xref: /linux/drivers/pci/pci.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
34 #include <asm/dma.h>
35 #include <linux/aer.h>
36 #include "pci.h"
37 
38 DEFINE_MUTEX(pci_slot_mutex);
39 
40 const char *pci_power_names[] = {
41 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 };
43 EXPORT_SYMBOL_GPL(pci_power_names);
44 
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
50 
51 unsigned int pci_pm_d3_delay;
52 
53 static void pci_pme_list_scan(struct work_struct *work);
54 
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 
59 struct pci_pme_device {
60 	struct list_head list;
61 	struct pci_dev *dev;
62 };
63 
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 
66 static void pci_dev_d3_sleep(struct pci_dev *dev)
67 {
68 	unsigned int delay = dev->d3_delay;
69 
70 	if (delay < pci_pm_d3_delay)
71 		delay = pci_pm_d3_delay;
72 
73 	if (delay)
74 		msleep(delay);
75 }
76 
77 #ifdef CONFIG_PCI_DOMAINS
78 int pci_domains_supported = 1;
79 #endif
80 
81 #define DEFAULT_CARDBUS_IO_SIZE		(256)
82 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
84 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
85 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
86 
87 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
88 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
90 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
91 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
92 
93 #define DEFAULT_HOTPLUG_BUS_SIZE	1
94 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
95 
96 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
97 
98 /*
99  * The default CLS is used if arch didn't set CLS explicitly and not
100  * all pci devices agree on the same value.  Arch can override either
101  * the dfl or actual value as it sees fit.  Don't forget this is
102  * measured in 32-bit words, not bytes.
103  */
104 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
105 u8 pci_cache_line_size;
106 
107 /*
108  * If we set up a device for bus mastering, we need to check the latency
109  * timer as certain BIOSes forget to set it properly.
110  */
111 unsigned int pcibios_max_latency = 255;
112 
113 /* If set, the PCIe ARI capability will not be used. */
114 static bool pcie_ari_disabled;
115 
116 /* If set, the PCIe ATS capability will not be used. */
117 static bool pcie_ats_disabled;
118 
119 /* If set, the PCI config space of each device is printed during boot. */
120 bool pci_early_dump;
121 
122 bool pci_ats_disabled(void)
123 {
124 	return pcie_ats_disabled;
125 }
126 
127 /* Disable bridge_d3 for all PCIe ports */
128 static bool pci_bridge_d3_disable;
129 /* Force bridge_d3 for all PCIe ports */
130 static bool pci_bridge_d3_force;
131 
132 static int __init pcie_port_pm_setup(char *str)
133 {
134 	if (!strcmp(str, "off"))
135 		pci_bridge_d3_disable = true;
136 	else if (!strcmp(str, "force"))
137 		pci_bridge_d3_force = true;
138 	return 1;
139 }
140 __setup("pcie_port_pm=", pcie_port_pm_setup);
141 
142 /* Time to wait after a reset for device to become responsive */
143 #define PCIE_RESET_READY_POLL_MS 60000
144 
145 /**
146  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
147  * @bus: pointer to PCI bus structure to search
148  *
149  * Given a PCI bus, returns the highest PCI bus number present in the set
150  * including the given PCI bus and its list of child PCI buses.
151  */
152 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
153 {
154 	struct pci_bus *tmp;
155 	unsigned char max, n;
156 
157 	max = bus->busn_res.end;
158 	list_for_each_entry(tmp, &bus->children, node) {
159 		n = pci_bus_max_busnr(tmp);
160 		if (n > max)
161 			max = n;
162 	}
163 	return max;
164 }
165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
166 
167 #ifdef CONFIG_HAS_IOMEM
168 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
169 {
170 	struct resource *res = &pdev->resource[bar];
171 
172 	/*
173 	 * Make sure the BAR is actually a memory resource, not an IO resource
174 	 */
175 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
176 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
177 		return NULL;
178 	}
179 	return ioremap_nocache(res->start, resource_size(res));
180 }
181 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
182 
183 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
184 {
185 	/*
186 	 * Make sure the BAR is actually a memory resource, not an IO resource
187 	 */
188 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
189 		WARN_ON(1);
190 		return NULL;
191 	}
192 	return ioremap_wc(pci_resource_start(pdev, bar),
193 			  pci_resource_len(pdev, bar));
194 }
195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
196 #endif
197 
198 /**
199  * pci_dev_str_match_path - test if a path string matches a device
200  * @dev:    the PCI device to test
201  * @path:   string to match the device against
202  * @endptr: pointer to the string after the match
203  *
204  * Test if a string (typically from a kernel parameter) formatted as a
205  * path of device/function addresses matches a PCI device. The string must
206  * be of the form:
207  *
208  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
209  *
210  * A path for a device can be obtained using 'lspci -t'.  Using a path
211  * is more robust against bus renumbering than using only a single bus,
212  * device and function address.
213  *
214  * Returns 1 if the string matches the device, 0 if it does not and
215  * a negative error code if it fails to parse the string.
216  */
217 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
218 				  const char **endptr)
219 {
220 	int ret;
221 	int seg, bus, slot, func;
222 	char *wpath, *p;
223 	char end;
224 
225 	*endptr = strchrnul(path, ';');
226 
227 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
228 	if (!wpath)
229 		return -ENOMEM;
230 
231 	while (1) {
232 		p = strrchr(wpath, '/');
233 		if (!p)
234 			break;
235 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
236 		if (ret != 2) {
237 			ret = -EINVAL;
238 			goto free_and_exit;
239 		}
240 
241 		if (dev->devfn != PCI_DEVFN(slot, func)) {
242 			ret = 0;
243 			goto free_and_exit;
244 		}
245 
246 		/*
247 		 * Note: we don't need to get a reference to the upstream
248 		 * bridge because we hold a reference to the top level
249 		 * device which should hold a reference to the bridge,
250 		 * and so on.
251 		 */
252 		dev = pci_upstream_bridge(dev);
253 		if (!dev) {
254 			ret = 0;
255 			goto free_and_exit;
256 		}
257 
258 		*p = 0;
259 	}
260 
261 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
262 		     &func, &end);
263 	if (ret != 4) {
264 		seg = 0;
265 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
266 		if (ret != 3) {
267 			ret = -EINVAL;
268 			goto free_and_exit;
269 		}
270 	}
271 
272 	ret = (seg == pci_domain_nr(dev->bus) &&
273 	       bus == dev->bus->number &&
274 	       dev->devfn == PCI_DEVFN(slot, func));
275 
276 free_and_exit:
277 	kfree(wpath);
278 	return ret;
279 }
280 
281 /**
282  * pci_dev_str_match - test if a string matches a device
283  * @dev:    the PCI device to test
284  * @p:      string to match the device against
285  * @endptr: pointer to the string after the match
286  *
287  * Test if a string (typically from a kernel parameter) matches a specified
288  * PCI device. The string may be of one of the following formats:
289  *
290  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
291  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
292  *
293  * The first format specifies a PCI bus/device/function address which
294  * may change if new hardware is inserted, if motherboard firmware changes,
295  * or due to changes caused in kernel parameters. If the domain is
296  * left unspecified, it is taken to be 0.  In order to be robust against
297  * bus renumbering issues, a path of PCI device/function numbers may be used
298  * to address the specific device.  The path for a device can be determined
299  * through the use of 'lspci -t'.
300  *
301  * The second format matches devices using IDs in the configuration
302  * space which may match multiple devices in the system. A value of 0
303  * for any field will match all devices. (Note: this differs from
304  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
305  * legacy reasons and convenience so users don't have to specify
306  * FFFFFFFFs on the command line.)
307  *
308  * Returns 1 if the string matches the device, 0 if it does not and
309  * a negative error code if the string cannot be parsed.
310  */
311 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
312 			     const char **endptr)
313 {
314 	int ret;
315 	int count;
316 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
317 
318 	if (strncmp(p, "pci:", 4) == 0) {
319 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
320 		p += 4;
321 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
322 			     &subsystem_vendor, &subsystem_device, &count);
323 		if (ret != 4) {
324 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
325 			if (ret != 2)
326 				return -EINVAL;
327 
328 			subsystem_vendor = 0;
329 			subsystem_device = 0;
330 		}
331 
332 		p += count;
333 
334 		if ((!vendor || vendor == dev->vendor) &&
335 		    (!device || device == dev->device) &&
336 		    (!subsystem_vendor ||
337 			    subsystem_vendor == dev->subsystem_vendor) &&
338 		    (!subsystem_device ||
339 			    subsystem_device == dev->subsystem_device))
340 			goto found;
341 	} else {
342 		/*
343 		 * PCI Bus, Device, Function IDs are specified
344 		 *  (optionally, may include a path of devfns following it)
345 		 */
346 		ret = pci_dev_str_match_path(dev, p, &p);
347 		if (ret < 0)
348 			return ret;
349 		else if (ret)
350 			goto found;
351 	}
352 
353 	*endptr = p;
354 	return 0;
355 
356 found:
357 	*endptr = p;
358 	return 1;
359 }
360 
361 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
362 				   u8 pos, int cap, int *ttl)
363 {
364 	u8 id;
365 	u16 ent;
366 
367 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
368 
369 	while ((*ttl)--) {
370 		if (pos < 0x40)
371 			break;
372 		pos &= ~3;
373 		pci_bus_read_config_word(bus, devfn, pos, &ent);
374 
375 		id = ent & 0xff;
376 		if (id == 0xff)
377 			break;
378 		if (id == cap)
379 			return pos;
380 		pos = (ent >> 8);
381 	}
382 	return 0;
383 }
384 
385 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
386 			       u8 pos, int cap)
387 {
388 	int ttl = PCI_FIND_CAP_TTL;
389 
390 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
391 }
392 
393 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
394 {
395 	return __pci_find_next_cap(dev->bus, dev->devfn,
396 				   pos + PCI_CAP_LIST_NEXT, cap);
397 }
398 EXPORT_SYMBOL_GPL(pci_find_next_capability);
399 
400 static int __pci_bus_find_cap_start(struct pci_bus *bus,
401 				    unsigned int devfn, u8 hdr_type)
402 {
403 	u16 status;
404 
405 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
406 	if (!(status & PCI_STATUS_CAP_LIST))
407 		return 0;
408 
409 	switch (hdr_type) {
410 	case PCI_HEADER_TYPE_NORMAL:
411 	case PCI_HEADER_TYPE_BRIDGE:
412 		return PCI_CAPABILITY_LIST;
413 	case PCI_HEADER_TYPE_CARDBUS:
414 		return PCI_CB_CAPABILITY_LIST;
415 	}
416 
417 	return 0;
418 }
419 
420 /**
421  * pci_find_capability - query for devices' capabilities
422  * @dev: PCI device to query
423  * @cap: capability code
424  *
425  * Tell if a device supports a given PCI capability.
426  * Returns the address of the requested capability structure within the
427  * device's PCI configuration space or 0 in case the device does not
428  * support it.  Possible values for @cap:
429  *
430  *  %PCI_CAP_ID_PM           Power Management
431  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
432  *  %PCI_CAP_ID_VPD          Vital Product Data
433  *  %PCI_CAP_ID_SLOTID       Slot Identification
434  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
435  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
436  *  %PCI_CAP_ID_PCIX         PCI-X
437  *  %PCI_CAP_ID_EXP          PCI Express
438  */
439 int pci_find_capability(struct pci_dev *dev, int cap)
440 {
441 	int pos;
442 
443 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
444 	if (pos)
445 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
446 
447 	return pos;
448 }
449 EXPORT_SYMBOL(pci_find_capability);
450 
451 /**
452  * pci_bus_find_capability - query for devices' capabilities
453  * @bus:   the PCI bus to query
454  * @devfn: PCI device to query
455  * @cap:   capability code
456  *
457  * Like pci_find_capability() but works for pci devices that do not have a
458  * pci_dev structure set up yet.
459  *
460  * Returns the address of the requested capability structure within the
461  * device's PCI configuration space or 0 in case the device does not
462  * support it.
463  */
464 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
465 {
466 	int pos;
467 	u8 hdr_type;
468 
469 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
470 
471 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
472 	if (pos)
473 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
474 
475 	return pos;
476 }
477 EXPORT_SYMBOL(pci_bus_find_capability);
478 
479 /**
480  * pci_find_next_ext_capability - Find an extended capability
481  * @dev: PCI device to query
482  * @start: address at which to start looking (0 to start at beginning of list)
483  * @cap: capability code
484  *
485  * Returns the address of the next matching extended capability structure
486  * within the device's PCI configuration space or 0 if the device does
487  * not support it.  Some capabilities can occur several times, e.g., the
488  * vendor-specific capability, and this provides a way to find them all.
489  */
490 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
491 {
492 	u32 header;
493 	int ttl;
494 	int pos = PCI_CFG_SPACE_SIZE;
495 
496 	/* minimum 8 bytes per capability */
497 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
498 
499 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
500 		return 0;
501 
502 	if (start)
503 		pos = start;
504 
505 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
506 		return 0;
507 
508 	/*
509 	 * If we have no capabilities, this is indicated by cap ID,
510 	 * cap version and next pointer all being 0.
511 	 */
512 	if (header == 0)
513 		return 0;
514 
515 	while (ttl-- > 0) {
516 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
517 			return pos;
518 
519 		pos = PCI_EXT_CAP_NEXT(header);
520 		if (pos < PCI_CFG_SPACE_SIZE)
521 			break;
522 
523 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
524 			break;
525 	}
526 
527 	return 0;
528 }
529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
530 
531 /**
532  * pci_find_ext_capability - Find an extended capability
533  * @dev: PCI device to query
534  * @cap: capability code
535  *
536  * Returns the address of the requested extended capability structure
537  * within the device's PCI configuration space or 0 if the device does
538  * not support it.  Possible values for @cap:
539  *
540  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
541  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
542  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
543  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
544  */
545 int pci_find_ext_capability(struct pci_dev *dev, int cap)
546 {
547 	return pci_find_next_ext_capability(dev, 0, cap);
548 }
549 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
550 
551 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
552 {
553 	int rc, ttl = PCI_FIND_CAP_TTL;
554 	u8 cap, mask;
555 
556 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
557 		mask = HT_3BIT_CAP_MASK;
558 	else
559 		mask = HT_5BIT_CAP_MASK;
560 
561 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
562 				      PCI_CAP_ID_HT, &ttl);
563 	while (pos) {
564 		rc = pci_read_config_byte(dev, pos + 3, &cap);
565 		if (rc != PCIBIOS_SUCCESSFUL)
566 			return 0;
567 
568 		if ((cap & mask) == ht_cap)
569 			return pos;
570 
571 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
572 					      pos + PCI_CAP_LIST_NEXT,
573 					      PCI_CAP_ID_HT, &ttl);
574 	}
575 
576 	return 0;
577 }
578 /**
579  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
580  * @dev: PCI device to query
581  * @pos: Position from which to continue searching
582  * @ht_cap: Hypertransport capability code
583  *
584  * To be used in conjunction with pci_find_ht_capability() to search for
585  * all capabilities matching @ht_cap. @pos should always be a value returned
586  * from pci_find_ht_capability().
587  *
588  * NB. To be 100% safe against broken PCI devices, the caller should take
589  * steps to avoid an infinite loop.
590  */
591 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
592 {
593 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
596 
597 /**
598  * pci_find_ht_capability - query a device's Hypertransport capabilities
599  * @dev: PCI device to query
600  * @ht_cap: Hypertransport capability code
601  *
602  * Tell if a device supports a given Hypertransport capability.
603  * Returns an address within the device's PCI configuration space
604  * or 0 in case the device does not support the request capability.
605  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
606  * which has a Hypertransport capability matching @ht_cap.
607  */
608 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
609 {
610 	int pos;
611 
612 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
613 	if (pos)
614 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
615 
616 	return pos;
617 }
618 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
619 
620 /**
621  * pci_find_parent_resource - return resource region of parent bus of given region
622  * @dev: PCI device structure contains resources to be searched
623  * @res: child resource record for which parent is sought
624  *
625  *  For given resource region of given device, return the resource
626  *  region of parent bus the given region is contained in.
627  */
628 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
629 					  struct resource *res)
630 {
631 	const struct pci_bus *bus = dev->bus;
632 	struct resource *r;
633 	int i;
634 
635 	pci_bus_for_each_resource(bus, r, i) {
636 		if (!r)
637 			continue;
638 		if (resource_contains(r, res)) {
639 
640 			/*
641 			 * If the window is prefetchable but the BAR is
642 			 * not, the allocator made a mistake.
643 			 */
644 			if (r->flags & IORESOURCE_PREFETCH &&
645 			    !(res->flags & IORESOURCE_PREFETCH))
646 				return NULL;
647 
648 			/*
649 			 * If we're below a transparent bridge, there may
650 			 * be both a positively-decoded aperture and a
651 			 * subtractively-decoded region that contain the BAR.
652 			 * We want the positively-decoded one, so this depends
653 			 * on pci_bus_for_each_resource() giving us those
654 			 * first.
655 			 */
656 			return r;
657 		}
658 	}
659 	return NULL;
660 }
661 EXPORT_SYMBOL(pci_find_parent_resource);
662 
663 /**
664  * pci_find_resource - Return matching PCI device resource
665  * @dev: PCI device to query
666  * @res: Resource to look for
667  *
668  * Goes over standard PCI resources (BARs) and checks if the given resource
669  * is partially or fully contained in any of them. In that case the
670  * matching resource is returned, %NULL otherwise.
671  */
672 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
673 {
674 	int i;
675 
676 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
677 		struct resource *r = &dev->resource[i];
678 
679 		if (r->start && resource_contains(r, res))
680 			return r;
681 	}
682 
683 	return NULL;
684 }
685 EXPORT_SYMBOL(pci_find_resource);
686 
687 /**
688  * pci_find_pcie_root_port - return PCIe Root Port
689  * @dev: PCI device to query
690  *
691  * Traverse up the parent chain and return the PCIe Root Port PCI Device
692  * for a given PCI Device.
693  */
694 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
695 {
696 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
697 
698 	bridge = pci_upstream_bridge(dev);
699 	while (bridge && pci_is_pcie(bridge)) {
700 		highest_pcie_bridge = bridge;
701 		bridge = pci_upstream_bridge(bridge);
702 	}
703 
704 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
705 		return NULL;
706 
707 	return highest_pcie_bridge;
708 }
709 EXPORT_SYMBOL(pci_find_pcie_root_port);
710 
711 /**
712  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
713  * @dev: the PCI device to operate on
714  * @pos: config space offset of status word
715  * @mask: mask of bit(s) to care about in status word
716  *
717  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
718  */
719 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
720 {
721 	int i;
722 
723 	/* Wait for Transaction Pending bit clean */
724 	for (i = 0; i < 4; i++) {
725 		u16 status;
726 		if (i)
727 			msleep((1 << (i - 1)) * 100);
728 
729 		pci_read_config_word(dev, pos, &status);
730 		if (!(status & mask))
731 			return 1;
732 	}
733 
734 	return 0;
735 }
736 
737 /**
738  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
739  * @dev: PCI device to have its BARs restored
740  *
741  * Restore the BAR values for a given device, so as to make it
742  * accessible by its driver.
743  */
744 static void pci_restore_bars(struct pci_dev *dev)
745 {
746 	int i;
747 
748 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
749 		pci_update_resource(dev, i);
750 }
751 
752 static const struct pci_platform_pm_ops *pci_platform_pm;
753 
754 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
755 {
756 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
757 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
758 		return -EINVAL;
759 	pci_platform_pm = ops;
760 	return 0;
761 }
762 
763 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
764 {
765 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
766 }
767 
768 static inline int platform_pci_set_power_state(struct pci_dev *dev,
769 					       pci_power_t t)
770 {
771 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
772 }
773 
774 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
775 {
776 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
777 }
778 
779 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
780 {
781 	return pci_platform_pm ?
782 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
783 }
784 
785 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
786 {
787 	return pci_platform_pm ?
788 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
789 }
790 
791 static inline bool platform_pci_need_resume(struct pci_dev *dev)
792 {
793 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
794 }
795 
796 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
797 {
798 	return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
799 }
800 
801 /**
802  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
803  *                           given PCI device
804  * @dev: PCI device to handle.
805  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
806  *
807  * RETURN VALUE:
808  * -EINVAL if the requested state is invalid.
809  * -EIO if device does not support PCI PM or its PM capabilities register has a
810  * wrong version, or device doesn't support the requested state.
811  * 0 if device already is in the requested state.
812  * 0 if device's power state has been successfully changed.
813  */
814 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
815 {
816 	u16 pmcsr;
817 	bool need_restore = false;
818 
819 	/* Check if we're already there */
820 	if (dev->current_state == state)
821 		return 0;
822 
823 	if (!dev->pm_cap)
824 		return -EIO;
825 
826 	if (state < PCI_D0 || state > PCI_D3hot)
827 		return -EINVAL;
828 
829 	/* Validate current state:
830 	 * Can enter D0 from any state, but if we can only go deeper
831 	 * to sleep if we're already in a low power state
832 	 */
833 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
834 	    && dev->current_state > state) {
835 		pci_err(dev, "invalid power transition (from state %d to %d)\n",
836 			dev->current_state, state);
837 		return -EINVAL;
838 	}
839 
840 	/* check if this device supports the desired state */
841 	if ((state == PCI_D1 && !dev->d1_support)
842 	   || (state == PCI_D2 && !dev->d2_support))
843 		return -EIO;
844 
845 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
846 
847 	/* If we're (effectively) in D3, force entire word to 0.
848 	 * This doesn't affect PME_Status, disables PME_En, and
849 	 * sets PowerState to 0.
850 	 */
851 	switch (dev->current_state) {
852 	case PCI_D0:
853 	case PCI_D1:
854 	case PCI_D2:
855 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
856 		pmcsr |= state;
857 		break;
858 	case PCI_D3hot:
859 	case PCI_D3cold:
860 	case PCI_UNKNOWN: /* Boot-up */
861 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
862 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
863 			need_restore = true;
864 		/* Fall-through - force to D0 */
865 	default:
866 		pmcsr = 0;
867 		break;
868 	}
869 
870 	/* enter specified state */
871 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
872 
873 	/* Mandatory power management transition delays */
874 	/* see PCI PM 1.1 5.6.1 table 18 */
875 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
876 		pci_dev_d3_sleep(dev);
877 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
878 		udelay(PCI_PM_D2_DELAY);
879 
880 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
881 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
882 	if (dev->current_state != state && printk_ratelimit())
883 		pci_info(dev, "Refused to change power state, currently in D%d\n",
884 			 dev->current_state);
885 
886 	/*
887 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
888 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
889 	 * from D3hot to D0 _may_ perform an internal reset, thereby
890 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
891 	 * For example, at least some versions of the 3c905B and the
892 	 * 3c556B exhibit this behaviour.
893 	 *
894 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
895 	 * devices in a D3hot state at boot.  Consequently, we need to
896 	 * restore at least the BARs so that the device will be
897 	 * accessible to its driver.
898 	 */
899 	if (need_restore)
900 		pci_restore_bars(dev);
901 
902 	if (dev->bus->self)
903 		pcie_aspm_pm_state_change(dev->bus->self);
904 
905 	return 0;
906 }
907 
908 /**
909  * pci_update_current_state - Read power state of given device and cache it
910  * @dev: PCI device to handle.
911  * @state: State to cache in case the device doesn't have the PM capability
912  *
913  * The power state is read from the PMCSR register, which however is
914  * inaccessible in D3cold.  The platform firmware is therefore queried first
915  * to detect accessibility of the register.  In case the platform firmware
916  * reports an incorrect state or the device isn't power manageable by the
917  * platform at all, we try to detect D3cold by testing accessibility of the
918  * vendor ID in config space.
919  */
920 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
921 {
922 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
923 	    !pci_device_is_present(dev)) {
924 		dev->current_state = PCI_D3cold;
925 	} else if (dev->pm_cap) {
926 		u16 pmcsr;
927 
928 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
929 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
930 	} else {
931 		dev->current_state = state;
932 	}
933 }
934 
935 /**
936  * pci_power_up - Put the given device into D0 forcibly
937  * @dev: PCI device to power up
938  */
939 void pci_power_up(struct pci_dev *dev)
940 {
941 	if (platform_pci_power_manageable(dev))
942 		platform_pci_set_power_state(dev, PCI_D0);
943 
944 	pci_raw_set_power_state(dev, PCI_D0);
945 	pci_update_current_state(dev, PCI_D0);
946 }
947 
948 /**
949  * pci_platform_power_transition - Use platform to change device power state
950  * @dev: PCI device to handle.
951  * @state: State to put the device into.
952  */
953 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
954 {
955 	int error;
956 
957 	if (platform_pci_power_manageable(dev)) {
958 		error = platform_pci_set_power_state(dev, state);
959 		if (!error)
960 			pci_update_current_state(dev, state);
961 	} else
962 		error = -ENODEV;
963 
964 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
965 		dev->current_state = PCI_D0;
966 
967 	return error;
968 }
969 
970 /**
971  * pci_wakeup - Wake up a PCI device
972  * @pci_dev: Device to handle.
973  * @ign: ignored parameter
974  */
975 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
976 {
977 	pci_wakeup_event(pci_dev);
978 	pm_request_resume(&pci_dev->dev);
979 	return 0;
980 }
981 
982 /**
983  * pci_wakeup_bus - Walk given bus and wake up devices on it
984  * @bus: Top bus of the subtree to walk.
985  */
986 void pci_wakeup_bus(struct pci_bus *bus)
987 {
988 	if (bus)
989 		pci_walk_bus(bus, pci_wakeup, NULL);
990 }
991 
992 /**
993  * __pci_start_power_transition - Start power transition of a PCI device
994  * @dev: PCI device to handle.
995  * @state: State to put the device into.
996  */
997 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
998 {
999 	if (state == PCI_D0) {
1000 		pci_platform_power_transition(dev, PCI_D0);
1001 		/*
1002 		 * Mandatory power management transition delays, see
1003 		 * PCI Express Base Specification Revision 2.0 Section
1004 		 * 6.6.1: Conventional Reset.  Do not delay for
1005 		 * devices powered on/off by corresponding bridge,
1006 		 * because have already delayed for the bridge.
1007 		 */
1008 		if (dev->runtime_d3cold) {
1009 			if (dev->d3cold_delay && !dev->imm_ready)
1010 				msleep(dev->d3cold_delay);
1011 			/*
1012 			 * When powering on a bridge from D3cold, the
1013 			 * whole hierarchy may be powered on into
1014 			 * D0uninitialized state, resume them to give
1015 			 * them a chance to suspend again
1016 			 */
1017 			pci_wakeup_bus(dev->subordinate);
1018 		}
1019 	}
1020 }
1021 
1022 /**
1023  * __pci_dev_set_current_state - Set current state of a PCI device
1024  * @dev: Device to handle
1025  * @data: pointer to state to be set
1026  */
1027 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1028 {
1029 	pci_power_t state = *(pci_power_t *)data;
1030 
1031 	dev->current_state = state;
1032 	return 0;
1033 }
1034 
1035 /**
1036  * pci_bus_set_current_state - Walk given bus and set current state of devices
1037  * @bus: Top bus of the subtree to walk.
1038  * @state: state to be set
1039  */
1040 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1041 {
1042 	if (bus)
1043 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1044 }
1045 
1046 /**
1047  * __pci_complete_power_transition - Complete power transition of a PCI device
1048  * @dev: PCI device to handle.
1049  * @state: State to put the device into.
1050  *
1051  * This function should not be called directly by device drivers.
1052  */
1053 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1054 {
1055 	int ret;
1056 
1057 	if (state <= PCI_D0)
1058 		return -EINVAL;
1059 	ret = pci_platform_power_transition(dev, state);
1060 	/* Power off the bridge may power off the whole hierarchy */
1061 	if (!ret && state == PCI_D3cold)
1062 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1063 	return ret;
1064 }
1065 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1066 
1067 /**
1068  * pci_set_power_state - Set the power state of a PCI device
1069  * @dev: PCI device to handle.
1070  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1071  *
1072  * Transition a device to a new power state, using the platform firmware and/or
1073  * the device's PCI PM registers.
1074  *
1075  * RETURN VALUE:
1076  * -EINVAL if the requested state is invalid.
1077  * -EIO if device does not support PCI PM or its PM capabilities register has a
1078  * wrong version, or device doesn't support the requested state.
1079  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1080  * 0 if device already is in the requested state.
1081  * 0 if the transition is to D3 but D3 is not supported.
1082  * 0 if device's power state has been successfully changed.
1083  */
1084 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1085 {
1086 	int error;
1087 
1088 	/* bound the state we're entering */
1089 	if (state > PCI_D3cold)
1090 		state = PCI_D3cold;
1091 	else if (state < PCI_D0)
1092 		state = PCI_D0;
1093 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1094 		/*
1095 		 * If the device or the parent bridge do not support PCI PM,
1096 		 * ignore the request if we're doing anything other than putting
1097 		 * it into D0 (which would only happen on boot).
1098 		 */
1099 		return 0;
1100 
1101 	/* Check if we're already there */
1102 	if (dev->current_state == state)
1103 		return 0;
1104 
1105 	__pci_start_power_transition(dev, state);
1106 
1107 	/* This device is quirked not to be put into D3, so
1108 	   don't put it in D3 */
1109 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1110 		return 0;
1111 
1112 	/*
1113 	 * To put device in D3cold, we put device into D3hot in native
1114 	 * way, then put device into D3cold with platform ops
1115 	 */
1116 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1117 					PCI_D3hot : state);
1118 
1119 	if (!__pci_complete_power_transition(dev, state))
1120 		error = 0;
1121 
1122 	return error;
1123 }
1124 EXPORT_SYMBOL(pci_set_power_state);
1125 
1126 /**
1127  * pci_choose_state - Choose the power state of a PCI device
1128  * @dev: PCI device to be suspended
1129  * @state: target sleep state for the whole system. This is the value
1130  *	that is passed to suspend() function.
1131  *
1132  * Returns PCI power state suitable for given device and given system
1133  * message.
1134  */
1135 
1136 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1137 {
1138 	pci_power_t ret;
1139 
1140 	if (!dev->pm_cap)
1141 		return PCI_D0;
1142 
1143 	ret = platform_pci_choose_state(dev);
1144 	if (ret != PCI_POWER_ERROR)
1145 		return ret;
1146 
1147 	switch (state.event) {
1148 	case PM_EVENT_ON:
1149 		return PCI_D0;
1150 	case PM_EVENT_FREEZE:
1151 	case PM_EVENT_PRETHAW:
1152 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1153 	case PM_EVENT_SUSPEND:
1154 	case PM_EVENT_HIBERNATE:
1155 		return PCI_D3hot;
1156 	default:
1157 		pci_info(dev, "unrecognized suspend event %d\n",
1158 			 state.event);
1159 		BUG();
1160 	}
1161 	return PCI_D0;
1162 }
1163 EXPORT_SYMBOL(pci_choose_state);
1164 
1165 #define PCI_EXP_SAVE_REGS	7
1166 
1167 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1168 						       u16 cap, bool extended)
1169 {
1170 	struct pci_cap_saved_state *tmp;
1171 
1172 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1173 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1174 			return tmp;
1175 	}
1176 	return NULL;
1177 }
1178 
1179 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1180 {
1181 	return _pci_find_saved_cap(dev, cap, false);
1182 }
1183 
1184 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1185 {
1186 	return _pci_find_saved_cap(dev, cap, true);
1187 }
1188 
1189 static int pci_save_pcie_state(struct pci_dev *dev)
1190 {
1191 	int i = 0;
1192 	struct pci_cap_saved_state *save_state;
1193 	u16 *cap;
1194 
1195 	if (!pci_is_pcie(dev))
1196 		return 0;
1197 
1198 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1199 	if (!save_state) {
1200 		pci_err(dev, "buffer not found in %s\n", __func__);
1201 		return -ENOMEM;
1202 	}
1203 
1204 	cap = (u16 *)&save_state->cap.data[0];
1205 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1206 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1207 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1208 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1209 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1210 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1211 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1212 
1213 	return 0;
1214 }
1215 
1216 static void pci_restore_pcie_state(struct pci_dev *dev)
1217 {
1218 	int i = 0;
1219 	struct pci_cap_saved_state *save_state;
1220 	u16 *cap;
1221 
1222 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1223 	if (!save_state)
1224 		return;
1225 
1226 	cap = (u16 *)&save_state->cap.data[0];
1227 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1228 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1229 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1230 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1231 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1232 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1233 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1234 }
1235 
1236 static int pci_save_pcix_state(struct pci_dev *dev)
1237 {
1238 	int pos;
1239 	struct pci_cap_saved_state *save_state;
1240 
1241 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1242 	if (!pos)
1243 		return 0;
1244 
1245 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1246 	if (!save_state) {
1247 		pci_err(dev, "buffer not found in %s\n", __func__);
1248 		return -ENOMEM;
1249 	}
1250 
1251 	pci_read_config_word(dev, pos + PCI_X_CMD,
1252 			     (u16 *)save_state->cap.data);
1253 
1254 	return 0;
1255 }
1256 
1257 static void pci_restore_pcix_state(struct pci_dev *dev)
1258 {
1259 	int i = 0, pos;
1260 	struct pci_cap_saved_state *save_state;
1261 	u16 *cap;
1262 
1263 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1264 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1265 	if (!save_state || !pos)
1266 		return;
1267 	cap = (u16 *)&save_state->cap.data[0];
1268 
1269 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1270 }
1271 
1272 static void pci_save_ltr_state(struct pci_dev *dev)
1273 {
1274 	int ltr;
1275 	struct pci_cap_saved_state *save_state;
1276 	u16 *cap;
1277 
1278 	if (!pci_is_pcie(dev))
1279 		return;
1280 
1281 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1282 	if (!ltr)
1283 		return;
1284 
1285 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1286 	if (!save_state) {
1287 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1288 		return;
1289 	}
1290 
1291 	cap = (u16 *)&save_state->cap.data[0];
1292 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1293 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1294 }
1295 
1296 static void pci_restore_ltr_state(struct pci_dev *dev)
1297 {
1298 	struct pci_cap_saved_state *save_state;
1299 	int ltr;
1300 	u16 *cap;
1301 
1302 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1303 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1304 	if (!save_state || !ltr)
1305 		return;
1306 
1307 	cap = (u16 *)&save_state->cap.data[0];
1308 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1309 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1310 }
1311 
1312 /**
1313  * pci_save_state - save the PCI configuration space of a device before suspending
1314  * @dev: - PCI device that we're dealing with
1315  */
1316 int pci_save_state(struct pci_dev *dev)
1317 {
1318 	int i;
1319 	/* XXX: 100% dword access ok here? */
1320 	for (i = 0; i < 16; i++)
1321 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1322 	dev->state_saved = true;
1323 
1324 	i = pci_save_pcie_state(dev);
1325 	if (i != 0)
1326 		return i;
1327 
1328 	i = pci_save_pcix_state(dev);
1329 	if (i != 0)
1330 		return i;
1331 
1332 	pci_save_ltr_state(dev);
1333 	pci_save_dpc_state(dev);
1334 	return pci_save_vc_state(dev);
1335 }
1336 EXPORT_SYMBOL(pci_save_state);
1337 
1338 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1339 				     u32 saved_val, int retry, bool force)
1340 {
1341 	u32 val;
1342 
1343 	pci_read_config_dword(pdev, offset, &val);
1344 	if (!force && val == saved_val)
1345 		return;
1346 
1347 	for (;;) {
1348 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1349 			offset, val, saved_val);
1350 		pci_write_config_dword(pdev, offset, saved_val);
1351 		if (retry-- <= 0)
1352 			return;
1353 
1354 		pci_read_config_dword(pdev, offset, &val);
1355 		if (val == saved_val)
1356 			return;
1357 
1358 		mdelay(1);
1359 	}
1360 }
1361 
1362 static void pci_restore_config_space_range(struct pci_dev *pdev,
1363 					   int start, int end, int retry,
1364 					   bool force)
1365 {
1366 	int index;
1367 
1368 	for (index = end; index >= start; index--)
1369 		pci_restore_config_dword(pdev, 4 * index,
1370 					 pdev->saved_config_space[index],
1371 					 retry, force);
1372 }
1373 
1374 static void pci_restore_config_space(struct pci_dev *pdev)
1375 {
1376 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1377 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1378 		/* Restore BARs before the command register. */
1379 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1380 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1381 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1382 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1383 
1384 		/*
1385 		 * Force rewriting of prefetch registers to avoid S3 resume
1386 		 * issues on Intel PCI bridges that occur when these
1387 		 * registers are not explicitly written.
1388 		 */
1389 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1390 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1391 	} else {
1392 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1393 	}
1394 }
1395 
1396 static void pci_restore_rebar_state(struct pci_dev *pdev)
1397 {
1398 	unsigned int pos, nbars, i;
1399 	u32 ctrl;
1400 
1401 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1402 	if (!pos)
1403 		return;
1404 
1405 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1406 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1407 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1408 
1409 	for (i = 0; i < nbars; i++, pos += 8) {
1410 		struct resource *res;
1411 		int bar_idx, size;
1412 
1413 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1414 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1415 		res = pdev->resource + bar_idx;
1416 		size = order_base_2((resource_size(res) >> 20) | 1) - 1;
1417 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1418 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1419 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1420 	}
1421 }
1422 
1423 /**
1424  * pci_restore_state - Restore the saved state of a PCI device
1425  * @dev: - PCI device that we're dealing with
1426  */
1427 void pci_restore_state(struct pci_dev *dev)
1428 {
1429 	if (!dev->state_saved)
1430 		return;
1431 
1432 	/*
1433 	 * Restore max latencies (in the LTR capability) before enabling
1434 	 * LTR itself (in the PCIe capability).
1435 	 */
1436 	pci_restore_ltr_state(dev);
1437 
1438 	pci_restore_pcie_state(dev);
1439 	pci_restore_pasid_state(dev);
1440 	pci_restore_pri_state(dev);
1441 	pci_restore_ats_state(dev);
1442 	pci_restore_vc_state(dev);
1443 	pci_restore_rebar_state(dev);
1444 	pci_restore_dpc_state(dev);
1445 
1446 	pci_cleanup_aer_error_status_regs(dev);
1447 
1448 	pci_restore_config_space(dev);
1449 
1450 	pci_restore_pcix_state(dev);
1451 	pci_restore_msi_state(dev);
1452 
1453 	/* Restore ACS and IOV configuration state */
1454 	pci_enable_acs(dev);
1455 	pci_restore_iov_state(dev);
1456 
1457 	dev->state_saved = false;
1458 }
1459 EXPORT_SYMBOL(pci_restore_state);
1460 
1461 struct pci_saved_state {
1462 	u32 config_space[16];
1463 	struct pci_cap_saved_data cap[0];
1464 };
1465 
1466 /**
1467  * pci_store_saved_state - Allocate and return an opaque struct containing
1468  *			   the device saved state.
1469  * @dev: PCI device that we're dealing with
1470  *
1471  * Return NULL if no state or error.
1472  */
1473 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1474 {
1475 	struct pci_saved_state *state;
1476 	struct pci_cap_saved_state *tmp;
1477 	struct pci_cap_saved_data *cap;
1478 	size_t size;
1479 
1480 	if (!dev->state_saved)
1481 		return NULL;
1482 
1483 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1484 
1485 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1486 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1487 
1488 	state = kzalloc(size, GFP_KERNEL);
1489 	if (!state)
1490 		return NULL;
1491 
1492 	memcpy(state->config_space, dev->saved_config_space,
1493 	       sizeof(state->config_space));
1494 
1495 	cap = state->cap;
1496 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1497 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1498 		memcpy(cap, &tmp->cap, len);
1499 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1500 	}
1501 	/* Empty cap_save terminates list */
1502 
1503 	return state;
1504 }
1505 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1506 
1507 /**
1508  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1509  * @dev: PCI device that we're dealing with
1510  * @state: Saved state returned from pci_store_saved_state()
1511  */
1512 int pci_load_saved_state(struct pci_dev *dev,
1513 			 struct pci_saved_state *state)
1514 {
1515 	struct pci_cap_saved_data *cap;
1516 
1517 	dev->state_saved = false;
1518 
1519 	if (!state)
1520 		return 0;
1521 
1522 	memcpy(dev->saved_config_space, state->config_space,
1523 	       sizeof(state->config_space));
1524 
1525 	cap = state->cap;
1526 	while (cap->size) {
1527 		struct pci_cap_saved_state *tmp;
1528 
1529 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1530 		if (!tmp || tmp->cap.size != cap->size)
1531 			return -EINVAL;
1532 
1533 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1534 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1535 		       sizeof(struct pci_cap_saved_data) + cap->size);
1536 	}
1537 
1538 	dev->state_saved = true;
1539 	return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1542 
1543 /**
1544  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1545  *				   and free the memory allocated for it.
1546  * @dev: PCI device that we're dealing with
1547  * @state: Pointer to saved state returned from pci_store_saved_state()
1548  */
1549 int pci_load_and_free_saved_state(struct pci_dev *dev,
1550 				  struct pci_saved_state **state)
1551 {
1552 	int ret = pci_load_saved_state(dev, *state);
1553 	kfree(*state);
1554 	*state = NULL;
1555 	return ret;
1556 }
1557 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1558 
1559 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1560 {
1561 	return pci_enable_resources(dev, bars);
1562 }
1563 
1564 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1565 {
1566 	int err;
1567 	struct pci_dev *bridge;
1568 	u16 cmd;
1569 	u8 pin;
1570 
1571 	err = pci_set_power_state(dev, PCI_D0);
1572 	if (err < 0 && err != -EIO)
1573 		return err;
1574 
1575 	bridge = pci_upstream_bridge(dev);
1576 	if (bridge)
1577 		pcie_aspm_powersave_config_link(bridge);
1578 
1579 	err = pcibios_enable_device(dev, bars);
1580 	if (err < 0)
1581 		return err;
1582 	pci_fixup_device(pci_fixup_enable, dev);
1583 
1584 	if (dev->msi_enabled || dev->msix_enabled)
1585 		return 0;
1586 
1587 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1588 	if (pin) {
1589 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1590 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1591 			pci_write_config_word(dev, PCI_COMMAND,
1592 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1593 	}
1594 
1595 	return 0;
1596 }
1597 
1598 /**
1599  * pci_reenable_device - Resume abandoned device
1600  * @dev: PCI device to be resumed
1601  *
1602  *  Note this function is a backend of pci_default_resume and is not supposed
1603  *  to be called by normal code, write proper resume handler and use it instead.
1604  */
1605 int pci_reenable_device(struct pci_dev *dev)
1606 {
1607 	if (pci_is_enabled(dev))
1608 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1609 	return 0;
1610 }
1611 EXPORT_SYMBOL(pci_reenable_device);
1612 
1613 static void pci_enable_bridge(struct pci_dev *dev)
1614 {
1615 	struct pci_dev *bridge;
1616 	int retval;
1617 
1618 	bridge = pci_upstream_bridge(dev);
1619 	if (bridge)
1620 		pci_enable_bridge(bridge);
1621 
1622 	if (pci_is_enabled(dev)) {
1623 		if (!dev->is_busmaster)
1624 			pci_set_master(dev);
1625 		return;
1626 	}
1627 
1628 	retval = pci_enable_device(dev);
1629 	if (retval)
1630 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1631 			retval);
1632 	pci_set_master(dev);
1633 }
1634 
1635 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1636 {
1637 	struct pci_dev *bridge;
1638 	int err;
1639 	int i, bars = 0;
1640 
1641 	/*
1642 	 * Power state could be unknown at this point, either due to a fresh
1643 	 * boot or a device removal call.  So get the current power state
1644 	 * so that things like MSI message writing will behave as expected
1645 	 * (e.g. if the device really is in D0 at enable time).
1646 	 */
1647 	if (dev->pm_cap) {
1648 		u16 pmcsr;
1649 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1650 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1651 	}
1652 
1653 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1654 		return 0;		/* already enabled */
1655 
1656 	bridge = pci_upstream_bridge(dev);
1657 	if (bridge)
1658 		pci_enable_bridge(bridge);
1659 
1660 	/* only skip sriov related */
1661 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1662 		if (dev->resource[i].flags & flags)
1663 			bars |= (1 << i);
1664 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1665 		if (dev->resource[i].flags & flags)
1666 			bars |= (1 << i);
1667 
1668 	err = do_pci_enable_device(dev, bars);
1669 	if (err < 0)
1670 		atomic_dec(&dev->enable_cnt);
1671 	return err;
1672 }
1673 
1674 /**
1675  * pci_enable_device_io - Initialize a device for use with IO space
1676  * @dev: PCI device to be initialized
1677  *
1678  *  Initialize device before it's used by a driver. Ask low-level code
1679  *  to enable I/O resources. Wake up the device if it was suspended.
1680  *  Beware, this function can fail.
1681  */
1682 int pci_enable_device_io(struct pci_dev *dev)
1683 {
1684 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1685 }
1686 EXPORT_SYMBOL(pci_enable_device_io);
1687 
1688 /**
1689  * pci_enable_device_mem - Initialize a device for use with Memory space
1690  * @dev: PCI device to be initialized
1691  *
1692  *  Initialize device before it's used by a driver. Ask low-level code
1693  *  to enable Memory resources. Wake up the device if it was suspended.
1694  *  Beware, this function can fail.
1695  */
1696 int pci_enable_device_mem(struct pci_dev *dev)
1697 {
1698 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1699 }
1700 EXPORT_SYMBOL(pci_enable_device_mem);
1701 
1702 /**
1703  * pci_enable_device - Initialize device before it's used by a driver.
1704  * @dev: PCI device to be initialized
1705  *
1706  *  Initialize device before it's used by a driver. Ask low-level code
1707  *  to enable I/O and memory. Wake up the device if it was suspended.
1708  *  Beware, this function can fail.
1709  *
1710  *  Note we don't actually enable the device many times if we call
1711  *  this function repeatedly (we just increment the count).
1712  */
1713 int pci_enable_device(struct pci_dev *dev)
1714 {
1715 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1716 }
1717 EXPORT_SYMBOL(pci_enable_device);
1718 
1719 /*
1720  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1721  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1722  * there's no need to track it separately.  pci_devres is initialized
1723  * when a device is enabled using managed PCI device enable interface.
1724  */
1725 struct pci_devres {
1726 	unsigned int enabled:1;
1727 	unsigned int pinned:1;
1728 	unsigned int orig_intx:1;
1729 	unsigned int restore_intx:1;
1730 	unsigned int mwi:1;
1731 	u32 region_mask;
1732 };
1733 
1734 static void pcim_release(struct device *gendev, void *res)
1735 {
1736 	struct pci_dev *dev = to_pci_dev(gendev);
1737 	struct pci_devres *this = res;
1738 	int i;
1739 
1740 	if (dev->msi_enabled)
1741 		pci_disable_msi(dev);
1742 	if (dev->msix_enabled)
1743 		pci_disable_msix(dev);
1744 
1745 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1746 		if (this->region_mask & (1 << i))
1747 			pci_release_region(dev, i);
1748 
1749 	if (this->mwi)
1750 		pci_clear_mwi(dev);
1751 
1752 	if (this->restore_intx)
1753 		pci_intx(dev, this->orig_intx);
1754 
1755 	if (this->enabled && !this->pinned)
1756 		pci_disable_device(dev);
1757 }
1758 
1759 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1760 {
1761 	struct pci_devres *dr, *new_dr;
1762 
1763 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1764 	if (dr)
1765 		return dr;
1766 
1767 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1768 	if (!new_dr)
1769 		return NULL;
1770 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1771 }
1772 
1773 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1774 {
1775 	if (pci_is_managed(pdev))
1776 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1777 	return NULL;
1778 }
1779 
1780 /**
1781  * pcim_enable_device - Managed pci_enable_device()
1782  * @pdev: PCI device to be initialized
1783  *
1784  * Managed pci_enable_device().
1785  */
1786 int pcim_enable_device(struct pci_dev *pdev)
1787 {
1788 	struct pci_devres *dr;
1789 	int rc;
1790 
1791 	dr = get_pci_dr(pdev);
1792 	if (unlikely(!dr))
1793 		return -ENOMEM;
1794 	if (dr->enabled)
1795 		return 0;
1796 
1797 	rc = pci_enable_device(pdev);
1798 	if (!rc) {
1799 		pdev->is_managed = 1;
1800 		dr->enabled = 1;
1801 	}
1802 	return rc;
1803 }
1804 EXPORT_SYMBOL(pcim_enable_device);
1805 
1806 /**
1807  * pcim_pin_device - Pin managed PCI device
1808  * @pdev: PCI device to pin
1809  *
1810  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1811  * driver detach.  @pdev must have been enabled with
1812  * pcim_enable_device().
1813  */
1814 void pcim_pin_device(struct pci_dev *pdev)
1815 {
1816 	struct pci_devres *dr;
1817 
1818 	dr = find_pci_dr(pdev);
1819 	WARN_ON(!dr || !dr->enabled);
1820 	if (dr)
1821 		dr->pinned = 1;
1822 }
1823 EXPORT_SYMBOL(pcim_pin_device);
1824 
1825 /*
1826  * pcibios_add_device - provide arch specific hooks when adding device dev
1827  * @dev: the PCI device being added
1828  *
1829  * Permits the platform to provide architecture specific functionality when
1830  * devices are added. This is the default implementation. Architecture
1831  * implementations can override this.
1832  */
1833 int __weak pcibios_add_device(struct pci_dev *dev)
1834 {
1835 	return 0;
1836 }
1837 
1838 /**
1839  * pcibios_release_device - provide arch specific hooks when releasing device dev
1840  * @dev: the PCI device being released
1841  *
1842  * Permits the platform to provide architecture specific functionality when
1843  * devices are released. This is the default implementation. Architecture
1844  * implementations can override this.
1845  */
1846 void __weak pcibios_release_device(struct pci_dev *dev) {}
1847 
1848 /**
1849  * pcibios_disable_device - disable arch specific PCI resources for device dev
1850  * @dev: the PCI device to disable
1851  *
1852  * Disables architecture specific PCI resources for the device. This
1853  * is the default implementation. Architecture implementations can
1854  * override this.
1855  */
1856 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1857 
1858 /**
1859  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1860  * @irq: ISA IRQ to penalize
1861  * @active: IRQ active or not
1862  *
1863  * Permits the platform to provide architecture-specific functionality when
1864  * penalizing ISA IRQs. This is the default implementation. Architecture
1865  * implementations can override this.
1866  */
1867 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1868 
1869 static void do_pci_disable_device(struct pci_dev *dev)
1870 {
1871 	u16 pci_command;
1872 
1873 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1874 	if (pci_command & PCI_COMMAND_MASTER) {
1875 		pci_command &= ~PCI_COMMAND_MASTER;
1876 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1877 	}
1878 
1879 	pcibios_disable_device(dev);
1880 }
1881 
1882 /**
1883  * pci_disable_enabled_device - Disable device without updating enable_cnt
1884  * @dev: PCI device to disable
1885  *
1886  * NOTE: This function is a backend of PCI power management routines and is
1887  * not supposed to be called drivers.
1888  */
1889 void pci_disable_enabled_device(struct pci_dev *dev)
1890 {
1891 	if (pci_is_enabled(dev))
1892 		do_pci_disable_device(dev);
1893 }
1894 
1895 /**
1896  * pci_disable_device - Disable PCI device after use
1897  * @dev: PCI device to be disabled
1898  *
1899  * Signal to the system that the PCI device is not in use by the system
1900  * anymore.  This only involves disabling PCI bus-mastering, if active.
1901  *
1902  * Note we don't actually disable the device until all callers of
1903  * pci_enable_device() have called pci_disable_device().
1904  */
1905 void pci_disable_device(struct pci_dev *dev)
1906 {
1907 	struct pci_devres *dr;
1908 
1909 	dr = find_pci_dr(dev);
1910 	if (dr)
1911 		dr->enabled = 0;
1912 
1913 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1914 		      "disabling already-disabled device");
1915 
1916 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1917 		return;
1918 
1919 	do_pci_disable_device(dev);
1920 
1921 	dev->is_busmaster = 0;
1922 }
1923 EXPORT_SYMBOL(pci_disable_device);
1924 
1925 /**
1926  * pcibios_set_pcie_reset_state - set reset state for device dev
1927  * @dev: the PCIe device reset
1928  * @state: Reset state to enter into
1929  *
1930  *
1931  * Sets the PCIe reset state for the device. This is the default
1932  * implementation. Architecture implementations can override this.
1933  */
1934 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1935 					enum pcie_reset_state state)
1936 {
1937 	return -EINVAL;
1938 }
1939 
1940 /**
1941  * pci_set_pcie_reset_state - set reset state for device dev
1942  * @dev: the PCIe device reset
1943  * @state: Reset state to enter into
1944  *
1945  *
1946  * Sets the PCI reset state for the device.
1947  */
1948 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1949 {
1950 	return pcibios_set_pcie_reset_state(dev, state);
1951 }
1952 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1953 
1954 /**
1955  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1956  * @dev: PCIe root port or event collector.
1957  */
1958 void pcie_clear_root_pme_status(struct pci_dev *dev)
1959 {
1960 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1961 }
1962 
1963 /**
1964  * pci_check_pme_status - Check if given device has generated PME.
1965  * @dev: Device to check.
1966  *
1967  * Check the PME status of the device and if set, clear it and clear PME enable
1968  * (if set).  Return 'true' if PME status and PME enable were both set or
1969  * 'false' otherwise.
1970  */
1971 bool pci_check_pme_status(struct pci_dev *dev)
1972 {
1973 	int pmcsr_pos;
1974 	u16 pmcsr;
1975 	bool ret = false;
1976 
1977 	if (!dev->pm_cap)
1978 		return false;
1979 
1980 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1981 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1982 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1983 		return false;
1984 
1985 	/* Clear PME status. */
1986 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1987 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1988 		/* Disable PME to avoid interrupt flood. */
1989 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1990 		ret = true;
1991 	}
1992 
1993 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1994 
1995 	return ret;
1996 }
1997 
1998 /**
1999  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2000  * @dev: Device to handle.
2001  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2002  *
2003  * Check if @dev has generated PME and queue a resume request for it in that
2004  * case.
2005  */
2006 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2007 {
2008 	if (pme_poll_reset && dev->pme_poll)
2009 		dev->pme_poll = false;
2010 
2011 	if (pci_check_pme_status(dev)) {
2012 		pci_wakeup_event(dev);
2013 		pm_request_resume(&dev->dev);
2014 	}
2015 	return 0;
2016 }
2017 
2018 /**
2019  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2020  * @bus: Top bus of the subtree to walk.
2021  */
2022 void pci_pme_wakeup_bus(struct pci_bus *bus)
2023 {
2024 	if (bus)
2025 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2026 }
2027 
2028 
2029 /**
2030  * pci_pme_capable - check the capability of PCI device to generate PME#
2031  * @dev: PCI device to handle.
2032  * @state: PCI state from which device will issue PME#.
2033  */
2034 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2035 {
2036 	if (!dev->pm_cap)
2037 		return false;
2038 
2039 	return !!(dev->pme_support & (1 << state));
2040 }
2041 EXPORT_SYMBOL(pci_pme_capable);
2042 
2043 static void pci_pme_list_scan(struct work_struct *work)
2044 {
2045 	struct pci_pme_device *pme_dev, *n;
2046 
2047 	mutex_lock(&pci_pme_list_mutex);
2048 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2049 		if (pme_dev->dev->pme_poll) {
2050 			struct pci_dev *bridge;
2051 
2052 			bridge = pme_dev->dev->bus->self;
2053 			/*
2054 			 * If bridge is in low power state, the
2055 			 * configuration space of subordinate devices
2056 			 * may be not accessible
2057 			 */
2058 			if (bridge && bridge->current_state != PCI_D0)
2059 				continue;
2060 			pci_pme_wakeup(pme_dev->dev, NULL);
2061 		} else {
2062 			list_del(&pme_dev->list);
2063 			kfree(pme_dev);
2064 		}
2065 	}
2066 	if (!list_empty(&pci_pme_list))
2067 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2068 				   msecs_to_jiffies(PME_TIMEOUT));
2069 	mutex_unlock(&pci_pme_list_mutex);
2070 }
2071 
2072 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2073 {
2074 	u16 pmcsr;
2075 
2076 	if (!dev->pme_support)
2077 		return;
2078 
2079 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2080 	/* Clear PME_Status by writing 1 to it and enable PME# */
2081 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2082 	if (!enable)
2083 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2084 
2085 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2086 }
2087 
2088 /**
2089  * pci_pme_restore - Restore PME configuration after config space restore.
2090  * @dev: PCI device to update.
2091  */
2092 void pci_pme_restore(struct pci_dev *dev)
2093 {
2094 	u16 pmcsr;
2095 
2096 	if (!dev->pme_support)
2097 		return;
2098 
2099 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2100 	if (dev->wakeup_prepared) {
2101 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2102 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2103 	} else {
2104 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2105 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2106 	}
2107 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2108 }
2109 
2110 /**
2111  * pci_pme_active - enable or disable PCI device's PME# function
2112  * @dev: PCI device to handle.
2113  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2114  *
2115  * The caller must verify that the device is capable of generating PME# before
2116  * calling this function with @enable equal to 'true'.
2117  */
2118 void pci_pme_active(struct pci_dev *dev, bool enable)
2119 {
2120 	__pci_pme_active(dev, enable);
2121 
2122 	/*
2123 	 * PCI (as opposed to PCIe) PME requires that the device have
2124 	 * its PME# line hooked up correctly. Not all hardware vendors
2125 	 * do this, so the PME never gets delivered and the device
2126 	 * remains asleep. The easiest way around this is to
2127 	 * periodically walk the list of suspended devices and check
2128 	 * whether any have their PME flag set. The assumption is that
2129 	 * we'll wake up often enough anyway that this won't be a huge
2130 	 * hit, and the power savings from the devices will still be a
2131 	 * win.
2132 	 *
2133 	 * Although PCIe uses in-band PME message instead of PME# line
2134 	 * to report PME, PME does not work for some PCIe devices in
2135 	 * reality.  For example, there are devices that set their PME
2136 	 * status bits, but don't really bother to send a PME message;
2137 	 * there are PCI Express Root Ports that don't bother to
2138 	 * trigger interrupts when they receive PME messages from the
2139 	 * devices below.  So PME poll is used for PCIe devices too.
2140 	 */
2141 
2142 	if (dev->pme_poll) {
2143 		struct pci_pme_device *pme_dev;
2144 		if (enable) {
2145 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2146 					  GFP_KERNEL);
2147 			if (!pme_dev) {
2148 				pci_warn(dev, "can't enable PME#\n");
2149 				return;
2150 			}
2151 			pme_dev->dev = dev;
2152 			mutex_lock(&pci_pme_list_mutex);
2153 			list_add(&pme_dev->list, &pci_pme_list);
2154 			if (list_is_singular(&pci_pme_list))
2155 				queue_delayed_work(system_freezable_wq,
2156 						   &pci_pme_work,
2157 						   msecs_to_jiffies(PME_TIMEOUT));
2158 			mutex_unlock(&pci_pme_list_mutex);
2159 		} else {
2160 			mutex_lock(&pci_pme_list_mutex);
2161 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2162 				if (pme_dev->dev == dev) {
2163 					list_del(&pme_dev->list);
2164 					kfree(pme_dev);
2165 					break;
2166 				}
2167 			}
2168 			mutex_unlock(&pci_pme_list_mutex);
2169 		}
2170 	}
2171 
2172 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2173 }
2174 EXPORT_SYMBOL(pci_pme_active);
2175 
2176 /**
2177  * __pci_enable_wake - enable PCI device as wakeup event source
2178  * @dev: PCI device affected
2179  * @state: PCI state from which device will issue wakeup events
2180  * @enable: True to enable event generation; false to disable
2181  *
2182  * This enables the device as a wakeup event source, or disables it.
2183  * When such events involves platform-specific hooks, those hooks are
2184  * called automatically by this routine.
2185  *
2186  * Devices with legacy power management (no standard PCI PM capabilities)
2187  * always require such platform hooks.
2188  *
2189  * RETURN VALUE:
2190  * 0 is returned on success
2191  * -EINVAL is returned if device is not supposed to wake up the system
2192  * Error code depending on the platform is returned if both the platform and
2193  * the native mechanism fail to enable the generation of wake-up events
2194  */
2195 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2196 {
2197 	int ret = 0;
2198 
2199 	/*
2200 	 * Bridges that are not power-manageable directly only signal
2201 	 * wakeup on behalf of subordinate devices which is set up
2202 	 * elsewhere, so skip them. However, bridges that are
2203 	 * power-manageable may signal wakeup for themselves (for example,
2204 	 * on a hotplug event) and they need to be covered here.
2205 	 */
2206 	if (!pci_power_manageable(dev))
2207 		return 0;
2208 
2209 	/* Don't do the same thing twice in a row for one device. */
2210 	if (!!enable == !!dev->wakeup_prepared)
2211 		return 0;
2212 
2213 	/*
2214 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2215 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2216 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2217 	 */
2218 
2219 	if (enable) {
2220 		int error;
2221 
2222 		if (pci_pme_capable(dev, state))
2223 			pci_pme_active(dev, true);
2224 		else
2225 			ret = 1;
2226 		error = platform_pci_set_wakeup(dev, true);
2227 		if (ret)
2228 			ret = error;
2229 		if (!ret)
2230 			dev->wakeup_prepared = true;
2231 	} else {
2232 		platform_pci_set_wakeup(dev, false);
2233 		pci_pme_active(dev, false);
2234 		dev->wakeup_prepared = false;
2235 	}
2236 
2237 	return ret;
2238 }
2239 
2240 /**
2241  * pci_enable_wake - change wakeup settings for a PCI device
2242  * @pci_dev: Target device
2243  * @state: PCI state from which device will issue wakeup events
2244  * @enable: Whether or not to enable event generation
2245  *
2246  * If @enable is set, check device_may_wakeup() for the device before calling
2247  * __pci_enable_wake() for it.
2248  */
2249 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2250 {
2251 	if (enable && !device_may_wakeup(&pci_dev->dev))
2252 		return -EINVAL;
2253 
2254 	return __pci_enable_wake(pci_dev, state, enable);
2255 }
2256 EXPORT_SYMBOL(pci_enable_wake);
2257 
2258 /**
2259  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2260  * @dev: PCI device to prepare
2261  * @enable: True to enable wake-up event generation; false to disable
2262  *
2263  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2264  * and this function allows them to set that up cleanly - pci_enable_wake()
2265  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2266  * ordering constraints.
2267  *
2268  * This function only returns error code if the device is not allowed to wake
2269  * up the system from sleep or it is not capable of generating PME# from both
2270  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2271  */
2272 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2273 {
2274 	return pci_pme_capable(dev, PCI_D3cold) ?
2275 			pci_enable_wake(dev, PCI_D3cold, enable) :
2276 			pci_enable_wake(dev, PCI_D3hot, enable);
2277 }
2278 EXPORT_SYMBOL(pci_wake_from_d3);
2279 
2280 /**
2281  * pci_target_state - find an appropriate low power state for a given PCI dev
2282  * @dev: PCI device
2283  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2284  *
2285  * Use underlying platform code to find a supported low power state for @dev.
2286  * If the platform can't manage @dev, return the deepest state from which it
2287  * can generate wake events, based on any available PME info.
2288  */
2289 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2290 {
2291 	pci_power_t target_state = PCI_D3hot;
2292 
2293 	if (platform_pci_power_manageable(dev)) {
2294 		/*
2295 		 * Call the platform to find the target state for the device.
2296 		 */
2297 		pci_power_t state = platform_pci_choose_state(dev);
2298 
2299 		switch (state) {
2300 		case PCI_POWER_ERROR:
2301 		case PCI_UNKNOWN:
2302 			break;
2303 		case PCI_D1:
2304 		case PCI_D2:
2305 			if (pci_no_d1d2(dev))
2306 				break;
2307 			/* else, fall through */
2308 		default:
2309 			target_state = state;
2310 		}
2311 
2312 		return target_state;
2313 	}
2314 
2315 	if (!dev->pm_cap)
2316 		target_state = PCI_D0;
2317 
2318 	/*
2319 	 * If the device is in D3cold even though it's not power-manageable by
2320 	 * the platform, it may have been powered down by non-standard means.
2321 	 * Best to let it slumber.
2322 	 */
2323 	if (dev->current_state == PCI_D3cold)
2324 		target_state = PCI_D3cold;
2325 
2326 	if (wakeup) {
2327 		/*
2328 		 * Find the deepest state from which the device can generate
2329 		 * PME#.
2330 		 */
2331 		if (dev->pme_support) {
2332 			while (target_state
2333 			      && !(dev->pme_support & (1 << target_state)))
2334 				target_state--;
2335 		}
2336 	}
2337 
2338 	return target_state;
2339 }
2340 
2341 /**
2342  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2343  * @dev: Device to handle.
2344  *
2345  * Choose the power state appropriate for the device depending on whether
2346  * it can wake up the system and/or is power manageable by the platform
2347  * (PCI_D3hot is the default) and put the device into that state.
2348  */
2349 int pci_prepare_to_sleep(struct pci_dev *dev)
2350 {
2351 	bool wakeup = device_may_wakeup(&dev->dev);
2352 	pci_power_t target_state = pci_target_state(dev, wakeup);
2353 	int error;
2354 
2355 	if (target_state == PCI_POWER_ERROR)
2356 		return -EIO;
2357 
2358 	pci_enable_wake(dev, target_state, wakeup);
2359 
2360 	error = pci_set_power_state(dev, target_state);
2361 
2362 	if (error)
2363 		pci_enable_wake(dev, target_state, false);
2364 
2365 	return error;
2366 }
2367 EXPORT_SYMBOL(pci_prepare_to_sleep);
2368 
2369 /**
2370  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2371  * @dev: Device to handle.
2372  *
2373  * Disable device's system wake-up capability and put it into D0.
2374  */
2375 int pci_back_from_sleep(struct pci_dev *dev)
2376 {
2377 	pci_enable_wake(dev, PCI_D0, false);
2378 	return pci_set_power_state(dev, PCI_D0);
2379 }
2380 EXPORT_SYMBOL(pci_back_from_sleep);
2381 
2382 /**
2383  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2384  * @dev: PCI device being suspended.
2385  *
2386  * Prepare @dev to generate wake-up events at run time and put it into a low
2387  * power state.
2388  */
2389 int pci_finish_runtime_suspend(struct pci_dev *dev)
2390 {
2391 	pci_power_t target_state;
2392 	int error;
2393 
2394 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2395 	if (target_state == PCI_POWER_ERROR)
2396 		return -EIO;
2397 
2398 	dev->runtime_d3cold = target_state == PCI_D3cold;
2399 
2400 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2401 
2402 	error = pci_set_power_state(dev, target_state);
2403 
2404 	if (error) {
2405 		pci_enable_wake(dev, target_state, false);
2406 		dev->runtime_d3cold = false;
2407 	}
2408 
2409 	return error;
2410 }
2411 
2412 /**
2413  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2414  * @dev: Device to check.
2415  *
2416  * Return true if the device itself is capable of generating wake-up events
2417  * (through the platform or using the native PCIe PME) or if the device supports
2418  * PME and one of its upstream bridges can generate wake-up events.
2419  */
2420 bool pci_dev_run_wake(struct pci_dev *dev)
2421 {
2422 	struct pci_bus *bus = dev->bus;
2423 
2424 	if (!dev->pme_support)
2425 		return false;
2426 
2427 	/* PME-capable in principle, but not from the target power state */
2428 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2429 		return false;
2430 
2431 	if (device_can_wakeup(&dev->dev))
2432 		return true;
2433 
2434 	while (bus->parent) {
2435 		struct pci_dev *bridge = bus->self;
2436 
2437 		if (device_can_wakeup(&bridge->dev))
2438 			return true;
2439 
2440 		bus = bus->parent;
2441 	}
2442 
2443 	/* We have reached the root bus. */
2444 	if (bus->bridge)
2445 		return device_can_wakeup(bus->bridge);
2446 
2447 	return false;
2448 }
2449 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2450 
2451 /**
2452  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2453  * @pci_dev: Device to check.
2454  *
2455  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2456  * reconfigured due to wakeup settings difference between system and runtime
2457  * suspend and the current power state of it is suitable for the upcoming
2458  * (system) transition.
2459  *
2460  * If the device is not configured for system wakeup, disable PME for it before
2461  * returning 'true' to prevent it from waking up the system unnecessarily.
2462  */
2463 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2464 {
2465 	struct device *dev = &pci_dev->dev;
2466 	bool wakeup = device_may_wakeup(dev);
2467 
2468 	if (!pm_runtime_suspended(dev)
2469 	    || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2470 	    || platform_pci_need_resume(pci_dev))
2471 		return false;
2472 
2473 	/*
2474 	 * At this point the device is good to go unless it's been configured
2475 	 * to generate PME at the runtime suspend time, but it is not supposed
2476 	 * to wake up the system.  In that case, simply disable PME for it
2477 	 * (it will have to be re-enabled on exit from system resume).
2478 	 *
2479 	 * If the device's power state is D3cold and the platform check above
2480 	 * hasn't triggered, the device's configuration is suitable and we don't
2481 	 * need to manipulate it at all.
2482 	 */
2483 	spin_lock_irq(&dev->power.lock);
2484 
2485 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2486 	    !wakeup)
2487 		__pci_pme_active(pci_dev, false);
2488 
2489 	spin_unlock_irq(&dev->power.lock);
2490 	return true;
2491 }
2492 
2493 /**
2494  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2495  * @pci_dev: Device to handle.
2496  *
2497  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2498  * it might have been disabled during the prepare phase of system suspend if
2499  * the device was not configured for system wakeup.
2500  */
2501 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2502 {
2503 	struct device *dev = &pci_dev->dev;
2504 
2505 	if (!pci_dev_run_wake(pci_dev))
2506 		return;
2507 
2508 	spin_lock_irq(&dev->power.lock);
2509 
2510 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2511 		__pci_pme_active(pci_dev, true);
2512 
2513 	spin_unlock_irq(&dev->power.lock);
2514 }
2515 
2516 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2517 {
2518 	struct device *dev = &pdev->dev;
2519 	struct device *parent = dev->parent;
2520 
2521 	if (parent)
2522 		pm_runtime_get_sync(parent);
2523 	pm_runtime_get_noresume(dev);
2524 	/*
2525 	 * pdev->current_state is set to PCI_D3cold during suspending,
2526 	 * so wait until suspending completes
2527 	 */
2528 	pm_runtime_barrier(dev);
2529 	/*
2530 	 * Only need to resume devices in D3cold, because config
2531 	 * registers are still accessible for devices suspended but
2532 	 * not in D3cold.
2533 	 */
2534 	if (pdev->current_state == PCI_D3cold)
2535 		pm_runtime_resume(dev);
2536 }
2537 
2538 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2539 {
2540 	struct device *dev = &pdev->dev;
2541 	struct device *parent = dev->parent;
2542 
2543 	pm_runtime_put(dev);
2544 	if (parent)
2545 		pm_runtime_put_sync(parent);
2546 }
2547 
2548 static const struct dmi_system_id bridge_d3_blacklist[] = {
2549 #ifdef CONFIG_X86
2550 	{
2551 		/*
2552 		 * Gigabyte X299 root port is not marked as hotplug capable
2553 		 * which allows Linux to power manage it.  However, this
2554 		 * confuses the BIOS SMI handler so don't power manage root
2555 		 * ports on that system.
2556 		 */
2557 		.ident = "X299 DESIGNARE EX-CF",
2558 		.matches = {
2559 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2560 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2561 		},
2562 	},
2563 #endif
2564 	{ }
2565 };
2566 
2567 /**
2568  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2569  * @bridge: Bridge to check
2570  *
2571  * This function checks if it is possible to move the bridge to D3.
2572  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2573  */
2574 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2575 {
2576 	if (!pci_is_pcie(bridge))
2577 		return false;
2578 
2579 	switch (pci_pcie_type(bridge)) {
2580 	case PCI_EXP_TYPE_ROOT_PORT:
2581 	case PCI_EXP_TYPE_UPSTREAM:
2582 	case PCI_EXP_TYPE_DOWNSTREAM:
2583 		if (pci_bridge_d3_disable)
2584 			return false;
2585 
2586 		/*
2587 		 * Hotplug ports handled by firmware in System Management Mode
2588 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2589 		 */
2590 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2591 			return false;
2592 
2593 		if (pci_bridge_d3_force)
2594 			return true;
2595 
2596 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2597 		if (bridge->is_thunderbolt)
2598 			return true;
2599 
2600 		/* Platform might know better if the bridge supports D3 */
2601 		if (platform_pci_bridge_d3(bridge))
2602 			return true;
2603 
2604 		/*
2605 		 * Hotplug ports handled natively by the OS were not validated
2606 		 * by vendors for runtime D3 at least until 2018 because there
2607 		 * was no OS support.
2608 		 */
2609 		if (bridge->is_hotplug_bridge)
2610 			return false;
2611 
2612 		if (dmi_check_system(bridge_d3_blacklist))
2613 			return false;
2614 
2615 		/*
2616 		 * It should be safe to put PCIe ports from 2015 or newer
2617 		 * to D3.
2618 		 */
2619 		if (dmi_get_bios_year() >= 2015)
2620 			return true;
2621 		break;
2622 	}
2623 
2624 	return false;
2625 }
2626 
2627 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2628 {
2629 	bool *d3cold_ok = data;
2630 
2631 	if (/* The device needs to be allowed to go D3cold ... */
2632 	    dev->no_d3cold || !dev->d3cold_allowed ||
2633 
2634 	    /* ... and if it is wakeup capable to do so from D3cold. */
2635 	    (device_may_wakeup(&dev->dev) &&
2636 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2637 
2638 	    /* If it is a bridge it must be allowed to go to D3. */
2639 	    !pci_power_manageable(dev))
2640 
2641 		*d3cold_ok = false;
2642 
2643 	return !*d3cold_ok;
2644 }
2645 
2646 /*
2647  * pci_bridge_d3_update - Update bridge D3 capabilities
2648  * @dev: PCI device which is changed
2649  *
2650  * Update upstream bridge PM capabilities accordingly depending on if the
2651  * device PM configuration was changed or the device is being removed.  The
2652  * change is also propagated upstream.
2653  */
2654 void pci_bridge_d3_update(struct pci_dev *dev)
2655 {
2656 	bool remove = !device_is_registered(&dev->dev);
2657 	struct pci_dev *bridge;
2658 	bool d3cold_ok = true;
2659 
2660 	bridge = pci_upstream_bridge(dev);
2661 	if (!bridge || !pci_bridge_d3_possible(bridge))
2662 		return;
2663 
2664 	/*
2665 	 * If D3 is currently allowed for the bridge, removing one of its
2666 	 * children won't change that.
2667 	 */
2668 	if (remove && bridge->bridge_d3)
2669 		return;
2670 
2671 	/*
2672 	 * If D3 is currently allowed for the bridge and a child is added or
2673 	 * changed, disallowance of D3 can only be caused by that child, so
2674 	 * we only need to check that single device, not any of its siblings.
2675 	 *
2676 	 * If D3 is currently not allowed for the bridge, checking the device
2677 	 * first may allow us to skip checking its siblings.
2678 	 */
2679 	if (!remove)
2680 		pci_dev_check_d3cold(dev, &d3cold_ok);
2681 
2682 	/*
2683 	 * If D3 is currently not allowed for the bridge, this may be caused
2684 	 * either by the device being changed/removed or any of its siblings,
2685 	 * so we need to go through all children to find out if one of them
2686 	 * continues to block D3.
2687 	 */
2688 	if (d3cold_ok && !bridge->bridge_d3)
2689 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2690 			     &d3cold_ok);
2691 
2692 	if (bridge->bridge_d3 != d3cold_ok) {
2693 		bridge->bridge_d3 = d3cold_ok;
2694 		/* Propagate change to upstream bridges */
2695 		pci_bridge_d3_update(bridge);
2696 	}
2697 }
2698 
2699 /**
2700  * pci_d3cold_enable - Enable D3cold for device
2701  * @dev: PCI device to handle
2702  *
2703  * This function can be used in drivers to enable D3cold from the device
2704  * they handle.  It also updates upstream PCI bridge PM capabilities
2705  * accordingly.
2706  */
2707 void pci_d3cold_enable(struct pci_dev *dev)
2708 {
2709 	if (dev->no_d3cold) {
2710 		dev->no_d3cold = false;
2711 		pci_bridge_d3_update(dev);
2712 	}
2713 }
2714 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2715 
2716 /**
2717  * pci_d3cold_disable - Disable D3cold for device
2718  * @dev: PCI device to handle
2719  *
2720  * This function can be used in drivers to disable D3cold from the device
2721  * they handle.  It also updates upstream PCI bridge PM capabilities
2722  * accordingly.
2723  */
2724 void pci_d3cold_disable(struct pci_dev *dev)
2725 {
2726 	if (!dev->no_d3cold) {
2727 		dev->no_d3cold = true;
2728 		pci_bridge_d3_update(dev);
2729 	}
2730 }
2731 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2732 
2733 /**
2734  * pci_pm_init - Initialize PM functions of given PCI device
2735  * @dev: PCI device to handle.
2736  */
2737 void pci_pm_init(struct pci_dev *dev)
2738 {
2739 	int pm;
2740 	u16 status;
2741 	u16 pmc;
2742 
2743 	pm_runtime_forbid(&dev->dev);
2744 	pm_runtime_set_active(&dev->dev);
2745 	pm_runtime_enable(&dev->dev);
2746 	device_enable_async_suspend(&dev->dev);
2747 	dev->wakeup_prepared = false;
2748 
2749 	dev->pm_cap = 0;
2750 	dev->pme_support = 0;
2751 
2752 	/* find PCI PM capability in list */
2753 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2754 	if (!pm)
2755 		return;
2756 	/* Check device's ability to generate PME# */
2757 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2758 
2759 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2760 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2761 			pmc & PCI_PM_CAP_VER_MASK);
2762 		return;
2763 	}
2764 
2765 	dev->pm_cap = pm;
2766 	dev->d3_delay = PCI_PM_D3_WAIT;
2767 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2768 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2769 	dev->d3cold_allowed = true;
2770 
2771 	dev->d1_support = false;
2772 	dev->d2_support = false;
2773 	if (!pci_no_d1d2(dev)) {
2774 		if (pmc & PCI_PM_CAP_D1)
2775 			dev->d1_support = true;
2776 		if (pmc & PCI_PM_CAP_D2)
2777 			dev->d2_support = true;
2778 
2779 		if (dev->d1_support || dev->d2_support)
2780 			pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2781 				   dev->d1_support ? " D1" : "",
2782 				   dev->d2_support ? " D2" : "");
2783 	}
2784 
2785 	pmc &= PCI_PM_CAP_PME_MASK;
2786 	if (pmc) {
2787 		pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2788 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2789 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2790 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2791 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2792 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2793 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2794 		dev->pme_poll = true;
2795 		/*
2796 		 * Make device's PM flags reflect the wake-up capability, but
2797 		 * let the user space enable it to wake up the system as needed.
2798 		 */
2799 		device_set_wakeup_capable(&dev->dev, true);
2800 		/* Disable the PME# generation functionality */
2801 		pci_pme_active(dev, false);
2802 	}
2803 
2804 	pci_read_config_word(dev, PCI_STATUS, &status);
2805 	if (status & PCI_STATUS_IMM_READY)
2806 		dev->imm_ready = 1;
2807 }
2808 
2809 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2810 {
2811 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2812 
2813 	switch (prop) {
2814 	case PCI_EA_P_MEM:
2815 	case PCI_EA_P_VF_MEM:
2816 		flags |= IORESOURCE_MEM;
2817 		break;
2818 	case PCI_EA_P_MEM_PREFETCH:
2819 	case PCI_EA_P_VF_MEM_PREFETCH:
2820 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2821 		break;
2822 	case PCI_EA_P_IO:
2823 		flags |= IORESOURCE_IO;
2824 		break;
2825 	default:
2826 		return 0;
2827 	}
2828 
2829 	return flags;
2830 }
2831 
2832 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2833 					    u8 prop)
2834 {
2835 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2836 		return &dev->resource[bei];
2837 #ifdef CONFIG_PCI_IOV
2838 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2839 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2840 		return &dev->resource[PCI_IOV_RESOURCES +
2841 				      bei - PCI_EA_BEI_VF_BAR0];
2842 #endif
2843 	else if (bei == PCI_EA_BEI_ROM)
2844 		return &dev->resource[PCI_ROM_RESOURCE];
2845 	else
2846 		return NULL;
2847 }
2848 
2849 /* Read an Enhanced Allocation (EA) entry */
2850 static int pci_ea_read(struct pci_dev *dev, int offset)
2851 {
2852 	struct resource *res;
2853 	int ent_size, ent_offset = offset;
2854 	resource_size_t start, end;
2855 	unsigned long flags;
2856 	u32 dw0, bei, base, max_offset;
2857 	u8 prop;
2858 	bool support_64 = (sizeof(resource_size_t) >= 8);
2859 
2860 	pci_read_config_dword(dev, ent_offset, &dw0);
2861 	ent_offset += 4;
2862 
2863 	/* Entry size field indicates DWORDs after 1st */
2864 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2865 
2866 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2867 		goto out;
2868 
2869 	bei = (dw0 & PCI_EA_BEI) >> 4;
2870 	prop = (dw0 & PCI_EA_PP) >> 8;
2871 
2872 	/*
2873 	 * If the Property is in the reserved range, try the Secondary
2874 	 * Property instead.
2875 	 */
2876 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2877 		prop = (dw0 & PCI_EA_SP) >> 16;
2878 	if (prop > PCI_EA_P_BRIDGE_IO)
2879 		goto out;
2880 
2881 	res = pci_ea_get_resource(dev, bei, prop);
2882 	if (!res) {
2883 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2884 		goto out;
2885 	}
2886 
2887 	flags = pci_ea_flags(dev, prop);
2888 	if (!flags) {
2889 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2890 		goto out;
2891 	}
2892 
2893 	/* Read Base */
2894 	pci_read_config_dword(dev, ent_offset, &base);
2895 	start = (base & PCI_EA_FIELD_MASK);
2896 	ent_offset += 4;
2897 
2898 	/* Read MaxOffset */
2899 	pci_read_config_dword(dev, ent_offset, &max_offset);
2900 	ent_offset += 4;
2901 
2902 	/* Read Base MSBs (if 64-bit entry) */
2903 	if (base & PCI_EA_IS_64) {
2904 		u32 base_upper;
2905 
2906 		pci_read_config_dword(dev, ent_offset, &base_upper);
2907 		ent_offset += 4;
2908 
2909 		flags |= IORESOURCE_MEM_64;
2910 
2911 		/* entry starts above 32-bit boundary, can't use */
2912 		if (!support_64 && base_upper)
2913 			goto out;
2914 
2915 		if (support_64)
2916 			start |= ((u64)base_upper << 32);
2917 	}
2918 
2919 	end = start + (max_offset | 0x03);
2920 
2921 	/* Read MaxOffset MSBs (if 64-bit entry) */
2922 	if (max_offset & PCI_EA_IS_64) {
2923 		u32 max_offset_upper;
2924 
2925 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2926 		ent_offset += 4;
2927 
2928 		flags |= IORESOURCE_MEM_64;
2929 
2930 		/* entry too big, can't use */
2931 		if (!support_64 && max_offset_upper)
2932 			goto out;
2933 
2934 		if (support_64)
2935 			end += ((u64)max_offset_upper << 32);
2936 	}
2937 
2938 	if (end < start) {
2939 		pci_err(dev, "EA Entry crosses address boundary\n");
2940 		goto out;
2941 	}
2942 
2943 	if (ent_size != ent_offset - offset) {
2944 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2945 			ent_size, ent_offset - offset);
2946 		goto out;
2947 	}
2948 
2949 	res->name = pci_name(dev);
2950 	res->start = start;
2951 	res->end = end;
2952 	res->flags = flags;
2953 
2954 	if (bei <= PCI_EA_BEI_BAR5)
2955 		pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2956 			   bei, res, prop);
2957 	else if (bei == PCI_EA_BEI_ROM)
2958 		pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2959 			   res, prop);
2960 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2961 		pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2962 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2963 	else
2964 		pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2965 			   bei, res, prop);
2966 
2967 out:
2968 	return offset + ent_size;
2969 }
2970 
2971 /* Enhanced Allocation Initialization */
2972 void pci_ea_init(struct pci_dev *dev)
2973 {
2974 	int ea;
2975 	u8 num_ent;
2976 	int offset;
2977 	int i;
2978 
2979 	/* find PCI EA capability in list */
2980 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2981 	if (!ea)
2982 		return;
2983 
2984 	/* determine the number of entries */
2985 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2986 					&num_ent);
2987 	num_ent &= PCI_EA_NUM_ENT_MASK;
2988 
2989 	offset = ea + PCI_EA_FIRST_ENT;
2990 
2991 	/* Skip DWORD 2 for type 1 functions */
2992 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2993 		offset += 4;
2994 
2995 	/* parse each EA entry */
2996 	for (i = 0; i < num_ent; ++i)
2997 		offset = pci_ea_read(dev, offset);
2998 }
2999 
3000 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3001 	struct pci_cap_saved_state *new_cap)
3002 {
3003 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3004 }
3005 
3006 /**
3007  * _pci_add_cap_save_buffer - allocate buffer for saving given
3008  *                            capability registers
3009  * @dev: the PCI device
3010  * @cap: the capability to allocate the buffer for
3011  * @extended: Standard or Extended capability ID
3012  * @size: requested size of the buffer
3013  */
3014 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3015 				    bool extended, unsigned int size)
3016 {
3017 	int pos;
3018 	struct pci_cap_saved_state *save_state;
3019 
3020 	if (extended)
3021 		pos = pci_find_ext_capability(dev, cap);
3022 	else
3023 		pos = pci_find_capability(dev, cap);
3024 
3025 	if (!pos)
3026 		return 0;
3027 
3028 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3029 	if (!save_state)
3030 		return -ENOMEM;
3031 
3032 	save_state->cap.cap_nr = cap;
3033 	save_state->cap.cap_extended = extended;
3034 	save_state->cap.size = size;
3035 	pci_add_saved_cap(dev, save_state);
3036 
3037 	return 0;
3038 }
3039 
3040 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3041 {
3042 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3043 }
3044 
3045 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3046 {
3047 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3048 }
3049 
3050 /**
3051  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3052  * @dev: the PCI device
3053  */
3054 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3055 {
3056 	int error;
3057 
3058 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3059 					PCI_EXP_SAVE_REGS * sizeof(u16));
3060 	if (error)
3061 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3062 
3063 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3064 	if (error)
3065 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3066 
3067 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3068 					    2 * sizeof(u16));
3069 	if (error)
3070 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3071 
3072 	pci_allocate_vc_save_buffers(dev);
3073 }
3074 
3075 void pci_free_cap_save_buffers(struct pci_dev *dev)
3076 {
3077 	struct pci_cap_saved_state *tmp;
3078 	struct hlist_node *n;
3079 
3080 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3081 		kfree(tmp);
3082 }
3083 
3084 /**
3085  * pci_configure_ari - enable or disable ARI forwarding
3086  * @dev: the PCI device
3087  *
3088  * If @dev and its upstream bridge both support ARI, enable ARI in the
3089  * bridge.  Otherwise, disable ARI in the bridge.
3090  */
3091 void pci_configure_ari(struct pci_dev *dev)
3092 {
3093 	u32 cap;
3094 	struct pci_dev *bridge;
3095 
3096 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3097 		return;
3098 
3099 	bridge = dev->bus->self;
3100 	if (!bridge)
3101 		return;
3102 
3103 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3104 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3105 		return;
3106 
3107 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3108 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3109 					 PCI_EXP_DEVCTL2_ARI);
3110 		bridge->ari_enabled = 1;
3111 	} else {
3112 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3113 					   PCI_EXP_DEVCTL2_ARI);
3114 		bridge->ari_enabled = 0;
3115 	}
3116 }
3117 
3118 static int pci_acs_enable;
3119 
3120 /**
3121  * pci_request_acs - ask for ACS to be enabled if supported
3122  */
3123 void pci_request_acs(void)
3124 {
3125 	pci_acs_enable = 1;
3126 }
3127 
3128 static const char *disable_acs_redir_param;
3129 
3130 /**
3131  * pci_disable_acs_redir - disable ACS redirect capabilities
3132  * @dev: the PCI device
3133  *
3134  * For only devices specified in the disable_acs_redir parameter.
3135  */
3136 static void pci_disable_acs_redir(struct pci_dev *dev)
3137 {
3138 	int ret = 0;
3139 	const char *p;
3140 	int pos;
3141 	u16 ctrl;
3142 
3143 	if (!disable_acs_redir_param)
3144 		return;
3145 
3146 	p = disable_acs_redir_param;
3147 	while (*p) {
3148 		ret = pci_dev_str_match(dev, p, &p);
3149 		if (ret < 0) {
3150 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3151 				     disable_acs_redir_param);
3152 
3153 			break;
3154 		} else if (ret == 1) {
3155 			/* Found a match */
3156 			break;
3157 		}
3158 
3159 		if (*p != ';' && *p != ',') {
3160 			/* End of param or invalid format */
3161 			break;
3162 		}
3163 		p++;
3164 	}
3165 
3166 	if (ret != 1)
3167 		return;
3168 
3169 	if (!pci_dev_specific_disable_acs_redir(dev))
3170 		return;
3171 
3172 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3173 	if (!pos) {
3174 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3175 		return;
3176 	}
3177 
3178 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3179 
3180 	/* P2P Request & Completion Redirect */
3181 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3182 
3183 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3184 
3185 	pci_info(dev, "disabled ACS redirect\n");
3186 }
3187 
3188 /**
3189  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
3190  * @dev: the PCI device
3191  */
3192 static void pci_std_enable_acs(struct pci_dev *dev)
3193 {
3194 	int pos;
3195 	u16 cap;
3196 	u16 ctrl;
3197 
3198 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3199 	if (!pos)
3200 		return;
3201 
3202 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3203 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3204 
3205 	/* Source Validation */
3206 	ctrl |= (cap & PCI_ACS_SV);
3207 
3208 	/* P2P Request Redirect */
3209 	ctrl |= (cap & PCI_ACS_RR);
3210 
3211 	/* P2P Completion Redirect */
3212 	ctrl |= (cap & PCI_ACS_CR);
3213 
3214 	/* Upstream Forwarding */
3215 	ctrl |= (cap & PCI_ACS_UF);
3216 
3217 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3218 }
3219 
3220 /**
3221  * pci_enable_acs - enable ACS if hardware support it
3222  * @dev: the PCI device
3223  */
3224 void pci_enable_acs(struct pci_dev *dev)
3225 {
3226 	if (!pci_acs_enable)
3227 		goto disable_acs_redir;
3228 
3229 	if (!pci_dev_specific_enable_acs(dev))
3230 		goto disable_acs_redir;
3231 
3232 	pci_std_enable_acs(dev);
3233 
3234 disable_acs_redir:
3235 	/*
3236 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
3237 	 * enabled by the kernel because it may have been enabled by
3238 	 * platform firmware.  So if we are told to disable it, we should
3239 	 * always disable it after setting the kernel's default
3240 	 * preferences.
3241 	 */
3242 	pci_disable_acs_redir(dev);
3243 }
3244 
3245 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3246 {
3247 	int pos;
3248 	u16 cap, ctrl;
3249 
3250 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3251 	if (!pos)
3252 		return false;
3253 
3254 	/*
3255 	 * Except for egress control, capabilities are either required
3256 	 * or only required if controllable.  Features missing from the
3257 	 * capability field can therefore be assumed as hard-wired enabled.
3258 	 */
3259 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3260 	acs_flags &= (cap | PCI_ACS_EC);
3261 
3262 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3263 	return (ctrl & acs_flags) == acs_flags;
3264 }
3265 
3266 /**
3267  * pci_acs_enabled - test ACS against required flags for a given device
3268  * @pdev: device to test
3269  * @acs_flags: required PCI ACS flags
3270  *
3271  * Return true if the device supports the provided flags.  Automatically
3272  * filters out flags that are not implemented on multifunction devices.
3273  *
3274  * Note that this interface checks the effective ACS capabilities of the
3275  * device rather than the actual capabilities.  For instance, most single
3276  * function endpoints are not required to support ACS because they have no
3277  * opportunity for peer-to-peer access.  We therefore return 'true'
3278  * regardless of whether the device exposes an ACS capability.  This makes
3279  * it much easier for callers of this function to ignore the actual type
3280  * or topology of the device when testing ACS support.
3281  */
3282 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3283 {
3284 	int ret;
3285 
3286 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3287 	if (ret >= 0)
3288 		return ret > 0;
3289 
3290 	/*
3291 	 * Conventional PCI and PCI-X devices never support ACS, either
3292 	 * effectively or actually.  The shared bus topology implies that
3293 	 * any device on the bus can receive or snoop DMA.
3294 	 */
3295 	if (!pci_is_pcie(pdev))
3296 		return false;
3297 
3298 	switch (pci_pcie_type(pdev)) {
3299 	/*
3300 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3301 	 * but since their primary interface is PCI/X, we conservatively
3302 	 * handle them as we would a non-PCIe device.
3303 	 */
3304 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3305 	/*
3306 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3307 	 * applicable... must never implement an ACS Extended Capability...".
3308 	 * This seems arbitrary, but we take a conservative interpretation
3309 	 * of this statement.
3310 	 */
3311 	case PCI_EXP_TYPE_PCI_BRIDGE:
3312 	case PCI_EXP_TYPE_RC_EC:
3313 		return false;
3314 	/*
3315 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3316 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3317 	 * regardless of whether they are single- or multi-function devices.
3318 	 */
3319 	case PCI_EXP_TYPE_DOWNSTREAM:
3320 	case PCI_EXP_TYPE_ROOT_PORT:
3321 		return pci_acs_flags_enabled(pdev, acs_flags);
3322 	/*
3323 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3324 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3325 	 * capabilities, but only when they are part of a multifunction
3326 	 * device.  The footnote for section 6.12 indicates the specific
3327 	 * PCIe types included here.
3328 	 */
3329 	case PCI_EXP_TYPE_ENDPOINT:
3330 	case PCI_EXP_TYPE_UPSTREAM:
3331 	case PCI_EXP_TYPE_LEG_END:
3332 	case PCI_EXP_TYPE_RC_END:
3333 		if (!pdev->multifunction)
3334 			break;
3335 
3336 		return pci_acs_flags_enabled(pdev, acs_flags);
3337 	}
3338 
3339 	/*
3340 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3341 	 * to single function devices with the exception of downstream ports.
3342 	 */
3343 	return true;
3344 }
3345 
3346 /**
3347  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3348  * @start: starting downstream device
3349  * @end: ending upstream device or NULL to search to the root bus
3350  * @acs_flags: required flags
3351  *
3352  * Walk up a device tree from start to end testing PCI ACS support.  If
3353  * any step along the way does not support the required flags, return false.
3354  */
3355 bool pci_acs_path_enabled(struct pci_dev *start,
3356 			  struct pci_dev *end, u16 acs_flags)
3357 {
3358 	struct pci_dev *pdev, *parent = start;
3359 
3360 	do {
3361 		pdev = parent;
3362 
3363 		if (!pci_acs_enabled(pdev, acs_flags))
3364 			return false;
3365 
3366 		if (pci_is_root_bus(pdev->bus))
3367 			return (end == NULL);
3368 
3369 		parent = pdev->bus->self;
3370 	} while (pdev != end);
3371 
3372 	return true;
3373 }
3374 
3375 /**
3376  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3377  * @pdev: PCI device
3378  * @bar: BAR to find
3379  *
3380  * Helper to find the position of the ctrl register for a BAR.
3381  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3382  * Returns -ENOENT if no ctrl register for the BAR could be found.
3383  */
3384 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3385 {
3386 	unsigned int pos, nbars, i;
3387 	u32 ctrl;
3388 
3389 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3390 	if (!pos)
3391 		return -ENOTSUPP;
3392 
3393 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3394 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3395 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3396 
3397 	for (i = 0; i < nbars; i++, pos += 8) {
3398 		int bar_idx;
3399 
3400 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3401 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3402 		if (bar_idx == bar)
3403 			return pos;
3404 	}
3405 
3406 	return -ENOENT;
3407 }
3408 
3409 /**
3410  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3411  * @pdev: PCI device
3412  * @bar: BAR to query
3413  *
3414  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3415  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3416  */
3417 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3418 {
3419 	int pos;
3420 	u32 cap;
3421 
3422 	pos = pci_rebar_find_pos(pdev, bar);
3423 	if (pos < 0)
3424 		return 0;
3425 
3426 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3427 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3428 }
3429 
3430 /**
3431  * pci_rebar_get_current_size - get the current size of a BAR
3432  * @pdev: PCI device
3433  * @bar: BAR to set size to
3434  *
3435  * Read the size of a BAR from the resizable BAR config.
3436  * Returns size if found or negative error code.
3437  */
3438 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3439 {
3440 	int pos;
3441 	u32 ctrl;
3442 
3443 	pos = pci_rebar_find_pos(pdev, bar);
3444 	if (pos < 0)
3445 		return pos;
3446 
3447 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3448 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3449 }
3450 
3451 /**
3452  * pci_rebar_set_size - set a new size for a BAR
3453  * @pdev: PCI device
3454  * @bar: BAR to set size to
3455  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3456  *
3457  * Set the new size of a BAR as defined in the spec.
3458  * Returns zero if resizing was successful, error code otherwise.
3459  */
3460 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3461 {
3462 	int pos;
3463 	u32 ctrl;
3464 
3465 	pos = pci_rebar_find_pos(pdev, bar);
3466 	if (pos < 0)
3467 		return pos;
3468 
3469 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3470 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3471 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3472 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3473 	return 0;
3474 }
3475 
3476 /**
3477  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3478  * @dev: the PCI device
3479  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3480  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3481  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3482  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3483  *
3484  * Return 0 if all upstream bridges support AtomicOp routing, egress
3485  * blocking is disabled on all upstream ports, and the root port supports
3486  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3487  * AtomicOp completion), or negative otherwise.
3488  */
3489 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3490 {
3491 	struct pci_bus *bus = dev->bus;
3492 	struct pci_dev *bridge;
3493 	u32 cap, ctl2;
3494 
3495 	if (!pci_is_pcie(dev))
3496 		return -EINVAL;
3497 
3498 	/*
3499 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3500 	 * AtomicOp requesters.  For now, we only support endpoints as
3501 	 * requesters and root ports as completers.  No endpoints as
3502 	 * completers, and no peer-to-peer.
3503 	 */
3504 
3505 	switch (pci_pcie_type(dev)) {
3506 	case PCI_EXP_TYPE_ENDPOINT:
3507 	case PCI_EXP_TYPE_LEG_END:
3508 	case PCI_EXP_TYPE_RC_END:
3509 		break;
3510 	default:
3511 		return -EINVAL;
3512 	}
3513 
3514 	while (bus->parent) {
3515 		bridge = bus->self;
3516 
3517 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3518 
3519 		switch (pci_pcie_type(bridge)) {
3520 		/* Ensure switch ports support AtomicOp routing */
3521 		case PCI_EXP_TYPE_UPSTREAM:
3522 		case PCI_EXP_TYPE_DOWNSTREAM:
3523 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3524 				return -EINVAL;
3525 			break;
3526 
3527 		/* Ensure root port supports all the sizes we care about */
3528 		case PCI_EXP_TYPE_ROOT_PORT:
3529 			if ((cap & cap_mask) != cap_mask)
3530 				return -EINVAL;
3531 			break;
3532 		}
3533 
3534 		/* Ensure upstream ports don't block AtomicOps on egress */
3535 		if (!bridge->has_secondary_link) {
3536 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3537 						   &ctl2);
3538 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3539 				return -EINVAL;
3540 		}
3541 
3542 		bus = bus->parent;
3543 	}
3544 
3545 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3546 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3547 	return 0;
3548 }
3549 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3550 
3551 /**
3552  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3553  * @dev: the PCI device
3554  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3555  *
3556  * Perform INTx swizzling for a device behind one level of bridge.  This is
3557  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3558  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3559  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3560  * the PCI Express Base Specification, Revision 2.1)
3561  */
3562 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3563 {
3564 	int slot;
3565 
3566 	if (pci_ari_enabled(dev->bus))
3567 		slot = 0;
3568 	else
3569 		slot = PCI_SLOT(dev->devfn);
3570 
3571 	return (((pin - 1) + slot) % 4) + 1;
3572 }
3573 
3574 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3575 {
3576 	u8 pin;
3577 
3578 	pin = dev->pin;
3579 	if (!pin)
3580 		return -1;
3581 
3582 	while (!pci_is_root_bus(dev->bus)) {
3583 		pin = pci_swizzle_interrupt_pin(dev, pin);
3584 		dev = dev->bus->self;
3585 	}
3586 	*bridge = dev;
3587 	return pin;
3588 }
3589 
3590 /**
3591  * pci_common_swizzle - swizzle INTx all the way to root bridge
3592  * @dev: the PCI device
3593  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3594  *
3595  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3596  * bridges all the way up to a PCI root bus.
3597  */
3598 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3599 {
3600 	u8 pin = *pinp;
3601 
3602 	while (!pci_is_root_bus(dev->bus)) {
3603 		pin = pci_swizzle_interrupt_pin(dev, pin);
3604 		dev = dev->bus->self;
3605 	}
3606 	*pinp = pin;
3607 	return PCI_SLOT(dev->devfn);
3608 }
3609 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3610 
3611 /**
3612  *	pci_release_region - Release a PCI bar
3613  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3614  *	@bar: BAR to release
3615  *
3616  *	Releases the PCI I/O and memory resources previously reserved by a
3617  *	successful call to pci_request_region.  Call this function only
3618  *	after all use of the PCI regions has ceased.
3619  */
3620 void pci_release_region(struct pci_dev *pdev, int bar)
3621 {
3622 	struct pci_devres *dr;
3623 
3624 	if (pci_resource_len(pdev, bar) == 0)
3625 		return;
3626 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3627 		release_region(pci_resource_start(pdev, bar),
3628 				pci_resource_len(pdev, bar));
3629 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3630 		release_mem_region(pci_resource_start(pdev, bar),
3631 				pci_resource_len(pdev, bar));
3632 
3633 	dr = find_pci_dr(pdev);
3634 	if (dr)
3635 		dr->region_mask &= ~(1 << bar);
3636 }
3637 EXPORT_SYMBOL(pci_release_region);
3638 
3639 /**
3640  *	__pci_request_region - Reserved PCI I/O and memory resource
3641  *	@pdev: PCI device whose resources are to be reserved
3642  *	@bar: BAR to be reserved
3643  *	@res_name: Name to be associated with resource.
3644  *	@exclusive: whether the region access is exclusive or not
3645  *
3646  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3647  *	being reserved by owner @res_name.  Do not access any
3648  *	address inside the PCI regions unless this call returns
3649  *	successfully.
3650  *
3651  *	If @exclusive is set, then the region is marked so that userspace
3652  *	is explicitly not allowed to map the resource via /dev/mem or
3653  *	sysfs MMIO access.
3654  *
3655  *	Returns 0 on success, or %EBUSY on error.  A warning
3656  *	message is also printed on failure.
3657  */
3658 static int __pci_request_region(struct pci_dev *pdev, int bar,
3659 				const char *res_name, int exclusive)
3660 {
3661 	struct pci_devres *dr;
3662 
3663 	if (pci_resource_len(pdev, bar) == 0)
3664 		return 0;
3665 
3666 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3667 		if (!request_region(pci_resource_start(pdev, bar),
3668 			    pci_resource_len(pdev, bar), res_name))
3669 			goto err_out;
3670 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3671 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3672 					pci_resource_len(pdev, bar), res_name,
3673 					exclusive))
3674 			goto err_out;
3675 	}
3676 
3677 	dr = find_pci_dr(pdev);
3678 	if (dr)
3679 		dr->region_mask |= 1 << bar;
3680 
3681 	return 0;
3682 
3683 err_out:
3684 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3685 		 &pdev->resource[bar]);
3686 	return -EBUSY;
3687 }
3688 
3689 /**
3690  *	pci_request_region - Reserve PCI I/O and memory resource
3691  *	@pdev: PCI device whose resources are to be reserved
3692  *	@bar: BAR to be reserved
3693  *	@res_name: Name to be associated with resource
3694  *
3695  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3696  *	being reserved by owner @res_name.  Do not access any
3697  *	address inside the PCI regions unless this call returns
3698  *	successfully.
3699  *
3700  *	Returns 0 on success, or %EBUSY on error.  A warning
3701  *	message is also printed on failure.
3702  */
3703 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3704 {
3705 	return __pci_request_region(pdev, bar, res_name, 0);
3706 }
3707 EXPORT_SYMBOL(pci_request_region);
3708 
3709 /**
3710  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3711  *	@pdev: PCI device whose resources are to be reserved
3712  *	@bar: BAR to be reserved
3713  *	@res_name: Name to be associated with resource.
3714  *
3715  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3716  *	being reserved by owner @res_name.  Do not access any
3717  *	address inside the PCI regions unless this call returns
3718  *	successfully.
3719  *
3720  *	Returns 0 on success, or %EBUSY on error.  A warning
3721  *	message is also printed on failure.
3722  *
3723  *	The key difference that _exclusive makes it that userspace is
3724  *	explicitly not allowed to map the resource via /dev/mem or
3725  *	sysfs.
3726  */
3727 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3728 				 const char *res_name)
3729 {
3730 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3731 }
3732 EXPORT_SYMBOL(pci_request_region_exclusive);
3733 
3734 /**
3735  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3736  * @pdev: PCI device whose resources were previously reserved
3737  * @bars: Bitmask of BARs to be released
3738  *
3739  * Release selected PCI I/O and memory resources previously reserved.
3740  * Call this function only after all use of the PCI regions has ceased.
3741  */
3742 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3743 {
3744 	int i;
3745 
3746 	for (i = 0; i < 6; i++)
3747 		if (bars & (1 << i))
3748 			pci_release_region(pdev, i);
3749 }
3750 EXPORT_SYMBOL(pci_release_selected_regions);
3751 
3752 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3753 					  const char *res_name, int excl)
3754 {
3755 	int i;
3756 
3757 	for (i = 0; i < 6; i++)
3758 		if (bars & (1 << i))
3759 			if (__pci_request_region(pdev, i, res_name, excl))
3760 				goto err_out;
3761 	return 0;
3762 
3763 err_out:
3764 	while (--i >= 0)
3765 		if (bars & (1 << i))
3766 			pci_release_region(pdev, i);
3767 
3768 	return -EBUSY;
3769 }
3770 
3771 
3772 /**
3773  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3774  * @pdev: PCI device whose resources are to be reserved
3775  * @bars: Bitmask of BARs to be requested
3776  * @res_name: Name to be associated with resource
3777  */
3778 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3779 				 const char *res_name)
3780 {
3781 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3782 }
3783 EXPORT_SYMBOL(pci_request_selected_regions);
3784 
3785 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3786 					   const char *res_name)
3787 {
3788 	return __pci_request_selected_regions(pdev, bars, res_name,
3789 			IORESOURCE_EXCLUSIVE);
3790 }
3791 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3792 
3793 /**
3794  *	pci_release_regions - Release reserved PCI I/O and memory resources
3795  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3796  *
3797  *	Releases all PCI I/O and memory resources previously reserved by a
3798  *	successful call to pci_request_regions.  Call this function only
3799  *	after all use of the PCI regions has ceased.
3800  */
3801 
3802 void pci_release_regions(struct pci_dev *pdev)
3803 {
3804 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3805 }
3806 EXPORT_SYMBOL(pci_release_regions);
3807 
3808 /**
3809  *	pci_request_regions - Reserved PCI I/O and memory resources
3810  *	@pdev: PCI device whose resources are to be reserved
3811  *	@res_name: Name to be associated with resource.
3812  *
3813  *	Mark all PCI regions associated with PCI device @pdev as
3814  *	being reserved by owner @res_name.  Do not access any
3815  *	address inside the PCI regions unless this call returns
3816  *	successfully.
3817  *
3818  *	Returns 0 on success, or %EBUSY on error.  A warning
3819  *	message is also printed on failure.
3820  */
3821 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3822 {
3823 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3824 }
3825 EXPORT_SYMBOL(pci_request_regions);
3826 
3827 /**
3828  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3829  *	@pdev: PCI device whose resources are to be reserved
3830  *	@res_name: Name to be associated with resource.
3831  *
3832  *	Mark all PCI regions associated with PCI device @pdev as
3833  *	being reserved by owner @res_name.  Do not access any
3834  *	address inside the PCI regions unless this call returns
3835  *	successfully.
3836  *
3837  *	pci_request_regions_exclusive() will mark the region so that
3838  *	/dev/mem and the sysfs MMIO access will not be allowed.
3839  *
3840  *	Returns 0 on success, or %EBUSY on error.  A warning
3841  *	message is also printed on failure.
3842  */
3843 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3844 {
3845 	return pci_request_selected_regions_exclusive(pdev,
3846 					((1 << 6) - 1), res_name);
3847 }
3848 EXPORT_SYMBOL(pci_request_regions_exclusive);
3849 
3850 /*
3851  * Record the PCI IO range (expressed as CPU physical address + size).
3852  * Return a negative value if an error has occured, zero otherwise
3853  */
3854 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3855 			resource_size_t	size)
3856 {
3857 	int ret = 0;
3858 #ifdef PCI_IOBASE
3859 	struct logic_pio_hwaddr *range;
3860 
3861 	if (!size || addr + size < addr)
3862 		return -EINVAL;
3863 
3864 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3865 	if (!range)
3866 		return -ENOMEM;
3867 
3868 	range->fwnode = fwnode;
3869 	range->size = size;
3870 	range->hw_start = addr;
3871 	range->flags = LOGIC_PIO_CPU_MMIO;
3872 
3873 	ret = logic_pio_register_range(range);
3874 	if (ret)
3875 		kfree(range);
3876 #endif
3877 
3878 	return ret;
3879 }
3880 
3881 phys_addr_t pci_pio_to_address(unsigned long pio)
3882 {
3883 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3884 
3885 #ifdef PCI_IOBASE
3886 	if (pio >= MMIO_UPPER_LIMIT)
3887 		return address;
3888 
3889 	address = logic_pio_to_hwaddr(pio);
3890 #endif
3891 
3892 	return address;
3893 }
3894 
3895 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3896 {
3897 #ifdef PCI_IOBASE
3898 	return logic_pio_trans_cpuaddr(address);
3899 #else
3900 	if (address > IO_SPACE_LIMIT)
3901 		return (unsigned long)-1;
3902 
3903 	return (unsigned long) address;
3904 #endif
3905 }
3906 
3907 /**
3908  *	pci_remap_iospace - Remap the memory mapped I/O space
3909  *	@res: Resource describing the I/O space
3910  *	@phys_addr: physical address of range to be mapped
3911  *
3912  *	Remap the memory mapped I/O space described by the @res
3913  *	and the CPU physical address @phys_addr into virtual address space.
3914  *	Only architectures that have memory mapped IO functions defined
3915  *	(and the PCI_IOBASE value defined) should call this function.
3916  */
3917 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3918 {
3919 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3920 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3921 
3922 	if (!(res->flags & IORESOURCE_IO))
3923 		return -EINVAL;
3924 
3925 	if (res->end > IO_SPACE_LIMIT)
3926 		return -EINVAL;
3927 
3928 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3929 				  pgprot_device(PAGE_KERNEL));
3930 #else
3931 	/* this architecture does not have memory mapped I/O space,
3932 	   so this function should never be called */
3933 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3934 	return -ENODEV;
3935 #endif
3936 }
3937 EXPORT_SYMBOL(pci_remap_iospace);
3938 
3939 /**
3940  *	pci_unmap_iospace - Unmap the memory mapped I/O space
3941  *	@res: resource to be unmapped
3942  *
3943  *	Unmap the CPU virtual address @res from virtual address space.
3944  *	Only architectures that have memory mapped IO functions defined
3945  *	(and the PCI_IOBASE value defined) should call this function.
3946  */
3947 void pci_unmap_iospace(struct resource *res)
3948 {
3949 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3950 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3951 
3952 	unmap_kernel_range(vaddr, resource_size(res));
3953 #endif
3954 }
3955 EXPORT_SYMBOL(pci_unmap_iospace);
3956 
3957 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3958 {
3959 	struct resource **res = ptr;
3960 
3961 	pci_unmap_iospace(*res);
3962 }
3963 
3964 /**
3965  * devm_pci_remap_iospace - Managed pci_remap_iospace()
3966  * @dev: Generic device to remap IO address for
3967  * @res: Resource describing the I/O space
3968  * @phys_addr: physical address of range to be mapped
3969  *
3970  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
3971  * detach.
3972  */
3973 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3974 			   phys_addr_t phys_addr)
3975 {
3976 	const struct resource **ptr;
3977 	int error;
3978 
3979 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
3980 	if (!ptr)
3981 		return -ENOMEM;
3982 
3983 	error = pci_remap_iospace(res, phys_addr);
3984 	if (error) {
3985 		devres_free(ptr);
3986 	} else	{
3987 		*ptr = res;
3988 		devres_add(dev, ptr);
3989 	}
3990 
3991 	return error;
3992 }
3993 EXPORT_SYMBOL(devm_pci_remap_iospace);
3994 
3995 /**
3996  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3997  * @dev: Generic device to remap IO address for
3998  * @offset: Resource address to map
3999  * @size: Size of map
4000  *
4001  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4002  * detach.
4003  */
4004 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4005 				      resource_size_t offset,
4006 				      resource_size_t size)
4007 {
4008 	void __iomem **ptr, *addr;
4009 
4010 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4011 	if (!ptr)
4012 		return NULL;
4013 
4014 	addr = pci_remap_cfgspace(offset, size);
4015 	if (addr) {
4016 		*ptr = addr;
4017 		devres_add(dev, ptr);
4018 	} else
4019 		devres_free(ptr);
4020 
4021 	return addr;
4022 }
4023 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4024 
4025 /**
4026  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4027  * @dev: generic device to handle the resource for
4028  * @res: configuration space resource to be handled
4029  *
4030  * Checks that a resource is a valid memory region, requests the memory
4031  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4032  * proper PCI configuration space memory attributes are guaranteed.
4033  *
4034  * All operations are managed and will be undone on driver detach.
4035  *
4036  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4037  * on failure. Usage example::
4038  *
4039  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4040  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4041  *	if (IS_ERR(base))
4042  *		return PTR_ERR(base);
4043  */
4044 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4045 					  struct resource *res)
4046 {
4047 	resource_size_t size;
4048 	const char *name;
4049 	void __iomem *dest_ptr;
4050 
4051 	BUG_ON(!dev);
4052 
4053 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4054 		dev_err(dev, "invalid resource\n");
4055 		return IOMEM_ERR_PTR(-EINVAL);
4056 	}
4057 
4058 	size = resource_size(res);
4059 	name = res->name ?: dev_name(dev);
4060 
4061 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4062 		dev_err(dev, "can't request region for resource %pR\n", res);
4063 		return IOMEM_ERR_PTR(-EBUSY);
4064 	}
4065 
4066 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4067 	if (!dest_ptr) {
4068 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4069 		devm_release_mem_region(dev, res->start, size);
4070 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4071 	}
4072 
4073 	return dest_ptr;
4074 }
4075 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4076 
4077 static void __pci_set_master(struct pci_dev *dev, bool enable)
4078 {
4079 	u16 old_cmd, cmd;
4080 
4081 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4082 	if (enable)
4083 		cmd = old_cmd | PCI_COMMAND_MASTER;
4084 	else
4085 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4086 	if (cmd != old_cmd) {
4087 		pci_dbg(dev, "%s bus mastering\n",
4088 			enable ? "enabling" : "disabling");
4089 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4090 	}
4091 	dev->is_busmaster = enable;
4092 }
4093 
4094 /**
4095  * pcibios_setup - process "pci=" kernel boot arguments
4096  * @str: string used to pass in "pci=" kernel boot arguments
4097  *
4098  * Process kernel boot arguments.  This is the default implementation.
4099  * Architecture specific implementations can override this as necessary.
4100  */
4101 char * __weak __init pcibios_setup(char *str)
4102 {
4103 	return str;
4104 }
4105 
4106 /**
4107  * pcibios_set_master - enable PCI bus-mastering for device dev
4108  * @dev: the PCI device to enable
4109  *
4110  * Enables PCI bus-mastering for the device.  This is the default
4111  * implementation.  Architecture specific implementations can override
4112  * this if necessary.
4113  */
4114 void __weak pcibios_set_master(struct pci_dev *dev)
4115 {
4116 	u8 lat;
4117 
4118 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4119 	if (pci_is_pcie(dev))
4120 		return;
4121 
4122 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4123 	if (lat < 16)
4124 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4125 	else if (lat > pcibios_max_latency)
4126 		lat = pcibios_max_latency;
4127 	else
4128 		return;
4129 
4130 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4131 }
4132 
4133 /**
4134  * pci_set_master - enables bus-mastering for device dev
4135  * @dev: the PCI device to enable
4136  *
4137  * Enables bus-mastering on the device and calls pcibios_set_master()
4138  * to do the needed arch specific settings.
4139  */
4140 void pci_set_master(struct pci_dev *dev)
4141 {
4142 	__pci_set_master(dev, true);
4143 	pcibios_set_master(dev);
4144 }
4145 EXPORT_SYMBOL(pci_set_master);
4146 
4147 /**
4148  * pci_clear_master - disables bus-mastering for device dev
4149  * @dev: the PCI device to disable
4150  */
4151 void pci_clear_master(struct pci_dev *dev)
4152 {
4153 	__pci_set_master(dev, false);
4154 }
4155 EXPORT_SYMBOL(pci_clear_master);
4156 
4157 /**
4158  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4159  * @dev: the PCI device for which MWI is to be enabled
4160  *
4161  * Helper function for pci_set_mwi.
4162  * Originally copied from drivers/net/acenic.c.
4163  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4164  *
4165  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4166  */
4167 int pci_set_cacheline_size(struct pci_dev *dev)
4168 {
4169 	u8 cacheline_size;
4170 
4171 	if (!pci_cache_line_size)
4172 		return -EINVAL;
4173 
4174 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4175 	   equal to or multiple of the right value. */
4176 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4177 	if (cacheline_size >= pci_cache_line_size &&
4178 	    (cacheline_size % pci_cache_line_size) == 0)
4179 		return 0;
4180 
4181 	/* Write the correct value. */
4182 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4183 	/* Read it back. */
4184 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4185 	if (cacheline_size == pci_cache_line_size)
4186 		return 0;
4187 
4188 	pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
4189 		   pci_cache_line_size << 2);
4190 
4191 	return -EINVAL;
4192 }
4193 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4194 
4195 /**
4196  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4197  * @dev: the PCI device for which MWI is enabled
4198  *
4199  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4200  *
4201  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4202  */
4203 int pci_set_mwi(struct pci_dev *dev)
4204 {
4205 #ifdef PCI_DISABLE_MWI
4206 	return 0;
4207 #else
4208 	int rc;
4209 	u16 cmd;
4210 
4211 	rc = pci_set_cacheline_size(dev);
4212 	if (rc)
4213 		return rc;
4214 
4215 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4216 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4217 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4218 		cmd |= PCI_COMMAND_INVALIDATE;
4219 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4220 	}
4221 	return 0;
4222 #endif
4223 }
4224 EXPORT_SYMBOL(pci_set_mwi);
4225 
4226 /**
4227  * pcim_set_mwi - a device-managed pci_set_mwi()
4228  * @dev: the PCI device for which MWI is enabled
4229  *
4230  * Managed pci_set_mwi().
4231  *
4232  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4233  */
4234 int pcim_set_mwi(struct pci_dev *dev)
4235 {
4236 	struct pci_devres *dr;
4237 
4238 	dr = find_pci_dr(dev);
4239 	if (!dr)
4240 		return -ENOMEM;
4241 
4242 	dr->mwi = 1;
4243 	return pci_set_mwi(dev);
4244 }
4245 EXPORT_SYMBOL(pcim_set_mwi);
4246 
4247 /**
4248  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4249  * @dev: the PCI device for which MWI is enabled
4250  *
4251  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4252  * Callers are not required to check the return value.
4253  *
4254  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4255  */
4256 int pci_try_set_mwi(struct pci_dev *dev)
4257 {
4258 #ifdef PCI_DISABLE_MWI
4259 	return 0;
4260 #else
4261 	return pci_set_mwi(dev);
4262 #endif
4263 }
4264 EXPORT_SYMBOL(pci_try_set_mwi);
4265 
4266 /**
4267  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4268  * @dev: the PCI device to disable
4269  *
4270  * Disables PCI Memory-Write-Invalidate transaction on the device
4271  */
4272 void pci_clear_mwi(struct pci_dev *dev)
4273 {
4274 #ifndef PCI_DISABLE_MWI
4275 	u16 cmd;
4276 
4277 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4278 	if (cmd & PCI_COMMAND_INVALIDATE) {
4279 		cmd &= ~PCI_COMMAND_INVALIDATE;
4280 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4281 	}
4282 #endif
4283 }
4284 EXPORT_SYMBOL(pci_clear_mwi);
4285 
4286 /**
4287  * pci_intx - enables/disables PCI INTx for device dev
4288  * @pdev: the PCI device to operate on
4289  * @enable: boolean: whether to enable or disable PCI INTx
4290  *
4291  * Enables/disables PCI INTx for device dev
4292  */
4293 void pci_intx(struct pci_dev *pdev, int enable)
4294 {
4295 	u16 pci_command, new;
4296 
4297 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4298 
4299 	if (enable)
4300 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4301 	else
4302 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4303 
4304 	if (new != pci_command) {
4305 		struct pci_devres *dr;
4306 
4307 		pci_write_config_word(pdev, PCI_COMMAND, new);
4308 
4309 		dr = find_pci_dr(pdev);
4310 		if (dr && !dr->restore_intx) {
4311 			dr->restore_intx = 1;
4312 			dr->orig_intx = !enable;
4313 		}
4314 	}
4315 }
4316 EXPORT_SYMBOL_GPL(pci_intx);
4317 
4318 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4319 {
4320 	struct pci_bus *bus = dev->bus;
4321 	bool mask_updated = true;
4322 	u32 cmd_status_dword;
4323 	u16 origcmd, newcmd;
4324 	unsigned long flags;
4325 	bool irq_pending;
4326 
4327 	/*
4328 	 * We do a single dword read to retrieve both command and status.
4329 	 * Document assumptions that make this possible.
4330 	 */
4331 	BUILD_BUG_ON(PCI_COMMAND % 4);
4332 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4333 
4334 	raw_spin_lock_irqsave(&pci_lock, flags);
4335 
4336 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4337 
4338 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4339 
4340 	/*
4341 	 * Check interrupt status register to see whether our device
4342 	 * triggered the interrupt (when masking) or the next IRQ is
4343 	 * already pending (when unmasking).
4344 	 */
4345 	if (mask != irq_pending) {
4346 		mask_updated = false;
4347 		goto done;
4348 	}
4349 
4350 	origcmd = cmd_status_dword;
4351 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4352 	if (mask)
4353 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4354 	if (newcmd != origcmd)
4355 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4356 
4357 done:
4358 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4359 
4360 	return mask_updated;
4361 }
4362 
4363 /**
4364  * pci_check_and_mask_intx - mask INTx on pending interrupt
4365  * @dev: the PCI device to operate on
4366  *
4367  * Check if the device dev has its INTx line asserted, mask it and
4368  * return true in that case. False is returned if no interrupt was
4369  * pending.
4370  */
4371 bool pci_check_and_mask_intx(struct pci_dev *dev)
4372 {
4373 	return pci_check_and_set_intx_mask(dev, true);
4374 }
4375 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4376 
4377 /**
4378  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4379  * @dev: the PCI device to operate on
4380  *
4381  * Check if the device dev has its INTx line asserted, unmask it if not
4382  * and return true. False is returned and the mask remains active if
4383  * there was still an interrupt pending.
4384  */
4385 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4386 {
4387 	return pci_check_and_set_intx_mask(dev, false);
4388 }
4389 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4390 
4391 /**
4392  * pci_wait_for_pending_transaction - waits for pending transaction
4393  * @dev: the PCI device to operate on
4394  *
4395  * Return 0 if transaction is pending 1 otherwise.
4396  */
4397 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4398 {
4399 	if (!pci_is_pcie(dev))
4400 		return 1;
4401 
4402 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4403 				    PCI_EXP_DEVSTA_TRPND);
4404 }
4405 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4406 
4407 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4408 {
4409 	int delay = 1;
4410 	u32 id;
4411 
4412 	/*
4413 	 * After reset, the device should not silently discard config
4414 	 * requests, but it may still indicate that it needs more time by
4415 	 * responding to them with CRS completions.  The Root Port will
4416 	 * generally synthesize ~0 data to complete the read (except when
4417 	 * CRS SV is enabled and the read was for the Vendor ID; in that
4418 	 * case it synthesizes 0x0001 data).
4419 	 *
4420 	 * Wait for the device to return a non-CRS completion.  Read the
4421 	 * Command register instead of Vendor ID so we don't have to
4422 	 * contend with the CRS SV value.
4423 	 */
4424 	pci_read_config_dword(dev, PCI_COMMAND, &id);
4425 	while (id == ~0) {
4426 		if (delay > timeout) {
4427 			pci_warn(dev, "not ready %dms after %s; giving up\n",
4428 				 delay - 1, reset_type);
4429 			return -ENOTTY;
4430 		}
4431 
4432 		if (delay > 1000)
4433 			pci_info(dev, "not ready %dms after %s; waiting\n",
4434 				 delay - 1, reset_type);
4435 
4436 		msleep(delay);
4437 		delay *= 2;
4438 		pci_read_config_dword(dev, PCI_COMMAND, &id);
4439 	}
4440 
4441 	if (delay > 1000)
4442 		pci_info(dev, "ready %dms after %s\n", delay - 1,
4443 			 reset_type);
4444 
4445 	return 0;
4446 }
4447 
4448 /**
4449  * pcie_has_flr - check if a device supports function level resets
4450  * @dev:	device to check
4451  *
4452  * Returns true if the device advertises support for PCIe function level
4453  * resets.
4454  */
4455 bool pcie_has_flr(struct pci_dev *dev)
4456 {
4457 	u32 cap;
4458 
4459 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4460 		return false;
4461 
4462 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4463 	return cap & PCI_EXP_DEVCAP_FLR;
4464 }
4465 EXPORT_SYMBOL_GPL(pcie_has_flr);
4466 
4467 /**
4468  * pcie_flr - initiate a PCIe function level reset
4469  * @dev:	device to reset
4470  *
4471  * Initiate a function level reset on @dev.  The caller should ensure the
4472  * device supports FLR before calling this function, e.g. by using the
4473  * pcie_has_flr() helper.
4474  */
4475 int pcie_flr(struct pci_dev *dev)
4476 {
4477 	if (!pci_wait_for_pending_transaction(dev))
4478 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4479 
4480 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4481 
4482 	if (dev->imm_ready)
4483 		return 0;
4484 
4485 	/*
4486 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4487 	 * 100ms, but may silently discard requests while the FLR is in
4488 	 * progress.  Wait 100ms before trying to access the device.
4489 	 */
4490 	msleep(100);
4491 
4492 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4493 }
4494 EXPORT_SYMBOL_GPL(pcie_flr);
4495 
4496 static int pci_af_flr(struct pci_dev *dev, int probe)
4497 {
4498 	int pos;
4499 	u8 cap;
4500 
4501 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4502 	if (!pos)
4503 		return -ENOTTY;
4504 
4505 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4506 		return -ENOTTY;
4507 
4508 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4509 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4510 		return -ENOTTY;
4511 
4512 	if (probe)
4513 		return 0;
4514 
4515 	/*
4516 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4517 	 * is used, so we use the conrol offset rather than status and shift
4518 	 * the test bit to match.
4519 	 */
4520 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4521 				 PCI_AF_STATUS_TP << 8))
4522 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4523 
4524 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4525 
4526 	if (dev->imm_ready)
4527 		return 0;
4528 
4529 	/*
4530 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4531 	 * updated 27 July 2006; a device must complete an FLR within
4532 	 * 100ms, but may silently discard requests while the FLR is in
4533 	 * progress.  Wait 100ms before trying to access the device.
4534 	 */
4535 	msleep(100);
4536 
4537 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4538 }
4539 
4540 /**
4541  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4542  * @dev: Device to reset.
4543  * @probe: If set, only check if the device can be reset this way.
4544  *
4545  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4546  * unset, it will be reinitialized internally when going from PCI_D3hot to
4547  * PCI_D0.  If that's the case and the device is not in a low-power state
4548  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4549  *
4550  * NOTE: This causes the caller to sleep for twice the device power transition
4551  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4552  * by default (i.e. unless the @dev's d3_delay field has a different value).
4553  * Moreover, only devices in D0 can be reset by this function.
4554  */
4555 static int pci_pm_reset(struct pci_dev *dev, int probe)
4556 {
4557 	u16 csr;
4558 
4559 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4560 		return -ENOTTY;
4561 
4562 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4563 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4564 		return -ENOTTY;
4565 
4566 	if (probe)
4567 		return 0;
4568 
4569 	if (dev->current_state != PCI_D0)
4570 		return -EINVAL;
4571 
4572 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4573 	csr |= PCI_D3hot;
4574 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4575 	pci_dev_d3_sleep(dev);
4576 
4577 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4578 	csr |= PCI_D0;
4579 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4580 	pci_dev_d3_sleep(dev);
4581 
4582 	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4583 }
4584 /**
4585  * pcie_wait_for_link - Wait until link is active or inactive
4586  * @pdev: Bridge device
4587  * @active: waiting for active or inactive?
4588  *
4589  * Use this to wait till link becomes active or inactive.
4590  */
4591 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4592 {
4593 	int timeout = 1000;
4594 	bool ret;
4595 	u16 lnk_status;
4596 
4597 	/*
4598 	 * Some controllers might not implement link active reporting. In this
4599 	 * case, we wait for 1000 + 100 ms.
4600 	 */
4601 	if (!pdev->link_active_reporting) {
4602 		msleep(1100);
4603 		return true;
4604 	}
4605 
4606 	/*
4607 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4608 	 * after which we should expect an link active if the reset was
4609 	 * successful. If so, software must wait a minimum 100ms before sending
4610 	 * configuration requests to devices downstream this port.
4611 	 *
4612 	 * If the link fails to activate, either the device was physically
4613 	 * removed or the link is permanently failed.
4614 	 */
4615 	if (active)
4616 		msleep(20);
4617 	for (;;) {
4618 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4619 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4620 		if (ret == active)
4621 			break;
4622 		if (timeout <= 0)
4623 			break;
4624 		msleep(10);
4625 		timeout -= 10;
4626 	}
4627 	if (active && ret)
4628 		msleep(100);
4629 	else if (ret != active)
4630 		pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4631 			active ? "set" : "cleared");
4632 	return ret == active;
4633 }
4634 
4635 void pci_reset_secondary_bus(struct pci_dev *dev)
4636 {
4637 	u16 ctrl;
4638 
4639 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4640 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4641 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4642 
4643 	/*
4644 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4645 	 * this to 2ms to ensure that we meet the minimum requirement.
4646 	 */
4647 	msleep(2);
4648 
4649 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4650 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4651 
4652 	/*
4653 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4654 	 * Assuming a minimum 33MHz clock this results in a 1s
4655 	 * delay before we can consider subordinate devices to
4656 	 * be re-initialized.  PCIe has some ways to shorten this,
4657 	 * but we don't make use of them yet.
4658 	 */
4659 	ssleep(1);
4660 }
4661 
4662 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4663 {
4664 	pci_reset_secondary_bus(dev);
4665 }
4666 
4667 /**
4668  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4669  * @dev: Bridge device
4670  *
4671  * Use the bridge control register to assert reset on the secondary bus.
4672  * Devices on the secondary bus are left in power-on state.
4673  */
4674 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4675 {
4676 	pcibios_reset_secondary_bus(dev);
4677 
4678 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4679 }
4680 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4681 
4682 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4683 {
4684 	struct pci_dev *pdev;
4685 
4686 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4687 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4688 		return -ENOTTY;
4689 
4690 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4691 		if (pdev != dev)
4692 			return -ENOTTY;
4693 
4694 	if (probe)
4695 		return 0;
4696 
4697 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4698 }
4699 
4700 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4701 {
4702 	int rc = -ENOTTY;
4703 
4704 	if (!hotplug || !try_module_get(hotplug->owner))
4705 		return rc;
4706 
4707 	if (hotplug->ops->reset_slot)
4708 		rc = hotplug->ops->reset_slot(hotplug, probe);
4709 
4710 	module_put(hotplug->owner);
4711 
4712 	return rc;
4713 }
4714 
4715 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4716 {
4717 	struct pci_dev *pdev;
4718 
4719 	if (dev->subordinate || !dev->slot ||
4720 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4721 		return -ENOTTY;
4722 
4723 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4724 		if (pdev != dev && pdev->slot == dev->slot)
4725 			return -ENOTTY;
4726 
4727 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4728 }
4729 
4730 static void pci_dev_lock(struct pci_dev *dev)
4731 {
4732 	pci_cfg_access_lock(dev);
4733 	/* block PM suspend, driver probe, etc. */
4734 	device_lock(&dev->dev);
4735 }
4736 
4737 /* Return 1 on successful lock, 0 on contention */
4738 static int pci_dev_trylock(struct pci_dev *dev)
4739 {
4740 	if (pci_cfg_access_trylock(dev)) {
4741 		if (device_trylock(&dev->dev))
4742 			return 1;
4743 		pci_cfg_access_unlock(dev);
4744 	}
4745 
4746 	return 0;
4747 }
4748 
4749 static void pci_dev_unlock(struct pci_dev *dev)
4750 {
4751 	device_unlock(&dev->dev);
4752 	pci_cfg_access_unlock(dev);
4753 }
4754 
4755 static void pci_dev_save_and_disable(struct pci_dev *dev)
4756 {
4757 	const struct pci_error_handlers *err_handler =
4758 			dev->driver ? dev->driver->err_handler : NULL;
4759 
4760 	/*
4761 	 * dev->driver->err_handler->reset_prepare() is protected against
4762 	 * races with ->remove() by the device lock, which must be held by
4763 	 * the caller.
4764 	 */
4765 	if (err_handler && err_handler->reset_prepare)
4766 		err_handler->reset_prepare(dev);
4767 
4768 	/*
4769 	 * Wake-up device prior to save.  PM registers default to D0 after
4770 	 * reset and a simple register restore doesn't reliably return
4771 	 * to a non-D0 state anyway.
4772 	 */
4773 	pci_set_power_state(dev, PCI_D0);
4774 
4775 	pci_save_state(dev);
4776 	/*
4777 	 * Disable the device by clearing the Command register, except for
4778 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4779 	 * BARs, but also prevents the device from being Bus Master, preventing
4780 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4781 	 * compliant devices, INTx-disable prevents legacy interrupts.
4782 	 */
4783 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4784 }
4785 
4786 static void pci_dev_restore(struct pci_dev *dev)
4787 {
4788 	const struct pci_error_handlers *err_handler =
4789 			dev->driver ? dev->driver->err_handler : NULL;
4790 
4791 	pci_restore_state(dev);
4792 
4793 	/*
4794 	 * dev->driver->err_handler->reset_done() is protected against
4795 	 * races with ->remove() by the device lock, which must be held by
4796 	 * the caller.
4797 	 */
4798 	if (err_handler && err_handler->reset_done)
4799 		err_handler->reset_done(dev);
4800 }
4801 
4802 /**
4803  * __pci_reset_function_locked - reset a PCI device function while holding
4804  * the @dev mutex lock.
4805  * @dev: PCI device to reset
4806  *
4807  * Some devices allow an individual function to be reset without affecting
4808  * other functions in the same device.  The PCI device must be responsive
4809  * to PCI config space in order to use this function.
4810  *
4811  * The device function is presumed to be unused and the caller is holding
4812  * the device mutex lock when this function is called.
4813  * Resetting the device will make the contents of PCI configuration space
4814  * random, so any caller of this must be prepared to reinitialise the
4815  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4816  * etc.
4817  *
4818  * Returns 0 if the device function was successfully reset or negative if the
4819  * device doesn't support resetting a single function.
4820  */
4821 int __pci_reset_function_locked(struct pci_dev *dev)
4822 {
4823 	int rc;
4824 
4825 	might_sleep();
4826 
4827 	/*
4828 	 * A reset method returns -ENOTTY if it doesn't support this device
4829 	 * and we should try the next method.
4830 	 *
4831 	 * If it returns 0 (success), we're finished.  If it returns any
4832 	 * other error, we're also finished: this indicates that further
4833 	 * reset mechanisms might be broken on the device.
4834 	 */
4835 	rc = pci_dev_specific_reset(dev, 0);
4836 	if (rc != -ENOTTY)
4837 		return rc;
4838 	if (pcie_has_flr(dev)) {
4839 		rc = pcie_flr(dev);
4840 		if (rc != -ENOTTY)
4841 			return rc;
4842 	}
4843 	rc = pci_af_flr(dev, 0);
4844 	if (rc != -ENOTTY)
4845 		return rc;
4846 	rc = pci_pm_reset(dev, 0);
4847 	if (rc != -ENOTTY)
4848 		return rc;
4849 	rc = pci_dev_reset_slot_function(dev, 0);
4850 	if (rc != -ENOTTY)
4851 		return rc;
4852 	return pci_parent_bus_reset(dev, 0);
4853 }
4854 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4855 
4856 /**
4857  * pci_probe_reset_function - check whether the device can be safely reset
4858  * @dev: PCI device to reset
4859  *
4860  * Some devices allow an individual function to be reset without affecting
4861  * other functions in the same device.  The PCI device must be responsive
4862  * to PCI config space in order to use this function.
4863  *
4864  * Returns 0 if the device function can be reset or negative if the
4865  * device doesn't support resetting a single function.
4866  */
4867 int pci_probe_reset_function(struct pci_dev *dev)
4868 {
4869 	int rc;
4870 
4871 	might_sleep();
4872 
4873 	rc = pci_dev_specific_reset(dev, 1);
4874 	if (rc != -ENOTTY)
4875 		return rc;
4876 	if (pcie_has_flr(dev))
4877 		return 0;
4878 	rc = pci_af_flr(dev, 1);
4879 	if (rc != -ENOTTY)
4880 		return rc;
4881 	rc = pci_pm_reset(dev, 1);
4882 	if (rc != -ENOTTY)
4883 		return rc;
4884 	rc = pci_dev_reset_slot_function(dev, 1);
4885 	if (rc != -ENOTTY)
4886 		return rc;
4887 
4888 	return pci_parent_bus_reset(dev, 1);
4889 }
4890 
4891 /**
4892  * pci_reset_function - quiesce and reset a PCI device function
4893  * @dev: PCI device to reset
4894  *
4895  * Some devices allow an individual function to be reset without affecting
4896  * other functions in the same device.  The PCI device must be responsive
4897  * to PCI config space in order to use this function.
4898  *
4899  * This function does not just reset the PCI portion of a device, but
4900  * clears all the state associated with the device.  This function differs
4901  * from __pci_reset_function_locked() in that it saves and restores device state
4902  * over the reset and takes the PCI device lock.
4903  *
4904  * Returns 0 if the device function was successfully reset or negative if the
4905  * device doesn't support resetting a single function.
4906  */
4907 int pci_reset_function(struct pci_dev *dev)
4908 {
4909 	int rc;
4910 
4911 	if (!dev->reset_fn)
4912 		return -ENOTTY;
4913 
4914 	pci_dev_lock(dev);
4915 	pci_dev_save_and_disable(dev);
4916 
4917 	rc = __pci_reset_function_locked(dev);
4918 
4919 	pci_dev_restore(dev);
4920 	pci_dev_unlock(dev);
4921 
4922 	return rc;
4923 }
4924 EXPORT_SYMBOL_GPL(pci_reset_function);
4925 
4926 /**
4927  * pci_reset_function_locked - quiesce and reset a PCI device function
4928  * @dev: PCI device to reset
4929  *
4930  * Some devices allow an individual function to be reset without affecting
4931  * other functions in the same device.  The PCI device must be responsive
4932  * to PCI config space in order to use this function.
4933  *
4934  * This function does not just reset the PCI portion of a device, but
4935  * clears all the state associated with the device.  This function differs
4936  * from __pci_reset_function_locked() in that it saves and restores device state
4937  * over the reset.  It also differs from pci_reset_function() in that it
4938  * requires the PCI device lock to be held.
4939  *
4940  * Returns 0 if the device function was successfully reset or negative if the
4941  * device doesn't support resetting a single function.
4942  */
4943 int pci_reset_function_locked(struct pci_dev *dev)
4944 {
4945 	int rc;
4946 
4947 	if (!dev->reset_fn)
4948 		return -ENOTTY;
4949 
4950 	pci_dev_save_and_disable(dev);
4951 
4952 	rc = __pci_reset_function_locked(dev);
4953 
4954 	pci_dev_restore(dev);
4955 
4956 	return rc;
4957 }
4958 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4959 
4960 /**
4961  * pci_try_reset_function - quiesce and reset a PCI device function
4962  * @dev: PCI device to reset
4963  *
4964  * Same as above, except return -EAGAIN if unable to lock device.
4965  */
4966 int pci_try_reset_function(struct pci_dev *dev)
4967 {
4968 	int rc;
4969 
4970 	if (!dev->reset_fn)
4971 		return -ENOTTY;
4972 
4973 	if (!pci_dev_trylock(dev))
4974 		return -EAGAIN;
4975 
4976 	pci_dev_save_and_disable(dev);
4977 	rc = __pci_reset_function_locked(dev);
4978 	pci_dev_restore(dev);
4979 	pci_dev_unlock(dev);
4980 
4981 	return rc;
4982 }
4983 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4984 
4985 /* Do any devices on or below this bus prevent a bus reset? */
4986 static bool pci_bus_resetable(struct pci_bus *bus)
4987 {
4988 	struct pci_dev *dev;
4989 
4990 
4991 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4992 		return false;
4993 
4994 	list_for_each_entry(dev, &bus->devices, bus_list) {
4995 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4996 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4997 			return false;
4998 	}
4999 
5000 	return true;
5001 }
5002 
5003 /* Lock devices from the top of the tree down */
5004 static void pci_bus_lock(struct pci_bus *bus)
5005 {
5006 	struct pci_dev *dev;
5007 
5008 	list_for_each_entry(dev, &bus->devices, bus_list) {
5009 		pci_dev_lock(dev);
5010 		if (dev->subordinate)
5011 			pci_bus_lock(dev->subordinate);
5012 	}
5013 }
5014 
5015 /* Unlock devices from the bottom of the tree up */
5016 static void pci_bus_unlock(struct pci_bus *bus)
5017 {
5018 	struct pci_dev *dev;
5019 
5020 	list_for_each_entry(dev, &bus->devices, bus_list) {
5021 		if (dev->subordinate)
5022 			pci_bus_unlock(dev->subordinate);
5023 		pci_dev_unlock(dev);
5024 	}
5025 }
5026 
5027 /* Return 1 on successful lock, 0 on contention */
5028 static int pci_bus_trylock(struct pci_bus *bus)
5029 {
5030 	struct pci_dev *dev;
5031 
5032 	list_for_each_entry(dev, &bus->devices, bus_list) {
5033 		if (!pci_dev_trylock(dev))
5034 			goto unlock;
5035 		if (dev->subordinate) {
5036 			if (!pci_bus_trylock(dev->subordinate)) {
5037 				pci_dev_unlock(dev);
5038 				goto unlock;
5039 			}
5040 		}
5041 	}
5042 	return 1;
5043 
5044 unlock:
5045 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5046 		if (dev->subordinate)
5047 			pci_bus_unlock(dev->subordinate);
5048 		pci_dev_unlock(dev);
5049 	}
5050 	return 0;
5051 }
5052 
5053 /* Do any devices on or below this slot prevent a bus reset? */
5054 static bool pci_slot_resetable(struct pci_slot *slot)
5055 {
5056 	struct pci_dev *dev;
5057 
5058 	if (slot->bus->self &&
5059 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5060 		return false;
5061 
5062 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5063 		if (!dev->slot || dev->slot != slot)
5064 			continue;
5065 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5066 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5067 			return false;
5068 	}
5069 
5070 	return true;
5071 }
5072 
5073 /* Lock devices from the top of the tree down */
5074 static void pci_slot_lock(struct pci_slot *slot)
5075 {
5076 	struct pci_dev *dev;
5077 
5078 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5079 		if (!dev->slot || dev->slot != slot)
5080 			continue;
5081 		pci_dev_lock(dev);
5082 		if (dev->subordinate)
5083 			pci_bus_lock(dev->subordinate);
5084 	}
5085 }
5086 
5087 /* Unlock devices from the bottom of the tree up */
5088 static void pci_slot_unlock(struct pci_slot *slot)
5089 {
5090 	struct pci_dev *dev;
5091 
5092 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5093 		if (!dev->slot || dev->slot != slot)
5094 			continue;
5095 		if (dev->subordinate)
5096 			pci_bus_unlock(dev->subordinate);
5097 		pci_dev_unlock(dev);
5098 	}
5099 }
5100 
5101 /* Return 1 on successful lock, 0 on contention */
5102 static int pci_slot_trylock(struct pci_slot *slot)
5103 {
5104 	struct pci_dev *dev;
5105 
5106 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5107 		if (!dev->slot || dev->slot != slot)
5108 			continue;
5109 		if (!pci_dev_trylock(dev))
5110 			goto unlock;
5111 		if (dev->subordinate) {
5112 			if (!pci_bus_trylock(dev->subordinate)) {
5113 				pci_dev_unlock(dev);
5114 				goto unlock;
5115 			}
5116 		}
5117 	}
5118 	return 1;
5119 
5120 unlock:
5121 	list_for_each_entry_continue_reverse(dev,
5122 					     &slot->bus->devices, bus_list) {
5123 		if (!dev->slot || dev->slot != slot)
5124 			continue;
5125 		if (dev->subordinate)
5126 			pci_bus_unlock(dev->subordinate);
5127 		pci_dev_unlock(dev);
5128 	}
5129 	return 0;
5130 }
5131 
5132 /*
5133  * Save and disable devices from the top of the tree down while holding
5134  * the @dev mutex lock for the entire tree.
5135  */
5136 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5137 {
5138 	struct pci_dev *dev;
5139 
5140 	list_for_each_entry(dev, &bus->devices, bus_list) {
5141 		pci_dev_save_and_disable(dev);
5142 		if (dev->subordinate)
5143 			pci_bus_save_and_disable_locked(dev->subordinate);
5144 	}
5145 }
5146 
5147 /*
5148  * Restore devices from top of the tree down while holding @dev mutex lock
5149  * for the entire tree.  Parent bridges need to be restored before we can
5150  * get to subordinate devices.
5151  */
5152 static void pci_bus_restore_locked(struct pci_bus *bus)
5153 {
5154 	struct pci_dev *dev;
5155 
5156 	list_for_each_entry(dev, &bus->devices, bus_list) {
5157 		pci_dev_restore(dev);
5158 		if (dev->subordinate)
5159 			pci_bus_restore_locked(dev->subordinate);
5160 	}
5161 }
5162 
5163 /*
5164  * Save and disable devices from the top of the tree down while holding
5165  * the @dev mutex lock for the entire tree.
5166  */
5167 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5168 {
5169 	struct pci_dev *dev;
5170 
5171 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5172 		if (!dev->slot || dev->slot != slot)
5173 			continue;
5174 		pci_dev_save_and_disable(dev);
5175 		if (dev->subordinate)
5176 			pci_bus_save_and_disable_locked(dev->subordinate);
5177 	}
5178 }
5179 
5180 /*
5181  * Restore devices from top of the tree down while holding @dev mutex lock
5182  * for the entire tree.  Parent bridges need to be restored before we can
5183  * get to subordinate devices.
5184  */
5185 static void pci_slot_restore_locked(struct pci_slot *slot)
5186 {
5187 	struct pci_dev *dev;
5188 
5189 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5190 		if (!dev->slot || dev->slot != slot)
5191 			continue;
5192 		pci_dev_restore(dev);
5193 		if (dev->subordinate)
5194 			pci_bus_restore_locked(dev->subordinate);
5195 	}
5196 }
5197 
5198 static int pci_slot_reset(struct pci_slot *slot, int probe)
5199 {
5200 	int rc;
5201 
5202 	if (!slot || !pci_slot_resetable(slot))
5203 		return -ENOTTY;
5204 
5205 	if (!probe)
5206 		pci_slot_lock(slot);
5207 
5208 	might_sleep();
5209 
5210 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5211 
5212 	if (!probe)
5213 		pci_slot_unlock(slot);
5214 
5215 	return rc;
5216 }
5217 
5218 /**
5219  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5220  * @slot: PCI slot to probe
5221  *
5222  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5223  */
5224 int pci_probe_reset_slot(struct pci_slot *slot)
5225 {
5226 	return pci_slot_reset(slot, 1);
5227 }
5228 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5229 
5230 /**
5231  * __pci_reset_slot - Try to reset a PCI slot
5232  * @slot: PCI slot to reset
5233  *
5234  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5235  * independent of other slots.  For instance, some slots may support slot power
5236  * control.  In the case of a 1:1 bus to slot architecture, this function may
5237  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5238  * Generally a slot reset should be attempted before a bus reset.  All of the
5239  * function of the slot and any subordinate buses behind the slot are reset
5240  * through this function.  PCI config space of all devices in the slot and
5241  * behind the slot is saved before and restored after reset.
5242  *
5243  * Same as above except return -EAGAIN if the slot cannot be locked
5244  */
5245 static int __pci_reset_slot(struct pci_slot *slot)
5246 {
5247 	int rc;
5248 
5249 	rc = pci_slot_reset(slot, 1);
5250 	if (rc)
5251 		return rc;
5252 
5253 	if (pci_slot_trylock(slot)) {
5254 		pci_slot_save_and_disable_locked(slot);
5255 		might_sleep();
5256 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5257 		pci_slot_restore_locked(slot);
5258 		pci_slot_unlock(slot);
5259 	} else
5260 		rc = -EAGAIN;
5261 
5262 	return rc;
5263 }
5264 
5265 static int pci_bus_reset(struct pci_bus *bus, int probe)
5266 {
5267 	int ret;
5268 
5269 	if (!bus->self || !pci_bus_resetable(bus))
5270 		return -ENOTTY;
5271 
5272 	if (probe)
5273 		return 0;
5274 
5275 	pci_bus_lock(bus);
5276 
5277 	might_sleep();
5278 
5279 	ret = pci_bridge_secondary_bus_reset(bus->self);
5280 
5281 	pci_bus_unlock(bus);
5282 
5283 	return ret;
5284 }
5285 
5286 /**
5287  * pci_bus_error_reset - reset the bridge's subordinate bus
5288  * @bridge: The parent device that connects to the bus to reset
5289  *
5290  * This function will first try to reset the slots on this bus if the method is
5291  * available. If slot reset fails or is not available, this will fall back to a
5292  * secondary bus reset.
5293  */
5294 int pci_bus_error_reset(struct pci_dev *bridge)
5295 {
5296 	struct pci_bus *bus = bridge->subordinate;
5297 	struct pci_slot *slot;
5298 
5299 	if (!bus)
5300 		return -ENOTTY;
5301 
5302 	mutex_lock(&pci_slot_mutex);
5303 	if (list_empty(&bus->slots))
5304 		goto bus_reset;
5305 
5306 	list_for_each_entry(slot, &bus->slots, list)
5307 		if (pci_probe_reset_slot(slot))
5308 			goto bus_reset;
5309 
5310 	list_for_each_entry(slot, &bus->slots, list)
5311 		if (pci_slot_reset(slot, 0))
5312 			goto bus_reset;
5313 
5314 	mutex_unlock(&pci_slot_mutex);
5315 	return 0;
5316 bus_reset:
5317 	mutex_unlock(&pci_slot_mutex);
5318 	return pci_bus_reset(bridge->subordinate, 0);
5319 }
5320 
5321 /**
5322  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5323  * @bus: PCI bus to probe
5324  *
5325  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5326  */
5327 int pci_probe_reset_bus(struct pci_bus *bus)
5328 {
5329 	return pci_bus_reset(bus, 1);
5330 }
5331 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5332 
5333 /**
5334  * __pci_reset_bus - Try to reset a PCI bus
5335  * @bus: top level PCI bus to reset
5336  *
5337  * Same as above except return -EAGAIN if the bus cannot be locked
5338  */
5339 static int __pci_reset_bus(struct pci_bus *bus)
5340 {
5341 	int rc;
5342 
5343 	rc = pci_bus_reset(bus, 1);
5344 	if (rc)
5345 		return rc;
5346 
5347 	if (pci_bus_trylock(bus)) {
5348 		pci_bus_save_and_disable_locked(bus);
5349 		might_sleep();
5350 		rc = pci_bridge_secondary_bus_reset(bus->self);
5351 		pci_bus_restore_locked(bus);
5352 		pci_bus_unlock(bus);
5353 	} else
5354 		rc = -EAGAIN;
5355 
5356 	return rc;
5357 }
5358 
5359 /**
5360  * pci_reset_bus - Try to reset a PCI bus
5361  * @pdev: top level PCI device to reset via slot/bus
5362  *
5363  * Same as above except return -EAGAIN if the bus cannot be locked
5364  */
5365 int pci_reset_bus(struct pci_dev *pdev)
5366 {
5367 	return (!pci_probe_reset_slot(pdev->slot)) ?
5368 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5369 }
5370 EXPORT_SYMBOL_GPL(pci_reset_bus);
5371 
5372 /**
5373  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5374  * @dev: PCI device to query
5375  *
5376  * Returns mmrbc: maximum designed memory read count in bytes
5377  *    or appropriate error value.
5378  */
5379 int pcix_get_max_mmrbc(struct pci_dev *dev)
5380 {
5381 	int cap;
5382 	u32 stat;
5383 
5384 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5385 	if (!cap)
5386 		return -EINVAL;
5387 
5388 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5389 		return -EINVAL;
5390 
5391 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5392 }
5393 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5394 
5395 /**
5396  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5397  * @dev: PCI device to query
5398  *
5399  * Returns mmrbc: maximum memory read count in bytes
5400  *    or appropriate error value.
5401  */
5402 int pcix_get_mmrbc(struct pci_dev *dev)
5403 {
5404 	int cap;
5405 	u16 cmd;
5406 
5407 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5408 	if (!cap)
5409 		return -EINVAL;
5410 
5411 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5412 		return -EINVAL;
5413 
5414 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5415 }
5416 EXPORT_SYMBOL(pcix_get_mmrbc);
5417 
5418 /**
5419  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5420  * @dev: PCI device to query
5421  * @mmrbc: maximum memory read count in bytes
5422  *    valid values are 512, 1024, 2048, 4096
5423  *
5424  * If possible sets maximum memory read byte count, some bridges have erratas
5425  * that prevent this.
5426  */
5427 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5428 {
5429 	int cap;
5430 	u32 stat, v, o;
5431 	u16 cmd;
5432 
5433 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5434 		return -EINVAL;
5435 
5436 	v = ffs(mmrbc) - 10;
5437 
5438 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5439 	if (!cap)
5440 		return -EINVAL;
5441 
5442 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5443 		return -EINVAL;
5444 
5445 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5446 		return -E2BIG;
5447 
5448 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5449 		return -EINVAL;
5450 
5451 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5452 	if (o != v) {
5453 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5454 			return -EIO;
5455 
5456 		cmd &= ~PCI_X_CMD_MAX_READ;
5457 		cmd |= v << 2;
5458 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5459 			return -EIO;
5460 	}
5461 	return 0;
5462 }
5463 EXPORT_SYMBOL(pcix_set_mmrbc);
5464 
5465 /**
5466  * pcie_get_readrq - get PCI Express read request size
5467  * @dev: PCI device to query
5468  *
5469  * Returns maximum memory read request in bytes
5470  *    or appropriate error value.
5471  */
5472 int pcie_get_readrq(struct pci_dev *dev)
5473 {
5474 	u16 ctl;
5475 
5476 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5477 
5478 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5479 }
5480 EXPORT_SYMBOL(pcie_get_readrq);
5481 
5482 /**
5483  * pcie_set_readrq - set PCI Express maximum memory read request
5484  * @dev: PCI device to query
5485  * @rq: maximum memory read count in bytes
5486  *    valid values are 128, 256, 512, 1024, 2048, 4096
5487  *
5488  * If possible sets maximum memory read request in bytes
5489  */
5490 int pcie_set_readrq(struct pci_dev *dev, int rq)
5491 {
5492 	u16 v;
5493 
5494 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5495 		return -EINVAL;
5496 
5497 	/*
5498 	 * If using the "performance" PCIe config, we clamp the
5499 	 * read rq size to the max packet size to prevent the
5500 	 * host bridge generating requests larger than we can
5501 	 * cope with
5502 	 */
5503 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5504 		int mps = pcie_get_mps(dev);
5505 
5506 		if (mps < rq)
5507 			rq = mps;
5508 	}
5509 
5510 	v = (ffs(rq) - 8) << 12;
5511 
5512 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5513 						  PCI_EXP_DEVCTL_READRQ, v);
5514 }
5515 EXPORT_SYMBOL(pcie_set_readrq);
5516 
5517 /**
5518  * pcie_get_mps - get PCI Express maximum payload size
5519  * @dev: PCI device to query
5520  *
5521  * Returns maximum payload size in bytes
5522  */
5523 int pcie_get_mps(struct pci_dev *dev)
5524 {
5525 	u16 ctl;
5526 
5527 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5528 
5529 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5530 }
5531 EXPORT_SYMBOL(pcie_get_mps);
5532 
5533 /**
5534  * pcie_set_mps - set PCI Express maximum payload size
5535  * @dev: PCI device to query
5536  * @mps: maximum payload size in bytes
5537  *    valid values are 128, 256, 512, 1024, 2048, 4096
5538  *
5539  * If possible sets maximum payload size
5540  */
5541 int pcie_set_mps(struct pci_dev *dev, int mps)
5542 {
5543 	u16 v;
5544 
5545 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5546 		return -EINVAL;
5547 
5548 	v = ffs(mps) - 8;
5549 	if (v > dev->pcie_mpss)
5550 		return -EINVAL;
5551 	v <<= 5;
5552 
5553 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5554 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5555 }
5556 EXPORT_SYMBOL(pcie_set_mps);
5557 
5558 /**
5559  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5560  *			      device and its bandwidth limitation
5561  * @dev: PCI device to query
5562  * @limiting_dev: storage for device causing the bandwidth limitation
5563  * @speed: storage for speed of limiting device
5564  * @width: storage for width of limiting device
5565  *
5566  * Walk up the PCI device chain and find the point where the minimum
5567  * bandwidth is available.  Return the bandwidth available there and (if
5568  * limiting_dev, speed, and width pointers are supplied) information about
5569  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5570  * raw bandwidth.
5571  */
5572 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5573 			     enum pci_bus_speed *speed,
5574 			     enum pcie_link_width *width)
5575 {
5576 	u16 lnksta;
5577 	enum pci_bus_speed next_speed;
5578 	enum pcie_link_width next_width;
5579 	u32 bw, next_bw;
5580 
5581 	if (speed)
5582 		*speed = PCI_SPEED_UNKNOWN;
5583 	if (width)
5584 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5585 
5586 	bw = 0;
5587 
5588 	while (dev) {
5589 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5590 
5591 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5592 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5593 			PCI_EXP_LNKSTA_NLW_SHIFT;
5594 
5595 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5596 
5597 		/* Check if current device limits the total bandwidth */
5598 		if (!bw || next_bw <= bw) {
5599 			bw = next_bw;
5600 
5601 			if (limiting_dev)
5602 				*limiting_dev = dev;
5603 			if (speed)
5604 				*speed = next_speed;
5605 			if (width)
5606 				*width = next_width;
5607 		}
5608 
5609 		dev = pci_upstream_bridge(dev);
5610 	}
5611 
5612 	return bw;
5613 }
5614 EXPORT_SYMBOL(pcie_bandwidth_available);
5615 
5616 /**
5617  * pcie_get_speed_cap - query for the PCI device's link speed capability
5618  * @dev: PCI device to query
5619  *
5620  * Query the PCI device speed capability.  Return the maximum link speed
5621  * supported by the device.
5622  */
5623 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5624 {
5625 	u32 lnkcap2, lnkcap;
5626 
5627 	/*
5628 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5629 	 * implementation note there recommends using the Supported Link
5630 	 * Speeds Vector in Link Capabilities 2 when supported.
5631 	 *
5632 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5633 	 * should use the Supported Link Speeds field in Link Capabilities,
5634 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5635 	 */
5636 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5637 	if (lnkcap2) { /* PCIe r3.0-compliant */
5638 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5639 			return PCIE_SPEED_16_0GT;
5640 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5641 			return PCIE_SPEED_8_0GT;
5642 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5643 			return PCIE_SPEED_5_0GT;
5644 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5645 			return PCIE_SPEED_2_5GT;
5646 		return PCI_SPEED_UNKNOWN;
5647 	}
5648 
5649 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5650 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5651 		return PCIE_SPEED_5_0GT;
5652 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5653 		return PCIE_SPEED_2_5GT;
5654 
5655 	return PCI_SPEED_UNKNOWN;
5656 }
5657 EXPORT_SYMBOL(pcie_get_speed_cap);
5658 
5659 /**
5660  * pcie_get_width_cap - query for the PCI device's link width capability
5661  * @dev: PCI device to query
5662  *
5663  * Query the PCI device width capability.  Return the maximum link width
5664  * supported by the device.
5665  */
5666 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5667 {
5668 	u32 lnkcap;
5669 
5670 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5671 	if (lnkcap)
5672 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5673 
5674 	return PCIE_LNK_WIDTH_UNKNOWN;
5675 }
5676 EXPORT_SYMBOL(pcie_get_width_cap);
5677 
5678 /**
5679  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5680  * @dev: PCI device
5681  * @speed: storage for link speed
5682  * @width: storage for link width
5683  *
5684  * Calculate a PCI device's link bandwidth by querying for its link speed
5685  * and width, multiplying them, and applying encoding overhead.  The result
5686  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5687  */
5688 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5689 			   enum pcie_link_width *width)
5690 {
5691 	*speed = pcie_get_speed_cap(dev);
5692 	*width = pcie_get_width_cap(dev);
5693 
5694 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5695 		return 0;
5696 
5697 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5698 }
5699 
5700 /**
5701  * __pcie_print_link_status - Report the PCI device's link speed and width
5702  * @dev: PCI device to query
5703  * @verbose: Print info even when enough bandwidth is available
5704  *
5705  * If the available bandwidth at the device is less than the device is
5706  * capable of, report the device's maximum possible bandwidth and the
5707  * upstream link that limits its performance.  If @verbose, always print
5708  * the available bandwidth, even if the device isn't constrained.
5709  */
5710 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5711 {
5712 	enum pcie_link_width width, width_cap;
5713 	enum pci_bus_speed speed, speed_cap;
5714 	struct pci_dev *limiting_dev = NULL;
5715 	u32 bw_avail, bw_cap;
5716 
5717 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5718 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5719 
5720 	if (bw_avail >= bw_cap && verbose)
5721 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5722 			 bw_cap / 1000, bw_cap % 1000,
5723 			 PCIE_SPEED2STR(speed_cap), width_cap);
5724 	else if (bw_avail < bw_cap)
5725 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5726 			 bw_avail / 1000, bw_avail % 1000,
5727 			 PCIE_SPEED2STR(speed), width,
5728 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5729 			 bw_cap / 1000, bw_cap % 1000,
5730 			 PCIE_SPEED2STR(speed_cap), width_cap);
5731 }
5732 
5733 /**
5734  * pcie_print_link_status - Report the PCI device's link speed and width
5735  * @dev: PCI device to query
5736  *
5737  * Report the available bandwidth at the device.
5738  */
5739 void pcie_print_link_status(struct pci_dev *dev)
5740 {
5741 	__pcie_print_link_status(dev, true);
5742 }
5743 EXPORT_SYMBOL(pcie_print_link_status);
5744 
5745 /**
5746  * pci_select_bars - Make BAR mask from the type of resource
5747  * @dev: the PCI device for which BAR mask is made
5748  * @flags: resource type mask to be selected
5749  *
5750  * This helper routine makes bar mask from the type of resource.
5751  */
5752 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5753 {
5754 	int i, bars = 0;
5755 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5756 		if (pci_resource_flags(dev, i) & flags)
5757 			bars |= (1 << i);
5758 	return bars;
5759 }
5760 EXPORT_SYMBOL(pci_select_bars);
5761 
5762 /* Some architectures require additional programming to enable VGA */
5763 static arch_set_vga_state_t arch_set_vga_state;
5764 
5765 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5766 {
5767 	arch_set_vga_state = func;	/* NULL disables */
5768 }
5769 
5770 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5771 				  unsigned int command_bits, u32 flags)
5772 {
5773 	if (arch_set_vga_state)
5774 		return arch_set_vga_state(dev, decode, command_bits,
5775 						flags);
5776 	return 0;
5777 }
5778 
5779 /**
5780  * pci_set_vga_state - set VGA decode state on device and parents if requested
5781  * @dev: the PCI device
5782  * @decode: true = enable decoding, false = disable decoding
5783  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5784  * @flags: traverse ancestors and change bridges
5785  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5786  */
5787 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5788 		      unsigned int command_bits, u32 flags)
5789 {
5790 	struct pci_bus *bus;
5791 	struct pci_dev *bridge;
5792 	u16 cmd;
5793 	int rc;
5794 
5795 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5796 
5797 	/* ARCH specific VGA enables */
5798 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5799 	if (rc)
5800 		return rc;
5801 
5802 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5803 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5804 		if (decode == true)
5805 			cmd |= command_bits;
5806 		else
5807 			cmd &= ~command_bits;
5808 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5809 	}
5810 
5811 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5812 		return 0;
5813 
5814 	bus = dev->bus;
5815 	while (bus) {
5816 		bridge = bus->self;
5817 		if (bridge) {
5818 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5819 					     &cmd);
5820 			if (decode == true)
5821 				cmd |= PCI_BRIDGE_CTL_VGA;
5822 			else
5823 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5824 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5825 					      cmd);
5826 		}
5827 		bus = bus->parent;
5828 	}
5829 	return 0;
5830 }
5831 
5832 /**
5833  * pci_add_dma_alias - Add a DMA devfn alias for a device
5834  * @dev: the PCI device for which alias is added
5835  * @devfn: alias slot and function
5836  *
5837  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5838  * which is used to program permissible bus-devfn source addresses for DMA
5839  * requests in an IOMMU.  These aliases factor into IOMMU group creation
5840  * and are useful for devices generating DMA requests beyond or different
5841  * from their logical bus-devfn.  Examples include device quirks where the
5842  * device simply uses the wrong devfn, as well as non-transparent bridges
5843  * where the alias may be a proxy for devices in another domain.
5844  *
5845  * IOMMU group creation is performed during device discovery or addition,
5846  * prior to any potential DMA mapping and therefore prior to driver probing
5847  * (especially for userspace assigned devices where IOMMU group definition
5848  * cannot be left as a userspace activity).  DMA aliases should therefore
5849  * be configured via quirks, such as the PCI fixup header quirk.
5850  */
5851 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5852 {
5853 	if (!dev->dma_alias_mask)
5854 		dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
5855 	if (!dev->dma_alias_mask) {
5856 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5857 		return;
5858 	}
5859 
5860 	set_bit(devfn, dev->dma_alias_mask);
5861 	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5862 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5863 }
5864 
5865 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5866 {
5867 	return (dev1->dma_alias_mask &&
5868 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5869 	       (dev2->dma_alias_mask &&
5870 		test_bit(dev1->devfn, dev2->dma_alias_mask));
5871 }
5872 
5873 bool pci_device_is_present(struct pci_dev *pdev)
5874 {
5875 	u32 v;
5876 
5877 	if (pci_dev_is_disconnected(pdev))
5878 		return false;
5879 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5880 }
5881 EXPORT_SYMBOL_GPL(pci_device_is_present);
5882 
5883 void pci_ignore_hotplug(struct pci_dev *dev)
5884 {
5885 	struct pci_dev *bridge = dev->bus->self;
5886 
5887 	dev->ignore_hotplug = 1;
5888 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5889 	if (bridge)
5890 		bridge->ignore_hotplug = 1;
5891 }
5892 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5893 
5894 resource_size_t __weak pcibios_default_alignment(void)
5895 {
5896 	return 0;
5897 }
5898 
5899 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5900 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5901 static DEFINE_SPINLOCK(resource_alignment_lock);
5902 
5903 /**
5904  * pci_specified_resource_alignment - get resource alignment specified by user.
5905  * @dev: the PCI device to get
5906  * @resize: whether or not to change resources' size when reassigning alignment
5907  *
5908  * RETURNS: Resource alignment if it is specified.
5909  *          Zero if it is not specified.
5910  */
5911 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5912 							bool *resize)
5913 {
5914 	int align_order, count;
5915 	resource_size_t align = pcibios_default_alignment();
5916 	const char *p;
5917 	int ret;
5918 
5919 	spin_lock(&resource_alignment_lock);
5920 	p = resource_alignment_param;
5921 	if (!*p && !align)
5922 		goto out;
5923 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5924 		align = 0;
5925 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5926 		goto out;
5927 	}
5928 
5929 	while (*p) {
5930 		count = 0;
5931 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5932 							p[count] == '@') {
5933 			p += count + 1;
5934 		} else {
5935 			align_order = -1;
5936 		}
5937 
5938 		ret = pci_dev_str_match(dev, p, &p);
5939 		if (ret == 1) {
5940 			*resize = true;
5941 			if (align_order == -1)
5942 				align = PAGE_SIZE;
5943 			else
5944 				align = 1 << align_order;
5945 			break;
5946 		} else if (ret < 0) {
5947 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5948 			       p);
5949 			break;
5950 		}
5951 
5952 		if (*p != ';' && *p != ',') {
5953 			/* End of param or invalid format */
5954 			break;
5955 		}
5956 		p++;
5957 	}
5958 out:
5959 	spin_unlock(&resource_alignment_lock);
5960 	return align;
5961 }
5962 
5963 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5964 					   resource_size_t align, bool resize)
5965 {
5966 	struct resource *r = &dev->resource[bar];
5967 	resource_size_t size;
5968 
5969 	if (!(r->flags & IORESOURCE_MEM))
5970 		return;
5971 
5972 	if (r->flags & IORESOURCE_PCI_FIXED) {
5973 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5974 			 bar, r, (unsigned long long)align);
5975 		return;
5976 	}
5977 
5978 	size = resource_size(r);
5979 	if (size >= align)
5980 		return;
5981 
5982 	/*
5983 	 * Increase the alignment of the resource.  There are two ways we
5984 	 * can do this:
5985 	 *
5986 	 * 1) Increase the size of the resource.  BARs are aligned on their
5987 	 *    size, so when we reallocate space for this resource, we'll
5988 	 *    allocate it with the larger alignment.  This also prevents
5989 	 *    assignment of any other BARs inside the alignment region, so
5990 	 *    if we're requesting page alignment, this means no other BARs
5991 	 *    will share the page.
5992 	 *
5993 	 *    The disadvantage is that this makes the resource larger than
5994 	 *    the hardware BAR, which may break drivers that compute things
5995 	 *    based on the resource size, e.g., to find registers at a
5996 	 *    fixed offset before the end of the BAR.
5997 	 *
5998 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5999 	 *    set r->start to the desired alignment.  By itself this
6000 	 *    doesn't prevent other BARs being put inside the alignment
6001 	 *    region, but if we realign *every* resource of every device in
6002 	 *    the system, none of them will share an alignment region.
6003 	 *
6004 	 * When the user has requested alignment for only some devices via
6005 	 * the "pci=resource_alignment" argument, "resize" is true and we
6006 	 * use the first method.  Otherwise we assume we're aligning all
6007 	 * devices and we use the second.
6008 	 */
6009 
6010 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6011 		 bar, r, (unsigned long long)align);
6012 
6013 	if (resize) {
6014 		r->start = 0;
6015 		r->end = align - 1;
6016 	} else {
6017 		r->flags &= ~IORESOURCE_SIZEALIGN;
6018 		r->flags |= IORESOURCE_STARTALIGN;
6019 		r->start = align;
6020 		r->end = r->start + size - 1;
6021 	}
6022 	r->flags |= IORESOURCE_UNSET;
6023 }
6024 
6025 /*
6026  * This function disables memory decoding and releases memory resources
6027  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6028  * It also rounds up size to specified alignment.
6029  * Later on, the kernel will assign page-aligned memory resource back
6030  * to the device.
6031  */
6032 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6033 {
6034 	int i;
6035 	struct resource *r;
6036 	resource_size_t align;
6037 	u16 command;
6038 	bool resize = false;
6039 
6040 	/*
6041 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6042 	 * 3.4.1.11.  Their resources are allocated from the space
6043 	 * described by the VF BARx register in the PF's SR-IOV capability.
6044 	 * We can't influence their alignment here.
6045 	 */
6046 	if (dev->is_virtfn)
6047 		return;
6048 
6049 	/* check if specified PCI is target device to reassign */
6050 	align = pci_specified_resource_alignment(dev, &resize);
6051 	if (!align)
6052 		return;
6053 
6054 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6055 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6056 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6057 		return;
6058 	}
6059 
6060 	pci_read_config_word(dev, PCI_COMMAND, &command);
6061 	command &= ~PCI_COMMAND_MEMORY;
6062 	pci_write_config_word(dev, PCI_COMMAND, command);
6063 
6064 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6065 		pci_request_resource_alignment(dev, i, align, resize);
6066 
6067 	/*
6068 	 * Need to disable bridge's resource window,
6069 	 * to enable the kernel to reassign new resource
6070 	 * window later on.
6071 	 */
6072 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6073 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6074 			r = &dev->resource[i];
6075 			if (!(r->flags & IORESOURCE_MEM))
6076 				continue;
6077 			r->flags |= IORESOURCE_UNSET;
6078 			r->end = resource_size(r) - 1;
6079 			r->start = 0;
6080 		}
6081 		pci_disable_bridge_window(dev);
6082 	}
6083 }
6084 
6085 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
6086 {
6087 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
6088 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
6089 	spin_lock(&resource_alignment_lock);
6090 	strncpy(resource_alignment_param, buf, count);
6091 	resource_alignment_param[count] = '\0';
6092 	spin_unlock(&resource_alignment_lock);
6093 	return count;
6094 }
6095 
6096 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
6097 {
6098 	size_t count;
6099 	spin_lock(&resource_alignment_lock);
6100 	count = snprintf(buf, size, "%s", resource_alignment_param);
6101 	spin_unlock(&resource_alignment_lock);
6102 	return count;
6103 }
6104 
6105 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6106 {
6107 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
6108 }
6109 
6110 static ssize_t resource_alignment_store(struct bus_type *bus,
6111 					const char *buf, size_t count)
6112 {
6113 	return pci_set_resource_alignment_param(buf, count);
6114 }
6115 
6116 static BUS_ATTR_RW(resource_alignment);
6117 
6118 static int __init pci_resource_alignment_sysfs_init(void)
6119 {
6120 	return bus_create_file(&pci_bus_type,
6121 					&bus_attr_resource_alignment);
6122 }
6123 late_initcall(pci_resource_alignment_sysfs_init);
6124 
6125 static void pci_no_domains(void)
6126 {
6127 #ifdef CONFIG_PCI_DOMAINS
6128 	pci_domains_supported = 0;
6129 #endif
6130 }
6131 
6132 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6133 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6134 
6135 static int pci_get_new_domain_nr(void)
6136 {
6137 	return atomic_inc_return(&__domain_nr);
6138 }
6139 
6140 static int of_pci_bus_find_domain_nr(struct device *parent)
6141 {
6142 	static int use_dt_domains = -1;
6143 	int domain = -1;
6144 
6145 	if (parent)
6146 		domain = of_get_pci_domain_nr(parent->of_node);
6147 	/*
6148 	 * Check DT domain and use_dt_domains values.
6149 	 *
6150 	 * If DT domain property is valid (domain >= 0) and
6151 	 * use_dt_domains != 0, the DT assignment is valid since this means
6152 	 * we have not previously allocated a domain number by using
6153 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6154 	 * 1, to indicate that we have just assigned a domain number from
6155 	 * DT.
6156 	 *
6157 	 * If DT domain property value is not valid (ie domain < 0), and we
6158 	 * have not previously assigned a domain number from DT
6159 	 * (use_dt_domains != 1) we should assign a domain number by
6160 	 * using the:
6161 	 *
6162 	 * pci_get_new_domain_nr()
6163 	 *
6164 	 * API and update the use_dt_domains value to keep track of method we
6165 	 * are using to assign domain numbers (use_dt_domains = 0).
6166 	 *
6167 	 * All other combinations imply we have a platform that is trying
6168 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6169 	 * which is a recipe for domain mishandling and it is prevented by
6170 	 * invalidating the domain value (domain = -1) and printing a
6171 	 * corresponding error.
6172 	 */
6173 	if (domain >= 0 && use_dt_domains) {
6174 		use_dt_domains = 1;
6175 	} else if (domain < 0 && use_dt_domains != 1) {
6176 		use_dt_domains = 0;
6177 		domain = pci_get_new_domain_nr();
6178 	} else {
6179 		if (parent)
6180 			pr_err("Node %pOF has ", parent->of_node);
6181 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6182 		domain = -1;
6183 	}
6184 
6185 	return domain;
6186 }
6187 
6188 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6189 {
6190 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6191 			       acpi_pci_bus_find_domain_nr(bus);
6192 }
6193 #endif
6194 
6195 /**
6196  * pci_ext_cfg_avail - can we access extended PCI config space?
6197  *
6198  * Returns 1 if we can access PCI extended config space (offsets
6199  * greater than 0xff). This is the default implementation. Architecture
6200  * implementations can override this.
6201  */
6202 int __weak pci_ext_cfg_avail(void)
6203 {
6204 	return 1;
6205 }
6206 
6207 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6208 {
6209 }
6210 EXPORT_SYMBOL(pci_fixup_cardbus);
6211 
6212 static int __init pci_setup(char *str)
6213 {
6214 	while (str) {
6215 		char *k = strchr(str, ',');
6216 		if (k)
6217 			*k++ = 0;
6218 		if (*str && (str = pcibios_setup(str)) && *str) {
6219 			if (!strcmp(str, "nomsi")) {
6220 				pci_no_msi();
6221 			} else if (!strncmp(str, "noats", 5)) {
6222 				pr_info("PCIe: ATS is disabled\n");
6223 				pcie_ats_disabled = true;
6224 			} else if (!strcmp(str, "noaer")) {
6225 				pci_no_aer();
6226 			} else if (!strcmp(str, "earlydump")) {
6227 				pci_early_dump = true;
6228 			} else if (!strncmp(str, "realloc=", 8)) {
6229 				pci_realloc_get_opt(str + 8);
6230 			} else if (!strncmp(str, "realloc", 7)) {
6231 				pci_realloc_get_opt("on");
6232 			} else if (!strcmp(str, "nodomains")) {
6233 				pci_no_domains();
6234 			} else if (!strncmp(str, "noari", 5)) {
6235 				pcie_ari_disabled = true;
6236 			} else if (!strncmp(str, "cbiosize=", 9)) {
6237 				pci_cardbus_io_size = memparse(str + 9, &str);
6238 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6239 				pci_cardbus_mem_size = memparse(str + 10, &str);
6240 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6241 				pci_set_resource_alignment_param(str + 19,
6242 							strlen(str + 19));
6243 			} else if (!strncmp(str, "ecrc=", 5)) {
6244 				pcie_ecrc_get_policy(str + 5);
6245 			} else if (!strncmp(str, "hpiosize=", 9)) {
6246 				pci_hotplug_io_size = memparse(str + 9, &str);
6247 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6248 				pci_hotplug_mem_size = memparse(str + 10, &str);
6249 			} else if (!strncmp(str, "hpbussize=", 10)) {
6250 				pci_hotplug_bus_size =
6251 					simple_strtoul(str + 10, &str, 0);
6252 				if (pci_hotplug_bus_size > 0xff)
6253 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6254 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6255 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6256 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6257 				pcie_bus_config = PCIE_BUS_SAFE;
6258 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6259 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6260 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6261 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6262 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6263 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6264 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6265 				disable_acs_redir_param =
6266 					kstrdup(str + 18, GFP_KERNEL);
6267 			} else {
6268 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
6269 						str);
6270 			}
6271 		}
6272 		str = k;
6273 	}
6274 	return 0;
6275 }
6276 early_param("pci", pci_setup);
6277