xref: /linux/drivers/pci/pci.c (revision 17b121ad0c43342bc894632f6710b894849ca372)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35 
36 DEFINE_MUTEX(pci_slot_mutex);
37 
38 const char *pci_power_names[] = {
39 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42 
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45 
46 int pci_pci_problems;
47 EXPORT_SYMBOL(pci_pci_problems);
48 
49 unsigned int pci_pm_d3hot_delay;
50 
51 static void pci_pme_list_scan(struct work_struct *work);
52 
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56 
57 struct pci_pme_device {
58 	struct list_head list;
59 	struct pci_dev *dev;
60 };
61 
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
63 
64 static void pci_dev_d3_sleep(struct pci_dev *dev)
65 {
66 	unsigned int delay = dev->d3hot_delay;
67 
68 	if (delay < pci_pm_d3hot_delay)
69 		delay = pci_pm_d3hot_delay;
70 
71 	if (delay)
72 		msleep(delay);
73 }
74 
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
77 #endif
78 
79 #define DEFAULT_CARDBUS_IO_SIZE		(256)
80 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84 
85 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
86 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
88 /* hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
90 /*
91  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
92  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
93  * pci=hpmemsize=nnM overrides both
94  */
95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
97 
98 #define DEFAULT_HOTPLUG_BUS_SIZE	1
99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
100 
101 
102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
105 #elif defined CONFIG_PCIE_BUS_SAFE
106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
109 #elif defined CONFIG_PCIE_BUS_PEER2PEER
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
111 #else
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
113 #endif
114 
115 /*
116  * The default CLS is used if arch didn't set CLS explicitly and not
117  * all pci devices agree on the same value.  Arch can override either
118  * the dfl or actual value as it sees fit.  Don't forget this is
119  * measured in 32-bit words, not bytes.
120  */
121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
122 u8 pci_cache_line_size;
123 
124 /*
125  * If we set up a device for bus mastering, we need to check the latency
126  * timer as certain BIOSes forget to set it properly.
127  */
128 unsigned int pcibios_max_latency = 255;
129 
130 /* If set, the PCIe ARI capability will not be used. */
131 static bool pcie_ari_disabled;
132 
133 /* If set, the PCIe ATS capability will not be used. */
134 static bool pcie_ats_disabled;
135 
136 /* If set, the PCI config space of each device is printed during boot. */
137 bool pci_early_dump;
138 
139 bool pci_ats_disabled(void)
140 {
141 	return pcie_ats_disabled;
142 }
143 EXPORT_SYMBOL_GPL(pci_ats_disabled);
144 
145 /* Disable bridge_d3 for all PCIe ports */
146 static bool pci_bridge_d3_disable;
147 /* Force bridge_d3 for all PCIe ports */
148 static bool pci_bridge_d3_force;
149 
150 static int __init pcie_port_pm_setup(char *str)
151 {
152 	if (!strcmp(str, "off"))
153 		pci_bridge_d3_disable = true;
154 	else if (!strcmp(str, "force"))
155 		pci_bridge_d3_force = true;
156 	return 1;
157 }
158 __setup("pcie_port_pm=", pcie_port_pm_setup);
159 
160 /* Time to wait after a reset for device to become responsive */
161 #define PCIE_RESET_READY_POLL_MS 60000
162 
163 /**
164  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
165  * @bus: pointer to PCI bus structure to search
166  *
167  * Given a PCI bus, returns the highest PCI bus number present in the set
168  * including the given PCI bus and its list of child PCI buses.
169  */
170 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
171 {
172 	struct pci_bus *tmp;
173 	unsigned char max, n;
174 
175 	max = bus->busn_res.end;
176 	list_for_each_entry(tmp, &bus->children, node) {
177 		n = pci_bus_max_busnr(tmp);
178 		if (n > max)
179 			max = n;
180 	}
181 	return max;
182 }
183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
184 
185 /**
186  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
187  * @pdev: the PCI device
188  *
189  * Returns error bits set in PCI_STATUS and clears them.
190  */
191 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
192 {
193 	u16 status;
194 	int ret;
195 
196 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
197 	if (ret != PCIBIOS_SUCCESSFUL)
198 		return -EIO;
199 
200 	status &= PCI_STATUS_ERROR_BITS;
201 	if (status)
202 		pci_write_config_word(pdev, PCI_STATUS, status);
203 
204 	return status;
205 }
206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
207 
208 #ifdef CONFIG_HAS_IOMEM
209 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
210 {
211 	struct resource *res = &pdev->resource[bar];
212 
213 	/*
214 	 * Make sure the BAR is actually a memory resource, not an IO resource
215 	 */
216 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
217 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
218 		return NULL;
219 	}
220 	return ioremap(res->start, resource_size(res));
221 }
222 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
223 
224 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
225 {
226 	/*
227 	 * Make sure the BAR is actually a memory resource, not an IO resource
228 	 */
229 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
230 		WARN_ON(1);
231 		return NULL;
232 	}
233 	return ioremap_wc(pci_resource_start(pdev, bar),
234 			  pci_resource_len(pdev, bar));
235 }
236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
237 #endif
238 
239 /**
240  * pci_dev_str_match_path - test if a path string matches a device
241  * @dev: the PCI device to test
242  * @path: string to match the device against
243  * @endptr: pointer to the string after the match
244  *
245  * Test if a string (typically from a kernel parameter) formatted as a
246  * path of device/function addresses matches a PCI device. The string must
247  * be of the form:
248  *
249  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
250  *
251  * A path for a device can be obtained using 'lspci -t'.  Using a path
252  * is more robust against bus renumbering than using only a single bus,
253  * device and function address.
254  *
255  * Returns 1 if the string matches the device, 0 if it does not and
256  * a negative error code if it fails to parse the string.
257  */
258 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
259 				  const char **endptr)
260 {
261 	int ret;
262 	int seg, bus, slot, func;
263 	char *wpath, *p;
264 	char end;
265 
266 	*endptr = strchrnul(path, ';');
267 
268 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
269 	if (!wpath)
270 		return -ENOMEM;
271 
272 	while (1) {
273 		p = strrchr(wpath, '/');
274 		if (!p)
275 			break;
276 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
277 		if (ret != 2) {
278 			ret = -EINVAL;
279 			goto free_and_exit;
280 		}
281 
282 		if (dev->devfn != PCI_DEVFN(slot, func)) {
283 			ret = 0;
284 			goto free_and_exit;
285 		}
286 
287 		/*
288 		 * Note: we don't need to get a reference to the upstream
289 		 * bridge because we hold a reference to the top level
290 		 * device which should hold a reference to the bridge,
291 		 * and so on.
292 		 */
293 		dev = pci_upstream_bridge(dev);
294 		if (!dev) {
295 			ret = 0;
296 			goto free_and_exit;
297 		}
298 
299 		*p = 0;
300 	}
301 
302 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
303 		     &func, &end);
304 	if (ret != 4) {
305 		seg = 0;
306 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
307 		if (ret != 3) {
308 			ret = -EINVAL;
309 			goto free_and_exit;
310 		}
311 	}
312 
313 	ret = (seg == pci_domain_nr(dev->bus) &&
314 	       bus == dev->bus->number &&
315 	       dev->devfn == PCI_DEVFN(slot, func));
316 
317 free_and_exit:
318 	kfree(wpath);
319 	return ret;
320 }
321 
322 /**
323  * pci_dev_str_match - test if a string matches a device
324  * @dev: the PCI device to test
325  * @p: string to match the device against
326  * @endptr: pointer to the string after the match
327  *
328  * Test if a string (typically from a kernel parameter) matches a specified
329  * PCI device. The string may be of one of the following formats:
330  *
331  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
332  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
333  *
334  * The first format specifies a PCI bus/device/function address which
335  * may change if new hardware is inserted, if motherboard firmware changes,
336  * or due to changes caused in kernel parameters. If the domain is
337  * left unspecified, it is taken to be 0.  In order to be robust against
338  * bus renumbering issues, a path of PCI device/function numbers may be used
339  * to address the specific device.  The path for a device can be determined
340  * through the use of 'lspci -t'.
341  *
342  * The second format matches devices using IDs in the configuration
343  * space which may match multiple devices in the system. A value of 0
344  * for any field will match all devices. (Note: this differs from
345  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
346  * legacy reasons and convenience so users don't have to specify
347  * FFFFFFFFs on the command line.)
348  *
349  * Returns 1 if the string matches the device, 0 if it does not and
350  * a negative error code if the string cannot be parsed.
351  */
352 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
353 			     const char **endptr)
354 {
355 	int ret;
356 	int count;
357 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
358 
359 	if (strncmp(p, "pci:", 4) == 0) {
360 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
361 		p += 4;
362 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
363 			     &subsystem_vendor, &subsystem_device, &count);
364 		if (ret != 4) {
365 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
366 			if (ret != 2)
367 				return -EINVAL;
368 
369 			subsystem_vendor = 0;
370 			subsystem_device = 0;
371 		}
372 
373 		p += count;
374 
375 		if ((!vendor || vendor == dev->vendor) &&
376 		    (!device || device == dev->device) &&
377 		    (!subsystem_vendor ||
378 			    subsystem_vendor == dev->subsystem_vendor) &&
379 		    (!subsystem_device ||
380 			    subsystem_device == dev->subsystem_device))
381 			goto found;
382 	} else {
383 		/*
384 		 * PCI Bus, Device, Function IDs are specified
385 		 * (optionally, may include a path of devfns following it)
386 		 */
387 		ret = pci_dev_str_match_path(dev, p, &p);
388 		if (ret < 0)
389 			return ret;
390 		else if (ret)
391 			goto found;
392 	}
393 
394 	*endptr = p;
395 	return 0;
396 
397 found:
398 	*endptr = p;
399 	return 1;
400 }
401 
402 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
403 				  u8 pos, int cap, int *ttl)
404 {
405 	u8 id;
406 	u16 ent;
407 
408 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
409 
410 	while ((*ttl)--) {
411 		if (pos < 0x40)
412 			break;
413 		pos &= ~3;
414 		pci_bus_read_config_word(bus, devfn, pos, &ent);
415 
416 		id = ent & 0xff;
417 		if (id == 0xff)
418 			break;
419 		if (id == cap)
420 			return pos;
421 		pos = (ent >> 8);
422 	}
423 	return 0;
424 }
425 
426 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
427 			      u8 pos, int cap)
428 {
429 	int ttl = PCI_FIND_CAP_TTL;
430 
431 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
432 }
433 
434 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
435 {
436 	return __pci_find_next_cap(dev->bus, dev->devfn,
437 				   pos + PCI_CAP_LIST_NEXT, cap);
438 }
439 EXPORT_SYMBOL_GPL(pci_find_next_capability);
440 
441 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
442 				    unsigned int devfn, u8 hdr_type)
443 {
444 	u16 status;
445 
446 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
447 	if (!(status & PCI_STATUS_CAP_LIST))
448 		return 0;
449 
450 	switch (hdr_type) {
451 	case PCI_HEADER_TYPE_NORMAL:
452 	case PCI_HEADER_TYPE_BRIDGE:
453 		return PCI_CAPABILITY_LIST;
454 	case PCI_HEADER_TYPE_CARDBUS:
455 		return PCI_CB_CAPABILITY_LIST;
456 	}
457 
458 	return 0;
459 }
460 
461 /**
462  * pci_find_capability - query for devices' capabilities
463  * @dev: PCI device to query
464  * @cap: capability code
465  *
466  * Tell if a device supports a given PCI capability.
467  * Returns the address of the requested capability structure within the
468  * device's PCI configuration space or 0 in case the device does not
469  * support it.  Possible values for @cap include:
470  *
471  *  %PCI_CAP_ID_PM           Power Management
472  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
473  *  %PCI_CAP_ID_VPD          Vital Product Data
474  *  %PCI_CAP_ID_SLOTID       Slot Identification
475  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
476  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
477  *  %PCI_CAP_ID_PCIX         PCI-X
478  *  %PCI_CAP_ID_EXP          PCI Express
479  */
480 u8 pci_find_capability(struct pci_dev *dev, int cap)
481 {
482 	u8 pos;
483 
484 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
485 	if (pos)
486 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
487 
488 	return pos;
489 }
490 EXPORT_SYMBOL(pci_find_capability);
491 
492 /**
493  * pci_bus_find_capability - query for devices' capabilities
494  * @bus: the PCI bus to query
495  * @devfn: PCI device to query
496  * @cap: capability code
497  *
498  * Like pci_find_capability() but works for PCI devices that do not have a
499  * pci_dev structure set up yet.
500  *
501  * Returns the address of the requested capability structure within the
502  * device's PCI configuration space or 0 in case the device does not
503  * support it.
504  */
505 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
506 {
507 	u8 hdr_type, pos;
508 
509 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
510 
511 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
512 	if (pos)
513 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
514 
515 	return pos;
516 }
517 EXPORT_SYMBOL(pci_bus_find_capability);
518 
519 /**
520  * pci_find_next_ext_capability - Find an extended capability
521  * @dev: PCI device to query
522  * @start: address at which to start looking (0 to start at beginning of list)
523  * @cap: capability code
524  *
525  * Returns the address of the next matching extended capability structure
526  * within the device's PCI configuration space or 0 if the device does
527  * not support it.  Some capabilities can occur several times, e.g., the
528  * vendor-specific capability, and this provides a way to find them all.
529  */
530 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
531 {
532 	u32 header;
533 	int ttl;
534 	u16 pos = PCI_CFG_SPACE_SIZE;
535 
536 	/* minimum 8 bytes per capability */
537 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
538 
539 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
540 		return 0;
541 
542 	if (start)
543 		pos = start;
544 
545 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
546 		return 0;
547 
548 	/*
549 	 * If we have no capabilities, this is indicated by cap ID,
550 	 * cap version and next pointer all being 0.
551 	 */
552 	if (header == 0)
553 		return 0;
554 
555 	while (ttl-- > 0) {
556 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
557 			return pos;
558 
559 		pos = PCI_EXT_CAP_NEXT(header);
560 		if (pos < PCI_CFG_SPACE_SIZE)
561 			break;
562 
563 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
564 			break;
565 	}
566 
567 	return 0;
568 }
569 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
570 
571 /**
572  * pci_find_ext_capability - Find an extended capability
573  * @dev: PCI device to query
574  * @cap: capability code
575  *
576  * Returns the address of the requested extended capability structure
577  * within the device's PCI configuration space or 0 if the device does
578  * not support it.  Possible values for @cap include:
579  *
580  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
581  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
582  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
583  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
584  */
585 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
586 {
587 	return pci_find_next_ext_capability(dev, 0, cap);
588 }
589 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
590 
591 /**
592  * pci_get_dsn - Read and return the 8-byte Device Serial Number
593  * @dev: PCI device to query
594  *
595  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
596  * Number.
597  *
598  * Returns the DSN, or zero if the capability does not exist.
599  */
600 u64 pci_get_dsn(struct pci_dev *dev)
601 {
602 	u32 dword;
603 	u64 dsn;
604 	int pos;
605 
606 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
607 	if (!pos)
608 		return 0;
609 
610 	/*
611 	 * The Device Serial Number is two dwords offset 4 bytes from the
612 	 * capability position. The specification says that the first dword is
613 	 * the lower half, and the second dword is the upper half.
614 	 */
615 	pos += 4;
616 	pci_read_config_dword(dev, pos, &dword);
617 	dsn = (u64)dword;
618 	pci_read_config_dword(dev, pos + 4, &dword);
619 	dsn |= ((u64)dword) << 32;
620 
621 	return dsn;
622 }
623 EXPORT_SYMBOL_GPL(pci_get_dsn);
624 
625 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
626 {
627 	int rc, ttl = PCI_FIND_CAP_TTL;
628 	u8 cap, mask;
629 
630 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
631 		mask = HT_3BIT_CAP_MASK;
632 	else
633 		mask = HT_5BIT_CAP_MASK;
634 
635 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
636 				      PCI_CAP_ID_HT, &ttl);
637 	while (pos) {
638 		rc = pci_read_config_byte(dev, pos + 3, &cap);
639 		if (rc != PCIBIOS_SUCCESSFUL)
640 			return 0;
641 
642 		if ((cap & mask) == ht_cap)
643 			return pos;
644 
645 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
646 					      pos + PCI_CAP_LIST_NEXT,
647 					      PCI_CAP_ID_HT, &ttl);
648 	}
649 
650 	return 0;
651 }
652 
653 /**
654  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
655  * @dev: PCI device to query
656  * @pos: Position from which to continue searching
657  * @ht_cap: HyperTransport capability code
658  *
659  * To be used in conjunction with pci_find_ht_capability() to search for
660  * all capabilities matching @ht_cap. @pos should always be a value returned
661  * from pci_find_ht_capability().
662  *
663  * NB. To be 100% safe against broken PCI devices, the caller should take
664  * steps to avoid an infinite loop.
665  */
666 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
667 {
668 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
669 }
670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
671 
672 /**
673  * pci_find_ht_capability - query a device's HyperTransport capabilities
674  * @dev: PCI device to query
675  * @ht_cap: HyperTransport capability code
676  *
677  * Tell if a device supports a given HyperTransport capability.
678  * Returns an address within the device's PCI configuration space
679  * or 0 in case the device does not support the request capability.
680  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
681  * which has a HyperTransport capability matching @ht_cap.
682  */
683 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
684 {
685 	u8 pos;
686 
687 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
688 	if (pos)
689 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
690 
691 	return pos;
692 }
693 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
694 
695 /**
696  * pci_find_vsec_capability - Find a vendor-specific extended capability
697  * @dev: PCI device to query
698  * @vendor: Vendor ID for which capability is defined
699  * @cap: Vendor-specific capability ID
700  *
701  * If @dev has Vendor ID @vendor, search for a VSEC capability with
702  * VSEC ID @cap. If found, return the capability offset in
703  * config space; otherwise return 0.
704  */
705 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
706 {
707 	u16 vsec = 0;
708 	u32 header;
709 
710 	if (vendor != dev->vendor)
711 		return 0;
712 
713 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
714 						     PCI_EXT_CAP_ID_VNDR))) {
715 		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
716 					  &header) == PCIBIOS_SUCCESSFUL &&
717 		    PCI_VNDR_HEADER_ID(header) == cap)
718 			return vsec;
719 	}
720 
721 	return 0;
722 }
723 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
724 
725 /**
726  * pci_find_parent_resource - return resource region of parent bus of given
727  *			      region
728  * @dev: PCI device structure contains resources to be searched
729  * @res: child resource record for which parent is sought
730  *
731  * For given resource region of given device, return the resource region of
732  * parent bus the given region is contained in.
733  */
734 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
735 					  struct resource *res)
736 {
737 	const struct pci_bus *bus = dev->bus;
738 	struct resource *r;
739 	int i;
740 
741 	pci_bus_for_each_resource(bus, r, i) {
742 		if (!r)
743 			continue;
744 		if (resource_contains(r, res)) {
745 
746 			/*
747 			 * If the window is prefetchable but the BAR is
748 			 * not, the allocator made a mistake.
749 			 */
750 			if (r->flags & IORESOURCE_PREFETCH &&
751 			    !(res->flags & IORESOURCE_PREFETCH))
752 				return NULL;
753 
754 			/*
755 			 * If we're below a transparent bridge, there may
756 			 * be both a positively-decoded aperture and a
757 			 * subtractively-decoded region that contain the BAR.
758 			 * We want the positively-decoded one, so this depends
759 			 * on pci_bus_for_each_resource() giving us those
760 			 * first.
761 			 */
762 			return r;
763 		}
764 	}
765 	return NULL;
766 }
767 EXPORT_SYMBOL(pci_find_parent_resource);
768 
769 /**
770  * pci_find_resource - Return matching PCI device resource
771  * @dev: PCI device to query
772  * @res: Resource to look for
773  *
774  * Goes over standard PCI resources (BARs) and checks if the given resource
775  * is partially or fully contained in any of them. In that case the
776  * matching resource is returned, %NULL otherwise.
777  */
778 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
779 {
780 	int i;
781 
782 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
783 		struct resource *r = &dev->resource[i];
784 
785 		if (r->start && resource_contains(r, res))
786 			return r;
787 	}
788 
789 	return NULL;
790 }
791 EXPORT_SYMBOL(pci_find_resource);
792 
793 /**
794  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
795  * @dev: the PCI device to operate on
796  * @pos: config space offset of status word
797  * @mask: mask of bit(s) to care about in status word
798  *
799  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
800  */
801 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
802 {
803 	int i;
804 
805 	/* Wait for Transaction Pending bit clean */
806 	for (i = 0; i < 4; i++) {
807 		u16 status;
808 		if (i)
809 			msleep((1 << (i - 1)) * 100);
810 
811 		pci_read_config_word(dev, pos, &status);
812 		if (!(status & mask))
813 			return 1;
814 	}
815 
816 	return 0;
817 }
818 
819 static int pci_acs_enable;
820 
821 /**
822  * pci_request_acs - ask for ACS to be enabled if supported
823  */
824 void pci_request_acs(void)
825 {
826 	pci_acs_enable = 1;
827 }
828 
829 static const char *disable_acs_redir_param;
830 
831 /**
832  * pci_disable_acs_redir - disable ACS redirect capabilities
833  * @dev: the PCI device
834  *
835  * For only devices specified in the disable_acs_redir parameter.
836  */
837 static void pci_disable_acs_redir(struct pci_dev *dev)
838 {
839 	int ret = 0;
840 	const char *p;
841 	int pos;
842 	u16 ctrl;
843 
844 	if (!disable_acs_redir_param)
845 		return;
846 
847 	p = disable_acs_redir_param;
848 	while (*p) {
849 		ret = pci_dev_str_match(dev, p, &p);
850 		if (ret < 0) {
851 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
852 				     disable_acs_redir_param);
853 
854 			break;
855 		} else if (ret == 1) {
856 			/* Found a match */
857 			break;
858 		}
859 
860 		if (*p != ';' && *p != ',') {
861 			/* End of param or invalid format */
862 			break;
863 		}
864 		p++;
865 	}
866 
867 	if (ret != 1)
868 		return;
869 
870 	if (!pci_dev_specific_disable_acs_redir(dev))
871 		return;
872 
873 	pos = dev->acs_cap;
874 	if (!pos) {
875 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
876 		return;
877 	}
878 
879 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
880 
881 	/* P2P Request & Completion Redirect */
882 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
883 
884 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
885 
886 	pci_info(dev, "disabled ACS redirect\n");
887 }
888 
889 /**
890  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
891  * @dev: the PCI device
892  */
893 static void pci_std_enable_acs(struct pci_dev *dev)
894 {
895 	int pos;
896 	u16 cap;
897 	u16 ctrl;
898 
899 	pos = dev->acs_cap;
900 	if (!pos)
901 		return;
902 
903 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
904 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
905 
906 	/* Source Validation */
907 	ctrl |= (cap & PCI_ACS_SV);
908 
909 	/* P2P Request Redirect */
910 	ctrl |= (cap & PCI_ACS_RR);
911 
912 	/* P2P Completion Redirect */
913 	ctrl |= (cap & PCI_ACS_CR);
914 
915 	/* Upstream Forwarding */
916 	ctrl |= (cap & PCI_ACS_UF);
917 
918 	/* Enable Translation Blocking for external devices */
919 	if (dev->external_facing || dev->untrusted)
920 		ctrl |= (cap & PCI_ACS_TB);
921 
922 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
923 }
924 
925 /**
926  * pci_enable_acs - enable ACS if hardware support it
927  * @dev: the PCI device
928  */
929 static void pci_enable_acs(struct pci_dev *dev)
930 {
931 	if (!pci_acs_enable)
932 		goto disable_acs_redir;
933 
934 	if (!pci_dev_specific_enable_acs(dev))
935 		goto disable_acs_redir;
936 
937 	pci_std_enable_acs(dev);
938 
939 disable_acs_redir:
940 	/*
941 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
942 	 * enabled by the kernel because it may have been enabled by
943 	 * platform firmware.  So if we are told to disable it, we should
944 	 * always disable it after setting the kernel's default
945 	 * preferences.
946 	 */
947 	pci_disable_acs_redir(dev);
948 }
949 
950 /**
951  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
952  * @dev: PCI device to have its BARs restored
953  *
954  * Restore the BAR values for a given device, so as to make it
955  * accessible by its driver.
956  */
957 static void pci_restore_bars(struct pci_dev *dev)
958 {
959 	int i;
960 
961 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
962 		pci_update_resource(dev, i);
963 }
964 
965 static const struct pci_platform_pm_ops *pci_platform_pm;
966 
967 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
968 {
969 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
970 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
971 		return -EINVAL;
972 	pci_platform_pm = ops;
973 	return 0;
974 }
975 
976 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
977 {
978 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
979 }
980 
981 static inline int platform_pci_set_power_state(struct pci_dev *dev,
982 					       pci_power_t t)
983 {
984 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
985 }
986 
987 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
988 {
989 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
990 }
991 
992 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
993 {
994 	if (pci_platform_pm && pci_platform_pm->refresh_state)
995 		pci_platform_pm->refresh_state(dev);
996 }
997 
998 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
999 {
1000 	return pci_platform_pm ?
1001 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1002 }
1003 
1004 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1005 {
1006 	return pci_platform_pm ?
1007 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1008 }
1009 
1010 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1011 {
1012 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1013 }
1014 
1015 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1016 {
1017 	if (pci_platform_pm && pci_platform_pm->bridge_d3)
1018 		return pci_platform_pm->bridge_d3(dev);
1019 	return false;
1020 }
1021 
1022 /**
1023  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1024  *			     given PCI device
1025  * @dev: PCI device to handle.
1026  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1027  *
1028  * RETURN VALUE:
1029  * -EINVAL if the requested state is invalid.
1030  * -EIO if device does not support PCI PM or its PM capabilities register has a
1031  * wrong version, or device doesn't support the requested state.
1032  * 0 if device already is in the requested state.
1033  * 0 if device's power state has been successfully changed.
1034  */
1035 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1036 {
1037 	u16 pmcsr;
1038 	bool need_restore = false;
1039 
1040 	/* Check if we're already there */
1041 	if (dev->current_state == state)
1042 		return 0;
1043 
1044 	if (!dev->pm_cap)
1045 		return -EIO;
1046 
1047 	if (state < PCI_D0 || state > PCI_D3hot)
1048 		return -EINVAL;
1049 
1050 	/*
1051 	 * Validate transition: We can enter D0 from any state, but if
1052 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1053 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1054 	 * we'd have to go from D3 to D0, then to D1.
1055 	 */
1056 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1057 	    && dev->current_state > state) {
1058 		pci_err(dev, "invalid power transition (from %s to %s)\n",
1059 			pci_power_name(dev->current_state),
1060 			pci_power_name(state));
1061 		return -EINVAL;
1062 	}
1063 
1064 	/* Check if this device supports the desired state */
1065 	if ((state == PCI_D1 && !dev->d1_support)
1066 	   || (state == PCI_D2 && !dev->d2_support))
1067 		return -EIO;
1068 
1069 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1070 	if (pmcsr == (u16) ~0) {
1071 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1072 			pci_power_name(dev->current_state),
1073 			pci_power_name(state));
1074 		return -EIO;
1075 	}
1076 
1077 	/*
1078 	 * If we're (effectively) in D3, force entire word to 0.
1079 	 * This doesn't affect PME_Status, disables PME_En, and
1080 	 * sets PowerState to 0.
1081 	 */
1082 	switch (dev->current_state) {
1083 	case PCI_D0:
1084 	case PCI_D1:
1085 	case PCI_D2:
1086 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1087 		pmcsr |= state;
1088 		break;
1089 	case PCI_D3hot:
1090 	case PCI_D3cold:
1091 	case PCI_UNKNOWN: /* Boot-up */
1092 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1093 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1094 			need_restore = true;
1095 		fallthrough;	/* force to D0 */
1096 	default:
1097 		pmcsr = 0;
1098 		break;
1099 	}
1100 
1101 	/* Enter specified state */
1102 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1103 
1104 	/*
1105 	 * Mandatory power management transition delays; see PCI PM 1.1
1106 	 * 5.6.1 table 18
1107 	 */
1108 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1109 		pci_dev_d3_sleep(dev);
1110 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
1111 		udelay(PCI_PM_D2_DELAY);
1112 
1113 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1114 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1115 	if (dev->current_state != state)
1116 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1117 			 pci_power_name(dev->current_state),
1118 			 pci_power_name(state));
1119 
1120 	/*
1121 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1122 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1123 	 * from D3hot to D0 _may_ perform an internal reset, thereby
1124 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
1125 	 * For example, at least some versions of the 3c905B and the
1126 	 * 3c556B exhibit this behaviour.
1127 	 *
1128 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1129 	 * devices in a D3hot state at boot.  Consequently, we need to
1130 	 * restore at least the BARs so that the device will be
1131 	 * accessible to its driver.
1132 	 */
1133 	if (need_restore)
1134 		pci_restore_bars(dev);
1135 
1136 	if (dev->bus->self)
1137 		pcie_aspm_pm_state_change(dev->bus->self);
1138 
1139 	return 0;
1140 }
1141 
1142 /**
1143  * pci_update_current_state - Read power state of given device and cache it
1144  * @dev: PCI device to handle.
1145  * @state: State to cache in case the device doesn't have the PM capability
1146  *
1147  * The power state is read from the PMCSR register, which however is
1148  * inaccessible in D3cold.  The platform firmware is therefore queried first
1149  * to detect accessibility of the register.  In case the platform firmware
1150  * reports an incorrect state or the device isn't power manageable by the
1151  * platform at all, we try to detect D3cold by testing accessibility of the
1152  * vendor ID in config space.
1153  */
1154 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1155 {
1156 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1157 	    !pci_device_is_present(dev)) {
1158 		dev->current_state = PCI_D3cold;
1159 	} else if (dev->pm_cap) {
1160 		u16 pmcsr;
1161 
1162 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1163 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1164 	} else {
1165 		dev->current_state = state;
1166 	}
1167 }
1168 
1169 /**
1170  * pci_refresh_power_state - Refresh the given device's power state data
1171  * @dev: Target PCI device.
1172  *
1173  * Ask the platform to refresh the devices power state information and invoke
1174  * pci_update_current_state() to update its current PCI power state.
1175  */
1176 void pci_refresh_power_state(struct pci_dev *dev)
1177 {
1178 	if (platform_pci_power_manageable(dev))
1179 		platform_pci_refresh_power_state(dev);
1180 
1181 	pci_update_current_state(dev, dev->current_state);
1182 }
1183 
1184 /**
1185  * pci_platform_power_transition - Use platform to change device power state
1186  * @dev: PCI device to handle.
1187  * @state: State to put the device into.
1188  */
1189 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1190 {
1191 	int error;
1192 
1193 	if (platform_pci_power_manageable(dev)) {
1194 		error = platform_pci_set_power_state(dev, state);
1195 		if (!error)
1196 			pci_update_current_state(dev, state);
1197 	} else
1198 		error = -ENODEV;
1199 
1200 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1201 		dev->current_state = PCI_D0;
1202 
1203 	return error;
1204 }
1205 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1206 
1207 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1208 {
1209 	pm_request_resume(&pci_dev->dev);
1210 	return 0;
1211 }
1212 
1213 /**
1214  * pci_resume_bus - Walk given bus and runtime resume devices on it
1215  * @bus: Top bus of the subtree to walk.
1216  */
1217 void pci_resume_bus(struct pci_bus *bus)
1218 {
1219 	if (bus)
1220 		pci_walk_bus(bus, pci_resume_one, NULL);
1221 }
1222 
1223 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1224 {
1225 	int delay = 1;
1226 	u32 id;
1227 
1228 	/*
1229 	 * After reset, the device should not silently discard config
1230 	 * requests, but it may still indicate that it needs more time by
1231 	 * responding to them with CRS completions.  The Root Port will
1232 	 * generally synthesize ~0 data to complete the read (except when
1233 	 * CRS SV is enabled and the read was for the Vendor ID; in that
1234 	 * case it synthesizes 0x0001 data).
1235 	 *
1236 	 * Wait for the device to return a non-CRS completion.  Read the
1237 	 * Command register instead of Vendor ID so we don't have to
1238 	 * contend with the CRS SV value.
1239 	 */
1240 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1241 	while (id == ~0) {
1242 		if (delay > timeout) {
1243 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1244 				 delay - 1, reset_type);
1245 			return -ENOTTY;
1246 		}
1247 
1248 		if (delay > 1000)
1249 			pci_info(dev, "not ready %dms after %s; waiting\n",
1250 				 delay - 1, reset_type);
1251 
1252 		msleep(delay);
1253 		delay *= 2;
1254 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1255 	}
1256 
1257 	if (delay > 1000)
1258 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1259 			 reset_type);
1260 
1261 	return 0;
1262 }
1263 
1264 /**
1265  * pci_power_up - Put the given device into D0
1266  * @dev: PCI device to power up
1267  */
1268 int pci_power_up(struct pci_dev *dev)
1269 {
1270 	pci_platform_power_transition(dev, PCI_D0);
1271 
1272 	/*
1273 	 * Mandatory power management transition delays are handled in
1274 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1275 	 * corresponding bridge.
1276 	 */
1277 	if (dev->runtime_d3cold) {
1278 		/*
1279 		 * When powering on a bridge from D3cold, the whole hierarchy
1280 		 * may be powered on into D0uninitialized state, resume them to
1281 		 * give them a chance to suspend again
1282 		 */
1283 		pci_resume_bus(dev->subordinate);
1284 	}
1285 
1286 	return pci_raw_set_power_state(dev, PCI_D0);
1287 }
1288 
1289 /**
1290  * __pci_dev_set_current_state - Set current state of a PCI device
1291  * @dev: Device to handle
1292  * @data: pointer to state to be set
1293  */
1294 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1295 {
1296 	pci_power_t state = *(pci_power_t *)data;
1297 
1298 	dev->current_state = state;
1299 	return 0;
1300 }
1301 
1302 /**
1303  * pci_bus_set_current_state - Walk given bus and set current state of devices
1304  * @bus: Top bus of the subtree to walk.
1305  * @state: state to be set
1306  */
1307 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1308 {
1309 	if (bus)
1310 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1311 }
1312 
1313 /**
1314  * pci_set_power_state - Set the power state of a PCI device
1315  * @dev: PCI device to handle.
1316  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1317  *
1318  * Transition a device to a new power state, using the platform firmware and/or
1319  * the device's PCI PM registers.
1320  *
1321  * RETURN VALUE:
1322  * -EINVAL if the requested state is invalid.
1323  * -EIO if device does not support PCI PM or its PM capabilities register has a
1324  * wrong version, or device doesn't support the requested state.
1325  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1326  * 0 if device already is in the requested state.
1327  * 0 if the transition is to D3 but D3 is not supported.
1328  * 0 if device's power state has been successfully changed.
1329  */
1330 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1331 {
1332 	int error;
1333 
1334 	/* Bound the state we're entering */
1335 	if (state > PCI_D3cold)
1336 		state = PCI_D3cold;
1337 	else if (state < PCI_D0)
1338 		state = PCI_D0;
1339 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1340 
1341 		/*
1342 		 * If the device or the parent bridge do not support PCI
1343 		 * PM, ignore the request if we're doing anything other
1344 		 * than putting it into D0 (which would only happen on
1345 		 * boot).
1346 		 */
1347 		return 0;
1348 
1349 	/* Check if we're already there */
1350 	if (dev->current_state == state)
1351 		return 0;
1352 
1353 	if (state == PCI_D0)
1354 		return pci_power_up(dev);
1355 
1356 	/*
1357 	 * This device is quirked not to be put into D3, so don't put it in
1358 	 * D3
1359 	 */
1360 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1361 		return 0;
1362 
1363 	/*
1364 	 * To put device in D3cold, we put device into D3hot in native
1365 	 * way, then put device into D3cold with platform ops
1366 	 */
1367 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1368 					PCI_D3hot : state);
1369 
1370 	if (pci_platform_power_transition(dev, state))
1371 		return error;
1372 
1373 	/* Powering off a bridge may power off the whole hierarchy */
1374 	if (state == PCI_D3cold)
1375 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1376 
1377 	return 0;
1378 }
1379 EXPORT_SYMBOL(pci_set_power_state);
1380 
1381 /**
1382  * pci_choose_state - Choose the power state of a PCI device
1383  * @dev: PCI device to be suspended
1384  * @state: target sleep state for the whole system. This is the value
1385  *	   that is passed to suspend() function.
1386  *
1387  * Returns PCI power state suitable for given device and given system
1388  * message.
1389  */
1390 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1391 {
1392 	pci_power_t ret;
1393 
1394 	if (!dev->pm_cap)
1395 		return PCI_D0;
1396 
1397 	ret = platform_pci_choose_state(dev);
1398 	if (ret != PCI_POWER_ERROR)
1399 		return ret;
1400 
1401 	switch (state.event) {
1402 	case PM_EVENT_ON:
1403 		return PCI_D0;
1404 	case PM_EVENT_FREEZE:
1405 	case PM_EVENT_PRETHAW:
1406 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1407 	case PM_EVENT_SUSPEND:
1408 	case PM_EVENT_HIBERNATE:
1409 		return PCI_D3hot;
1410 	default:
1411 		pci_info(dev, "unrecognized suspend event %d\n",
1412 			 state.event);
1413 		BUG();
1414 	}
1415 	return PCI_D0;
1416 }
1417 EXPORT_SYMBOL(pci_choose_state);
1418 
1419 #define PCI_EXP_SAVE_REGS	7
1420 
1421 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1422 						       u16 cap, bool extended)
1423 {
1424 	struct pci_cap_saved_state *tmp;
1425 
1426 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1427 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1428 			return tmp;
1429 	}
1430 	return NULL;
1431 }
1432 
1433 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1434 {
1435 	return _pci_find_saved_cap(dev, cap, false);
1436 }
1437 
1438 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1439 {
1440 	return _pci_find_saved_cap(dev, cap, true);
1441 }
1442 
1443 static int pci_save_pcie_state(struct pci_dev *dev)
1444 {
1445 	int i = 0;
1446 	struct pci_cap_saved_state *save_state;
1447 	u16 *cap;
1448 
1449 	if (!pci_is_pcie(dev))
1450 		return 0;
1451 
1452 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1453 	if (!save_state) {
1454 		pci_err(dev, "buffer not found in %s\n", __func__);
1455 		return -ENOMEM;
1456 	}
1457 
1458 	cap = (u16 *)&save_state->cap.data[0];
1459 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1460 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1461 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1462 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1463 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1464 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1465 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1466 
1467 	return 0;
1468 }
1469 
1470 static void pci_restore_pcie_state(struct pci_dev *dev)
1471 {
1472 	int i = 0;
1473 	struct pci_cap_saved_state *save_state;
1474 	u16 *cap;
1475 
1476 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1477 	if (!save_state)
1478 		return;
1479 
1480 	cap = (u16 *)&save_state->cap.data[0];
1481 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1482 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1483 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1484 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1485 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1486 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1487 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1488 }
1489 
1490 static int pci_save_pcix_state(struct pci_dev *dev)
1491 {
1492 	int pos;
1493 	struct pci_cap_saved_state *save_state;
1494 
1495 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1496 	if (!pos)
1497 		return 0;
1498 
1499 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1500 	if (!save_state) {
1501 		pci_err(dev, "buffer not found in %s\n", __func__);
1502 		return -ENOMEM;
1503 	}
1504 
1505 	pci_read_config_word(dev, pos + PCI_X_CMD,
1506 			     (u16 *)save_state->cap.data);
1507 
1508 	return 0;
1509 }
1510 
1511 static void pci_restore_pcix_state(struct pci_dev *dev)
1512 {
1513 	int i = 0, pos;
1514 	struct pci_cap_saved_state *save_state;
1515 	u16 *cap;
1516 
1517 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1518 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1519 	if (!save_state || !pos)
1520 		return;
1521 	cap = (u16 *)&save_state->cap.data[0];
1522 
1523 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1524 }
1525 
1526 static void pci_save_ltr_state(struct pci_dev *dev)
1527 {
1528 	int ltr;
1529 	struct pci_cap_saved_state *save_state;
1530 	u16 *cap;
1531 
1532 	if (!pci_is_pcie(dev))
1533 		return;
1534 
1535 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1536 	if (!ltr)
1537 		return;
1538 
1539 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1540 	if (!save_state) {
1541 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1542 		return;
1543 	}
1544 
1545 	cap = (u16 *)&save_state->cap.data[0];
1546 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1547 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1548 }
1549 
1550 static void pci_restore_ltr_state(struct pci_dev *dev)
1551 {
1552 	struct pci_cap_saved_state *save_state;
1553 	int ltr;
1554 	u16 *cap;
1555 
1556 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1557 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1558 	if (!save_state || !ltr)
1559 		return;
1560 
1561 	cap = (u16 *)&save_state->cap.data[0];
1562 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1563 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1564 }
1565 
1566 /**
1567  * pci_save_state - save the PCI configuration space of a device before
1568  *		    suspending
1569  * @dev: PCI device that we're dealing with
1570  */
1571 int pci_save_state(struct pci_dev *dev)
1572 {
1573 	int i;
1574 	/* XXX: 100% dword access ok here? */
1575 	for (i = 0; i < 16; i++) {
1576 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1577 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1578 			i * 4, dev->saved_config_space[i]);
1579 	}
1580 	dev->state_saved = true;
1581 
1582 	i = pci_save_pcie_state(dev);
1583 	if (i != 0)
1584 		return i;
1585 
1586 	i = pci_save_pcix_state(dev);
1587 	if (i != 0)
1588 		return i;
1589 
1590 	pci_save_ltr_state(dev);
1591 	pci_save_dpc_state(dev);
1592 	pci_save_aer_state(dev);
1593 	pci_save_ptm_state(dev);
1594 	return pci_save_vc_state(dev);
1595 }
1596 EXPORT_SYMBOL(pci_save_state);
1597 
1598 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1599 				     u32 saved_val, int retry, bool force)
1600 {
1601 	u32 val;
1602 
1603 	pci_read_config_dword(pdev, offset, &val);
1604 	if (!force && val == saved_val)
1605 		return;
1606 
1607 	for (;;) {
1608 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1609 			offset, val, saved_val);
1610 		pci_write_config_dword(pdev, offset, saved_val);
1611 		if (retry-- <= 0)
1612 			return;
1613 
1614 		pci_read_config_dword(pdev, offset, &val);
1615 		if (val == saved_val)
1616 			return;
1617 
1618 		mdelay(1);
1619 	}
1620 }
1621 
1622 static void pci_restore_config_space_range(struct pci_dev *pdev,
1623 					   int start, int end, int retry,
1624 					   bool force)
1625 {
1626 	int index;
1627 
1628 	for (index = end; index >= start; index--)
1629 		pci_restore_config_dword(pdev, 4 * index,
1630 					 pdev->saved_config_space[index],
1631 					 retry, force);
1632 }
1633 
1634 static void pci_restore_config_space(struct pci_dev *pdev)
1635 {
1636 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1637 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1638 		/* Restore BARs before the command register. */
1639 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1640 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1641 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1642 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1643 
1644 		/*
1645 		 * Force rewriting of prefetch registers to avoid S3 resume
1646 		 * issues on Intel PCI bridges that occur when these
1647 		 * registers are not explicitly written.
1648 		 */
1649 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1650 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1651 	} else {
1652 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1653 	}
1654 }
1655 
1656 static void pci_restore_rebar_state(struct pci_dev *pdev)
1657 {
1658 	unsigned int pos, nbars, i;
1659 	u32 ctrl;
1660 
1661 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1662 	if (!pos)
1663 		return;
1664 
1665 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1666 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1667 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1668 
1669 	for (i = 0; i < nbars; i++, pos += 8) {
1670 		struct resource *res;
1671 		int bar_idx, size;
1672 
1673 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1674 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1675 		res = pdev->resource + bar_idx;
1676 		size = pci_rebar_bytes_to_size(resource_size(res));
1677 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1678 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1679 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1680 	}
1681 }
1682 
1683 /**
1684  * pci_restore_state - Restore the saved state of a PCI device
1685  * @dev: PCI device that we're dealing with
1686  */
1687 void pci_restore_state(struct pci_dev *dev)
1688 {
1689 	if (!dev->state_saved)
1690 		return;
1691 
1692 	/*
1693 	 * Restore max latencies (in the LTR capability) before enabling
1694 	 * LTR itself (in the PCIe capability).
1695 	 */
1696 	pci_restore_ltr_state(dev);
1697 
1698 	pci_restore_pcie_state(dev);
1699 	pci_restore_pasid_state(dev);
1700 	pci_restore_pri_state(dev);
1701 	pci_restore_ats_state(dev);
1702 	pci_restore_vc_state(dev);
1703 	pci_restore_rebar_state(dev);
1704 	pci_restore_dpc_state(dev);
1705 	pci_restore_ptm_state(dev);
1706 
1707 	pci_aer_clear_status(dev);
1708 	pci_restore_aer_state(dev);
1709 
1710 	pci_restore_config_space(dev);
1711 
1712 	pci_restore_pcix_state(dev);
1713 	pci_restore_msi_state(dev);
1714 
1715 	/* Restore ACS and IOV configuration state */
1716 	pci_enable_acs(dev);
1717 	pci_restore_iov_state(dev);
1718 
1719 	dev->state_saved = false;
1720 }
1721 EXPORT_SYMBOL(pci_restore_state);
1722 
1723 struct pci_saved_state {
1724 	u32 config_space[16];
1725 	struct pci_cap_saved_data cap[];
1726 };
1727 
1728 /**
1729  * pci_store_saved_state - Allocate and return an opaque struct containing
1730  *			   the device saved state.
1731  * @dev: PCI device that we're dealing with
1732  *
1733  * Return NULL if no state or error.
1734  */
1735 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1736 {
1737 	struct pci_saved_state *state;
1738 	struct pci_cap_saved_state *tmp;
1739 	struct pci_cap_saved_data *cap;
1740 	size_t size;
1741 
1742 	if (!dev->state_saved)
1743 		return NULL;
1744 
1745 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1746 
1747 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1748 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1749 
1750 	state = kzalloc(size, GFP_KERNEL);
1751 	if (!state)
1752 		return NULL;
1753 
1754 	memcpy(state->config_space, dev->saved_config_space,
1755 	       sizeof(state->config_space));
1756 
1757 	cap = state->cap;
1758 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1759 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1760 		memcpy(cap, &tmp->cap, len);
1761 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1762 	}
1763 	/* Empty cap_save terminates list */
1764 
1765 	return state;
1766 }
1767 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1768 
1769 /**
1770  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1771  * @dev: PCI device that we're dealing with
1772  * @state: Saved state returned from pci_store_saved_state()
1773  */
1774 int pci_load_saved_state(struct pci_dev *dev,
1775 			 struct pci_saved_state *state)
1776 {
1777 	struct pci_cap_saved_data *cap;
1778 
1779 	dev->state_saved = false;
1780 
1781 	if (!state)
1782 		return 0;
1783 
1784 	memcpy(dev->saved_config_space, state->config_space,
1785 	       sizeof(state->config_space));
1786 
1787 	cap = state->cap;
1788 	while (cap->size) {
1789 		struct pci_cap_saved_state *tmp;
1790 
1791 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1792 		if (!tmp || tmp->cap.size != cap->size)
1793 			return -EINVAL;
1794 
1795 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1796 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1797 		       sizeof(struct pci_cap_saved_data) + cap->size);
1798 	}
1799 
1800 	dev->state_saved = true;
1801 	return 0;
1802 }
1803 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1804 
1805 /**
1806  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1807  *				   and free the memory allocated for it.
1808  * @dev: PCI device that we're dealing with
1809  * @state: Pointer to saved state returned from pci_store_saved_state()
1810  */
1811 int pci_load_and_free_saved_state(struct pci_dev *dev,
1812 				  struct pci_saved_state **state)
1813 {
1814 	int ret = pci_load_saved_state(dev, *state);
1815 	kfree(*state);
1816 	*state = NULL;
1817 	return ret;
1818 }
1819 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1820 
1821 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1822 {
1823 	return pci_enable_resources(dev, bars);
1824 }
1825 
1826 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1827 {
1828 	int err;
1829 	struct pci_dev *bridge;
1830 	u16 cmd;
1831 	u8 pin;
1832 
1833 	err = pci_set_power_state(dev, PCI_D0);
1834 	if (err < 0 && err != -EIO)
1835 		return err;
1836 
1837 	bridge = pci_upstream_bridge(dev);
1838 	if (bridge)
1839 		pcie_aspm_powersave_config_link(bridge);
1840 
1841 	err = pcibios_enable_device(dev, bars);
1842 	if (err < 0)
1843 		return err;
1844 	pci_fixup_device(pci_fixup_enable, dev);
1845 
1846 	if (dev->msi_enabled || dev->msix_enabled)
1847 		return 0;
1848 
1849 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1850 	if (pin) {
1851 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1852 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1853 			pci_write_config_word(dev, PCI_COMMAND,
1854 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1855 	}
1856 
1857 	return 0;
1858 }
1859 
1860 /**
1861  * pci_reenable_device - Resume abandoned device
1862  * @dev: PCI device to be resumed
1863  *
1864  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1865  * to be called by normal code, write proper resume handler and use it instead.
1866  */
1867 int pci_reenable_device(struct pci_dev *dev)
1868 {
1869 	if (pci_is_enabled(dev))
1870 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1871 	return 0;
1872 }
1873 EXPORT_SYMBOL(pci_reenable_device);
1874 
1875 static void pci_enable_bridge(struct pci_dev *dev)
1876 {
1877 	struct pci_dev *bridge;
1878 	int retval;
1879 
1880 	bridge = pci_upstream_bridge(dev);
1881 	if (bridge)
1882 		pci_enable_bridge(bridge);
1883 
1884 	if (pci_is_enabled(dev)) {
1885 		if (!dev->is_busmaster)
1886 			pci_set_master(dev);
1887 		return;
1888 	}
1889 
1890 	retval = pci_enable_device(dev);
1891 	if (retval)
1892 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1893 			retval);
1894 	pci_set_master(dev);
1895 }
1896 
1897 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1898 {
1899 	struct pci_dev *bridge;
1900 	int err;
1901 	int i, bars = 0;
1902 
1903 	/*
1904 	 * Power state could be unknown at this point, either due to a fresh
1905 	 * boot or a device removal call.  So get the current power state
1906 	 * so that things like MSI message writing will behave as expected
1907 	 * (e.g. if the device really is in D0 at enable time).
1908 	 */
1909 	pci_update_current_state(dev, dev->current_state);
1910 
1911 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1912 		return 0;		/* already enabled */
1913 
1914 	bridge = pci_upstream_bridge(dev);
1915 	if (bridge)
1916 		pci_enable_bridge(bridge);
1917 
1918 	/* only skip sriov related */
1919 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1920 		if (dev->resource[i].flags & flags)
1921 			bars |= (1 << i);
1922 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1923 		if (dev->resource[i].flags & flags)
1924 			bars |= (1 << i);
1925 
1926 	err = do_pci_enable_device(dev, bars);
1927 	if (err < 0)
1928 		atomic_dec(&dev->enable_cnt);
1929 	return err;
1930 }
1931 
1932 /**
1933  * pci_enable_device_io - Initialize a device for use with IO space
1934  * @dev: PCI device to be initialized
1935  *
1936  * Initialize device before it's used by a driver. Ask low-level code
1937  * to enable I/O resources. Wake up the device if it was suspended.
1938  * Beware, this function can fail.
1939  */
1940 int pci_enable_device_io(struct pci_dev *dev)
1941 {
1942 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1943 }
1944 EXPORT_SYMBOL(pci_enable_device_io);
1945 
1946 /**
1947  * pci_enable_device_mem - Initialize a device for use with Memory space
1948  * @dev: PCI device to be initialized
1949  *
1950  * Initialize device before it's used by a driver. Ask low-level code
1951  * to enable Memory resources. Wake up the device if it was suspended.
1952  * Beware, this function can fail.
1953  */
1954 int pci_enable_device_mem(struct pci_dev *dev)
1955 {
1956 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1957 }
1958 EXPORT_SYMBOL(pci_enable_device_mem);
1959 
1960 /**
1961  * pci_enable_device - Initialize device before it's used by a driver.
1962  * @dev: PCI device to be initialized
1963  *
1964  * Initialize device before it's used by a driver. Ask low-level code
1965  * to enable I/O and memory. Wake up the device if it was suspended.
1966  * Beware, this function can fail.
1967  *
1968  * Note we don't actually enable the device many times if we call
1969  * this function repeatedly (we just increment the count).
1970  */
1971 int pci_enable_device(struct pci_dev *dev)
1972 {
1973 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1974 }
1975 EXPORT_SYMBOL(pci_enable_device);
1976 
1977 /*
1978  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1979  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1980  * there's no need to track it separately.  pci_devres is initialized
1981  * when a device is enabled using managed PCI device enable interface.
1982  */
1983 struct pci_devres {
1984 	unsigned int enabled:1;
1985 	unsigned int pinned:1;
1986 	unsigned int orig_intx:1;
1987 	unsigned int restore_intx:1;
1988 	unsigned int mwi:1;
1989 	u32 region_mask;
1990 };
1991 
1992 static void pcim_release(struct device *gendev, void *res)
1993 {
1994 	struct pci_dev *dev = to_pci_dev(gendev);
1995 	struct pci_devres *this = res;
1996 	int i;
1997 
1998 	if (dev->msi_enabled)
1999 		pci_disable_msi(dev);
2000 	if (dev->msix_enabled)
2001 		pci_disable_msix(dev);
2002 
2003 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2004 		if (this->region_mask & (1 << i))
2005 			pci_release_region(dev, i);
2006 
2007 	if (this->mwi)
2008 		pci_clear_mwi(dev);
2009 
2010 	if (this->restore_intx)
2011 		pci_intx(dev, this->orig_intx);
2012 
2013 	if (this->enabled && !this->pinned)
2014 		pci_disable_device(dev);
2015 }
2016 
2017 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2018 {
2019 	struct pci_devres *dr, *new_dr;
2020 
2021 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2022 	if (dr)
2023 		return dr;
2024 
2025 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2026 	if (!new_dr)
2027 		return NULL;
2028 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2029 }
2030 
2031 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2032 {
2033 	if (pci_is_managed(pdev))
2034 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2035 	return NULL;
2036 }
2037 
2038 /**
2039  * pcim_enable_device - Managed pci_enable_device()
2040  * @pdev: PCI device to be initialized
2041  *
2042  * Managed pci_enable_device().
2043  */
2044 int pcim_enable_device(struct pci_dev *pdev)
2045 {
2046 	struct pci_devres *dr;
2047 	int rc;
2048 
2049 	dr = get_pci_dr(pdev);
2050 	if (unlikely(!dr))
2051 		return -ENOMEM;
2052 	if (dr->enabled)
2053 		return 0;
2054 
2055 	rc = pci_enable_device(pdev);
2056 	if (!rc) {
2057 		pdev->is_managed = 1;
2058 		dr->enabled = 1;
2059 	}
2060 	return rc;
2061 }
2062 EXPORT_SYMBOL(pcim_enable_device);
2063 
2064 /**
2065  * pcim_pin_device - Pin managed PCI device
2066  * @pdev: PCI device to pin
2067  *
2068  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2069  * driver detach.  @pdev must have been enabled with
2070  * pcim_enable_device().
2071  */
2072 void pcim_pin_device(struct pci_dev *pdev)
2073 {
2074 	struct pci_devres *dr;
2075 
2076 	dr = find_pci_dr(pdev);
2077 	WARN_ON(!dr || !dr->enabled);
2078 	if (dr)
2079 		dr->pinned = 1;
2080 }
2081 EXPORT_SYMBOL(pcim_pin_device);
2082 
2083 /*
2084  * pcibios_add_device - provide arch specific hooks when adding device dev
2085  * @dev: the PCI device being added
2086  *
2087  * Permits the platform to provide architecture specific functionality when
2088  * devices are added. This is the default implementation. Architecture
2089  * implementations can override this.
2090  */
2091 int __weak pcibios_add_device(struct pci_dev *dev)
2092 {
2093 	return 0;
2094 }
2095 
2096 /**
2097  * pcibios_release_device - provide arch specific hooks when releasing
2098  *			    device dev
2099  * @dev: the PCI device being released
2100  *
2101  * Permits the platform to provide architecture specific functionality when
2102  * devices are released. This is the default implementation. Architecture
2103  * implementations can override this.
2104  */
2105 void __weak pcibios_release_device(struct pci_dev *dev) {}
2106 
2107 /**
2108  * pcibios_disable_device - disable arch specific PCI resources for device dev
2109  * @dev: the PCI device to disable
2110  *
2111  * Disables architecture specific PCI resources for the device. This
2112  * is the default implementation. Architecture implementations can
2113  * override this.
2114  */
2115 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2116 
2117 /**
2118  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2119  * @irq: ISA IRQ to penalize
2120  * @active: IRQ active or not
2121  *
2122  * Permits the platform to provide architecture-specific functionality when
2123  * penalizing ISA IRQs. This is the default implementation. Architecture
2124  * implementations can override this.
2125  */
2126 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2127 
2128 static void do_pci_disable_device(struct pci_dev *dev)
2129 {
2130 	u16 pci_command;
2131 
2132 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2133 	if (pci_command & PCI_COMMAND_MASTER) {
2134 		pci_command &= ~PCI_COMMAND_MASTER;
2135 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2136 	}
2137 
2138 	pcibios_disable_device(dev);
2139 }
2140 
2141 /**
2142  * pci_disable_enabled_device - Disable device without updating enable_cnt
2143  * @dev: PCI device to disable
2144  *
2145  * NOTE: This function is a backend of PCI power management routines and is
2146  * not supposed to be called drivers.
2147  */
2148 void pci_disable_enabled_device(struct pci_dev *dev)
2149 {
2150 	if (pci_is_enabled(dev))
2151 		do_pci_disable_device(dev);
2152 }
2153 
2154 /**
2155  * pci_disable_device - Disable PCI device after use
2156  * @dev: PCI device to be disabled
2157  *
2158  * Signal to the system that the PCI device is not in use by the system
2159  * anymore.  This only involves disabling PCI bus-mastering, if active.
2160  *
2161  * Note we don't actually disable the device until all callers of
2162  * pci_enable_device() have called pci_disable_device().
2163  */
2164 void pci_disable_device(struct pci_dev *dev)
2165 {
2166 	struct pci_devres *dr;
2167 
2168 	dr = find_pci_dr(dev);
2169 	if (dr)
2170 		dr->enabled = 0;
2171 
2172 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2173 		      "disabling already-disabled device");
2174 
2175 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2176 		return;
2177 
2178 	do_pci_disable_device(dev);
2179 
2180 	dev->is_busmaster = 0;
2181 }
2182 EXPORT_SYMBOL(pci_disable_device);
2183 
2184 /**
2185  * pcibios_set_pcie_reset_state - set reset state for device dev
2186  * @dev: the PCIe device reset
2187  * @state: Reset state to enter into
2188  *
2189  * Set the PCIe reset state for the device. This is the default
2190  * implementation. Architecture implementations can override this.
2191  */
2192 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2193 					enum pcie_reset_state state)
2194 {
2195 	return -EINVAL;
2196 }
2197 
2198 /**
2199  * pci_set_pcie_reset_state - set reset state for device dev
2200  * @dev: the PCIe device reset
2201  * @state: Reset state to enter into
2202  *
2203  * Sets the PCI reset state for the device.
2204  */
2205 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2206 {
2207 	return pcibios_set_pcie_reset_state(dev, state);
2208 }
2209 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2210 
2211 void pcie_clear_device_status(struct pci_dev *dev)
2212 {
2213 	u16 sta;
2214 
2215 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2216 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2217 }
2218 
2219 /**
2220  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2221  * @dev: PCIe root port or event collector.
2222  */
2223 void pcie_clear_root_pme_status(struct pci_dev *dev)
2224 {
2225 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2226 }
2227 
2228 /**
2229  * pci_check_pme_status - Check if given device has generated PME.
2230  * @dev: Device to check.
2231  *
2232  * Check the PME status of the device and if set, clear it and clear PME enable
2233  * (if set).  Return 'true' if PME status and PME enable were both set or
2234  * 'false' otherwise.
2235  */
2236 bool pci_check_pme_status(struct pci_dev *dev)
2237 {
2238 	int pmcsr_pos;
2239 	u16 pmcsr;
2240 	bool ret = false;
2241 
2242 	if (!dev->pm_cap)
2243 		return false;
2244 
2245 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2246 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2247 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2248 		return false;
2249 
2250 	/* Clear PME status. */
2251 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2252 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2253 		/* Disable PME to avoid interrupt flood. */
2254 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2255 		ret = true;
2256 	}
2257 
2258 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2259 
2260 	return ret;
2261 }
2262 
2263 /**
2264  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2265  * @dev: Device to handle.
2266  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2267  *
2268  * Check if @dev has generated PME and queue a resume request for it in that
2269  * case.
2270  */
2271 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2272 {
2273 	if (pme_poll_reset && dev->pme_poll)
2274 		dev->pme_poll = false;
2275 
2276 	if (pci_check_pme_status(dev)) {
2277 		pci_wakeup_event(dev);
2278 		pm_request_resume(&dev->dev);
2279 	}
2280 	return 0;
2281 }
2282 
2283 /**
2284  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2285  * @bus: Top bus of the subtree to walk.
2286  */
2287 void pci_pme_wakeup_bus(struct pci_bus *bus)
2288 {
2289 	if (bus)
2290 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2291 }
2292 
2293 
2294 /**
2295  * pci_pme_capable - check the capability of PCI device to generate PME#
2296  * @dev: PCI device to handle.
2297  * @state: PCI state from which device will issue PME#.
2298  */
2299 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2300 {
2301 	if (!dev->pm_cap)
2302 		return false;
2303 
2304 	return !!(dev->pme_support & (1 << state));
2305 }
2306 EXPORT_SYMBOL(pci_pme_capable);
2307 
2308 static void pci_pme_list_scan(struct work_struct *work)
2309 {
2310 	struct pci_pme_device *pme_dev, *n;
2311 
2312 	mutex_lock(&pci_pme_list_mutex);
2313 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2314 		if (pme_dev->dev->pme_poll) {
2315 			struct pci_dev *bridge;
2316 
2317 			bridge = pme_dev->dev->bus->self;
2318 			/*
2319 			 * If bridge is in low power state, the
2320 			 * configuration space of subordinate devices
2321 			 * may be not accessible
2322 			 */
2323 			if (bridge && bridge->current_state != PCI_D0)
2324 				continue;
2325 			/*
2326 			 * If the device is in D3cold it should not be
2327 			 * polled either.
2328 			 */
2329 			if (pme_dev->dev->current_state == PCI_D3cold)
2330 				continue;
2331 
2332 			pci_pme_wakeup(pme_dev->dev, NULL);
2333 		} else {
2334 			list_del(&pme_dev->list);
2335 			kfree(pme_dev);
2336 		}
2337 	}
2338 	if (!list_empty(&pci_pme_list))
2339 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2340 				   msecs_to_jiffies(PME_TIMEOUT));
2341 	mutex_unlock(&pci_pme_list_mutex);
2342 }
2343 
2344 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2345 {
2346 	u16 pmcsr;
2347 
2348 	if (!dev->pme_support)
2349 		return;
2350 
2351 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2352 	/* Clear PME_Status by writing 1 to it and enable PME# */
2353 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2354 	if (!enable)
2355 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2356 
2357 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2358 }
2359 
2360 /**
2361  * pci_pme_restore - Restore PME configuration after config space restore.
2362  * @dev: PCI device to update.
2363  */
2364 void pci_pme_restore(struct pci_dev *dev)
2365 {
2366 	u16 pmcsr;
2367 
2368 	if (!dev->pme_support)
2369 		return;
2370 
2371 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2372 	if (dev->wakeup_prepared) {
2373 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2374 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2375 	} else {
2376 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2377 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2378 	}
2379 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2380 }
2381 
2382 /**
2383  * pci_pme_active - enable or disable PCI device's PME# function
2384  * @dev: PCI device to handle.
2385  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2386  *
2387  * The caller must verify that the device is capable of generating PME# before
2388  * calling this function with @enable equal to 'true'.
2389  */
2390 void pci_pme_active(struct pci_dev *dev, bool enable)
2391 {
2392 	__pci_pme_active(dev, enable);
2393 
2394 	/*
2395 	 * PCI (as opposed to PCIe) PME requires that the device have
2396 	 * its PME# line hooked up correctly. Not all hardware vendors
2397 	 * do this, so the PME never gets delivered and the device
2398 	 * remains asleep. The easiest way around this is to
2399 	 * periodically walk the list of suspended devices and check
2400 	 * whether any have their PME flag set. The assumption is that
2401 	 * we'll wake up often enough anyway that this won't be a huge
2402 	 * hit, and the power savings from the devices will still be a
2403 	 * win.
2404 	 *
2405 	 * Although PCIe uses in-band PME message instead of PME# line
2406 	 * to report PME, PME does not work for some PCIe devices in
2407 	 * reality.  For example, there are devices that set their PME
2408 	 * status bits, but don't really bother to send a PME message;
2409 	 * there are PCI Express Root Ports that don't bother to
2410 	 * trigger interrupts when they receive PME messages from the
2411 	 * devices below.  So PME poll is used for PCIe devices too.
2412 	 */
2413 
2414 	if (dev->pme_poll) {
2415 		struct pci_pme_device *pme_dev;
2416 		if (enable) {
2417 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2418 					  GFP_KERNEL);
2419 			if (!pme_dev) {
2420 				pci_warn(dev, "can't enable PME#\n");
2421 				return;
2422 			}
2423 			pme_dev->dev = dev;
2424 			mutex_lock(&pci_pme_list_mutex);
2425 			list_add(&pme_dev->list, &pci_pme_list);
2426 			if (list_is_singular(&pci_pme_list))
2427 				queue_delayed_work(system_freezable_wq,
2428 						   &pci_pme_work,
2429 						   msecs_to_jiffies(PME_TIMEOUT));
2430 			mutex_unlock(&pci_pme_list_mutex);
2431 		} else {
2432 			mutex_lock(&pci_pme_list_mutex);
2433 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2434 				if (pme_dev->dev == dev) {
2435 					list_del(&pme_dev->list);
2436 					kfree(pme_dev);
2437 					break;
2438 				}
2439 			}
2440 			mutex_unlock(&pci_pme_list_mutex);
2441 		}
2442 	}
2443 
2444 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2445 }
2446 EXPORT_SYMBOL(pci_pme_active);
2447 
2448 /**
2449  * __pci_enable_wake - enable PCI device as wakeup event source
2450  * @dev: PCI device affected
2451  * @state: PCI state from which device will issue wakeup events
2452  * @enable: True to enable event generation; false to disable
2453  *
2454  * This enables the device as a wakeup event source, or disables it.
2455  * When such events involves platform-specific hooks, those hooks are
2456  * called automatically by this routine.
2457  *
2458  * Devices with legacy power management (no standard PCI PM capabilities)
2459  * always require such platform hooks.
2460  *
2461  * RETURN VALUE:
2462  * 0 is returned on success
2463  * -EINVAL is returned if device is not supposed to wake up the system
2464  * Error code depending on the platform is returned if both the platform and
2465  * the native mechanism fail to enable the generation of wake-up events
2466  */
2467 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2468 {
2469 	int ret = 0;
2470 
2471 	/*
2472 	 * Bridges that are not power-manageable directly only signal
2473 	 * wakeup on behalf of subordinate devices which is set up
2474 	 * elsewhere, so skip them. However, bridges that are
2475 	 * power-manageable may signal wakeup for themselves (for example,
2476 	 * on a hotplug event) and they need to be covered here.
2477 	 */
2478 	if (!pci_power_manageable(dev))
2479 		return 0;
2480 
2481 	/* Don't do the same thing twice in a row for one device. */
2482 	if (!!enable == !!dev->wakeup_prepared)
2483 		return 0;
2484 
2485 	/*
2486 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2487 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2488 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2489 	 */
2490 
2491 	if (enable) {
2492 		int error;
2493 
2494 		/*
2495 		 * Enable PME signaling if the device can signal PME from
2496 		 * D3cold regardless of whether or not it can signal PME from
2497 		 * the current target state, because that will allow it to
2498 		 * signal PME when the hierarchy above it goes into D3cold and
2499 		 * the device itself ends up in D3cold as a result of that.
2500 		 */
2501 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2502 			pci_pme_active(dev, true);
2503 		else
2504 			ret = 1;
2505 		error = platform_pci_set_wakeup(dev, true);
2506 		if (ret)
2507 			ret = error;
2508 		if (!ret)
2509 			dev->wakeup_prepared = true;
2510 	} else {
2511 		platform_pci_set_wakeup(dev, false);
2512 		pci_pme_active(dev, false);
2513 		dev->wakeup_prepared = false;
2514 	}
2515 
2516 	return ret;
2517 }
2518 
2519 /**
2520  * pci_enable_wake - change wakeup settings for a PCI device
2521  * @pci_dev: Target device
2522  * @state: PCI state from which device will issue wakeup events
2523  * @enable: Whether or not to enable event generation
2524  *
2525  * If @enable is set, check device_may_wakeup() for the device before calling
2526  * __pci_enable_wake() for it.
2527  */
2528 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2529 {
2530 	if (enable && !device_may_wakeup(&pci_dev->dev))
2531 		return -EINVAL;
2532 
2533 	return __pci_enable_wake(pci_dev, state, enable);
2534 }
2535 EXPORT_SYMBOL(pci_enable_wake);
2536 
2537 /**
2538  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2539  * @dev: PCI device to prepare
2540  * @enable: True to enable wake-up event generation; false to disable
2541  *
2542  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2543  * and this function allows them to set that up cleanly - pci_enable_wake()
2544  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2545  * ordering constraints.
2546  *
2547  * This function only returns error code if the device is not allowed to wake
2548  * up the system from sleep or it is not capable of generating PME# from both
2549  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2550  */
2551 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2552 {
2553 	return pci_pme_capable(dev, PCI_D3cold) ?
2554 			pci_enable_wake(dev, PCI_D3cold, enable) :
2555 			pci_enable_wake(dev, PCI_D3hot, enable);
2556 }
2557 EXPORT_SYMBOL(pci_wake_from_d3);
2558 
2559 /**
2560  * pci_target_state - find an appropriate low power state for a given PCI dev
2561  * @dev: PCI device
2562  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2563  *
2564  * Use underlying platform code to find a supported low power state for @dev.
2565  * If the platform can't manage @dev, return the deepest state from which it
2566  * can generate wake events, based on any available PME info.
2567  */
2568 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2569 {
2570 	pci_power_t target_state = PCI_D3hot;
2571 
2572 	if (platform_pci_power_manageable(dev)) {
2573 		/*
2574 		 * Call the platform to find the target state for the device.
2575 		 */
2576 		pci_power_t state = platform_pci_choose_state(dev);
2577 
2578 		switch (state) {
2579 		case PCI_POWER_ERROR:
2580 		case PCI_UNKNOWN:
2581 			break;
2582 		case PCI_D1:
2583 		case PCI_D2:
2584 			if (pci_no_d1d2(dev))
2585 				break;
2586 			fallthrough;
2587 		default:
2588 			target_state = state;
2589 		}
2590 
2591 		return target_state;
2592 	}
2593 
2594 	if (!dev->pm_cap)
2595 		target_state = PCI_D0;
2596 
2597 	/*
2598 	 * If the device is in D3cold even though it's not power-manageable by
2599 	 * the platform, it may have been powered down by non-standard means.
2600 	 * Best to let it slumber.
2601 	 */
2602 	if (dev->current_state == PCI_D3cold)
2603 		target_state = PCI_D3cold;
2604 
2605 	if (wakeup && dev->pme_support) {
2606 		pci_power_t state = target_state;
2607 
2608 		/*
2609 		 * Find the deepest state from which the device can generate
2610 		 * PME#.
2611 		 */
2612 		while (state && !(dev->pme_support & (1 << state)))
2613 			state--;
2614 
2615 		if (state)
2616 			return state;
2617 		else if (dev->pme_support & 1)
2618 			return PCI_D0;
2619 	}
2620 
2621 	return target_state;
2622 }
2623 
2624 /**
2625  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2626  *			  into a sleep state
2627  * @dev: Device to handle.
2628  *
2629  * Choose the power state appropriate for the device depending on whether
2630  * it can wake up the system and/or is power manageable by the platform
2631  * (PCI_D3hot is the default) and put the device into that state.
2632  */
2633 int pci_prepare_to_sleep(struct pci_dev *dev)
2634 {
2635 	bool wakeup = device_may_wakeup(&dev->dev);
2636 	pci_power_t target_state = pci_target_state(dev, wakeup);
2637 	int error;
2638 
2639 	if (target_state == PCI_POWER_ERROR)
2640 		return -EIO;
2641 
2642 	/*
2643 	 * There are systems (for example, Intel mobile chips since Coffee
2644 	 * Lake) where the power drawn while suspended can be significantly
2645 	 * reduced by disabling PTM on PCIe root ports as this allows the
2646 	 * port to enter a lower-power PM state and the SoC to reach a
2647 	 * lower-power idle state as a whole.
2648 	 */
2649 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2650 		pci_disable_ptm(dev);
2651 
2652 	pci_enable_wake(dev, target_state, wakeup);
2653 
2654 	error = pci_set_power_state(dev, target_state);
2655 
2656 	if (error) {
2657 		pci_enable_wake(dev, target_state, false);
2658 		pci_restore_ptm_state(dev);
2659 	}
2660 
2661 	return error;
2662 }
2663 EXPORT_SYMBOL(pci_prepare_to_sleep);
2664 
2665 /**
2666  * pci_back_from_sleep - turn PCI device on during system-wide transition
2667  *			 into working state
2668  * @dev: Device to handle.
2669  *
2670  * Disable device's system wake-up capability and put it into D0.
2671  */
2672 int pci_back_from_sleep(struct pci_dev *dev)
2673 {
2674 	pci_enable_wake(dev, PCI_D0, false);
2675 	return pci_set_power_state(dev, PCI_D0);
2676 }
2677 EXPORT_SYMBOL(pci_back_from_sleep);
2678 
2679 /**
2680  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2681  * @dev: PCI device being suspended.
2682  *
2683  * Prepare @dev to generate wake-up events at run time and put it into a low
2684  * power state.
2685  */
2686 int pci_finish_runtime_suspend(struct pci_dev *dev)
2687 {
2688 	pci_power_t target_state;
2689 	int error;
2690 
2691 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2692 	if (target_state == PCI_POWER_ERROR)
2693 		return -EIO;
2694 
2695 	dev->runtime_d3cold = target_state == PCI_D3cold;
2696 
2697 	/*
2698 	 * There are systems (for example, Intel mobile chips since Coffee
2699 	 * Lake) where the power drawn while suspended can be significantly
2700 	 * reduced by disabling PTM on PCIe root ports as this allows the
2701 	 * port to enter a lower-power PM state and the SoC to reach a
2702 	 * lower-power idle state as a whole.
2703 	 */
2704 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2705 		pci_disable_ptm(dev);
2706 
2707 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2708 
2709 	error = pci_set_power_state(dev, target_state);
2710 
2711 	if (error) {
2712 		pci_enable_wake(dev, target_state, false);
2713 		pci_restore_ptm_state(dev);
2714 		dev->runtime_d3cold = false;
2715 	}
2716 
2717 	return error;
2718 }
2719 
2720 /**
2721  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2722  * @dev: Device to check.
2723  *
2724  * Return true if the device itself is capable of generating wake-up events
2725  * (through the platform or using the native PCIe PME) or if the device supports
2726  * PME and one of its upstream bridges can generate wake-up events.
2727  */
2728 bool pci_dev_run_wake(struct pci_dev *dev)
2729 {
2730 	struct pci_bus *bus = dev->bus;
2731 
2732 	if (!dev->pme_support)
2733 		return false;
2734 
2735 	/* PME-capable in principle, but not from the target power state */
2736 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2737 		return false;
2738 
2739 	if (device_can_wakeup(&dev->dev))
2740 		return true;
2741 
2742 	while (bus->parent) {
2743 		struct pci_dev *bridge = bus->self;
2744 
2745 		if (device_can_wakeup(&bridge->dev))
2746 			return true;
2747 
2748 		bus = bus->parent;
2749 	}
2750 
2751 	/* We have reached the root bus. */
2752 	if (bus->bridge)
2753 		return device_can_wakeup(bus->bridge);
2754 
2755 	return false;
2756 }
2757 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2758 
2759 /**
2760  * pci_dev_need_resume - Check if it is necessary to resume the device.
2761  * @pci_dev: Device to check.
2762  *
2763  * Return 'true' if the device is not runtime-suspended or it has to be
2764  * reconfigured due to wakeup settings difference between system and runtime
2765  * suspend, or the current power state of it is not suitable for the upcoming
2766  * (system-wide) transition.
2767  */
2768 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2769 {
2770 	struct device *dev = &pci_dev->dev;
2771 	pci_power_t target_state;
2772 
2773 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2774 		return true;
2775 
2776 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2777 
2778 	/*
2779 	 * If the earlier platform check has not triggered, D3cold is just power
2780 	 * removal on top of D3hot, so no need to resume the device in that
2781 	 * case.
2782 	 */
2783 	return target_state != pci_dev->current_state &&
2784 		target_state != PCI_D3cold &&
2785 		pci_dev->current_state != PCI_D3hot;
2786 }
2787 
2788 /**
2789  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2790  * @pci_dev: Device to check.
2791  *
2792  * If the device is suspended and it is not configured for system wakeup,
2793  * disable PME for it to prevent it from waking up the system unnecessarily.
2794  *
2795  * Note that if the device's power state is D3cold and the platform check in
2796  * pci_dev_need_resume() has not triggered, the device's configuration need not
2797  * be changed.
2798  */
2799 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2800 {
2801 	struct device *dev = &pci_dev->dev;
2802 
2803 	spin_lock_irq(&dev->power.lock);
2804 
2805 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2806 	    pci_dev->current_state < PCI_D3cold)
2807 		__pci_pme_active(pci_dev, false);
2808 
2809 	spin_unlock_irq(&dev->power.lock);
2810 }
2811 
2812 /**
2813  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2814  * @pci_dev: Device to handle.
2815  *
2816  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2817  * it might have been disabled during the prepare phase of system suspend if
2818  * the device was not configured for system wakeup.
2819  */
2820 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2821 {
2822 	struct device *dev = &pci_dev->dev;
2823 
2824 	if (!pci_dev_run_wake(pci_dev))
2825 		return;
2826 
2827 	spin_lock_irq(&dev->power.lock);
2828 
2829 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2830 		__pci_pme_active(pci_dev, true);
2831 
2832 	spin_unlock_irq(&dev->power.lock);
2833 }
2834 
2835 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2836 {
2837 	struct device *dev = &pdev->dev;
2838 	struct device *parent = dev->parent;
2839 
2840 	if (parent)
2841 		pm_runtime_get_sync(parent);
2842 	pm_runtime_get_noresume(dev);
2843 	/*
2844 	 * pdev->current_state is set to PCI_D3cold during suspending,
2845 	 * so wait until suspending completes
2846 	 */
2847 	pm_runtime_barrier(dev);
2848 	/*
2849 	 * Only need to resume devices in D3cold, because config
2850 	 * registers are still accessible for devices suspended but
2851 	 * not in D3cold.
2852 	 */
2853 	if (pdev->current_state == PCI_D3cold)
2854 		pm_runtime_resume(dev);
2855 }
2856 
2857 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2858 {
2859 	struct device *dev = &pdev->dev;
2860 	struct device *parent = dev->parent;
2861 
2862 	pm_runtime_put(dev);
2863 	if (parent)
2864 		pm_runtime_put_sync(parent);
2865 }
2866 
2867 static const struct dmi_system_id bridge_d3_blacklist[] = {
2868 #ifdef CONFIG_X86
2869 	{
2870 		/*
2871 		 * Gigabyte X299 root port is not marked as hotplug capable
2872 		 * which allows Linux to power manage it.  However, this
2873 		 * confuses the BIOS SMI handler so don't power manage root
2874 		 * ports on that system.
2875 		 */
2876 		.ident = "X299 DESIGNARE EX-CF",
2877 		.matches = {
2878 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2879 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2880 		},
2881 	},
2882 #endif
2883 	{ }
2884 };
2885 
2886 /**
2887  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2888  * @bridge: Bridge to check
2889  *
2890  * This function checks if it is possible to move the bridge to D3.
2891  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2892  */
2893 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2894 {
2895 	if (!pci_is_pcie(bridge))
2896 		return false;
2897 
2898 	switch (pci_pcie_type(bridge)) {
2899 	case PCI_EXP_TYPE_ROOT_PORT:
2900 	case PCI_EXP_TYPE_UPSTREAM:
2901 	case PCI_EXP_TYPE_DOWNSTREAM:
2902 		if (pci_bridge_d3_disable)
2903 			return false;
2904 
2905 		/*
2906 		 * Hotplug ports handled by firmware in System Management Mode
2907 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2908 		 */
2909 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2910 			return false;
2911 
2912 		if (pci_bridge_d3_force)
2913 			return true;
2914 
2915 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2916 		if (bridge->is_thunderbolt)
2917 			return true;
2918 
2919 		/* Platform might know better if the bridge supports D3 */
2920 		if (platform_pci_bridge_d3(bridge))
2921 			return true;
2922 
2923 		/*
2924 		 * Hotplug ports handled natively by the OS were not validated
2925 		 * by vendors for runtime D3 at least until 2018 because there
2926 		 * was no OS support.
2927 		 */
2928 		if (bridge->is_hotplug_bridge)
2929 			return false;
2930 
2931 		if (dmi_check_system(bridge_d3_blacklist))
2932 			return false;
2933 
2934 		/*
2935 		 * It should be safe to put PCIe ports from 2015 or newer
2936 		 * to D3.
2937 		 */
2938 		if (dmi_get_bios_year() >= 2015)
2939 			return true;
2940 		break;
2941 	}
2942 
2943 	return false;
2944 }
2945 
2946 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2947 {
2948 	bool *d3cold_ok = data;
2949 
2950 	if (/* The device needs to be allowed to go D3cold ... */
2951 	    dev->no_d3cold || !dev->d3cold_allowed ||
2952 
2953 	    /* ... and if it is wakeup capable to do so from D3cold. */
2954 	    (device_may_wakeup(&dev->dev) &&
2955 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2956 
2957 	    /* If it is a bridge it must be allowed to go to D3. */
2958 	    !pci_power_manageable(dev))
2959 
2960 		*d3cold_ok = false;
2961 
2962 	return !*d3cold_ok;
2963 }
2964 
2965 /*
2966  * pci_bridge_d3_update - Update bridge D3 capabilities
2967  * @dev: PCI device which is changed
2968  *
2969  * Update upstream bridge PM capabilities accordingly depending on if the
2970  * device PM configuration was changed or the device is being removed.  The
2971  * change is also propagated upstream.
2972  */
2973 void pci_bridge_d3_update(struct pci_dev *dev)
2974 {
2975 	bool remove = !device_is_registered(&dev->dev);
2976 	struct pci_dev *bridge;
2977 	bool d3cold_ok = true;
2978 
2979 	bridge = pci_upstream_bridge(dev);
2980 	if (!bridge || !pci_bridge_d3_possible(bridge))
2981 		return;
2982 
2983 	/*
2984 	 * If D3 is currently allowed for the bridge, removing one of its
2985 	 * children won't change that.
2986 	 */
2987 	if (remove && bridge->bridge_d3)
2988 		return;
2989 
2990 	/*
2991 	 * If D3 is currently allowed for the bridge and a child is added or
2992 	 * changed, disallowance of D3 can only be caused by that child, so
2993 	 * we only need to check that single device, not any of its siblings.
2994 	 *
2995 	 * If D3 is currently not allowed for the bridge, checking the device
2996 	 * first may allow us to skip checking its siblings.
2997 	 */
2998 	if (!remove)
2999 		pci_dev_check_d3cold(dev, &d3cold_ok);
3000 
3001 	/*
3002 	 * If D3 is currently not allowed for the bridge, this may be caused
3003 	 * either by the device being changed/removed or any of its siblings,
3004 	 * so we need to go through all children to find out if one of them
3005 	 * continues to block D3.
3006 	 */
3007 	if (d3cold_ok && !bridge->bridge_d3)
3008 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3009 			     &d3cold_ok);
3010 
3011 	if (bridge->bridge_d3 != d3cold_ok) {
3012 		bridge->bridge_d3 = d3cold_ok;
3013 		/* Propagate change to upstream bridges */
3014 		pci_bridge_d3_update(bridge);
3015 	}
3016 }
3017 
3018 /**
3019  * pci_d3cold_enable - Enable D3cold for device
3020  * @dev: PCI device to handle
3021  *
3022  * This function can be used in drivers to enable D3cold from the device
3023  * they handle.  It also updates upstream PCI bridge PM capabilities
3024  * accordingly.
3025  */
3026 void pci_d3cold_enable(struct pci_dev *dev)
3027 {
3028 	if (dev->no_d3cold) {
3029 		dev->no_d3cold = false;
3030 		pci_bridge_d3_update(dev);
3031 	}
3032 }
3033 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3034 
3035 /**
3036  * pci_d3cold_disable - Disable D3cold for device
3037  * @dev: PCI device to handle
3038  *
3039  * This function can be used in drivers to disable D3cold from the device
3040  * they handle.  It also updates upstream PCI bridge PM capabilities
3041  * accordingly.
3042  */
3043 void pci_d3cold_disable(struct pci_dev *dev)
3044 {
3045 	if (!dev->no_d3cold) {
3046 		dev->no_d3cold = true;
3047 		pci_bridge_d3_update(dev);
3048 	}
3049 }
3050 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3051 
3052 /**
3053  * pci_pm_init - Initialize PM functions of given PCI device
3054  * @dev: PCI device to handle.
3055  */
3056 void pci_pm_init(struct pci_dev *dev)
3057 {
3058 	int pm;
3059 	u16 status;
3060 	u16 pmc;
3061 
3062 	pm_runtime_forbid(&dev->dev);
3063 	pm_runtime_set_active(&dev->dev);
3064 	pm_runtime_enable(&dev->dev);
3065 	device_enable_async_suspend(&dev->dev);
3066 	dev->wakeup_prepared = false;
3067 
3068 	dev->pm_cap = 0;
3069 	dev->pme_support = 0;
3070 
3071 	/* find PCI PM capability in list */
3072 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3073 	if (!pm)
3074 		return;
3075 	/* Check device's ability to generate PME# */
3076 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3077 
3078 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3079 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3080 			pmc & PCI_PM_CAP_VER_MASK);
3081 		return;
3082 	}
3083 
3084 	dev->pm_cap = pm;
3085 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3086 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3087 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3088 	dev->d3cold_allowed = true;
3089 
3090 	dev->d1_support = false;
3091 	dev->d2_support = false;
3092 	if (!pci_no_d1d2(dev)) {
3093 		if (pmc & PCI_PM_CAP_D1)
3094 			dev->d1_support = true;
3095 		if (pmc & PCI_PM_CAP_D2)
3096 			dev->d2_support = true;
3097 
3098 		if (dev->d1_support || dev->d2_support)
3099 			pci_info(dev, "supports%s%s\n",
3100 				   dev->d1_support ? " D1" : "",
3101 				   dev->d2_support ? " D2" : "");
3102 	}
3103 
3104 	pmc &= PCI_PM_CAP_PME_MASK;
3105 	if (pmc) {
3106 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3107 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3108 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3109 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3110 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3111 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3112 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3113 		dev->pme_poll = true;
3114 		/*
3115 		 * Make device's PM flags reflect the wake-up capability, but
3116 		 * let the user space enable it to wake up the system as needed.
3117 		 */
3118 		device_set_wakeup_capable(&dev->dev, true);
3119 		/* Disable the PME# generation functionality */
3120 		pci_pme_active(dev, false);
3121 	}
3122 
3123 	pci_read_config_word(dev, PCI_STATUS, &status);
3124 	if (status & PCI_STATUS_IMM_READY)
3125 		dev->imm_ready = 1;
3126 }
3127 
3128 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3129 {
3130 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3131 
3132 	switch (prop) {
3133 	case PCI_EA_P_MEM:
3134 	case PCI_EA_P_VF_MEM:
3135 		flags |= IORESOURCE_MEM;
3136 		break;
3137 	case PCI_EA_P_MEM_PREFETCH:
3138 	case PCI_EA_P_VF_MEM_PREFETCH:
3139 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3140 		break;
3141 	case PCI_EA_P_IO:
3142 		flags |= IORESOURCE_IO;
3143 		break;
3144 	default:
3145 		return 0;
3146 	}
3147 
3148 	return flags;
3149 }
3150 
3151 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3152 					    u8 prop)
3153 {
3154 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3155 		return &dev->resource[bei];
3156 #ifdef CONFIG_PCI_IOV
3157 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3158 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3159 		return &dev->resource[PCI_IOV_RESOURCES +
3160 				      bei - PCI_EA_BEI_VF_BAR0];
3161 #endif
3162 	else if (bei == PCI_EA_BEI_ROM)
3163 		return &dev->resource[PCI_ROM_RESOURCE];
3164 	else
3165 		return NULL;
3166 }
3167 
3168 /* Read an Enhanced Allocation (EA) entry */
3169 static int pci_ea_read(struct pci_dev *dev, int offset)
3170 {
3171 	struct resource *res;
3172 	int ent_size, ent_offset = offset;
3173 	resource_size_t start, end;
3174 	unsigned long flags;
3175 	u32 dw0, bei, base, max_offset;
3176 	u8 prop;
3177 	bool support_64 = (sizeof(resource_size_t) >= 8);
3178 
3179 	pci_read_config_dword(dev, ent_offset, &dw0);
3180 	ent_offset += 4;
3181 
3182 	/* Entry size field indicates DWORDs after 1st */
3183 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3184 
3185 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3186 		goto out;
3187 
3188 	bei = (dw0 & PCI_EA_BEI) >> 4;
3189 	prop = (dw0 & PCI_EA_PP) >> 8;
3190 
3191 	/*
3192 	 * If the Property is in the reserved range, try the Secondary
3193 	 * Property instead.
3194 	 */
3195 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3196 		prop = (dw0 & PCI_EA_SP) >> 16;
3197 	if (prop > PCI_EA_P_BRIDGE_IO)
3198 		goto out;
3199 
3200 	res = pci_ea_get_resource(dev, bei, prop);
3201 	if (!res) {
3202 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3203 		goto out;
3204 	}
3205 
3206 	flags = pci_ea_flags(dev, prop);
3207 	if (!flags) {
3208 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3209 		goto out;
3210 	}
3211 
3212 	/* Read Base */
3213 	pci_read_config_dword(dev, ent_offset, &base);
3214 	start = (base & PCI_EA_FIELD_MASK);
3215 	ent_offset += 4;
3216 
3217 	/* Read MaxOffset */
3218 	pci_read_config_dword(dev, ent_offset, &max_offset);
3219 	ent_offset += 4;
3220 
3221 	/* Read Base MSBs (if 64-bit entry) */
3222 	if (base & PCI_EA_IS_64) {
3223 		u32 base_upper;
3224 
3225 		pci_read_config_dword(dev, ent_offset, &base_upper);
3226 		ent_offset += 4;
3227 
3228 		flags |= IORESOURCE_MEM_64;
3229 
3230 		/* entry starts above 32-bit boundary, can't use */
3231 		if (!support_64 && base_upper)
3232 			goto out;
3233 
3234 		if (support_64)
3235 			start |= ((u64)base_upper << 32);
3236 	}
3237 
3238 	end = start + (max_offset | 0x03);
3239 
3240 	/* Read MaxOffset MSBs (if 64-bit entry) */
3241 	if (max_offset & PCI_EA_IS_64) {
3242 		u32 max_offset_upper;
3243 
3244 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3245 		ent_offset += 4;
3246 
3247 		flags |= IORESOURCE_MEM_64;
3248 
3249 		/* entry too big, can't use */
3250 		if (!support_64 && max_offset_upper)
3251 			goto out;
3252 
3253 		if (support_64)
3254 			end += ((u64)max_offset_upper << 32);
3255 	}
3256 
3257 	if (end < start) {
3258 		pci_err(dev, "EA Entry crosses address boundary\n");
3259 		goto out;
3260 	}
3261 
3262 	if (ent_size != ent_offset - offset) {
3263 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3264 			ent_size, ent_offset - offset);
3265 		goto out;
3266 	}
3267 
3268 	res->name = pci_name(dev);
3269 	res->start = start;
3270 	res->end = end;
3271 	res->flags = flags;
3272 
3273 	if (bei <= PCI_EA_BEI_BAR5)
3274 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3275 			   bei, res, prop);
3276 	else if (bei == PCI_EA_BEI_ROM)
3277 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3278 			   res, prop);
3279 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3280 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3281 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3282 	else
3283 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3284 			   bei, res, prop);
3285 
3286 out:
3287 	return offset + ent_size;
3288 }
3289 
3290 /* Enhanced Allocation Initialization */
3291 void pci_ea_init(struct pci_dev *dev)
3292 {
3293 	int ea;
3294 	u8 num_ent;
3295 	int offset;
3296 	int i;
3297 
3298 	/* find PCI EA capability in list */
3299 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3300 	if (!ea)
3301 		return;
3302 
3303 	/* determine the number of entries */
3304 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3305 					&num_ent);
3306 	num_ent &= PCI_EA_NUM_ENT_MASK;
3307 
3308 	offset = ea + PCI_EA_FIRST_ENT;
3309 
3310 	/* Skip DWORD 2 for type 1 functions */
3311 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3312 		offset += 4;
3313 
3314 	/* parse each EA entry */
3315 	for (i = 0; i < num_ent; ++i)
3316 		offset = pci_ea_read(dev, offset);
3317 }
3318 
3319 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3320 	struct pci_cap_saved_state *new_cap)
3321 {
3322 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3323 }
3324 
3325 /**
3326  * _pci_add_cap_save_buffer - allocate buffer for saving given
3327  *			      capability registers
3328  * @dev: the PCI device
3329  * @cap: the capability to allocate the buffer for
3330  * @extended: Standard or Extended capability ID
3331  * @size: requested size of the buffer
3332  */
3333 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3334 				    bool extended, unsigned int size)
3335 {
3336 	int pos;
3337 	struct pci_cap_saved_state *save_state;
3338 
3339 	if (extended)
3340 		pos = pci_find_ext_capability(dev, cap);
3341 	else
3342 		pos = pci_find_capability(dev, cap);
3343 
3344 	if (!pos)
3345 		return 0;
3346 
3347 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3348 	if (!save_state)
3349 		return -ENOMEM;
3350 
3351 	save_state->cap.cap_nr = cap;
3352 	save_state->cap.cap_extended = extended;
3353 	save_state->cap.size = size;
3354 	pci_add_saved_cap(dev, save_state);
3355 
3356 	return 0;
3357 }
3358 
3359 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3360 {
3361 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3362 }
3363 
3364 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3365 {
3366 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3367 }
3368 
3369 /**
3370  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3371  * @dev: the PCI device
3372  */
3373 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3374 {
3375 	int error;
3376 
3377 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3378 					PCI_EXP_SAVE_REGS * sizeof(u16));
3379 	if (error)
3380 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3381 
3382 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3383 	if (error)
3384 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3385 
3386 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3387 					    2 * sizeof(u16));
3388 	if (error)
3389 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3390 
3391 	pci_allocate_vc_save_buffers(dev);
3392 }
3393 
3394 void pci_free_cap_save_buffers(struct pci_dev *dev)
3395 {
3396 	struct pci_cap_saved_state *tmp;
3397 	struct hlist_node *n;
3398 
3399 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3400 		kfree(tmp);
3401 }
3402 
3403 /**
3404  * pci_configure_ari - enable or disable ARI forwarding
3405  * @dev: the PCI device
3406  *
3407  * If @dev and its upstream bridge both support ARI, enable ARI in the
3408  * bridge.  Otherwise, disable ARI in the bridge.
3409  */
3410 void pci_configure_ari(struct pci_dev *dev)
3411 {
3412 	u32 cap;
3413 	struct pci_dev *bridge;
3414 
3415 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3416 		return;
3417 
3418 	bridge = dev->bus->self;
3419 	if (!bridge)
3420 		return;
3421 
3422 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3423 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3424 		return;
3425 
3426 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3427 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3428 					 PCI_EXP_DEVCTL2_ARI);
3429 		bridge->ari_enabled = 1;
3430 	} else {
3431 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3432 					   PCI_EXP_DEVCTL2_ARI);
3433 		bridge->ari_enabled = 0;
3434 	}
3435 }
3436 
3437 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3438 {
3439 	int pos;
3440 	u16 cap, ctrl;
3441 
3442 	pos = pdev->acs_cap;
3443 	if (!pos)
3444 		return false;
3445 
3446 	/*
3447 	 * Except for egress control, capabilities are either required
3448 	 * or only required if controllable.  Features missing from the
3449 	 * capability field can therefore be assumed as hard-wired enabled.
3450 	 */
3451 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3452 	acs_flags &= (cap | PCI_ACS_EC);
3453 
3454 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3455 	return (ctrl & acs_flags) == acs_flags;
3456 }
3457 
3458 /**
3459  * pci_acs_enabled - test ACS against required flags for a given device
3460  * @pdev: device to test
3461  * @acs_flags: required PCI ACS flags
3462  *
3463  * Return true if the device supports the provided flags.  Automatically
3464  * filters out flags that are not implemented on multifunction devices.
3465  *
3466  * Note that this interface checks the effective ACS capabilities of the
3467  * device rather than the actual capabilities.  For instance, most single
3468  * function endpoints are not required to support ACS because they have no
3469  * opportunity for peer-to-peer access.  We therefore return 'true'
3470  * regardless of whether the device exposes an ACS capability.  This makes
3471  * it much easier for callers of this function to ignore the actual type
3472  * or topology of the device when testing ACS support.
3473  */
3474 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3475 {
3476 	int ret;
3477 
3478 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3479 	if (ret >= 0)
3480 		return ret > 0;
3481 
3482 	/*
3483 	 * Conventional PCI and PCI-X devices never support ACS, either
3484 	 * effectively or actually.  The shared bus topology implies that
3485 	 * any device on the bus can receive or snoop DMA.
3486 	 */
3487 	if (!pci_is_pcie(pdev))
3488 		return false;
3489 
3490 	switch (pci_pcie_type(pdev)) {
3491 	/*
3492 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3493 	 * but since their primary interface is PCI/X, we conservatively
3494 	 * handle them as we would a non-PCIe device.
3495 	 */
3496 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3497 	/*
3498 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3499 	 * applicable... must never implement an ACS Extended Capability...".
3500 	 * This seems arbitrary, but we take a conservative interpretation
3501 	 * of this statement.
3502 	 */
3503 	case PCI_EXP_TYPE_PCI_BRIDGE:
3504 	case PCI_EXP_TYPE_RC_EC:
3505 		return false;
3506 	/*
3507 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3508 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3509 	 * regardless of whether they are single- or multi-function devices.
3510 	 */
3511 	case PCI_EXP_TYPE_DOWNSTREAM:
3512 	case PCI_EXP_TYPE_ROOT_PORT:
3513 		return pci_acs_flags_enabled(pdev, acs_flags);
3514 	/*
3515 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3516 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3517 	 * capabilities, but only when they are part of a multifunction
3518 	 * device.  The footnote for section 6.12 indicates the specific
3519 	 * PCIe types included here.
3520 	 */
3521 	case PCI_EXP_TYPE_ENDPOINT:
3522 	case PCI_EXP_TYPE_UPSTREAM:
3523 	case PCI_EXP_TYPE_LEG_END:
3524 	case PCI_EXP_TYPE_RC_END:
3525 		if (!pdev->multifunction)
3526 			break;
3527 
3528 		return pci_acs_flags_enabled(pdev, acs_flags);
3529 	}
3530 
3531 	/*
3532 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3533 	 * to single function devices with the exception of downstream ports.
3534 	 */
3535 	return true;
3536 }
3537 
3538 /**
3539  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3540  * @start: starting downstream device
3541  * @end: ending upstream device or NULL to search to the root bus
3542  * @acs_flags: required flags
3543  *
3544  * Walk up a device tree from start to end testing PCI ACS support.  If
3545  * any step along the way does not support the required flags, return false.
3546  */
3547 bool pci_acs_path_enabled(struct pci_dev *start,
3548 			  struct pci_dev *end, u16 acs_flags)
3549 {
3550 	struct pci_dev *pdev, *parent = start;
3551 
3552 	do {
3553 		pdev = parent;
3554 
3555 		if (!pci_acs_enabled(pdev, acs_flags))
3556 			return false;
3557 
3558 		if (pci_is_root_bus(pdev->bus))
3559 			return (end == NULL);
3560 
3561 		parent = pdev->bus->self;
3562 	} while (pdev != end);
3563 
3564 	return true;
3565 }
3566 
3567 /**
3568  * pci_acs_init - Initialize ACS if hardware supports it
3569  * @dev: the PCI device
3570  */
3571 void pci_acs_init(struct pci_dev *dev)
3572 {
3573 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3574 
3575 	/*
3576 	 * Attempt to enable ACS regardless of capability because some Root
3577 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3578 	 * the standard ACS capability but still support ACS via those
3579 	 * quirks.
3580 	 */
3581 	pci_enable_acs(dev);
3582 }
3583 
3584 /**
3585  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3586  * @pdev: PCI device
3587  * @bar: BAR to find
3588  *
3589  * Helper to find the position of the ctrl register for a BAR.
3590  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3591  * Returns -ENOENT if no ctrl register for the BAR could be found.
3592  */
3593 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3594 {
3595 	unsigned int pos, nbars, i;
3596 	u32 ctrl;
3597 
3598 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3599 	if (!pos)
3600 		return -ENOTSUPP;
3601 
3602 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3603 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3604 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3605 
3606 	for (i = 0; i < nbars; i++, pos += 8) {
3607 		int bar_idx;
3608 
3609 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3610 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3611 		if (bar_idx == bar)
3612 			return pos;
3613 	}
3614 
3615 	return -ENOENT;
3616 }
3617 
3618 /**
3619  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3620  * @pdev: PCI device
3621  * @bar: BAR to query
3622  *
3623  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3624  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3625  */
3626 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3627 {
3628 	int pos;
3629 	u32 cap;
3630 
3631 	pos = pci_rebar_find_pos(pdev, bar);
3632 	if (pos < 0)
3633 		return 0;
3634 
3635 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3636 	cap &= PCI_REBAR_CAP_SIZES;
3637 
3638 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3639 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3640 	    bar == 0 && cap == 0x7000)
3641 		cap = 0x3f000;
3642 
3643 	return cap >> 4;
3644 }
3645 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3646 
3647 /**
3648  * pci_rebar_get_current_size - get the current size of a BAR
3649  * @pdev: PCI device
3650  * @bar: BAR to set size to
3651  *
3652  * Read the size of a BAR from the resizable BAR config.
3653  * Returns size if found or negative error code.
3654  */
3655 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3656 {
3657 	int pos;
3658 	u32 ctrl;
3659 
3660 	pos = pci_rebar_find_pos(pdev, bar);
3661 	if (pos < 0)
3662 		return pos;
3663 
3664 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3665 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3666 }
3667 
3668 /**
3669  * pci_rebar_set_size - set a new size for a BAR
3670  * @pdev: PCI device
3671  * @bar: BAR to set size to
3672  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3673  *
3674  * Set the new size of a BAR as defined in the spec.
3675  * Returns zero if resizing was successful, error code otherwise.
3676  */
3677 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3678 {
3679 	int pos;
3680 	u32 ctrl;
3681 
3682 	pos = pci_rebar_find_pos(pdev, bar);
3683 	if (pos < 0)
3684 		return pos;
3685 
3686 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3687 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3688 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3689 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3690 	return 0;
3691 }
3692 
3693 /**
3694  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3695  * @dev: the PCI device
3696  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3697  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3698  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3699  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3700  *
3701  * Return 0 if all upstream bridges support AtomicOp routing, egress
3702  * blocking is disabled on all upstream ports, and the root port supports
3703  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3704  * AtomicOp completion), or negative otherwise.
3705  */
3706 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3707 {
3708 	struct pci_bus *bus = dev->bus;
3709 	struct pci_dev *bridge;
3710 	u32 cap, ctl2;
3711 
3712 	if (!pci_is_pcie(dev))
3713 		return -EINVAL;
3714 
3715 	/*
3716 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3717 	 * AtomicOp requesters.  For now, we only support endpoints as
3718 	 * requesters and root ports as completers.  No endpoints as
3719 	 * completers, and no peer-to-peer.
3720 	 */
3721 
3722 	switch (pci_pcie_type(dev)) {
3723 	case PCI_EXP_TYPE_ENDPOINT:
3724 	case PCI_EXP_TYPE_LEG_END:
3725 	case PCI_EXP_TYPE_RC_END:
3726 		break;
3727 	default:
3728 		return -EINVAL;
3729 	}
3730 
3731 	while (bus->parent) {
3732 		bridge = bus->self;
3733 
3734 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3735 
3736 		switch (pci_pcie_type(bridge)) {
3737 		/* Ensure switch ports support AtomicOp routing */
3738 		case PCI_EXP_TYPE_UPSTREAM:
3739 		case PCI_EXP_TYPE_DOWNSTREAM:
3740 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3741 				return -EINVAL;
3742 			break;
3743 
3744 		/* Ensure root port supports all the sizes we care about */
3745 		case PCI_EXP_TYPE_ROOT_PORT:
3746 			if ((cap & cap_mask) != cap_mask)
3747 				return -EINVAL;
3748 			break;
3749 		}
3750 
3751 		/* Ensure upstream ports don't block AtomicOps on egress */
3752 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3753 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3754 						   &ctl2);
3755 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3756 				return -EINVAL;
3757 		}
3758 
3759 		bus = bus->parent;
3760 	}
3761 
3762 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3763 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3764 	return 0;
3765 }
3766 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3767 
3768 /**
3769  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3770  * @dev: the PCI device
3771  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3772  *
3773  * Perform INTx swizzling for a device behind one level of bridge.  This is
3774  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3775  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3776  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3777  * the PCI Express Base Specification, Revision 2.1)
3778  */
3779 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3780 {
3781 	int slot;
3782 
3783 	if (pci_ari_enabled(dev->bus))
3784 		slot = 0;
3785 	else
3786 		slot = PCI_SLOT(dev->devfn);
3787 
3788 	return (((pin - 1) + slot) % 4) + 1;
3789 }
3790 
3791 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3792 {
3793 	u8 pin;
3794 
3795 	pin = dev->pin;
3796 	if (!pin)
3797 		return -1;
3798 
3799 	while (!pci_is_root_bus(dev->bus)) {
3800 		pin = pci_swizzle_interrupt_pin(dev, pin);
3801 		dev = dev->bus->self;
3802 	}
3803 	*bridge = dev;
3804 	return pin;
3805 }
3806 
3807 /**
3808  * pci_common_swizzle - swizzle INTx all the way to root bridge
3809  * @dev: the PCI device
3810  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3811  *
3812  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3813  * bridges all the way up to a PCI root bus.
3814  */
3815 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3816 {
3817 	u8 pin = *pinp;
3818 
3819 	while (!pci_is_root_bus(dev->bus)) {
3820 		pin = pci_swizzle_interrupt_pin(dev, pin);
3821 		dev = dev->bus->self;
3822 	}
3823 	*pinp = pin;
3824 	return PCI_SLOT(dev->devfn);
3825 }
3826 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3827 
3828 /**
3829  * pci_release_region - Release a PCI bar
3830  * @pdev: PCI device whose resources were previously reserved by
3831  *	  pci_request_region()
3832  * @bar: BAR to release
3833  *
3834  * Releases the PCI I/O and memory resources previously reserved by a
3835  * successful call to pci_request_region().  Call this function only
3836  * after all use of the PCI regions has ceased.
3837  */
3838 void pci_release_region(struct pci_dev *pdev, int bar)
3839 {
3840 	struct pci_devres *dr;
3841 
3842 	if (pci_resource_len(pdev, bar) == 0)
3843 		return;
3844 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3845 		release_region(pci_resource_start(pdev, bar),
3846 				pci_resource_len(pdev, bar));
3847 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3848 		release_mem_region(pci_resource_start(pdev, bar),
3849 				pci_resource_len(pdev, bar));
3850 
3851 	dr = find_pci_dr(pdev);
3852 	if (dr)
3853 		dr->region_mask &= ~(1 << bar);
3854 }
3855 EXPORT_SYMBOL(pci_release_region);
3856 
3857 /**
3858  * __pci_request_region - Reserved PCI I/O and memory resource
3859  * @pdev: PCI device whose resources are to be reserved
3860  * @bar: BAR to be reserved
3861  * @res_name: Name to be associated with resource.
3862  * @exclusive: whether the region access is exclusive or not
3863  *
3864  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3865  * being reserved by owner @res_name.  Do not access any
3866  * address inside the PCI regions unless this call returns
3867  * successfully.
3868  *
3869  * If @exclusive is set, then the region is marked so that userspace
3870  * is explicitly not allowed to map the resource via /dev/mem or
3871  * sysfs MMIO access.
3872  *
3873  * Returns 0 on success, or %EBUSY on error.  A warning
3874  * message is also printed on failure.
3875  */
3876 static int __pci_request_region(struct pci_dev *pdev, int bar,
3877 				const char *res_name, int exclusive)
3878 {
3879 	struct pci_devres *dr;
3880 
3881 	if (pci_resource_len(pdev, bar) == 0)
3882 		return 0;
3883 
3884 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3885 		if (!request_region(pci_resource_start(pdev, bar),
3886 			    pci_resource_len(pdev, bar), res_name))
3887 			goto err_out;
3888 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3889 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3890 					pci_resource_len(pdev, bar), res_name,
3891 					exclusive))
3892 			goto err_out;
3893 	}
3894 
3895 	dr = find_pci_dr(pdev);
3896 	if (dr)
3897 		dr->region_mask |= 1 << bar;
3898 
3899 	return 0;
3900 
3901 err_out:
3902 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3903 		 &pdev->resource[bar]);
3904 	return -EBUSY;
3905 }
3906 
3907 /**
3908  * pci_request_region - Reserve PCI I/O and memory resource
3909  * @pdev: PCI device whose resources are to be reserved
3910  * @bar: BAR to be reserved
3911  * @res_name: Name to be associated with resource
3912  *
3913  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3914  * being reserved by owner @res_name.  Do not access any
3915  * address inside the PCI regions unless this call returns
3916  * successfully.
3917  *
3918  * Returns 0 on success, or %EBUSY on error.  A warning
3919  * message is also printed on failure.
3920  */
3921 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3922 {
3923 	return __pci_request_region(pdev, bar, res_name, 0);
3924 }
3925 EXPORT_SYMBOL(pci_request_region);
3926 
3927 /**
3928  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3929  * @pdev: PCI device whose resources were previously reserved
3930  * @bars: Bitmask of BARs to be released
3931  *
3932  * Release selected PCI I/O and memory resources previously reserved.
3933  * Call this function only after all use of the PCI regions has ceased.
3934  */
3935 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3936 {
3937 	int i;
3938 
3939 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3940 		if (bars & (1 << i))
3941 			pci_release_region(pdev, i);
3942 }
3943 EXPORT_SYMBOL(pci_release_selected_regions);
3944 
3945 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3946 					  const char *res_name, int excl)
3947 {
3948 	int i;
3949 
3950 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3951 		if (bars & (1 << i))
3952 			if (__pci_request_region(pdev, i, res_name, excl))
3953 				goto err_out;
3954 	return 0;
3955 
3956 err_out:
3957 	while (--i >= 0)
3958 		if (bars & (1 << i))
3959 			pci_release_region(pdev, i);
3960 
3961 	return -EBUSY;
3962 }
3963 
3964 
3965 /**
3966  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3967  * @pdev: PCI device whose resources are to be reserved
3968  * @bars: Bitmask of BARs to be requested
3969  * @res_name: Name to be associated with resource
3970  */
3971 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3972 				 const char *res_name)
3973 {
3974 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3975 }
3976 EXPORT_SYMBOL(pci_request_selected_regions);
3977 
3978 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3979 					   const char *res_name)
3980 {
3981 	return __pci_request_selected_regions(pdev, bars, res_name,
3982 			IORESOURCE_EXCLUSIVE);
3983 }
3984 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3985 
3986 /**
3987  * pci_release_regions - Release reserved PCI I/O and memory resources
3988  * @pdev: PCI device whose resources were previously reserved by
3989  *	  pci_request_regions()
3990  *
3991  * Releases all PCI I/O and memory resources previously reserved by a
3992  * successful call to pci_request_regions().  Call this function only
3993  * after all use of the PCI regions has ceased.
3994  */
3995 
3996 void pci_release_regions(struct pci_dev *pdev)
3997 {
3998 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3999 }
4000 EXPORT_SYMBOL(pci_release_regions);
4001 
4002 /**
4003  * pci_request_regions - Reserve PCI I/O and memory resources
4004  * @pdev: PCI device whose resources are to be reserved
4005  * @res_name: Name to be associated with resource.
4006  *
4007  * Mark all PCI regions associated with PCI device @pdev as
4008  * being reserved by owner @res_name.  Do not access any
4009  * address inside the PCI regions unless this call returns
4010  * successfully.
4011  *
4012  * Returns 0 on success, or %EBUSY on error.  A warning
4013  * message is also printed on failure.
4014  */
4015 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4016 {
4017 	return pci_request_selected_regions(pdev,
4018 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4019 }
4020 EXPORT_SYMBOL(pci_request_regions);
4021 
4022 /**
4023  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4024  * @pdev: PCI device whose resources are to be reserved
4025  * @res_name: Name to be associated with resource.
4026  *
4027  * Mark all PCI regions associated with PCI device @pdev as being reserved
4028  * by owner @res_name.  Do not access any address inside the PCI regions
4029  * unless this call returns successfully.
4030  *
4031  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4032  * and the sysfs MMIO access will not be allowed.
4033  *
4034  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4035  * printed on failure.
4036  */
4037 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4038 {
4039 	return pci_request_selected_regions_exclusive(pdev,
4040 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4041 }
4042 EXPORT_SYMBOL(pci_request_regions_exclusive);
4043 
4044 /*
4045  * Record the PCI IO range (expressed as CPU physical address + size).
4046  * Return a negative value if an error has occurred, zero otherwise
4047  */
4048 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4049 			resource_size_t	size)
4050 {
4051 	int ret = 0;
4052 #ifdef PCI_IOBASE
4053 	struct logic_pio_hwaddr *range;
4054 
4055 	if (!size || addr + size < addr)
4056 		return -EINVAL;
4057 
4058 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4059 	if (!range)
4060 		return -ENOMEM;
4061 
4062 	range->fwnode = fwnode;
4063 	range->size = size;
4064 	range->hw_start = addr;
4065 	range->flags = LOGIC_PIO_CPU_MMIO;
4066 
4067 	ret = logic_pio_register_range(range);
4068 	if (ret)
4069 		kfree(range);
4070 
4071 	/* Ignore duplicates due to deferred probing */
4072 	if (ret == -EEXIST)
4073 		ret = 0;
4074 #endif
4075 
4076 	return ret;
4077 }
4078 
4079 phys_addr_t pci_pio_to_address(unsigned long pio)
4080 {
4081 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4082 
4083 #ifdef PCI_IOBASE
4084 	if (pio >= MMIO_UPPER_LIMIT)
4085 		return address;
4086 
4087 	address = logic_pio_to_hwaddr(pio);
4088 #endif
4089 
4090 	return address;
4091 }
4092 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4093 
4094 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4095 {
4096 #ifdef PCI_IOBASE
4097 	return logic_pio_trans_cpuaddr(address);
4098 #else
4099 	if (address > IO_SPACE_LIMIT)
4100 		return (unsigned long)-1;
4101 
4102 	return (unsigned long) address;
4103 #endif
4104 }
4105 
4106 /**
4107  * pci_remap_iospace - Remap the memory mapped I/O space
4108  * @res: Resource describing the I/O space
4109  * @phys_addr: physical address of range to be mapped
4110  *
4111  * Remap the memory mapped I/O space described by the @res and the CPU
4112  * physical address @phys_addr into virtual address space.  Only
4113  * architectures that have memory mapped IO functions defined (and the
4114  * PCI_IOBASE value defined) should call this function.
4115  */
4116 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4117 {
4118 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4119 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4120 
4121 	if (!(res->flags & IORESOURCE_IO))
4122 		return -EINVAL;
4123 
4124 	if (res->end > IO_SPACE_LIMIT)
4125 		return -EINVAL;
4126 
4127 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4128 				  pgprot_device(PAGE_KERNEL));
4129 #else
4130 	/*
4131 	 * This architecture does not have memory mapped I/O space,
4132 	 * so this function should never be called
4133 	 */
4134 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4135 	return -ENODEV;
4136 #endif
4137 }
4138 EXPORT_SYMBOL(pci_remap_iospace);
4139 
4140 /**
4141  * pci_unmap_iospace - Unmap the memory mapped I/O space
4142  * @res: resource to be unmapped
4143  *
4144  * Unmap the CPU virtual address @res from virtual address space.  Only
4145  * architectures that have memory mapped IO functions defined (and the
4146  * PCI_IOBASE value defined) should call this function.
4147  */
4148 void pci_unmap_iospace(struct resource *res)
4149 {
4150 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4151 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4152 
4153 	vunmap_range(vaddr, vaddr + resource_size(res));
4154 #endif
4155 }
4156 EXPORT_SYMBOL(pci_unmap_iospace);
4157 
4158 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4159 {
4160 	struct resource **res = ptr;
4161 
4162 	pci_unmap_iospace(*res);
4163 }
4164 
4165 /**
4166  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4167  * @dev: Generic device to remap IO address for
4168  * @res: Resource describing the I/O space
4169  * @phys_addr: physical address of range to be mapped
4170  *
4171  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4172  * detach.
4173  */
4174 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4175 			   phys_addr_t phys_addr)
4176 {
4177 	const struct resource **ptr;
4178 	int error;
4179 
4180 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4181 	if (!ptr)
4182 		return -ENOMEM;
4183 
4184 	error = pci_remap_iospace(res, phys_addr);
4185 	if (error) {
4186 		devres_free(ptr);
4187 	} else	{
4188 		*ptr = res;
4189 		devres_add(dev, ptr);
4190 	}
4191 
4192 	return error;
4193 }
4194 EXPORT_SYMBOL(devm_pci_remap_iospace);
4195 
4196 /**
4197  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4198  * @dev: Generic device to remap IO address for
4199  * @offset: Resource address to map
4200  * @size: Size of map
4201  *
4202  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4203  * detach.
4204  */
4205 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4206 				      resource_size_t offset,
4207 				      resource_size_t size)
4208 {
4209 	void __iomem **ptr, *addr;
4210 
4211 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4212 	if (!ptr)
4213 		return NULL;
4214 
4215 	addr = pci_remap_cfgspace(offset, size);
4216 	if (addr) {
4217 		*ptr = addr;
4218 		devres_add(dev, ptr);
4219 	} else
4220 		devres_free(ptr);
4221 
4222 	return addr;
4223 }
4224 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4225 
4226 /**
4227  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4228  * @dev: generic device to handle the resource for
4229  * @res: configuration space resource to be handled
4230  *
4231  * Checks that a resource is a valid memory region, requests the memory
4232  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4233  * proper PCI configuration space memory attributes are guaranteed.
4234  *
4235  * All operations are managed and will be undone on driver detach.
4236  *
4237  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4238  * on failure. Usage example::
4239  *
4240  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4241  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4242  *	if (IS_ERR(base))
4243  *		return PTR_ERR(base);
4244  */
4245 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4246 					  struct resource *res)
4247 {
4248 	resource_size_t size;
4249 	const char *name;
4250 	void __iomem *dest_ptr;
4251 
4252 	BUG_ON(!dev);
4253 
4254 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4255 		dev_err(dev, "invalid resource\n");
4256 		return IOMEM_ERR_PTR(-EINVAL);
4257 	}
4258 
4259 	size = resource_size(res);
4260 
4261 	if (res->name)
4262 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4263 				      res->name);
4264 	else
4265 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4266 	if (!name)
4267 		return IOMEM_ERR_PTR(-ENOMEM);
4268 
4269 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4270 		dev_err(dev, "can't request region for resource %pR\n", res);
4271 		return IOMEM_ERR_PTR(-EBUSY);
4272 	}
4273 
4274 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4275 	if (!dest_ptr) {
4276 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4277 		devm_release_mem_region(dev, res->start, size);
4278 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4279 	}
4280 
4281 	return dest_ptr;
4282 }
4283 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4284 
4285 static void __pci_set_master(struct pci_dev *dev, bool enable)
4286 {
4287 	u16 old_cmd, cmd;
4288 
4289 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4290 	if (enable)
4291 		cmd = old_cmd | PCI_COMMAND_MASTER;
4292 	else
4293 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4294 	if (cmd != old_cmd) {
4295 		pci_dbg(dev, "%s bus mastering\n",
4296 			enable ? "enabling" : "disabling");
4297 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4298 	}
4299 	dev->is_busmaster = enable;
4300 }
4301 
4302 /**
4303  * pcibios_setup - process "pci=" kernel boot arguments
4304  * @str: string used to pass in "pci=" kernel boot arguments
4305  *
4306  * Process kernel boot arguments.  This is the default implementation.
4307  * Architecture specific implementations can override this as necessary.
4308  */
4309 char * __weak __init pcibios_setup(char *str)
4310 {
4311 	return str;
4312 }
4313 
4314 /**
4315  * pcibios_set_master - enable PCI bus-mastering for device dev
4316  * @dev: the PCI device to enable
4317  *
4318  * Enables PCI bus-mastering for the device.  This is the default
4319  * implementation.  Architecture specific implementations can override
4320  * this if necessary.
4321  */
4322 void __weak pcibios_set_master(struct pci_dev *dev)
4323 {
4324 	u8 lat;
4325 
4326 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4327 	if (pci_is_pcie(dev))
4328 		return;
4329 
4330 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4331 	if (lat < 16)
4332 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4333 	else if (lat > pcibios_max_latency)
4334 		lat = pcibios_max_latency;
4335 	else
4336 		return;
4337 
4338 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4339 }
4340 
4341 /**
4342  * pci_set_master - enables bus-mastering for device dev
4343  * @dev: the PCI device to enable
4344  *
4345  * Enables bus-mastering on the device and calls pcibios_set_master()
4346  * to do the needed arch specific settings.
4347  */
4348 void pci_set_master(struct pci_dev *dev)
4349 {
4350 	__pci_set_master(dev, true);
4351 	pcibios_set_master(dev);
4352 }
4353 EXPORT_SYMBOL(pci_set_master);
4354 
4355 /**
4356  * pci_clear_master - disables bus-mastering for device dev
4357  * @dev: the PCI device to disable
4358  */
4359 void pci_clear_master(struct pci_dev *dev)
4360 {
4361 	__pci_set_master(dev, false);
4362 }
4363 EXPORT_SYMBOL(pci_clear_master);
4364 
4365 /**
4366  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4367  * @dev: the PCI device for which MWI is to be enabled
4368  *
4369  * Helper function for pci_set_mwi.
4370  * Originally copied from drivers/net/acenic.c.
4371  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4372  *
4373  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4374  */
4375 int pci_set_cacheline_size(struct pci_dev *dev)
4376 {
4377 	u8 cacheline_size;
4378 
4379 	if (!pci_cache_line_size)
4380 		return -EINVAL;
4381 
4382 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4383 	   equal to or multiple of the right value. */
4384 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4385 	if (cacheline_size >= pci_cache_line_size &&
4386 	    (cacheline_size % pci_cache_line_size) == 0)
4387 		return 0;
4388 
4389 	/* Write the correct value. */
4390 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4391 	/* Read it back. */
4392 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4393 	if (cacheline_size == pci_cache_line_size)
4394 		return 0;
4395 
4396 	pci_dbg(dev, "cache line size of %d is not supported\n",
4397 		   pci_cache_line_size << 2);
4398 
4399 	return -EINVAL;
4400 }
4401 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4402 
4403 /**
4404  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4405  * @dev: the PCI device for which MWI is enabled
4406  *
4407  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4408  *
4409  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4410  */
4411 int pci_set_mwi(struct pci_dev *dev)
4412 {
4413 #ifdef PCI_DISABLE_MWI
4414 	return 0;
4415 #else
4416 	int rc;
4417 	u16 cmd;
4418 
4419 	rc = pci_set_cacheline_size(dev);
4420 	if (rc)
4421 		return rc;
4422 
4423 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4424 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4425 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4426 		cmd |= PCI_COMMAND_INVALIDATE;
4427 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4428 	}
4429 	return 0;
4430 #endif
4431 }
4432 EXPORT_SYMBOL(pci_set_mwi);
4433 
4434 /**
4435  * pcim_set_mwi - a device-managed pci_set_mwi()
4436  * @dev: the PCI device for which MWI is enabled
4437  *
4438  * Managed pci_set_mwi().
4439  *
4440  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4441  */
4442 int pcim_set_mwi(struct pci_dev *dev)
4443 {
4444 	struct pci_devres *dr;
4445 
4446 	dr = find_pci_dr(dev);
4447 	if (!dr)
4448 		return -ENOMEM;
4449 
4450 	dr->mwi = 1;
4451 	return pci_set_mwi(dev);
4452 }
4453 EXPORT_SYMBOL(pcim_set_mwi);
4454 
4455 /**
4456  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4457  * @dev: the PCI device for which MWI is enabled
4458  *
4459  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4460  * Callers are not required to check the return value.
4461  *
4462  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4463  */
4464 int pci_try_set_mwi(struct pci_dev *dev)
4465 {
4466 #ifdef PCI_DISABLE_MWI
4467 	return 0;
4468 #else
4469 	return pci_set_mwi(dev);
4470 #endif
4471 }
4472 EXPORT_SYMBOL(pci_try_set_mwi);
4473 
4474 /**
4475  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4476  * @dev: the PCI device to disable
4477  *
4478  * Disables PCI Memory-Write-Invalidate transaction on the device
4479  */
4480 void pci_clear_mwi(struct pci_dev *dev)
4481 {
4482 #ifndef PCI_DISABLE_MWI
4483 	u16 cmd;
4484 
4485 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4486 	if (cmd & PCI_COMMAND_INVALIDATE) {
4487 		cmd &= ~PCI_COMMAND_INVALIDATE;
4488 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4489 	}
4490 #endif
4491 }
4492 EXPORT_SYMBOL(pci_clear_mwi);
4493 
4494 /**
4495  * pci_disable_parity - disable parity checking for device
4496  * @dev: the PCI device to operate on
4497  *
4498  * Disable parity checking for device @dev
4499  */
4500 void pci_disable_parity(struct pci_dev *dev)
4501 {
4502 	u16 cmd;
4503 
4504 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4505 	if (cmd & PCI_COMMAND_PARITY) {
4506 		cmd &= ~PCI_COMMAND_PARITY;
4507 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4508 	}
4509 }
4510 
4511 /**
4512  * pci_intx - enables/disables PCI INTx for device dev
4513  * @pdev: the PCI device to operate on
4514  * @enable: boolean: whether to enable or disable PCI INTx
4515  *
4516  * Enables/disables PCI INTx for device @pdev
4517  */
4518 void pci_intx(struct pci_dev *pdev, int enable)
4519 {
4520 	u16 pci_command, new;
4521 
4522 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4523 
4524 	if (enable)
4525 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4526 	else
4527 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4528 
4529 	if (new != pci_command) {
4530 		struct pci_devres *dr;
4531 
4532 		pci_write_config_word(pdev, PCI_COMMAND, new);
4533 
4534 		dr = find_pci_dr(pdev);
4535 		if (dr && !dr->restore_intx) {
4536 			dr->restore_intx = 1;
4537 			dr->orig_intx = !enable;
4538 		}
4539 	}
4540 }
4541 EXPORT_SYMBOL_GPL(pci_intx);
4542 
4543 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4544 {
4545 	struct pci_bus *bus = dev->bus;
4546 	bool mask_updated = true;
4547 	u32 cmd_status_dword;
4548 	u16 origcmd, newcmd;
4549 	unsigned long flags;
4550 	bool irq_pending;
4551 
4552 	/*
4553 	 * We do a single dword read to retrieve both command and status.
4554 	 * Document assumptions that make this possible.
4555 	 */
4556 	BUILD_BUG_ON(PCI_COMMAND % 4);
4557 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4558 
4559 	raw_spin_lock_irqsave(&pci_lock, flags);
4560 
4561 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4562 
4563 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4564 
4565 	/*
4566 	 * Check interrupt status register to see whether our device
4567 	 * triggered the interrupt (when masking) or the next IRQ is
4568 	 * already pending (when unmasking).
4569 	 */
4570 	if (mask != irq_pending) {
4571 		mask_updated = false;
4572 		goto done;
4573 	}
4574 
4575 	origcmd = cmd_status_dword;
4576 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4577 	if (mask)
4578 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4579 	if (newcmd != origcmd)
4580 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4581 
4582 done:
4583 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4584 
4585 	return mask_updated;
4586 }
4587 
4588 /**
4589  * pci_check_and_mask_intx - mask INTx on pending interrupt
4590  * @dev: the PCI device to operate on
4591  *
4592  * Check if the device dev has its INTx line asserted, mask it and return
4593  * true in that case. False is returned if no interrupt was pending.
4594  */
4595 bool pci_check_and_mask_intx(struct pci_dev *dev)
4596 {
4597 	return pci_check_and_set_intx_mask(dev, true);
4598 }
4599 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4600 
4601 /**
4602  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4603  * @dev: the PCI device to operate on
4604  *
4605  * Check if the device dev has its INTx line asserted, unmask it if not and
4606  * return true. False is returned and the mask remains active if there was
4607  * still an interrupt pending.
4608  */
4609 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4610 {
4611 	return pci_check_and_set_intx_mask(dev, false);
4612 }
4613 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4614 
4615 /**
4616  * pci_wait_for_pending_transaction - wait for pending transaction
4617  * @dev: the PCI device to operate on
4618  *
4619  * Return 0 if transaction is pending 1 otherwise.
4620  */
4621 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4622 {
4623 	if (!pci_is_pcie(dev))
4624 		return 1;
4625 
4626 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4627 				    PCI_EXP_DEVSTA_TRPND);
4628 }
4629 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4630 
4631 /**
4632  * pcie_has_flr - check if a device supports function level resets
4633  * @dev: device to check
4634  *
4635  * Returns true if the device advertises support for PCIe function level
4636  * resets.
4637  */
4638 bool pcie_has_flr(struct pci_dev *dev)
4639 {
4640 	u32 cap;
4641 
4642 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4643 		return false;
4644 
4645 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4646 	return cap & PCI_EXP_DEVCAP_FLR;
4647 }
4648 EXPORT_SYMBOL_GPL(pcie_has_flr);
4649 
4650 /**
4651  * pcie_flr - initiate a PCIe function level reset
4652  * @dev: device to reset
4653  *
4654  * Initiate a function level reset on @dev.  The caller should ensure the
4655  * device supports FLR before calling this function, e.g. by using the
4656  * pcie_has_flr() helper.
4657  */
4658 int pcie_flr(struct pci_dev *dev)
4659 {
4660 	if (!pci_wait_for_pending_transaction(dev))
4661 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4662 
4663 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4664 
4665 	if (dev->imm_ready)
4666 		return 0;
4667 
4668 	/*
4669 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4670 	 * 100ms, but may silently discard requests while the FLR is in
4671 	 * progress.  Wait 100ms before trying to access the device.
4672 	 */
4673 	msleep(100);
4674 
4675 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4676 }
4677 EXPORT_SYMBOL_GPL(pcie_flr);
4678 
4679 static int pci_af_flr(struct pci_dev *dev, int probe)
4680 {
4681 	int pos;
4682 	u8 cap;
4683 
4684 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4685 	if (!pos)
4686 		return -ENOTTY;
4687 
4688 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4689 		return -ENOTTY;
4690 
4691 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4692 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4693 		return -ENOTTY;
4694 
4695 	if (probe)
4696 		return 0;
4697 
4698 	/*
4699 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4700 	 * is used, so we use the control offset rather than status and shift
4701 	 * the test bit to match.
4702 	 */
4703 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4704 				 PCI_AF_STATUS_TP << 8))
4705 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4706 
4707 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4708 
4709 	if (dev->imm_ready)
4710 		return 0;
4711 
4712 	/*
4713 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4714 	 * updated 27 July 2006; a device must complete an FLR within
4715 	 * 100ms, but may silently discard requests while the FLR is in
4716 	 * progress.  Wait 100ms before trying to access the device.
4717 	 */
4718 	msleep(100);
4719 
4720 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4721 }
4722 
4723 /**
4724  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4725  * @dev: Device to reset.
4726  * @probe: If set, only check if the device can be reset this way.
4727  *
4728  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4729  * unset, it will be reinitialized internally when going from PCI_D3hot to
4730  * PCI_D0.  If that's the case and the device is not in a low-power state
4731  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4732  *
4733  * NOTE: This causes the caller to sleep for twice the device power transition
4734  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4735  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4736  * Moreover, only devices in D0 can be reset by this function.
4737  */
4738 static int pci_pm_reset(struct pci_dev *dev, int probe)
4739 {
4740 	u16 csr;
4741 
4742 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4743 		return -ENOTTY;
4744 
4745 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4746 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4747 		return -ENOTTY;
4748 
4749 	if (probe)
4750 		return 0;
4751 
4752 	if (dev->current_state != PCI_D0)
4753 		return -EINVAL;
4754 
4755 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4756 	csr |= PCI_D3hot;
4757 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4758 	pci_dev_d3_sleep(dev);
4759 
4760 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4761 	csr |= PCI_D0;
4762 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4763 	pci_dev_d3_sleep(dev);
4764 
4765 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4766 }
4767 
4768 /**
4769  * pcie_wait_for_link_delay - Wait until link is active or inactive
4770  * @pdev: Bridge device
4771  * @active: waiting for active or inactive?
4772  * @delay: Delay to wait after link has become active (in ms)
4773  *
4774  * Use this to wait till link becomes active or inactive.
4775  */
4776 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4777 				     int delay)
4778 {
4779 	int timeout = 1000;
4780 	bool ret;
4781 	u16 lnk_status;
4782 
4783 	/*
4784 	 * Some controllers might not implement link active reporting. In this
4785 	 * case, we wait for 1000 ms + any delay requested by the caller.
4786 	 */
4787 	if (!pdev->link_active_reporting) {
4788 		msleep(timeout + delay);
4789 		return true;
4790 	}
4791 
4792 	/*
4793 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4794 	 * after which we should expect an link active if the reset was
4795 	 * successful. If so, software must wait a minimum 100ms before sending
4796 	 * configuration requests to devices downstream this port.
4797 	 *
4798 	 * If the link fails to activate, either the device was physically
4799 	 * removed or the link is permanently failed.
4800 	 */
4801 	if (active)
4802 		msleep(20);
4803 	for (;;) {
4804 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4805 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4806 		if (ret == active)
4807 			break;
4808 		if (timeout <= 0)
4809 			break;
4810 		msleep(10);
4811 		timeout -= 10;
4812 	}
4813 	if (active && ret)
4814 		msleep(delay);
4815 
4816 	return ret == active;
4817 }
4818 
4819 /**
4820  * pcie_wait_for_link - Wait until link is active or inactive
4821  * @pdev: Bridge device
4822  * @active: waiting for active or inactive?
4823  *
4824  * Use this to wait till link becomes active or inactive.
4825  */
4826 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4827 {
4828 	return pcie_wait_for_link_delay(pdev, active, 100);
4829 }
4830 
4831 /*
4832  * Find maximum D3cold delay required by all the devices on the bus.  The
4833  * spec says 100 ms, but firmware can lower it and we allow drivers to
4834  * increase it as well.
4835  *
4836  * Called with @pci_bus_sem locked for reading.
4837  */
4838 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4839 {
4840 	const struct pci_dev *pdev;
4841 	int min_delay = 100;
4842 	int max_delay = 0;
4843 
4844 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4845 		if (pdev->d3cold_delay < min_delay)
4846 			min_delay = pdev->d3cold_delay;
4847 		if (pdev->d3cold_delay > max_delay)
4848 			max_delay = pdev->d3cold_delay;
4849 	}
4850 
4851 	return max(min_delay, max_delay);
4852 }
4853 
4854 /**
4855  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4856  * @dev: PCI bridge
4857  *
4858  * Handle necessary delays before access to the devices on the secondary
4859  * side of the bridge are permitted after D3cold to D0 transition.
4860  *
4861  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4862  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4863  * 4.3.2.
4864  */
4865 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4866 {
4867 	struct pci_dev *child;
4868 	int delay;
4869 
4870 	if (pci_dev_is_disconnected(dev))
4871 		return;
4872 
4873 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4874 		return;
4875 
4876 	down_read(&pci_bus_sem);
4877 
4878 	/*
4879 	 * We only deal with devices that are present currently on the bus.
4880 	 * For any hot-added devices the access delay is handled in pciehp
4881 	 * board_added(). In case of ACPI hotplug the firmware is expected
4882 	 * to configure the devices before OS is notified.
4883 	 */
4884 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4885 		up_read(&pci_bus_sem);
4886 		return;
4887 	}
4888 
4889 	/* Take d3cold_delay requirements into account */
4890 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4891 	if (!delay) {
4892 		up_read(&pci_bus_sem);
4893 		return;
4894 	}
4895 
4896 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4897 				 bus_list);
4898 	up_read(&pci_bus_sem);
4899 
4900 	/*
4901 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4902 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4903 	 * practice this should not be needed because we don't do power
4904 	 * management for them (see pci_bridge_d3_possible()).
4905 	 */
4906 	if (!pci_is_pcie(dev)) {
4907 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4908 		msleep(1000 + delay);
4909 		return;
4910 	}
4911 
4912 	/*
4913 	 * For PCIe downstream and root ports that do not support speeds
4914 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4915 	 * speeds (gen3) we need to wait first for the data link layer to
4916 	 * become active.
4917 	 *
4918 	 * However, 100 ms is the minimum and the PCIe spec says the
4919 	 * software must allow at least 1s before it can determine that the
4920 	 * device that did not respond is a broken device. There is
4921 	 * evidence that 100 ms is not always enough, for example certain
4922 	 * Titan Ridge xHCI controller does not always respond to
4923 	 * configuration requests if we only wait for 100 ms (see
4924 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4925 	 *
4926 	 * Therefore we wait for 100 ms and check for the device presence.
4927 	 * If it is still not present give it an additional 100 ms.
4928 	 */
4929 	if (!pcie_downstream_port(dev))
4930 		return;
4931 
4932 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4933 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4934 		msleep(delay);
4935 	} else {
4936 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4937 			delay);
4938 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4939 			/* Did not train, no need to wait any further */
4940 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4941 			return;
4942 		}
4943 	}
4944 
4945 	if (!pci_device_is_present(child)) {
4946 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4947 		msleep(delay);
4948 	}
4949 }
4950 
4951 void pci_reset_secondary_bus(struct pci_dev *dev)
4952 {
4953 	u16 ctrl;
4954 
4955 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4956 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4957 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4958 
4959 	/*
4960 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4961 	 * this to 2ms to ensure that we meet the minimum requirement.
4962 	 */
4963 	msleep(2);
4964 
4965 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4966 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4967 
4968 	/*
4969 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4970 	 * Assuming a minimum 33MHz clock this results in a 1s
4971 	 * delay before we can consider subordinate devices to
4972 	 * be re-initialized.  PCIe has some ways to shorten this,
4973 	 * but we don't make use of them yet.
4974 	 */
4975 	ssleep(1);
4976 }
4977 
4978 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4979 {
4980 	pci_reset_secondary_bus(dev);
4981 }
4982 
4983 /**
4984  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4985  * @dev: Bridge device
4986  *
4987  * Use the bridge control register to assert reset on the secondary bus.
4988  * Devices on the secondary bus are left in power-on state.
4989  */
4990 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4991 {
4992 	pcibios_reset_secondary_bus(dev);
4993 
4994 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4995 }
4996 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4997 
4998 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4999 {
5000 	struct pci_dev *pdev;
5001 
5002 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5003 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5004 		return -ENOTTY;
5005 
5006 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5007 		if (pdev != dev)
5008 			return -ENOTTY;
5009 
5010 	if (probe)
5011 		return 0;
5012 
5013 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5014 }
5015 
5016 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
5017 {
5018 	int rc = -ENOTTY;
5019 
5020 	if (!hotplug || !try_module_get(hotplug->owner))
5021 		return rc;
5022 
5023 	if (hotplug->ops->reset_slot)
5024 		rc = hotplug->ops->reset_slot(hotplug, probe);
5025 
5026 	module_put(hotplug->owner);
5027 
5028 	return rc;
5029 }
5030 
5031 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
5032 {
5033 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5034 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5035 		return -ENOTTY;
5036 
5037 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5038 }
5039 
5040 static int pci_reset_bus_function(struct pci_dev *dev, int probe)
5041 {
5042 	int rc;
5043 
5044 	rc = pci_dev_reset_slot_function(dev, probe);
5045 	if (rc != -ENOTTY)
5046 		return rc;
5047 	return pci_parent_bus_reset(dev, probe);
5048 }
5049 
5050 static void pci_dev_lock(struct pci_dev *dev)
5051 {
5052 	pci_cfg_access_lock(dev);
5053 	/* block PM suspend, driver probe, etc. */
5054 	device_lock(&dev->dev);
5055 }
5056 
5057 /* Return 1 on successful lock, 0 on contention */
5058 int pci_dev_trylock(struct pci_dev *dev)
5059 {
5060 	if (pci_cfg_access_trylock(dev)) {
5061 		if (device_trylock(&dev->dev))
5062 			return 1;
5063 		pci_cfg_access_unlock(dev);
5064 	}
5065 
5066 	return 0;
5067 }
5068 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5069 
5070 void pci_dev_unlock(struct pci_dev *dev)
5071 {
5072 	device_unlock(&dev->dev);
5073 	pci_cfg_access_unlock(dev);
5074 }
5075 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5076 
5077 static void pci_dev_save_and_disable(struct pci_dev *dev)
5078 {
5079 	const struct pci_error_handlers *err_handler =
5080 			dev->driver ? dev->driver->err_handler : NULL;
5081 
5082 	/*
5083 	 * dev->driver->err_handler->reset_prepare() is protected against
5084 	 * races with ->remove() by the device lock, which must be held by
5085 	 * the caller.
5086 	 */
5087 	if (err_handler && err_handler->reset_prepare)
5088 		err_handler->reset_prepare(dev);
5089 
5090 	/*
5091 	 * Wake-up device prior to save.  PM registers default to D0 after
5092 	 * reset and a simple register restore doesn't reliably return
5093 	 * to a non-D0 state anyway.
5094 	 */
5095 	pci_set_power_state(dev, PCI_D0);
5096 
5097 	pci_save_state(dev);
5098 	/*
5099 	 * Disable the device by clearing the Command register, except for
5100 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5101 	 * BARs, but also prevents the device from being Bus Master, preventing
5102 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5103 	 * compliant devices, INTx-disable prevents legacy interrupts.
5104 	 */
5105 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5106 }
5107 
5108 static void pci_dev_restore(struct pci_dev *dev)
5109 {
5110 	const struct pci_error_handlers *err_handler =
5111 			dev->driver ? dev->driver->err_handler : NULL;
5112 
5113 	pci_restore_state(dev);
5114 
5115 	/*
5116 	 * dev->driver->err_handler->reset_done() is protected against
5117 	 * races with ->remove() by the device lock, which must be held by
5118 	 * the caller.
5119 	 */
5120 	if (err_handler && err_handler->reset_done)
5121 		err_handler->reset_done(dev);
5122 }
5123 
5124 /**
5125  * __pci_reset_function_locked - reset a PCI device function while holding
5126  * the @dev mutex lock.
5127  * @dev: PCI device to reset
5128  *
5129  * Some devices allow an individual function to be reset without affecting
5130  * other functions in the same device.  The PCI device must be responsive
5131  * to PCI config space in order to use this function.
5132  *
5133  * The device function is presumed to be unused and the caller is holding
5134  * the device mutex lock when this function is called.
5135  *
5136  * Resetting the device will make the contents of PCI configuration space
5137  * random, so any caller of this must be prepared to reinitialise the
5138  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5139  * etc.
5140  *
5141  * Returns 0 if the device function was successfully reset or negative if the
5142  * device doesn't support resetting a single function.
5143  */
5144 int __pci_reset_function_locked(struct pci_dev *dev)
5145 {
5146 	int rc;
5147 
5148 	might_sleep();
5149 
5150 	/*
5151 	 * A reset method returns -ENOTTY if it doesn't support this device
5152 	 * and we should try the next method.
5153 	 *
5154 	 * If it returns 0 (success), we're finished.  If it returns any
5155 	 * other error, we're also finished: this indicates that further
5156 	 * reset mechanisms might be broken on the device.
5157 	 */
5158 	rc = pci_dev_specific_reset(dev, 0);
5159 	if (rc != -ENOTTY)
5160 		return rc;
5161 	if (pcie_has_flr(dev)) {
5162 		rc = pcie_flr(dev);
5163 		if (rc != -ENOTTY)
5164 			return rc;
5165 	}
5166 	rc = pci_af_flr(dev, 0);
5167 	if (rc != -ENOTTY)
5168 		return rc;
5169 	rc = pci_pm_reset(dev, 0);
5170 	if (rc != -ENOTTY)
5171 		return rc;
5172 	return pci_reset_bus_function(dev, 0);
5173 }
5174 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5175 
5176 /**
5177  * pci_probe_reset_function - check whether the device can be safely reset
5178  * @dev: PCI device to reset
5179  *
5180  * Some devices allow an individual function to be reset without affecting
5181  * other functions in the same device.  The PCI device must be responsive
5182  * to PCI config space in order to use this function.
5183  *
5184  * Returns 0 if the device function can be reset or negative if the
5185  * device doesn't support resetting a single function.
5186  */
5187 int pci_probe_reset_function(struct pci_dev *dev)
5188 {
5189 	int rc;
5190 
5191 	might_sleep();
5192 
5193 	rc = pci_dev_specific_reset(dev, 1);
5194 	if (rc != -ENOTTY)
5195 		return rc;
5196 	if (pcie_has_flr(dev))
5197 		return 0;
5198 	rc = pci_af_flr(dev, 1);
5199 	if (rc != -ENOTTY)
5200 		return rc;
5201 	rc = pci_pm_reset(dev, 1);
5202 	if (rc != -ENOTTY)
5203 		return rc;
5204 
5205 	return pci_reset_bus_function(dev, 1);
5206 }
5207 
5208 /**
5209  * pci_reset_function - quiesce and reset a PCI device function
5210  * @dev: PCI device to reset
5211  *
5212  * Some devices allow an individual function to be reset without affecting
5213  * other functions in the same device.  The PCI device must be responsive
5214  * to PCI config space in order to use this function.
5215  *
5216  * This function does not just reset the PCI portion of a device, but
5217  * clears all the state associated with the device.  This function differs
5218  * from __pci_reset_function_locked() in that it saves and restores device state
5219  * over the reset and takes the PCI device lock.
5220  *
5221  * Returns 0 if the device function was successfully reset or negative if the
5222  * device doesn't support resetting a single function.
5223  */
5224 int pci_reset_function(struct pci_dev *dev)
5225 {
5226 	int rc;
5227 
5228 	if (!dev->reset_fn)
5229 		return -ENOTTY;
5230 
5231 	pci_dev_lock(dev);
5232 	pci_dev_save_and_disable(dev);
5233 
5234 	rc = __pci_reset_function_locked(dev);
5235 
5236 	pci_dev_restore(dev);
5237 	pci_dev_unlock(dev);
5238 
5239 	return rc;
5240 }
5241 EXPORT_SYMBOL_GPL(pci_reset_function);
5242 
5243 /**
5244  * pci_reset_function_locked - quiesce and reset a PCI device function
5245  * @dev: PCI device to reset
5246  *
5247  * Some devices allow an individual function to be reset without affecting
5248  * other functions in the same device.  The PCI device must be responsive
5249  * to PCI config space in order to use this function.
5250  *
5251  * This function does not just reset the PCI portion of a device, but
5252  * clears all the state associated with the device.  This function differs
5253  * from __pci_reset_function_locked() in that it saves and restores device state
5254  * over the reset.  It also differs from pci_reset_function() in that it
5255  * requires the PCI device lock to be held.
5256  *
5257  * Returns 0 if the device function was successfully reset or negative if the
5258  * device doesn't support resetting a single function.
5259  */
5260 int pci_reset_function_locked(struct pci_dev *dev)
5261 {
5262 	int rc;
5263 
5264 	if (!dev->reset_fn)
5265 		return -ENOTTY;
5266 
5267 	pci_dev_save_and_disable(dev);
5268 
5269 	rc = __pci_reset_function_locked(dev);
5270 
5271 	pci_dev_restore(dev);
5272 
5273 	return rc;
5274 }
5275 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5276 
5277 /**
5278  * pci_try_reset_function - quiesce and reset a PCI device function
5279  * @dev: PCI device to reset
5280  *
5281  * Same as above, except return -EAGAIN if unable to lock device.
5282  */
5283 int pci_try_reset_function(struct pci_dev *dev)
5284 {
5285 	int rc;
5286 
5287 	if (!dev->reset_fn)
5288 		return -ENOTTY;
5289 
5290 	if (!pci_dev_trylock(dev))
5291 		return -EAGAIN;
5292 
5293 	pci_dev_save_and_disable(dev);
5294 	rc = __pci_reset_function_locked(dev);
5295 	pci_dev_restore(dev);
5296 	pci_dev_unlock(dev);
5297 
5298 	return rc;
5299 }
5300 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5301 
5302 /* Do any devices on or below this bus prevent a bus reset? */
5303 static bool pci_bus_resetable(struct pci_bus *bus)
5304 {
5305 	struct pci_dev *dev;
5306 
5307 
5308 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5309 		return false;
5310 
5311 	list_for_each_entry(dev, &bus->devices, bus_list) {
5312 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5313 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5314 			return false;
5315 	}
5316 
5317 	return true;
5318 }
5319 
5320 /* Lock devices from the top of the tree down */
5321 static void pci_bus_lock(struct pci_bus *bus)
5322 {
5323 	struct pci_dev *dev;
5324 
5325 	list_for_each_entry(dev, &bus->devices, bus_list) {
5326 		pci_dev_lock(dev);
5327 		if (dev->subordinate)
5328 			pci_bus_lock(dev->subordinate);
5329 	}
5330 }
5331 
5332 /* Unlock devices from the bottom of the tree up */
5333 static void pci_bus_unlock(struct pci_bus *bus)
5334 {
5335 	struct pci_dev *dev;
5336 
5337 	list_for_each_entry(dev, &bus->devices, bus_list) {
5338 		if (dev->subordinate)
5339 			pci_bus_unlock(dev->subordinate);
5340 		pci_dev_unlock(dev);
5341 	}
5342 }
5343 
5344 /* Return 1 on successful lock, 0 on contention */
5345 static int pci_bus_trylock(struct pci_bus *bus)
5346 {
5347 	struct pci_dev *dev;
5348 
5349 	list_for_each_entry(dev, &bus->devices, bus_list) {
5350 		if (!pci_dev_trylock(dev))
5351 			goto unlock;
5352 		if (dev->subordinate) {
5353 			if (!pci_bus_trylock(dev->subordinate)) {
5354 				pci_dev_unlock(dev);
5355 				goto unlock;
5356 			}
5357 		}
5358 	}
5359 	return 1;
5360 
5361 unlock:
5362 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5363 		if (dev->subordinate)
5364 			pci_bus_unlock(dev->subordinate);
5365 		pci_dev_unlock(dev);
5366 	}
5367 	return 0;
5368 }
5369 
5370 /* Do any devices on or below this slot prevent a bus reset? */
5371 static bool pci_slot_resetable(struct pci_slot *slot)
5372 {
5373 	struct pci_dev *dev;
5374 
5375 	if (slot->bus->self &&
5376 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5377 		return false;
5378 
5379 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5380 		if (!dev->slot || dev->slot != slot)
5381 			continue;
5382 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5383 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5384 			return false;
5385 	}
5386 
5387 	return true;
5388 }
5389 
5390 /* Lock devices from the top of the tree down */
5391 static void pci_slot_lock(struct pci_slot *slot)
5392 {
5393 	struct pci_dev *dev;
5394 
5395 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5396 		if (!dev->slot || dev->slot != slot)
5397 			continue;
5398 		pci_dev_lock(dev);
5399 		if (dev->subordinate)
5400 			pci_bus_lock(dev->subordinate);
5401 	}
5402 }
5403 
5404 /* Unlock devices from the bottom of the tree up */
5405 static void pci_slot_unlock(struct pci_slot *slot)
5406 {
5407 	struct pci_dev *dev;
5408 
5409 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5410 		if (!dev->slot || dev->slot != slot)
5411 			continue;
5412 		if (dev->subordinate)
5413 			pci_bus_unlock(dev->subordinate);
5414 		pci_dev_unlock(dev);
5415 	}
5416 }
5417 
5418 /* Return 1 on successful lock, 0 on contention */
5419 static int pci_slot_trylock(struct pci_slot *slot)
5420 {
5421 	struct pci_dev *dev;
5422 
5423 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5424 		if (!dev->slot || dev->slot != slot)
5425 			continue;
5426 		if (!pci_dev_trylock(dev))
5427 			goto unlock;
5428 		if (dev->subordinate) {
5429 			if (!pci_bus_trylock(dev->subordinate)) {
5430 				pci_dev_unlock(dev);
5431 				goto unlock;
5432 			}
5433 		}
5434 	}
5435 	return 1;
5436 
5437 unlock:
5438 	list_for_each_entry_continue_reverse(dev,
5439 					     &slot->bus->devices, bus_list) {
5440 		if (!dev->slot || dev->slot != slot)
5441 			continue;
5442 		if (dev->subordinate)
5443 			pci_bus_unlock(dev->subordinate);
5444 		pci_dev_unlock(dev);
5445 	}
5446 	return 0;
5447 }
5448 
5449 /*
5450  * Save and disable devices from the top of the tree down while holding
5451  * the @dev mutex lock for the entire tree.
5452  */
5453 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5454 {
5455 	struct pci_dev *dev;
5456 
5457 	list_for_each_entry(dev, &bus->devices, bus_list) {
5458 		pci_dev_save_and_disable(dev);
5459 		if (dev->subordinate)
5460 			pci_bus_save_and_disable_locked(dev->subordinate);
5461 	}
5462 }
5463 
5464 /*
5465  * Restore devices from top of the tree down while holding @dev mutex lock
5466  * for the entire tree.  Parent bridges need to be restored before we can
5467  * get to subordinate devices.
5468  */
5469 static void pci_bus_restore_locked(struct pci_bus *bus)
5470 {
5471 	struct pci_dev *dev;
5472 
5473 	list_for_each_entry(dev, &bus->devices, bus_list) {
5474 		pci_dev_restore(dev);
5475 		if (dev->subordinate)
5476 			pci_bus_restore_locked(dev->subordinate);
5477 	}
5478 }
5479 
5480 /*
5481  * Save and disable devices from the top of the tree down while holding
5482  * the @dev mutex lock for the entire tree.
5483  */
5484 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5485 {
5486 	struct pci_dev *dev;
5487 
5488 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5489 		if (!dev->slot || dev->slot != slot)
5490 			continue;
5491 		pci_dev_save_and_disable(dev);
5492 		if (dev->subordinate)
5493 			pci_bus_save_and_disable_locked(dev->subordinate);
5494 	}
5495 }
5496 
5497 /*
5498  * Restore devices from top of the tree down while holding @dev mutex lock
5499  * for the entire tree.  Parent bridges need to be restored before we can
5500  * get to subordinate devices.
5501  */
5502 static void pci_slot_restore_locked(struct pci_slot *slot)
5503 {
5504 	struct pci_dev *dev;
5505 
5506 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5507 		if (!dev->slot || dev->slot != slot)
5508 			continue;
5509 		pci_dev_restore(dev);
5510 		if (dev->subordinate)
5511 			pci_bus_restore_locked(dev->subordinate);
5512 	}
5513 }
5514 
5515 static int pci_slot_reset(struct pci_slot *slot, int probe)
5516 {
5517 	int rc;
5518 
5519 	if (!slot || !pci_slot_resetable(slot))
5520 		return -ENOTTY;
5521 
5522 	if (!probe)
5523 		pci_slot_lock(slot);
5524 
5525 	might_sleep();
5526 
5527 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5528 
5529 	if (!probe)
5530 		pci_slot_unlock(slot);
5531 
5532 	return rc;
5533 }
5534 
5535 /**
5536  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5537  * @slot: PCI slot to probe
5538  *
5539  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5540  */
5541 int pci_probe_reset_slot(struct pci_slot *slot)
5542 {
5543 	return pci_slot_reset(slot, 1);
5544 }
5545 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5546 
5547 /**
5548  * __pci_reset_slot - Try to reset a PCI slot
5549  * @slot: PCI slot to reset
5550  *
5551  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5552  * independent of other slots.  For instance, some slots may support slot power
5553  * control.  In the case of a 1:1 bus to slot architecture, this function may
5554  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5555  * Generally a slot reset should be attempted before a bus reset.  All of the
5556  * function of the slot and any subordinate buses behind the slot are reset
5557  * through this function.  PCI config space of all devices in the slot and
5558  * behind the slot is saved before and restored after reset.
5559  *
5560  * Same as above except return -EAGAIN if the slot cannot be locked
5561  */
5562 static int __pci_reset_slot(struct pci_slot *slot)
5563 {
5564 	int rc;
5565 
5566 	rc = pci_slot_reset(slot, 1);
5567 	if (rc)
5568 		return rc;
5569 
5570 	if (pci_slot_trylock(slot)) {
5571 		pci_slot_save_and_disable_locked(slot);
5572 		might_sleep();
5573 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5574 		pci_slot_restore_locked(slot);
5575 		pci_slot_unlock(slot);
5576 	} else
5577 		rc = -EAGAIN;
5578 
5579 	return rc;
5580 }
5581 
5582 static int pci_bus_reset(struct pci_bus *bus, int probe)
5583 {
5584 	int ret;
5585 
5586 	if (!bus->self || !pci_bus_resetable(bus))
5587 		return -ENOTTY;
5588 
5589 	if (probe)
5590 		return 0;
5591 
5592 	pci_bus_lock(bus);
5593 
5594 	might_sleep();
5595 
5596 	ret = pci_bridge_secondary_bus_reset(bus->self);
5597 
5598 	pci_bus_unlock(bus);
5599 
5600 	return ret;
5601 }
5602 
5603 /**
5604  * pci_bus_error_reset - reset the bridge's subordinate bus
5605  * @bridge: The parent device that connects to the bus to reset
5606  *
5607  * This function will first try to reset the slots on this bus if the method is
5608  * available. If slot reset fails or is not available, this will fall back to a
5609  * secondary bus reset.
5610  */
5611 int pci_bus_error_reset(struct pci_dev *bridge)
5612 {
5613 	struct pci_bus *bus = bridge->subordinate;
5614 	struct pci_slot *slot;
5615 
5616 	if (!bus)
5617 		return -ENOTTY;
5618 
5619 	mutex_lock(&pci_slot_mutex);
5620 	if (list_empty(&bus->slots))
5621 		goto bus_reset;
5622 
5623 	list_for_each_entry(slot, &bus->slots, list)
5624 		if (pci_probe_reset_slot(slot))
5625 			goto bus_reset;
5626 
5627 	list_for_each_entry(slot, &bus->slots, list)
5628 		if (pci_slot_reset(slot, 0))
5629 			goto bus_reset;
5630 
5631 	mutex_unlock(&pci_slot_mutex);
5632 	return 0;
5633 bus_reset:
5634 	mutex_unlock(&pci_slot_mutex);
5635 	return pci_bus_reset(bridge->subordinate, 0);
5636 }
5637 
5638 /**
5639  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5640  * @bus: PCI bus to probe
5641  *
5642  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5643  */
5644 int pci_probe_reset_bus(struct pci_bus *bus)
5645 {
5646 	return pci_bus_reset(bus, 1);
5647 }
5648 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5649 
5650 /**
5651  * __pci_reset_bus - Try to reset a PCI bus
5652  * @bus: top level PCI bus to reset
5653  *
5654  * Same as above except return -EAGAIN if the bus cannot be locked
5655  */
5656 static int __pci_reset_bus(struct pci_bus *bus)
5657 {
5658 	int rc;
5659 
5660 	rc = pci_bus_reset(bus, 1);
5661 	if (rc)
5662 		return rc;
5663 
5664 	if (pci_bus_trylock(bus)) {
5665 		pci_bus_save_and_disable_locked(bus);
5666 		might_sleep();
5667 		rc = pci_bridge_secondary_bus_reset(bus->self);
5668 		pci_bus_restore_locked(bus);
5669 		pci_bus_unlock(bus);
5670 	} else
5671 		rc = -EAGAIN;
5672 
5673 	return rc;
5674 }
5675 
5676 /**
5677  * pci_reset_bus - Try to reset a PCI bus
5678  * @pdev: top level PCI device to reset via slot/bus
5679  *
5680  * Same as above except return -EAGAIN if the bus cannot be locked
5681  */
5682 int pci_reset_bus(struct pci_dev *pdev)
5683 {
5684 	return (!pci_probe_reset_slot(pdev->slot)) ?
5685 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5686 }
5687 EXPORT_SYMBOL_GPL(pci_reset_bus);
5688 
5689 /**
5690  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5691  * @dev: PCI device to query
5692  *
5693  * Returns mmrbc: maximum designed memory read count in bytes or
5694  * appropriate error value.
5695  */
5696 int pcix_get_max_mmrbc(struct pci_dev *dev)
5697 {
5698 	int cap;
5699 	u32 stat;
5700 
5701 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5702 	if (!cap)
5703 		return -EINVAL;
5704 
5705 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5706 		return -EINVAL;
5707 
5708 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5709 }
5710 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5711 
5712 /**
5713  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5714  * @dev: PCI device to query
5715  *
5716  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5717  * value.
5718  */
5719 int pcix_get_mmrbc(struct pci_dev *dev)
5720 {
5721 	int cap;
5722 	u16 cmd;
5723 
5724 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5725 	if (!cap)
5726 		return -EINVAL;
5727 
5728 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5729 		return -EINVAL;
5730 
5731 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5732 }
5733 EXPORT_SYMBOL(pcix_get_mmrbc);
5734 
5735 /**
5736  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5737  * @dev: PCI device to query
5738  * @mmrbc: maximum memory read count in bytes
5739  *    valid values are 512, 1024, 2048, 4096
5740  *
5741  * If possible sets maximum memory read byte count, some bridges have errata
5742  * that prevent this.
5743  */
5744 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5745 {
5746 	int cap;
5747 	u32 stat, v, o;
5748 	u16 cmd;
5749 
5750 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5751 		return -EINVAL;
5752 
5753 	v = ffs(mmrbc) - 10;
5754 
5755 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5756 	if (!cap)
5757 		return -EINVAL;
5758 
5759 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5760 		return -EINVAL;
5761 
5762 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5763 		return -E2BIG;
5764 
5765 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5766 		return -EINVAL;
5767 
5768 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5769 	if (o != v) {
5770 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5771 			return -EIO;
5772 
5773 		cmd &= ~PCI_X_CMD_MAX_READ;
5774 		cmd |= v << 2;
5775 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5776 			return -EIO;
5777 	}
5778 	return 0;
5779 }
5780 EXPORT_SYMBOL(pcix_set_mmrbc);
5781 
5782 /**
5783  * pcie_get_readrq - get PCI Express read request size
5784  * @dev: PCI device to query
5785  *
5786  * Returns maximum memory read request in bytes or appropriate error value.
5787  */
5788 int pcie_get_readrq(struct pci_dev *dev)
5789 {
5790 	u16 ctl;
5791 
5792 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5793 
5794 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5795 }
5796 EXPORT_SYMBOL(pcie_get_readrq);
5797 
5798 /**
5799  * pcie_set_readrq - set PCI Express maximum memory read request
5800  * @dev: PCI device to query
5801  * @rq: maximum memory read count in bytes
5802  *    valid values are 128, 256, 512, 1024, 2048, 4096
5803  *
5804  * If possible sets maximum memory read request in bytes
5805  */
5806 int pcie_set_readrq(struct pci_dev *dev, int rq)
5807 {
5808 	u16 v;
5809 	int ret;
5810 
5811 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5812 		return -EINVAL;
5813 
5814 	/*
5815 	 * If using the "performance" PCIe config, we clamp the read rq
5816 	 * size to the max packet size to keep the host bridge from
5817 	 * generating requests larger than we can cope with.
5818 	 */
5819 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5820 		int mps = pcie_get_mps(dev);
5821 
5822 		if (mps < rq)
5823 			rq = mps;
5824 	}
5825 
5826 	v = (ffs(rq) - 8) << 12;
5827 
5828 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5829 						  PCI_EXP_DEVCTL_READRQ, v);
5830 
5831 	return pcibios_err_to_errno(ret);
5832 }
5833 EXPORT_SYMBOL(pcie_set_readrq);
5834 
5835 /**
5836  * pcie_get_mps - get PCI Express maximum payload size
5837  * @dev: PCI device to query
5838  *
5839  * Returns maximum payload size in bytes
5840  */
5841 int pcie_get_mps(struct pci_dev *dev)
5842 {
5843 	u16 ctl;
5844 
5845 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5846 
5847 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5848 }
5849 EXPORT_SYMBOL(pcie_get_mps);
5850 
5851 /**
5852  * pcie_set_mps - set PCI Express maximum payload size
5853  * @dev: PCI device to query
5854  * @mps: maximum payload size in bytes
5855  *    valid values are 128, 256, 512, 1024, 2048, 4096
5856  *
5857  * If possible sets maximum payload size
5858  */
5859 int pcie_set_mps(struct pci_dev *dev, int mps)
5860 {
5861 	u16 v;
5862 	int ret;
5863 
5864 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5865 		return -EINVAL;
5866 
5867 	v = ffs(mps) - 8;
5868 	if (v > dev->pcie_mpss)
5869 		return -EINVAL;
5870 	v <<= 5;
5871 
5872 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5873 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5874 
5875 	return pcibios_err_to_errno(ret);
5876 }
5877 EXPORT_SYMBOL(pcie_set_mps);
5878 
5879 /**
5880  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5881  *			      device and its bandwidth limitation
5882  * @dev: PCI device to query
5883  * @limiting_dev: storage for device causing the bandwidth limitation
5884  * @speed: storage for speed of limiting device
5885  * @width: storage for width of limiting device
5886  *
5887  * Walk up the PCI device chain and find the point where the minimum
5888  * bandwidth is available.  Return the bandwidth available there and (if
5889  * limiting_dev, speed, and width pointers are supplied) information about
5890  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5891  * raw bandwidth.
5892  */
5893 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5894 			     enum pci_bus_speed *speed,
5895 			     enum pcie_link_width *width)
5896 {
5897 	u16 lnksta;
5898 	enum pci_bus_speed next_speed;
5899 	enum pcie_link_width next_width;
5900 	u32 bw, next_bw;
5901 
5902 	if (speed)
5903 		*speed = PCI_SPEED_UNKNOWN;
5904 	if (width)
5905 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5906 
5907 	bw = 0;
5908 
5909 	while (dev) {
5910 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5911 
5912 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5913 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5914 			PCI_EXP_LNKSTA_NLW_SHIFT;
5915 
5916 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5917 
5918 		/* Check if current device limits the total bandwidth */
5919 		if (!bw || next_bw <= bw) {
5920 			bw = next_bw;
5921 
5922 			if (limiting_dev)
5923 				*limiting_dev = dev;
5924 			if (speed)
5925 				*speed = next_speed;
5926 			if (width)
5927 				*width = next_width;
5928 		}
5929 
5930 		dev = pci_upstream_bridge(dev);
5931 	}
5932 
5933 	return bw;
5934 }
5935 EXPORT_SYMBOL(pcie_bandwidth_available);
5936 
5937 /**
5938  * pcie_get_speed_cap - query for the PCI device's link speed capability
5939  * @dev: PCI device to query
5940  *
5941  * Query the PCI device speed capability.  Return the maximum link speed
5942  * supported by the device.
5943  */
5944 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5945 {
5946 	u32 lnkcap2, lnkcap;
5947 
5948 	/*
5949 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5950 	 * implementation note there recommends using the Supported Link
5951 	 * Speeds Vector in Link Capabilities 2 when supported.
5952 	 *
5953 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5954 	 * should use the Supported Link Speeds field in Link Capabilities,
5955 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5956 	 */
5957 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5958 
5959 	/* PCIe r3.0-compliant */
5960 	if (lnkcap2)
5961 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5962 
5963 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5964 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5965 		return PCIE_SPEED_5_0GT;
5966 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5967 		return PCIE_SPEED_2_5GT;
5968 
5969 	return PCI_SPEED_UNKNOWN;
5970 }
5971 EXPORT_SYMBOL(pcie_get_speed_cap);
5972 
5973 /**
5974  * pcie_get_width_cap - query for the PCI device's link width capability
5975  * @dev: PCI device to query
5976  *
5977  * Query the PCI device width capability.  Return the maximum link width
5978  * supported by the device.
5979  */
5980 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5981 {
5982 	u32 lnkcap;
5983 
5984 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5985 	if (lnkcap)
5986 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5987 
5988 	return PCIE_LNK_WIDTH_UNKNOWN;
5989 }
5990 EXPORT_SYMBOL(pcie_get_width_cap);
5991 
5992 /**
5993  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5994  * @dev: PCI device
5995  * @speed: storage for link speed
5996  * @width: storage for link width
5997  *
5998  * Calculate a PCI device's link bandwidth by querying for its link speed
5999  * and width, multiplying them, and applying encoding overhead.  The result
6000  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6001  */
6002 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6003 			   enum pcie_link_width *width)
6004 {
6005 	*speed = pcie_get_speed_cap(dev);
6006 	*width = pcie_get_width_cap(dev);
6007 
6008 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6009 		return 0;
6010 
6011 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6012 }
6013 
6014 /**
6015  * __pcie_print_link_status - Report the PCI device's link speed and width
6016  * @dev: PCI device to query
6017  * @verbose: Print info even when enough bandwidth is available
6018  *
6019  * If the available bandwidth at the device is less than the device is
6020  * capable of, report the device's maximum possible bandwidth and the
6021  * upstream link that limits its performance.  If @verbose, always print
6022  * the available bandwidth, even if the device isn't constrained.
6023  */
6024 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6025 {
6026 	enum pcie_link_width width, width_cap;
6027 	enum pci_bus_speed speed, speed_cap;
6028 	struct pci_dev *limiting_dev = NULL;
6029 	u32 bw_avail, bw_cap;
6030 
6031 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6032 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6033 
6034 	if (bw_avail >= bw_cap && verbose)
6035 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6036 			 bw_cap / 1000, bw_cap % 1000,
6037 			 pci_speed_string(speed_cap), width_cap);
6038 	else if (bw_avail < bw_cap)
6039 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6040 			 bw_avail / 1000, bw_avail % 1000,
6041 			 pci_speed_string(speed), width,
6042 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6043 			 bw_cap / 1000, bw_cap % 1000,
6044 			 pci_speed_string(speed_cap), width_cap);
6045 }
6046 
6047 /**
6048  * pcie_print_link_status - Report the PCI device's link speed and width
6049  * @dev: PCI device to query
6050  *
6051  * Report the available bandwidth at the device.
6052  */
6053 void pcie_print_link_status(struct pci_dev *dev)
6054 {
6055 	__pcie_print_link_status(dev, true);
6056 }
6057 EXPORT_SYMBOL(pcie_print_link_status);
6058 
6059 /**
6060  * pci_select_bars - Make BAR mask from the type of resource
6061  * @dev: the PCI device for which BAR mask is made
6062  * @flags: resource type mask to be selected
6063  *
6064  * This helper routine makes bar mask from the type of resource.
6065  */
6066 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6067 {
6068 	int i, bars = 0;
6069 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6070 		if (pci_resource_flags(dev, i) & flags)
6071 			bars |= (1 << i);
6072 	return bars;
6073 }
6074 EXPORT_SYMBOL(pci_select_bars);
6075 
6076 /* Some architectures require additional programming to enable VGA */
6077 static arch_set_vga_state_t arch_set_vga_state;
6078 
6079 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6080 {
6081 	arch_set_vga_state = func;	/* NULL disables */
6082 }
6083 
6084 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6085 				  unsigned int command_bits, u32 flags)
6086 {
6087 	if (arch_set_vga_state)
6088 		return arch_set_vga_state(dev, decode, command_bits,
6089 						flags);
6090 	return 0;
6091 }
6092 
6093 /**
6094  * pci_set_vga_state - set VGA decode state on device and parents if requested
6095  * @dev: the PCI device
6096  * @decode: true = enable decoding, false = disable decoding
6097  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6098  * @flags: traverse ancestors and change bridges
6099  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6100  */
6101 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6102 		      unsigned int command_bits, u32 flags)
6103 {
6104 	struct pci_bus *bus;
6105 	struct pci_dev *bridge;
6106 	u16 cmd;
6107 	int rc;
6108 
6109 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6110 
6111 	/* ARCH specific VGA enables */
6112 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6113 	if (rc)
6114 		return rc;
6115 
6116 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6117 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6118 		if (decode)
6119 			cmd |= command_bits;
6120 		else
6121 			cmd &= ~command_bits;
6122 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6123 	}
6124 
6125 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6126 		return 0;
6127 
6128 	bus = dev->bus;
6129 	while (bus) {
6130 		bridge = bus->self;
6131 		if (bridge) {
6132 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6133 					     &cmd);
6134 			if (decode)
6135 				cmd |= PCI_BRIDGE_CTL_VGA;
6136 			else
6137 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6138 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6139 					      cmd);
6140 		}
6141 		bus = bus->parent;
6142 	}
6143 	return 0;
6144 }
6145 
6146 #ifdef CONFIG_ACPI
6147 bool pci_pr3_present(struct pci_dev *pdev)
6148 {
6149 	struct acpi_device *adev;
6150 
6151 	if (acpi_disabled)
6152 		return false;
6153 
6154 	adev = ACPI_COMPANION(&pdev->dev);
6155 	if (!adev)
6156 		return false;
6157 
6158 	return adev->power.flags.power_resources &&
6159 		acpi_has_method(adev->handle, "_PR3");
6160 }
6161 EXPORT_SYMBOL_GPL(pci_pr3_present);
6162 #endif
6163 
6164 /**
6165  * pci_add_dma_alias - Add a DMA devfn alias for a device
6166  * @dev: the PCI device for which alias is added
6167  * @devfn_from: alias slot and function
6168  * @nr_devfns: number of subsequent devfns to alias
6169  *
6170  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6171  * which is used to program permissible bus-devfn source addresses for DMA
6172  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6173  * and are useful for devices generating DMA requests beyond or different
6174  * from their logical bus-devfn.  Examples include device quirks where the
6175  * device simply uses the wrong devfn, as well as non-transparent bridges
6176  * where the alias may be a proxy for devices in another domain.
6177  *
6178  * IOMMU group creation is performed during device discovery or addition,
6179  * prior to any potential DMA mapping and therefore prior to driver probing
6180  * (especially for userspace assigned devices where IOMMU group definition
6181  * cannot be left as a userspace activity).  DMA aliases should therefore
6182  * be configured via quirks, such as the PCI fixup header quirk.
6183  */
6184 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6185 {
6186 	int devfn_to;
6187 
6188 	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6189 	devfn_to = devfn_from + nr_devfns - 1;
6190 
6191 	if (!dev->dma_alias_mask)
6192 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6193 	if (!dev->dma_alias_mask) {
6194 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6195 		return;
6196 	}
6197 
6198 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6199 
6200 	if (nr_devfns == 1)
6201 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6202 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6203 	else if (nr_devfns > 1)
6204 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6205 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6206 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6207 }
6208 
6209 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6210 {
6211 	return (dev1->dma_alias_mask &&
6212 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6213 	       (dev2->dma_alias_mask &&
6214 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6215 	       pci_real_dma_dev(dev1) == dev2 ||
6216 	       pci_real_dma_dev(dev2) == dev1;
6217 }
6218 
6219 bool pci_device_is_present(struct pci_dev *pdev)
6220 {
6221 	u32 v;
6222 
6223 	if (pci_dev_is_disconnected(pdev))
6224 		return false;
6225 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6226 }
6227 EXPORT_SYMBOL_GPL(pci_device_is_present);
6228 
6229 void pci_ignore_hotplug(struct pci_dev *dev)
6230 {
6231 	struct pci_dev *bridge = dev->bus->self;
6232 
6233 	dev->ignore_hotplug = 1;
6234 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6235 	if (bridge)
6236 		bridge->ignore_hotplug = 1;
6237 }
6238 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6239 
6240 /**
6241  * pci_real_dma_dev - Get PCI DMA device for PCI device
6242  * @dev: the PCI device that may have a PCI DMA alias
6243  *
6244  * Permits the platform to provide architecture-specific functionality to
6245  * devices needing to alias DMA to another PCI device on another PCI bus. If
6246  * the PCI device is on the same bus, it is recommended to use
6247  * pci_add_dma_alias(). This is the default implementation. Architecture
6248  * implementations can override this.
6249  */
6250 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6251 {
6252 	return dev;
6253 }
6254 
6255 resource_size_t __weak pcibios_default_alignment(void)
6256 {
6257 	return 0;
6258 }
6259 
6260 /*
6261  * Arches that don't want to expose struct resource to userland as-is in
6262  * sysfs and /proc can implement their own pci_resource_to_user().
6263  */
6264 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6265 				 const struct resource *rsrc,
6266 				 resource_size_t *start, resource_size_t *end)
6267 {
6268 	*start = rsrc->start;
6269 	*end = rsrc->end;
6270 }
6271 
6272 static char *resource_alignment_param;
6273 static DEFINE_SPINLOCK(resource_alignment_lock);
6274 
6275 /**
6276  * pci_specified_resource_alignment - get resource alignment specified by user.
6277  * @dev: the PCI device to get
6278  * @resize: whether or not to change resources' size when reassigning alignment
6279  *
6280  * RETURNS: Resource alignment if it is specified.
6281  *          Zero if it is not specified.
6282  */
6283 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6284 							bool *resize)
6285 {
6286 	int align_order, count;
6287 	resource_size_t align = pcibios_default_alignment();
6288 	const char *p;
6289 	int ret;
6290 
6291 	spin_lock(&resource_alignment_lock);
6292 	p = resource_alignment_param;
6293 	if (!p || !*p)
6294 		goto out;
6295 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6296 		align = 0;
6297 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6298 		goto out;
6299 	}
6300 
6301 	while (*p) {
6302 		count = 0;
6303 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6304 		    p[count] == '@') {
6305 			p += count + 1;
6306 			if (align_order > 63) {
6307 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6308 				       align_order);
6309 				align_order = PAGE_SHIFT;
6310 			}
6311 		} else {
6312 			align_order = PAGE_SHIFT;
6313 		}
6314 
6315 		ret = pci_dev_str_match(dev, p, &p);
6316 		if (ret == 1) {
6317 			*resize = true;
6318 			align = 1ULL << align_order;
6319 			break;
6320 		} else if (ret < 0) {
6321 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6322 			       p);
6323 			break;
6324 		}
6325 
6326 		if (*p != ';' && *p != ',') {
6327 			/* End of param or invalid format */
6328 			break;
6329 		}
6330 		p++;
6331 	}
6332 out:
6333 	spin_unlock(&resource_alignment_lock);
6334 	return align;
6335 }
6336 
6337 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6338 					   resource_size_t align, bool resize)
6339 {
6340 	struct resource *r = &dev->resource[bar];
6341 	resource_size_t size;
6342 
6343 	if (!(r->flags & IORESOURCE_MEM))
6344 		return;
6345 
6346 	if (r->flags & IORESOURCE_PCI_FIXED) {
6347 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6348 			 bar, r, (unsigned long long)align);
6349 		return;
6350 	}
6351 
6352 	size = resource_size(r);
6353 	if (size >= align)
6354 		return;
6355 
6356 	/*
6357 	 * Increase the alignment of the resource.  There are two ways we
6358 	 * can do this:
6359 	 *
6360 	 * 1) Increase the size of the resource.  BARs are aligned on their
6361 	 *    size, so when we reallocate space for this resource, we'll
6362 	 *    allocate it with the larger alignment.  This also prevents
6363 	 *    assignment of any other BARs inside the alignment region, so
6364 	 *    if we're requesting page alignment, this means no other BARs
6365 	 *    will share the page.
6366 	 *
6367 	 *    The disadvantage is that this makes the resource larger than
6368 	 *    the hardware BAR, which may break drivers that compute things
6369 	 *    based on the resource size, e.g., to find registers at a
6370 	 *    fixed offset before the end of the BAR.
6371 	 *
6372 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6373 	 *    set r->start to the desired alignment.  By itself this
6374 	 *    doesn't prevent other BARs being put inside the alignment
6375 	 *    region, but if we realign *every* resource of every device in
6376 	 *    the system, none of them will share an alignment region.
6377 	 *
6378 	 * When the user has requested alignment for only some devices via
6379 	 * the "pci=resource_alignment" argument, "resize" is true and we
6380 	 * use the first method.  Otherwise we assume we're aligning all
6381 	 * devices and we use the second.
6382 	 */
6383 
6384 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6385 		 bar, r, (unsigned long long)align);
6386 
6387 	if (resize) {
6388 		r->start = 0;
6389 		r->end = align - 1;
6390 	} else {
6391 		r->flags &= ~IORESOURCE_SIZEALIGN;
6392 		r->flags |= IORESOURCE_STARTALIGN;
6393 		r->start = align;
6394 		r->end = r->start + size - 1;
6395 	}
6396 	r->flags |= IORESOURCE_UNSET;
6397 }
6398 
6399 /*
6400  * This function disables memory decoding and releases memory resources
6401  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6402  * It also rounds up size to specified alignment.
6403  * Later on, the kernel will assign page-aligned memory resource back
6404  * to the device.
6405  */
6406 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6407 {
6408 	int i;
6409 	struct resource *r;
6410 	resource_size_t align;
6411 	u16 command;
6412 	bool resize = false;
6413 
6414 	/*
6415 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6416 	 * 3.4.1.11.  Their resources are allocated from the space
6417 	 * described by the VF BARx register in the PF's SR-IOV capability.
6418 	 * We can't influence their alignment here.
6419 	 */
6420 	if (dev->is_virtfn)
6421 		return;
6422 
6423 	/* check if specified PCI is target device to reassign */
6424 	align = pci_specified_resource_alignment(dev, &resize);
6425 	if (!align)
6426 		return;
6427 
6428 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6429 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6430 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6431 		return;
6432 	}
6433 
6434 	pci_read_config_word(dev, PCI_COMMAND, &command);
6435 	command &= ~PCI_COMMAND_MEMORY;
6436 	pci_write_config_word(dev, PCI_COMMAND, command);
6437 
6438 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6439 		pci_request_resource_alignment(dev, i, align, resize);
6440 
6441 	/*
6442 	 * Need to disable bridge's resource window,
6443 	 * to enable the kernel to reassign new resource
6444 	 * window later on.
6445 	 */
6446 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6447 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6448 			r = &dev->resource[i];
6449 			if (!(r->flags & IORESOURCE_MEM))
6450 				continue;
6451 			r->flags |= IORESOURCE_UNSET;
6452 			r->end = resource_size(r) - 1;
6453 			r->start = 0;
6454 		}
6455 		pci_disable_bridge_window(dev);
6456 	}
6457 }
6458 
6459 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6460 {
6461 	size_t count = 0;
6462 
6463 	spin_lock(&resource_alignment_lock);
6464 	if (resource_alignment_param)
6465 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6466 	spin_unlock(&resource_alignment_lock);
6467 
6468 	return count;
6469 }
6470 
6471 static ssize_t resource_alignment_store(struct bus_type *bus,
6472 					const char *buf, size_t count)
6473 {
6474 	char *param, *old, *end;
6475 
6476 	if (count >= (PAGE_SIZE - 1))
6477 		return -EINVAL;
6478 
6479 	param = kstrndup(buf, count, GFP_KERNEL);
6480 	if (!param)
6481 		return -ENOMEM;
6482 
6483 	end = strchr(param, '\n');
6484 	if (end)
6485 		*end = '\0';
6486 
6487 	spin_lock(&resource_alignment_lock);
6488 	old = resource_alignment_param;
6489 	if (strlen(param)) {
6490 		resource_alignment_param = param;
6491 	} else {
6492 		kfree(param);
6493 		resource_alignment_param = NULL;
6494 	}
6495 	spin_unlock(&resource_alignment_lock);
6496 
6497 	kfree(old);
6498 
6499 	return count;
6500 }
6501 
6502 static BUS_ATTR_RW(resource_alignment);
6503 
6504 static int __init pci_resource_alignment_sysfs_init(void)
6505 {
6506 	return bus_create_file(&pci_bus_type,
6507 					&bus_attr_resource_alignment);
6508 }
6509 late_initcall(pci_resource_alignment_sysfs_init);
6510 
6511 static void pci_no_domains(void)
6512 {
6513 #ifdef CONFIG_PCI_DOMAINS
6514 	pci_domains_supported = 0;
6515 #endif
6516 }
6517 
6518 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6519 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6520 
6521 static int pci_get_new_domain_nr(void)
6522 {
6523 	return atomic_inc_return(&__domain_nr);
6524 }
6525 
6526 static int of_pci_bus_find_domain_nr(struct device *parent)
6527 {
6528 	static int use_dt_domains = -1;
6529 	int domain = -1;
6530 
6531 	if (parent)
6532 		domain = of_get_pci_domain_nr(parent->of_node);
6533 
6534 	/*
6535 	 * Check DT domain and use_dt_domains values.
6536 	 *
6537 	 * If DT domain property is valid (domain >= 0) and
6538 	 * use_dt_domains != 0, the DT assignment is valid since this means
6539 	 * we have not previously allocated a domain number by using
6540 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6541 	 * 1, to indicate that we have just assigned a domain number from
6542 	 * DT.
6543 	 *
6544 	 * If DT domain property value is not valid (ie domain < 0), and we
6545 	 * have not previously assigned a domain number from DT
6546 	 * (use_dt_domains != 1) we should assign a domain number by
6547 	 * using the:
6548 	 *
6549 	 * pci_get_new_domain_nr()
6550 	 *
6551 	 * API and update the use_dt_domains value to keep track of method we
6552 	 * are using to assign domain numbers (use_dt_domains = 0).
6553 	 *
6554 	 * All other combinations imply we have a platform that is trying
6555 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6556 	 * which is a recipe for domain mishandling and it is prevented by
6557 	 * invalidating the domain value (domain = -1) and printing a
6558 	 * corresponding error.
6559 	 */
6560 	if (domain >= 0 && use_dt_domains) {
6561 		use_dt_domains = 1;
6562 	} else if (domain < 0 && use_dt_domains != 1) {
6563 		use_dt_domains = 0;
6564 		domain = pci_get_new_domain_nr();
6565 	} else {
6566 		if (parent)
6567 			pr_err("Node %pOF has ", parent->of_node);
6568 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6569 		domain = -1;
6570 	}
6571 
6572 	return domain;
6573 }
6574 
6575 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6576 {
6577 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6578 			       acpi_pci_bus_find_domain_nr(bus);
6579 }
6580 #endif
6581 
6582 /**
6583  * pci_ext_cfg_avail - can we access extended PCI config space?
6584  *
6585  * Returns 1 if we can access PCI extended config space (offsets
6586  * greater than 0xff). This is the default implementation. Architecture
6587  * implementations can override this.
6588  */
6589 int __weak pci_ext_cfg_avail(void)
6590 {
6591 	return 1;
6592 }
6593 
6594 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6595 {
6596 }
6597 EXPORT_SYMBOL(pci_fixup_cardbus);
6598 
6599 static int __init pci_setup(char *str)
6600 {
6601 	while (str) {
6602 		char *k = strchr(str, ',');
6603 		if (k)
6604 			*k++ = 0;
6605 		if (*str && (str = pcibios_setup(str)) && *str) {
6606 			if (!strcmp(str, "nomsi")) {
6607 				pci_no_msi();
6608 			} else if (!strncmp(str, "noats", 5)) {
6609 				pr_info("PCIe: ATS is disabled\n");
6610 				pcie_ats_disabled = true;
6611 			} else if (!strcmp(str, "noaer")) {
6612 				pci_no_aer();
6613 			} else if (!strcmp(str, "earlydump")) {
6614 				pci_early_dump = true;
6615 			} else if (!strncmp(str, "realloc=", 8)) {
6616 				pci_realloc_get_opt(str + 8);
6617 			} else if (!strncmp(str, "realloc", 7)) {
6618 				pci_realloc_get_opt("on");
6619 			} else if (!strcmp(str, "nodomains")) {
6620 				pci_no_domains();
6621 			} else if (!strncmp(str, "noari", 5)) {
6622 				pcie_ari_disabled = true;
6623 			} else if (!strncmp(str, "cbiosize=", 9)) {
6624 				pci_cardbus_io_size = memparse(str + 9, &str);
6625 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6626 				pci_cardbus_mem_size = memparse(str + 10, &str);
6627 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6628 				resource_alignment_param = str + 19;
6629 			} else if (!strncmp(str, "ecrc=", 5)) {
6630 				pcie_ecrc_get_policy(str + 5);
6631 			} else if (!strncmp(str, "hpiosize=", 9)) {
6632 				pci_hotplug_io_size = memparse(str + 9, &str);
6633 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6634 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6635 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6636 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6637 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6638 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6639 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6640 			} else if (!strncmp(str, "hpbussize=", 10)) {
6641 				pci_hotplug_bus_size =
6642 					simple_strtoul(str + 10, &str, 0);
6643 				if (pci_hotplug_bus_size > 0xff)
6644 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6645 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6646 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6647 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6648 				pcie_bus_config = PCIE_BUS_SAFE;
6649 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6650 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6651 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6652 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6653 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6654 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6655 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6656 				disable_acs_redir_param = str + 18;
6657 			} else {
6658 				pr_err("PCI: Unknown option `%s'\n", str);
6659 			}
6660 		}
6661 		str = k;
6662 	}
6663 	return 0;
6664 }
6665 early_param("pci", pci_setup);
6666 
6667 /*
6668  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6669  * in pci_setup(), above, to point to data in the __initdata section which
6670  * will be freed after the init sequence is complete. We can't allocate memory
6671  * in pci_setup() because some architectures do not have any memory allocation
6672  * service available during an early_param() call. So we allocate memory and
6673  * copy the variable here before the init section is freed.
6674  *
6675  */
6676 static int __init pci_realloc_setup_params(void)
6677 {
6678 	resource_alignment_param = kstrdup(resource_alignment_param,
6679 					   GFP_KERNEL);
6680 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6681 
6682 	return 0;
6683 }
6684 pure_initcall(pci_realloc_setup_params);
6685