 
223 	/*
224 	 * Make sure the BAR is actually a memory resource, not an IO resource
225 	 */
226 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
227 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
228 		return NULL;
229 	}
230 
231 	if (write_combine)
232 		return ioremap_wc(start, size);
233 
234 	return ioremap(start, size);
235 }
236 
237 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
238 {
239 	return __pci_ioremap_resource(pdev, bar, false);
240 }
241 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
242 
243 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
244 {
245 	return __pci_ioremap_resource(pdev, bar, true);
246 }
247 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
248 #endif
249 
250 /**
251  * pci_dev_str_match_path - test if a path string matches a device
252  * @dev: the PCI device to test
253  * @path: string to match the device against
254  * @endptr: pointer to the string after the match
255  *
256  * Test if a string (typically from a kernel parameter) formatted as a
257  * path of device/function addresses matches a PCI device. The string must
258  * be of the form:
259  *
260  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
261  *
262  * A path for a device can be obtained using 'lspci -t'.  Using a path
263  * is more robust against bus renumbering than using only a single bus,
264  * device and function address.
265  *
266  * Returns 1 if the string matches the device, 0 if it does not and
267  * a negative error code if it fails to parse the string.
268  */
269 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
270 				  const char **endptr)
271 {
272 	int ret;
273 	unsigned int seg, bus, slot, func;
274 	char *wpath, *p;
275 	char end;
276 
277 	*endptr = strchrnul(path, ';');
278 
279 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
280 	if (!wpath)
281 		return -ENOMEM;
282 
283 	while (1) {
284 		p = strrchr(wpath, '/');
285 		if (!p)
286 			break;
287 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
288 		if (ret != 2) {
289 			ret = -EINVAL;
290 			goto free_and_exit;
291 		}
292 
293 		if (dev->devfn != PCI_DEVFN(slot, func)) {
294 			ret = 0;
295 			goto free_and_exit;
296 		}
297 
298 		/*
299 		 * Note: we don't need to get a reference to the upstream
300 		 * bridge because we hold a reference to the top level
301 		 * device which should hold a reference to the bridge,
302 		 * and so on.
303 		 */
304 		dev = pci_upstream_bridge(dev);
305 		if (!dev) {
306 			ret = 0;
307 			goto free_and_exit;
308 		}
309 
310 		*p = 0;
311 	}
312 
313 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
314 		     &func, &end);
315 	if (ret != 4) {
316 		seg = 0;
317 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
318 		if (ret != 3) {
319 			ret = -EINVAL;
320 			goto free_and_exit;
321 		}
322 	}
323 
324 	ret = (seg == pci_domain_nr(dev->bus) &&
325 	       bus == dev->bus->number &&
326 	       dev->devfn == PCI_DEVFN(slot, func));
327 
328 free_and_exit:
329 	kfree(wpath);
330 	return ret;
331 }
332 
333 /**
334  * pci_dev_str_match - test if a string matches a device
335  * @dev: the PCI device to test
336  * @p: string to match the device against
337  * @endptr: pointer to the string after the match
338  *
339  * Test if a string (typically from a kernel parameter) matches a specified
340  * PCI device. The string may be of one of the following formats:
341  *
342  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
343  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
344  *
345  * The first format specifies a PCI bus/device/function address which
346  * may change if new hardware is inserted, if motherboard firmware changes,
347  * or due to changes caused in kernel parameters. If the domain is
348  * left unspecified, it is taken to be 0.  In order to be robust against
349  * bus renumbering issues, a path of PCI device/function numbers may be used
350  * to address the specific device.  The path for a device can be determined
351  * through the use of 'lspci -t'.
352  *
353  * The second format matches devices using IDs in the configuration
354  * space which may match multiple devices in the system. A value of 0
355  * for any field will match all devices. (Note: this differs from
356  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
357  * legacy reasons and convenience so users don't have to specify
358  * FFFFFFFFs on the command line.)
359  *
360  * Returns 1 if the string matches the device, 0 if it does not and
361  * a negative error code if the string cannot be parsed.
362  */
363 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
364 			     const char **endptr)
365 {
366 	int ret;
367 	int count;
368 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
369 
370 	if (strncmp(p, "pci:", 4) == 0) {
371 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
372 		p += 4;
373 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
374 			     &subsystem_vendor, &subsystem_device, &count);
375 		if (ret != 4) {
376 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
377 			if (ret != 2)
378 				return -EINVAL;
379 
380 			subsystem_vendor = 0;
381 			subsystem_device = 0;
382 		}
383 
384 		p += count;
385 
386 		if ((!vendor || vendor == dev->vendor) &&
387 		    (!device || device == dev->device) &&
388 		    (!subsystem_vendor ||
389 			    subsystem_vendor == dev->subsystem_vendor) &&
390 		    (!subsystem_device ||
391 			    subsystem_device == dev->subsystem_device))
392 			goto found;
393 	} else {
394 		/*
395 		 * PCI Bus, Device, Function IDs are specified
396 		 * (optionally, may include a path of devfns following it)
397 		 */
398 		ret = pci_dev_str_match_path(dev, p, &p);
399 		if (ret < 0)
400 			return ret;
401 		else if (ret)
402 			goto found;
403 	}
404 
405 	*endptr = p;
406 	return 0;
407 
408 found:
409 	*endptr = p;
410 	return 1;
411 }
412 
413 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
414 				  u8 pos, int cap, int *ttl)
415 {
416 	u8 id;
417 	u16 ent;
418 
419 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
420 
421 	while ((*ttl)--) {
422 		if (pos < 0x40)
423 			break;
424 		pos &= ~3;
425 		pci_bus_read_config_word(bus, devfn, pos, &ent);
426 
427 		id = ent & 0xff;
428 		if (id == 0xff)
429 			break;
430 		if (id == cap)
431 			return pos;
432 		pos = (ent >> 8);
433 	}
434 	return 0;
435 }
436 
437 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
438 			      u8 pos, int cap)
439 {
440 	int ttl = PCI_FIND_CAP_TTL;
441 
442 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
443 }
444 
445 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
446 {
447 	return __pci_find_next_cap(dev->bus, dev->devfn,
448 				   pos + PCI_CAP_LIST_NEXT, cap);
449 }
450 EXPORT_SYMBOL_GPL(pci_find_next_capability);
451 
452 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
453 				    unsigned int devfn, u8 hdr_type)
454 {
455 	u16 status;
456 
457 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
458 	if (!(status & PCI_STATUS_CAP_LIST))
459 		return 0;
460 
461 	switch (hdr_type) {
462 	case PCI_HEADER_TYPE_NORMAL:
463 	case PCI_HEADER_TYPE_BRIDGE:
464 		return PCI_CAPABILITY_LIST;
465 	case PCI_HEADER_TYPE_CARDBUS:
466 		return PCI_CB_CAPABILITY_LIST;
467 	}
468 
469 	return 0;
470 }
471 
472 /**
473  * pci_find_capability - query for devices' capabilities
474  * @dev: PCI device to query
475  * @cap: capability code
476  *
477  * Tell if a device supports a given PCI capability.
478  * Returns the address of the requested capability structure within the
479  * device's PCI configuration space or 0 in case the device does not
480  * support it.  Possible values for @cap include:
481  *
482  *  %PCI_CAP_ID_PM           Power Management
483  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
484  *  %PCI_CAP_ID_VPD          Vital Product Data
485  *  %PCI_CAP_ID_SLOTID       Slot Identification
486  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
487  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
488  *  %PCI_CAP_ID_PCIX         PCI-X
489  *  %PCI_CAP_ID_EXP          PCI Express
490  */
491 u8 pci_find_capability(struct pci_dev *dev, int cap)
492 {
493 	u8 pos;
494 
495 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
496 	if (pos)
497 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
498 
499 	return pos;
500 }
501 EXPORT_SYMBOL(pci_find_capability);
502 
503 /**
504  * pci_bus_find_capability - query for devices' capabilities
505  * @bus: the PCI bus to query
506  * @devfn: PCI device to query
507  * @cap: capability code
508  *
509  * Like pci_find_capability() but works for PCI devices that do not have a
510  * pci_dev structure set up yet.
511  *
512  * Returns the address of the requested capability structure within the
513  * device's PCI configuration space or 0 in case the device does not
514  * support it.
515  */
516 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
517 {
518 	u8 hdr_type, pos;
519 
520 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
521 
522 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
523 	if (pos)
524 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
525 
526 	return pos;
527 }
528 EXPORT_SYMBOL(pci_bus_find_capability);
529 
530 /**
531  * pci_find_next_ext_capability - Find an extended capability
532  * @dev: PCI device to query
533  * @start: address at which to start looking (0 to start at beginning of list)
534  * @cap: capability code
535  *
536  * Returns the address of the next matching extended capability structure
537  * within the device's PCI configuration space or 0 if the device does
538  * not support it.  Some capabilities can occur several times, e.g., the
539  * vendor-specific capability, and this provides a way to find them all.
540  */
541 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
542 {
543 	u32 header;
544 	int ttl;
545 	u16 pos = PCI_CFG_SPACE_SIZE;
546 
547 	/* minimum 8 bytes per capability */
548 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
549 
550 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
551 		return 0;
552 
553 	if (start)
554 		pos = start;
555 
556 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
557 		return 0;
558 
559 	/*
560 	 * If we have no capabilities, this is indicated by cap ID,
561 	 * cap version and next pointer all being 0.
562 	 */
563 	if (header == 0)
564 		return 0;
565 
566 	while (ttl-- > 0) {
567 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
568 			return pos;
569 
570 		pos = PCI_EXT_CAP_NEXT(header);
571 		if (pos < PCI_CFG_SPACE_SIZE)
572 			break;
573 
574 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
575 			break;
576 	}
577 
578 	return 0;
579 }
580 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
581 
582 /**
583  * pci_find_ext_capability - Find an extended capability
584  * @dev: PCI device to query
585  * @cap: capability code
586  *
587  * Returns the address of the requested extended capability structure
588  * within the device's PCI configuration space or 0 if the device does
589  * not support it.  Possible values for @cap include:
590  *
591  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
592  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
593  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
594  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
595  */
596 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
597 {
598 	return pci_find_next_ext_capability(dev, 0, cap);
599 }
600 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
601 
602 /**
603  * pci_get_dsn - Read and return the 8-byte Device Serial Number
604  * @dev: PCI device to query
605  *
606  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
607  * Number.
608  *
609  * Returns the DSN, or zero if the capability does not exist.
610  */
611 u64 pci_get_dsn(struct pci_dev *dev)
612 {
613 	u32 dword;
614 	u64 dsn;
615 	int pos;
616 
617 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
618 	if (!pos)
619 		return 0;
620 
621 	/*
622 	 * The Device Serial Number is two dwords offset 4 bytes from the
623 	 * capability position. The specification says that the first dword is
624 	 * the lower half, and the second dword is the upper half.
625 	 */
626 	pos += 4;
627 	pci_read_config_dword(dev, pos, &dword);
628 	dsn = (u64)dword;
629 	pci_read_config_dword(dev, pos + 4, &dword);
630 	dsn |= ((u64)dword) << 32;
631 
632 	return dsn;
633 }
634 EXPORT_SYMBOL_GPL(pci_get_dsn);
635 
636 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
637 {
638 	int rc, ttl = PCI_FIND_CAP_TTL;
639 	u8 cap, mask;
640 
641 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
642 		mask = HT_3BIT_CAP_MASK;
643 	else
644 		mask = HT_5BIT_CAP_MASK;
645 
646 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
647 				      PCI_CAP_ID_HT, &ttl);
648 	while (pos) {
649 		rc = pci_read_config_byte(dev, pos + 3, &cap);
650 		if (rc != PCIBIOS_SUCCESSFUL)
651 			return 0;
652 
653 		if ((cap & mask) == ht_cap)
654 			return pos;
655 
656 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
657 					      pos + PCI_CAP_LIST_NEXT,
658 					      PCI_CAP_ID_HT, &ttl);
659 	}
660 
661 	return 0;
662 }
663 
664 /**
665  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
666  * @dev: PCI device to query
667  * @pos: Position from which to continue searching
668  * @ht_cap: HyperTransport capability code
669  *
670  * To be used in conjunction with pci_find_ht_capability() to search for
671  * all capabilities matching @ht_cap. @pos should always be a value returned
672  * from pci_find_ht_capability().
673  *
674  * NB. To be 100% safe against broken PCI devices, the caller should take
675  * steps to avoid an infinite loop.
676  */
677 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
678 {
679 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
680 }
681 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
682 
683 /**
684  * pci_find_ht_capability - query a device's HyperTransport capabilities
685  * @dev: PCI device to query
686  * @ht_cap: HyperTransport capability code
687  *
688  * Tell if a device supports a given HyperTransport capability.
689  * Returns an address within the device's PCI configuration space
690  * or 0 in case the device does not support the request capability.
691  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
692  * which has a HyperTransport capability matching @ht_cap.
693  */
694 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
695 {
696 	u8 pos;
697 
698 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
699 	if (pos)
700 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
701 
702 	return pos;
703 }
704 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
705 
706 /**
707  * pci_find_vsec_capability - Find a vendor-specific extended capability
708  * @dev: PCI device to query
709  * @vendor: Vendor ID for which capability is defined
710  * @cap: Vendor-specific capability ID
711  *
712  * If @dev has Vendor ID @vendor, search for a VSEC capability with
713  * VSEC ID @cap. If found, return the capability offset in
714  * config space; otherwise return 0.
715  */
716 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
717 {
718 	u16 vsec = 0;
719 	u32 header;
720 
721 	if (vendor != dev->vendor)
722 		return 0;
723 
724 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
725 						     PCI_EXT_CAP_ID_VNDR))) {
726 		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
727 					  &header) == PCIBIOS_SUCCESSFUL &&
728 		    PCI_VNDR_HEADER_ID(header) == cap)
729 			return vsec;
730 	}
731 
732 	return 0;
733 }
734 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
735 
736 /**
737  * pci_find_dvsec_capability - Find DVSEC for vendor
738  * @dev: PCI device to query
739  * @vendor: Vendor ID to match for the DVSEC
740  * @dvsec: Designated Vendor-specific capability ID
741  *
742  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
743  * offset in config space; otherwise return 0.
744  */
745 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
746 {
747 	int pos;
748 
749 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
750 	if (!pos)
751 		return 0;
752 
753 	while (pos) {
754 		u16 v, id;
755 
756 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
757 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
758 		if (vendor == v && dvsec == id)
759 			return pos;
760 
761 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
762 	}
763 
764 	return 0;
765 }
766 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
767 
768 /**
769  * pci_find_parent_resource - return resource region of parent bus of given
770  *			      region
771  * @dev: PCI device structure contains resources to be searched
772  * @res: child resource record for which parent is sought
773  *
774  * For given resource region of given device, return the resource region of
775  * parent bus the given region is contained in.
776  */
777 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
778 					  struct resource *res)
779 {
780 	const struct pci_bus *bus = dev->bus;
781 	struct resource *r;
782 	int i;
783 
784 	pci_bus_for_each_resource(bus, r, i) {
785 		if (!r)
786 			continue;
787 		if (resource_contains(r, res)) {
788 
789 			/*
790 			 * If the window is prefetchable but the BAR is
791 			 * not, the allocator made a mistake.
792 			 */
793 			if (r->flags & IORESOURCE_PREFETCH &&
794 			    !(res->flags & IORESOURCE_PREFETCH))
795 				return NULL;
796 
797 			/*
798 			 * If we're below a transparent bridge, there may
799 			 * be both a positively-decoded aperture and a
800 			 * subtractively-decoded region that contain the BAR.
801 			 * We want the positively-decoded one, so this depends
802 			 * on pci_bus_for_each_resource() giving us those
803 			 * first.
804 			 */
805 			return r;
806 		}
807 	}
808 	return NULL;
809 }
810 EXPORT_SYMBOL(pci_find_parent_resource);
811 
812 /**
813  * pci_find_resource - Return matching PCI device resource
814  * @dev: PCI device to query
815  * @res: Resource to look for
816  *
817  * Goes over standard PCI resources (BARs) and checks if the given resource
818  * is partially or fully contained in any of them. In that case the
819  * matching resource is returned, %NULL otherwise.
820  */
821 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
822 {
823 	int i;
824 
825 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
826 		struct resource *r = &dev->resource[i];
827 
828 		if (r->start && resource_contains(r, res))
829 			return r;
830 	}
831 
832 	return NULL;
833 }
834 EXPORT_SYMBOL(pci_find_resource);
835 
836 /**
837  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
838  * @dev: the PCI device to operate on
839  * @pos: config space offset of status word
840  * @mask: mask of bit(s) to care about in status word
841  *
842  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
843  */
844 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
845 {
846 	int i;
847 
848 	/* Wait for Transaction Pending bit clean */
849 	for (i = 0; i < 4; i++) {
850 		u16 status;
851 		if (i)
852 			msleep((1 << (i - 1)) * 100);
853 
854 		pci_read_config_word(dev, pos, &status);
855 		if (!(status & mask))
856 			return 1;
857 	}
858 
859 	return 0;
860 }
861 
862 static int pci_acs_enable;
863 
864 /**
865  * pci_request_acs - ask for ACS to be enabled if supported
866  */
867 void pci_request_acs(void)
868 {
869 	pci_acs_enable = 1;
870 }
871 
872 static const char *disable_acs_redir_param;
873 
874 /**
875  * pci_disable_acs_redir - disable ACS redirect capabilities
876  * @dev: the PCI device
877  *
878  * For only devices specified in the disable_acs_redir parameter.
879  */
880 static void pci_disable_acs_redir(struct pci_dev *dev)
881 {
882 	int ret = 0;
883 	const char *p;
884 	int pos;
885 	u16 ctrl;
886 
887 	if (!disable_acs_redir_param)
888 		return;
889 
890 	p = disable_acs_redir_param;
891 	while (*p) {
892 		ret = pci_dev_str_match(dev, p, &p);
893 		if (ret < 0) {
894 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
895 				     disable_acs_redir_param);
896 
897 			break;
898 		} else if (ret == 1) {
899 			/* Found a match */
900 			break;
901 		}
902 
903 		if (*p != ';' && *p != ',') {
904 			/* End of param or invalid format */
905 			break;
906 		}
907 		p++;
908 	}
909 
910 	if (ret != 1)
911 		return;
912 
913 	if (!pci_dev_specific_disable_acs_redir(dev))
914 		return;
915 
916 	pos = dev->acs_cap;
917 	if (!pos) {
918 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
919 		return;
920 	}
921 
922 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
923 
924 	/* P2P Request & Completion Redirect */
925 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
926 
927 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
928 
929 	pci_info(dev, "disabled ACS redirect\n");
930 }
931 
932 /**
933  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
934  * @dev: the PCI device
935  */
936 static void pci_std_enable_acs(struct pci_dev *dev)
937 {
938 	int pos;
939 	u16 cap;
940 	u16 ctrl;
941 
942 	pos = dev->acs_cap;
943 	if (!pos)
944 		return;
945 
946 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
947 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
948 
949 	/* Source Validation */
950 	ctrl |= (cap & PCI_ACS_SV);
951 
952 	/* P2P Request Redirect */
953 	ctrl |= (cap & PCI_ACS_RR);
954 
955 	/* P2P Completion Redirect */
956 	ctrl |= (cap & PCI_ACS_CR);
957 
958 	/* Upstream Forwarding */
959 	ctrl |= (cap & PCI_ACS_UF);
960 
961 	/* Enable Translation Blocking for external devices and noats */
962 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
963 		ctrl |= (cap & PCI_ACS_TB);
964 
965 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
966 }
967 
968 /**
969  * pci_enable_acs - enable ACS if hardware support it
970  * @dev: the PCI device
971  */
972 static void pci_enable_acs(struct pci_dev *dev)
973 {
974 	if (!pci_acs_enable)
975 		goto disable_acs_redir;
976 
977 	if (!pci_dev_specific_enable_acs(dev))
978 		goto disable_acs_redir;
979 
980 	pci_std_enable_acs(dev);
981 
982 disable_acs_redir:
983 	/*
984 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
985 	 * enabled by the kernel because it may have been enabled by
986 	 * platform firmware.  So if we are told to disable it, we should
987 	 * always disable it after setting the kernel's default
988 	 * preferences.
989 	 */
990 	pci_disable_acs_redir(dev);
991 }
992 
993 /**
994  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
995  * @dev: PCI device to have its BARs restored
996  *
997  * Restore the BAR values for a given device, so as to make it
998  * accessible by its driver.
999  */
1000 static void pci_restore_bars(struct pci_dev *dev)
1001 {
1002 	int i;
1003 
1004 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1005 		pci_update_resource(dev, i);
1006 }
1007 
1008 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1009 {
1010 	if (pci_use_mid_pm())
1011 		return true;
1012 
1013 	return acpi_pci_power_manageable(dev);
1014 }
1015 
1016 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1017 					       pci_power_t t)
1018 {
1019 	if (pci_use_mid_pm())
1020 		return mid_pci_set_power_state(dev, t);
1021 
1022 	return acpi_pci_set_power_state(dev, t);
1023 }
1024 
1025 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1026 {
1027 	if (pci_use_mid_pm())
1028 		return mid_pci_get_power_state(dev);
1029 
1030 	return acpi_pci_get_power_state(dev);
1031 }
1032 
1033 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1034 {
1035 	if (!pci_use_mid_pm())
1036 		acpi_pci_refresh_power_state(dev);
1037 }
1038 
1039 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1040 {
1041 	if (pci_use_mid_pm())
1042 		return PCI_POWER_ERROR;
1043 
1044 	return acpi_pci_choose_state(dev);
1045 }
1046 
1047 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1048 {
1049 	if (pci_use_mid_pm())
1050 		return PCI_POWER_ERROR;
1051 
1052 	return acpi_pci_wakeup(dev, enable);
1053 }
1054 
1055 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1056 {
1057 	if (pci_use_mid_pm())
1058 		return false;
1059 
1060 	return acpi_pci_need_resume(dev);
1061 }
1062 
1063 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1064 {
1065 	if (pci_use_mid_pm())
1066 		return false;
1067 
1068 	return acpi_pci_bridge_d3(dev);
1069 }
1070 
1071 /**
1072  * pci_update_current_state - Read power state of given device and cache it
1073  * @dev: PCI device to handle.
1074  * @state: State to cache in case the device doesn't have the PM capability
1075  *
1076  * The power state is read from the PMCSR register, which however is
1077  * inaccessible in D3cold.  The platform firmware is therefore queried first
1078  * to detect accessibility of the register.  In case the platform firmware
1079  * reports an incorrect state or the device isn't power manageable by the
1080  * platform at all, we try to detect D3cold by testing accessibility of the
1081  * vendor ID in config space.
1082  */
1083 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1084 {
1085 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1086 		dev->current_state = PCI_D3cold;
1087 	} else if (dev->pm_cap) {
1088 		u16 pmcsr;
1089 
1090 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1091 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1092 			dev->current_state = PCI_D3cold;
1093 			return;
1094 		}
1095 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1096 	} else {
1097 		dev->current_state = state;
1098 	}
1099 }
1100 
1101 /**
1102  * pci_refresh_power_state - Refresh the given device's power state data
1103  * @dev: Target PCI device.
1104  *
1105  * Ask the platform to refresh the devices power state information and invoke
1106  * pci_update_current_state() to update its current PCI power state.
1107  */
1108 void pci_refresh_power_state(struct pci_dev *dev)
1109 {
1110 	platform_pci_refresh_power_state(dev);
1111 	pci_update_current_state(dev, dev->current_state);
1112 }
1113 
1114 /**
1115  * pci_platform_power_transition - Use platform to change device power state
1116  * @dev: PCI device to handle.
1117  * @state: State to put the device into.
1118  */
1119 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1120 {
1121 	int error;
1122 
1123 	error = platform_pci_set_power_state(dev, state);
1124 	if (!error)
1125 		pci_update_current_state(dev, state);
1126 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1127 		dev->current_state = PCI_D0;
1128 
1129 	return error;
1130 }
1131 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1132 
1133 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1134 {
1135 	pm_request_resume(&pci_dev->dev);
1136 	return 0;
1137 }
1138 
1139 /**
1140  * pci_resume_bus - Walk given bus and runtime resume devices on it
1141  * @bus: Top bus of the subtree to walk.
1142  */
1143 void pci_resume_bus(struct pci_bus *bus)
1144 {
1145 	if (bus)
1146 		pci_walk_bus(bus, pci_resume_one, NULL);
1147 }
1148 
1149 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1150 {
1151 	int delay = 1;
1152 	u32 id;
1153 
1154 	/*
1155 	 * After reset, the device should not silently discard config
1156 	 * requests, but it may still indicate that it needs more time by
1157 	 * responding to them with CRS completions.  The Root Port will
1158 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1159 	 * the read (except when CRS SV is enabled and the read was for the
1160 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1161 	 *
1162 	 * Wait for the device to return a non-CRS completion.  Read the
1163 	 * Command register instead of Vendor ID so we don't have to
1164 	 * contend with the CRS SV value.
1165 	 */
1166 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1167 	while (PCI_POSSIBLE_ERROR(id)) {
1168 		if (delay > timeout) {
1169 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1170 				 delay - 1, reset_type);
1171 			return -ENOTTY;
1172 		}
1173 
1174 		if (delay > PCI_RESET_WAIT)
1175 			pci_info(dev, "not ready %dms after %s; waiting\n",
1176 				 delay - 1, reset_type);
1177 
1178 		msleep(delay);
1179 		delay *= 2;
1180 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1181 	}
1182 
1183 	if (delay > PCI_RESET_WAIT)
1184 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1185 			 reset_type);
1186 
1187 	return 0;
1188 }
1189 
1190 /**
1191  * pci_power_up - Put the given device into D0
1192  * @dev: PCI device to power up
1193  *
1194  * On success, return 0 or 1, depending on whether or not it is necessary to
1195  * restore the device's BARs subsequently (1 is returned in that case).
1196  */
1197 int pci_power_up(struct pci_dev *dev)
1198 {
1199 	bool need_restore;
1200 	pci_power_t state;
1201 	u16 pmcsr;
1202 
1203 	platform_pci_set_power_state(dev, PCI_D0);
1204 
1205 	if (!dev->pm_cap) {
1206 		state = platform_pci_get_power_state(dev);
1207 		if (state == PCI_UNKNOWN)
1208 			dev->current_state = PCI_D0;
1209 		else
1210 			dev->current_state = state;
1211 
1212 		if (state == PCI_D0)
1213 			return 0;
1214 
1215 		return -EIO;
1216 	}
1217 
1218 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1219 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1220 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1221 			pci_power_name(dev->current_state));
1222 		dev->current_state = PCI_D3cold;
1223 		return -EIO;
1224 	}
1225 
1226 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1227 
1228 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1229 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1230 
1231 	if (state == PCI_D0)
1232 		goto end;
1233 
1234 	/*
1235 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1236 	 * PME_En, and sets PowerState to 0.
1237 	 */
1238 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1239 
1240 	/* Mandatory transition delays; see PCI PM 1.2. */
1241 	if (state == PCI_D3hot)
1242 		pci_dev_d3_sleep(dev);
1243 	else if (state == PCI_D2)
1244 		udelay(PCI_PM_D2_DELAY);
1245 
1246 end:
1247 	dev->current_state = PCI_D0;
1248 	if (need_restore)
1249 		return 1;
1250 
1251 	return 0;
1252 }
1253 
1254 /**
1255  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1256  * @dev: PCI device to power up
1257  *
1258  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1259  * to confirm the state change, restore its BARs if they might be lost and
1260  * reconfigure ASPM in acordance with the new power state.
1261  *
1262  * If pci_restore_state() is going to be called right after a power state change
1263  * to D0, it is more efficient to use pci_power_up() directly instead of this
1264  * function.
1265  */
1266 static int pci_set_full_power_state(struct pci_dev *dev)
1267 {
1268 	u16 pmcsr;
1269 	int ret;
1270 
1271 	ret = pci_power_up(dev);
1272 	if (ret < 0)
1273 		return ret;
1274 
1275 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1276 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1277 	if (dev->current_state != PCI_D0) {
1278 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1279 				     pci_power_name(dev->current_state));
1280 	} else if (ret > 0) {
1281 		/*
1282 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1283 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1284 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1285 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1286 		 * For example, at least some versions of the 3c905B and the
1287 		 * 3c556B exhibit this behaviour.
1288 		 *
1289 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1290 		 * devices in a D3hot state at boot.  Consequently, we need to
1291 		 * restore at least the BARs so that the device will be
1292 		 * accessible to its driver.
1293 		 */
1294 		pci_restore_bars(dev);
1295 	}
1296 
1297 	return 0;
1298 }
1299 
1300 /**
1301  * __pci_dev_set_current_state - Set current state of a PCI device
1302  * @dev: Device to handle
1303  * @data: pointer to state to be set
1304  */
1305 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1306 {
1307 	pci_power_t state = *(pci_power_t *)data;
1308 
1309 	dev->current_state = state;
1310 	return 0;
1311 }
1312 
1313 /**
1314  * pci_bus_set_current_state - Walk given bus and set current state of devices
1315  * @bus: Top bus of the subtree to walk.
1316  * @state: state to be set
1317  */
1318 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1319 {
1320 	if (bus)
1321 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1322 }
1323 
1324 /**
1325  * pci_set_low_power_state - Put a PCI device into a low-power state.
1326  * @dev: PCI device to handle.
1327  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1328  *
1329  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1330  *
1331  * RETURN VALUE:
1332  * -EINVAL if the requested state is invalid.
1333  * -EIO if device does not support PCI PM or its PM capabilities register has a
1334  * wrong version, or device doesn't support the requested state.
1335  * 0 if device already is in the requested state.
1336  * 0 if device's power state has been successfully changed.
1337  */
1338 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1339 {
1340 	u16 pmcsr;
1341 
1342 	if (!dev->pm_cap)
1343 		return -EIO;
1344 
1345 	/*
1346 	 * Validate transition: We can enter D0 from any state, but if
1347 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1348 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1349 	 * we'd have to go from D3 to D0, then to D1.
1350 	 */
1351 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1352 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1353 			pci_power_name(dev->current_state),
1354 			pci_power_name(state));
1355 		return -EINVAL;
1356 	}
1357 
1358 	/* Check if this device supports the desired state */
1359 	if ((state == PCI_D1 && !dev->d1_support)
1360 	   || (state == PCI_D2 && !dev->d2_support))
1361 		return -EIO;
1362 
1363 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1364 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1365 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1366 			pci_power_name(dev->current_state),
1367 			pci_power_name(state));
1368 		dev->current_state = PCI_D3cold;
1369 		return -EIO;
1370 	}
1371 
1372 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1373 	pmcsr |= state;
1374 
1375 	/* Enter specified state */
1376 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1377 
1378 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1379 	if (state == PCI_D3hot)
1380 		pci_dev_d3_sleep(dev);
1381 	else if (state == PCI_D2)
1382 		udelay(PCI_PM_D2_DELAY);
1383 
1384 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1385 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1386 	if (dev->current_state != state)
1387 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1388 				     pci_power_name(dev->current_state),
1389 				     pci_power_name(state));
1390 
1391 	return 0;
1392 }
1393 
1394 /**
1395  * pci_set_power_state - Set the power state of a PCI device
1396  * @dev: PCI device to handle.
1397  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1398  *
1399  * Transition a device to a new power state, using the platform firmware and/or
1400  * the device's PCI PM registers.
1401  *
1402  * RETURN VALUE:
1403  * -EINVAL if the requested state is invalid.
1404  * -EIO if device does not support PCI PM or its PM capabilities register has a
1405  * wrong version, or device doesn't support the requested state.
1406  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1407  * 0 if device already is in the requested state.
1408  * 0 if the transition is to D3 but D3 is not supported.
1409  * 0 if device's power state has been successfully changed.
1410  */
1411 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1412 {
1413 	int error;
1414 
1415 	/* Bound the state we're entering */
1416 	if (state > PCI_D3cold)
1417 		state = PCI_D3cold;
1418 	else if (state < PCI_D0)
1419 		state = PCI_D0;
1420 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1421 
1422 		/*
1423 		 * If the device or the parent bridge do not support PCI
1424 		 * PM, ignore the request if we're doing anything other
1425 		 * than putting it into D0 (which would only happen on
1426 		 * boot).
1427 		 */
1428 		return 0;
1429 
1430 	/* Check if we're already there */
1431 	if (dev->current_state == state)
1432 		return 0;
1433 
1434 	if (state == PCI_D0)
1435 		return pci_set_full_power_state(dev);
1436 
1437 	/*
1438 	 * This device is quirked not to be put into D3, so don't put it in
1439 	 * D3
1440 	 */
1441 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1442 		return 0;
1443 
1444 	if (state == PCI_D3cold) {
1445 		/*
1446 		 * To put the device in D3cold, put it into D3hot in the native
1447 		 * way, then put it into D3cold using platform ops.
1448 		 */
1449 		error = pci_set_low_power_state(dev, PCI_D3hot);
1450 
1451 		if (pci_platform_power_transition(dev, PCI_D3cold))
1452 			return error;
1453 
1454 		/* Powering off a bridge may power off the whole hierarchy */
1455 		if (dev->current_state == PCI_D3cold)
1456 			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1457 	} else {
1458 		error = pci_set_low_power_state(dev, state);
1459 
1460 		if (pci_platform_power_transition(dev, state))
1461 			return error;
1462 	}
1463 
1464 	return 0;
1465 }
1466 EXPORT_SYMBOL(pci_set_power_state);
1467 
1468 #define PCI_EXP_SAVE_REGS	7
1469 
1470 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1471 						       u16 cap, bool extended)
1472 {
1473 	struct pci_cap_saved_state *tmp;
1474 
1475 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1476 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1477 			return tmp;
1478 	}
1479 	return NULL;
1480 }
1481 
1482 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1483 {
1484 	return _pci_find_saved_cap(dev, cap, false);
1485 }
1486 
1487 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1488 {
1489 	return _pci_find_saved_cap(dev, cap, true);
1490 }
1491 
1492 static int pci_save_pcie_state(struct pci_dev *dev)
1493 {
1494 	int i = 0;
1495 	struct pci_cap_saved_state *save_state;
1496 	u16 *cap;
1497 
1498 	if (!pci_is_pcie(dev))
1499 		return 0;
1500 
1501 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1502 	if (!save_state) {
1503 		pci_err(dev, "buffer not found in %s\n", __func__);
1504 		return -ENOMEM;
1505 	}
1506 
1507 	cap = (u16 *)&save_state->cap.data[0];
1508 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1509 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1510 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1511 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1512 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1513 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1514 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1515 
1516 	return 0;
1517 }
1518 
1519 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1520 {
1521 #ifdef CONFIG_PCIEASPM
1522 	struct pci_dev *bridge;
1523 	u32 ctl;
1524 
1525 	bridge = pci_upstream_bridge(dev);
1526 	if (bridge && bridge->ltr_path) {
1527 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1528 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1529 			pci_dbg(bridge, "re-enabling LTR\n");
1530 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1531 						 PCI_EXP_DEVCTL2_LTR_EN);
1532 		}
1533 	}
1534 #endif
1535 }
1536 
1537 static void pci_restore_pcie_state(struct pci_dev *dev)
1538 {
1539 	int i = 0;
1540 	struct pci_cap_saved_state *save_state;
1541 	u16 *cap;
1542 
1543 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1544 	if (!save_state)
1545 		return;
1546 
1547 	/*
1548 	 * Downstream ports reset the LTR enable bit when link goes down.
1549 	 * Check and re-configure the bit here before restoring device.
1550 	 * PCIe r5.0, sec 7.5.3.16.
1551 	 */
1552 	pci_bridge_reconfigure_ltr(dev);
1553 
1554 	cap = (u16 *)&save_state->cap.data[0];
1555 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1556 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1557 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1558 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1559 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1560 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1561 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1562 }
1563 
1564 static int pci_save_pcix_state(struct pci_dev *dev)
1565 {
1566 	int pos;
1567 	struct pci_cap_saved_state *save_state;
1568 
1569 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1570 	if (!pos)
1571 		return 0;
1572 
1573 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1574 	if (!save_state) {
1575 		pci_err(dev, "buffer not found in %s\n", __func__);
1576 		return -ENOMEM;
1577 	}
1578 
1579 	pci_read_config_word(dev, pos + PCI_X_CMD,
1580 			     (u16 *)save_state->cap.data);
1581 
1582 	return 0;
1583 }
1584 
1585 static void pci_restore_pcix_state(struct pci_dev *dev)
1586 {
1587 	int i = 0, pos;
1588 	struct pci_cap_saved_state *save_state;
1589 	u16 *cap;
1590 
1591 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1592 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1593 	if (!save_state || !pos)
1594 		return;
1595 	cap = (u16 *)&save_state->cap.data[0];
1596 
1597 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1598 }
1599 
1600 static void pci_save_ltr_state(struct pci_dev *dev)
1601 {
1602 	int ltr;
1603 	struct pci_cap_saved_state *save_state;
1604 	u32 *cap;
1605 
1606 	if (!pci_is_pcie(dev))
1607 		return;
1608 
1609 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1610 	if (!ltr)
1611 		return;
1612 
1613 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1614 	if (!save_state) {
1615 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1616 		return;
1617 	}
1618 
1619 	/* Some broken devices only support dword access to LTR */
1620 	cap = &save_state->cap.data[0];
1621 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1622 }
1623 
1624 static void pci_restore_ltr_state(struct pci_dev *dev)
1625 {
1626 	struct pci_cap_saved_state *save_state;
1627 	int ltr;
1628 	u32 *cap;
1629 
1630 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1631 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1632 	if (!save_state || !ltr)
1633 		return;
1634 
1635 	/* Some broken devices only support dword access to LTR */
1636 	cap = &save_state->cap.data[0];
1637 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1638 }
1639 
1640 /**
1641  * pci_save_state - save the PCI configuration space of a device before
1642  *		    suspending
1643  * @dev: PCI device that we're dealing with
1644  */
1645 int pci_save_state(struct pci_dev *dev)
1646 {
1647 	int i;
1648 	/* XXX: 100% dword access ok here? */
1649 	for (i = 0; i < 16; i++) {
1650 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1651 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1652 			i * 4, dev->saved_config_space[i]);
1653 	}
1654 	dev->state_saved = true;
1655 
1656 	i = pci_save_pcie_state(dev);
1657 	if (i != 0)
1658 		return i;
1659 
1660 	i = pci_save_pcix_state(dev);
1661 	if (i != 0)
1662 		return i;
1663 
1664 	pci_save_ltr_state(dev);
1665 	pci_save_dpc_state(dev);
1666 	pci_save_aer_state(dev);
1667 	pci_save_ptm_state(dev);
1668 	return pci_save_vc_state(dev);
1669 }
1670 EXPORT_SYMBOL(pci_save_state);
1671 
1672 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1673 				     u32 saved_val, int retry, bool force)
1674 {
1675 	u32 val;
1676 
1677 	pci_read_config_dword(pdev, offset, &val);
1678 	if (!force && val == saved_val)
1679 		return;
1680 
1681 	for (;;) {
1682 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1683 			offset, val, saved_val);
1684 		pci_write_config_dword(pdev, offset, saved_val);
1685 		if (retry-- <= 0)
1686 			return;
1687 
1688 		pci_read_config_dword(pdev, offset, &val);
1689 		if (val == saved_val)
1690 			return;
1691 
1692 		mdelay(1);
1693 	}
1694 }
1695 
1696 static void pci_restore_config_space_range(struct pci_dev *pdev,
1697 					   int start, int end, int retry,
1698 					   bool force)
1699 {
1700 	int index;
1701 
1702 	for (index = end; index >= start; index--)
1703 		pci_restore_config_dword(pdev, 4 * index,
1704 					 pdev->saved_config_space[index],
1705 					 retry, force);
1706 }
1707 
1708 static void pci_restore_config_space(struct pci_dev *pdev)
1709 {
1710 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1711 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1712 		/* Restore BARs before the command register. */
1713 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1714 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1715 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1716 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1717 
1718 		/*
1719 		 * Force rewriting of prefetch registers to avoid S3 resume
1720 		 * issues on Intel PCI bridges that occur when these
1721 		 * registers are not explicitly written.
1722 		 */
1723 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1724 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1725 	} else {
1726 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1727 	}
1728 }
1729 
1730 static void pci_restore_rebar_state(struct pci_dev *pdev)
1731 {
1732 	unsigned int pos, nbars, i;
1733 	u32 ctrl;
1734 
1735 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1736 	if (!pos)
1737 		return;
1738 
1739 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1740 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1741 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1742 
1743 	for (i = 0; i < nbars; i++, pos += 8) {
1744 		struct resource *res;
1745 		int bar_idx, size;
1746 
1747 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1748 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1749 		res = pdev->resource + bar_idx;
1750 		size = pci_rebar_bytes_to_size(resource_size(res));
1751 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1752 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1753 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1754 	}
1755 }
1756 
1757 /**
1758  * pci_restore_state - Restore the saved state of a PCI device
1759  * @dev: PCI device that we're dealing with
1760  */
1761 void pci_restore_state(struct pci_dev *dev)
1762 {
1763 	if (!dev->state_saved)
1764 		return;
1765 
1766 	/*
1767 	 * Restore max latencies (in the LTR capability) before enabling
1768 	 * LTR itself (in the PCIe capability).
1769 	 */
1770 	pci_restore_ltr_state(dev);
1771 
1772 	pci_restore_pcie_state(dev);
1773 	pci_restore_pasid_state(dev);
1774 	pci_restore_pri_state(dev);
1775 	pci_restore_ats_state(dev);
1776 	pci_restore_vc_state(dev);
1777 	pci_restore_rebar_state(dev);
1778 	pci_restore_dpc_state(dev);
1779 	pci_restore_ptm_state(dev);
1780 
1781 	pci_aer_clear_status(dev);
1782 	pci_restore_aer_state(dev);
1783 
1784 	pci_restore_config_space(dev);
1785 
1786 	pci_restore_pcix_state(dev);
1787 	pci_restore_msi_state(dev);
1788 
1789 	/* Restore ACS and IOV configuration state */
1790 	pci_enable_acs(dev);
1791 	pci_restore_iov_state(dev);
1792 
1793 	dev->state_saved = false;
1794 }
1795 EXPORT_SYMBOL(pci_restore_state);
1796 
1797 struct pci_saved_state {
1798 	u32 config_space[16];
1799 	struct pci_cap_saved_data cap[];
1800 };
1801 
1802 /**
1803  * pci_store_saved_state - Allocate and return an opaque struct containing
1804  *			   the device saved state.
1805  * @dev: PCI device that we're dealing with
1806  *
1807  * Return NULL if no state or error.
1808  */
1809 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1810 {
1811 	struct pci_saved_state *state;
1812 	struct pci_cap_saved_state *tmp;
1813 	struct pci_cap_saved_data *cap;
1814 	size_t size;
1815 
1816 	if (!dev->state_saved)
1817 		return NULL;
1818 
1819 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1820 
1821 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1822 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1823 
1824 	state = kzalloc(size, GFP_KERNEL);
1825 	if (!state)
1826 		return NULL;
1827 
1828 	memcpy(state->config_space, dev->saved_config_space,
1829 	       sizeof(state->config_space));
1830 
1831 	cap = state->cap;
1832 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1833 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1834 		memcpy(cap, &tmp->cap, len);
1835 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1836 	}
1837 	/* Empty cap_save terminates list */
1838 
1839 	return state;
1840 }
1841 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1842 
1843 /**
1844  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1845  * @dev: PCI device that we're dealing with
1846  * @state: Saved state returned from pci_store_saved_state()
1847  */
1848 int pci_load_saved_state(struct pci_dev *dev,
1849 			 struct pci_saved_state *state)
1850 {
1851 	struct pci_cap_saved_data *cap;
1852 
1853 	dev->state_saved = false;
1854 
1855 	if (!state)
1856 		return 0;
1857 
1858 	memcpy(dev->saved_config_space, state->config_space,
1859 	       sizeof(state->config_space));
1860 
1861 	cap = state->cap;
1862 	while (cap->size) {
1863 		struct pci_cap_saved_state *tmp;
1864 
1865 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1866 		if (!tmp || tmp->cap.size != cap->size)
1867 			return -EINVAL;
1868 
1869 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1870 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1871 		       sizeof(struct pci_cap_saved_data) + cap->size);
1872 	}
1873 
1874 	dev->state_saved = true;
1875 	return 0;
1876 }
1877 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1878 
1879 /**
1880  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1881  *				   and free the memory allocated for it.
1882  * @dev: PCI device that we're dealing with
1883  * @state: Pointer to saved state returned from pci_store_saved_state()
1884  */
1885 int pci_load_and_free_saved_state(struct pci_dev *dev,
1886 				  struct pci_saved_state **state)
1887 {
1888 	int ret = pci_load_saved_state(dev, *state);
1889 	kfree(*state);
1890 	*state = NULL;
1891 	return ret;
1892 }
1893 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1894 
1895 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1896 {
1897 	return pci_enable_resources(dev, bars);
1898 }
1899 
1900 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1901 {
1902 	int err;
1903 	struct pci_dev *bridge;
1904 	u16 cmd;
1905 	u8 pin;
1906 
1907 	err = pci_set_power_state(dev, PCI_D0);
1908 	if (err < 0 && err != -EIO)
1909 		return err;
1910 
1911 	bridge = pci_upstream_bridge(dev);
1912 	if (bridge)
1913 		pcie_aspm_powersave_config_link(bridge);
1914 
1915 	err = pcibios_enable_device(dev, bars);
1916 	if (err < 0)
1917 		return err;
1918 	pci_fixup_device(pci_fixup_enable, dev);
1919 
1920 	if (dev->msi_enabled || dev->msix_enabled)
1921 		return 0;
1922 
1923 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1924 	if (pin) {
1925 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1926 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1927 			pci_write_config_word(dev, PCI_COMMAND,
1928 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1929 	}
1930 
1931 	return 0;
1932 }
1933 
1934 /**
1935  * pci_reenable_device - Resume abandoned device
1936  * @dev: PCI device to be resumed
1937  *
1938  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1939  * to be called by normal code, write proper resume handler and use it instead.
1940  */
1941 int pci_reenable_device(struct pci_dev *dev)
1942 {
1943 	if (pci_is_enabled(dev))
1944 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1945 	return 0;
1946 }
1947 EXPORT_SYMBOL(pci_reenable_device);
1948 
1949 static void pci_enable_bridge(struct pci_dev *dev)
1950 {
1951 	struct pci_dev *bridge;
1952 	int retval;
1953 
1954 	bridge = pci_upstream_bridge(dev);
1955 	if (bridge)
1956 		pci_enable_bridge(bridge);
1957 
1958 	if (pci_is_enabled(dev)) {
1959 		if (!dev->is_busmaster)
1960 			pci_set_master(dev);
1961 		return;
1962 	}
1963 
1964 	retval = pci_enable_device(dev);
1965 	if (retval)
1966 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1967 			retval);
1968 	pci_set_master(dev);
1969 }
1970 
1971 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1972 {
1973 	struct pci_dev *bridge;
1974 	int err;
1975 	int i, bars = 0;
1976 
1977 	/*
1978 	 * Power state could be unknown at this point, either due to a fresh
1979 	 * boot or a device removal call.  So get the current power state
1980 	 * so that things like MSI message writing will behave as expected
1981 	 * (e.g. if the device really is in D0 at enable time).
1982 	 */
1983 	pci_update_current_state(dev, dev->current_state);
1984 
1985 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1986 		return 0;		/* already enabled */
1987 
1988 	bridge = pci_upstream_bridge(dev);
1989 	if (bridge)
1990 		pci_enable_bridge(bridge);
1991 
1992 	/* only skip sriov related */
1993 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1994 		if (dev->resource[i].flags & flags)
1995 			bars |= (1 << i);
1996 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1997 		if (dev->resource[i].flags & flags)
1998 			bars |= (1 << i);
1999 
2000 	err = do_pci_enable_device(dev, bars);
2001 	if (err < 0)
2002 		atomic_dec(&dev->enable_cnt);
2003 	return err;
2004 }
2005 
2006 /**
2007  * pci_enable_device_io - Initialize a device for use with IO space
2008  * @dev: PCI device to be initialized
2009  *
2010  * Initialize device before it's used by a driver. Ask low-level code
2011  * to enable I/O resources. Wake up the device if it was suspended.
2012  * Beware, this function can fail.
2013  */
2014 int pci_enable_device_io(struct pci_dev *dev)
2015 {
2016 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2017 }
2018 EXPORT_SYMBOL(pci_enable_device_io);
2019 
2020 /**
2021  * pci_enable_device_mem - Initialize a device for use with Memory space
2022  * @dev: PCI device to be initialized
2023  *
2024  * Initialize device before it's used by a driver. Ask low-level code
2025  * to enable Memory resources. Wake up the device if it was suspended.
2026  * Beware, this function can fail.
2027  */
2028 int pci_enable_device_mem(struct pci_dev *dev)
2029 {
2030 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2031 }
2032 EXPORT_SYMBOL(pci_enable_device_mem);
2033 
2034 /**
2035  * pci_enable_device - Initialize device before it's used by a driver.
2036  * @dev: PCI device to be initialized
2037  *
2038  * Initialize device before it's used by a driver. Ask low-level code
2039  * to enable I/O and memory. Wake up the device if it was suspended.
2040  * Beware, this function can fail.
2041  *
2042  * Note we don't actually enable the device many times if we call
2043  * this function repeatedly (we just increment the count).
2044  */
2045 int pci_enable_device(struct pci_dev *dev)
2046 {
2047 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2048 }
2049 EXPORT_SYMBOL(pci_enable_device);
2050 
2051 /*
2052  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2053  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2054  * there's no need to track it separately.  pci_devres is initialized
2055  * when a device is enabled using managed PCI device enable interface.
2056  */
2057 struct pci_devres {
2058 	unsigned int enabled:1;
2059 	unsigned int pinned:1;
2060 	unsigned int orig_intx:1;
2061 	unsigned int restore_intx:1;
2062 	unsigned int mwi:1;
2063 	u32 region_mask;
2064 };
2065 
2066 static void pcim_release(struct device *gendev, void *res)
2067 {
2068 	struct pci_dev *dev = to_pci_dev(gendev);
2069 	struct pci_devres *this = res;
2070 	int i;
2071 
2072 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2073 		if (this->region_mask & (1 << i))
2074 			pci_release_region(dev, i);
2075 
2076 	if (this->mwi)
2077 		pci_clear_mwi(dev);
2078 
2079 	if (this->restore_intx)
2080 		pci_intx(dev, this->orig_intx);
2081 
2082 	if (this->enabled && !this->pinned)
2083 		pci_disable_device(dev);
2084 }
2085 
2086 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2087 {
2088 	struct pci_devres *dr, *new_dr;
2089 
2090 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2091 	if (dr)
2092 		return dr;
2093 
2094 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2095 	if (!new_dr)
2096 		return NULL;
2097 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2098 }
2099 
2100 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2101 {
2102 	if (pci_is_managed(pdev))
2103 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2104 	return NULL;
2105 }
2106 
2107 /**
2108  * pcim_enable_device - Managed pci_enable_device()
2109  * @pdev: PCI device to be initialized
2110  *
2111  * Managed pci_enable_device().
2112  */
2113 int pcim_enable_device(struct pci_dev *pdev)
2114 {
2115 	struct pci_devres *dr;
2116 	int rc;
2117 
2118 	dr = get_pci_dr(pdev);
2119 	if (unlikely(!dr))
2120 		return -ENOMEM;
2121 	if (dr->enabled)
2122 		return 0;
2123 
2124 	rc = pci_enable_device(pdev);
2125 	if (!rc) {
2126 		pdev->is_managed = 1;
2127 		dr->enabled = 1;
2128 	}
2129 	return rc;
2130 }
2131 EXPORT_SYMBOL(pcim_enable_device);
2132 
2133 /**
2134  * pcim_pin_device - Pin managed PCI device
2135  * @pdev: PCI device to pin
2136  *
2137  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2138  * driver detach.  @pdev must have been enabled with
2139  * pcim_enable_device().
2140  */
2141 void pcim_pin_device(struct pci_dev *pdev)
2142 {
2143 	struct pci_devres *dr;
2144 
2145 	dr = find_pci_dr(pdev);
2146 	WARN_ON(!dr || !dr->enabled);
2147 	if (dr)
2148 		dr->pinned = 1;
2149 }
2150 EXPORT_SYMBOL(pcim_pin_device);
2151 
2152 /*
2153  * pcibios_device_add - provide arch specific hooks when adding device dev
2154  * @dev: the PCI device being added
2155  *
2156  * Permits the platform to provide architecture specific functionality when
2157  * devices are added. This is the default implementation. Architecture
2158  * implementations can override this.
2159  */
2160 int __weak pcibios_device_add(struct pci_dev *dev)
2161 {
2162 	return 0;
2163 }
2164 
2165 /**
2166  * pcibios_release_device - provide arch specific hooks when releasing
2167  *			    device dev
2168  * @dev: the PCI device being released
2169  *
2170  * Permits the platform to provide architecture specific functionality when
2171  * devices are released. This is the default implementation. Architecture
2172  * implementations can override this.
2173  */
2174 void __weak pcibios_release_device(struct pci_dev *dev) {}
2175 
2176 /**
2177  * pcibios_disable_device - disable arch specific PCI resources for device dev
2178  * @dev: the PCI device to disable
2179  *
2180  * Disables architecture specific PCI resources for the device. This
2181  * is the default implementation. Architecture implementations can
2182  * override this.
2183  */
2184 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2185 
2186 /**
2187  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2188  * @irq: ISA IRQ to penalize
2189  * @active: IRQ active or not
2190  *
2191  * Permits the platform to provide architecture-specific functionality when
2192  * penalizing ISA IRQs. This is the default implementation. Architecture
2193  * implementations can override this.
2194  */
2195 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2196 
2197 static void do_pci_disable_device(struct pci_dev *dev)
2198 {
2199 	u16 pci_command;
2200 
2201 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2202 	if (pci_command & PCI_COMMAND_MASTER) {
2203 		pci_command &= ~PCI_COMMAND_MASTER;
2204 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2205 	}
2206 
2207 	pcibios_disable_device(dev);
2208 }
2209 
2210 /**
2211  * pci_disable_enabled_device - Disable device without updating enable_cnt
2212  * @dev: PCI device to disable
2213  *
2214  * NOTE: This function is a backend of PCI power management routines and is
2215  * not supposed to be called drivers.
2216  */
2217 void pci_disable_enabled_device(struct pci_dev *dev)
2218 {
2219 	if (pci_is_enabled(dev))
2220 		do_pci_disable_device(dev);
2221 }
2222 
2223 /**
2224  * pci_disable_device - Disable PCI device after use
2225  * @dev: PCI device to be disabled
2226  *
2227  * Signal to the system that the PCI device is not in use by the system
2228  * anymore.  This only involves disabling PCI bus-mastering, if active.
2229  *
2230  * Note we don't actually disable the device until all callers of
2231  * pci_enable_device() have called pci_disable_device().
2232  */
2233 void pci_disable_device(struct pci_dev *dev)
2234 {
2235 	struct pci_devres *dr;
2236 
2237 	dr = find_pci_dr(dev);
2238 	if (dr)
2239 		dr->enabled = 0;
2240 
2241 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2242 		      "disabling already-disabled device");
2243 
2244 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2245 		return;
2246 
2247 	do_pci_disable_device(dev);
2248 
2249 	dev->is_busmaster = 0;
2250 }
2251 EXPORT_SYMBOL(pci_disable_device);
2252 
2253 /**
2254  * pcibios_set_pcie_reset_state - set reset state for device dev
2255  * @dev: the PCIe device reset
2256  * @state: Reset state to enter into
2257  *
2258  * Set the PCIe reset state for the device. This is the default
2259  * implementation. Architecture implementations can override this.
2260  */
2261 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2262 					enum pcie_reset_state state)
2263 {
2264 	return -EINVAL;
2265 }
2266 
2267 /**
2268  * pci_set_pcie_reset_state - set reset state for device dev
2269  * @dev: the PCIe device reset
2270  * @state: Reset state to enter into
2271  *
2272  * Sets the PCI reset state for the device.
2273  */
2274 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2275 {
2276 	return pcibios_set_pcie_reset_state(dev, state);
2277 }
2278 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2279 
2280 #ifdef CONFIG_PCIEAER
2281 void pcie_clear_device_status(struct pci_dev *dev)
2282 {
2283 	u16 sta;
2284 
2285 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2286 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2287 }
2288 #endif
2289 
2290 /**
2291  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2292  * @dev: PCIe root port or event collector.
2293  */
2294 void pcie_clear_root_pme_status(struct pci_dev *dev)
2295 {
2296 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2297 }
2298 
2299 /**
2300  * pci_check_pme_status - Check if given device has generated PME.
2301  * @dev: Device to check.
2302  *
2303  * Check the PME status of the device and if set, clear it and clear PME enable
2304  * (if set).  Return 'true' if PME status and PME enable were both set or
2305  * 'false' otherwise.
2306  */
2307 bool pci_check_pme_status(struct pci_dev *dev)
2308 {
2309 	int pmcsr_pos;
2310 	u16 pmcsr;
2311 	bool ret = false;
2312 
2313 	if (!dev->pm_cap)
2314 		return false;
2315 
2316 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2317 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2318 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2319 		return false;
2320 
2321 	/* Clear PME status. */
2322 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2323 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2324 		/* Disable PME to avoid interrupt flood. */
2325 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2326 		ret = true;
2327 	}
2328 
2329 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2330 
2331 	return ret;
2332 }
2333 
2334 /**
2335  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2336  * @dev: Device to handle.
2337  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2338  *
2339  * Check if @dev has generated PME and queue a resume request for it in that
2340  * case.
2341  */
2342 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2343 {
2344 	if (pme_poll_reset && dev->pme_poll)
2345 		dev->pme_poll = false;
2346 
2347 	if (pci_check_pme_status(dev)) {
2348 		pci_wakeup_event(dev);
2349 		pm_request_resume(&dev->dev);
2350 	}
2351 	return 0;
2352 }
2353 
2354 /**
2355  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2356  * @bus: Top bus of the subtree to walk.
2357  */
2358 void pci_pme_wakeup_bus(struct pci_bus *bus)
2359 {
2360 	if (bus)
2361 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2362 }
2363 
2364 
2365 /**
2366  * pci_pme_capable - check the capability of PCI device to generate PME#
2367  * @dev: PCI device to handle.
2368  * @state: PCI state from which device will issue PME#.
2369  */
2370 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2371 {
2372 	if (!dev->pm_cap)
2373 		return false;
2374 
2375 	return !!(dev->pme_support & (1 << state));
2376 }
2377 EXPORT_SYMBOL(pci_pme_capable);
2378 
2379 static void pci_pme_list_scan(struct work_struct *work)
2380 {
2381 	struct pci_pme_device *pme_dev, *n;
2382 
2383 	mutex_lock(&pci_pme_list_mutex);
2384 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2385 		if (pme_dev->dev->pme_poll) {
2386 			struct pci_dev *bridge;
2387 
2388 			bridge = pme_dev->dev->bus->self;
2389 			/*
2390 			 * If bridge is in low power state, the
2391 			 * configuration space of subordinate devices
2392 			 * may be not accessible
2393 			 */
2394 			if (bridge && bridge->current_state != PCI_D0)
2395 				continue;
2396 			/*
2397 			 * If the device is in D3cold it should not be
2398 			 * polled either.
2399 			 */
2400 			if (pme_dev->dev->current_state == PCI_D3cold)
2401 				continue;
2402 
2403 			pci_pme_wakeup(pme_dev->dev, NULL);
2404 		} else {
2405 			list_del(&pme_dev->list);
2406 			kfree(pme_dev);
2407 		}
2408 	}
2409 	if (!list_empty(&pci_pme_list))
2410 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2411 				   msecs_to_jiffies(PME_TIMEOUT));
2412 	mutex_unlock(&pci_pme_list_mutex);
2413 }
2414 
2415 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2416 {
2417 	u16 pmcsr;
2418 
2419 	if (!dev->pme_support)
2420 		return;
2421 
2422 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2423 	/* Clear PME_Status by writing 1 to it and enable PME# */
2424 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2425 	if (!enable)
2426 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2427 
2428 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2429 }
2430 
2431 /**
2432  * pci_pme_restore - Restore PME configuration after config space restore.
2433  * @dev: PCI device to update.
2434  */
2435 void pci_pme_restore(struct pci_dev *dev)
2436 {
2437 	u16 pmcsr;
2438 
2439 	if (!dev->pme_support)
2440 		return;
2441 
2442 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2443 	if (dev->wakeup_prepared) {
2444 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2445 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2446 	} else {
2447 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2448 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2449 	}
2450 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2451 }
2452 
2453 /**
2454  * pci_pme_active - enable or disable PCI device's PME# function
2455  * @dev: PCI device to handle.
2456  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2457  *
2458  * The caller must verify that the device is capable of generating PME# before
2459  * calling this function with @enable equal to 'true'.
2460  */
2461 void pci_pme_active(struct pci_dev *dev, bool enable)
2462 {
2463 	__pci_pme_active(dev, enable);
2464 
2465 	/*
2466 	 * PCI (as opposed to PCIe) PME requires that the device have
2467 	 * its PME# line hooked up correctly. Not all hardware vendors
2468 	 * do this, so the PME never gets delivered and the device
2469 	 * remains asleep. The easiest way around this is to
2470 	 * periodically walk the list of suspended devices and check
2471 	 * whether any have their PME flag set. The assumption is that
2472 	 * we'll wake up often enough anyway that this won't be a huge
2473 	 * hit, and the power savings from the devices will still be a
2474 	 * win.
2475 	 *
2476 	 * Although PCIe uses in-band PME message instead of PME# line
2477 	 * to report PME, PME does not work for some PCIe devices in
2478 	 * reality.  For example, there are devices that set their PME
2479 	 * status bits, but don't really bother to send a PME message;
2480 	 * there are PCI Express Root Ports that don't bother to
2481 	 * trigger interrupts when they receive PME messages from the
2482 	 * devices below.  So PME poll is used for PCIe devices too.
2483 	 */
2484 
2485 	if (dev->pme_poll) {
2486 		struct pci_pme_device *pme_dev;
2487 		if (enable) {
2488 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2489 					  GFP_KERNEL);
2490 			if (!pme_dev) {
2491 				pci_warn(dev, "can't enable PME#\n");
2492 				return;
2493 			}
2494 			pme_dev->dev = dev;
2495 			mutex_lock(&pci_pme_list_mutex);
2496 			list_add(&pme_dev->list, &pci_pme_list);
2497 			if (list_is_singular(&pci_pme_list))
2498 				queue_delayed_work(system_freezable_wq,
2499 						   &pci_pme_work,
2500 						   msecs_to_jiffies(PME_TIMEOUT));
2501 			mutex_unlock(&pci_pme_list_mutex);
2502 		} else {
2503 			mutex_lock(&pci_pme_list_mutex);
2504 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2505 				if (pme_dev->dev == dev) {
2506 					list_del(&pme_dev->list);
2507 					kfree(pme_dev);
2508 					break;
2509 				}
2510 			}
2511 			mutex_unlock(&pci_pme_list_mutex);
2512 		}
2513 	}
2514 
2515 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2516 }
2517 EXPORT_SYMBOL(pci_pme_active);
2518 
2519 /**
2520  * __pci_enable_wake - enable PCI device as wakeup event source
2521  * @dev: PCI device affected
2522  * @state: PCI state from which device will issue wakeup events
2523  * @enable: True to enable event generation; false to disable
2524  *
2525  * This enables the device as a wakeup event source, or disables it.
2526  * When such events involves platform-specific hooks, those hooks are
2527  * called automatically by this routine.
2528  *
2529  * Devices with legacy power management (no standard PCI PM capabilities)
2530  * always require such platform hooks.
2531  *
2532  * RETURN VALUE:
2533  * 0 is returned on success
2534  * -EINVAL is returned if device is not supposed to wake up the system
2535  * Error code depending on the platform is returned if both the platform and
2536  * the native mechanism fail to enable the generation of wake-up events
2537  */
2538 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2539 {
2540 	int ret = 0;
2541 
2542 	/*
2543 	 * Bridges that are not power-manageable directly only signal
2544 	 * wakeup on behalf of subordinate devices which is set up
2545 	 * elsewhere, so skip them. However, bridges that are
2546 	 * power-manageable may signal wakeup for themselves (for example,
2547 	 * on a hotplug event) and they need to be covered here.
2548 	 */
2549 	if (!pci_power_manageable(dev))
2550 		return 0;
2551 
2552 	/* Don't do the same thing twice in a row for one device. */
2553 	if (!!enable == !!dev->wakeup_prepared)
2554 		return 0;
2555 
2556 	/*
2557 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2558 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2559 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2560 	 */
2561 
2562 	if (enable) {
2563 		int error;
2564 
2565 		/*
2566 		 * Enable PME signaling if the device can signal PME from
2567 		 * D3cold regardless of whether or not it can signal PME from
2568 		 * the current target state, because that will allow it to
2569 		 * signal PME when the hierarchy above it goes into D3cold and
2570 		 * the device itself ends up in D3cold as a result of that.
2571 		 */
2572 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2573 			pci_pme_active(dev, true);
2574 		else
2575 			ret = 1;
2576 		error = platform_pci_set_wakeup(dev, true);
2577 		if (ret)
2578 			ret = error;
2579 		if (!ret)
2580 			dev->wakeup_prepared = true;
2581 	} else {
2582 		platform_pci_set_wakeup(dev, false);
2583 		pci_pme_active(dev, false);
2584 		dev->wakeup_prepared = false;
2585 	}
2586 
2587 	return ret;
2588 }
2589 
2590 /**
2591  * pci_enable_wake - change wakeup settings for a PCI device
2592  * @pci_dev: Target device
2593  * @state: PCI state from which device will issue wakeup events
2594  * @enable: Whether or not to enable event generation
2595  *
2596  * If @enable is set, check device_may_wakeup() for the device before calling
2597  * __pci_enable_wake() for it.
2598  */
2599 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2600 {
2601 	if (enable && !device_may_wakeup(&pci_dev->dev))
2602 		return -EINVAL;
2603 
2604 	return __pci_enable_wake(pci_dev, state, enable);
2605 }
2606 EXPORT_SYMBOL(pci_enable_wake);
2607 
2608 /**
2609  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2610  * @dev: PCI device to prepare
2611  * @enable: True to enable wake-up event generation; false to disable
2612  *
2613  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2614  * and this function allows them to set that up cleanly - pci_enable_wake()
2615  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2616  * ordering constraints.
2617  *
2618  * This function only returns error code if the device is not allowed to wake
2619  * up the system from sleep or it is not capable of generating PME# from both
2620  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2621  */
2622 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2623 {
2624 	return pci_pme_capable(dev, PCI_D3cold) ?
2625 			pci_enable_wake(dev, PCI_D3cold, enable) :
2626 			pci_enable_wake(dev, PCI_D3hot, enable);
2627 }
2628 EXPORT_SYMBOL(pci_wake_from_d3);
2629 
2630 /**
2631  * pci_target_state - find an appropriate low power state for a given PCI dev
2632  * @dev: PCI device
2633  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2634  *
2635  * Use underlying platform code to find a supported low power state for @dev.
2636  * If the platform can't manage @dev, return the deepest state from which it
2637  * can generate wake events, based on any available PME info.
2638  */
2639 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2640 {
2641 	if (platform_pci_power_manageable(dev)) {
2642 		/*
2643 		 * Call the platform to find the target state for the device.
2644 		 */
2645 		pci_power_t state = platform_pci_choose_state(dev);
2646 
2647 		switch (state) {
2648 		case PCI_POWER_ERROR:
2649 		case PCI_UNKNOWN:
2650 			return PCI_D3hot;
2651 
2652 		case PCI_D1:
2653 		case PCI_D2:
2654 			if (pci_no_d1d2(dev))
2655 				return PCI_D3hot;
2656 		}
2657 
2658 		return state;
2659 	}
2660 
2661 	/*
2662 	 * If the device is in D3cold even though it's not power-manageable by
2663 	 * the platform, it may have been powered down by non-standard means.
2664 	 * Best to let it slumber.
2665 	 */
2666 	if (dev->current_state == PCI_D3cold)
2667 		return PCI_D3cold;
2668 	else if (!dev->pm_cap)
2669 		return PCI_D0;
2670 
2671 	if (wakeup && dev->pme_support) {
2672 		pci_power_t state = PCI_D3hot;
2673 
2674 		/*
2675 		 * Find the deepest state from which the device can generate
2676 		 * PME#.
2677 		 */
2678 		while (state && !(dev->pme_support & (1 << state)))
2679 			state--;
2680 
2681 		if (state)
2682 			return state;
2683 		else if (dev->pme_support & 1)
2684 			return PCI_D0;
2685 	}
2686 
2687 	return PCI_D3hot;
2688 }
2689 
2690 /**
2691  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2692  *			  into a sleep state
2693  * @dev: Device to handle.
2694  *
2695  * Choose the power state appropriate for the device depending on whether
2696  * it can wake up the system and/or is power manageable by the platform
2697  * (PCI_D3hot is the default) and put the device into that state.
2698  */
2699 int pci_prepare_to_sleep(struct pci_dev *dev)
2700 {
2701 	bool wakeup = device_may_wakeup(&dev->dev);
2702 	pci_power_t target_state = pci_target_state(dev, wakeup);
2703 	int error;
2704 
2705 	if (target_state == PCI_POWER_ERROR)
2706 		return -EIO;
2707 
2708 	pci_enable_wake(dev, target_state, wakeup);
2709 
2710 	error = pci_set_power_state(dev, target_state);
2711 
2712 	if (error)
2713 		pci_enable_wake(dev, target_state, false);
2714 
2715 	return error;
2716 }
2717 EXPORT_SYMBOL(pci_prepare_to_sleep);
2718 
2719 /**
2720  * pci_back_from_sleep - turn PCI device on during system-wide transition
2721  *			 into working state
2722  * @dev: Device to handle.
2723  *
2724  * Disable device's system wake-up capability and put it into D0.
2725  */
2726 int pci_back_from_sleep(struct pci_dev *dev)
2727 {
2728 	int ret = pci_set_power_state(dev, PCI_D0);
2729 
2730 	if (ret)
2731 		return ret;
2732 
2733 	pci_enable_wake(dev, PCI_D0, false);
2734 	return 0;
2735 }
2736 EXPORT_SYMBOL(pci_back_from_sleep);
2737 
2738 /**
2739  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2740  * @dev: PCI device being suspended.
2741  *
2742  * Prepare @dev to generate wake-up events at run time and put it into a low
2743  * power state.
2744  */
2745 int pci_finish_runtime_suspend(struct pci_dev *dev)
2746 {
2747 	pci_power_t target_state;
2748 	int error;
2749 
2750 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2751 	if (target_state == PCI_POWER_ERROR)
2752 		return -EIO;
2753 
2754 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2755 
2756 	error = pci_set_power_state(dev, target_state);
2757 
2758 	if (error)
2759 		pci_enable_wake(dev, target_state, false);
2760 
2761 	return error;
2762 }
2763 
2764 /**
2765  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2766  * @dev: Device to check.
2767  *
2768  * Return true if the device itself is capable of generating wake-up events
2769  * (through the platform or using the native PCIe PME) or if the device supports
2770  * PME and one of its upstream bridges can generate wake-up events.
2771  */
2772 bool pci_dev_run_wake(struct pci_dev *dev)
2773 {
2774 	struct pci_bus *bus = dev->bus;
2775 
2776 	if (!dev->pme_support)
2777 		return false;
2778 
2779 	/* PME-capable in principle, but not from the target power state */
2780 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2781 		return false;
2782 
2783 	if (device_can_wakeup(&dev->dev))
2784 		return true;
2785 
2786 	while (bus->parent) {
2787 		struct pci_dev *bridge = bus->self;
2788 
2789 		if (device_can_wakeup(&bridge->dev))
2790 			return true;
2791 
2792 		bus = bus->parent;
2793 	}
2794 
2795 	/* We have reached the root bus. */
2796 	if (bus->bridge)
2797 		return device_can_wakeup(bus->bridge);
2798 
2799 	return false;
2800 }
2801 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2802 
2803 /**
2804  * pci_dev_need_resume - Check if it is necessary to resume the device.
2805  * @pci_dev: Device to check.
2806  *
2807  * Return 'true' if the device is not runtime-suspended or it has to be
2808  * reconfigured due to wakeup settings difference between system and runtime
2809  * suspend, or the current power state of it is not suitable for the upcoming
2810  * (system-wide) transition.
2811  */
2812 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2813 {
2814 	struct device *dev = &pci_dev->dev;
2815 	pci_power_t target_state;
2816 
2817 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2818 		return true;
2819 
2820 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2821 
2822 	/*
2823 	 * If the earlier platform check has not triggered, D3cold is just power
2824 	 * removal on top of D3hot, so no need to resume the device in that
2825 	 * case.
2826 	 */
2827 	return target_state != pci_dev->current_state &&
2828 		target_state != PCI_D3cold &&
2829 		pci_dev->current_state != PCI_D3hot;
2830 }
2831 
2832 /**
2833  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2834  * @pci_dev: Device to check.
2835  *
2836  * If the device is suspended and it is not configured for system wakeup,
2837  * disable PME for it to prevent it from waking up the system unnecessarily.
2838  *
2839  * Note that if the device's power state is D3cold and the platform check in
2840  * pci_dev_need_resume() has not triggered, the device's configuration need not
2841  * be changed.
2842  */
2843 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2844 {
2845 	struct device *dev = &pci_dev->dev;
2846 
2847 	spin_lock_irq(&dev->power.lock);
2848 
2849 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2850 	    pci_dev->current_state < PCI_D3cold)
2851 		__pci_pme_active(pci_dev, false);
2852 
2853 	spin_unlock_irq(&dev->power.lock);
2854 }
2855 
2856 /**
2857  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2858  * @pci_dev: Device to handle.
2859  *
2860  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2861  * it might have been disabled during the prepare phase of system suspend if
2862  * the device was not configured for system wakeup.
2863  */
2864 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2865 {
2866 	struct device *dev = &pci_dev->dev;
2867 
2868 	if (!pci_dev_run_wake(pci_dev))
2869 		return;
2870 
2871 	spin_lock_irq(&dev->power.lock);
2872 
2873 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2874 		__pci_pme_active(pci_dev, true);
2875 
2876 	spin_unlock_irq(&dev->power.lock);
2877 }
2878 
2879 /**
2880  * pci_choose_state - Choose the power state of a PCI device.
2881  * @dev: Target PCI device.
2882  * @state: Target state for the whole system.
2883  *
2884  * Returns PCI power state suitable for @dev and @state.
2885  */
2886 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2887 {
2888 	if (state.event == PM_EVENT_ON)
2889 		return PCI_D0;
2890 
2891 	return pci_target_state(dev, false);
2892 }
2893 EXPORT_SYMBOL(pci_choose_state);
2894 
2895 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2896 {
2897 	struct device *dev = &pdev->dev;
2898 	struct device *parent = dev->parent;
2899 
2900 	if (parent)
2901 		pm_runtime_get_sync(parent);
2902 	pm_runtime_get_noresume(dev);
2903 	/*
2904 	 * pdev->current_state is set to PCI_D3cold during suspending,
2905 	 * so wait until suspending completes
2906 	 */
2907 	pm_runtime_barrier(dev);
2908 	/*
2909 	 * Only need to resume devices in D3cold, because config
2910 	 * registers are still accessible for devices suspended but
2911 	 * not in D3cold.
2912 	 */
2913 	if (pdev->current_state == PCI_D3cold)
2914 		pm_runtime_resume(dev);
2915 }
2916 
2917 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2918 {
2919 	struct device *dev = &pdev->dev;
2920 	struct device *parent = dev->parent;
2921 
2922 	pm_runtime_put(dev);
2923 	if (parent)
2924 		pm_runtime_put_sync(parent);
2925 }
2926 
2927 static const struct dmi_system_id bridge_d3_blacklist[] = {
2928 #ifdef CONFIG_X86
2929 	{
2930 		/*
2931 		 * Gigabyte X299 root port is not marked as hotplug capable
2932 		 * which allows Linux to power manage it.  However, this
2933 		 * confuses the BIOS SMI handler so don't power manage root
2934 		 * ports on that system.
2935 		 */
2936 		.ident = "X299 DESIGNARE EX-CF",
2937 		.matches = {
2938 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2939 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2940 		},
2941 	},
2942 	{
2943 		/*
2944 		 * Downstream device is not accessible after putting a root port
2945 		 * into D3cold and back into D0 on Elo i2.
2946 		 */
2947 		.ident = "Elo i2",
2948 		.matches = {
2949 			DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2950 			DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2951 			DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2952 		},
2953 	},
2954 #endif
2955 	{ }
2956 };
2957 
2958 /**
2959  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2960  * @bridge: Bridge to check
2961  *
2962  * This function checks if it is possible to move the bridge to D3.
2963  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2964  */
2965 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2966 {
2967 	if (!pci_is_pcie(bridge))
2968 		return false;
2969 
2970 	switch (pci_pcie_type(bridge)) {
2971 	case PCI_EXP_TYPE_ROOT_PORT:
2972 	case PCI_EXP_TYPE_UPSTREAM:
2973 	case PCI_EXP_TYPE_DOWNSTREAM:
2974 		if (pci_bridge_d3_disable)
2975 			return false;
2976 
2977 		/*
2978 		 * Hotplug ports handled by firmware in System Management Mode
2979 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2980 		 */
2981 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2982 			return false;
2983 
2984 		if (pci_bridge_d3_force)
2985 			return true;
2986 
2987 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2988 		if (bridge->is_thunderbolt)
2989 			return true;
2990 
2991 		/* Platform might know better if the bridge supports D3 */
2992 		if (platform_pci_bridge_d3(bridge))
2993 			return true;
2994 
2995 		/*
2996 		 * Hotplug ports handled natively by the OS were not validated
2997 		 * by vendors for runtime D3 at least until 2018 because there
2998 		 * was no OS support.
2999 		 */
3000 		if (bridge->is_hotplug_bridge)
3001 			return false;
3002 
3003 		if (dmi_check_system(bridge_d3_blacklist))
3004 			return false;
3005 
3006 		/*
3007 		 * It should be safe to put PCIe ports from 2015 or newer
3008 		 * to D3.
3009 		 */
3010 		if (dmi_get_bios_year() >= 2015)
3011 			return true;
3012 		break;
3013 	}
3014 
3015 	return false;
3016 }
3017 
3018 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3019 {
3020 	bool *d3cold_ok = data;
3021 
3022 	if (/* The device needs to be allowed to go D3cold ... */
3023 	    dev->no_d3cold || !dev->d3cold_allowed ||
3024 
3025 	    /* ... and if it is wakeup capable to do so from D3cold. */
3026 	    (device_may_wakeup(&dev->dev) &&
3027 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3028 
3029 	    /* If it is a bridge it must be allowed to go to D3. */
3030 	    !pci_power_manageable(dev))
3031 
3032 		*d3cold_ok = false;
3033 
3034 	return !*d3cold_ok;
3035 }
3036 
3037 /*
3038  * pci_bridge_d3_update - Update bridge D3 capabilities
3039  * @dev: PCI device which is changed
3040  *
3041  * Update upstream bridge PM capabilities accordingly depending on if the
3042  * device PM configuration was changed or the device is being removed.  The
3043  * change is also propagated upstream.
3044  */
3045 void pci_bridge_d3_update(struct pci_dev *dev)
3046 {
3047 	bool remove = !device_is_registered(&dev->dev);
3048 	struct pci_dev *bridge;
3049 	bool d3cold_ok = true;
3050 
3051 	bridge = pci_upstream_bridge(dev);
3052 	if (!bridge || !pci_bridge_d3_possible(bridge))
3053 		return;
3054 
3055 	/*
3056 	 * If D3 is currently allowed for the bridge, removing one of its
3057 	 * children won't change that.
3058 	 */
3059 	if (remove && bridge->bridge_d3)
3060 		return;
3061 
3062 	/*
3063 	 * If D3 is currently allowed for the bridge and a child is added or
3064 	 * changed, disallowance of D3 can only be caused by that child, so
3065 	 * we only need to check that single device, not any of its siblings.
3066 	 *
3067 	 * If D3 is currently not allowed for the bridge, checking the device
3068 	 * first may allow us to skip checking its siblings.
3069 	 */
3070 	if (!remove)
3071 		pci_dev_check_d3cold(dev, &d3cold_ok);
3072 
3073 	/*
3074 	 * If D3 is currently not allowed for the bridge, this may be caused
3075 	 * either by the device being changed/removed or any of its siblings,
3076 	 * so we need to go through all children to find out if one of them
3077 	 * continues to block D3.
3078 	 */
3079 	if (d3cold_ok && !bridge->bridge_d3)
3080 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3081 			     &d3cold_ok);
3082 
3083 	if (bridge->bridge_d3 != d3cold_ok) {
3084 		bridge->bridge_d3 = d3cold_ok;
3085 		/* Propagate change to upstream bridges */
3086 		pci_bridge_d3_update(bridge);
3087 	}
3088 }
3089 
3090 /**
3091  * pci_d3cold_enable - Enable D3cold for device
3092  * @dev: PCI device to handle
3093  *
3094  * This function can be used in drivers to enable D3cold from the device
3095  * they handle.  It also updates upstream PCI bridge PM capabilities
3096  * accordingly.
3097  */
3098 void pci_d3cold_enable(struct pci_dev *dev)
3099 {
3100 	if (dev->no_d3cold) {
3101 		dev->no_d3cold = false;
3102 		pci_bridge_d3_update(dev);
3103 	}
3104 }
3105 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3106 
3107 /**
3108  * pci_d3cold_disable - Disable D3cold for device
3109  * @dev: PCI device to handle
3110  *
3111  * This function can be used in drivers to disable D3cold from the device
3112  * they handle.  It also updates upstream PCI bridge PM capabilities
3113  * accordingly.
3114  */
3115 void pci_d3cold_disable(struct pci_dev *dev)
3116 {
3117 	if (!dev->no_d3cold) {
3118 		dev->no_d3cold = true;
3119 		pci_bridge_d3_update(dev);
3120 	}
3121 }
3122 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3123 
3124 /**
3125  * pci_pm_init - Initialize PM functions of given PCI device
3126  * @dev: PCI device to handle.
3127  */
3128 void pci_pm_init(struct pci_dev *dev)
3129 {
3130 	int pm;
3131 	u16 status;
3132 	u16 pmc;
3133 
3134 	pm_runtime_forbid(&dev->dev);
3135 	pm_runtime_set_active(&dev->dev);
3136 	pm_runtime_enable(&dev->dev);
3137 	device_enable_async_suspend(&dev->dev);
3138 	dev->wakeup_prepared = false;
3139 
3140 	dev->pm_cap = 0;
3141 	dev->pme_support = 0;
3142 
3143 	/* find PCI PM capability in list */
3144 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3145 	if (!pm)
3146 		return;
3147 	/* Check device's ability to generate PME# */
3148 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3149 
3150 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3151 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3152 			pmc & PCI_PM_CAP_VER_MASK);
3153 		return;
3154 	}
3155 
3156 	dev->pm_cap = pm;
3157 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3158 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3159 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3160 	dev->d3cold_allowed = true;
3161 
3162 	dev->d1_support = false;
3163 	dev->d2_support = false;
3164 	if (!pci_no_d1d2(dev)) {
3165 		if (pmc & PCI_PM_CAP_D1)
3166 			dev->d1_support = true;
3167 		if (pmc & PCI_PM_CAP_D2)
3168 			dev->d2_support = true;
3169 
3170 		if (dev->d1_support || dev->d2_support)
3171 			pci_info(dev, "supports%s%s\n",
3172 				   dev->d1_support ? " D1" : "",
3173 				   dev->d2_support ? " D2" : "");
3174 	}
3175 
3176 	pmc &= PCI_PM_CAP_PME_MASK;
3177 	if (pmc) {
3178 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3179 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3180 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3181 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3182 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3183 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3184 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3185 		dev->pme_poll = true;
3186 		/*
3187 		 * Make device's PM flags reflect the wake-up capability, but
3188 		 * let the user space enable it to wake up the system as needed.
3189 		 */
3190 		device_set_wakeup_capable(&dev->dev, true);
3191 		/* Disable the PME# generation functionality */
3192 		pci_pme_active(dev, false);
3193 	}
3194 
3195 	pci_read_config_word(dev, PCI_STATUS, &status);
3196 	if (status & PCI_STATUS_IMM_READY)
3197 		dev->imm_ready = 1;
3198 }
3199 
3200 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3201 {
3202 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3203 
3204 	switch (prop) {
3205 	case PCI_EA_P_MEM:
3206 	case PCI_EA_P_VF_MEM:
3207 		flags |= IORESOURCE_MEM;
3208 		break;
3209 	case PCI_EA_P_MEM_PREFETCH:
3210 	case PCI_EA_P_VF_MEM_PREFETCH:
3211 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3212 		break;
3213 	case PCI_EA_P_IO:
3214 		flags |= IORESOURCE_IO;
3215 		break;
3216 	default:
3217 		return 0;
3218 	}
3219 
3220 	return flags;
3221 }
3222 
3223 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3224 					    u8 prop)
3225 {
3226 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3227 		return &dev->resource[bei];
3228 #ifdef CONFIG_PCI_IOV
3229 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3230 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3231 		return &dev->resource[PCI_IOV_RESOURCES +
3232 				      bei - PCI_EA_BEI_VF_BAR0];
3233 #endif
3234 	else if (bei == PCI_EA_BEI_ROM)
3235 		return &dev->resource[PCI_ROM_RESOURCE];
3236 	else
3237 		return NULL;
3238 }
3239 
3240 /* Read an Enhanced Allocation (EA) entry */
3241 static int pci_ea_read(struct pci_dev *dev, int offset)
3242 {
3243 	struct resource *res;
3244 	int ent_size, ent_offset = offset;
3245 	resource_size_t start, end;
3246 	unsigned long flags;
3247 	u32 dw0, bei, base, max_offset;
3248 	u8 prop;
3249 	bool support_64 = (sizeof(resource_size_t) >= 8);
3250 
3251 	pci_read_config_dword(dev, ent_offset, &dw0);
3252 	ent_offset += 4;
3253 
3254 	/* Entry size field indicates DWORDs after 1st */
3255 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3256 
3257 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3258 		goto out;
3259 
3260 	bei = (dw0 & PCI_EA_BEI) >> 4;
3261 	prop = (dw0 & PCI_EA_PP) >> 8;
3262 
3263 	/*
3264 	 * If the Property is in the reserved range, try the Secondary
3265 	 * Property instead.
3266 	 */
3267 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3268 		prop = (dw0 & PCI_EA_SP) >> 16;
3269 	if (prop > PCI_EA_P_BRIDGE_IO)
3270 		goto out;
3271 
3272 	res = pci_ea_get_resource(dev, bei, prop);
3273 	if (!res) {
3274 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3275 		goto out;
3276 	}
3277 
3278 	flags = pci_ea_flags(dev, prop);
3279 	if (!flags) {
3280 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3281 		goto out;
3282 	}
3283 
3284 	/* Read Base */
3285 	pci_read_config_dword(dev, ent_offset, &base);
3286 	start = (base & PCI_EA_FIELD_MASK);
3287 	ent_offset += 4;
3288 
3289 	/* Read MaxOffset */
3290 	pci_read_config_dword(dev, ent_offset, &max_offset);
3291 	ent_offset += 4;
3292 
3293 	/* Read Base MSBs (if 64-bit entry) */
3294 	if (base & PCI_EA_IS_64) {
3295 		u32 base_upper;
3296 
3297 		pci_read_config_dword(dev, ent_offset, &base_upper);
3298 		ent_offset += 4;
3299 
3300 		flags |= IORESOURCE_MEM_64;
3301 
3302 		/* entry starts above 32-bit boundary, can't use */
3303 		if (!support_64 && base_upper)
3304 			goto out;
3305 
3306 		if (support_64)
3307 			start |= ((u64)base_upper << 32);
3308 	}
3309 
3310 	end = start + (max_offset | 0x03);
3311 
3312 	/* Read MaxOffset MSBs (if 64-bit entry) */
3313 	if (max_offset & PCI_EA_IS_64) {
3314 		u32 max_offset_upper;
3315 
3316 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3317 		ent_offset += 4;
3318 
3319 		flags |= IORESOURCE_MEM_64;
3320 
3321 		/* entry too big, can't use */
3322 		if (!support_64 && max_offset_upper)
3323 			goto out;
3324 
3325 		if (support_64)
3326 			end += ((u64)max_offset_upper << 32);
3327 	}
3328 
3329 	if (end < start) {
3330 		pci_err(dev, "EA Entry crosses address boundary\n");
3331 		goto out;
3332 	}
3333 
3334 	if (ent_size != ent_offset - offset) {
3335 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3336 			ent_size, ent_offset - offset);
3337 		goto out;
3338 	}
3339 
3340 	res->name = pci_name(dev);
3341 	res->start = start;
3342 	res->end = end;
3343 	res->flags = flags;
3344 
3345 	if (bei <= PCI_EA_BEI_BAR5)
3346 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3347 			   bei, res, prop);
3348 	else if (bei == PCI_EA_BEI_ROM)
3349 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3350 			   res, prop);
3351 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3352 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3353 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3354 	else
3355 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3356 			   bei, res, prop);
3357 
3358 out:
3359 	return offset + ent_size;
3360 }
3361 
3362 /* Enhanced Allocation Initialization */
3363 void pci_ea_init(struct pci_dev *dev)
3364 {
3365 	int ea;
3366 	u8 num_ent;
3367 	int offset;
3368 	int i;
3369 
3370 	/* find PCI EA capability in list */
3371 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3372 	if (!ea)
3373 		return;
3374 
3375 	/* determine the number of entries */
3376 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3377 					&num_ent);
3378 	num_ent &= PCI_EA_NUM_ENT_MASK;
3379 
3380 	offset = ea + PCI_EA_FIRST_ENT;
3381 
3382 	/* Skip DWORD 2 for type 1 functions */
3383 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3384 		offset += 4;
3385 
3386 	/* parse each EA entry */
3387 	for (i = 0; i < num_ent; ++i)
3388 		offset = pci_ea_read(dev, offset);
3389 }
3390 
3391 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3392 	struct pci_cap_saved_state *new_cap)
3393 {
3394 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3395 }
3396 
3397 /**
3398  * _pci_add_cap_save_buffer - allocate buffer for saving given
3399  *			      capability registers
3400  * @dev: the PCI device
3401  * @cap: the capability to allocate the buffer for
3402  * @extended: Standard or Extended capability ID
3403  * @size: requested size of the buffer
3404  */
3405 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3406 				    bool extended, unsigned int size)
3407 {
3408 	int pos;
3409 	struct pci_cap_saved_state *save_state;
3410 
3411 	if (extended)
3412 		pos = pci_find_ext_capability(dev, cap);
3413 	else
3414 		pos = pci_find_capability(dev, cap);
3415 
3416 	if (!pos)
3417 		return 0;
3418 
3419 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3420 	if (!save_state)
3421 		return -ENOMEM;
3422 
3423 	save_state->cap.cap_nr = cap;
3424 	save_state->cap.cap_extended = extended;
3425 	save_state->cap.size = size;
3426 	pci_add_saved_cap(dev, save_state);
3427 
3428 	return 0;
3429 }
3430 
3431 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3432 {
3433 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3434 }
3435 
3436 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3437 {
3438 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3439 }
3440 
3441 /**
3442  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3443  * @dev: the PCI device
3444  */
3445 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3446 {
3447 	int error;
3448 
3449 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3450 					PCI_EXP_SAVE_REGS * sizeof(u16));
3451 	if (error)
3452 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3453 
3454 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3455 	if (error)
3456 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3457 
3458 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3459 					    2 * sizeof(u16));
3460 	if (error)
3461 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3462 
3463 	pci_allocate_vc_save_buffers(dev);
3464 }
3465 
3466 void pci_free_cap_save_buffers(struct pci_dev *dev)
3467 {
3468 	struct pci_cap_saved_state *tmp;
3469 	struct hlist_node *n;
3470 
3471 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3472 		kfree(tmp);
3473 }
3474 
3475 /**
3476  * pci_configure_ari - enable or disable ARI forwarding
3477  * @dev: the PCI device
3478  *
3479  * If @dev and its upstream bridge both support ARI, enable ARI in the
3480  * bridge.  Otherwise, disable ARI in the bridge.
3481  */
3482 void pci_configure_ari(struct pci_dev *dev)
3483 {
3484 	u32 cap;
3485 	struct pci_dev *bridge;
3486 
3487 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3488 		return;
3489 
3490 	bridge = dev->bus->self;
3491 	if (!bridge)
3492 		return;
3493 
3494 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3495 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3496 		return;
3497 
3498 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3499 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3500 					 PCI_EXP_DEVCTL2_ARI);
3501 		bridge->ari_enabled = 1;
3502 	} else {
3503 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3504 					   PCI_EXP_DEVCTL2_ARI);
3505 		bridge->ari_enabled = 0;
3506 	}
3507 }
3508 
3509 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3510 {
3511 	int pos;
3512 	u16 cap, ctrl;
3513 
3514 	pos = pdev->acs_cap;
3515 	if (!pos)
3516 		return false;
3517 
3518 	/*
3519 	 * Except for egress control, capabilities are either required
3520 	 * or only required if controllable.  Features missing from the
3521 	 * capability field can therefore be assumed as hard-wired enabled.
3522 	 */
3523 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3524 	acs_flags &= (cap | PCI_ACS_EC);
3525 
3526 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3527 	return (ctrl & acs_flags) == acs_flags;
3528 }
3529 
3530 /**
3531  * pci_acs_enabled - test ACS against required flags for a given device
3532  * @pdev: device to test
3533  * @acs_flags: required PCI ACS flags
3534  *
3535  * Return true if the device supports the provided flags.  Automatically
3536  * filters out flags that are not implemented on multifunction devices.
3537  *
3538  * Note that this interface checks the effective ACS capabilities of the
3539  * device rather than the actual capabilities.  For instance, most single
3540  * function endpoints are not required to support ACS because they have no
3541  * opportunity for peer-to-peer access.  We therefore return 'true'
3542  * regardless of whether the device exposes an ACS capability.  This makes
3543  * it much easier for callers of this function to ignore the actual type
3544  * or topology of the device when testing ACS support.
3545  */
3546 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3547 {
3548 	int ret;
3549 
3550 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3551 	if (ret >= 0)
3552 		return ret > 0;
3553 
3554 	/*
3555 	 * Conventional PCI and PCI-X devices never support ACS, either
3556 	 * effectively or actually.  The shared bus topology implies that
3557 	 * any device on the bus can receive or snoop DMA.
3558 	 */
3559 	if (!pci_is_pcie(pdev))
3560 		return false;
3561 
3562 	switch (pci_pcie_type(pdev)) {
3563 	/*
3564 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3565 	 * but since their primary interface is PCI/X, we conservatively
3566 	 * handle them as we would a non-PCIe device.
3567 	 */
3568 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3569 	/*
3570 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3571 	 * applicable... must never implement an ACS Extended Capability...".
3572 	 * This seems arbitrary, but we take a conservative interpretation
3573 	 * of this statement.
3574 	 */
3575 	case PCI_EXP_TYPE_PCI_BRIDGE:
3576 	case PCI_EXP_TYPE_RC_EC:
3577 		return false;
3578 	/*
3579 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3580 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3581 	 * regardless of whether they are single- or multi-function devices.
3582 	 */
3583 	case PCI_EXP_TYPE_DOWNSTREAM:
3584 	case PCI_EXP_TYPE_ROOT_PORT:
3585 		return pci_acs_flags_enabled(pdev, acs_flags);
3586 	/*
3587 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3588 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3589 	 * capabilities, but only when they are part of a multifunction
3590 	 * device.  The footnote for section 6.12 indicates the specific
3591 	 * PCIe types included here.
3592 	 */
3593 	case PCI_EXP_TYPE_ENDPOINT:
3594 	case PCI_EXP_TYPE_UPSTREAM:
3595 	case PCI_EXP_TYPE_LEG_END:
3596 	case PCI_EXP_TYPE_RC_END:
3597 		if (!pdev->multifunction)
3598 			break;
3599 
3600 		return pci_acs_flags_enabled(pdev, acs_flags);
3601 	}
3602 
3603 	/*
3604 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3605 	 * to single function devices with the exception of downstream ports.
3606 	 */
3607 	return true;
3608 }
3609 
3610 /**
3611  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3612  * @start: starting downstream device
3613  * @end: ending upstream device or NULL to search to the root bus
3614  * @acs_flags: required flags
3615  *
3616  * Walk up a device tree from start to end testing PCI ACS support.  If
3617  * any step along the way does not support the required flags, return false.
3618  */
3619 bool pci_acs_path_enabled(struct pci_dev *start,
3620 			  struct pci_dev *end, u16 acs_flags)
3621 {
3622 	struct pci_dev *pdev, *parent = start;
3623 
3624 	do {
3625 		pdev = parent;
3626 
3627 		if (!pci_acs_enabled(pdev, acs_flags))
3628 			return false;
3629 
3630 		if (pci_is_root_bus(pdev->bus))
3631 			return (end == NULL);
3632 
3633 		parent = pdev->bus->self;
3634 	} while (pdev != end);
3635 
3636 	return true;
3637 }
3638 
3639 /**
3640  * pci_acs_init - Initialize ACS if hardware supports it
3641  * @dev: the PCI device
3642  */
3643 void pci_acs_init(struct pci_dev *dev)
3644 {
3645 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3646 
3647 	/*
3648 	 * Attempt to enable ACS regardless of capability because some Root
3649 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3650 	 * the standard ACS capability but still support ACS via those
3651 	 * quirks.
3652 	 */
3653 	pci_enable_acs(dev);
3654 }
3655 
3656 /**
3657  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3658  * @pdev: PCI device
3659  * @bar: BAR to find
3660  *
3661  * Helper to find the position of the ctrl register for a BAR.
3662  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3663  * Returns -ENOENT if no ctrl register for the BAR could be found.
3664  */
3665 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3666 {
3667 	unsigned int pos, nbars, i;
3668 	u32 ctrl;
3669 
3670 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3671 	if (!pos)
3672 		return -ENOTSUPP;
3673 
3674 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3675 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3676 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3677 
3678 	for (i = 0; i < nbars; i++, pos += 8) {
3679 		int bar_idx;
3680 
3681 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3682 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3683 		if (bar_idx == bar)
3684 			return pos;
3685 	}
3686 
3687 	return -ENOENT;
3688 }
3689 
3690 /**
3691  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3692  * @pdev: PCI device
3693  * @bar: BAR to query
3694  *
3695  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3696  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3697  */
3698 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3699 {
3700 	int pos;
3701 	u32 cap;
3702 
3703 	pos = pci_rebar_find_pos(pdev, bar);
3704 	if (pos < 0)
3705 		return 0;
3706 
3707 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3708 	cap &= PCI_REBAR_CAP_SIZES;
3709 
3710 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3711 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3712 	    bar == 0 && cap == 0x7000)
3713 		cap = 0x3f000;
3714 
3715 	return cap >> 4;
3716 }
3717 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3718 
3719 /**
3720  * pci_rebar_get_current_size - get the current size of a BAR
3721  * @pdev: PCI device
3722  * @bar: BAR to set size to
3723  *
3724  * Read the size of a BAR from the resizable BAR config.
3725  * Returns size if found or negative error code.
3726  */
3727 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3728 {
3729 	int pos;
3730 	u32 ctrl;
3731 
3732 	pos = pci_rebar_find_pos(pdev, bar);
3733 	if (pos < 0)
3734 		return pos;
3735 
3736 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3737 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3738 }
3739 
3740 /**
3741  * pci_rebar_set_size - set a new size for a BAR
3742  * @pdev: PCI device
3743  * @bar: BAR to set size to
3744  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3745  *
3746  * Set the new size of a BAR as defined in the spec.
3747  * Returns zero if resizing was successful, error code otherwise.
3748  */
3749 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3750 {
3751 	int pos;
3752 	u32 ctrl;
3753 
3754 	pos = pci_rebar_find_pos(pdev, bar);
3755 	if (pos < 0)
3756 		return pos;
3757 
3758 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3759 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3760 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3761 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3762 	return 0;
3763 }
3764 
3765 /**
3766  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3767  * @dev: the PCI device
3768  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3769  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3770  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3771  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3772  *
3773  * Return 0 if all upstream bridges support AtomicOp routing, egress
3774  * blocking is disabled on all upstream ports, and the root port supports
3775  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3776  * AtomicOp completion), or negative otherwise.
3777  */
3778 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3779 {
3780 	struct pci_bus *bus = dev->bus;
3781 	struct pci_dev *bridge;
3782 	u32 cap, ctl2;
3783 
3784 	/*
3785 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3786 	 * in Device Control 2 is reserved in VFs and the PF value applies
3787 	 * to all associated VFs.
3788 	 */
3789 	if (dev->is_virtfn)
3790 		return -EINVAL;
3791 
3792 	if (!pci_is_pcie(dev))
3793 		return -EINVAL;
3794 
3795 	/*
3796 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3797 	 * AtomicOp requesters.  For now, we only support endpoints as
3798 	 * requesters and root ports as completers.  No endpoints as
3799 	 * completers, and no peer-to-peer.
3800 	 */
3801 
3802 	switch (pci_pcie_type(dev)) {
3803 	case PCI_EXP_TYPE_ENDPOINT:
3804 	case PCI_EXP_TYPE_LEG_END:
3805 	case PCI_EXP_TYPE_RC_END:
3806 		break;
3807 	default:
3808 		return -EINVAL;
3809 	}
3810 
3811 	while (bus->parent) {
3812 		bridge = bus->self;
3813 
3814 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3815 
3816 		switch (pci_pcie_type(bridge)) {
3817 		/* Ensure switch ports support AtomicOp routing */
3818 		case PCI_EXP_TYPE_UPSTREAM:
3819 		case PCI_EXP_TYPE_DOWNSTREAM:
3820 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3821 				return -EINVAL;
3822 			break;
3823 
3824 		/* Ensure root port supports all the sizes we care about */
3825 		case PCI_EXP_TYPE_ROOT_PORT:
3826 			if ((cap & cap_mask) != cap_mask)
3827 				return -EINVAL;
3828 			break;
3829 		}
3830 
3831 		/* Ensure upstream ports don't block AtomicOps on egress */
3832 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3833 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3834 						   &ctl2);
3835 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3836 				return -EINVAL;
3837 		}
3838 
3839 		bus = bus->parent;
3840 	}
3841 
3842 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3843 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3844 	return 0;
3845 }
3846 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3847 
3848 /**
3849  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3850  * @dev: the PCI device
3851  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3852  *
3853  * Perform INTx swizzling for a device behind one level of bridge.  This is
3854  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3855  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3856  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3857  * the PCI Express Base Specification, Revision 2.1)
3858  */
3859 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3860 {
3861 	int slot;
3862 
3863 	if (pci_ari_enabled(dev->bus))
3864 		slot = 0;
3865 	else
3866 		slot = PCI_SLOT(dev->devfn);
3867 
3868 	return (((pin - 1) + slot) % 4) + 1;
3869 }
3870 
3871 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3872 {
3873 	u8 pin;
3874 
3875 	pin = dev->pin;
3876 	if (!pin)
3877 		return -1;
3878 
3879 	while (!pci_is_root_bus(dev->bus)) {
3880 		pin = pci_swizzle_interrupt_pin(dev, pin);
3881 		dev = dev->bus->self;
3882 	}
3883 	*bridge = dev;
3884 	return pin;
3885 }
3886 
3887 /**
3888  * pci_common_swizzle - swizzle INTx all the way to root bridge
3889  * @dev: the PCI device
3890  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3891  *
3892  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3893  * bridges all the way up to a PCI root bus.
3894  */
3895 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3896 {
3897 	u8 pin = *pinp;
3898 
3899 	while (!pci_is_root_bus(dev->bus)) {
3900 		pin = pci_swizzle_interrupt_pin(dev, pin);
3901 		dev = dev->bus->self;
3902 	}
3903 	*pinp = pin;
3904 	return PCI_SLOT(dev->devfn);
3905 }
3906 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3907 
3908 /**
3909  * pci_release_region - Release a PCI bar
3910  * @pdev: PCI device whose resources were previously reserved by
3911  *	  pci_request_region()
3912  * @bar: BAR to release
3913  *
3914  * Releases the PCI I/O and memory resources previously reserved by a
3915  * successful call to pci_request_region().  Call this function only
3916  * after all use of the PCI regions has ceased.
3917  */
3918 void pci_release_region(struct pci_dev *pdev, int bar)
3919 {
3920 	struct pci_devres *dr;
3921 
3922 	if (pci_resource_len(pdev, bar) == 0)
3923 		return;
3924 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3925 		release_region(pci_resource_start(pdev, bar),
3926 				pci_resource_len(pdev, bar));
3927 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3928 		release_mem_region(pci_resource_start(pdev, bar),
3929 				pci_resource_len(pdev, bar));
3930 
3931 	dr = find_pci_dr(pdev);
3932 	if (dr)
3933 		dr->region_mask &= ~(1 << bar);
3934 }
3935 EXPORT_SYMBOL(pci_release_region);
3936 
3937 /**
3938  * __pci_request_region - Reserved PCI I/O and memory resource
3939  * @pdev: PCI device whose resources are to be reserved
3940  * @bar: BAR to be reserved
3941  * @res_name: Name to be associated with resource.
3942  * @exclusive: whether the region access is exclusive or not
3943  *
3944  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3945  * being reserved by owner @res_name.  Do not access any
3946  * address inside the PCI regions unless this call returns
3947  * successfully.
3948  *
3949  * If @exclusive is set, then the region is marked so that userspace
3950  * is explicitly not allowed to map the resource via /dev/mem or
3951  * sysfs MMIO access.
3952  *
3953  * Returns 0 on success, or %EBUSY on error.  A warning
3954  * message is also printed on failure.
3955  */
3956 static int __pci_request_region(struct pci_dev *pdev, int bar,
3957 				const char *res_name, int exclusive)
3958 {
3959 	struct pci_devres *dr;
3960 
3961 	if (pci_resource_len(pdev, bar) == 0)
3962 		return 0;
3963 
3964 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3965 		if (!request_region(pci_resource_start(pdev, bar),
3966 			    pci_resource_len(pdev, bar), res_name))
3967 			goto err_out;
3968 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3969 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3970 					pci_resource_len(pdev, bar), res_name,
3971 					exclusive))
3972 			goto err_out;
3973 	}
3974 
3975 	dr = find_pci_dr(pdev);
3976 	if (dr)
3977 		dr->region_mask |= 1 << bar;
3978 
3979 	return 0;
3980 
3981 err_out:
3982 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3983 		 &pdev->resource[bar]);
3984 	return -EBUSY;
3985 }
3986 
3987 /**
3988  * pci_request_region - Reserve PCI I/O and memory resource
3989  * @pdev: PCI device whose resources are to be reserved
3990  * @bar: BAR to be reserved
3991  * @res_name: Name to be associated with resource
3992  *
3993  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3994  * being reserved by owner @res_name.  Do not access any
3995  * address inside the PCI regions unless this call returns
3996  * successfully.
3997  *
3998  * Returns 0 on success, or %EBUSY on error.  A warning
3999  * message is also printed on failure.
4000  */
4001 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4002 {
4003 	return __pci_request_region(pdev, bar, res_name, 0);
4004 }
4005 EXPORT_SYMBOL(pci_request_region);
4006 
4007 /**
4008  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4009  * @pdev: PCI device whose resources were previously reserved
4010  * @bars: Bitmask of BARs to be released
4011  *
4012  * Release selected PCI I/O and memory resources previously reserved.
4013  * Call this function only after all use of the PCI regions has ceased.
4014  */
4015 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4016 {
4017 	int i;
4018 
4019 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4020 		if (bars & (1 << i))
4021 			pci_release_region(pdev, i);
4022 }
4023 EXPORT_SYMBOL(pci_release_selected_regions);
4024 
4025 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4026 					  const char *res_name, int excl)
4027 {
4028 	int i;
4029 
4030 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4031 		if (bars & (1 << i))
4032 			if (__pci_request_region(pdev, i, res_name, excl))
4033 				goto err_out;
4034 	return 0;
4035 
4036 err_out:
4037 	while (--i >= 0)
4038 		if (bars & (1 << i))
4039 			pci_release_region(pdev, i);
4040 
4041 	return -EBUSY;
4042 }
4043 
4044 
4045 /**
4046  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4047  * @pdev: PCI device whose resources are to be reserved
4048  * @bars: Bitmask of BARs to be requested
4049  * @res_name: Name to be associated with resource
4050  */
4051 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4052 				 const char *res_name)
4053 {
4054 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4055 }
4056 EXPORT_SYMBOL(pci_request_selected_regions);
4057 
4058 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4059 					   const char *res_name)
4060 {
4061 	return __pci_request_selected_regions(pdev, bars, res_name,
4062 			IORESOURCE_EXCLUSIVE);
4063 }
4064 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4065 
4066 /**
4067  * pci_release_regions - Release reserved PCI I/O and memory resources
4068  * @pdev: PCI device whose resources were previously reserved by
4069  *	  pci_request_regions()
4070  *
4071  * Releases all PCI I/O and memory resources previously reserved by a
4072  * successful call to pci_request_regions().  Call this function only
4073  * after all use of the PCI regions has ceased.
4074  */
4075 
4076 void pci_release_regions(struct pci_dev *pdev)
4077 {
4078 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4079 }
4080 EXPORT_SYMBOL(pci_release_regions);
4081 
4082 /**
4083  * pci_request_regions - Reserve PCI I/O and memory resources
4084  * @pdev: PCI device whose resources are to be reserved
4085  * @res_name: Name to be associated with resource.
4086  *
4087  * Mark all PCI regions associated with PCI device @pdev as
4088  * being reserved by owner @res_name.  Do not access any
4089  * address inside the PCI regions unless this call returns
4090  * successfully.
4091  *
4092  * Returns 0 on success, or %EBUSY on error.  A warning
4093  * message is also printed on failure.
4094  */
4095 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4096 {
4097 	return pci_request_selected_regions(pdev,
4098 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4099 }
4100 EXPORT_SYMBOL(pci_request_regions);
4101 
4102 /**
4103  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4104  * @pdev: PCI device whose resources are to be reserved
4105  * @res_name: Name to be associated with resource.
4106  *
4107  * Mark all PCI regions associated with PCI device @pdev as being reserved
4108  * by owner @res_name.  Do not access any address inside the PCI regions
4109  * unless this call returns successfully.
4110  *
4111  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4112  * and the sysfs MMIO access will not be allowed.
4113  *
4114  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4115  * printed on failure.
4116  */
4117 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4118 {
4119 	return pci_request_selected_regions_exclusive(pdev,
4120 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4121 }
4122 EXPORT_SYMBOL(pci_request_regions_exclusive);
4123 
4124 /*
4125  * Record the PCI IO range (expressed as CPU physical address + size).
4126  * Return a negative value if an error has occurred, zero otherwise
4127  */
4128 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4129 			resource_size_t	size)
4130 {
4131 	int ret = 0;
4132 #ifdef PCI_IOBASE
4133 	struct logic_pio_hwaddr *range;
4134 
4135 	if (!size || addr + size < addr)
4136 		return -EINVAL;
4137 
4138 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4139 	if (!range)
4140 		return -ENOMEM;
4141 
4142 	range->fwnode = fwnode;
4143 	range->size = size;
4144 	range->hw_start = addr;
4145 	range->flags = LOGIC_PIO_CPU_MMIO;
4146 
4147 	ret = logic_pio_register_range(range);
4148 	if (ret)
4149 		kfree(range);
4150 
4151 	/* Ignore duplicates due to deferred probing */
4152 	if (ret == -EEXIST)
4153 		ret = 0;
4154 #endif
4155 
4156 	return ret;
4157 }
4158 
4159 phys_addr_t pci_pio_to_address(unsigned long pio)
4160 {
4161 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4162 
4163 #ifdef PCI_IOBASE
4164 	if (pio >= MMIO_UPPER_LIMIT)
4165 		return address;
4166 
4167 	address = logic_pio_to_hwaddr(pio);
4168 #endif
4169 
4170 	return address;
4171 }
4172 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4173 
4174 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4175 {
4176 #ifdef PCI_IOBASE
4177 	return logic_pio_trans_cpuaddr(address);
4178 #else
4179 	if (address > IO_SPACE_LIMIT)
4180 		return (unsigned long)-1;
4181 
4182 	return (unsigned long) address;
4183 #endif
4184 }
4185 
4186 /**
4187  * pci_remap_iospace - Remap the memory mapped I/O space
4188  * @res: Resource describing the I/O space
4189  * @phys_addr: physical address of range to be mapped
4190  *
4191  * Remap the memory mapped I/O space described by the @res and the CPU
4192  * physical address @phys_addr into virtual address space.  Only
4193  * architectures that have memory mapped IO functions defined (and the
4194  * PCI_IOBASE value defined) should call this function.
4195  */
4196 #ifndef pci_remap_iospace
4197 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4198 {
4199 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4200 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4201 
4202 	if (!(res->flags & IORESOURCE_IO))
4203 		return -EINVAL;
4204 
4205 	if (res->end > IO_SPACE_LIMIT)
4206 		return -EINVAL;
4207 
4208 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4209 				  pgprot_device(PAGE_KERNEL));
4210 #else
4211 	/*
4212 	 * This architecture does not have memory mapped I/O space,
4213 	 * so this function should never be called
4214 	 */
4215 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4216 	return -ENODEV;
4217 #endif
4218 }
4219 EXPORT_SYMBOL(pci_remap_iospace);
4220 #endif
4221 
4222 /**
4223  * pci_unmap_iospace - Unmap the memory mapped I/O space
4224  * @res: resource to be unmapped
4225  *
4226  * Unmap the CPU virtual address @res from virtual address space.  Only
4227  * architectures that have memory mapped IO functions defined (and the
4228  * PCI_IOBASE value defined) should call this function.
4229  */
4230 void pci_unmap_iospace(struct resource *res)
4231 {
4232 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4233 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4234 
4235 	vunmap_range(vaddr, vaddr + resource_size(res));
4236 #endif
4237 }
4238 EXPORT_SYMBOL(pci_unmap_iospace);
4239 
4240 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4241 {
4242 	struct resource **res = ptr;
4243 
4244 	pci_unmap_iospace(*res);
4245 }
4246 
4247 /**
4248  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4249  * @dev: Generic device to remap IO address for
4250  * @res: Resource describing the I/O space
4251  * @phys_addr: physical address of range to be mapped
4252  *
4253  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4254  * detach.
4255  */
4256 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4257 			   phys_addr_t phys_addr)
4258 {
4259 	const struct resource **ptr;
4260 	int error;
4261 
4262 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4263 	if (!ptr)
4264 		return -ENOMEM;
4265 
4266 	error = pci_remap_iospace(res, phys_addr);
4267 	if (error) {
4268 		devres_free(ptr);
4269 	} else	{
4270 		*ptr = res;
4271 		devres_add(dev, ptr);
4272 	}
4273 
4274 	return error;
4275 }
4276 EXPORT_SYMBOL(devm_pci_remap_iospace);
4277 
4278 /**
4279  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4280  * @dev: Generic device to remap IO address for
4281  * @offset: Resource address to map
4282  * @size: Size of map
4283  *
4284  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4285  * detach.
4286  */
4287 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4288 				      resource_size_t offset,
4289 				      resource_size_t size)
4290 {
4291 	void __iomem **ptr, *addr;
4292 
4293 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4294 	if (!ptr)
4295 		return NULL;
4296 
4297 	addr = pci_remap_cfgspace(offset, size);
4298 	if (addr) {
4299 		*ptr = addr;
4300 		devres_add(dev, ptr);
4301 	} else
4302 		devres_free(ptr);
4303 
4304 	return addr;
4305 }
4306 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4307 
4308 /**
4309  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4310  * @dev: generic device to handle the resource for
4311  * @res: configuration space resource to be handled
4312  *
4313  * Checks that a resource is a valid memory region, requests the memory
4314  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4315  * proper PCI configuration space memory attributes are guaranteed.
4316  *
4317  * All operations are managed and will be undone on driver detach.
4318  *
4319  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4320  * on failure. Usage example::
4321  *
4322  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4323  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4324  *	if (IS_ERR(base))
4325  *		return PTR_ERR(base);
4326  */
4327 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4328 					  struct resource *res)
4329 {
4330 	resource_size_t size;
4331 	const char *name;
4332 	void __iomem *dest_ptr;
4333 
4334 	BUG_ON(!dev);
4335 
4336 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4337 		dev_err(dev, "invalid resource\n");
4338 		return IOMEM_ERR_PTR(-EINVAL);
4339 	}
4340 
4341 	size = resource_size(res);
4342 
4343 	if (res->name)
4344 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4345 				      res->name);
4346 	else
4347 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4348 	if (!name)
4349 		return IOMEM_ERR_PTR(-ENOMEM);
4350 
4351 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4352 		dev_err(dev, "can't request region for resource %pR\n", res);
4353 		return IOMEM_ERR_PTR(-EBUSY);
4354 	}
4355 
4356 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4357 	if (!dest_ptr) {
4358 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4359 		devm_release_mem_region(dev, res->start, size);
4360 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4361 	}
4362 
4363 	return dest_ptr;
4364 }
4365 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4366 
4367 static void __pci_set_master(struct pci_dev *dev, bool enable)
4368 {
4369 	u16 old_cmd, cmd;
4370 
4371 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4372 	if (enable)
4373 		cmd = old_cmd | PCI_COMMAND_MASTER;
4374 	else
4375 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4376 	if (cmd != old_cmd) {
4377 		pci_dbg(dev, "%s bus mastering\n",
4378 			enable ? "enabling" : "disabling");
4379 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4380 	}
4381 	dev->is_busmaster = enable;
4382 }
4383 
4384 /**
4385  * pcibios_setup - process "pci=" kernel boot arguments
4386  * @str: string used to pass in "pci=" kernel boot arguments
4387  *
4388  * Process kernel boot arguments.  This is the default implementation.
4389  * Architecture specific implementations can override this as necessary.
4390  */
4391 char * __weak __init pcibios_setup(char *str)
4392 {
4393 	return str;
4394 }
4395 
4396 /**
4397  * pcibios_set_master - enable PCI bus-mastering for device dev
4398  * @dev: the PCI device to enable
4399  *
4400  * Enables PCI bus-mastering for the device.  This is the default
4401  * implementation.  Architecture specific implementations can override
4402  * this if necessary.
4403  */
4404 void __weak pcibios_set_master(struct pci_dev *dev)
4405 {
4406 	u8 lat;
4407 
4408 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4409 	if (pci_is_pcie(dev))
4410 		return;
4411 
4412 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4413 	if (lat < 16)
4414 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4415 	else if (lat > pcibios_max_latency)
4416 		lat = pcibios_max_latency;
4417 	else
4418 		return;
4419 
4420 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4421 }
4422 
4423 /**
4424  * pci_set_master - enables bus-mastering for device dev
4425  * @dev: the PCI device to enable
4426  *
4427  * Enables bus-mastering on the device and calls pcibios_set_master()
4428  * to do the needed arch specific settings.
4429  */
4430 void pci_set_master(struct pci_dev *dev)
4431 {
4432 	__pci_set_master(dev, true);
4433 	pcibios_set_master(dev);
4434 }
4435 EXPORT_SYMBOL(pci_set_master);
4436 
4437 /**
4438  * pci_clear_master - disables bus-mastering for device dev
4439  * @dev: the PCI device to disable
4440  */
4441 void pci_clear_master(struct pci_dev *dev)
4442 {
4443 	__pci_set_master(dev, false);
4444 }
4445 EXPORT_SYMBOL(pci_clear_master);
4446 
4447 /**
4448  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4449  * @dev: the PCI device for which MWI is to be enabled
4450  *
4451  * Helper function for pci_set_mwi.
4452  * Originally copied from drivers/net/acenic.c.
4453  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4454  *
4455  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4456  */
4457 int pci_set_cacheline_size(struct pci_dev *dev)
4458 {
4459 	u8 cacheline_size;
4460 
4461 	if (!pci_cache_line_size)
4462 		return -EINVAL;
4463 
4464 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4465 	   equal to or multiple of the right value. */
4466 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4467 	if (cacheline_size >= pci_cache_line_size &&
4468 	    (cacheline_size % pci_cache_line_size) == 0)
4469 		return 0;
4470 
4471 	/* Write the correct value. */
4472 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4473 	/* Read it back. */
4474 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4475 	if (cacheline_size == pci_cache_line_size)
4476 		return 0;
4477 
4478 	pci_dbg(dev, "cache line size of %d is not supported\n",
4479 		   pci_cache_line_size << 2);
4480 
4481 	return -EINVAL;
4482 }
4483 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4484 
4485 /**
4486  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4487  * @dev: the PCI device for which MWI is enabled
4488  *
4489  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4490  *
4491  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4492  */
4493 int pci_set_mwi(struct pci_dev *dev)
4494 {
4495 #ifdef PCI_DISABLE_MWI
4496 	return 0;
4497 #else
4498 	int rc;
4499 	u16 cmd;
4500 
4501 	rc = pci_set_cacheline_size(dev);
4502 	if (rc)
4503 		return rc;
4504 
4505 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4506 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4507 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4508 		cmd |= PCI_COMMAND_INVALIDATE;
4509 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4510 	}
4511 	return 0;
4512 #endif
4513 }
4514 EXPORT_SYMBOL(pci_set_mwi);
4515 
4516 /**
4517  * pcim_set_mwi - a device-managed pci_set_mwi()
4518  * @dev: the PCI device for which MWI is enabled
4519  *
4520  * Managed pci_set_mwi().
4521  *
4522  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4523  */
4524 int pcim_set_mwi(struct pci_dev *dev)
4525 {
4526 	struct pci_devres *dr;
4527 
4528 	dr = find_pci_dr(dev);
4529 	if (!dr)
4530 		return -ENOMEM;
4531 
4532 	dr->mwi = 1;
4533 	return pci_set_mwi(dev);
4534 }
4535 EXPORT_SYMBOL(pcim_set_mwi);
4536 
4537 /**
4538  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4539  * @dev: the PCI device for which MWI is enabled
4540  *
4541  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4542  * Callers are not required to check the return value.
4543  *
4544  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4545  */
4546 int pci_try_set_mwi(struct pci_dev *dev)
4547 {
4548 #ifdef PCI_DISABLE_MWI
4549 	return 0;
4550 #else
4551 	return pci_set_mwi(dev);
4552 #endif
4553 }
4554 EXPORT_SYMBOL(pci_try_set_mwi);
4555 
4556 /**
4557  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4558  * @dev: the PCI device to disable
4559  *
4560  * Disables PCI Memory-Write-Invalidate transaction on the device
4561  */
4562 void pci_clear_mwi(struct pci_dev *dev)
4563 {
4564 #ifndef PCI_DISABLE_MWI
4565 	u16 cmd;
4566 
4567 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4568 	if (cmd & PCI_COMMAND_INVALIDATE) {
4569 		cmd &= ~PCI_COMMAND_INVALIDATE;
4570 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4571 	}
4572 #endif
4573 }
4574 EXPORT_SYMBOL(pci_clear_mwi);
4575 
4576 /**
4577  * pci_disable_parity - disable parity checking for device
4578  * @dev: the PCI device to operate on
4579  *
4580  * Disable parity checking for device @dev
4581  */
4582 void pci_disable_parity(struct pci_dev *dev)
4583 {
4584 	u16 cmd;
4585 
4586 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4587 	if (cmd & PCI_COMMAND_PARITY) {
4588 		cmd &= ~PCI_COMMAND_PARITY;
4589 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4590 	}
4591 }
4592 
4593 /**
4594  * pci_intx - enables/disables PCI INTx for device dev
4595  * @pdev: the PCI device to operate on
4596  * @enable: boolean: whether to enable or disable PCI INTx
4597  *
4598  * Enables/disables PCI INTx for device @pdev
4599  */
4600 void pci_intx(struct pci_dev *pdev, int enable)
4601 {
4602 	u16 pci_command, new;
4603 
4604 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4605 
4606 	if (enable)
4607 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4608 	else
4609 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4610 
4611 	if (new != pci_command) {
4612 		struct pci_devres *dr;
4613 
4614 		pci_write_config_word(pdev, PCI_COMMAND, new);
4615 
4616 		dr = find_pci_dr(pdev);
4617 		if (dr && !dr->restore_intx) {
4618 			dr->restore_intx = 1;
4619 			dr->orig_intx = !enable;
4620 		}
4621 	}
4622 }
4623 EXPORT_SYMBOL_GPL(pci_intx);
4624 
4625 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4626 {
4627 	struct pci_bus *bus = dev->bus;
4628 	bool mask_updated = true;
4629 	u32 cmd_status_dword;
4630 	u16 origcmd, newcmd;
4631 	unsigned long flags;
4632 	bool irq_pending;
4633 
4634 	/*
4635 	 * We do a single dword read to retrieve both command and status.
4636 	 * Document assumptions that make this possible.
4637 	 */
4638 	BUILD_BUG_ON(PCI_COMMAND % 4);
4639 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4640 
4641 	raw_spin_lock_irqsave(&pci_lock, flags);
4642 
4643 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4644 
4645 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4646 
4647 	/*
4648 	 * Check interrupt status register to see whether our device
4649 	 * triggered the interrupt (when masking) or the next IRQ is
4650 	 * already pending (when unmasking).
4651 	 */
4652 	if (mask != irq_pending) {
4653 		mask_updated = false;
4654 		goto done;
4655 	}
4656 
4657 	origcmd = cmd_status_dword;
4658 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4659 	if (mask)
4660 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4661 	if (newcmd != origcmd)
4662 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4663 
4664 done:
4665 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4666 
4667 	return mask_updated;
4668 }
4669 
4670 /**
4671  * pci_check_and_mask_intx - mask INTx on pending interrupt
4672  * @dev: the PCI device to operate on
4673  *
4674  * Check if the device dev has its INTx line asserted, mask it and return
4675  * true in that case. False is returned if no interrupt was pending.
4676  */
4677 bool pci_check_and_mask_intx(struct pci_dev *dev)
4678 {
4679 	return pci_check_and_set_intx_mask(dev, true);
4680 }
4681 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4682 
4683 /**
4684  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4685  * @dev: the PCI device to operate on
4686  *
4687  * Check if the device dev has its INTx line asserted, unmask it if not and
4688  * return true. False is returned and the mask remains active if there was
4689  * still an interrupt pending.
4690  */
4691 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4692 {
4693 	return pci_check_and_set_intx_mask(dev, false);
4694 }
4695 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4696 
4697 /**
4698  * pci_wait_for_pending_transaction - wait for pending transaction
4699  * @dev: the PCI device to operate on
4700  *
4701  * Return 0 if transaction is pending 1 otherwise.
4702  */
4703 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4704 {
4705 	if (!pci_is_pcie(dev))
4706 		return 1;
4707 
4708 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4709 				    PCI_EXP_DEVSTA_TRPND);
4710 }
4711 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4712 
4713 /**
4714  * pcie_flr - initiate a PCIe function level reset
4715  * @dev: device to reset
4716  *
4717  * Initiate a function level reset unconditionally on @dev without
4718  * checking any flags and DEVCAP
4719  */
4720 int pcie_flr(struct pci_dev *dev)
4721 {
4722 	if (!pci_wait_for_pending_transaction(dev))
4723 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4724 
4725 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4726 
4727 	if (dev->imm_ready)
4728 		return 0;
4729 
4730 	/*
4731 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4732 	 * 100ms, but may silently discard requests while the FLR is in
4733 	 * progress.  Wait 100ms before trying to access the device.
4734 	 */
4735 	msleep(100);
4736 
4737 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4738 }
4739 EXPORT_SYMBOL_GPL(pcie_flr);
4740 
4741 /**
4742  * pcie_reset_flr - initiate a PCIe function level reset
4743  * @dev: device to reset
4744  * @probe: if true, return 0 if device can be reset this way
4745  *
4746  * Initiate a function level reset on @dev.
4747  */
4748 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4749 {
4750 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4751 		return -ENOTTY;
4752 
4753 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4754 		return -ENOTTY;
4755 
4756 	if (probe)
4757 		return 0;
4758 
4759 	return pcie_flr(dev);
4760 }
4761 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4762 
4763 static int pci_af_flr(struct pci_dev *dev, bool probe)
4764 {
4765 	int pos;
4766 	u8 cap;
4767 
4768 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4769 	if (!pos)
4770 		return -ENOTTY;
4771 
4772 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4773 		return -ENOTTY;
4774 
4775 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4776 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4777 		return -ENOTTY;
4778 
4779 	if (probe)
4780 		return 0;
4781 
4782 	/*
4783 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4784 	 * is used, so we use the control offset rather than status and shift
4785 	 * the test bit to match.
4786 	 */
4787 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4788 				 PCI_AF_STATUS_TP << 8))
4789 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4790 
4791 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4792 
4793 	if (dev->imm_ready)
4794 		return 0;
4795 
4796 	/*
4797 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4798 	 * updated 27 July 2006; a device must complete an FLR within
4799 	 * 100ms, but may silently discard requests while the FLR is in
4800 	 * progress.  Wait 100ms before trying to access the device.
4801 	 */
4802 	msleep(100);
4803 
4804 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4805 }
4806 
4807 /**
4808  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4809  * @dev: Device to reset.
4810  * @probe: if true, return 0 if the device can be reset this way.
4811  *
4812  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4813  * unset, it will be reinitialized internally when going from PCI_D3hot to
4814  * PCI_D0.  If that's the case and the device is not in a low-power state
4815  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4816  *
4817  * NOTE: This causes the caller to sleep for twice the device power transition
4818  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4819  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4820  * Moreover, only devices in D0 can be reset by this function.
4821  */
4822 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4823 {
4824 	u16 csr;
4825 
4826 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4827 		return -ENOTTY;
4828 
4829 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4830 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4831 		return -ENOTTY;
4832 
4833 	if (probe)
4834 		return 0;
4835 
4836 	if (dev->current_state != PCI_D0)
4837 		return -EINVAL;
4838 
4839 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4840 	csr |= PCI_D3hot;
4841 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4842 	pci_dev_d3_sleep(dev);
4843 
4844 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4845 	csr |= PCI_D0;
4846 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4847 	pci_dev_d3_sleep(dev);
4848 
4849 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4850 }
4851 
4852 /**
4853  * pcie_wait_for_link_delay - Wait until link is active or inactive
4854  * @pdev: Bridge device
4855  * @active: waiting for active or inactive?
4856  * @delay: Delay to wait after link has become active (in ms)
4857  *
4858  * Use this to wait till link becomes active or inactive.
4859  */
4860 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4861 				     int delay)
4862 {
4863 	int timeout = 1000;
4864 	bool ret;
4865 	u16 lnk_status;
4866 
4867 	/*
4868 	 * Some controllers might not implement link active reporting. In this
4869 	 * case, we wait for 1000 ms + any delay requested by the caller.
4870 	 */
4871 	if (!pdev->link_active_reporting) {
4872 		msleep(timeout + delay);
4873 		return true;
4874 	}
4875 
4876 	/*
4877 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4878 	 * after which we should expect an link active if the reset was
4879 	 * successful. If so, software must wait a minimum 100ms before sending
4880 	 * configuration requests to devices downstream this port.
4881 	 *
4882 	 * If the link fails to activate, either the device was physically
4883 	 * removed or the link is permanently failed.
4884 	 */
4885 	if (active)
4886 		msleep(20);
4887 	for (;;) {
4888 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4889 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4890 		if (ret == active)
4891 			break;
4892 		if (timeout <= 0)
4893 			break;
4894 		msleep(10);
4895 		timeout -= 10;
4896 	}
4897 	if (active && ret)
4898 		msleep(delay);
4899 
4900 	return ret == active;
4901 }
4902 
4903 /**
4904  * pcie_wait_for_link - Wait until link is active or inactive
4905  * @pdev: Bridge device
4906  * @active: waiting for active or inactive?
4907  *
4908  * Use this to wait till link becomes active or inactive.
4909  */
4910 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4911 {
4912 	return pcie_wait_for_link_delay(pdev, active, 100);
4913 }
4914 
4915 /*
4916  * Find maximum D3cold delay required by all the devices on the bus.  The
4917  * spec says 100 ms, but firmware can lower it and we allow drivers to
4918  * increase it as well.
4919  *
4920  * Called with @pci_bus_sem locked for reading.
4921  */
4922 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4923 {
4924 	const struct pci_dev *pdev;
4925 	int min_delay = 100;
4926 	int max_delay = 0;
4927 
4928 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4929 		if (pdev->d3cold_delay < min_delay)
4930 			min_delay = pdev->d3cold_delay;
4931 		if (pdev->d3cold_delay > max_delay)
4932 			max_delay = pdev->d3cold_delay;
4933 	}
4934 
4935 	return max(min_delay, max_delay);
4936 }
4937 
4938 /**
4939  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4940  * @dev: PCI bridge
4941  * @reset_type: reset type in human-readable form
4942  * @timeout: maximum time to wait for devices on secondary bus (milliseconds)
4943  *
4944  * Handle necessary delays before access to the devices on the secondary
4945  * side of the bridge are permitted after D3cold to D0 transition
4946  * or Conventional Reset.
4947  *
4948  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4949  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4950  * 4.3.2.
4951  *
4952  * Return 0 on success or -ENOTTY if the first device on the secondary bus
4953  * failed to become accessible.
4954  */
4955 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type,
4956 				      int timeout)
4957 {
4958 	struct pci_dev *child;
4959 	int delay;
4960 
4961 	if (pci_dev_is_disconnected(dev))
4962 		return 0;
4963 
4964 	if (!pci_is_bridge(dev))
4965 		return 0;
4966 
4967 	down_read(&pci_bus_sem);
4968 
4969 	/*
4970 	 * We only deal with devices that are present currently on the bus.
4971 	 * For any hot-added devices the access delay is handled in pciehp
4972 	 * board_added(). In case of ACPI hotplug the firmware is expected
4973 	 * to configure the devices before OS is notified.
4974 	 */
4975 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4976 		up_read(&pci_bus_sem);
4977 		return 0;
4978 	}
4979 
4980 	/* Take d3cold_delay requirements into account */
4981 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4982 	if (!delay) {
4983 		up_read(&pci_bus_sem);
4984 		return 0;
4985 	}
4986 
4987 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4988 				 bus_list);
4989 	up_read(&pci_bus_sem);
4990 
4991 	/*
4992 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4993 	 * accessing the device after reset (that is 1000 ms + 100 ms).
4994 	 */
4995 	if (!pci_is_pcie(dev)) {
4996 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4997 		msleep(1000 + delay);
4998 		return 0;
4999 	}
5000 
5001 	/*
5002 	 * For PCIe downstream and root ports that do not support speeds
5003 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5004 	 * speeds (gen3) we need to wait first for the data link layer to
5005 	 * become active.
5006 	 *
5007 	 * However, 100 ms is the minimum and the PCIe spec says the
5008 	 * software must allow at least 1s before it can determine that the
5009 	 * device that did not respond is a broken device. There is
5010 	 * evidence that 100 ms is not always enough, for example certain
5011 	 * Titan Ridge xHCI controller does not always respond to
5012 	 * configuration requests if we only wait for 100 ms (see
5013 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5014 	 *
5015 	 * Therefore we wait for 100 ms and check for the device presence
5016 	 * until the timeout expires.
5017 	 */
5018 	if (!pcie_downstream_port(dev))
5019 		return 0;
5020 
5021 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5022 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5023 		msleep(delay);
5024 	} else {
5025 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5026 			delay);
5027 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
5028 			/* Did not train, no need to wait any further */
5029 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5030 			return -ENOTTY;
5031 		}
5032 	}
5033 
5034 	return pci_dev_wait(child, reset_type, timeout - delay);
5035 }
5036 
5037 void pci_reset_secondary_bus(struct pci_dev *dev)
5038 {
5039 	u16 ctrl;
5040 
5041 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5042 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5043 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5044 
5045 	/*
5046 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5047 	 * this to 2ms to ensure that we meet the minimum requirement.
5048 	 */
5049 	msleep(2);
5050 
5051 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5052 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5053 }
5054 
5055 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5056 {
5057 	pci_reset_secondary_bus(dev);
5058 }
5059 
5060 /**
5061  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5062  * @dev: Bridge device
5063  *
5064  * Use the bridge control register to assert reset on the secondary bus.
5065  * Devices on the secondary bus are left in power-on state.
5066  */
5067 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5068 {
5069 	pcibios_reset_secondary_bus(dev);
5070 
5071 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset",
5072 						 PCIE_RESET_READY_POLL_MS);
5073 }
5074 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5075 
5076 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5077 {
5078 	struct pci_dev *pdev;
5079 
5080 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5081 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5082 		return -ENOTTY;
5083 
5084 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5085 		if (pdev != dev)
5086 			return -ENOTTY;
5087 
5088 	if (probe)
5089 		return 0;
5090 
5091 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5092 }
5093 
5094 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5095 {
5096 	int rc = -ENOTTY;
5097 
5098 	if (!hotplug || !try_module_get(hotplug->owner))
5099 		return rc;
5100 
5101 	if (hotplug->ops->reset_slot)
5102 		rc = hotplug->ops->reset_slot(hotplug, probe);
5103 
5104 	module_put(hotplug->owner);
5105 
5106 	return rc;
5107 }
5108 
5109 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5110 {
5111 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5112 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5113 		return -ENOTTY;
5114 
5115 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5116 }
5117 
5118 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5119 {
5120 	int rc;
5121 
5122 	rc = pci_dev_reset_slot_function(dev, probe);
5123 	if (rc != -ENOTTY)
5124 		return rc;
5125 	return pci_parent_bus_reset(dev, probe);
5126 }
5127 
5128 void pci_dev_lock(struct pci_dev *dev)
5129 {
5130 	/* block PM suspend, driver probe, etc. */
5131 	device_lock(&dev->dev);
5132 	pci_cfg_access_lock(dev);
5133 }
5134 EXPORT_SYMBOL_GPL(pci_dev_lock);
5135 
5136 /* Return 1 on successful lock, 0 on contention */
5137 int pci_dev_trylock(struct pci_dev *dev)
5138 {
5139 	if (device_trylock(&dev->dev)) {
5140 		if (pci_cfg_access_trylock(dev))
5141 			return 1;
5142 		device_unlock(&dev->dev);
5143 	}
5144 
5145 	return 0;
5146 }
5147 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5148 
5149 void pci_dev_unlock(struct pci_dev *dev)
5150 {
5151 	pci_cfg_access_unlock(dev);
5152 	device_unlock(&dev->dev);
5153 }
5154 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5155 
5156 static void pci_dev_save_and_disable(struct pci_dev *dev)
5157 {
5158 	const struct pci_error_handlers *err_handler =
5159 			dev->driver ? dev->driver->err_handler : NULL;
5160 
5161 	/*
5162 	 * dev->driver->err_handler->reset_prepare() is protected against
5163 	 * races with ->remove() by the device lock, which must be held by
5164 	 * the caller.
5165 	 */
5166 	if (err_handler && err_handler->reset_prepare)
5167 		err_handler->reset_prepare(dev);
5168 
5169 	/*
5170 	 * Wake-up device prior to save.  PM registers default to D0 after
5171 	 * reset and a simple register restore doesn't reliably return
5172 	 * to a non-D0 state anyway.
5173 	 */
5174 	pci_set_power_state(dev, PCI_D0);
5175 
5176 	pci_save_state(dev);
5177 	/*
5178 	 * Disable the device by clearing the Command register, except for
5179 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5180 	 * BARs, but also prevents the device from being Bus Master, preventing
5181 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5182 	 * compliant devices, INTx-disable prevents legacy interrupts.
5183 	 */
5184 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5185 }
5186 
5187 static void pci_dev_restore(struct pci_dev *dev)
5188 {
5189 	const struct pci_error_handlers *err_handler =
5190 			dev->driver ? dev->driver->err_handler : NULL;
5191 
5192 	pci_restore_state(dev);
5193 
5194 	/*
5195 	 * dev->driver->err_handler->reset_done() is protected against
5196 	 * races with ->remove() by the device lock, which must be held by
5197 	 * the caller.
5198 	 */
5199 	if (err_handler && err_handler->reset_done)
5200 		err_handler->reset_done(dev);
5201 }
5202 
5203 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5204 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5205 	{ },
5206 	{ pci_dev_specific_reset, .name = "device_specific" },
5207 	{ pci_dev_acpi_reset, .name = "acpi" },
5208 	{ pcie_reset_flr, .name = "flr" },
5209 	{ pci_af_flr, .name = "af_flr" },
5210 	{ pci_pm_reset, .name = "pm" },
5211 	{ pci_reset_bus_function, .name = "bus" },
5212 };
5213 
5214 static ssize_t reset_method_show(struct device *dev,
5215 				 struct device_attribute *attr, char *buf)
5216 {
5217 	struct pci_dev *pdev = to_pci_dev(dev);
5218 	ssize_t len = 0;
5219 	int i, m;
5220 
5221 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5222 		m = pdev->reset_methods[i];
5223 		if (!m)
5224 			break;
5225 
5226 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5227 				     pci_reset_fn_methods[m].name);
5228 	}
5229 
5230 	if (len)
5231 		len += sysfs_emit_at(buf, len, "\n");
5232 
5233 	return len;
5234 }
5235 
5236 static int reset_method_lookup(const char *name)
5237 {
5238 	int m;
5239 
5240 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5241 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5242 			return m;
5243 	}
5244 
5245 	return 0;	/* not found */
5246 }
5247 
5248 static ssize_t reset_method_store(struct device *dev,
5249 				  struct device_attribute *attr,
5250 				  const char *buf, size_t count)
5251 {
5252 	struct pci_dev *pdev = to_pci_dev(dev);
5253 	char *options, *name;
5254 	int m, n;
5255 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5256 
5257 	if (sysfs_streq(buf, "")) {
5258 		pdev->reset_methods[0] = 0;
5259 		pci_warn(pdev, "All device reset methods disabled by user");
5260 		return count;
5261 	}
5262 
5263 	if (sysfs_streq(buf, "default")) {
5264 		pci_init_reset_methods(pdev);
5265 		return count;
5266 	}
5267 
5268 	options = kstrndup(buf, count, GFP_KERNEL);
5269 	if (!options)
5270 		return -ENOMEM;
5271 
5272 	n = 0;
5273 	while ((name = strsep(&options, " ")) != NULL) {
5274 		if (sysfs_streq(name, ""))
5275 			continue;
5276 
5277 		name = strim(name);
5278 
5279 		m = reset_method_lookup(name);
5280 		if (!m) {
5281 			pci_err(pdev, "Invalid reset method '%s'", name);
5282 			goto error;
5283 		}
5284 
5285 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5286 			pci_err(pdev, "Unsupported reset method '%s'", name);
5287 			goto error;
5288 		}
5289 
5290 		if (n == PCI_NUM_RESET_METHODS - 1) {
5291 			pci_err(pdev, "Too many reset methods\n");
5292 			goto error;
5293 		}
5294 
5295 		reset_methods[n++] = m;
5296 	}
5297 
5298 	reset_methods[n] = 0;
5299 
5300 	/* Warn if dev-specific supported but not highest priority */
5301 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5302 	    reset_methods[0] != 1)
5303 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5304 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5305 	kfree(options);
5306 	return count;
5307 
5308 error:
5309 	/* Leave previous methods unchanged */
5310 	kfree(options);
5311 	return -EINVAL;
5312 }
5313 static DEVICE_ATTR_RW(reset_method);
5314 
5315 static struct attribute *pci_dev_reset_method_attrs[] = {
5316 	&dev_attr_reset_method.attr,
5317 	NULL,
5318 };
5319 
5320 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5321 						    struct attribute *a, int n)
5322 {
5323 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5324 
5325 	if (!pci_reset_supported(pdev))
5326 		return 0;
5327 
5328 	return a->mode;
5329 }
5330 
5331 const struct attribute_group pci_dev_reset_method_attr_group = {
5332 	.attrs = pci_dev_reset_method_attrs,
5333 	.is_visible = pci_dev_reset_method_attr_is_visible,
5334 };
5335 
5336 /**
5337  * __pci_reset_function_locked - reset a PCI device function while holding
5338  * the @dev mutex lock.
5339  * @dev: PCI device to reset
5340  *
5341  * Some devices allow an individual function to be reset without affecting
5342  * other functions in the same device.  The PCI device must be responsive
5343  * to PCI config space in order to use this function.
5344  *
5345  * The device function is presumed to be unused and the caller is holding
5346  * the device mutex lock when this function is called.
5347  *
5348  * Resetting the device will make the contents of PCI configuration space
5349  * random, so any caller of this must be prepared to reinitialise the
5350  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5351  * etc.
5352  *
5353  * Returns 0 if the device function was successfully reset or negative if the
5354  * device doesn't support resetting a single function.
5355  */
5356 int __pci_reset_function_locked(struct pci_dev *dev)
5357 {
5358 	int i, m, rc;
5359 
5360 	might_sleep();
5361 
5362 	/*
5363 	 * A reset method returns -ENOTTY if it doesn't support this device and
5364 	 * we should try the next method.
5365 	 *
5366 	 * If it returns 0 (success), we're finished.  If it returns any other
5367 	 * error, we're also finished: this indicates that further reset
5368 	 * mechanisms might be broken on the device.
5369 	 */
5370 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5371 		m = dev->reset_methods[i];
5372 		if (!m)
5373 			return -ENOTTY;
5374 
5375 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5376 		if (!rc)
5377 			return 0;
5378 		if (rc != -ENOTTY)
5379 			return rc;
5380 	}
5381 
5382 	return -ENOTTY;
5383 }
5384 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5385 
5386 /**
5387  * pci_init_reset_methods - check whether device can be safely reset
5388  * and store supported reset mechanisms.
5389  * @dev: PCI device to check for reset mechanisms
5390  *
5391  * Some devices allow an individual function to be reset without affecting
5392  * other functions in the same device.  The PCI device must be in D0-D3hot
5393  * state.
5394  *
5395  * Stores reset mechanisms supported by device in reset_methods byte array
5396  * which is a member of struct pci_dev.
5397  */
5398 void pci_init_reset_methods(struct pci_dev *dev)
5399 {
5400 	int m, i, rc;
5401 
5402 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5403 
5404 	might_sleep();
5405 
5406 	i = 0;
5407 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5408 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5409 		if (!rc)
5410 			dev->reset_methods[i++] = m;
5411 		else if (rc != -ENOTTY)
5412 			break;
5413 	}
5414 
5415 	dev->reset_methods[i] = 0;
5416 }
5417 
5418 /**
5419  * pci_reset_function - quiesce and reset a PCI device function
5420  * @dev: PCI device to reset
5421  *
5422  * Some devices allow an individual function to be reset without affecting
5423  * other functions in the same device.  The PCI device must be responsive
5424  * to PCI config space in order to use this function.
5425  *
5426  * This function does not just reset the PCI portion of a device, but
5427  * clears all the state associated with the device.  This function differs
5428  * from __pci_reset_function_locked() in that it saves and restores device state
5429  * over the reset and takes the PCI device lock.
5430  *
5431  * Returns 0 if the device function was successfully reset or negative if the
5432  * device doesn't support resetting a single function.
5433  */
5434 int pci_reset_function(struct pci_dev *dev)
5435 {
5436 	int rc;
5437 
5438 	if (!pci_reset_supported(dev))
5439 		return -ENOTTY;
5440 
5441 	pci_dev_lock(dev);
5442 	pci_dev_save_and_disable(dev);
5443 
5444 	rc = __pci_reset_function_locked(dev);
5445 
5446 	pci_dev_restore(dev);
5447 	pci_dev_unlock(dev);
5448 
5449 	return rc;
5450 }
5451 EXPORT_SYMBOL_GPL(pci_reset_function);
5452 
5453 /**
5454  * pci_reset_function_locked - quiesce and reset a PCI device function
5455  * @dev: PCI device to reset
5456  *
5457  * Some devices allow an individual function to be reset without affecting
5458  * other functions in the same device.  The PCI device must be responsive
5459  * to PCI config space in order to use this function.
5460  *
5461  * This function does not just reset the PCI portion of a device, but
5462  * clears all the state associated with the device.  This function differs
5463  * from __pci_reset_function_locked() in that it saves and restores device state
5464  * over the reset.  It also differs from pci_reset_function() in that it
5465  * requires the PCI device lock to be held.
5466  *
5467  * Returns 0 if the device function was successfully reset or negative if the
5468  * device doesn't support resetting a single function.
5469  */
5470 int pci_reset_function_locked(struct pci_dev *dev)
5471 {
5472 	int rc;
5473 
5474 	if (!pci_reset_supported(dev))
5475 		return -ENOTTY;
5476 
5477 	pci_dev_save_and_disable(dev);
5478 
5479 	rc = __pci_reset_function_locked(dev);
5480 
5481 	pci_dev_restore(dev);
5482 
5483 	return rc;
5484 }
5485 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5486 
5487 /**
5488  * pci_try_reset_function - quiesce and reset a PCI device function
5489  * @dev: PCI device to reset
5490  *
5491  * Same as above, except return -EAGAIN if unable to lock device.
5492  */
5493 int pci_try_reset_function(struct pci_dev *dev)
5494 {
5495 	int rc;
5496 
5497 	if (!pci_reset_supported(dev))
5498 		return -ENOTTY;
5499 
5500 	if (!pci_dev_trylock(dev))
5501 		return -EAGAIN;
5502 
5503 	pci_dev_save_and_disable(dev);
5504 	rc = __pci_reset_function_locked(dev);
5505 	pci_dev_restore(dev);
5506 	pci_dev_unlock(dev);
5507 
5508 	return rc;
5509 }
5510 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5511 
5512 /* Do any devices on or below this bus prevent a bus reset? */
5513 static bool pci_bus_resetable(struct pci_bus *bus)
5514 {
5515 	struct pci_dev *dev;
5516 
5517 
5518 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5519 		return false;
5520 
5521 	list_for_each_entry(dev, &bus->devices, bus_list) {
5522 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5523 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5524 			return false;
5525 	}
5526 
5527 	return true;
5528 }
5529 
5530 /* Lock devices from the top of the tree down */
5531 static void pci_bus_lock(struct pci_bus *bus)
5532 {
5533 	struct pci_dev *dev;
5534 
5535 	list_for_each_entry(dev, &bus->devices, bus_list) {
5536 		pci_dev_lock(dev);
5537 		if (dev->subordinate)
5538 			pci_bus_lock(dev->subordinate);
5539 	}
5540 }
5541 
5542 /* Unlock devices from the bottom of the tree up */
5543 static void pci_bus_unlock(struct pci_bus *bus)
5544 {
5545 	struct pci_dev *dev;
5546 
5547 	list_for_each_entry(dev, &bus->devices, bus_list) {
5548 		if (dev->subordinate)
5549 			pci_bus_unlock(dev->subordinate);
5550 		pci_dev_unlock(dev);
5551 	}
5552 }
5553 
5554 /* Return 1 on successful lock, 0 on contention */
5555 static int pci_bus_trylock(struct pci_bus *bus)
5556 {
5557 	struct pci_dev *dev;
5558 
5559 	list_for_each_entry(dev, &bus->devices, bus_list) {
5560 		if (!pci_dev_trylock(dev))
5561 			goto unlock;
5562 		if (dev->subordinate) {
5563 			if (!pci_bus_trylock(dev->subordinate)) {
5564 				pci_dev_unlock(dev);
5565 				goto unlock;
5566 			}
5567 		}
5568 	}
5569 	return 1;
5570 
5571 unlock:
5572 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5573 		if (dev->subordinate)
5574 			pci_bus_unlock(dev->subordinate);
5575 		pci_dev_unlock(dev);
5576 	}
5577 	return 0;
5578 }
5579 
5580 /* Do any devices on or below this slot prevent a bus reset? */
5581 static bool pci_slot_resetable(struct pci_slot *slot)
5582 {
5583 	struct pci_dev *dev;
5584 
5585 	if (slot->bus->self &&
5586 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5587 		return false;
5588 
5589 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5590 		if (!dev->slot || dev->slot != slot)
5591 			continue;
5592 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5593 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5594 			return false;
5595 	}
5596 
5597 	return true;
5598 }
5599 
5600 /* Lock devices from the top of the tree down */
5601 static void pci_slot_lock(struct pci_slot *slot)
5602 {
5603 	struct pci_dev *dev;
5604 
5605 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5606 		if (!dev->slot || dev->slot != slot)
5607 			continue;
5608 		pci_dev_lock(dev);
5609 		if (dev->subordinate)
5610 			pci_bus_lock(dev->subordinate);
5611 	}
5612 }
5613 
5614 /* Unlock devices from the bottom of the tree up */
5615 static void pci_slot_unlock(struct pci_slot *slot)
5616 {
5617 	struct pci_dev *dev;
5618 
5619 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5620 		if (!dev->slot || dev->slot != slot)
5621 			continue;
5622 		if (dev->subordinate)
5623 			pci_bus_unlock(dev->subordinate);
5624 		pci_dev_unlock(dev);
5625 	}
5626 }
5627 
5628 /* Return 1 on successful lock, 0 on contention */
5629 static int pci_slot_trylock(struct pci_slot *slot)
5630 {
5631 	struct pci_dev *dev;
5632 
5633 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5634 		if (!dev->slot || dev->slot != slot)
5635 			continue;
5636 		if (!pci_dev_trylock(dev))
5637 			goto unlock;
5638 		if (dev->subordinate) {
5639 			if (!pci_bus_trylock(dev->subordinate)) {
5640 				pci_dev_unlock(dev);
5641 				goto unlock;
5642 			}
5643 		}
5644 	}
5645 	return 1;
5646 
5647 unlock:
5648 	list_for_each_entry_continue_reverse(dev,
5649 					     &slot->bus->devices, bus_list) {
5650 		if (!dev->slot || dev->slot != slot)
5651 			continue;
5652 		if (dev->subordinate)
5653 			pci_bus_unlock(dev->subordinate);
5654 		pci_dev_unlock(dev);
5655 	}
5656 	return 0;
5657 }
5658 
5659 /*
5660  * Save and disable devices from the top of the tree down while holding
5661  * the @dev mutex lock for the entire tree.
5662  */
5663 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5664 {
5665 	struct pci_dev *dev;
5666 
5667 	list_for_each_entry(dev, &bus->devices, bus_list) {
5668 		pci_dev_save_and_disable(dev);
5669 		if (dev->subordinate)
5670 			pci_bus_save_and_disable_locked(dev->subordinate);
5671 	}
5672 }
5673 
5674 /*
5675  * Restore devices from top of the tree down while holding @dev mutex lock
5676  * for the entire tree.  Parent bridges need to be restored before we can
5677  * get to subordinate devices.
5678  */
5679 static void pci_bus_restore_locked(struct pci_bus *bus)
5680 {
5681 	struct pci_dev *dev;
5682 
5683 	list_for_each_entry(dev, &bus->devices, bus_list) {
5684 		pci_dev_restore(dev);
5685 		if (dev->subordinate)
5686 			pci_bus_restore_locked(dev->subordinate);
5687 	}
5688 }
5689 
5690 /*
5691  * Save and disable devices from the top of the tree down while holding
5692  * the @dev mutex lock for the entire tree.
5693  */
5694 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5695 {
5696 	struct pci_dev *dev;
5697 
5698 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5699 		if (!dev->slot || dev->slot != slot)
5700 			continue;
5701 		pci_dev_save_and_disable(dev);
5702 		if (dev->subordinate)
5703 			pci_bus_save_and_disable_locked(dev->subordinate);
5704 	}
5705 }
5706 
5707 /*
5708  * Restore devices from top of the tree down while holding @dev mutex lock
5709  * for the entire tree.  Parent bridges need to be restored before we can
5710  * get to subordinate devices.
5711  */
5712 static void pci_slot_restore_locked(struct pci_slot *slot)
5713 {
5714 	struct pci_dev *dev;
5715 
5716 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5717 		if (!dev->slot || dev->slot != slot)
5718 			continue;
5719 		pci_dev_restore(dev);
5720 		if (dev->subordinate)
5721 			pci_bus_restore_locked(dev->subordinate);
5722 	}
5723 }
5724 
5725 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5726 {
5727 	int rc;
5728 
5729 	if (!slot || !pci_slot_resetable(slot))
5730 		return -ENOTTY;
5731 
5732 	if (!probe)
5733 		pci_slot_lock(slot);
5734 
5735 	might_sleep();
5736 
5737 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5738 
5739 	if (!probe)
5740 		pci_slot_unlock(slot);
5741 
5742 	return rc;
5743 }
5744 
5745 /**
5746  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5747  * @slot: PCI slot to probe
5748  *
5749  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5750  */
5751 int pci_probe_reset_slot(struct pci_slot *slot)
5752 {
5753 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5754 }
5755 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5756 
5757 /**
5758  * __pci_reset_slot - Try to reset a PCI slot
5759  * @slot: PCI slot to reset
5760  *
5761  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5762  * independent of other slots.  For instance, some slots may support slot power
5763  * control.  In the case of a 1:1 bus to slot architecture, this function may
5764  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5765  * Generally a slot reset should be attempted before a bus reset.  All of the
5766  * function of the slot and any subordinate buses behind the slot are reset
5767  * through this function.  PCI config space of all devices in the slot and
5768  * behind the slot is saved before and restored after reset.
5769  *
5770  * Same as above except return -EAGAIN if the slot cannot be locked
5771  */
5772 static int __pci_reset_slot(struct pci_slot *slot)
5773 {
5774 	int rc;
5775 
5776 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5777 	if (rc)
5778 		return rc;
5779 
5780 	if (pci_slot_trylock(slot)) {
5781 		pci_slot_save_and_disable_locked(slot);
5782 		might_sleep();
5783 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5784 		pci_slot_restore_locked(slot);
5785 		pci_slot_unlock(slot);
5786 	} else
5787 		rc = -EAGAIN;
5788 
5789 	return rc;
5790 }
5791 
5792 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5793 {
5794 	int ret;
5795 
5796 	if (!bus->self || !pci_bus_resetable(bus))
5797 		return -ENOTTY;
5798 
5799 	if (probe)
5800 		return 0;
5801 
5802 	pci_bus_lock(bus);
5803 
5804 	might_sleep();
5805 
5806 	ret = pci_bridge_secondary_bus_reset(bus->self);
5807 
5808 	pci_bus_unlock(bus);
5809 
5810 	return ret;
5811 }
5812 
5813 /**
5814  * pci_bus_error_reset - reset the bridge's subordinate bus
5815  * @bridge: The parent device that connects to the bus to reset
5816  *
5817  * This function will first try to reset the slots on this bus if the method is
5818  * available. If slot reset fails or is not available, this will fall back to a
5819  * secondary bus reset.
5820  */
5821 int pci_bus_error_reset(struct pci_dev *bridge)
5822 {
5823 	struct pci_bus *bus = bridge->subordinate;
5824 	struct pci_slot *slot;
5825 
5826 	if (!bus)
5827 		return -ENOTTY;
5828 
5829 	mutex_lock(&pci_slot_mutex);
5830 	if (list_empty(&bus->slots))
5831 		goto bus_reset;
5832 
5833 	list_for_each_entry(slot, &bus->slots, list)
5834 		if (pci_probe_reset_slot(slot))
5835 			goto bus_reset;
5836 
5837 	list_for_each_entry(slot, &bus->slots, list)
5838 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5839 			goto bus_reset;
5840 
5841 	mutex_unlock(&pci_slot_mutex);
5842 	return 0;
5843 bus_reset:
5844 	mutex_unlock(&pci_slot_mutex);
5845 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5846 }
5847 
5848 /**
5849  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5850  * @bus: PCI bus to probe
5851  *
5852  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5853  */
5854 int pci_probe_reset_bus(struct pci_bus *bus)
5855 {
5856 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5857 }
5858 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5859 
5860 /**
5861  * __pci_reset_bus - Try to reset a PCI bus
5862  * @bus: top level PCI bus to reset
5863  *
5864  * Same as above except return -EAGAIN if the bus cannot be locked
5865  */
5866 static int __pci_reset_bus(struct pci_bus *bus)
5867 {
5868 	int rc;
5869 
5870 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5871 	if (rc)
5872 		return rc;
5873 
5874 	if (pci_bus_trylock(bus)) {
5875 		pci_bus_save_and_disable_locked(bus);
5876 		might_sleep();
5877 		rc = pci_bridge_secondary_bus_reset(bus->self);
5878 		pci_bus_restore_locked(bus);
5879 		pci_bus_unlock(bus);
5880 	} else
5881 		rc = -EAGAIN;
5882 
5883 	return rc;
5884 }
5885 
5886 /**
5887  * pci_reset_bus - Try to reset a PCI bus
5888  * @pdev: top level PCI device to reset via slot/bus
5889  *
5890  * Same as above except return -EAGAIN if the bus cannot be locked
5891  */
5892 int pci_reset_bus(struct pci_dev *pdev)
5893 {
5894 	return (!pci_probe_reset_slot(pdev->slot)) ?
5895 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5896 }
5897 EXPORT_SYMBOL_GPL(pci_reset_bus);
5898 
5899 /**
5900  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5901  * @dev: PCI device to query
5902  *
5903  * Returns mmrbc: maximum designed memory read count in bytes or
5904  * appropriate error value.
5905  */
5906 int pcix_get_max_mmrbc(struct pci_dev *dev)
5907 {
5908 	int cap;
5909 	u32 stat;
5910 
5911 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5912 	if (!cap)
5913 		return -EINVAL;
5914 
5915 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5916 		return -EINVAL;
5917 
5918 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5919 }
5920 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5921 
5922 /**
5923  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5924  * @dev: PCI device to query
5925  *
5926  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5927  * value.
5928  */
5929 int pcix_get_mmrbc(struct pci_dev *dev)
5930 {
5931 	int cap;
5932 	u16 cmd;
5933 
5934 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5935 	if (!cap)
5936 		return -EINVAL;
5937 
5938 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5939 		return -EINVAL;
5940 
5941 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5942 }
5943 EXPORT_SYMBOL(pcix_get_mmrbc);
5944 
5945 /**
5946  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5947  * @dev: PCI device to query
5948  * @mmrbc: maximum memory read count in bytes
5949  *    valid values are 512, 1024, 2048, 4096
5950  *
5951  * If possible sets maximum memory read byte count, some bridges have errata
5952  * that prevent this.
5953  */
5954 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5955 {
5956 	int cap;
5957 	u32 stat, v, o;
5958 	u16 cmd;
5959 
5960 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5961 		return -EINVAL;
5962 
5963 	v = ffs(mmrbc) - 10;
5964 
5965 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5966 	if (!cap)
5967 		return -EINVAL;
5968 
5969 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5970 		return -EINVAL;
5971 
5972 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5973 		return -E2BIG;
5974 
5975 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5976 		return -EINVAL;
5977 
5978 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5979 	if (o != v) {
5980 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5981 			return -EIO;
5982 
5983 		cmd &= ~PCI_X_CMD_MAX_READ;
5984 		cmd |= v << 2;
5985 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5986 			return -EIO;
5987 	}
5988 	return 0;
5989 }
5990 EXPORT_SYMBOL(pcix_set_mmrbc);
5991 
5992 /**
5993  * pcie_get_readrq - get PCI Express read request size
5994  * @dev: PCI device to query
5995  *
5996  * Returns maximum memory read request in bytes or appropriate error value.
5997  */
5998 int pcie_get_readrq(struct pci_dev *dev)
5999 {
6000 	u16 ctl;
6001 
6002 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6003 
6004 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6005 }
6006 EXPORT_SYMBOL(pcie_get_readrq);
6007 
6008 /**
6009  * pcie_set_readrq - set PCI Express maximum memory read request
6010  * @dev: PCI device to query
6011  * @rq: maximum memory read count in bytes
6012  *    valid values are 128, 256, 512, 1024, 2048, 4096
6013  *
6014  * If possible sets maximum memory read request in bytes
6015  */
6016 int pcie_set_readrq(struct pci_dev *dev, int rq)
6017 {
6018 	u16 v;
6019 	int ret;
6020 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6021 
6022 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6023 		return -EINVAL;
6024 
6025 	/*
6026 	 * If using the "performance" PCIe config, we clamp the read rq
6027 	 * size to the max packet size to keep the host bridge from
6028 	 * generating requests larger than we can cope with.
6029 	 */
6030 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6031 		int mps = pcie_get_mps(dev);
6032 
6033 		if (mps < rq)
6034 			rq = mps;
6035 	}
6036 
6037 	v = (ffs(rq) - 8) << 12;
6038 
6039 	if (bridge->no_inc_mrrs) {
6040 		int max_mrrs = pcie_get_readrq(dev);
6041 
6042 		if (rq > max_mrrs) {
6043 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6044 			return -EINVAL;
6045 		}
6046 	}
6047 
6048 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6049 						  PCI_EXP_DEVCTL_READRQ, v);
6050 
6051 	return pcibios_err_to_errno(ret);
6052 }
6053 EXPORT_SYMBOL(pcie_set_readrq);
6054 
6055 /**
6056  * pcie_get_mps - get PCI Express maximum payload size
6057  * @dev: PCI device to query
6058  *
6059  * Returns maximum payload size in bytes
6060  */
6061 int pcie_get_mps(struct pci_dev *dev)
6062 {
6063 	u16 ctl;
6064 
6065 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6066 
6067 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6068 }
6069 EXPORT_SYMBOL(pcie_get_mps);
6070 
6071 /**
6072  * pcie_set_mps - set PCI Express maximum payload size
6073  * @dev: PCI device to query
6074  * @mps: maximum payload size in bytes
6075  *    valid values are 128, 256, 512, 1024, 2048, 4096
6076  *
6077  * If possible sets maximum payload size
6078  */
6079 int pcie_set_mps(struct pci_dev *dev, int mps)
6080 {
6081 	u16 v;
6082 	int ret;
6083 
6084 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6085 		return -EINVAL;
6086 
6087 	v = ffs(mps) - 8;
6088 	if (v > dev->pcie_mpss)
6089 		return -EINVAL;
6090 	v <<= 5;
6091 
6092 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6093 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6094 
6095 	return pcibios_err_to_errno(ret);
6096 }
6097 EXPORT_SYMBOL(pcie_set_mps);
6098 
6099 /**
6100  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6101  *			      device and its bandwidth limitation
6102  * @dev: PCI device to query
6103  * @limiting_dev: storage for device causing the bandwidth limitation
6104  * @speed: storage for speed of limiting device
6105  * @width: storage for width of limiting device
6106  *
6107  * Walk up the PCI device chain and find the point where the minimum
6108  * bandwidth is available.  Return the bandwidth available there and (if
6109  * limiting_dev, speed, and width pointers are supplied) information about
6110  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6111  * raw bandwidth.
6112  */
6113 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6114 			     enum pci_bus_speed *speed,
6115 			     enum pcie_link_width *width)
6116 {
6117 	u16 lnksta;
6118 	enum pci_bus_speed next_speed;
6119 	enum pcie_link_width next_width;
6120 	u32 bw, next_bw;
6121 
6122 	if (speed)
6123 		*speed = PCI_SPEED_UNKNOWN;
6124 	if (width)
6125 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6126 
6127 	bw = 0;
6128 
6129 	while (dev) {
6130 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6131 
6132 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6133 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6134 			PCI_EXP_LNKSTA_NLW_SHIFT;
6135 
6136 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6137 
6138 		/* Check if current device limits the total bandwidth */
6139 		if (!bw || next_bw <= bw) {
6140 			bw = next_bw;
6141 
6142 			if (limiting_dev)
6143 				*limiting_dev = dev;
6144 			if (speed)
6145 				*speed = next_speed;
6146 			if (width)
6147 				*width = next_width;
6148 		}
6149 
6150 		dev = pci_upstream_bridge(dev);
6151 	}
6152 
6153 	return bw;
6154 }
6155 EXPORT_SYMBOL(pcie_bandwidth_available);
6156 
6157 /**
6158  * pcie_get_speed_cap - query for the PCI device's link speed capability
6159  * @dev: PCI device to query
6160  *
6161  * Query the PCI device speed capability.  Return the maximum link speed
6162  * supported by the device.
6163  */
6164 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6165 {
6166 	u32 lnkcap2, lnkcap;
6167 
6168 	/*
6169 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6170 	 * implementation note there recommends using the Supported Link
6171 	 * Speeds Vector in Link Capabilities 2 when supported.
6172 	 *
6173 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6174 	 * should use the Supported Link Speeds field in Link Capabilities,
6175 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6176 	 */
6177 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6178 
6179 	/* PCIe r3.0-compliant */
6180 	if (lnkcap2)
6181 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6182 
6183 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6184 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6185 		return PCIE_SPEED_5_0GT;
6186 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6187 		return PCIE_SPEED_2_5GT;
6188 
6189 	return PCI_SPEED_UNKNOWN;
6190 }
6191 EXPORT_SYMBOL(pcie_get_speed_cap);
6192 
6193 /**
6194  * pcie_get_width_cap - query for the PCI device's link width capability
6195  * @dev: PCI device to query
6196  *
6197  * Query the PCI device width capability.  Return the maximum link width
6198  * supported by the device.
6199  */
6200 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6201 {
6202 	u32 lnkcap;
6203 
6204 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6205 	if (lnkcap)
6206 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6207 
6208 	return PCIE_LNK_WIDTH_UNKNOWN;
6209 }
6210 EXPORT_SYMBOL(pcie_get_width_cap);
6211 
6212 /**
6213  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6214  * @dev: PCI device
6215  * @speed: storage for link speed
6216  * @width: storage for link width
6217  *
6218  * Calculate a PCI device's link bandwidth by querying for its link speed
6219  * and width, multiplying them, and applying encoding overhead.  The result
6220  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6221  */
6222 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6223 			   enum pcie_link_width *width)
6224 {
6225 	*speed = pcie_get_speed_cap(dev);
6226 	*width = pcie_get_width_cap(dev);
6227 
6228 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6229 		return 0;
6230 
6231 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6232 }
6233 
6234 /**
6235  * __pcie_print_link_status - Report the PCI device's link speed and width
6236  * @dev: PCI device to query
6237  * @verbose: Print info even when enough bandwidth is available
6238  *
6239  * If the available bandwidth at the device is less than the device is
6240  * capable of, report the device's maximum possible bandwidth and the
6241  * upstream link that limits its performance.  If @verbose, always print
6242  * the available bandwidth, even if the device isn't constrained.
6243  */
6244 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6245 {
6246 	enum pcie_link_width width, width_cap;
6247 	enum pci_bus_speed speed, speed_cap;
6248 	struct pci_dev *limiting_dev = NULL;
6249 	u32 bw_avail, bw_cap;
6250 
6251 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6252 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6253 
6254 	if (bw_avail >= bw_cap && verbose)
6255 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6256 			 bw_cap / 1000, bw_cap % 1000,
6257 			 pci_speed_string(speed_cap), width_cap);
6258 	else if (bw_avail < bw_cap)
6259 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6260 			 bw_avail / 1000, bw_avail % 1000,
6261 			 pci_speed_string(speed), width,
6262 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6263 			 bw_cap / 1000, bw_cap % 1000,
6264 			 pci_speed_string(speed_cap), width_cap);
6265 }
6266 
6267 /**
6268  * pcie_print_link_status - Report the PCI device's link speed and width
6269  * @dev: PCI device to query
6270  *
6271  * Report the available bandwidth at the device.
6272  */
6273 void pcie_print_link_status(struct pci_dev *dev)
6274 {
6275 	__pcie_print_link_status(dev, true);
6276 }
6277 EXPORT_SYMBOL(pcie_print_link_status);
6278 
6279 /**
6280  * pci_select_bars - Make BAR mask from the type of resource
6281  * @dev: the PCI device for which BAR mask is made
6282  * @flags: resource type mask to be selected
6283  *
6284  * This helper routine makes bar mask from the type of resource.
6285  */
6286 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6287 {
6288 	int i, bars = 0;
6289 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6290 		if (pci_resource_flags(dev, i) & flags)
6291 			bars |= (1 << i);
6292 	return bars;
6293 }
6294 EXPORT_SYMBOL(pci_select_bars);
6295 
6296 /* Some architectures require additional programming to enable VGA */
6297 static arch_set_vga_state_t arch_set_vga_state;
6298 
6299 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6300 {
6301 	arch_set_vga_state = func;	/* NULL disables */
6302 }
6303 
6304 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6305 				  unsigned int command_bits, u32 flags)
6306 {
6307 	if (arch_set_vga_state)
6308 		return arch_set_vga_state(dev, decode, command_bits,
6309 						flags);
6310 	return 0;
6311 }
6312 
6313 /**
6314  * pci_set_vga_state - set VGA decode state on device and parents if requested
6315  * @dev: the PCI device
6316  * @decode: true = enable decoding, false = disable decoding
6317  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6318  * @flags: traverse ancestors and change bridges
6319  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6320  */
6321 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6322 		      unsigned int command_bits, u32 flags)
6323 {
6324 	struct pci_bus *bus;
6325 	struct pci_dev *bridge;
6326 	u16 cmd;
6327 	int rc;
6328 
6329 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6330 
6331 	/* ARCH specific VGA enables */
6332 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6333 	if (rc)
6334 		return rc;
6335 
6336 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6337 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6338 		if (decode)
6339 			cmd |= command_bits;
6340 		else
6341 			cmd &= ~command_bits;
6342 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6343 	}
6344 
6345 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6346 		return 0;
6347 
6348 	bus = dev->bus;
6349 	while (bus) {
6350 		bridge = bus->self;
6351 		if (bridge) {
6352 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6353 					     &cmd);
6354 			if (decode)
6355 				cmd |= PCI_BRIDGE_CTL_VGA;
6356 			else
6357 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6358 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6359 					      cmd);
6360 		}
6361 		bus = bus->parent;
6362 	}
6363 	return 0;
6364 }
6365 
6366 #ifdef CONFIG_ACPI
6367 bool pci_pr3_present(struct pci_dev *pdev)
6368 {
6369 	struct acpi_device *adev;
6370 
6371 	if (acpi_disabled)
6372 		return false;
6373 
6374 	adev = ACPI_COMPANION(&pdev->dev);
6375 	if (!adev)
6376 		return false;
6377 
6378 	return adev->power.flags.power_resources &&
6379 		acpi_has_method(adev->handle, "_PR3");
6380 }
6381 EXPORT_SYMBOL_GPL(pci_pr3_present);
6382 #endif
6383 
6384 /**
6385  * pci_add_dma_alias - Add a DMA devfn alias for a device
6386  * @dev: the PCI device for which alias is added
6387  * @devfn_from: alias slot and function
6388  * @nr_devfns: number of subsequent devfns to alias
6389  *
6390  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6391  * which is used to program permissible bus-devfn source addresses for DMA
6392  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6393  * and are useful for devices generating DMA requests beyond or different
6394  * from their logical bus-devfn.  Examples include device quirks where the
6395  * device simply uses the wrong devfn, as well as non-transparent bridges
6396  * where the alias may be a proxy for devices in another domain.
6397  *
6398  * IOMMU group creation is performed during device discovery or addition,
6399  * prior to any potential DMA mapping and therefore prior to driver probing
6400  * (especially for userspace assigned devices where IOMMU group definition
6401  * cannot be left as a userspace activity).  DMA aliases should therefore
6402  * be configured via quirks, such as the PCI fixup header quirk.
6403  */
6404 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6405 		       unsigned int nr_devfns)
6406 {
6407 	int devfn_to;
6408 
6409 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6410 	devfn_to = devfn_from + nr_devfns - 1;
6411 
6412 	if (!dev->dma_alias_mask)
6413 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6414 	if (!dev->dma_alias_mask) {
6415 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6416 		return;
6417 	}
6418 
6419 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6420 
6421 	if (nr_devfns == 1)
6422 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6423 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6424 	else if (nr_devfns > 1)
6425 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6426 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6427 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6428 }
6429 
6430 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6431 {
6432 	return (dev1->dma_alias_mask &&
6433 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6434 	       (dev2->dma_alias_mask &&
6435 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6436 	       pci_real_dma_dev(dev1) == dev2 ||
6437 	       pci_real_dma_dev(dev2) == dev1;
6438 }
6439 
6440 bool pci_device_is_present(struct pci_dev *pdev)
6441 {
6442 	u32 v;
6443 
6444 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6445 	pdev = pci_physfn(pdev);
6446 	if (pci_dev_is_disconnected(pdev))
6447 		return false;
6448 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6449 }
6450 EXPORT_SYMBOL_GPL(pci_device_is_present);
6451 
6452 void pci_ignore_hotplug(struct pci_dev *dev)
6453 {
6454 	struct pci_dev *bridge = dev->bus->self;
6455 
6456 	dev->ignore_hotplug = 1;
6457 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6458 	if (bridge)
6459 		bridge->ignore_hotplug = 1;
6460 }
6461 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6462 
6463 /**
6464  * pci_real_dma_dev - Get PCI DMA device for PCI device
6465  * @dev: the PCI device that may have a PCI DMA alias
6466  *
6467  * Permits the platform to provide architecture-specific functionality to
6468  * devices needing to alias DMA to another PCI device on another PCI bus. If
6469  * the PCI device is on the same bus, it is recommended to use
6470  * pci_add_dma_alias(). This is the default implementation. Architecture
6471  * implementations can override this.
6472  */
6473 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6474 {
6475 	return dev;
6476 }
6477 
6478 resource_size_t __weak pcibios_default_alignment(void)
6479 {
6480 	return 0;
6481 }
6482 
6483 /*
6484  * Arches that don't want to expose struct resource to userland as-is in
6485  * sysfs and /proc can implement their own pci_resource_to_user().
6486  */
6487 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6488 				 const struct resource *rsrc,
6489 				 resource_size_t *start, resource_size_t *end)
6490 {
6491 	*start = rsrc->start;
6492 	*end = rsrc->end;
6493 }
6494 
6495 static char *resource_alignment_param;
6496 static DEFINE_SPINLOCK(resource_alignment_lock);
6497 
6498 /**
6499  * pci_specified_resource_alignment - get resource alignment specified by user.
6500  * @dev: the PCI device to get
6501  * @resize: whether or not to change resources' size when reassigning alignment
6502  *
6503  * RETURNS: Resource alignment if it is specified.
6504  *          Zero if it is not specified.
6505  */
6506 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6507 							bool *resize)
6508 {
6509 	int align_order, count;
6510 	resource_size_t align = pcibios_default_alignment();
6511 	const char *p;
6512 	int ret;
6513 
6514 	spin_lock(&resource_alignment_lock);
6515 	p = resource_alignment_param;
6516 	if (!p || !*p)
6517 		goto out;
6518 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6519 		align = 0;
6520 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6521 		goto out;
6522 	}
6523 
6524 	while (*p) {
6525 		count = 0;
6526 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6527 		    p[count] == '@') {
6528 			p += count + 1;
6529 			if (align_order > 63) {
6530 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6531 				       align_order);
6532 				align_order = PAGE_SHIFT;
6533 			}
6534 		} else {
6535 			align_order = PAGE_SHIFT;
6536 		}
6537 
6538 		ret = pci_dev_str_match(dev, p, &p);
6539 		if (ret == 1) {
6540 			*resize = true;
6541 			align = 1ULL << align_order;
6542 			break;
6543 		} else if (ret < 0) {
6544 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6545 			       p);
6546 			break;
6547 		}
6548 
6549 		if (*p != ';' && *p != ',') {
6550 			/* End of param or invalid format */
6551 			break;
6552 		}
6553 		p++;
6554 	}
6555 out:
6556 	spin_unlock(&resource_alignment_lock);
6557 	return align;
6558 }
6559 
6560 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6561 					   resource_size_t align, bool resize)
6562 {
6563 	struct resource *r = &dev->resource[bar];
6564 	resource_size_t size;
6565 
6566 	if (!(r->flags & IORESOURCE_MEM))
6567 		return;
6568 
6569 	if (r->flags & IORESOURCE_PCI_FIXED) {
6570 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6571 			 bar, r, (unsigned long long)align);
6572 		return;
6573 	}
6574 
6575 	size = resource_size(r);
6576 	if (size >= align)
6577 		return;
6578 
6579 	/*
6580 	 * Increase the alignment of the resource.  There are two ways we
6581 	 * can do this:
6582 	 *
6583 	 * 1) Increase the size of the resource.  BARs are aligned on their
6584 	 *    size, so when we reallocate space for this resource, we'll
6585 	 *    allocate it with the larger alignment.  This also prevents
6586 	 *    assignment of any other BARs inside the alignment region, so
6587 	 *    if we're requesting page alignment, this means no other BARs
6588 	 *    will share the page.
6589 	 *
6590 	 *    The disadvantage is that this makes the resource larger than
6591 	 *    the hardware BAR, which may break drivers that compute things
6592 	 *    based on the resource size, e.g., to find registers at a
6593 	 *    fixed offset before the end of the BAR.
6594 	 *
6595 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6596 	 *    set r->start to the desired alignment.  By itself this
6597 	 *    doesn't prevent other BARs being put inside the alignment
6598 	 *    region, but if we realign *every* resource of every device in
6599 	 *    the system, none of them will share an alignment region.
6600 	 *
6601 	 * When the user has requested alignment for only some devices via
6602 	 * the "pci=resource_alignment" argument, "resize" is true and we
6603 	 * use the first method.  Otherwise we assume we're aligning all
6604 	 * devices and we use the second.
6605 	 */
6606 
6607 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6608 		 bar, r, (unsigned long long)align);
6609 
6610 	if (resize) {
6611 		r->start = 0;
6612 		r->end = align - 1;
6613 	} else {
6614 		r->flags &= ~IORESOURCE_SIZEALIGN;
6615 		r->flags |= IORESOURCE_STARTALIGN;
6616 		r->start = align;
6617 		r->end = r->start + size - 1;
6618 	}
6619 	r->flags |= IORESOURCE_UNSET;
6620 }
6621 
6622 /*
6623  * This function disables memory decoding and releases memory resources
6624  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6625  * It also rounds up size to specified alignment.
6626  * Later on, the kernel will assign page-aligned memory resource back
6627  * to the device.
6628  */
6629 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6630 {
6631 	int i;
6632 	struct resource *r;
6633 	resource_size_t align;
6634 	u16 command;
6635 	bool resize = false;
6636 
6637 	/*
6638 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6639 	 * 3.4.1.11.  Their resources are allocated from the space
6640 	 * described by the VF BARx register in the PF's SR-IOV capability.
6641 	 * We can't influence their alignment here.
6642 	 */
6643 	if (dev->is_virtfn)
6644 		return;
6645 
6646 	/* check if specified PCI is target device to reassign */
6647 	align = pci_specified_resource_alignment(dev, &resize);
6648 	if (!align)
6649 		return;
6650 
6651 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6652 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6653 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6654 		return;
6655 	}
6656 
6657 	pci_read_config_word(dev, PCI_COMMAND, &command);
6658 	command &= ~PCI_COMMAND_MEMORY;
6659 	pci_write_config_word(dev, PCI_COMMAND, command);
6660 
6661 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6662 		pci_request_resource_alignment(dev, i, align, resize);
6663 
6664 	/*
6665 	 * Need to disable bridge's resource window,
6666 	 * to enable the kernel to reassign new resource
6667 	 * window later on.
6668 	 */
6669 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6670 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6671 			r = &dev->resource[i];
6672 			if (!(r->flags & IORESOURCE_MEM))
6673 				continue;
6674 			r->flags |= IORESOURCE_UNSET;
6675 			r->end = resource_size(r) - 1;
6676 			r->start = 0;
6677 		}
6678 		pci_disable_bridge_window(dev);
6679 	}
6680 }
6681 
6682 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6683 {
6684 	size_t count = 0;
6685 
6686 	spin_lock(&resource_alignment_lock);
6687 	if (resource_alignment_param)
6688 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6689 	spin_unlock(&resource_alignment_lock);
6690 
6691 	return count;
6692 }
6693 
6694 static ssize_t resource_alignment_store(struct bus_type *bus,
6695 					const char *buf, size_t count)
6696 {
6697 	char *param, *old, *end;
6698 
6699 	if (count >= (PAGE_SIZE - 1))
6700 		return -EINVAL;
6701 
6702 	param = kstrndup(buf, count, GFP_KERNEL);
6703 	if (!param)
6704 		return -ENOMEM;
6705 
6706 	end = strchr(param, '\n');
6707 	if (end)
6708 		*end = '\0';
6709 
6710 	spin_lock(&resource_alignment_lock);
6711 	old = resource_alignment_param;
6712 	if (strlen(param)) {
6713 		resource_alignment_param = param;
6714 	} else {
6715 		kfree(param);
6716 		resource_alignment_param = NULL;
6717 	}
6718 	spin_unlock(&resource_alignment_lock);
6719 
6720 	kfree(old);
6721 
6722 	return count;
6723 }
6724 
6725 static BUS_ATTR_RW(resource_alignment);
6726 
6727 static int __init pci_resource_alignment_sysfs_init(void)
6728 {
6729 	return bus_create_file(&pci_bus_type,
6730 					&bus_attr_resource_alignment);
6731 }
6732 late_initcall(pci_resource_alignment_sysfs_init);
6733 
6734 static void pci_no_domains(void)
6735 {
6736 #ifdef CONFIG_PCI_DOMAINS
6737 	pci_domains_supported = 0;
6738 #endif
6739 }
6740 
6741 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6742 static DEFINE_IDA(pci_domain_nr_static_ida);
6743 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6744 
6745 static void of_pci_reserve_static_domain_nr(void)
6746 {
6747 	struct device_node *np;
6748 	int domain_nr;
6749 
6750 	for_each_node_by_type(np, "pci") {
6751 		domain_nr = of_get_pci_domain_nr(np);
6752 		if (domain_nr < 0)
6753 			continue;
6754 		/*
6755 		 * Permanently allocate domain_nr in dynamic_ida
6756 		 * to prevent it from dynamic allocation.
6757 		 */
6758 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6759 				domain_nr, domain_nr, GFP_KERNEL);
6760 	}
6761 }
6762 
6763 static int of_pci_bus_find_domain_nr(struct device *parent)
6764 {
6765 	static bool static_domains_reserved = false;
6766 	int domain_nr;
6767 
6768 	/* On the first call scan device tree for static allocations. */
6769 	if (!static_domains_reserved) {
6770 		of_pci_reserve_static_domain_nr();
6771 		static_domains_reserved = true;
6772 	}
6773 
6774 	if (parent) {
6775 		/*
6776 		 * If domain is in DT, allocate it in static IDA.  This
6777 		 * prevents duplicate static allocations in case of errors
6778 		 * in DT.
6779 		 */
6780 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6781 		if (domain_nr >= 0)
6782 			return ida_alloc_range(&pci_domain_nr_static_ida,
6783 					       domain_nr, domain_nr,
6784 					       GFP_KERNEL);
6785 	}
6786 
6787 	/*
6788 	 * If domain was not specified in DT, choose a free ID from dynamic
6789 	 * allocations. All domain numbers from DT are permanently in
6790 	 * dynamic allocations to prevent assigning them to other DT nodes
6791 	 * without static domain.
6792 	 */
6793 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6794 }
6795 
6796 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6797 {
6798 	if (bus->domain_nr < 0)
6799 		return;
6800 
6801 	/* Release domain from IDA where it was allocated. */
6802 	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6803 		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6804 	else
6805 		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6806 }
6807 
6808 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6809 {
6810 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6811 			       acpi_pci_bus_find_domain_nr(bus);
6812 }
6813 
6814 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6815 {
6816 	if (!acpi_disabled)
6817 		return;
6818 	of_pci_bus_release_domain_nr(bus, parent);
6819 }
6820 #endif
6821 
6822 /**
6823  * pci_ext_cfg_avail - can we access extended PCI config space?
6824  *
6825  * Returns 1 if we can access PCI extended config space (offsets
6826  * greater than 0xff). This is the default implementation. Architecture
6827  * implementations can override this.
6828  */
6829 int __weak pci_ext_cfg_avail(void)
6830 {
6831 	return 1;
6832 }
6833 
6834 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6835 {
6836 }
6837 EXPORT_SYMBOL(pci_fixup_cardbus);
6838 
6839 static int __init pci_setup(char *str)
6840 {
6841 	while (str) {
6842 		char *k = strchr(str, ',');
6843 		if (k)
6844 			*k++ = 0;
6845 		if (*str && (str = pcibios_setup(str)) && *str) {
6846 			if (!strcmp(str, "nomsi")) {
6847 				pci_no_msi();
6848 			} else if (!strncmp(str, "noats", 5)) {
6849 				pr_info("PCIe: ATS is disabled\n");
6850 				pcie_ats_disabled = true;
6851 			} else if (!strcmp(str, "noaer")) {
6852 				pci_no_aer();
6853 			} else if (!strcmp(str, "earlydump")) {
6854 				pci_early_dump = true;
6855 			} else if (!strncmp(str, "realloc=", 8)) {
6856 				pci_realloc_get_opt(str + 8);
6857 			} else if (!strncmp(str, "realloc", 7)) {
6858 				pci_realloc_get_opt("on");
6859 			} else if (!strcmp(str, "nodomains")) {
6860 				pci_no_domains();
6861 			} else if (!strncmp(str, "noari", 5)) {
6862 				pcie_ari_disabled = true;
6863 			} else if (!strncmp(str, "cbiosize=", 9)) {
6864 				pci_cardbus_io_size = memparse(str + 9, &str);
6865 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6866 				pci_cardbus_mem_size = memparse(str + 10, &str);
6867 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6868 				resource_alignment_param = str + 19;
6869 			} else if (!strncmp(str, "ecrc=", 5)) {
6870 				pcie_ecrc_get_policy(str + 5);
6871 			} else if (!strncmp(str, "hpiosize=", 9)) {
6872 				pci_hotplug_io_size = memparse(str + 9, &str);
6873 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6874 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6875 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6876 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6877 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6878 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6879 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6880 			} else if (!strncmp(str, "hpbussize=", 10)) {
6881 				pci_hotplug_bus_size =
6882 					simple_strtoul(str + 10, &str, 0);
6883 				if (pci_hotplug_bus_size > 0xff)
6884 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6885 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6886 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6887 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6888 				pcie_bus_config = PCIE_BUS_SAFE;
6889 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6890 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6891 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6892 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6893 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6894 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6895 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6896 				disable_acs_redir_param = str + 18;
6897 			} else {
6898 				pr_err("PCI: Unknown option `%s'\n", str);
6899 			}
6900 		}
6901 		str = k;
6902 	}
6903 	return 0;
6904 }
6905 early_param("pci", pci_setup);
6906 
6907 /*
6908  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6909  * in pci_setup(), above, to point to data in the __initdata section which
6910  * will be freed after the init sequence is complete. We can't allocate memory
6911  * in pci_setup() because some architectures do not have any memory allocation
6912  * service available during an early_param() call. So we allocate memory and
6913  * copy the variable here before the init section is freed.
6914  *
6915  */
6916 static int __init pci_realloc_setup_params(void)
6917 {
6918 	resource_alignment_param = kstrdup(resource_alignment_param,
6919 					   GFP_KERNEL);
6920 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6921 
6922 	return 0;
6923 }
6924 pure_initcall(pci_realloc_setup_params);
6925