1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include "pci.h" 35 36 DEFINE_MUTEX(pci_slot_mutex); 37 38 const char *pci_power_names[] = { 39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 40 }; 41 EXPORT_SYMBOL_GPL(pci_power_names); 42 43 int isa_dma_bridge_buggy; 44 EXPORT_SYMBOL(isa_dma_bridge_buggy); 45 46 int pci_pci_problems; 47 EXPORT_SYMBOL(pci_pci_problems); 48 49 unsigned int pci_pm_d3hot_delay; 50 51 static void pci_pme_list_scan(struct work_struct *work); 52 53 static LIST_HEAD(pci_pme_list); 54 static DEFINE_MUTEX(pci_pme_list_mutex); 55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 56 57 struct pci_pme_device { 58 struct list_head list; 59 struct pci_dev *dev; 60 }; 61 62 #define PME_TIMEOUT 1000 /* How long between PME checks */ 63 64 static void pci_dev_d3_sleep(struct pci_dev *dev) 65 { 66 unsigned int delay = dev->d3hot_delay; 67 68 if (delay < pci_pm_d3hot_delay) 69 delay = pci_pm_d3hot_delay; 70 71 if (delay) 72 msleep(delay); 73 } 74 75 #ifdef CONFIG_PCI_DOMAINS 76 int pci_domains_supported = 1; 77 #endif 78 79 #define DEFAULT_CARDBUS_IO_SIZE (256) 80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 84 85 #define DEFAULT_HOTPLUG_IO_SIZE (256) 86 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 88 /* hpiosize=nn can override this */ 89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 90 /* 91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 93 * pci=hpmemsize=nnM overrides both 94 */ 95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 97 98 #define DEFAULT_HOTPLUG_BUS_SIZE 1 99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 100 101 102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 105 #elif defined CONFIG_PCIE_BUS_SAFE 106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 109 #elif defined CONFIG_PCIE_BUS_PEER2PEER 110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 111 #else 112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 113 #endif 114 115 /* 116 * The default CLS is used if arch didn't set CLS explicitly and not 117 * all pci devices agree on the same value. Arch can override either 118 * the dfl or actual value as it sees fit. Don't forget this is 119 * measured in 32-bit words, not bytes. 120 */ 121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 122 u8 pci_cache_line_size; 123 124 /* 125 * If we set up a device for bus mastering, we need to check the latency 126 * timer as certain BIOSes forget to set it properly. 127 */ 128 unsigned int pcibios_max_latency = 255; 129 130 /* If set, the PCIe ARI capability will not be used. */ 131 static bool pcie_ari_disabled; 132 133 /* If set, the PCIe ATS capability will not be used. */ 134 static bool pcie_ats_disabled; 135 136 /* If set, the PCI config space of each device is printed during boot. */ 137 bool pci_early_dump; 138 139 bool pci_ats_disabled(void) 140 { 141 return pcie_ats_disabled; 142 } 143 EXPORT_SYMBOL_GPL(pci_ats_disabled); 144 145 /* Disable bridge_d3 for all PCIe ports */ 146 static bool pci_bridge_d3_disable; 147 /* Force bridge_d3 for all PCIe ports */ 148 static bool pci_bridge_d3_force; 149 150 static int __init pcie_port_pm_setup(char *str) 151 { 152 if (!strcmp(str, "off")) 153 pci_bridge_d3_disable = true; 154 else if (!strcmp(str, "force")) 155 pci_bridge_d3_force = true; 156 return 1; 157 } 158 __setup("pcie_port_pm=", pcie_port_pm_setup); 159 160 /* Time to wait after a reset for device to become responsive */ 161 #define PCIE_RESET_READY_POLL_MS 60000 162 163 /** 164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 165 * @bus: pointer to PCI bus structure to search 166 * 167 * Given a PCI bus, returns the highest PCI bus number present in the set 168 * including the given PCI bus and its list of child PCI buses. 169 */ 170 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 171 { 172 struct pci_bus *tmp; 173 unsigned char max, n; 174 175 max = bus->busn_res.end; 176 list_for_each_entry(tmp, &bus->children, node) { 177 n = pci_bus_max_busnr(tmp); 178 if (n > max) 179 max = n; 180 } 181 return max; 182 } 183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 184 185 /** 186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 187 * @pdev: the PCI device 188 * 189 * Returns error bits set in PCI_STATUS and clears them. 190 */ 191 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 192 { 193 u16 status; 194 int ret; 195 196 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 197 if (ret != PCIBIOS_SUCCESSFUL) 198 return -EIO; 199 200 status &= PCI_STATUS_ERROR_BITS; 201 if (status) 202 pci_write_config_word(pdev, PCI_STATUS, status); 203 204 return status; 205 } 206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 207 208 #ifdef CONFIG_HAS_IOMEM 209 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 210 { 211 struct resource *res = &pdev->resource[bar]; 212 213 /* 214 * Make sure the BAR is actually a memory resource, not an IO resource 215 */ 216 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 217 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 218 return NULL; 219 } 220 return ioremap(res->start, resource_size(res)); 221 } 222 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 223 224 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 225 { 226 /* 227 * Make sure the BAR is actually a memory resource, not an IO resource 228 */ 229 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 230 WARN_ON(1); 231 return NULL; 232 } 233 return ioremap_wc(pci_resource_start(pdev, bar), 234 pci_resource_len(pdev, bar)); 235 } 236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 237 #endif 238 239 /** 240 * pci_dev_str_match_path - test if a path string matches a device 241 * @dev: the PCI device to test 242 * @path: string to match the device against 243 * @endptr: pointer to the string after the match 244 * 245 * Test if a string (typically from a kernel parameter) formatted as a 246 * path of device/function addresses matches a PCI device. The string must 247 * be of the form: 248 * 249 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 250 * 251 * A path for a device can be obtained using 'lspci -t'. Using a path 252 * is more robust against bus renumbering than using only a single bus, 253 * device and function address. 254 * 255 * Returns 1 if the string matches the device, 0 if it does not and 256 * a negative error code if it fails to parse the string. 257 */ 258 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 259 const char **endptr) 260 { 261 int ret; 262 int seg, bus, slot, func; 263 char *wpath, *p; 264 char end; 265 266 *endptr = strchrnul(path, ';'); 267 268 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 269 if (!wpath) 270 return -ENOMEM; 271 272 while (1) { 273 p = strrchr(wpath, '/'); 274 if (!p) 275 break; 276 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 277 if (ret != 2) { 278 ret = -EINVAL; 279 goto free_and_exit; 280 } 281 282 if (dev->devfn != PCI_DEVFN(slot, func)) { 283 ret = 0; 284 goto free_and_exit; 285 } 286 287 /* 288 * Note: we don't need to get a reference to the upstream 289 * bridge because we hold a reference to the top level 290 * device which should hold a reference to the bridge, 291 * and so on. 292 */ 293 dev = pci_upstream_bridge(dev); 294 if (!dev) { 295 ret = 0; 296 goto free_and_exit; 297 } 298 299 *p = 0; 300 } 301 302 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 303 &func, &end); 304 if (ret != 4) { 305 seg = 0; 306 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 307 if (ret != 3) { 308 ret = -EINVAL; 309 goto free_and_exit; 310 } 311 } 312 313 ret = (seg == pci_domain_nr(dev->bus) && 314 bus == dev->bus->number && 315 dev->devfn == PCI_DEVFN(slot, func)); 316 317 free_and_exit: 318 kfree(wpath); 319 return ret; 320 } 321 322 /** 323 * pci_dev_str_match - test if a string matches a device 324 * @dev: the PCI device to test 325 * @p: string to match the device against 326 * @endptr: pointer to the string after the match 327 * 328 * Test if a string (typically from a kernel parameter) matches a specified 329 * PCI device. The string may be of one of the following formats: 330 * 331 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 332 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 333 * 334 * The first format specifies a PCI bus/device/function address which 335 * may change if new hardware is inserted, if motherboard firmware changes, 336 * or due to changes caused in kernel parameters. If the domain is 337 * left unspecified, it is taken to be 0. In order to be robust against 338 * bus renumbering issues, a path of PCI device/function numbers may be used 339 * to address the specific device. The path for a device can be determined 340 * through the use of 'lspci -t'. 341 * 342 * The second format matches devices using IDs in the configuration 343 * space which may match multiple devices in the system. A value of 0 344 * for any field will match all devices. (Note: this differs from 345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 346 * legacy reasons and convenience so users don't have to specify 347 * FFFFFFFFs on the command line.) 348 * 349 * Returns 1 if the string matches the device, 0 if it does not and 350 * a negative error code if the string cannot be parsed. 351 */ 352 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 353 const char **endptr) 354 { 355 int ret; 356 int count; 357 unsigned short vendor, device, subsystem_vendor, subsystem_device; 358 359 if (strncmp(p, "pci:", 4) == 0) { 360 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 361 p += 4; 362 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 363 &subsystem_vendor, &subsystem_device, &count); 364 if (ret != 4) { 365 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 366 if (ret != 2) 367 return -EINVAL; 368 369 subsystem_vendor = 0; 370 subsystem_device = 0; 371 } 372 373 p += count; 374 375 if ((!vendor || vendor == dev->vendor) && 376 (!device || device == dev->device) && 377 (!subsystem_vendor || 378 subsystem_vendor == dev->subsystem_vendor) && 379 (!subsystem_device || 380 subsystem_device == dev->subsystem_device)) 381 goto found; 382 } else { 383 /* 384 * PCI Bus, Device, Function IDs are specified 385 * (optionally, may include a path of devfns following it) 386 */ 387 ret = pci_dev_str_match_path(dev, p, &p); 388 if (ret < 0) 389 return ret; 390 else if (ret) 391 goto found; 392 } 393 394 *endptr = p; 395 return 0; 396 397 found: 398 *endptr = p; 399 return 1; 400 } 401 402 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 403 u8 pos, int cap, int *ttl) 404 { 405 u8 id; 406 u16 ent; 407 408 pci_bus_read_config_byte(bus, devfn, pos, &pos); 409 410 while ((*ttl)--) { 411 if (pos < 0x40) 412 break; 413 pos &= ~3; 414 pci_bus_read_config_word(bus, devfn, pos, &ent); 415 416 id = ent & 0xff; 417 if (id == 0xff) 418 break; 419 if (id == cap) 420 return pos; 421 pos = (ent >> 8); 422 } 423 return 0; 424 } 425 426 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 427 u8 pos, int cap) 428 { 429 int ttl = PCI_FIND_CAP_TTL; 430 431 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 432 } 433 434 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 435 { 436 return __pci_find_next_cap(dev->bus, dev->devfn, 437 pos + PCI_CAP_LIST_NEXT, cap); 438 } 439 EXPORT_SYMBOL_GPL(pci_find_next_capability); 440 441 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 442 unsigned int devfn, u8 hdr_type) 443 { 444 u16 status; 445 446 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 447 if (!(status & PCI_STATUS_CAP_LIST)) 448 return 0; 449 450 switch (hdr_type) { 451 case PCI_HEADER_TYPE_NORMAL: 452 case PCI_HEADER_TYPE_BRIDGE: 453 return PCI_CAPABILITY_LIST; 454 case PCI_HEADER_TYPE_CARDBUS: 455 return PCI_CB_CAPABILITY_LIST; 456 } 457 458 return 0; 459 } 460 461 /** 462 * pci_find_capability - query for devices' capabilities 463 * @dev: PCI device to query 464 * @cap: capability code 465 * 466 * Tell if a device supports a given PCI capability. 467 * Returns the address of the requested capability structure within the 468 * device's PCI configuration space or 0 in case the device does not 469 * support it. Possible values for @cap include: 470 * 471 * %PCI_CAP_ID_PM Power Management 472 * %PCI_CAP_ID_AGP Accelerated Graphics Port 473 * %PCI_CAP_ID_VPD Vital Product Data 474 * %PCI_CAP_ID_SLOTID Slot Identification 475 * %PCI_CAP_ID_MSI Message Signalled Interrupts 476 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 477 * %PCI_CAP_ID_PCIX PCI-X 478 * %PCI_CAP_ID_EXP PCI Express 479 */ 480 u8 pci_find_capability(struct pci_dev *dev, int cap) 481 { 482 u8 pos; 483 484 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 485 if (pos) 486 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 487 488 return pos; 489 } 490 EXPORT_SYMBOL(pci_find_capability); 491 492 /** 493 * pci_bus_find_capability - query for devices' capabilities 494 * @bus: the PCI bus to query 495 * @devfn: PCI device to query 496 * @cap: capability code 497 * 498 * Like pci_find_capability() but works for PCI devices that do not have a 499 * pci_dev structure set up yet. 500 * 501 * Returns the address of the requested capability structure within the 502 * device's PCI configuration space or 0 in case the device does not 503 * support it. 504 */ 505 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 506 { 507 u8 hdr_type, pos; 508 509 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 510 511 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 512 if (pos) 513 pos = __pci_find_next_cap(bus, devfn, pos, cap); 514 515 return pos; 516 } 517 EXPORT_SYMBOL(pci_bus_find_capability); 518 519 /** 520 * pci_find_next_ext_capability - Find an extended capability 521 * @dev: PCI device to query 522 * @start: address at which to start looking (0 to start at beginning of list) 523 * @cap: capability code 524 * 525 * Returns the address of the next matching extended capability structure 526 * within the device's PCI configuration space or 0 if the device does 527 * not support it. Some capabilities can occur several times, e.g., the 528 * vendor-specific capability, and this provides a way to find them all. 529 */ 530 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 531 { 532 u32 header; 533 int ttl; 534 u16 pos = PCI_CFG_SPACE_SIZE; 535 536 /* minimum 8 bytes per capability */ 537 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 538 539 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 540 return 0; 541 542 if (start) 543 pos = start; 544 545 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 546 return 0; 547 548 /* 549 * If we have no capabilities, this is indicated by cap ID, 550 * cap version and next pointer all being 0. 551 */ 552 if (header == 0) 553 return 0; 554 555 while (ttl-- > 0) { 556 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 557 return pos; 558 559 pos = PCI_EXT_CAP_NEXT(header); 560 if (pos < PCI_CFG_SPACE_SIZE) 561 break; 562 563 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 564 break; 565 } 566 567 return 0; 568 } 569 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 570 571 /** 572 * pci_find_ext_capability - Find an extended capability 573 * @dev: PCI device to query 574 * @cap: capability code 575 * 576 * Returns the address of the requested extended capability structure 577 * within the device's PCI configuration space or 0 if the device does 578 * not support it. Possible values for @cap include: 579 * 580 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 581 * %PCI_EXT_CAP_ID_VC Virtual Channel 582 * %PCI_EXT_CAP_ID_DSN Device Serial Number 583 * %PCI_EXT_CAP_ID_PWR Power Budgeting 584 */ 585 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 586 { 587 return pci_find_next_ext_capability(dev, 0, cap); 588 } 589 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 590 591 /** 592 * pci_get_dsn - Read and return the 8-byte Device Serial Number 593 * @dev: PCI device to query 594 * 595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 596 * Number. 597 * 598 * Returns the DSN, or zero if the capability does not exist. 599 */ 600 u64 pci_get_dsn(struct pci_dev *dev) 601 { 602 u32 dword; 603 u64 dsn; 604 int pos; 605 606 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 607 if (!pos) 608 return 0; 609 610 /* 611 * The Device Serial Number is two dwords offset 4 bytes from the 612 * capability position. The specification says that the first dword is 613 * the lower half, and the second dword is the upper half. 614 */ 615 pos += 4; 616 pci_read_config_dword(dev, pos, &dword); 617 dsn = (u64)dword; 618 pci_read_config_dword(dev, pos + 4, &dword); 619 dsn |= ((u64)dword) << 32; 620 621 return dsn; 622 } 623 EXPORT_SYMBOL_GPL(pci_get_dsn); 624 625 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 626 { 627 int rc, ttl = PCI_FIND_CAP_TTL; 628 u8 cap, mask; 629 630 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 631 mask = HT_3BIT_CAP_MASK; 632 else 633 mask = HT_5BIT_CAP_MASK; 634 635 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 636 PCI_CAP_ID_HT, &ttl); 637 while (pos) { 638 rc = pci_read_config_byte(dev, pos + 3, &cap); 639 if (rc != PCIBIOS_SUCCESSFUL) 640 return 0; 641 642 if ((cap & mask) == ht_cap) 643 return pos; 644 645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 646 pos + PCI_CAP_LIST_NEXT, 647 PCI_CAP_ID_HT, &ttl); 648 } 649 650 return 0; 651 } 652 653 /** 654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 655 * @dev: PCI device to query 656 * @pos: Position from which to continue searching 657 * @ht_cap: HyperTransport capability code 658 * 659 * To be used in conjunction with pci_find_ht_capability() to search for 660 * all capabilities matching @ht_cap. @pos should always be a value returned 661 * from pci_find_ht_capability(). 662 * 663 * NB. To be 100% safe against broken PCI devices, the caller should take 664 * steps to avoid an infinite loop. 665 */ 666 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 667 { 668 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 669 } 670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 671 672 /** 673 * pci_find_ht_capability - query a device's HyperTransport capabilities 674 * @dev: PCI device to query 675 * @ht_cap: HyperTransport capability code 676 * 677 * Tell if a device supports a given HyperTransport capability. 678 * Returns an address within the device's PCI configuration space 679 * or 0 in case the device does not support the request capability. 680 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 681 * which has a HyperTransport capability matching @ht_cap. 682 */ 683 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 684 { 685 u8 pos; 686 687 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 688 if (pos) 689 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 690 691 return pos; 692 } 693 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 694 695 /** 696 * pci_find_vsec_capability - Find a vendor-specific extended capability 697 * @dev: PCI device to query 698 * @vendor: Vendor ID for which capability is defined 699 * @cap: Vendor-specific capability ID 700 * 701 * If @dev has Vendor ID @vendor, search for a VSEC capability with 702 * VSEC ID @cap. If found, return the capability offset in 703 * config space; otherwise return 0. 704 */ 705 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 706 { 707 u16 vsec = 0; 708 u32 header; 709 710 if (vendor != dev->vendor) 711 return 0; 712 713 while ((vsec = pci_find_next_ext_capability(dev, vsec, 714 PCI_EXT_CAP_ID_VNDR))) { 715 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, 716 &header) == PCIBIOS_SUCCESSFUL && 717 PCI_VNDR_HEADER_ID(header) == cap) 718 return vsec; 719 } 720 721 return 0; 722 } 723 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 724 725 /** 726 * pci_find_parent_resource - return resource region of parent bus of given 727 * region 728 * @dev: PCI device structure contains resources to be searched 729 * @res: child resource record for which parent is sought 730 * 731 * For given resource region of given device, return the resource region of 732 * parent bus the given region is contained in. 733 */ 734 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 735 struct resource *res) 736 { 737 const struct pci_bus *bus = dev->bus; 738 struct resource *r; 739 int i; 740 741 pci_bus_for_each_resource(bus, r, i) { 742 if (!r) 743 continue; 744 if (resource_contains(r, res)) { 745 746 /* 747 * If the window is prefetchable but the BAR is 748 * not, the allocator made a mistake. 749 */ 750 if (r->flags & IORESOURCE_PREFETCH && 751 !(res->flags & IORESOURCE_PREFETCH)) 752 return NULL; 753 754 /* 755 * If we're below a transparent bridge, there may 756 * be both a positively-decoded aperture and a 757 * subtractively-decoded region that contain the BAR. 758 * We want the positively-decoded one, so this depends 759 * on pci_bus_for_each_resource() giving us those 760 * first. 761 */ 762 return r; 763 } 764 } 765 return NULL; 766 } 767 EXPORT_SYMBOL(pci_find_parent_resource); 768 769 /** 770 * pci_find_resource - Return matching PCI device resource 771 * @dev: PCI device to query 772 * @res: Resource to look for 773 * 774 * Goes over standard PCI resources (BARs) and checks if the given resource 775 * is partially or fully contained in any of them. In that case the 776 * matching resource is returned, %NULL otherwise. 777 */ 778 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 779 { 780 int i; 781 782 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 783 struct resource *r = &dev->resource[i]; 784 785 if (r->start && resource_contains(r, res)) 786 return r; 787 } 788 789 return NULL; 790 } 791 EXPORT_SYMBOL(pci_find_resource); 792 793 /** 794 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 795 * @dev: the PCI device to operate on 796 * @pos: config space offset of status word 797 * @mask: mask of bit(s) to care about in status word 798 * 799 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 800 */ 801 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 802 { 803 int i; 804 805 /* Wait for Transaction Pending bit clean */ 806 for (i = 0; i < 4; i++) { 807 u16 status; 808 if (i) 809 msleep((1 << (i - 1)) * 100); 810 811 pci_read_config_word(dev, pos, &status); 812 if (!(status & mask)) 813 return 1; 814 } 815 816 return 0; 817 } 818 819 static int pci_acs_enable; 820 821 /** 822 * pci_request_acs - ask for ACS to be enabled if supported 823 */ 824 void pci_request_acs(void) 825 { 826 pci_acs_enable = 1; 827 } 828 829 static const char *disable_acs_redir_param; 830 831 /** 832 * pci_disable_acs_redir - disable ACS redirect capabilities 833 * @dev: the PCI device 834 * 835 * For only devices specified in the disable_acs_redir parameter. 836 */ 837 static void pci_disable_acs_redir(struct pci_dev *dev) 838 { 839 int ret = 0; 840 const char *p; 841 int pos; 842 u16 ctrl; 843 844 if (!disable_acs_redir_param) 845 return; 846 847 p = disable_acs_redir_param; 848 while (*p) { 849 ret = pci_dev_str_match(dev, p, &p); 850 if (ret < 0) { 851 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 852 disable_acs_redir_param); 853 854 break; 855 } else if (ret == 1) { 856 /* Found a match */ 857 break; 858 } 859 860 if (*p != ';' && *p != ',') { 861 /* End of param or invalid format */ 862 break; 863 } 864 p++; 865 } 866 867 if (ret != 1) 868 return; 869 870 if (!pci_dev_specific_disable_acs_redir(dev)) 871 return; 872 873 pos = dev->acs_cap; 874 if (!pos) { 875 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 876 return; 877 } 878 879 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 880 881 /* P2P Request & Completion Redirect */ 882 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 883 884 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 885 886 pci_info(dev, "disabled ACS redirect\n"); 887 } 888 889 /** 890 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 891 * @dev: the PCI device 892 */ 893 static void pci_std_enable_acs(struct pci_dev *dev) 894 { 895 int pos; 896 u16 cap; 897 u16 ctrl; 898 899 pos = dev->acs_cap; 900 if (!pos) 901 return; 902 903 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 904 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 905 906 /* Source Validation */ 907 ctrl |= (cap & PCI_ACS_SV); 908 909 /* P2P Request Redirect */ 910 ctrl |= (cap & PCI_ACS_RR); 911 912 /* P2P Completion Redirect */ 913 ctrl |= (cap & PCI_ACS_CR); 914 915 /* Upstream Forwarding */ 916 ctrl |= (cap & PCI_ACS_UF); 917 918 /* Enable Translation Blocking for external devices */ 919 if (dev->external_facing || dev->untrusted) 920 ctrl |= (cap & PCI_ACS_TB); 921 922 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 923 } 924 925 /** 926 * pci_enable_acs - enable ACS if hardware support it 927 * @dev: the PCI device 928 */ 929 static void pci_enable_acs(struct pci_dev *dev) 930 { 931 if (!pci_acs_enable) 932 goto disable_acs_redir; 933 934 if (!pci_dev_specific_enable_acs(dev)) 935 goto disable_acs_redir; 936 937 pci_std_enable_acs(dev); 938 939 disable_acs_redir: 940 /* 941 * Note: pci_disable_acs_redir() must be called even if ACS was not 942 * enabled by the kernel because it may have been enabled by 943 * platform firmware. So if we are told to disable it, we should 944 * always disable it after setting the kernel's default 945 * preferences. 946 */ 947 pci_disable_acs_redir(dev); 948 } 949 950 /** 951 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 952 * @dev: PCI device to have its BARs restored 953 * 954 * Restore the BAR values for a given device, so as to make it 955 * accessible by its driver. 956 */ 957 static void pci_restore_bars(struct pci_dev *dev) 958 { 959 int i; 960 961 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 962 pci_update_resource(dev, i); 963 } 964 965 static const struct pci_platform_pm_ops *pci_platform_pm; 966 967 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 968 { 969 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 970 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 971 return -EINVAL; 972 pci_platform_pm = ops; 973 return 0; 974 } 975 976 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 977 { 978 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 979 } 980 981 static inline int platform_pci_set_power_state(struct pci_dev *dev, 982 pci_power_t t) 983 { 984 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 985 } 986 987 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 988 { 989 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 990 } 991 992 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 993 { 994 if (pci_platform_pm && pci_platform_pm->refresh_state) 995 pci_platform_pm->refresh_state(dev); 996 } 997 998 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 999 { 1000 return pci_platform_pm ? 1001 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 1002 } 1003 1004 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1005 { 1006 return pci_platform_pm ? 1007 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 1008 } 1009 1010 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1011 { 1012 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 1013 } 1014 1015 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1016 { 1017 if (pci_platform_pm && pci_platform_pm->bridge_d3) 1018 return pci_platform_pm->bridge_d3(dev); 1019 return false; 1020 } 1021 1022 /** 1023 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 1024 * given PCI device 1025 * @dev: PCI device to handle. 1026 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1027 * 1028 * RETURN VALUE: 1029 * -EINVAL if the requested state is invalid. 1030 * -EIO if device does not support PCI PM or its PM capabilities register has a 1031 * wrong version, or device doesn't support the requested state. 1032 * 0 if device already is in the requested state. 1033 * 0 if device's power state has been successfully changed. 1034 */ 1035 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 1036 { 1037 u16 pmcsr; 1038 bool need_restore = false; 1039 1040 /* Check if we're already there */ 1041 if (dev->current_state == state) 1042 return 0; 1043 1044 if (!dev->pm_cap) 1045 return -EIO; 1046 1047 if (state < PCI_D0 || state > PCI_D3hot) 1048 return -EINVAL; 1049 1050 /* 1051 * Validate transition: We can enter D0 from any state, but if 1052 * we're already in a low-power state, we can only go deeper. E.g., 1053 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1054 * we'd have to go from D3 to D0, then to D1. 1055 */ 1056 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 1057 && dev->current_state > state) { 1058 pci_err(dev, "invalid power transition (from %s to %s)\n", 1059 pci_power_name(dev->current_state), 1060 pci_power_name(state)); 1061 return -EINVAL; 1062 } 1063 1064 /* Check if this device supports the desired state */ 1065 if ((state == PCI_D1 && !dev->d1_support) 1066 || (state == PCI_D2 && !dev->d2_support)) 1067 return -EIO; 1068 1069 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1070 if (pmcsr == (u16) ~0) { 1071 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 1072 pci_power_name(dev->current_state), 1073 pci_power_name(state)); 1074 return -EIO; 1075 } 1076 1077 /* 1078 * If we're (effectively) in D3, force entire word to 0. 1079 * This doesn't affect PME_Status, disables PME_En, and 1080 * sets PowerState to 0. 1081 */ 1082 switch (dev->current_state) { 1083 case PCI_D0: 1084 case PCI_D1: 1085 case PCI_D2: 1086 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1087 pmcsr |= state; 1088 break; 1089 case PCI_D3hot: 1090 case PCI_D3cold: 1091 case PCI_UNKNOWN: /* Boot-up */ 1092 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 1093 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 1094 need_restore = true; 1095 fallthrough; /* force to D0 */ 1096 default: 1097 pmcsr = 0; 1098 break; 1099 } 1100 1101 /* Enter specified state */ 1102 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1103 1104 /* 1105 * Mandatory power management transition delays; see PCI PM 1.1 1106 * 5.6.1 table 18 1107 */ 1108 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 1109 pci_dev_d3_sleep(dev); 1110 else if (state == PCI_D2 || dev->current_state == PCI_D2) 1111 udelay(PCI_PM_D2_DELAY); 1112 1113 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1114 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1115 if (dev->current_state != state) 1116 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 1117 pci_power_name(dev->current_state), 1118 pci_power_name(state)); 1119 1120 /* 1121 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1122 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1123 * from D3hot to D0 _may_ perform an internal reset, thereby 1124 * going to "D0 Uninitialized" rather than "D0 Initialized". 1125 * For example, at least some versions of the 3c905B and the 1126 * 3c556B exhibit this behaviour. 1127 * 1128 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1129 * devices in a D3hot state at boot. Consequently, we need to 1130 * restore at least the BARs so that the device will be 1131 * accessible to its driver. 1132 */ 1133 if (need_restore) 1134 pci_restore_bars(dev); 1135 1136 if (dev->bus->self) 1137 pcie_aspm_pm_state_change(dev->bus->self); 1138 1139 return 0; 1140 } 1141 1142 /** 1143 * pci_update_current_state - Read power state of given device and cache it 1144 * @dev: PCI device to handle. 1145 * @state: State to cache in case the device doesn't have the PM capability 1146 * 1147 * The power state is read from the PMCSR register, which however is 1148 * inaccessible in D3cold. The platform firmware is therefore queried first 1149 * to detect accessibility of the register. In case the platform firmware 1150 * reports an incorrect state or the device isn't power manageable by the 1151 * platform at all, we try to detect D3cold by testing accessibility of the 1152 * vendor ID in config space. 1153 */ 1154 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1155 { 1156 if (platform_pci_get_power_state(dev) == PCI_D3cold || 1157 !pci_device_is_present(dev)) { 1158 dev->current_state = PCI_D3cold; 1159 } else if (dev->pm_cap) { 1160 u16 pmcsr; 1161 1162 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1163 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1164 } else { 1165 dev->current_state = state; 1166 } 1167 } 1168 1169 /** 1170 * pci_refresh_power_state - Refresh the given device's power state data 1171 * @dev: Target PCI device. 1172 * 1173 * Ask the platform to refresh the devices power state information and invoke 1174 * pci_update_current_state() to update its current PCI power state. 1175 */ 1176 void pci_refresh_power_state(struct pci_dev *dev) 1177 { 1178 if (platform_pci_power_manageable(dev)) 1179 platform_pci_refresh_power_state(dev); 1180 1181 pci_update_current_state(dev, dev->current_state); 1182 } 1183 1184 /** 1185 * pci_platform_power_transition - Use platform to change device power state 1186 * @dev: PCI device to handle. 1187 * @state: State to put the device into. 1188 */ 1189 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1190 { 1191 int error; 1192 1193 if (platform_pci_power_manageable(dev)) { 1194 error = platform_pci_set_power_state(dev, state); 1195 if (!error) 1196 pci_update_current_state(dev, state); 1197 } else 1198 error = -ENODEV; 1199 1200 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 1201 dev->current_state = PCI_D0; 1202 1203 return error; 1204 } 1205 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1206 1207 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1208 { 1209 pm_request_resume(&pci_dev->dev); 1210 return 0; 1211 } 1212 1213 /** 1214 * pci_resume_bus - Walk given bus and runtime resume devices on it 1215 * @bus: Top bus of the subtree to walk. 1216 */ 1217 void pci_resume_bus(struct pci_bus *bus) 1218 { 1219 if (bus) 1220 pci_walk_bus(bus, pci_resume_one, NULL); 1221 } 1222 1223 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1224 { 1225 int delay = 1; 1226 u32 id; 1227 1228 /* 1229 * After reset, the device should not silently discard config 1230 * requests, but it may still indicate that it needs more time by 1231 * responding to them with CRS completions. The Root Port will 1232 * generally synthesize ~0 data to complete the read (except when 1233 * CRS SV is enabled and the read was for the Vendor ID; in that 1234 * case it synthesizes 0x0001 data). 1235 * 1236 * Wait for the device to return a non-CRS completion. Read the 1237 * Command register instead of Vendor ID so we don't have to 1238 * contend with the CRS SV value. 1239 */ 1240 pci_read_config_dword(dev, PCI_COMMAND, &id); 1241 while (id == ~0) { 1242 if (delay > timeout) { 1243 pci_warn(dev, "not ready %dms after %s; giving up\n", 1244 delay - 1, reset_type); 1245 return -ENOTTY; 1246 } 1247 1248 if (delay > 1000) 1249 pci_info(dev, "not ready %dms after %s; waiting\n", 1250 delay - 1, reset_type); 1251 1252 msleep(delay); 1253 delay *= 2; 1254 pci_read_config_dword(dev, PCI_COMMAND, &id); 1255 } 1256 1257 if (delay > 1000) 1258 pci_info(dev, "ready %dms after %s\n", delay - 1, 1259 reset_type); 1260 1261 return 0; 1262 } 1263 1264 /** 1265 * pci_power_up - Put the given device into D0 1266 * @dev: PCI device to power up 1267 */ 1268 int pci_power_up(struct pci_dev *dev) 1269 { 1270 pci_platform_power_transition(dev, PCI_D0); 1271 1272 /* 1273 * Mandatory power management transition delays are handled in 1274 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1275 * corresponding bridge. 1276 */ 1277 if (dev->runtime_d3cold) { 1278 /* 1279 * When powering on a bridge from D3cold, the whole hierarchy 1280 * may be powered on into D0uninitialized state, resume them to 1281 * give them a chance to suspend again 1282 */ 1283 pci_resume_bus(dev->subordinate); 1284 } 1285 1286 return pci_raw_set_power_state(dev, PCI_D0); 1287 } 1288 1289 /** 1290 * __pci_dev_set_current_state - Set current state of a PCI device 1291 * @dev: Device to handle 1292 * @data: pointer to state to be set 1293 */ 1294 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1295 { 1296 pci_power_t state = *(pci_power_t *)data; 1297 1298 dev->current_state = state; 1299 return 0; 1300 } 1301 1302 /** 1303 * pci_bus_set_current_state - Walk given bus and set current state of devices 1304 * @bus: Top bus of the subtree to walk. 1305 * @state: state to be set 1306 */ 1307 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1308 { 1309 if (bus) 1310 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1311 } 1312 1313 /** 1314 * pci_set_power_state - Set the power state of a PCI device 1315 * @dev: PCI device to handle. 1316 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1317 * 1318 * Transition a device to a new power state, using the platform firmware and/or 1319 * the device's PCI PM registers. 1320 * 1321 * RETURN VALUE: 1322 * -EINVAL if the requested state is invalid. 1323 * -EIO if device does not support PCI PM or its PM capabilities register has a 1324 * wrong version, or device doesn't support the requested state. 1325 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1326 * 0 if device already is in the requested state. 1327 * 0 if the transition is to D3 but D3 is not supported. 1328 * 0 if device's power state has been successfully changed. 1329 */ 1330 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1331 { 1332 int error; 1333 1334 /* Bound the state we're entering */ 1335 if (state > PCI_D3cold) 1336 state = PCI_D3cold; 1337 else if (state < PCI_D0) 1338 state = PCI_D0; 1339 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1340 1341 /* 1342 * If the device or the parent bridge do not support PCI 1343 * PM, ignore the request if we're doing anything other 1344 * than putting it into D0 (which would only happen on 1345 * boot). 1346 */ 1347 return 0; 1348 1349 /* Check if we're already there */ 1350 if (dev->current_state == state) 1351 return 0; 1352 1353 if (state == PCI_D0) 1354 return pci_power_up(dev); 1355 1356 /* 1357 * This device is quirked not to be put into D3, so don't put it in 1358 * D3 1359 */ 1360 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1361 return 0; 1362 1363 /* 1364 * To put device in D3cold, we put device into D3hot in native 1365 * way, then put device into D3cold with platform ops 1366 */ 1367 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1368 PCI_D3hot : state); 1369 1370 if (pci_platform_power_transition(dev, state)) 1371 return error; 1372 1373 /* Powering off a bridge may power off the whole hierarchy */ 1374 if (state == PCI_D3cold) 1375 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1376 1377 return 0; 1378 } 1379 EXPORT_SYMBOL(pci_set_power_state); 1380 1381 /** 1382 * pci_choose_state - Choose the power state of a PCI device 1383 * @dev: PCI device to be suspended 1384 * @state: target sleep state for the whole system. This is the value 1385 * that is passed to suspend() function. 1386 * 1387 * Returns PCI power state suitable for given device and given system 1388 * message. 1389 */ 1390 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1391 { 1392 pci_power_t ret; 1393 1394 if (!dev->pm_cap) 1395 return PCI_D0; 1396 1397 ret = platform_pci_choose_state(dev); 1398 if (ret != PCI_POWER_ERROR) 1399 return ret; 1400 1401 switch (state.event) { 1402 case PM_EVENT_ON: 1403 return PCI_D0; 1404 case PM_EVENT_FREEZE: 1405 case PM_EVENT_PRETHAW: 1406 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1407 case PM_EVENT_SUSPEND: 1408 case PM_EVENT_HIBERNATE: 1409 return PCI_D3hot; 1410 default: 1411 pci_info(dev, "unrecognized suspend event %d\n", 1412 state.event); 1413 BUG(); 1414 } 1415 return PCI_D0; 1416 } 1417 EXPORT_SYMBOL(pci_choose_state); 1418 1419 #define PCI_EXP_SAVE_REGS 7 1420 1421 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1422 u16 cap, bool extended) 1423 { 1424 struct pci_cap_saved_state *tmp; 1425 1426 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1427 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1428 return tmp; 1429 } 1430 return NULL; 1431 } 1432 1433 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1434 { 1435 return _pci_find_saved_cap(dev, cap, false); 1436 } 1437 1438 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1439 { 1440 return _pci_find_saved_cap(dev, cap, true); 1441 } 1442 1443 static int pci_save_pcie_state(struct pci_dev *dev) 1444 { 1445 int i = 0; 1446 struct pci_cap_saved_state *save_state; 1447 u16 *cap; 1448 1449 if (!pci_is_pcie(dev)) 1450 return 0; 1451 1452 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1453 if (!save_state) { 1454 pci_err(dev, "buffer not found in %s\n", __func__); 1455 return -ENOMEM; 1456 } 1457 1458 cap = (u16 *)&save_state->cap.data[0]; 1459 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1460 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1461 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1462 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1463 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1464 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1465 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1466 1467 return 0; 1468 } 1469 1470 static void pci_restore_pcie_state(struct pci_dev *dev) 1471 { 1472 int i = 0; 1473 struct pci_cap_saved_state *save_state; 1474 u16 *cap; 1475 1476 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1477 if (!save_state) 1478 return; 1479 1480 cap = (u16 *)&save_state->cap.data[0]; 1481 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1482 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1483 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1484 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1485 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1486 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1487 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1488 } 1489 1490 static int pci_save_pcix_state(struct pci_dev *dev) 1491 { 1492 int pos; 1493 struct pci_cap_saved_state *save_state; 1494 1495 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1496 if (!pos) 1497 return 0; 1498 1499 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1500 if (!save_state) { 1501 pci_err(dev, "buffer not found in %s\n", __func__); 1502 return -ENOMEM; 1503 } 1504 1505 pci_read_config_word(dev, pos + PCI_X_CMD, 1506 (u16 *)save_state->cap.data); 1507 1508 return 0; 1509 } 1510 1511 static void pci_restore_pcix_state(struct pci_dev *dev) 1512 { 1513 int i = 0, pos; 1514 struct pci_cap_saved_state *save_state; 1515 u16 *cap; 1516 1517 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1518 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1519 if (!save_state || !pos) 1520 return; 1521 cap = (u16 *)&save_state->cap.data[0]; 1522 1523 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1524 } 1525 1526 static void pci_save_ltr_state(struct pci_dev *dev) 1527 { 1528 int ltr; 1529 struct pci_cap_saved_state *save_state; 1530 u16 *cap; 1531 1532 if (!pci_is_pcie(dev)) 1533 return; 1534 1535 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1536 if (!ltr) 1537 return; 1538 1539 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1540 if (!save_state) { 1541 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1542 return; 1543 } 1544 1545 cap = (u16 *)&save_state->cap.data[0]; 1546 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1547 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1548 } 1549 1550 static void pci_restore_ltr_state(struct pci_dev *dev) 1551 { 1552 struct pci_cap_saved_state *save_state; 1553 int ltr; 1554 u16 *cap; 1555 1556 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1557 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1558 if (!save_state || !ltr) 1559 return; 1560 1561 cap = (u16 *)&save_state->cap.data[0]; 1562 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1563 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1564 } 1565 1566 /** 1567 * pci_save_state - save the PCI configuration space of a device before 1568 * suspending 1569 * @dev: PCI device that we're dealing with 1570 */ 1571 int pci_save_state(struct pci_dev *dev) 1572 { 1573 int i; 1574 /* XXX: 100% dword access ok here? */ 1575 for (i = 0; i < 16; i++) { 1576 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1577 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1578 i * 4, dev->saved_config_space[i]); 1579 } 1580 dev->state_saved = true; 1581 1582 i = pci_save_pcie_state(dev); 1583 if (i != 0) 1584 return i; 1585 1586 i = pci_save_pcix_state(dev); 1587 if (i != 0) 1588 return i; 1589 1590 pci_save_ltr_state(dev); 1591 pci_save_dpc_state(dev); 1592 pci_save_aer_state(dev); 1593 pci_save_ptm_state(dev); 1594 return pci_save_vc_state(dev); 1595 } 1596 EXPORT_SYMBOL(pci_save_state); 1597 1598 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1599 u32 saved_val, int retry, bool force) 1600 { 1601 u32 val; 1602 1603 pci_read_config_dword(pdev, offset, &val); 1604 if (!force && val == saved_val) 1605 return; 1606 1607 for (;;) { 1608 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1609 offset, val, saved_val); 1610 pci_write_config_dword(pdev, offset, saved_val); 1611 if (retry-- <= 0) 1612 return; 1613 1614 pci_read_config_dword(pdev, offset, &val); 1615 if (val == saved_val) 1616 return; 1617 1618 mdelay(1); 1619 } 1620 } 1621 1622 static void pci_restore_config_space_range(struct pci_dev *pdev, 1623 int start, int end, int retry, 1624 bool force) 1625 { 1626 int index; 1627 1628 for (index = end; index >= start; index--) 1629 pci_restore_config_dword(pdev, 4 * index, 1630 pdev->saved_config_space[index], 1631 retry, force); 1632 } 1633 1634 static void pci_restore_config_space(struct pci_dev *pdev) 1635 { 1636 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1637 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1638 /* Restore BARs before the command register. */ 1639 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1640 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1641 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1642 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1643 1644 /* 1645 * Force rewriting of prefetch registers to avoid S3 resume 1646 * issues on Intel PCI bridges that occur when these 1647 * registers are not explicitly written. 1648 */ 1649 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1650 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1651 } else { 1652 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1653 } 1654 } 1655 1656 static void pci_restore_rebar_state(struct pci_dev *pdev) 1657 { 1658 unsigned int pos, nbars, i; 1659 u32 ctrl; 1660 1661 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1662 if (!pos) 1663 return; 1664 1665 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1666 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1667 PCI_REBAR_CTRL_NBAR_SHIFT; 1668 1669 for (i = 0; i < nbars; i++, pos += 8) { 1670 struct resource *res; 1671 int bar_idx, size; 1672 1673 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1674 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1675 res = pdev->resource + bar_idx; 1676 size = pci_rebar_bytes_to_size(resource_size(res)); 1677 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1678 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1679 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1680 } 1681 } 1682 1683 /** 1684 * pci_restore_state - Restore the saved state of a PCI device 1685 * @dev: PCI device that we're dealing with 1686 */ 1687 void pci_restore_state(struct pci_dev *dev) 1688 { 1689 if (!dev->state_saved) 1690 return; 1691 1692 /* 1693 * Restore max latencies (in the LTR capability) before enabling 1694 * LTR itself (in the PCIe capability). 1695 */ 1696 pci_restore_ltr_state(dev); 1697 1698 pci_restore_pcie_state(dev); 1699 pci_restore_pasid_state(dev); 1700 pci_restore_pri_state(dev); 1701 pci_restore_ats_state(dev); 1702 pci_restore_vc_state(dev); 1703 pci_restore_rebar_state(dev); 1704 pci_restore_dpc_state(dev); 1705 pci_restore_ptm_state(dev); 1706 1707 pci_aer_clear_status(dev); 1708 pci_restore_aer_state(dev); 1709 1710 pci_restore_config_space(dev); 1711 1712 pci_restore_pcix_state(dev); 1713 pci_restore_msi_state(dev); 1714 1715 /* Restore ACS and IOV configuration state */ 1716 pci_enable_acs(dev); 1717 pci_restore_iov_state(dev); 1718 1719 dev->state_saved = false; 1720 } 1721 EXPORT_SYMBOL(pci_restore_state); 1722 1723 struct pci_saved_state { 1724 u32 config_space[16]; 1725 struct pci_cap_saved_data cap[]; 1726 }; 1727 1728 /** 1729 * pci_store_saved_state - Allocate and return an opaque struct containing 1730 * the device saved state. 1731 * @dev: PCI device that we're dealing with 1732 * 1733 * Return NULL if no state or error. 1734 */ 1735 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1736 { 1737 struct pci_saved_state *state; 1738 struct pci_cap_saved_state *tmp; 1739 struct pci_cap_saved_data *cap; 1740 size_t size; 1741 1742 if (!dev->state_saved) 1743 return NULL; 1744 1745 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1746 1747 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1748 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1749 1750 state = kzalloc(size, GFP_KERNEL); 1751 if (!state) 1752 return NULL; 1753 1754 memcpy(state->config_space, dev->saved_config_space, 1755 sizeof(state->config_space)); 1756 1757 cap = state->cap; 1758 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1759 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1760 memcpy(cap, &tmp->cap, len); 1761 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1762 } 1763 /* Empty cap_save terminates list */ 1764 1765 return state; 1766 } 1767 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1768 1769 /** 1770 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1771 * @dev: PCI device that we're dealing with 1772 * @state: Saved state returned from pci_store_saved_state() 1773 */ 1774 int pci_load_saved_state(struct pci_dev *dev, 1775 struct pci_saved_state *state) 1776 { 1777 struct pci_cap_saved_data *cap; 1778 1779 dev->state_saved = false; 1780 1781 if (!state) 1782 return 0; 1783 1784 memcpy(dev->saved_config_space, state->config_space, 1785 sizeof(state->config_space)); 1786 1787 cap = state->cap; 1788 while (cap->size) { 1789 struct pci_cap_saved_state *tmp; 1790 1791 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1792 if (!tmp || tmp->cap.size != cap->size) 1793 return -EINVAL; 1794 1795 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1796 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1797 sizeof(struct pci_cap_saved_data) + cap->size); 1798 } 1799 1800 dev->state_saved = true; 1801 return 0; 1802 } 1803 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1804 1805 /** 1806 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1807 * and free the memory allocated for it. 1808 * @dev: PCI device that we're dealing with 1809 * @state: Pointer to saved state returned from pci_store_saved_state() 1810 */ 1811 int pci_load_and_free_saved_state(struct pci_dev *dev, 1812 struct pci_saved_state **state) 1813 { 1814 int ret = pci_load_saved_state(dev, *state); 1815 kfree(*state); 1816 *state = NULL; 1817 return ret; 1818 } 1819 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1820 1821 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1822 { 1823 return pci_enable_resources(dev, bars); 1824 } 1825 1826 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1827 { 1828 int err; 1829 struct pci_dev *bridge; 1830 u16 cmd; 1831 u8 pin; 1832 1833 err = pci_set_power_state(dev, PCI_D0); 1834 if (err < 0 && err != -EIO) 1835 return err; 1836 1837 bridge = pci_upstream_bridge(dev); 1838 if (bridge) 1839 pcie_aspm_powersave_config_link(bridge); 1840 1841 err = pcibios_enable_device(dev, bars); 1842 if (err < 0) 1843 return err; 1844 pci_fixup_device(pci_fixup_enable, dev); 1845 1846 if (dev->msi_enabled || dev->msix_enabled) 1847 return 0; 1848 1849 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1850 if (pin) { 1851 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1852 if (cmd & PCI_COMMAND_INTX_DISABLE) 1853 pci_write_config_word(dev, PCI_COMMAND, 1854 cmd & ~PCI_COMMAND_INTX_DISABLE); 1855 } 1856 1857 return 0; 1858 } 1859 1860 /** 1861 * pci_reenable_device - Resume abandoned device 1862 * @dev: PCI device to be resumed 1863 * 1864 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1865 * to be called by normal code, write proper resume handler and use it instead. 1866 */ 1867 int pci_reenable_device(struct pci_dev *dev) 1868 { 1869 if (pci_is_enabled(dev)) 1870 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1871 return 0; 1872 } 1873 EXPORT_SYMBOL(pci_reenable_device); 1874 1875 static void pci_enable_bridge(struct pci_dev *dev) 1876 { 1877 struct pci_dev *bridge; 1878 int retval; 1879 1880 bridge = pci_upstream_bridge(dev); 1881 if (bridge) 1882 pci_enable_bridge(bridge); 1883 1884 if (pci_is_enabled(dev)) { 1885 if (!dev->is_busmaster) 1886 pci_set_master(dev); 1887 return; 1888 } 1889 1890 retval = pci_enable_device(dev); 1891 if (retval) 1892 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1893 retval); 1894 pci_set_master(dev); 1895 } 1896 1897 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1898 { 1899 struct pci_dev *bridge; 1900 int err; 1901 int i, bars = 0; 1902 1903 /* 1904 * Power state could be unknown at this point, either due to a fresh 1905 * boot or a device removal call. So get the current power state 1906 * so that things like MSI message writing will behave as expected 1907 * (e.g. if the device really is in D0 at enable time). 1908 */ 1909 pci_update_current_state(dev, dev->current_state); 1910 1911 if (atomic_inc_return(&dev->enable_cnt) > 1) 1912 return 0; /* already enabled */ 1913 1914 bridge = pci_upstream_bridge(dev); 1915 if (bridge) 1916 pci_enable_bridge(bridge); 1917 1918 /* only skip sriov related */ 1919 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1920 if (dev->resource[i].flags & flags) 1921 bars |= (1 << i); 1922 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1923 if (dev->resource[i].flags & flags) 1924 bars |= (1 << i); 1925 1926 err = do_pci_enable_device(dev, bars); 1927 if (err < 0) 1928 atomic_dec(&dev->enable_cnt); 1929 return err; 1930 } 1931 1932 /** 1933 * pci_enable_device_io - Initialize a device for use with IO space 1934 * @dev: PCI device to be initialized 1935 * 1936 * Initialize device before it's used by a driver. Ask low-level code 1937 * to enable I/O resources. Wake up the device if it was suspended. 1938 * Beware, this function can fail. 1939 */ 1940 int pci_enable_device_io(struct pci_dev *dev) 1941 { 1942 return pci_enable_device_flags(dev, IORESOURCE_IO); 1943 } 1944 EXPORT_SYMBOL(pci_enable_device_io); 1945 1946 /** 1947 * pci_enable_device_mem - Initialize a device for use with Memory space 1948 * @dev: PCI device to be initialized 1949 * 1950 * Initialize device before it's used by a driver. Ask low-level code 1951 * to enable Memory resources. Wake up the device if it was suspended. 1952 * Beware, this function can fail. 1953 */ 1954 int pci_enable_device_mem(struct pci_dev *dev) 1955 { 1956 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1957 } 1958 EXPORT_SYMBOL(pci_enable_device_mem); 1959 1960 /** 1961 * pci_enable_device - Initialize device before it's used by a driver. 1962 * @dev: PCI device to be initialized 1963 * 1964 * Initialize device before it's used by a driver. Ask low-level code 1965 * to enable I/O and memory. Wake up the device if it was suspended. 1966 * Beware, this function can fail. 1967 * 1968 * Note we don't actually enable the device many times if we call 1969 * this function repeatedly (we just increment the count). 1970 */ 1971 int pci_enable_device(struct pci_dev *dev) 1972 { 1973 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1974 } 1975 EXPORT_SYMBOL(pci_enable_device); 1976 1977 /* 1978 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1979 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1980 * there's no need to track it separately. pci_devres is initialized 1981 * when a device is enabled using managed PCI device enable interface. 1982 */ 1983 struct pci_devres { 1984 unsigned int enabled:1; 1985 unsigned int pinned:1; 1986 unsigned int orig_intx:1; 1987 unsigned int restore_intx:1; 1988 unsigned int mwi:1; 1989 u32 region_mask; 1990 }; 1991 1992 static void pcim_release(struct device *gendev, void *res) 1993 { 1994 struct pci_dev *dev = to_pci_dev(gendev); 1995 struct pci_devres *this = res; 1996 int i; 1997 1998 if (dev->msi_enabled) 1999 pci_disable_msi(dev); 2000 if (dev->msix_enabled) 2001 pci_disable_msix(dev); 2002 2003 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2004 if (this->region_mask & (1 << i)) 2005 pci_release_region(dev, i); 2006 2007 if (this->mwi) 2008 pci_clear_mwi(dev); 2009 2010 if (this->restore_intx) 2011 pci_intx(dev, this->orig_intx); 2012 2013 if (this->enabled && !this->pinned) 2014 pci_disable_device(dev); 2015 } 2016 2017 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2018 { 2019 struct pci_devres *dr, *new_dr; 2020 2021 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2022 if (dr) 2023 return dr; 2024 2025 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2026 if (!new_dr) 2027 return NULL; 2028 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2029 } 2030 2031 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2032 { 2033 if (pci_is_managed(pdev)) 2034 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2035 return NULL; 2036 } 2037 2038 /** 2039 * pcim_enable_device - Managed pci_enable_device() 2040 * @pdev: PCI device to be initialized 2041 * 2042 * Managed pci_enable_device(). 2043 */ 2044 int pcim_enable_device(struct pci_dev *pdev) 2045 { 2046 struct pci_devres *dr; 2047 int rc; 2048 2049 dr = get_pci_dr(pdev); 2050 if (unlikely(!dr)) 2051 return -ENOMEM; 2052 if (dr->enabled) 2053 return 0; 2054 2055 rc = pci_enable_device(pdev); 2056 if (!rc) { 2057 pdev->is_managed = 1; 2058 dr->enabled = 1; 2059 } 2060 return rc; 2061 } 2062 EXPORT_SYMBOL(pcim_enable_device); 2063 2064 /** 2065 * pcim_pin_device - Pin managed PCI device 2066 * @pdev: PCI device to pin 2067 * 2068 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2069 * driver detach. @pdev must have been enabled with 2070 * pcim_enable_device(). 2071 */ 2072 void pcim_pin_device(struct pci_dev *pdev) 2073 { 2074 struct pci_devres *dr; 2075 2076 dr = find_pci_dr(pdev); 2077 WARN_ON(!dr || !dr->enabled); 2078 if (dr) 2079 dr->pinned = 1; 2080 } 2081 EXPORT_SYMBOL(pcim_pin_device); 2082 2083 /* 2084 * pcibios_add_device - provide arch specific hooks when adding device dev 2085 * @dev: the PCI device being added 2086 * 2087 * Permits the platform to provide architecture specific functionality when 2088 * devices are added. This is the default implementation. Architecture 2089 * implementations can override this. 2090 */ 2091 int __weak pcibios_add_device(struct pci_dev *dev) 2092 { 2093 return 0; 2094 } 2095 2096 /** 2097 * pcibios_release_device - provide arch specific hooks when releasing 2098 * device dev 2099 * @dev: the PCI device being released 2100 * 2101 * Permits the platform to provide architecture specific functionality when 2102 * devices are released. This is the default implementation. Architecture 2103 * implementations can override this. 2104 */ 2105 void __weak pcibios_release_device(struct pci_dev *dev) {} 2106 2107 /** 2108 * pcibios_disable_device - disable arch specific PCI resources for device dev 2109 * @dev: the PCI device to disable 2110 * 2111 * Disables architecture specific PCI resources for the device. This 2112 * is the default implementation. Architecture implementations can 2113 * override this. 2114 */ 2115 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2116 2117 /** 2118 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2119 * @irq: ISA IRQ to penalize 2120 * @active: IRQ active or not 2121 * 2122 * Permits the platform to provide architecture-specific functionality when 2123 * penalizing ISA IRQs. This is the default implementation. Architecture 2124 * implementations can override this. 2125 */ 2126 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2127 2128 static void do_pci_disable_device(struct pci_dev *dev) 2129 { 2130 u16 pci_command; 2131 2132 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2133 if (pci_command & PCI_COMMAND_MASTER) { 2134 pci_command &= ~PCI_COMMAND_MASTER; 2135 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2136 } 2137 2138 pcibios_disable_device(dev); 2139 } 2140 2141 /** 2142 * pci_disable_enabled_device - Disable device without updating enable_cnt 2143 * @dev: PCI device to disable 2144 * 2145 * NOTE: This function is a backend of PCI power management routines and is 2146 * not supposed to be called drivers. 2147 */ 2148 void pci_disable_enabled_device(struct pci_dev *dev) 2149 { 2150 if (pci_is_enabled(dev)) 2151 do_pci_disable_device(dev); 2152 } 2153 2154 /** 2155 * pci_disable_device - Disable PCI device after use 2156 * @dev: PCI device to be disabled 2157 * 2158 * Signal to the system that the PCI device is not in use by the system 2159 * anymore. This only involves disabling PCI bus-mastering, if active. 2160 * 2161 * Note we don't actually disable the device until all callers of 2162 * pci_enable_device() have called pci_disable_device(). 2163 */ 2164 void pci_disable_device(struct pci_dev *dev) 2165 { 2166 struct pci_devres *dr; 2167 2168 dr = find_pci_dr(dev); 2169 if (dr) 2170 dr->enabled = 0; 2171 2172 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2173 "disabling already-disabled device"); 2174 2175 if (atomic_dec_return(&dev->enable_cnt) != 0) 2176 return; 2177 2178 do_pci_disable_device(dev); 2179 2180 dev->is_busmaster = 0; 2181 } 2182 EXPORT_SYMBOL(pci_disable_device); 2183 2184 /** 2185 * pcibios_set_pcie_reset_state - set reset state for device dev 2186 * @dev: the PCIe device reset 2187 * @state: Reset state to enter into 2188 * 2189 * Set the PCIe reset state for the device. This is the default 2190 * implementation. Architecture implementations can override this. 2191 */ 2192 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2193 enum pcie_reset_state state) 2194 { 2195 return -EINVAL; 2196 } 2197 2198 /** 2199 * pci_set_pcie_reset_state - set reset state for device dev 2200 * @dev: the PCIe device reset 2201 * @state: Reset state to enter into 2202 * 2203 * Sets the PCI reset state for the device. 2204 */ 2205 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2206 { 2207 return pcibios_set_pcie_reset_state(dev, state); 2208 } 2209 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2210 2211 void pcie_clear_device_status(struct pci_dev *dev) 2212 { 2213 u16 sta; 2214 2215 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2216 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2217 } 2218 2219 /** 2220 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2221 * @dev: PCIe root port or event collector. 2222 */ 2223 void pcie_clear_root_pme_status(struct pci_dev *dev) 2224 { 2225 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2226 } 2227 2228 /** 2229 * pci_check_pme_status - Check if given device has generated PME. 2230 * @dev: Device to check. 2231 * 2232 * Check the PME status of the device and if set, clear it and clear PME enable 2233 * (if set). Return 'true' if PME status and PME enable were both set or 2234 * 'false' otherwise. 2235 */ 2236 bool pci_check_pme_status(struct pci_dev *dev) 2237 { 2238 int pmcsr_pos; 2239 u16 pmcsr; 2240 bool ret = false; 2241 2242 if (!dev->pm_cap) 2243 return false; 2244 2245 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2246 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2247 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2248 return false; 2249 2250 /* Clear PME status. */ 2251 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2252 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2253 /* Disable PME to avoid interrupt flood. */ 2254 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2255 ret = true; 2256 } 2257 2258 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2259 2260 return ret; 2261 } 2262 2263 /** 2264 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2265 * @dev: Device to handle. 2266 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2267 * 2268 * Check if @dev has generated PME and queue a resume request for it in that 2269 * case. 2270 */ 2271 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2272 { 2273 if (pme_poll_reset && dev->pme_poll) 2274 dev->pme_poll = false; 2275 2276 if (pci_check_pme_status(dev)) { 2277 pci_wakeup_event(dev); 2278 pm_request_resume(&dev->dev); 2279 } 2280 return 0; 2281 } 2282 2283 /** 2284 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2285 * @bus: Top bus of the subtree to walk. 2286 */ 2287 void pci_pme_wakeup_bus(struct pci_bus *bus) 2288 { 2289 if (bus) 2290 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2291 } 2292 2293 2294 /** 2295 * pci_pme_capable - check the capability of PCI device to generate PME# 2296 * @dev: PCI device to handle. 2297 * @state: PCI state from which device will issue PME#. 2298 */ 2299 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2300 { 2301 if (!dev->pm_cap) 2302 return false; 2303 2304 return !!(dev->pme_support & (1 << state)); 2305 } 2306 EXPORT_SYMBOL(pci_pme_capable); 2307 2308 static void pci_pme_list_scan(struct work_struct *work) 2309 { 2310 struct pci_pme_device *pme_dev, *n; 2311 2312 mutex_lock(&pci_pme_list_mutex); 2313 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2314 if (pme_dev->dev->pme_poll) { 2315 struct pci_dev *bridge; 2316 2317 bridge = pme_dev->dev->bus->self; 2318 /* 2319 * If bridge is in low power state, the 2320 * configuration space of subordinate devices 2321 * may be not accessible 2322 */ 2323 if (bridge && bridge->current_state != PCI_D0) 2324 continue; 2325 /* 2326 * If the device is in D3cold it should not be 2327 * polled either. 2328 */ 2329 if (pme_dev->dev->current_state == PCI_D3cold) 2330 continue; 2331 2332 pci_pme_wakeup(pme_dev->dev, NULL); 2333 } else { 2334 list_del(&pme_dev->list); 2335 kfree(pme_dev); 2336 } 2337 } 2338 if (!list_empty(&pci_pme_list)) 2339 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2340 msecs_to_jiffies(PME_TIMEOUT)); 2341 mutex_unlock(&pci_pme_list_mutex); 2342 } 2343 2344 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2345 { 2346 u16 pmcsr; 2347 2348 if (!dev->pme_support) 2349 return; 2350 2351 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2352 /* Clear PME_Status by writing 1 to it and enable PME# */ 2353 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2354 if (!enable) 2355 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2356 2357 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2358 } 2359 2360 /** 2361 * pci_pme_restore - Restore PME configuration after config space restore. 2362 * @dev: PCI device to update. 2363 */ 2364 void pci_pme_restore(struct pci_dev *dev) 2365 { 2366 u16 pmcsr; 2367 2368 if (!dev->pme_support) 2369 return; 2370 2371 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2372 if (dev->wakeup_prepared) { 2373 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2374 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2375 } else { 2376 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2377 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2378 } 2379 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2380 } 2381 2382 /** 2383 * pci_pme_active - enable or disable PCI device's PME# function 2384 * @dev: PCI device to handle. 2385 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2386 * 2387 * The caller must verify that the device is capable of generating PME# before 2388 * calling this function with @enable equal to 'true'. 2389 */ 2390 void pci_pme_active(struct pci_dev *dev, bool enable) 2391 { 2392 __pci_pme_active(dev, enable); 2393 2394 /* 2395 * PCI (as opposed to PCIe) PME requires that the device have 2396 * its PME# line hooked up correctly. Not all hardware vendors 2397 * do this, so the PME never gets delivered and the device 2398 * remains asleep. The easiest way around this is to 2399 * periodically walk the list of suspended devices and check 2400 * whether any have their PME flag set. The assumption is that 2401 * we'll wake up often enough anyway that this won't be a huge 2402 * hit, and the power savings from the devices will still be a 2403 * win. 2404 * 2405 * Although PCIe uses in-band PME message instead of PME# line 2406 * to report PME, PME does not work for some PCIe devices in 2407 * reality. For example, there are devices that set their PME 2408 * status bits, but don't really bother to send a PME message; 2409 * there are PCI Express Root Ports that don't bother to 2410 * trigger interrupts when they receive PME messages from the 2411 * devices below. So PME poll is used for PCIe devices too. 2412 */ 2413 2414 if (dev->pme_poll) { 2415 struct pci_pme_device *pme_dev; 2416 if (enable) { 2417 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2418 GFP_KERNEL); 2419 if (!pme_dev) { 2420 pci_warn(dev, "can't enable PME#\n"); 2421 return; 2422 } 2423 pme_dev->dev = dev; 2424 mutex_lock(&pci_pme_list_mutex); 2425 list_add(&pme_dev->list, &pci_pme_list); 2426 if (list_is_singular(&pci_pme_list)) 2427 queue_delayed_work(system_freezable_wq, 2428 &pci_pme_work, 2429 msecs_to_jiffies(PME_TIMEOUT)); 2430 mutex_unlock(&pci_pme_list_mutex); 2431 } else { 2432 mutex_lock(&pci_pme_list_mutex); 2433 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2434 if (pme_dev->dev == dev) { 2435 list_del(&pme_dev->list); 2436 kfree(pme_dev); 2437 break; 2438 } 2439 } 2440 mutex_unlock(&pci_pme_list_mutex); 2441 } 2442 } 2443 2444 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2445 } 2446 EXPORT_SYMBOL(pci_pme_active); 2447 2448 /** 2449 * __pci_enable_wake - enable PCI device as wakeup event source 2450 * @dev: PCI device affected 2451 * @state: PCI state from which device will issue wakeup events 2452 * @enable: True to enable event generation; false to disable 2453 * 2454 * This enables the device as a wakeup event source, or disables it. 2455 * When such events involves platform-specific hooks, those hooks are 2456 * called automatically by this routine. 2457 * 2458 * Devices with legacy power management (no standard PCI PM capabilities) 2459 * always require such platform hooks. 2460 * 2461 * RETURN VALUE: 2462 * 0 is returned on success 2463 * -EINVAL is returned if device is not supposed to wake up the system 2464 * Error code depending on the platform is returned if both the platform and 2465 * the native mechanism fail to enable the generation of wake-up events 2466 */ 2467 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2468 { 2469 int ret = 0; 2470 2471 /* 2472 * Bridges that are not power-manageable directly only signal 2473 * wakeup on behalf of subordinate devices which is set up 2474 * elsewhere, so skip them. However, bridges that are 2475 * power-manageable may signal wakeup for themselves (for example, 2476 * on a hotplug event) and they need to be covered here. 2477 */ 2478 if (!pci_power_manageable(dev)) 2479 return 0; 2480 2481 /* Don't do the same thing twice in a row for one device. */ 2482 if (!!enable == !!dev->wakeup_prepared) 2483 return 0; 2484 2485 /* 2486 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2487 * Anderson we should be doing PME# wake enable followed by ACPI wake 2488 * enable. To disable wake-up we call the platform first, for symmetry. 2489 */ 2490 2491 if (enable) { 2492 int error; 2493 2494 /* 2495 * Enable PME signaling if the device can signal PME from 2496 * D3cold regardless of whether or not it can signal PME from 2497 * the current target state, because that will allow it to 2498 * signal PME when the hierarchy above it goes into D3cold and 2499 * the device itself ends up in D3cold as a result of that. 2500 */ 2501 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2502 pci_pme_active(dev, true); 2503 else 2504 ret = 1; 2505 error = platform_pci_set_wakeup(dev, true); 2506 if (ret) 2507 ret = error; 2508 if (!ret) 2509 dev->wakeup_prepared = true; 2510 } else { 2511 platform_pci_set_wakeup(dev, false); 2512 pci_pme_active(dev, false); 2513 dev->wakeup_prepared = false; 2514 } 2515 2516 return ret; 2517 } 2518 2519 /** 2520 * pci_enable_wake - change wakeup settings for a PCI device 2521 * @pci_dev: Target device 2522 * @state: PCI state from which device will issue wakeup events 2523 * @enable: Whether or not to enable event generation 2524 * 2525 * If @enable is set, check device_may_wakeup() for the device before calling 2526 * __pci_enable_wake() for it. 2527 */ 2528 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2529 { 2530 if (enable && !device_may_wakeup(&pci_dev->dev)) 2531 return -EINVAL; 2532 2533 return __pci_enable_wake(pci_dev, state, enable); 2534 } 2535 EXPORT_SYMBOL(pci_enable_wake); 2536 2537 /** 2538 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2539 * @dev: PCI device to prepare 2540 * @enable: True to enable wake-up event generation; false to disable 2541 * 2542 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2543 * and this function allows them to set that up cleanly - pci_enable_wake() 2544 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2545 * ordering constraints. 2546 * 2547 * This function only returns error code if the device is not allowed to wake 2548 * up the system from sleep or it is not capable of generating PME# from both 2549 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2550 */ 2551 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2552 { 2553 return pci_pme_capable(dev, PCI_D3cold) ? 2554 pci_enable_wake(dev, PCI_D3cold, enable) : 2555 pci_enable_wake(dev, PCI_D3hot, enable); 2556 } 2557 EXPORT_SYMBOL(pci_wake_from_d3); 2558 2559 /** 2560 * pci_target_state - find an appropriate low power state for a given PCI dev 2561 * @dev: PCI device 2562 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2563 * 2564 * Use underlying platform code to find a supported low power state for @dev. 2565 * If the platform can't manage @dev, return the deepest state from which it 2566 * can generate wake events, based on any available PME info. 2567 */ 2568 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2569 { 2570 pci_power_t target_state = PCI_D3hot; 2571 2572 if (platform_pci_power_manageable(dev)) { 2573 /* 2574 * Call the platform to find the target state for the device. 2575 */ 2576 pci_power_t state = platform_pci_choose_state(dev); 2577 2578 switch (state) { 2579 case PCI_POWER_ERROR: 2580 case PCI_UNKNOWN: 2581 break; 2582 case PCI_D1: 2583 case PCI_D2: 2584 if (pci_no_d1d2(dev)) 2585 break; 2586 fallthrough; 2587 default: 2588 target_state = state; 2589 } 2590 2591 return target_state; 2592 } 2593 2594 if (!dev->pm_cap) 2595 target_state = PCI_D0; 2596 2597 /* 2598 * If the device is in D3cold even though it's not power-manageable by 2599 * the platform, it may have been powered down by non-standard means. 2600 * Best to let it slumber. 2601 */ 2602 if (dev->current_state == PCI_D3cold) 2603 target_state = PCI_D3cold; 2604 2605 if (wakeup && dev->pme_support) { 2606 pci_power_t state = target_state; 2607 2608 /* 2609 * Find the deepest state from which the device can generate 2610 * PME#. 2611 */ 2612 while (state && !(dev->pme_support & (1 << state))) 2613 state--; 2614 2615 if (state) 2616 return state; 2617 else if (dev->pme_support & 1) 2618 return PCI_D0; 2619 } 2620 2621 return target_state; 2622 } 2623 2624 /** 2625 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2626 * into a sleep state 2627 * @dev: Device to handle. 2628 * 2629 * Choose the power state appropriate for the device depending on whether 2630 * it can wake up the system and/or is power manageable by the platform 2631 * (PCI_D3hot is the default) and put the device into that state. 2632 */ 2633 int pci_prepare_to_sleep(struct pci_dev *dev) 2634 { 2635 bool wakeup = device_may_wakeup(&dev->dev); 2636 pci_power_t target_state = pci_target_state(dev, wakeup); 2637 int error; 2638 2639 if (target_state == PCI_POWER_ERROR) 2640 return -EIO; 2641 2642 /* 2643 * There are systems (for example, Intel mobile chips since Coffee 2644 * Lake) where the power drawn while suspended can be significantly 2645 * reduced by disabling PTM on PCIe root ports as this allows the 2646 * port to enter a lower-power PM state and the SoC to reach a 2647 * lower-power idle state as a whole. 2648 */ 2649 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2650 pci_disable_ptm(dev); 2651 2652 pci_enable_wake(dev, target_state, wakeup); 2653 2654 error = pci_set_power_state(dev, target_state); 2655 2656 if (error) { 2657 pci_enable_wake(dev, target_state, false); 2658 pci_restore_ptm_state(dev); 2659 } 2660 2661 return error; 2662 } 2663 EXPORT_SYMBOL(pci_prepare_to_sleep); 2664 2665 /** 2666 * pci_back_from_sleep - turn PCI device on during system-wide transition 2667 * into working state 2668 * @dev: Device to handle. 2669 * 2670 * Disable device's system wake-up capability and put it into D0. 2671 */ 2672 int pci_back_from_sleep(struct pci_dev *dev) 2673 { 2674 pci_enable_wake(dev, PCI_D0, false); 2675 return pci_set_power_state(dev, PCI_D0); 2676 } 2677 EXPORT_SYMBOL(pci_back_from_sleep); 2678 2679 /** 2680 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2681 * @dev: PCI device being suspended. 2682 * 2683 * Prepare @dev to generate wake-up events at run time and put it into a low 2684 * power state. 2685 */ 2686 int pci_finish_runtime_suspend(struct pci_dev *dev) 2687 { 2688 pci_power_t target_state; 2689 int error; 2690 2691 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2692 if (target_state == PCI_POWER_ERROR) 2693 return -EIO; 2694 2695 dev->runtime_d3cold = target_state == PCI_D3cold; 2696 2697 /* 2698 * There are systems (for example, Intel mobile chips since Coffee 2699 * Lake) where the power drawn while suspended can be significantly 2700 * reduced by disabling PTM on PCIe root ports as this allows the 2701 * port to enter a lower-power PM state and the SoC to reach a 2702 * lower-power idle state as a whole. 2703 */ 2704 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2705 pci_disable_ptm(dev); 2706 2707 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2708 2709 error = pci_set_power_state(dev, target_state); 2710 2711 if (error) { 2712 pci_enable_wake(dev, target_state, false); 2713 pci_restore_ptm_state(dev); 2714 dev->runtime_d3cold = false; 2715 } 2716 2717 return error; 2718 } 2719 2720 /** 2721 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2722 * @dev: Device to check. 2723 * 2724 * Return true if the device itself is capable of generating wake-up events 2725 * (through the platform or using the native PCIe PME) or if the device supports 2726 * PME and one of its upstream bridges can generate wake-up events. 2727 */ 2728 bool pci_dev_run_wake(struct pci_dev *dev) 2729 { 2730 struct pci_bus *bus = dev->bus; 2731 2732 if (!dev->pme_support) 2733 return false; 2734 2735 /* PME-capable in principle, but not from the target power state */ 2736 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2737 return false; 2738 2739 if (device_can_wakeup(&dev->dev)) 2740 return true; 2741 2742 while (bus->parent) { 2743 struct pci_dev *bridge = bus->self; 2744 2745 if (device_can_wakeup(&bridge->dev)) 2746 return true; 2747 2748 bus = bus->parent; 2749 } 2750 2751 /* We have reached the root bus. */ 2752 if (bus->bridge) 2753 return device_can_wakeup(bus->bridge); 2754 2755 return false; 2756 } 2757 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2758 2759 /** 2760 * pci_dev_need_resume - Check if it is necessary to resume the device. 2761 * @pci_dev: Device to check. 2762 * 2763 * Return 'true' if the device is not runtime-suspended or it has to be 2764 * reconfigured due to wakeup settings difference between system and runtime 2765 * suspend, or the current power state of it is not suitable for the upcoming 2766 * (system-wide) transition. 2767 */ 2768 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2769 { 2770 struct device *dev = &pci_dev->dev; 2771 pci_power_t target_state; 2772 2773 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2774 return true; 2775 2776 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2777 2778 /* 2779 * If the earlier platform check has not triggered, D3cold is just power 2780 * removal on top of D3hot, so no need to resume the device in that 2781 * case. 2782 */ 2783 return target_state != pci_dev->current_state && 2784 target_state != PCI_D3cold && 2785 pci_dev->current_state != PCI_D3hot; 2786 } 2787 2788 /** 2789 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2790 * @pci_dev: Device to check. 2791 * 2792 * If the device is suspended and it is not configured for system wakeup, 2793 * disable PME for it to prevent it from waking up the system unnecessarily. 2794 * 2795 * Note that if the device's power state is D3cold and the platform check in 2796 * pci_dev_need_resume() has not triggered, the device's configuration need not 2797 * be changed. 2798 */ 2799 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2800 { 2801 struct device *dev = &pci_dev->dev; 2802 2803 spin_lock_irq(&dev->power.lock); 2804 2805 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2806 pci_dev->current_state < PCI_D3cold) 2807 __pci_pme_active(pci_dev, false); 2808 2809 spin_unlock_irq(&dev->power.lock); 2810 } 2811 2812 /** 2813 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2814 * @pci_dev: Device to handle. 2815 * 2816 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2817 * it might have been disabled during the prepare phase of system suspend if 2818 * the device was not configured for system wakeup. 2819 */ 2820 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2821 { 2822 struct device *dev = &pci_dev->dev; 2823 2824 if (!pci_dev_run_wake(pci_dev)) 2825 return; 2826 2827 spin_lock_irq(&dev->power.lock); 2828 2829 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2830 __pci_pme_active(pci_dev, true); 2831 2832 spin_unlock_irq(&dev->power.lock); 2833 } 2834 2835 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2836 { 2837 struct device *dev = &pdev->dev; 2838 struct device *parent = dev->parent; 2839 2840 if (parent) 2841 pm_runtime_get_sync(parent); 2842 pm_runtime_get_noresume(dev); 2843 /* 2844 * pdev->current_state is set to PCI_D3cold during suspending, 2845 * so wait until suspending completes 2846 */ 2847 pm_runtime_barrier(dev); 2848 /* 2849 * Only need to resume devices in D3cold, because config 2850 * registers are still accessible for devices suspended but 2851 * not in D3cold. 2852 */ 2853 if (pdev->current_state == PCI_D3cold) 2854 pm_runtime_resume(dev); 2855 } 2856 2857 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2858 { 2859 struct device *dev = &pdev->dev; 2860 struct device *parent = dev->parent; 2861 2862 pm_runtime_put(dev); 2863 if (parent) 2864 pm_runtime_put_sync(parent); 2865 } 2866 2867 static const struct dmi_system_id bridge_d3_blacklist[] = { 2868 #ifdef CONFIG_X86 2869 { 2870 /* 2871 * Gigabyte X299 root port is not marked as hotplug capable 2872 * which allows Linux to power manage it. However, this 2873 * confuses the BIOS SMI handler so don't power manage root 2874 * ports on that system. 2875 */ 2876 .ident = "X299 DESIGNARE EX-CF", 2877 .matches = { 2878 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2879 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2880 }, 2881 }, 2882 #endif 2883 { } 2884 }; 2885 2886 /** 2887 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2888 * @bridge: Bridge to check 2889 * 2890 * This function checks if it is possible to move the bridge to D3. 2891 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2892 */ 2893 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2894 { 2895 if (!pci_is_pcie(bridge)) 2896 return false; 2897 2898 switch (pci_pcie_type(bridge)) { 2899 case PCI_EXP_TYPE_ROOT_PORT: 2900 case PCI_EXP_TYPE_UPSTREAM: 2901 case PCI_EXP_TYPE_DOWNSTREAM: 2902 if (pci_bridge_d3_disable) 2903 return false; 2904 2905 /* 2906 * Hotplug ports handled by firmware in System Management Mode 2907 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2908 */ 2909 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2910 return false; 2911 2912 if (pci_bridge_d3_force) 2913 return true; 2914 2915 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2916 if (bridge->is_thunderbolt) 2917 return true; 2918 2919 /* Platform might know better if the bridge supports D3 */ 2920 if (platform_pci_bridge_d3(bridge)) 2921 return true; 2922 2923 /* 2924 * Hotplug ports handled natively by the OS were not validated 2925 * by vendors for runtime D3 at least until 2018 because there 2926 * was no OS support. 2927 */ 2928 if (bridge->is_hotplug_bridge) 2929 return false; 2930 2931 if (dmi_check_system(bridge_d3_blacklist)) 2932 return false; 2933 2934 /* 2935 * It should be safe to put PCIe ports from 2015 or newer 2936 * to D3. 2937 */ 2938 if (dmi_get_bios_year() >= 2015) 2939 return true; 2940 break; 2941 } 2942 2943 return false; 2944 } 2945 2946 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2947 { 2948 bool *d3cold_ok = data; 2949 2950 if (/* The device needs to be allowed to go D3cold ... */ 2951 dev->no_d3cold || !dev->d3cold_allowed || 2952 2953 /* ... and if it is wakeup capable to do so from D3cold. */ 2954 (device_may_wakeup(&dev->dev) && 2955 !pci_pme_capable(dev, PCI_D3cold)) || 2956 2957 /* If it is a bridge it must be allowed to go to D3. */ 2958 !pci_power_manageable(dev)) 2959 2960 *d3cold_ok = false; 2961 2962 return !*d3cold_ok; 2963 } 2964 2965 /* 2966 * pci_bridge_d3_update - Update bridge D3 capabilities 2967 * @dev: PCI device which is changed 2968 * 2969 * Update upstream bridge PM capabilities accordingly depending on if the 2970 * device PM configuration was changed or the device is being removed. The 2971 * change is also propagated upstream. 2972 */ 2973 void pci_bridge_d3_update(struct pci_dev *dev) 2974 { 2975 bool remove = !device_is_registered(&dev->dev); 2976 struct pci_dev *bridge; 2977 bool d3cold_ok = true; 2978 2979 bridge = pci_upstream_bridge(dev); 2980 if (!bridge || !pci_bridge_d3_possible(bridge)) 2981 return; 2982 2983 /* 2984 * If D3 is currently allowed for the bridge, removing one of its 2985 * children won't change that. 2986 */ 2987 if (remove && bridge->bridge_d3) 2988 return; 2989 2990 /* 2991 * If D3 is currently allowed for the bridge and a child is added or 2992 * changed, disallowance of D3 can only be caused by that child, so 2993 * we only need to check that single device, not any of its siblings. 2994 * 2995 * If D3 is currently not allowed for the bridge, checking the device 2996 * first may allow us to skip checking its siblings. 2997 */ 2998 if (!remove) 2999 pci_dev_check_d3cold(dev, &d3cold_ok); 3000 3001 /* 3002 * If D3 is currently not allowed for the bridge, this may be caused 3003 * either by the device being changed/removed or any of its siblings, 3004 * so we need to go through all children to find out if one of them 3005 * continues to block D3. 3006 */ 3007 if (d3cold_ok && !bridge->bridge_d3) 3008 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3009 &d3cold_ok); 3010 3011 if (bridge->bridge_d3 != d3cold_ok) { 3012 bridge->bridge_d3 = d3cold_ok; 3013 /* Propagate change to upstream bridges */ 3014 pci_bridge_d3_update(bridge); 3015 } 3016 } 3017 3018 /** 3019 * pci_d3cold_enable - Enable D3cold for device 3020 * @dev: PCI device to handle 3021 * 3022 * This function can be used in drivers to enable D3cold from the device 3023 * they handle. It also updates upstream PCI bridge PM capabilities 3024 * accordingly. 3025 */ 3026 void pci_d3cold_enable(struct pci_dev *dev) 3027 { 3028 if (dev->no_d3cold) { 3029 dev->no_d3cold = false; 3030 pci_bridge_d3_update(dev); 3031 } 3032 } 3033 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3034 3035 /** 3036 * pci_d3cold_disable - Disable D3cold for device 3037 * @dev: PCI device to handle 3038 * 3039 * This function can be used in drivers to disable D3cold from the device 3040 * they handle. It also updates upstream PCI bridge PM capabilities 3041 * accordingly. 3042 */ 3043 void pci_d3cold_disable(struct pci_dev *dev) 3044 { 3045 if (!dev->no_d3cold) { 3046 dev->no_d3cold = true; 3047 pci_bridge_d3_update(dev); 3048 } 3049 } 3050 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3051 3052 /** 3053 * pci_pm_init - Initialize PM functions of given PCI device 3054 * @dev: PCI device to handle. 3055 */ 3056 void pci_pm_init(struct pci_dev *dev) 3057 { 3058 int pm; 3059 u16 status; 3060 u16 pmc; 3061 3062 pm_runtime_forbid(&dev->dev); 3063 pm_runtime_set_active(&dev->dev); 3064 pm_runtime_enable(&dev->dev); 3065 device_enable_async_suspend(&dev->dev); 3066 dev->wakeup_prepared = false; 3067 3068 dev->pm_cap = 0; 3069 dev->pme_support = 0; 3070 3071 /* find PCI PM capability in list */ 3072 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3073 if (!pm) 3074 return; 3075 /* Check device's ability to generate PME# */ 3076 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3077 3078 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3079 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3080 pmc & PCI_PM_CAP_VER_MASK); 3081 return; 3082 } 3083 3084 dev->pm_cap = pm; 3085 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3086 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3087 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3088 dev->d3cold_allowed = true; 3089 3090 dev->d1_support = false; 3091 dev->d2_support = false; 3092 if (!pci_no_d1d2(dev)) { 3093 if (pmc & PCI_PM_CAP_D1) 3094 dev->d1_support = true; 3095 if (pmc & PCI_PM_CAP_D2) 3096 dev->d2_support = true; 3097 3098 if (dev->d1_support || dev->d2_support) 3099 pci_info(dev, "supports%s%s\n", 3100 dev->d1_support ? " D1" : "", 3101 dev->d2_support ? " D2" : ""); 3102 } 3103 3104 pmc &= PCI_PM_CAP_PME_MASK; 3105 if (pmc) { 3106 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3107 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3108 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3109 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3110 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3111 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3112 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3113 dev->pme_poll = true; 3114 /* 3115 * Make device's PM flags reflect the wake-up capability, but 3116 * let the user space enable it to wake up the system as needed. 3117 */ 3118 device_set_wakeup_capable(&dev->dev, true); 3119 /* Disable the PME# generation functionality */ 3120 pci_pme_active(dev, false); 3121 } 3122 3123 pci_read_config_word(dev, PCI_STATUS, &status); 3124 if (status & PCI_STATUS_IMM_READY) 3125 dev->imm_ready = 1; 3126 } 3127 3128 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3129 { 3130 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3131 3132 switch (prop) { 3133 case PCI_EA_P_MEM: 3134 case PCI_EA_P_VF_MEM: 3135 flags |= IORESOURCE_MEM; 3136 break; 3137 case PCI_EA_P_MEM_PREFETCH: 3138 case PCI_EA_P_VF_MEM_PREFETCH: 3139 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3140 break; 3141 case PCI_EA_P_IO: 3142 flags |= IORESOURCE_IO; 3143 break; 3144 default: 3145 return 0; 3146 } 3147 3148 return flags; 3149 } 3150 3151 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3152 u8 prop) 3153 { 3154 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3155 return &dev->resource[bei]; 3156 #ifdef CONFIG_PCI_IOV 3157 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3158 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3159 return &dev->resource[PCI_IOV_RESOURCES + 3160 bei - PCI_EA_BEI_VF_BAR0]; 3161 #endif 3162 else if (bei == PCI_EA_BEI_ROM) 3163 return &dev->resource[PCI_ROM_RESOURCE]; 3164 else 3165 return NULL; 3166 } 3167 3168 /* Read an Enhanced Allocation (EA) entry */ 3169 static int pci_ea_read(struct pci_dev *dev, int offset) 3170 { 3171 struct resource *res; 3172 int ent_size, ent_offset = offset; 3173 resource_size_t start, end; 3174 unsigned long flags; 3175 u32 dw0, bei, base, max_offset; 3176 u8 prop; 3177 bool support_64 = (sizeof(resource_size_t) >= 8); 3178 3179 pci_read_config_dword(dev, ent_offset, &dw0); 3180 ent_offset += 4; 3181 3182 /* Entry size field indicates DWORDs after 1st */ 3183 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3184 3185 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3186 goto out; 3187 3188 bei = (dw0 & PCI_EA_BEI) >> 4; 3189 prop = (dw0 & PCI_EA_PP) >> 8; 3190 3191 /* 3192 * If the Property is in the reserved range, try the Secondary 3193 * Property instead. 3194 */ 3195 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3196 prop = (dw0 & PCI_EA_SP) >> 16; 3197 if (prop > PCI_EA_P_BRIDGE_IO) 3198 goto out; 3199 3200 res = pci_ea_get_resource(dev, bei, prop); 3201 if (!res) { 3202 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3203 goto out; 3204 } 3205 3206 flags = pci_ea_flags(dev, prop); 3207 if (!flags) { 3208 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3209 goto out; 3210 } 3211 3212 /* Read Base */ 3213 pci_read_config_dword(dev, ent_offset, &base); 3214 start = (base & PCI_EA_FIELD_MASK); 3215 ent_offset += 4; 3216 3217 /* Read MaxOffset */ 3218 pci_read_config_dword(dev, ent_offset, &max_offset); 3219 ent_offset += 4; 3220 3221 /* Read Base MSBs (if 64-bit entry) */ 3222 if (base & PCI_EA_IS_64) { 3223 u32 base_upper; 3224 3225 pci_read_config_dword(dev, ent_offset, &base_upper); 3226 ent_offset += 4; 3227 3228 flags |= IORESOURCE_MEM_64; 3229 3230 /* entry starts above 32-bit boundary, can't use */ 3231 if (!support_64 && base_upper) 3232 goto out; 3233 3234 if (support_64) 3235 start |= ((u64)base_upper << 32); 3236 } 3237 3238 end = start + (max_offset | 0x03); 3239 3240 /* Read MaxOffset MSBs (if 64-bit entry) */ 3241 if (max_offset & PCI_EA_IS_64) { 3242 u32 max_offset_upper; 3243 3244 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3245 ent_offset += 4; 3246 3247 flags |= IORESOURCE_MEM_64; 3248 3249 /* entry too big, can't use */ 3250 if (!support_64 && max_offset_upper) 3251 goto out; 3252 3253 if (support_64) 3254 end += ((u64)max_offset_upper << 32); 3255 } 3256 3257 if (end < start) { 3258 pci_err(dev, "EA Entry crosses address boundary\n"); 3259 goto out; 3260 } 3261 3262 if (ent_size != ent_offset - offset) { 3263 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3264 ent_size, ent_offset - offset); 3265 goto out; 3266 } 3267 3268 res->name = pci_name(dev); 3269 res->start = start; 3270 res->end = end; 3271 res->flags = flags; 3272 3273 if (bei <= PCI_EA_BEI_BAR5) 3274 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3275 bei, res, prop); 3276 else if (bei == PCI_EA_BEI_ROM) 3277 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3278 res, prop); 3279 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3280 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3281 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3282 else 3283 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3284 bei, res, prop); 3285 3286 out: 3287 return offset + ent_size; 3288 } 3289 3290 /* Enhanced Allocation Initialization */ 3291 void pci_ea_init(struct pci_dev *dev) 3292 { 3293 int ea; 3294 u8 num_ent; 3295 int offset; 3296 int i; 3297 3298 /* find PCI EA capability in list */ 3299 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3300 if (!ea) 3301 return; 3302 3303 /* determine the number of entries */ 3304 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3305 &num_ent); 3306 num_ent &= PCI_EA_NUM_ENT_MASK; 3307 3308 offset = ea + PCI_EA_FIRST_ENT; 3309 3310 /* Skip DWORD 2 for type 1 functions */ 3311 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3312 offset += 4; 3313 3314 /* parse each EA entry */ 3315 for (i = 0; i < num_ent; ++i) 3316 offset = pci_ea_read(dev, offset); 3317 } 3318 3319 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3320 struct pci_cap_saved_state *new_cap) 3321 { 3322 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3323 } 3324 3325 /** 3326 * _pci_add_cap_save_buffer - allocate buffer for saving given 3327 * capability registers 3328 * @dev: the PCI device 3329 * @cap: the capability to allocate the buffer for 3330 * @extended: Standard or Extended capability ID 3331 * @size: requested size of the buffer 3332 */ 3333 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3334 bool extended, unsigned int size) 3335 { 3336 int pos; 3337 struct pci_cap_saved_state *save_state; 3338 3339 if (extended) 3340 pos = pci_find_ext_capability(dev, cap); 3341 else 3342 pos = pci_find_capability(dev, cap); 3343 3344 if (!pos) 3345 return 0; 3346 3347 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3348 if (!save_state) 3349 return -ENOMEM; 3350 3351 save_state->cap.cap_nr = cap; 3352 save_state->cap.cap_extended = extended; 3353 save_state->cap.size = size; 3354 pci_add_saved_cap(dev, save_state); 3355 3356 return 0; 3357 } 3358 3359 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3360 { 3361 return _pci_add_cap_save_buffer(dev, cap, false, size); 3362 } 3363 3364 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3365 { 3366 return _pci_add_cap_save_buffer(dev, cap, true, size); 3367 } 3368 3369 /** 3370 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3371 * @dev: the PCI device 3372 */ 3373 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3374 { 3375 int error; 3376 3377 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3378 PCI_EXP_SAVE_REGS * sizeof(u16)); 3379 if (error) 3380 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3381 3382 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3383 if (error) 3384 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3385 3386 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3387 2 * sizeof(u16)); 3388 if (error) 3389 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3390 3391 pci_allocate_vc_save_buffers(dev); 3392 } 3393 3394 void pci_free_cap_save_buffers(struct pci_dev *dev) 3395 { 3396 struct pci_cap_saved_state *tmp; 3397 struct hlist_node *n; 3398 3399 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3400 kfree(tmp); 3401 } 3402 3403 /** 3404 * pci_configure_ari - enable or disable ARI forwarding 3405 * @dev: the PCI device 3406 * 3407 * If @dev and its upstream bridge both support ARI, enable ARI in the 3408 * bridge. Otherwise, disable ARI in the bridge. 3409 */ 3410 void pci_configure_ari(struct pci_dev *dev) 3411 { 3412 u32 cap; 3413 struct pci_dev *bridge; 3414 3415 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3416 return; 3417 3418 bridge = dev->bus->self; 3419 if (!bridge) 3420 return; 3421 3422 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3423 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3424 return; 3425 3426 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3427 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3428 PCI_EXP_DEVCTL2_ARI); 3429 bridge->ari_enabled = 1; 3430 } else { 3431 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3432 PCI_EXP_DEVCTL2_ARI); 3433 bridge->ari_enabled = 0; 3434 } 3435 } 3436 3437 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3438 { 3439 int pos; 3440 u16 cap, ctrl; 3441 3442 pos = pdev->acs_cap; 3443 if (!pos) 3444 return false; 3445 3446 /* 3447 * Except for egress control, capabilities are either required 3448 * or only required if controllable. Features missing from the 3449 * capability field can therefore be assumed as hard-wired enabled. 3450 */ 3451 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3452 acs_flags &= (cap | PCI_ACS_EC); 3453 3454 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3455 return (ctrl & acs_flags) == acs_flags; 3456 } 3457 3458 /** 3459 * pci_acs_enabled - test ACS against required flags for a given device 3460 * @pdev: device to test 3461 * @acs_flags: required PCI ACS flags 3462 * 3463 * Return true if the device supports the provided flags. Automatically 3464 * filters out flags that are not implemented on multifunction devices. 3465 * 3466 * Note that this interface checks the effective ACS capabilities of the 3467 * device rather than the actual capabilities. For instance, most single 3468 * function endpoints are not required to support ACS because they have no 3469 * opportunity for peer-to-peer access. We therefore return 'true' 3470 * regardless of whether the device exposes an ACS capability. This makes 3471 * it much easier for callers of this function to ignore the actual type 3472 * or topology of the device when testing ACS support. 3473 */ 3474 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3475 { 3476 int ret; 3477 3478 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3479 if (ret >= 0) 3480 return ret > 0; 3481 3482 /* 3483 * Conventional PCI and PCI-X devices never support ACS, either 3484 * effectively or actually. The shared bus topology implies that 3485 * any device on the bus can receive or snoop DMA. 3486 */ 3487 if (!pci_is_pcie(pdev)) 3488 return false; 3489 3490 switch (pci_pcie_type(pdev)) { 3491 /* 3492 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3493 * but since their primary interface is PCI/X, we conservatively 3494 * handle them as we would a non-PCIe device. 3495 */ 3496 case PCI_EXP_TYPE_PCIE_BRIDGE: 3497 /* 3498 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3499 * applicable... must never implement an ACS Extended Capability...". 3500 * This seems arbitrary, but we take a conservative interpretation 3501 * of this statement. 3502 */ 3503 case PCI_EXP_TYPE_PCI_BRIDGE: 3504 case PCI_EXP_TYPE_RC_EC: 3505 return false; 3506 /* 3507 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3508 * implement ACS in order to indicate their peer-to-peer capabilities, 3509 * regardless of whether they are single- or multi-function devices. 3510 */ 3511 case PCI_EXP_TYPE_DOWNSTREAM: 3512 case PCI_EXP_TYPE_ROOT_PORT: 3513 return pci_acs_flags_enabled(pdev, acs_flags); 3514 /* 3515 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3516 * implemented by the remaining PCIe types to indicate peer-to-peer 3517 * capabilities, but only when they are part of a multifunction 3518 * device. The footnote for section 6.12 indicates the specific 3519 * PCIe types included here. 3520 */ 3521 case PCI_EXP_TYPE_ENDPOINT: 3522 case PCI_EXP_TYPE_UPSTREAM: 3523 case PCI_EXP_TYPE_LEG_END: 3524 case PCI_EXP_TYPE_RC_END: 3525 if (!pdev->multifunction) 3526 break; 3527 3528 return pci_acs_flags_enabled(pdev, acs_flags); 3529 } 3530 3531 /* 3532 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3533 * to single function devices with the exception of downstream ports. 3534 */ 3535 return true; 3536 } 3537 3538 /** 3539 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3540 * @start: starting downstream device 3541 * @end: ending upstream device or NULL to search to the root bus 3542 * @acs_flags: required flags 3543 * 3544 * Walk up a device tree from start to end testing PCI ACS support. If 3545 * any step along the way does not support the required flags, return false. 3546 */ 3547 bool pci_acs_path_enabled(struct pci_dev *start, 3548 struct pci_dev *end, u16 acs_flags) 3549 { 3550 struct pci_dev *pdev, *parent = start; 3551 3552 do { 3553 pdev = parent; 3554 3555 if (!pci_acs_enabled(pdev, acs_flags)) 3556 return false; 3557 3558 if (pci_is_root_bus(pdev->bus)) 3559 return (end == NULL); 3560 3561 parent = pdev->bus->self; 3562 } while (pdev != end); 3563 3564 return true; 3565 } 3566 3567 /** 3568 * pci_acs_init - Initialize ACS if hardware supports it 3569 * @dev: the PCI device 3570 */ 3571 void pci_acs_init(struct pci_dev *dev) 3572 { 3573 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3574 3575 /* 3576 * Attempt to enable ACS regardless of capability because some Root 3577 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3578 * the standard ACS capability but still support ACS via those 3579 * quirks. 3580 */ 3581 pci_enable_acs(dev); 3582 } 3583 3584 /** 3585 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3586 * @pdev: PCI device 3587 * @bar: BAR to find 3588 * 3589 * Helper to find the position of the ctrl register for a BAR. 3590 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3591 * Returns -ENOENT if no ctrl register for the BAR could be found. 3592 */ 3593 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3594 { 3595 unsigned int pos, nbars, i; 3596 u32 ctrl; 3597 3598 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3599 if (!pos) 3600 return -ENOTSUPP; 3601 3602 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3603 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3604 PCI_REBAR_CTRL_NBAR_SHIFT; 3605 3606 for (i = 0; i < nbars; i++, pos += 8) { 3607 int bar_idx; 3608 3609 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3610 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3611 if (bar_idx == bar) 3612 return pos; 3613 } 3614 3615 return -ENOENT; 3616 } 3617 3618 /** 3619 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3620 * @pdev: PCI device 3621 * @bar: BAR to query 3622 * 3623 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3624 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3625 */ 3626 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3627 { 3628 int pos; 3629 u32 cap; 3630 3631 pos = pci_rebar_find_pos(pdev, bar); 3632 if (pos < 0) 3633 return 0; 3634 3635 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3636 cap &= PCI_REBAR_CAP_SIZES; 3637 3638 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3639 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3640 bar == 0 && cap == 0x7000) 3641 cap = 0x3f000; 3642 3643 return cap >> 4; 3644 } 3645 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3646 3647 /** 3648 * pci_rebar_get_current_size - get the current size of a BAR 3649 * @pdev: PCI device 3650 * @bar: BAR to set size to 3651 * 3652 * Read the size of a BAR from the resizable BAR config. 3653 * Returns size if found or negative error code. 3654 */ 3655 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3656 { 3657 int pos; 3658 u32 ctrl; 3659 3660 pos = pci_rebar_find_pos(pdev, bar); 3661 if (pos < 0) 3662 return pos; 3663 3664 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3665 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3666 } 3667 3668 /** 3669 * pci_rebar_set_size - set a new size for a BAR 3670 * @pdev: PCI device 3671 * @bar: BAR to set size to 3672 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3673 * 3674 * Set the new size of a BAR as defined in the spec. 3675 * Returns zero if resizing was successful, error code otherwise. 3676 */ 3677 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3678 { 3679 int pos; 3680 u32 ctrl; 3681 3682 pos = pci_rebar_find_pos(pdev, bar); 3683 if (pos < 0) 3684 return pos; 3685 3686 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3687 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3688 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3689 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3690 return 0; 3691 } 3692 3693 /** 3694 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3695 * @dev: the PCI device 3696 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3697 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3698 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3699 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3700 * 3701 * Return 0 if all upstream bridges support AtomicOp routing, egress 3702 * blocking is disabled on all upstream ports, and the root port supports 3703 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3704 * AtomicOp completion), or negative otherwise. 3705 */ 3706 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3707 { 3708 struct pci_bus *bus = dev->bus; 3709 struct pci_dev *bridge; 3710 u32 cap, ctl2; 3711 3712 if (!pci_is_pcie(dev)) 3713 return -EINVAL; 3714 3715 /* 3716 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3717 * AtomicOp requesters. For now, we only support endpoints as 3718 * requesters and root ports as completers. No endpoints as 3719 * completers, and no peer-to-peer. 3720 */ 3721 3722 switch (pci_pcie_type(dev)) { 3723 case PCI_EXP_TYPE_ENDPOINT: 3724 case PCI_EXP_TYPE_LEG_END: 3725 case PCI_EXP_TYPE_RC_END: 3726 break; 3727 default: 3728 return -EINVAL; 3729 } 3730 3731 while (bus->parent) { 3732 bridge = bus->self; 3733 3734 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3735 3736 switch (pci_pcie_type(bridge)) { 3737 /* Ensure switch ports support AtomicOp routing */ 3738 case PCI_EXP_TYPE_UPSTREAM: 3739 case PCI_EXP_TYPE_DOWNSTREAM: 3740 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3741 return -EINVAL; 3742 break; 3743 3744 /* Ensure root port supports all the sizes we care about */ 3745 case PCI_EXP_TYPE_ROOT_PORT: 3746 if ((cap & cap_mask) != cap_mask) 3747 return -EINVAL; 3748 break; 3749 } 3750 3751 /* Ensure upstream ports don't block AtomicOps on egress */ 3752 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3753 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3754 &ctl2); 3755 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3756 return -EINVAL; 3757 } 3758 3759 bus = bus->parent; 3760 } 3761 3762 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3763 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3764 return 0; 3765 } 3766 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3767 3768 /** 3769 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3770 * @dev: the PCI device 3771 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3772 * 3773 * Perform INTx swizzling for a device behind one level of bridge. This is 3774 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3775 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3776 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3777 * the PCI Express Base Specification, Revision 2.1) 3778 */ 3779 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3780 { 3781 int slot; 3782 3783 if (pci_ari_enabled(dev->bus)) 3784 slot = 0; 3785 else 3786 slot = PCI_SLOT(dev->devfn); 3787 3788 return (((pin - 1) + slot) % 4) + 1; 3789 } 3790 3791 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3792 { 3793 u8 pin; 3794 3795 pin = dev->pin; 3796 if (!pin) 3797 return -1; 3798 3799 while (!pci_is_root_bus(dev->bus)) { 3800 pin = pci_swizzle_interrupt_pin(dev, pin); 3801 dev = dev->bus->self; 3802 } 3803 *bridge = dev; 3804 return pin; 3805 } 3806 3807 /** 3808 * pci_common_swizzle - swizzle INTx all the way to root bridge 3809 * @dev: the PCI device 3810 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3811 * 3812 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3813 * bridges all the way up to a PCI root bus. 3814 */ 3815 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3816 { 3817 u8 pin = *pinp; 3818 3819 while (!pci_is_root_bus(dev->bus)) { 3820 pin = pci_swizzle_interrupt_pin(dev, pin); 3821 dev = dev->bus->self; 3822 } 3823 *pinp = pin; 3824 return PCI_SLOT(dev->devfn); 3825 } 3826 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3827 3828 /** 3829 * pci_release_region - Release a PCI bar 3830 * @pdev: PCI device whose resources were previously reserved by 3831 * pci_request_region() 3832 * @bar: BAR to release 3833 * 3834 * Releases the PCI I/O and memory resources previously reserved by a 3835 * successful call to pci_request_region(). Call this function only 3836 * after all use of the PCI regions has ceased. 3837 */ 3838 void pci_release_region(struct pci_dev *pdev, int bar) 3839 { 3840 struct pci_devres *dr; 3841 3842 if (pci_resource_len(pdev, bar) == 0) 3843 return; 3844 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3845 release_region(pci_resource_start(pdev, bar), 3846 pci_resource_len(pdev, bar)); 3847 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3848 release_mem_region(pci_resource_start(pdev, bar), 3849 pci_resource_len(pdev, bar)); 3850 3851 dr = find_pci_dr(pdev); 3852 if (dr) 3853 dr->region_mask &= ~(1 << bar); 3854 } 3855 EXPORT_SYMBOL(pci_release_region); 3856 3857 /** 3858 * __pci_request_region - Reserved PCI I/O and memory resource 3859 * @pdev: PCI device whose resources are to be reserved 3860 * @bar: BAR to be reserved 3861 * @res_name: Name to be associated with resource. 3862 * @exclusive: whether the region access is exclusive or not 3863 * 3864 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3865 * being reserved by owner @res_name. Do not access any 3866 * address inside the PCI regions unless this call returns 3867 * successfully. 3868 * 3869 * If @exclusive is set, then the region is marked so that userspace 3870 * is explicitly not allowed to map the resource via /dev/mem or 3871 * sysfs MMIO access. 3872 * 3873 * Returns 0 on success, or %EBUSY on error. A warning 3874 * message is also printed on failure. 3875 */ 3876 static int __pci_request_region(struct pci_dev *pdev, int bar, 3877 const char *res_name, int exclusive) 3878 { 3879 struct pci_devres *dr; 3880 3881 if (pci_resource_len(pdev, bar) == 0) 3882 return 0; 3883 3884 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3885 if (!request_region(pci_resource_start(pdev, bar), 3886 pci_resource_len(pdev, bar), res_name)) 3887 goto err_out; 3888 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3889 if (!__request_mem_region(pci_resource_start(pdev, bar), 3890 pci_resource_len(pdev, bar), res_name, 3891 exclusive)) 3892 goto err_out; 3893 } 3894 3895 dr = find_pci_dr(pdev); 3896 if (dr) 3897 dr->region_mask |= 1 << bar; 3898 3899 return 0; 3900 3901 err_out: 3902 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3903 &pdev->resource[bar]); 3904 return -EBUSY; 3905 } 3906 3907 /** 3908 * pci_request_region - Reserve PCI I/O and memory resource 3909 * @pdev: PCI device whose resources are to be reserved 3910 * @bar: BAR to be reserved 3911 * @res_name: Name to be associated with resource 3912 * 3913 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3914 * being reserved by owner @res_name. Do not access any 3915 * address inside the PCI regions unless this call returns 3916 * successfully. 3917 * 3918 * Returns 0 on success, or %EBUSY on error. A warning 3919 * message is also printed on failure. 3920 */ 3921 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3922 { 3923 return __pci_request_region(pdev, bar, res_name, 0); 3924 } 3925 EXPORT_SYMBOL(pci_request_region); 3926 3927 /** 3928 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3929 * @pdev: PCI device whose resources were previously reserved 3930 * @bars: Bitmask of BARs to be released 3931 * 3932 * Release selected PCI I/O and memory resources previously reserved. 3933 * Call this function only after all use of the PCI regions has ceased. 3934 */ 3935 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3936 { 3937 int i; 3938 3939 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3940 if (bars & (1 << i)) 3941 pci_release_region(pdev, i); 3942 } 3943 EXPORT_SYMBOL(pci_release_selected_regions); 3944 3945 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3946 const char *res_name, int excl) 3947 { 3948 int i; 3949 3950 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3951 if (bars & (1 << i)) 3952 if (__pci_request_region(pdev, i, res_name, excl)) 3953 goto err_out; 3954 return 0; 3955 3956 err_out: 3957 while (--i >= 0) 3958 if (bars & (1 << i)) 3959 pci_release_region(pdev, i); 3960 3961 return -EBUSY; 3962 } 3963 3964 3965 /** 3966 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3967 * @pdev: PCI device whose resources are to be reserved 3968 * @bars: Bitmask of BARs to be requested 3969 * @res_name: Name to be associated with resource 3970 */ 3971 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3972 const char *res_name) 3973 { 3974 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3975 } 3976 EXPORT_SYMBOL(pci_request_selected_regions); 3977 3978 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3979 const char *res_name) 3980 { 3981 return __pci_request_selected_regions(pdev, bars, res_name, 3982 IORESOURCE_EXCLUSIVE); 3983 } 3984 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3985 3986 /** 3987 * pci_release_regions - Release reserved PCI I/O and memory resources 3988 * @pdev: PCI device whose resources were previously reserved by 3989 * pci_request_regions() 3990 * 3991 * Releases all PCI I/O and memory resources previously reserved by a 3992 * successful call to pci_request_regions(). Call this function only 3993 * after all use of the PCI regions has ceased. 3994 */ 3995 3996 void pci_release_regions(struct pci_dev *pdev) 3997 { 3998 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 3999 } 4000 EXPORT_SYMBOL(pci_release_regions); 4001 4002 /** 4003 * pci_request_regions - Reserve PCI I/O and memory resources 4004 * @pdev: PCI device whose resources are to be reserved 4005 * @res_name: Name to be associated with resource. 4006 * 4007 * Mark all PCI regions associated with PCI device @pdev as 4008 * being reserved by owner @res_name. Do not access any 4009 * address inside the PCI regions unless this call returns 4010 * successfully. 4011 * 4012 * Returns 0 on success, or %EBUSY on error. A warning 4013 * message is also printed on failure. 4014 */ 4015 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4016 { 4017 return pci_request_selected_regions(pdev, 4018 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4019 } 4020 EXPORT_SYMBOL(pci_request_regions); 4021 4022 /** 4023 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4024 * @pdev: PCI device whose resources are to be reserved 4025 * @res_name: Name to be associated with resource. 4026 * 4027 * Mark all PCI regions associated with PCI device @pdev as being reserved 4028 * by owner @res_name. Do not access any address inside the PCI regions 4029 * unless this call returns successfully. 4030 * 4031 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4032 * and the sysfs MMIO access will not be allowed. 4033 * 4034 * Returns 0 on success, or %EBUSY on error. A warning message is also 4035 * printed on failure. 4036 */ 4037 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4038 { 4039 return pci_request_selected_regions_exclusive(pdev, 4040 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4041 } 4042 EXPORT_SYMBOL(pci_request_regions_exclusive); 4043 4044 /* 4045 * Record the PCI IO range (expressed as CPU physical address + size). 4046 * Return a negative value if an error has occurred, zero otherwise 4047 */ 4048 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4049 resource_size_t size) 4050 { 4051 int ret = 0; 4052 #ifdef PCI_IOBASE 4053 struct logic_pio_hwaddr *range; 4054 4055 if (!size || addr + size < addr) 4056 return -EINVAL; 4057 4058 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4059 if (!range) 4060 return -ENOMEM; 4061 4062 range->fwnode = fwnode; 4063 range->size = size; 4064 range->hw_start = addr; 4065 range->flags = LOGIC_PIO_CPU_MMIO; 4066 4067 ret = logic_pio_register_range(range); 4068 if (ret) 4069 kfree(range); 4070 4071 /* Ignore duplicates due to deferred probing */ 4072 if (ret == -EEXIST) 4073 ret = 0; 4074 #endif 4075 4076 return ret; 4077 } 4078 4079 phys_addr_t pci_pio_to_address(unsigned long pio) 4080 { 4081 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 4082 4083 #ifdef PCI_IOBASE 4084 if (pio >= MMIO_UPPER_LIMIT) 4085 return address; 4086 4087 address = logic_pio_to_hwaddr(pio); 4088 #endif 4089 4090 return address; 4091 } 4092 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4093 4094 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4095 { 4096 #ifdef PCI_IOBASE 4097 return logic_pio_trans_cpuaddr(address); 4098 #else 4099 if (address > IO_SPACE_LIMIT) 4100 return (unsigned long)-1; 4101 4102 return (unsigned long) address; 4103 #endif 4104 } 4105 4106 /** 4107 * pci_remap_iospace - Remap the memory mapped I/O space 4108 * @res: Resource describing the I/O space 4109 * @phys_addr: physical address of range to be mapped 4110 * 4111 * Remap the memory mapped I/O space described by the @res and the CPU 4112 * physical address @phys_addr into virtual address space. Only 4113 * architectures that have memory mapped IO functions defined (and the 4114 * PCI_IOBASE value defined) should call this function. 4115 */ 4116 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4117 { 4118 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4119 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4120 4121 if (!(res->flags & IORESOURCE_IO)) 4122 return -EINVAL; 4123 4124 if (res->end > IO_SPACE_LIMIT) 4125 return -EINVAL; 4126 4127 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4128 pgprot_device(PAGE_KERNEL)); 4129 #else 4130 /* 4131 * This architecture does not have memory mapped I/O space, 4132 * so this function should never be called 4133 */ 4134 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4135 return -ENODEV; 4136 #endif 4137 } 4138 EXPORT_SYMBOL(pci_remap_iospace); 4139 4140 /** 4141 * pci_unmap_iospace - Unmap the memory mapped I/O space 4142 * @res: resource to be unmapped 4143 * 4144 * Unmap the CPU virtual address @res from virtual address space. Only 4145 * architectures that have memory mapped IO functions defined (and the 4146 * PCI_IOBASE value defined) should call this function. 4147 */ 4148 void pci_unmap_iospace(struct resource *res) 4149 { 4150 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4151 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4152 4153 vunmap_range(vaddr, vaddr + resource_size(res)); 4154 #endif 4155 } 4156 EXPORT_SYMBOL(pci_unmap_iospace); 4157 4158 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4159 { 4160 struct resource **res = ptr; 4161 4162 pci_unmap_iospace(*res); 4163 } 4164 4165 /** 4166 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4167 * @dev: Generic device to remap IO address for 4168 * @res: Resource describing the I/O space 4169 * @phys_addr: physical address of range to be mapped 4170 * 4171 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4172 * detach. 4173 */ 4174 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4175 phys_addr_t phys_addr) 4176 { 4177 const struct resource **ptr; 4178 int error; 4179 4180 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4181 if (!ptr) 4182 return -ENOMEM; 4183 4184 error = pci_remap_iospace(res, phys_addr); 4185 if (error) { 4186 devres_free(ptr); 4187 } else { 4188 *ptr = res; 4189 devres_add(dev, ptr); 4190 } 4191 4192 return error; 4193 } 4194 EXPORT_SYMBOL(devm_pci_remap_iospace); 4195 4196 /** 4197 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4198 * @dev: Generic device to remap IO address for 4199 * @offset: Resource address to map 4200 * @size: Size of map 4201 * 4202 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4203 * detach. 4204 */ 4205 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4206 resource_size_t offset, 4207 resource_size_t size) 4208 { 4209 void __iomem **ptr, *addr; 4210 4211 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4212 if (!ptr) 4213 return NULL; 4214 4215 addr = pci_remap_cfgspace(offset, size); 4216 if (addr) { 4217 *ptr = addr; 4218 devres_add(dev, ptr); 4219 } else 4220 devres_free(ptr); 4221 4222 return addr; 4223 } 4224 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4225 4226 /** 4227 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4228 * @dev: generic device to handle the resource for 4229 * @res: configuration space resource to be handled 4230 * 4231 * Checks that a resource is a valid memory region, requests the memory 4232 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4233 * proper PCI configuration space memory attributes are guaranteed. 4234 * 4235 * All operations are managed and will be undone on driver detach. 4236 * 4237 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4238 * on failure. Usage example:: 4239 * 4240 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4241 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4242 * if (IS_ERR(base)) 4243 * return PTR_ERR(base); 4244 */ 4245 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4246 struct resource *res) 4247 { 4248 resource_size_t size; 4249 const char *name; 4250 void __iomem *dest_ptr; 4251 4252 BUG_ON(!dev); 4253 4254 if (!res || resource_type(res) != IORESOURCE_MEM) { 4255 dev_err(dev, "invalid resource\n"); 4256 return IOMEM_ERR_PTR(-EINVAL); 4257 } 4258 4259 size = resource_size(res); 4260 4261 if (res->name) 4262 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4263 res->name); 4264 else 4265 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4266 if (!name) 4267 return IOMEM_ERR_PTR(-ENOMEM); 4268 4269 if (!devm_request_mem_region(dev, res->start, size, name)) { 4270 dev_err(dev, "can't request region for resource %pR\n", res); 4271 return IOMEM_ERR_PTR(-EBUSY); 4272 } 4273 4274 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4275 if (!dest_ptr) { 4276 dev_err(dev, "ioremap failed for resource %pR\n", res); 4277 devm_release_mem_region(dev, res->start, size); 4278 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4279 } 4280 4281 return dest_ptr; 4282 } 4283 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4284 4285 static void __pci_set_master(struct pci_dev *dev, bool enable) 4286 { 4287 u16 old_cmd, cmd; 4288 4289 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4290 if (enable) 4291 cmd = old_cmd | PCI_COMMAND_MASTER; 4292 else 4293 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4294 if (cmd != old_cmd) { 4295 pci_dbg(dev, "%s bus mastering\n", 4296 enable ? "enabling" : "disabling"); 4297 pci_write_config_word(dev, PCI_COMMAND, cmd); 4298 } 4299 dev->is_busmaster = enable; 4300 } 4301 4302 /** 4303 * pcibios_setup - process "pci=" kernel boot arguments 4304 * @str: string used to pass in "pci=" kernel boot arguments 4305 * 4306 * Process kernel boot arguments. This is the default implementation. 4307 * Architecture specific implementations can override this as necessary. 4308 */ 4309 char * __weak __init pcibios_setup(char *str) 4310 { 4311 return str; 4312 } 4313 4314 /** 4315 * pcibios_set_master - enable PCI bus-mastering for device dev 4316 * @dev: the PCI device to enable 4317 * 4318 * Enables PCI bus-mastering for the device. This is the default 4319 * implementation. Architecture specific implementations can override 4320 * this if necessary. 4321 */ 4322 void __weak pcibios_set_master(struct pci_dev *dev) 4323 { 4324 u8 lat; 4325 4326 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4327 if (pci_is_pcie(dev)) 4328 return; 4329 4330 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4331 if (lat < 16) 4332 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4333 else if (lat > pcibios_max_latency) 4334 lat = pcibios_max_latency; 4335 else 4336 return; 4337 4338 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4339 } 4340 4341 /** 4342 * pci_set_master - enables bus-mastering for device dev 4343 * @dev: the PCI device to enable 4344 * 4345 * Enables bus-mastering on the device and calls pcibios_set_master() 4346 * to do the needed arch specific settings. 4347 */ 4348 void pci_set_master(struct pci_dev *dev) 4349 { 4350 __pci_set_master(dev, true); 4351 pcibios_set_master(dev); 4352 } 4353 EXPORT_SYMBOL(pci_set_master); 4354 4355 /** 4356 * pci_clear_master - disables bus-mastering for device dev 4357 * @dev: the PCI device to disable 4358 */ 4359 void pci_clear_master(struct pci_dev *dev) 4360 { 4361 __pci_set_master(dev, false); 4362 } 4363 EXPORT_SYMBOL(pci_clear_master); 4364 4365 /** 4366 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4367 * @dev: the PCI device for which MWI is to be enabled 4368 * 4369 * Helper function for pci_set_mwi. 4370 * Originally copied from drivers/net/acenic.c. 4371 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4372 * 4373 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4374 */ 4375 int pci_set_cacheline_size(struct pci_dev *dev) 4376 { 4377 u8 cacheline_size; 4378 4379 if (!pci_cache_line_size) 4380 return -EINVAL; 4381 4382 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4383 equal to or multiple of the right value. */ 4384 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4385 if (cacheline_size >= pci_cache_line_size && 4386 (cacheline_size % pci_cache_line_size) == 0) 4387 return 0; 4388 4389 /* Write the correct value. */ 4390 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4391 /* Read it back. */ 4392 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4393 if (cacheline_size == pci_cache_line_size) 4394 return 0; 4395 4396 pci_dbg(dev, "cache line size of %d is not supported\n", 4397 pci_cache_line_size << 2); 4398 4399 return -EINVAL; 4400 } 4401 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4402 4403 /** 4404 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4405 * @dev: the PCI device for which MWI is enabled 4406 * 4407 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4408 * 4409 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4410 */ 4411 int pci_set_mwi(struct pci_dev *dev) 4412 { 4413 #ifdef PCI_DISABLE_MWI 4414 return 0; 4415 #else 4416 int rc; 4417 u16 cmd; 4418 4419 rc = pci_set_cacheline_size(dev); 4420 if (rc) 4421 return rc; 4422 4423 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4424 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4425 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4426 cmd |= PCI_COMMAND_INVALIDATE; 4427 pci_write_config_word(dev, PCI_COMMAND, cmd); 4428 } 4429 return 0; 4430 #endif 4431 } 4432 EXPORT_SYMBOL(pci_set_mwi); 4433 4434 /** 4435 * pcim_set_mwi - a device-managed pci_set_mwi() 4436 * @dev: the PCI device for which MWI is enabled 4437 * 4438 * Managed pci_set_mwi(). 4439 * 4440 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4441 */ 4442 int pcim_set_mwi(struct pci_dev *dev) 4443 { 4444 struct pci_devres *dr; 4445 4446 dr = find_pci_dr(dev); 4447 if (!dr) 4448 return -ENOMEM; 4449 4450 dr->mwi = 1; 4451 return pci_set_mwi(dev); 4452 } 4453 EXPORT_SYMBOL(pcim_set_mwi); 4454 4455 /** 4456 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4457 * @dev: the PCI device for which MWI is enabled 4458 * 4459 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4460 * Callers are not required to check the return value. 4461 * 4462 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4463 */ 4464 int pci_try_set_mwi(struct pci_dev *dev) 4465 { 4466 #ifdef PCI_DISABLE_MWI 4467 return 0; 4468 #else 4469 return pci_set_mwi(dev); 4470 #endif 4471 } 4472 EXPORT_SYMBOL(pci_try_set_mwi); 4473 4474 /** 4475 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4476 * @dev: the PCI device to disable 4477 * 4478 * Disables PCI Memory-Write-Invalidate transaction on the device 4479 */ 4480 void pci_clear_mwi(struct pci_dev *dev) 4481 { 4482 #ifndef PCI_DISABLE_MWI 4483 u16 cmd; 4484 4485 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4486 if (cmd & PCI_COMMAND_INVALIDATE) { 4487 cmd &= ~PCI_COMMAND_INVALIDATE; 4488 pci_write_config_word(dev, PCI_COMMAND, cmd); 4489 } 4490 #endif 4491 } 4492 EXPORT_SYMBOL(pci_clear_mwi); 4493 4494 /** 4495 * pci_disable_parity - disable parity checking for device 4496 * @dev: the PCI device to operate on 4497 * 4498 * Disable parity checking for device @dev 4499 */ 4500 void pci_disable_parity(struct pci_dev *dev) 4501 { 4502 u16 cmd; 4503 4504 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4505 if (cmd & PCI_COMMAND_PARITY) { 4506 cmd &= ~PCI_COMMAND_PARITY; 4507 pci_write_config_word(dev, PCI_COMMAND, cmd); 4508 } 4509 } 4510 4511 /** 4512 * pci_intx - enables/disables PCI INTx for device dev 4513 * @pdev: the PCI device to operate on 4514 * @enable: boolean: whether to enable or disable PCI INTx 4515 * 4516 * Enables/disables PCI INTx for device @pdev 4517 */ 4518 void pci_intx(struct pci_dev *pdev, int enable) 4519 { 4520 u16 pci_command, new; 4521 4522 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4523 4524 if (enable) 4525 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4526 else 4527 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4528 4529 if (new != pci_command) { 4530 struct pci_devres *dr; 4531 4532 pci_write_config_word(pdev, PCI_COMMAND, new); 4533 4534 dr = find_pci_dr(pdev); 4535 if (dr && !dr->restore_intx) { 4536 dr->restore_intx = 1; 4537 dr->orig_intx = !enable; 4538 } 4539 } 4540 } 4541 EXPORT_SYMBOL_GPL(pci_intx); 4542 4543 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4544 { 4545 struct pci_bus *bus = dev->bus; 4546 bool mask_updated = true; 4547 u32 cmd_status_dword; 4548 u16 origcmd, newcmd; 4549 unsigned long flags; 4550 bool irq_pending; 4551 4552 /* 4553 * We do a single dword read to retrieve both command and status. 4554 * Document assumptions that make this possible. 4555 */ 4556 BUILD_BUG_ON(PCI_COMMAND % 4); 4557 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4558 4559 raw_spin_lock_irqsave(&pci_lock, flags); 4560 4561 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4562 4563 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4564 4565 /* 4566 * Check interrupt status register to see whether our device 4567 * triggered the interrupt (when masking) or the next IRQ is 4568 * already pending (when unmasking). 4569 */ 4570 if (mask != irq_pending) { 4571 mask_updated = false; 4572 goto done; 4573 } 4574 4575 origcmd = cmd_status_dword; 4576 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4577 if (mask) 4578 newcmd |= PCI_COMMAND_INTX_DISABLE; 4579 if (newcmd != origcmd) 4580 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4581 4582 done: 4583 raw_spin_unlock_irqrestore(&pci_lock, flags); 4584 4585 return mask_updated; 4586 } 4587 4588 /** 4589 * pci_check_and_mask_intx - mask INTx on pending interrupt 4590 * @dev: the PCI device to operate on 4591 * 4592 * Check if the device dev has its INTx line asserted, mask it and return 4593 * true in that case. False is returned if no interrupt was pending. 4594 */ 4595 bool pci_check_and_mask_intx(struct pci_dev *dev) 4596 { 4597 return pci_check_and_set_intx_mask(dev, true); 4598 } 4599 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4600 4601 /** 4602 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4603 * @dev: the PCI device to operate on 4604 * 4605 * Check if the device dev has its INTx line asserted, unmask it if not and 4606 * return true. False is returned and the mask remains active if there was 4607 * still an interrupt pending. 4608 */ 4609 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4610 { 4611 return pci_check_and_set_intx_mask(dev, false); 4612 } 4613 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4614 4615 /** 4616 * pci_wait_for_pending_transaction - wait for pending transaction 4617 * @dev: the PCI device to operate on 4618 * 4619 * Return 0 if transaction is pending 1 otherwise. 4620 */ 4621 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4622 { 4623 if (!pci_is_pcie(dev)) 4624 return 1; 4625 4626 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4627 PCI_EXP_DEVSTA_TRPND); 4628 } 4629 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4630 4631 /** 4632 * pcie_has_flr - check if a device supports function level resets 4633 * @dev: device to check 4634 * 4635 * Returns true if the device advertises support for PCIe function level 4636 * resets. 4637 */ 4638 bool pcie_has_flr(struct pci_dev *dev) 4639 { 4640 u32 cap; 4641 4642 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4643 return false; 4644 4645 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4646 return cap & PCI_EXP_DEVCAP_FLR; 4647 } 4648 EXPORT_SYMBOL_GPL(pcie_has_flr); 4649 4650 /** 4651 * pcie_flr - initiate a PCIe function level reset 4652 * @dev: device to reset 4653 * 4654 * Initiate a function level reset on @dev. The caller should ensure the 4655 * device supports FLR before calling this function, e.g. by using the 4656 * pcie_has_flr() helper. 4657 */ 4658 int pcie_flr(struct pci_dev *dev) 4659 { 4660 if (!pci_wait_for_pending_transaction(dev)) 4661 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4662 4663 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4664 4665 if (dev->imm_ready) 4666 return 0; 4667 4668 /* 4669 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4670 * 100ms, but may silently discard requests while the FLR is in 4671 * progress. Wait 100ms before trying to access the device. 4672 */ 4673 msleep(100); 4674 4675 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4676 } 4677 EXPORT_SYMBOL_GPL(pcie_flr); 4678 4679 static int pci_af_flr(struct pci_dev *dev, int probe) 4680 { 4681 int pos; 4682 u8 cap; 4683 4684 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4685 if (!pos) 4686 return -ENOTTY; 4687 4688 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4689 return -ENOTTY; 4690 4691 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4692 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4693 return -ENOTTY; 4694 4695 if (probe) 4696 return 0; 4697 4698 /* 4699 * Wait for Transaction Pending bit to clear. A word-aligned test 4700 * is used, so we use the control offset rather than status and shift 4701 * the test bit to match. 4702 */ 4703 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4704 PCI_AF_STATUS_TP << 8)) 4705 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4706 4707 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4708 4709 if (dev->imm_ready) 4710 return 0; 4711 4712 /* 4713 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4714 * updated 27 July 2006; a device must complete an FLR within 4715 * 100ms, but may silently discard requests while the FLR is in 4716 * progress. Wait 100ms before trying to access the device. 4717 */ 4718 msleep(100); 4719 4720 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4721 } 4722 4723 /** 4724 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4725 * @dev: Device to reset. 4726 * @probe: If set, only check if the device can be reset this way. 4727 * 4728 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4729 * unset, it will be reinitialized internally when going from PCI_D3hot to 4730 * PCI_D0. If that's the case and the device is not in a low-power state 4731 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4732 * 4733 * NOTE: This causes the caller to sleep for twice the device power transition 4734 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4735 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4736 * Moreover, only devices in D0 can be reset by this function. 4737 */ 4738 static int pci_pm_reset(struct pci_dev *dev, int probe) 4739 { 4740 u16 csr; 4741 4742 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4743 return -ENOTTY; 4744 4745 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4746 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4747 return -ENOTTY; 4748 4749 if (probe) 4750 return 0; 4751 4752 if (dev->current_state != PCI_D0) 4753 return -EINVAL; 4754 4755 csr &= ~PCI_PM_CTRL_STATE_MASK; 4756 csr |= PCI_D3hot; 4757 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4758 pci_dev_d3_sleep(dev); 4759 4760 csr &= ~PCI_PM_CTRL_STATE_MASK; 4761 csr |= PCI_D0; 4762 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4763 pci_dev_d3_sleep(dev); 4764 4765 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4766 } 4767 4768 /** 4769 * pcie_wait_for_link_delay - Wait until link is active or inactive 4770 * @pdev: Bridge device 4771 * @active: waiting for active or inactive? 4772 * @delay: Delay to wait after link has become active (in ms) 4773 * 4774 * Use this to wait till link becomes active or inactive. 4775 */ 4776 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4777 int delay) 4778 { 4779 int timeout = 1000; 4780 bool ret; 4781 u16 lnk_status; 4782 4783 /* 4784 * Some controllers might not implement link active reporting. In this 4785 * case, we wait for 1000 ms + any delay requested by the caller. 4786 */ 4787 if (!pdev->link_active_reporting) { 4788 msleep(timeout + delay); 4789 return true; 4790 } 4791 4792 /* 4793 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4794 * after which we should expect an link active if the reset was 4795 * successful. If so, software must wait a minimum 100ms before sending 4796 * configuration requests to devices downstream this port. 4797 * 4798 * If the link fails to activate, either the device was physically 4799 * removed or the link is permanently failed. 4800 */ 4801 if (active) 4802 msleep(20); 4803 for (;;) { 4804 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4805 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4806 if (ret == active) 4807 break; 4808 if (timeout <= 0) 4809 break; 4810 msleep(10); 4811 timeout -= 10; 4812 } 4813 if (active && ret) 4814 msleep(delay); 4815 4816 return ret == active; 4817 } 4818 4819 /** 4820 * pcie_wait_for_link - Wait until link is active or inactive 4821 * @pdev: Bridge device 4822 * @active: waiting for active or inactive? 4823 * 4824 * Use this to wait till link becomes active or inactive. 4825 */ 4826 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4827 { 4828 return pcie_wait_for_link_delay(pdev, active, 100); 4829 } 4830 4831 /* 4832 * Find maximum D3cold delay required by all the devices on the bus. The 4833 * spec says 100 ms, but firmware can lower it and we allow drivers to 4834 * increase it as well. 4835 * 4836 * Called with @pci_bus_sem locked for reading. 4837 */ 4838 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4839 { 4840 const struct pci_dev *pdev; 4841 int min_delay = 100; 4842 int max_delay = 0; 4843 4844 list_for_each_entry(pdev, &bus->devices, bus_list) { 4845 if (pdev->d3cold_delay < min_delay) 4846 min_delay = pdev->d3cold_delay; 4847 if (pdev->d3cold_delay > max_delay) 4848 max_delay = pdev->d3cold_delay; 4849 } 4850 4851 return max(min_delay, max_delay); 4852 } 4853 4854 /** 4855 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4856 * @dev: PCI bridge 4857 * 4858 * Handle necessary delays before access to the devices on the secondary 4859 * side of the bridge are permitted after D3cold to D0 transition. 4860 * 4861 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4862 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4863 * 4.3.2. 4864 */ 4865 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4866 { 4867 struct pci_dev *child; 4868 int delay; 4869 4870 if (pci_dev_is_disconnected(dev)) 4871 return; 4872 4873 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4874 return; 4875 4876 down_read(&pci_bus_sem); 4877 4878 /* 4879 * We only deal with devices that are present currently on the bus. 4880 * For any hot-added devices the access delay is handled in pciehp 4881 * board_added(). In case of ACPI hotplug the firmware is expected 4882 * to configure the devices before OS is notified. 4883 */ 4884 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4885 up_read(&pci_bus_sem); 4886 return; 4887 } 4888 4889 /* Take d3cold_delay requirements into account */ 4890 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4891 if (!delay) { 4892 up_read(&pci_bus_sem); 4893 return; 4894 } 4895 4896 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4897 bus_list); 4898 up_read(&pci_bus_sem); 4899 4900 /* 4901 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4902 * accessing the device after reset (that is 1000 ms + 100 ms). In 4903 * practice this should not be needed because we don't do power 4904 * management for them (see pci_bridge_d3_possible()). 4905 */ 4906 if (!pci_is_pcie(dev)) { 4907 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4908 msleep(1000 + delay); 4909 return; 4910 } 4911 4912 /* 4913 * For PCIe downstream and root ports that do not support speeds 4914 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4915 * speeds (gen3) we need to wait first for the data link layer to 4916 * become active. 4917 * 4918 * However, 100 ms is the minimum and the PCIe spec says the 4919 * software must allow at least 1s before it can determine that the 4920 * device that did not respond is a broken device. There is 4921 * evidence that 100 ms is not always enough, for example certain 4922 * Titan Ridge xHCI controller does not always respond to 4923 * configuration requests if we only wait for 100 ms (see 4924 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4925 * 4926 * Therefore we wait for 100 ms and check for the device presence. 4927 * If it is still not present give it an additional 100 ms. 4928 */ 4929 if (!pcie_downstream_port(dev)) 4930 return; 4931 4932 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4933 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4934 msleep(delay); 4935 } else { 4936 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4937 delay); 4938 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4939 /* Did not train, no need to wait any further */ 4940 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 4941 return; 4942 } 4943 } 4944 4945 if (!pci_device_is_present(child)) { 4946 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 4947 msleep(delay); 4948 } 4949 } 4950 4951 void pci_reset_secondary_bus(struct pci_dev *dev) 4952 { 4953 u16 ctrl; 4954 4955 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4956 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4957 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4958 4959 /* 4960 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4961 * this to 2ms to ensure that we meet the minimum requirement. 4962 */ 4963 msleep(2); 4964 4965 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4966 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4967 4968 /* 4969 * Trhfa for conventional PCI is 2^25 clock cycles. 4970 * Assuming a minimum 33MHz clock this results in a 1s 4971 * delay before we can consider subordinate devices to 4972 * be re-initialized. PCIe has some ways to shorten this, 4973 * but we don't make use of them yet. 4974 */ 4975 ssleep(1); 4976 } 4977 4978 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4979 { 4980 pci_reset_secondary_bus(dev); 4981 } 4982 4983 /** 4984 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4985 * @dev: Bridge device 4986 * 4987 * Use the bridge control register to assert reset on the secondary bus. 4988 * Devices on the secondary bus are left in power-on state. 4989 */ 4990 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4991 { 4992 pcibios_reset_secondary_bus(dev); 4993 4994 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4995 } 4996 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4997 4998 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4999 { 5000 struct pci_dev *pdev; 5001 5002 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5003 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5004 return -ENOTTY; 5005 5006 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5007 if (pdev != dev) 5008 return -ENOTTY; 5009 5010 if (probe) 5011 return 0; 5012 5013 return pci_bridge_secondary_bus_reset(dev->bus->self); 5014 } 5015 5016 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 5017 { 5018 int rc = -ENOTTY; 5019 5020 if (!hotplug || !try_module_get(hotplug->owner)) 5021 return rc; 5022 5023 if (hotplug->ops->reset_slot) 5024 rc = hotplug->ops->reset_slot(hotplug, probe); 5025 5026 module_put(hotplug->owner); 5027 5028 return rc; 5029 } 5030 5031 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 5032 { 5033 if (dev->multifunction || dev->subordinate || !dev->slot || 5034 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5035 return -ENOTTY; 5036 5037 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5038 } 5039 5040 static int pci_reset_bus_function(struct pci_dev *dev, int probe) 5041 { 5042 int rc; 5043 5044 rc = pci_dev_reset_slot_function(dev, probe); 5045 if (rc != -ENOTTY) 5046 return rc; 5047 return pci_parent_bus_reset(dev, probe); 5048 } 5049 5050 static void pci_dev_lock(struct pci_dev *dev) 5051 { 5052 pci_cfg_access_lock(dev); 5053 /* block PM suspend, driver probe, etc. */ 5054 device_lock(&dev->dev); 5055 } 5056 5057 /* Return 1 on successful lock, 0 on contention */ 5058 int pci_dev_trylock(struct pci_dev *dev) 5059 { 5060 if (pci_cfg_access_trylock(dev)) { 5061 if (device_trylock(&dev->dev)) 5062 return 1; 5063 pci_cfg_access_unlock(dev); 5064 } 5065 5066 return 0; 5067 } 5068 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5069 5070 void pci_dev_unlock(struct pci_dev *dev) 5071 { 5072 device_unlock(&dev->dev); 5073 pci_cfg_access_unlock(dev); 5074 } 5075 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5076 5077 static void pci_dev_save_and_disable(struct pci_dev *dev) 5078 { 5079 const struct pci_error_handlers *err_handler = 5080 dev->driver ? dev->driver->err_handler : NULL; 5081 5082 /* 5083 * dev->driver->err_handler->reset_prepare() is protected against 5084 * races with ->remove() by the device lock, which must be held by 5085 * the caller. 5086 */ 5087 if (err_handler && err_handler->reset_prepare) 5088 err_handler->reset_prepare(dev); 5089 5090 /* 5091 * Wake-up device prior to save. PM registers default to D0 after 5092 * reset and a simple register restore doesn't reliably return 5093 * to a non-D0 state anyway. 5094 */ 5095 pci_set_power_state(dev, PCI_D0); 5096 5097 pci_save_state(dev); 5098 /* 5099 * Disable the device by clearing the Command register, except for 5100 * INTx-disable which is set. This not only disables MMIO and I/O port 5101 * BARs, but also prevents the device from being Bus Master, preventing 5102 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5103 * compliant devices, INTx-disable prevents legacy interrupts. 5104 */ 5105 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5106 } 5107 5108 static void pci_dev_restore(struct pci_dev *dev) 5109 { 5110 const struct pci_error_handlers *err_handler = 5111 dev->driver ? dev->driver->err_handler : NULL; 5112 5113 pci_restore_state(dev); 5114 5115 /* 5116 * dev->driver->err_handler->reset_done() is protected against 5117 * races with ->remove() by the device lock, which must be held by 5118 * the caller. 5119 */ 5120 if (err_handler && err_handler->reset_done) 5121 err_handler->reset_done(dev); 5122 } 5123 5124 /** 5125 * __pci_reset_function_locked - reset a PCI device function while holding 5126 * the @dev mutex lock. 5127 * @dev: PCI device to reset 5128 * 5129 * Some devices allow an individual function to be reset without affecting 5130 * other functions in the same device. The PCI device must be responsive 5131 * to PCI config space in order to use this function. 5132 * 5133 * The device function is presumed to be unused and the caller is holding 5134 * the device mutex lock when this function is called. 5135 * 5136 * Resetting the device will make the contents of PCI configuration space 5137 * random, so any caller of this must be prepared to reinitialise the 5138 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5139 * etc. 5140 * 5141 * Returns 0 if the device function was successfully reset or negative if the 5142 * device doesn't support resetting a single function. 5143 */ 5144 int __pci_reset_function_locked(struct pci_dev *dev) 5145 { 5146 int rc; 5147 5148 might_sleep(); 5149 5150 /* 5151 * A reset method returns -ENOTTY if it doesn't support this device 5152 * and we should try the next method. 5153 * 5154 * If it returns 0 (success), we're finished. If it returns any 5155 * other error, we're also finished: this indicates that further 5156 * reset mechanisms might be broken on the device. 5157 */ 5158 rc = pci_dev_specific_reset(dev, 0); 5159 if (rc != -ENOTTY) 5160 return rc; 5161 if (pcie_has_flr(dev)) { 5162 rc = pcie_flr(dev); 5163 if (rc != -ENOTTY) 5164 return rc; 5165 } 5166 rc = pci_af_flr(dev, 0); 5167 if (rc != -ENOTTY) 5168 return rc; 5169 rc = pci_pm_reset(dev, 0); 5170 if (rc != -ENOTTY) 5171 return rc; 5172 return pci_reset_bus_function(dev, 0); 5173 } 5174 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5175 5176 /** 5177 * pci_probe_reset_function - check whether the device can be safely reset 5178 * @dev: PCI device to reset 5179 * 5180 * Some devices allow an individual function to be reset without affecting 5181 * other functions in the same device. The PCI device must be responsive 5182 * to PCI config space in order to use this function. 5183 * 5184 * Returns 0 if the device function can be reset or negative if the 5185 * device doesn't support resetting a single function. 5186 */ 5187 int pci_probe_reset_function(struct pci_dev *dev) 5188 { 5189 int rc; 5190 5191 might_sleep(); 5192 5193 rc = pci_dev_specific_reset(dev, 1); 5194 if (rc != -ENOTTY) 5195 return rc; 5196 if (pcie_has_flr(dev)) 5197 return 0; 5198 rc = pci_af_flr(dev, 1); 5199 if (rc != -ENOTTY) 5200 return rc; 5201 rc = pci_pm_reset(dev, 1); 5202 if (rc != -ENOTTY) 5203 return rc; 5204 5205 return pci_reset_bus_function(dev, 1); 5206 } 5207 5208 /** 5209 * pci_reset_function - quiesce and reset a PCI device function 5210 * @dev: PCI device to reset 5211 * 5212 * Some devices allow an individual function to be reset without affecting 5213 * other functions in the same device. The PCI device must be responsive 5214 * to PCI config space in order to use this function. 5215 * 5216 * This function does not just reset the PCI portion of a device, but 5217 * clears all the state associated with the device. This function differs 5218 * from __pci_reset_function_locked() in that it saves and restores device state 5219 * over the reset and takes the PCI device lock. 5220 * 5221 * Returns 0 if the device function was successfully reset or negative if the 5222 * device doesn't support resetting a single function. 5223 */ 5224 int pci_reset_function(struct pci_dev *dev) 5225 { 5226 int rc; 5227 5228 if (!dev->reset_fn) 5229 return -ENOTTY; 5230 5231 pci_dev_lock(dev); 5232 pci_dev_save_and_disable(dev); 5233 5234 rc = __pci_reset_function_locked(dev); 5235 5236 pci_dev_restore(dev); 5237 pci_dev_unlock(dev); 5238 5239 return rc; 5240 } 5241 EXPORT_SYMBOL_GPL(pci_reset_function); 5242 5243 /** 5244 * pci_reset_function_locked - quiesce and reset a PCI device function 5245 * @dev: PCI device to reset 5246 * 5247 * Some devices allow an individual function to be reset without affecting 5248 * other functions in the same device. The PCI device must be responsive 5249 * to PCI config space in order to use this function. 5250 * 5251 * This function does not just reset the PCI portion of a device, but 5252 * clears all the state associated with the device. This function differs 5253 * from __pci_reset_function_locked() in that it saves and restores device state 5254 * over the reset. It also differs from pci_reset_function() in that it 5255 * requires the PCI device lock to be held. 5256 * 5257 * Returns 0 if the device function was successfully reset or negative if the 5258 * device doesn't support resetting a single function. 5259 */ 5260 int pci_reset_function_locked(struct pci_dev *dev) 5261 { 5262 int rc; 5263 5264 if (!dev->reset_fn) 5265 return -ENOTTY; 5266 5267 pci_dev_save_and_disable(dev); 5268 5269 rc = __pci_reset_function_locked(dev); 5270 5271 pci_dev_restore(dev); 5272 5273 return rc; 5274 } 5275 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5276 5277 /** 5278 * pci_try_reset_function - quiesce and reset a PCI device function 5279 * @dev: PCI device to reset 5280 * 5281 * Same as above, except return -EAGAIN if unable to lock device. 5282 */ 5283 int pci_try_reset_function(struct pci_dev *dev) 5284 { 5285 int rc; 5286 5287 if (!dev->reset_fn) 5288 return -ENOTTY; 5289 5290 if (!pci_dev_trylock(dev)) 5291 return -EAGAIN; 5292 5293 pci_dev_save_and_disable(dev); 5294 rc = __pci_reset_function_locked(dev); 5295 pci_dev_restore(dev); 5296 pci_dev_unlock(dev); 5297 5298 return rc; 5299 } 5300 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5301 5302 /* Do any devices on or below this bus prevent a bus reset? */ 5303 static bool pci_bus_resetable(struct pci_bus *bus) 5304 { 5305 struct pci_dev *dev; 5306 5307 5308 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5309 return false; 5310 5311 list_for_each_entry(dev, &bus->devices, bus_list) { 5312 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5313 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5314 return false; 5315 } 5316 5317 return true; 5318 } 5319 5320 /* Lock devices from the top of the tree down */ 5321 static void pci_bus_lock(struct pci_bus *bus) 5322 { 5323 struct pci_dev *dev; 5324 5325 list_for_each_entry(dev, &bus->devices, bus_list) { 5326 pci_dev_lock(dev); 5327 if (dev->subordinate) 5328 pci_bus_lock(dev->subordinate); 5329 } 5330 } 5331 5332 /* Unlock devices from the bottom of the tree up */ 5333 static void pci_bus_unlock(struct pci_bus *bus) 5334 { 5335 struct pci_dev *dev; 5336 5337 list_for_each_entry(dev, &bus->devices, bus_list) { 5338 if (dev->subordinate) 5339 pci_bus_unlock(dev->subordinate); 5340 pci_dev_unlock(dev); 5341 } 5342 } 5343 5344 /* Return 1 on successful lock, 0 on contention */ 5345 static int pci_bus_trylock(struct pci_bus *bus) 5346 { 5347 struct pci_dev *dev; 5348 5349 list_for_each_entry(dev, &bus->devices, bus_list) { 5350 if (!pci_dev_trylock(dev)) 5351 goto unlock; 5352 if (dev->subordinate) { 5353 if (!pci_bus_trylock(dev->subordinate)) { 5354 pci_dev_unlock(dev); 5355 goto unlock; 5356 } 5357 } 5358 } 5359 return 1; 5360 5361 unlock: 5362 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5363 if (dev->subordinate) 5364 pci_bus_unlock(dev->subordinate); 5365 pci_dev_unlock(dev); 5366 } 5367 return 0; 5368 } 5369 5370 /* Do any devices on or below this slot prevent a bus reset? */ 5371 static bool pci_slot_resetable(struct pci_slot *slot) 5372 { 5373 struct pci_dev *dev; 5374 5375 if (slot->bus->self && 5376 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5377 return false; 5378 5379 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5380 if (!dev->slot || dev->slot != slot) 5381 continue; 5382 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5383 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5384 return false; 5385 } 5386 5387 return true; 5388 } 5389 5390 /* Lock devices from the top of the tree down */ 5391 static void pci_slot_lock(struct pci_slot *slot) 5392 { 5393 struct pci_dev *dev; 5394 5395 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5396 if (!dev->slot || dev->slot != slot) 5397 continue; 5398 pci_dev_lock(dev); 5399 if (dev->subordinate) 5400 pci_bus_lock(dev->subordinate); 5401 } 5402 } 5403 5404 /* Unlock devices from the bottom of the tree up */ 5405 static void pci_slot_unlock(struct pci_slot *slot) 5406 { 5407 struct pci_dev *dev; 5408 5409 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5410 if (!dev->slot || dev->slot != slot) 5411 continue; 5412 if (dev->subordinate) 5413 pci_bus_unlock(dev->subordinate); 5414 pci_dev_unlock(dev); 5415 } 5416 } 5417 5418 /* Return 1 on successful lock, 0 on contention */ 5419 static int pci_slot_trylock(struct pci_slot *slot) 5420 { 5421 struct pci_dev *dev; 5422 5423 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5424 if (!dev->slot || dev->slot != slot) 5425 continue; 5426 if (!pci_dev_trylock(dev)) 5427 goto unlock; 5428 if (dev->subordinate) { 5429 if (!pci_bus_trylock(dev->subordinate)) { 5430 pci_dev_unlock(dev); 5431 goto unlock; 5432 } 5433 } 5434 } 5435 return 1; 5436 5437 unlock: 5438 list_for_each_entry_continue_reverse(dev, 5439 &slot->bus->devices, bus_list) { 5440 if (!dev->slot || dev->slot != slot) 5441 continue; 5442 if (dev->subordinate) 5443 pci_bus_unlock(dev->subordinate); 5444 pci_dev_unlock(dev); 5445 } 5446 return 0; 5447 } 5448 5449 /* 5450 * Save and disable devices from the top of the tree down while holding 5451 * the @dev mutex lock for the entire tree. 5452 */ 5453 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5454 { 5455 struct pci_dev *dev; 5456 5457 list_for_each_entry(dev, &bus->devices, bus_list) { 5458 pci_dev_save_and_disable(dev); 5459 if (dev->subordinate) 5460 pci_bus_save_and_disable_locked(dev->subordinate); 5461 } 5462 } 5463 5464 /* 5465 * Restore devices from top of the tree down while holding @dev mutex lock 5466 * for the entire tree. Parent bridges need to be restored before we can 5467 * get to subordinate devices. 5468 */ 5469 static void pci_bus_restore_locked(struct pci_bus *bus) 5470 { 5471 struct pci_dev *dev; 5472 5473 list_for_each_entry(dev, &bus->devices, bus_list) { 5474 pci_dev_restore(dev); 5475 if (dev->subordinate) 5476 pci_bus_restore_locked(dev->subordinate); 5477 } 5478 } 5479 5480 /* 5481 * Save and disable devices from the top of the tree down while holding 5482 * the @dev mutex lock for the entire tree. 5483 */ 5484 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5485 { 5486 struct pci_dev *dev; 5487 5488 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5489 if (!dev->slot || dev->slot != slot) 5490 continue; 5491 pci_dev_save_and_disable(dev); 5492 if (dev->subordinate) 5493 pci_bus_save_and_disable_locked(dev->subordinate); 5494 } 5495 } 5496 5497 /* 5498 * Restore devices from top of the tree down while holding @dev mutex lock 5499 * for the entire tree. Parent bridges need to be restored before we can 5500 * get to subordinate devices. 5501 */ 5502 static void pci_slot_restore_locked(struct pci_slot *slot) 5503 { 5504 struct pci_dev *dev; 5505 5506 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5507 if (!dev->slot || dev->slot != slot) 5508 continue; 5509 pci_dev_restore(dev); 5510 if (dev->subordinate) 5511 pci_bus_restore_locked(dev->subordinate); 5512 } 5513 } 5514 5515 static int pci_slot_reset(struct pci_slot *slot, int probe) 5516 { 5517 int rc; 5518 5519 if (!slot || !pci_slot_resetable(slot)) 5520 return -ENOTTY; 5521 5522 if (!probe) 5523 pci_slot_lock(slot); 5524 5525 might_sleep(); 5526 5527 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5528 5529 if (!probe) 5530 pci_slot_unlock(slot); 5531 5532 return rc; 5533 } 5534 5535 /** 5536 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5537 * @slot: PCI slot to probe 5538 * 5539 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5540 */ 5541 int pci_probe_reset_slot(struct pci_slot *slot) 5542 { 5543 return pci_slot_reset(slot, 1); 5544 } 5545 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5546 5547 /** 5548 * __pci_reset_slot - Try to reset a PCI slot 5549 * @slot: PCI slot to reset 5550 * 5551 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5552 * independent of other slots. For instance, some slots may support slot power 5553 * control. In the case of a 1:1 bus to slot architecture, this function may 5554 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5555 * Generally a slot reset should be attempted before a bus reset. All of the 5556 * function of the slot and any subordinate buses behind the slot are reset 5557 * through this function. PCI config space of all devices in the slot and 5558 * behind the slot is saved before and restored after reset. 5559 * 5560 * Same as above except return -EAGAIN if the slot cannot be locked 5561 */ 5562 static int __pci_reset_slot(struct pci_slot *slot) 5563 { 5564 int rc; 5565 5566 rc = pci_slot_reset(slot, 1); 5567 if (rc) 5568 return rc; 5569 5570 if (pci_slot_trylock(slot)) { 5571 pci_slot_save_and_disable_locked(slot); 5572 might_sleep(); 5573 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5574 pci_slot_restore_locked(slot); 5575 pci_slot_unlock(slot); 5576 } else 5577 rc = -EAGAIN; 5578 5579 return rc; 5580 } 5581 5582 static int pci_bus_reset(struct pci_bus *bus, int probe) 5583 { 5584 int ret; 5585 5586 if (!bus->self || !pci_bus_resetable(bus)) 5587 return -ENOTTY; 5588 5589 if (probe) 5590 return 0; 5591 5592 pci_bus_lock(bus); 5593 5594 might_sleep(); 5595 5596 ret = pci_bridge_secondary_bus_reset(bus->self); 5597 5598 pci_bus_unlock(bus); 5599 5600 return ret; 5601 } 5602 5603 /** 5604 * pci_bus_error_reset - reset the bridge's subordinate bus 5605 * @bridge: The parent device that connects to the bus to reset 5606 * 5607 * This function will first try to reset the slots on this bus if the method is 5608 * available. If slot reset fails or is not available, this will fall back to a 5609 * secondary bus reset. 5610 */ 5611 int pci_bus_error_reset(struct pci_dev *bridge) 5612 { 5613 struct pci_bus *bus = bridge->subordinate; 5614 struct pci_slot *slot; 5615 5616 if (!bus) 5617 return -ENOTTY; 5618 5619 mutex_lock(&pci_slot_mutex); 5620 if (list_empty(&bus->slots)) 5621 goto bus_reset; 5622 5623 list_for_each_entry(slot, &bus->slots, list) 5624 if (pci_probe_reset_slot(slot)) 5625 goto bus_reset; 5626 5627 list_for_each_entry(slot, &bus->slots, list) 5628 if (pci_slot_reset(slot, 0)) 5629 goto bus_reset; 5630 5631 mutex_unlock(&pci_slot_mutex); 5632 return 0; 5633 bus_reset: 5634 mutex_unlock(&pci_slot_mutex); 5635 return pci_bus_reset(bridge->subordinate, 0); 5636 } 5637 5638 /** 5639 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5640 * @bus: PCI bus to probe 5641 * 5642 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5643 */ 5644 int pci_probe_reset_bus(struct pci_bus *bus) 5645 { 5646 return pci_bus_reset(bus, 1); 5647 } 5648 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5649 5650 /** 5651 * __pci_reset_bus - Try to reset a PCI bus 5652 * @bus: top level PCI bus to reset 5653 * 5654 * Same as above except return -EAGAIN if the bus cannot be locked 5655 */ 5656 static int __pci_reset_bus(struct pci_bus *bus) 5657 { 5658 int rc; 5659 5660 rc = pci_bus_reset(bus, 1); 5661 if (rc) 5662 return rc; 5663 5664 if (pci_bus_trylock(bus)) { 5665 pci_bus_save_and_disable_locked(bus); 5666 might_sleep(); 5667 rc = pci_bridge_secondary_bus_reset(bus->self); 5668 pci_bus_restore_locked(bus); 5669 pci_bus_unlock(bus); 5670 } else 5671 rc = -EAGAIN; 5672 5673 return rc; 5674 } 5675 5676 /** 5677 * pci_reset_bus - Try to reset a PCI bus 5678 * @pdev: top level PCI device to reset via slot/bus 5679 * 5680 * Same as above except return -EAGAIN if the bus cannot be locked 5681 */ 5682 int pci_reset_bus(struct pci_dev *pdev) 5683 { 5684 return (!pci_probe_reset_slot(pdev->slot)) ? 5685 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5686 } 5687 EXPORT_SYMBOL_GPL(pci_reset_bus); 5688 5689 /** 5690 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5691 * @dev: PCI device to query 5692 * 5693 * Returns mmrbc: maximum designed memory read count in bytes or 5694 * appropriate error value. 5695 */ 5696 int pcix_get_max_mmrbc(struct pci_dev *dev) 5697 { 5698 int cap; 5699 u32 stat; 5700 5701 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5702 if (!cap) 5703 return -EINVAL; 5704 5705 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5706 return -EINVAL; 5707 5708 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5709 } 5710 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5711 5712 /** 5713 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5714 * @dev: PCI device to query 5715 * 5716 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5717 * value. 5718 */ 5719 int pcix_get_mmrbc(struct pci_dev *dev) 5720 { 5721 int cap; 5722 u16 cmd; 5723 5724 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5725 if (!cap) 5726 return -EINVAL; 5727 5728 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5729 return -EINVAL; 5730 5731 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5732 } 5733 EXPORT_SYMBOL(pcix_get_mmrbc); 5734 5735 /** 5736 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5737 * @dev: PCI device to query 5738 * @mmrbc: maximum memory read count in bytes 5739 * valid values are 512, 1024, 2048, 4096 5740 * 5741 * If possible sets maximum memory read byte count, some bridges have errata 5742 * that prevent this. 5743 */ 5744 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5745 { 5746 int cap; 5747 u32 stat, v, o; 5748 u16 cmd; 5749 5750 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5751 return -EINVAL; 5752 5753 v = ffs(mmrbc) - 10; 5754 5755 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5756 if (!cap) 5757 return -EINVAL; 5758 5759 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5760 return -EINVAL; 5761 5762 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5763 return -E2BIG; 5764 5765 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5766 return -EINVAL; 5767 5768 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5769 if (o != v) { 5770 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5771 return -EIO; 5772 5773 cmd &= ~PCI_X_CMD_MAX_READ; 5774 cmd |= v << 2; 5775 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5776 return -EIO; 5777 } 5778 return 0; 5779 } 5780 EXPORT_SYMBOL(pcix_set_mmrbc); 5781 5782 /** 5783 * pcie_get_readrq - get PCI Express read request size 5784 * @dev: PCI device to query 5785 * 5786 * Returns maximum memory read request in bytes or appropriate error value. 5787 */ 5788 int pcie_get_readrq(struct pci_dev *dev) 5789 { 5790 u16 ctl; 5791 5792 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5793 5794 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5795 } 5796 EXPORT_SYMBOL(pcie_get_readrq); 5797 5798 /** 5799 * pcie_set_readrq - set PCI Express maximum memory read request 5800 * @dev: PCI device to query 5801 * @rq: maximum memory read count in bytes 5802 * valid values are 128, 256, 512, 1024, 2048, 4096 5803 * 5804 * If possible sets maximum memory read request in bytes 5805 */ 5806 int pcie_set_readrq(struct pci_dev *dev, int rq) 5807 { 5808 u16 v; 5809 int ret; 5810 5811 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5812 return -EINVAL; 5813 5814 /* 5815 * If using the "performance" PCIe config, we clamp the read rq 5816 * size to the max packet size to keep the host bridge from 5817 * generating requests larger than we can cope with. 5818 */ 5819 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5820 int mps = pcie_get_mps(dev); 5821 5822 if (mps < rq) 5823 rq = mps; 5824 } 5825 5826 v = (ffs(rq) - 8) << 12; 5827 5828 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5829 PCI_EXP_DEVCTL_READRQ, v); 5830 5831 return pcibios_err_to_errno(ret); 5832 } 5833 EXPORT_SYMBOL(pcie_set_readrq); 5834 5835 /** 5836 * pcie_get_mps - get PCI Express maximum payload size 5837 * @dev: PCI device to query 5838 * 5839 * Returns maximum payload size in bytes 5840 */ 5841 int pcie_get_mps(struct pci_dev *dev) 5842 { 5843 u16 ctl; 5844 5845 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5846 5847 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5848 } 5849 EXPORT_SYMBOL(pcie_get_mps); 5850 5851 /** 5852 * pcie_set_mps - set PCI Express maximum payload size 5853 * @dev: PCI device to query 5854 * @mps: maximum payload size in bytes 5855 * valid values are 128, 256, 512, 1024, 2048, 4096 5856 * 5857 * If possible sets maximum payload size 5858 */ 5859 int pcie_set_mps(struct pci_dev *dev, int mps) 5860 { 5861 u16 v; 5862 int ret; 5863 5864 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5865 return -EINVAL; 5866 5867 v = ffs(mps) - 8; 5868 if (v > dev->pcie_mpss) 5869 return -EINVAL; 5870 v <<= 5; 5871 5872 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5873 PCI_EXP_DEVCTL_PAYLOAD, v); 5874 5875 return pcibios_err_to_errno(ret); 5876 } 5877 EXPORT_SYMBOL(pcie_set_mps); 5878 5879 /** 5880 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5881 * device and its bandwidth limitation 5882 * @dev: PCI device to query 5883 * @limiting_dev: storage for device causing the bandwidth limitation 5884 * @speed: storage for speed of limiting device 5885 * @width: storage for width of limiting device 5886 * 5887 * Walk up the PCI device chain and find the point where the minimum 5888 * bandwidth is available. Return the bandwidth available there and (if 5889 * limiting_dev, speed, and width pointers are supplied) information about 5890 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5891 * raw bandwidth. 5892 */ 5893 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5894 enum pci_bus_speed *speed, 5895 enum pcie_link_width *width) 5896 { 5897 u16 lnksta; 5898 enum pci_bus_speed next_speed; 5899 enum pcie_link_width next_width; 5900 u32 bw, next_bw; 5901 5902 if (speed) 5903 *speed = PCI_SPEED_UNKNOWN; 5904 if (width) 5905 *width = PCIE_LNK_WIDTH_UNKNOWN; 5906 5907 bw = 0; 5908 5909 while (dev) { 5910 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5911 5912 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5913 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5914 PCI_EXP_LNKSTA_NLW_SHIFT; 5915 5916 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5917 5918 /* Check if current device limits the total bandwidth */ 5919 if (!bw || next_bw <= bw) { 5920 bw = next_bw; 5921 5922 if (limiting_dev) 5923 *limiting_dev = dev; 5924 if (speed) 5925 *speed = next_speed; 5926 if (width) 5927 *width = next_width; 5928 } 5929 5930 dev = pci_upstream_bridge(dev); 5931 } 5932 5933 return bw; 5934 } 5935 EXPORT_SYMBOL(pcie_bandwidth_available); 5936 5937 /** 5938 * pcie_get_speed_cap - query for the PCI device's link speed capability 5939 * @dev: PCI device to query 5940 * 5941 * Query the PCI device speed capability. Return the maximum link speed 5942 * supported by the device. 5943 */ 5944 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5945 { 5946 u32 lnkcap2, lnkcap; 5947 5948 /* 5949 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5950 * implementation note there recommends using the Supported Link 5951 * Speeds Vector in Link Capabilities 2 when supported. 5952 * 5953 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5954 * should use the Supported Link Speeds field in Link Capabilities, 5955 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5956 */ 5957 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5958 5959 /* PCIe r3.0-compliant */ 5960 if (lnkcap2) 5961 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 5962 5963 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5964 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5965 return PCIE_SPEED_5_0GT; 5966 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5967 return PCIE_SPEED_2_5GT; 5968 5969 return PCI_SPEED_UNKNOWN; 5970 } 5971 EXPORT_SYMBOL(pcie_get_speed_cap); 5972 5973 /** 5974 * pcie_get_width_cap - query for the PCI device's link width capability 5975 * @dev: PCI device to query 5976 * 5977 * Query the PCI device width capability. Return the maximum link width 5978 * supported by the device. 5979 */ 5980 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5981 { 5982 u32 lnkcap; 5983 5984 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5985 if (lnkcap) 5986 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5987 5988 return PCIE_LNK_WIDTH_UNKNOWN; 5989 } 5990 EXPORT_SYMBOL(pcie_get_width_cap); 5991 5992 /** 5993 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5994 * @dev: PCI device 5995 * @speed: storage for link speed 5996 * @width: storage for link width 5997 * 5998 * Calculate a PCI device's link bandwidth by querying for its link speed 5999 * and width, multiplying them, and applying encoding overhead. The result 6000 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6001 */ 6002 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6003 enum pcie_link_width *width) 6004 { 6005 *speed = pcie_get_speed_cap(dev); 6006 *width = pcie_get_width_cap(dev); 6007 6008 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6009 return 0; 6010 6011 return *width * PCIE_SPEED2MBS_ENC(*speed); 6012 } 6013 6014 /** 6015 * __pcie_print_link_status - Report the PCI device's link speed and width 6016 * @dev: PCI device to query 6017 * @verbose: Print info even when enough bandwidth is available 6018 * 6019 * If the available bandwidth at the device is less than the device is 6020 * capable of, report the device's maximum possible bandwidth and the 6021 * upstream link that limits its performance. If @verbose, always print 6022 * the available bandwidth, even if the device isn't constrained. 6023 */ 6024 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6025 { 6026 enum pcie_link_width width, width_cap; 6027 enum pci_bus_speed speed, speed_cap; 6028 struct pci_dev *limiting_dev = NULL; 6029 u32 bw_avail, bw_cap; 6030 6031 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6032 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6033 6034 if (bw_avail >= bw_cap && verbose) 6035 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6036 bw_cap / 1000, bw_cap % 1000, 6037 pci_speed_string(speed_cap), width_cap); 6038 else if (bw_avail < bw_cap) 6039 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6040 bw_avail / 1000, bw_avail % 1000, 6041 pci_speed_string(speed), width, 6042 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6043 bw_cap / 1000, bw_cap % 1000, 6044 pci_speed_string(speed_cap), width_cap); 6045 } 6046 6047 /** 6048 * pcie_print_link_status - Report the PCI device's link speed and width 6049 * @dev: PCI device to query 6050 * 6051 * Report the available bandwidth at the device. 6052 */ 6053 void pcie_print_link_status(struct pci_dev *dev) 6054 { 6055 __pcie_print_link_status(dev, true); 6056 } 6057 EXPORT_SYMBOL(pcie_print_link_status); 6058 6059 /** 6060 * pci_select_bars - Make BAR mask from the type of resource 6061 * @dev: the PCI device for which BAR mask is made 6062 * @flags: resource type mask to be selected 6063 * 6064 * This helper routine makes bar mask from the type of resource. 6065 */ 6066 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6067 { 6068 int i, bars = 0; 6069 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6070 if (pci_resource_flags(dev, i) & flags) 6071 bars |= (1 << i); 6072 return bars; 6073 } 6074 EXPORT_SYMBOL(pci_select_bars); 6075 6076 /* Some architectures require additional programming to enable VGA */ 6077 static arch_set_vga_state_t arch_set_vga_state; 6078 6079 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6080 { 6081 arch_set_vga_state = func; /* NULL disables */ 6082 } 6083 6084 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6085 unsigned int command_bits, u32 flags) 6086 { 6087 if (arch_set_vga_state) 6088 return arch_set_vga_state(dev, decode, command_bits, 6089 flags); 6090 return 0; 6091 } 6092 6093 /** 6094 * pci_set_vga_state - set VGA decode state on device and parents if requested 6095 * @dev: the PCI device 6096 * @decode: true = enable decoding, false = disable decoding 6097 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6098 * @flags: traverse ancestors and change bridges 6099 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6100 */ 6101 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6102 unsigned int command_bits, u32 flags) 6103 { 6104 struct pci_bus *bus; 6105 struct pci_dev *bridge; 6106 u16 cmd; 6107 int rc; 6108 6109 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6110 6111 /* ARCH specific VGA enables */ 6112 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6113 if (rc) 6114 return rc; 6115 6116 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6117 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6118 if (decode) 6119 cmd |= command_bits; 6120 else 6121 cmd &= ~command_bits; 6122 pci_write_config_word(dev, PCI_COMMAND, cmd); 6123 } 6124 6125 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6126 return 0; 6127 6128 bus = dev->bus; 6129 while (bus) { 6130 bridge = bus->self; 6131 if (bridge) { 6132 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6133 &cmd); 6134 if (decode) 6135 cmd |= PCI_BRIDGE_CTL_VGA; 6136 else 6137 cmd &= ~PCI_BRIDGE_CTL_VGA; 6138 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6139 cmd); 6140 } 6141 bus = bus->parent; 6142 } 6143 return 0; 6144 } 6145 6146 #ifdef CONFIG_ACPI 6147 bool pci_pr3_present(struct pci_dev *pdev) 6148 { 6149 struct acpi_device *adev; 6150 6151 if (acpi_disabled) 6152 return false; 6153 6154 adev = ACPI_COMPANION(&pdev->dev); 6155 if (!adev) 6156 return false; 6157 6158 return adev->power.flags.power_resources && 6159 acpi_has_method(adev->handle, "_PR3"); 6160 } 6161 EXPORT_SYMBOL_GPL(pci_pr3_present); 6162 #endif 6163 6164 /** 6165 * pci_add_dma_alias - Add a DMA devfn alias for a device 6166 * @dev: the PCI device for which alias is added 6167 * @devfn_from: alias slot and function 6168 * @nr_devfns: number of subsequent devfns to alias 6169 * 6170 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6171 * which is used to program permissible bus-devfn source addresses for DMA 6172 * requests in an IOMMU. These aliases factor into IOMMU group creation 6173 * and are useful for devices generating DMA requests beyond or different 6174 * from their logical bus-devfn. Examples include device quirks where the 6175 * device simply uses the wrong devfn, as well as non-transparent bridges 6176 * where the alias may be a proxy for devices in another domain. 6177 * 6178 * IOMMU group creation is performed during device discovery or addition, 6179 * prior to any potential DMA mapping and therefore prior to driver probing 6180 * (especially for userspace assigned devices where IOMMU group definition 6181 * cannot be left as a userspace activity). DMA aliases should therefore 6182 * be configured via quirks, such as the PCI fixup header quirk. 6183 */ 6184 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns) 6185 { 6186 int devfn_to; 6187 6188 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from); 6189 devfn_to = devfn_from + nr_devfns - 1; 6190 6191 if (!dev->dma_alias_mask) 6192 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6193 if (!dev->dma_alias_mask) { 6194 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6195 return; 6196 } 6197 6198 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6199 6200 if (nr_devfns == 1) 6201 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6202 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6203 else if (nr_devfns > 1) 6204 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6205 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6206 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6207 } 6208 6209 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6210 { 6211 return (dev1->dma_alias_mask && 6212 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6213 (dev2->dma_alias_mask && 6214 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6215 pci_real_dma_dev(dev1) == dev2 || 6216 pci_real_dma_dev(dev2) == dev1; 6217 } 6218 6219 bool pci_device_is_present(struct pci_dev *pdev) 6220 { 6221 u32 v; 6222 6223 if (pci_dev_is_disconnected(pdev)) 6224 return false; 6225 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6226 } 6227 EXPORT_SYMBOL_GPL(pci_device_is_present); 6228 6229 void pci_ignore_hotplug(struct pci_dev *dev) 6230 { 6231 struct pci_dev *bridge = dev->bus->self; 6232 6233 dev->ignore_hotplug = 1; 6234 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6235 if (bridge) 6236 bridge->ignore_hotplug = 1; 6237 } 6238 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6239 6240 /** 6241 * pci_real_dma_dev - Get PCI DMA device for PCI device 6242 * @dev: the PCI device that may have a PCI DMA alias 6243 * 6244 * Permits the platform to provide architecture-specific functionality to 6245 * devices needing to alias DMA to another PCI device on another PCI bus. If 6246 * the PCI device is on the same bus, it is recommended to use 6247 * pci_add_dma_alias(). This is the default implementation. Architecture 6248 * implementations can override this. 6249 */ 6250 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6251 { 6252 return dev; 6253 } 6254 6255 resource_size_t __weak pcibios_default_alignment(void) 6256 { 6257 return 0; 6258 } 6259 6260 /* 6261 * Arches that don't want to expose struct resource to userland as-is in 6262 * sysfs and /proc can implement their own pci_resource_to_user(). 6263 */ 6264 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6265 const struct resource *rsrc, 6266 resource_size_t *start, resource_size_t *end) 6267 { 6268 *start = rsrc->start; 6269 *end = rsrc->end; 6270 } 6271 6272 static char *resource_alignment_param; 6273 static DEFINE_SPINLOCK(resource_alignment_lock); 6274 6275 /** 6276 * pci_specified_resource_alignment - get resource alignment specified by user. 6277 * @dev: the PCI device to get 6278 * @resize: whether or not to change resources' size when reassigning alignment 6279 * 6280 * RETURNS: Resource alignment if it is specified. 6281 * Zero if it is not specified. 6282 */ 6283 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6284 bool *resize) 6285 { 6286 int align_order, count; 6287 resource_size_t align = pcibios_default_alignment(); 6288 const char *p; 6289 int ret; 6290 6291 spin_lock(&resource_alignment_lock); 6292 p = resource_alignment_param; 6293 if (!p || !*p) 6294 goto out; 6295 if (pci_has_flag(PCI_PROBE_ONLY)) { 6296 align = 0; 6297 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6298 goto out; 6299 } 6300 6301 while (*p) { 6302 count = 0; 6303 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6304 p[count] == '@') { 6305 p += count + 1; 6306 if (align_order > 63) { 6307 pr_err("PCI: Invalid requested alignment (order %d)\n", 6308 align_order); 6309 align_order = PAGE_SHIFT; 6310 } 6311 } else { 6312 align_order = PAGE_SHIFT; 6313 } 6314 6315 ret = pci_dev_str_match(dev, p, &p); 6316 if (ret == 1) { 6317 *resize = true; 6318 align = 1ULL << align_order; 6319 break; 6320 } else if (ret < 0) { 6321 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6322 p); 6323 break; 6324 } 6325 6326 if (*p != ';' && *p != ',') { 6327 /* End of param or invalid format */ 6328 break; 6329 } 6330 p++; 6331 } 6332 out: 6333 spin_unlock(&resource_alignment_lock); 6334 return align; 6335 } 6336 6337 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6338 resource_size_t align, bool resize) 6339 { 6340 struct resource *r = &dev->resource[bar]; 6341 resource_size_t size; 6342 6343 if (!(r->flags & IORESOURCE_MEM)) 6344 return; 6345 6346 if (r->flags & IORESOURCE_PCI_FIXED) { 6347 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6348 bar, r, (unsigned long long)align); 6349 return; 6350 } 6351 6352 size = resource_size(r); 6353 if (size >= align) 6354 return; 6355 6356 /* 6357 * Increase the alignment of the resource. There are two ways we 6358 * can do this: 6359 * 6360 * 1) Increase the size of the resource. BARs are aligned on their 6361 * size, so when we reallocate space for this resource, we'll 6362 * allocate it with the larger alignment. This also prevents 6363 * assignment of any other BARs inside the alignment region, so 6364 * if we're requesting page alignment, this means no other BARs 6365 * will share the page. 6366 * 6367 * The disadvantage is that this makes the resource larger than 6368 * the hardware BAR, which may break drivers that compute things 6369 * based on the resource size, e.g., to find registers at a 6370 * fixed offset before the end of the BAR. 6371 * 6372 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6373 * set r->start to the desired alignment. By itself this 6374 * doesn't prevent other BARs being put inside the alignment 6375 * region, but if we realign *every* resource of every device in 6376 * the system, none of them will share an alignment region. 6377 * 6378 * When the user has requested alignment for only some devices via 6379 * the "pci=resource_alignment" argument, "resize" is true and we 6380 * use the first method. Otherwise we assume we're aligning all 6381 * devices and we use the second. 6382 */ 6383 6384 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6385 bar, r, (unsigned long long)align); 6386 6387 if (resize) { 6388 r->start = 0; 6389 r->end = align - 1; 6390 } else { 6391 r->flags &= ~IORESOURCE_SIZEALIGN; 6392 r->flags |= IORESOURCE_STARTALIGN; 6393 r->start = align; 6394 r->end = r->start + size - 1; 6395 } 6396 r->flags |= IORESOURCE_UNSET; 6397 } 6398 6399 /* 6400 * This function disables memory decoding and releases memory resources 6401 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6402 * It also rounds up size to specified alignment. 6403 * Later on, the kernel will assign page-aligned memory resource back 6404 * to the device. 6405 */ 6406 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6407 { 6408 int i; 6409 struct resource *r; 6410 resource_size_t align; 6411 u16 command; 6412 bool resize = false; 6413 6414 /* 6415 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6416 * 3.4.1.11. Their resources are allocated from the space 6417 * described by the VF BARx register in the PF's SR-IOV capability. 6418 * We can't influence their alignment here. 6419 */ 6420 if (dev->is_virtfn) 6421 return; 6422 6423 /* check if specified PCI is target device to reassign */ 6424 align = pci_specified_resource_alignment(dev, &resize); 6425 if (!align) 6426 return; 6427 6428 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6429 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6430 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6431 return; 6432 } 6433 6434 pci_read_config_word(dev, PCI_COMMAND, &command); 6435 command &= ~PCI_COMMAND_MEMORY; 6436 pci_write_config_word(dev, PCI_COMMAND, command); 6437 6438 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6439 pci_request_resource_alignment(dev, i, align, resize); 6440 6441 /* 6442 * Need to disable bridge's resource window, 6443 * to enable the kernel to reassign new resource 6444 * window later on. 6445 */ 6446 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6447 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6448 r = &dev->resource[i]; 6449 if (!(r->flags & IORESOURCE_MEM)) 6450 continue; 6451 r->flags |= IORESOURCE_UNSET; 6452 r->end = resource_size(r) - 1; 6453 r->start = 0; 6454 } 6455 pci_disable_bridge_window(dev); 6456 } 6457 } 6458 6459 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6460 { 6461 size_t count = 0; 6462 6463 spin_lock(&resource_alignment_lock); 6464 if (resource_alignment_param) 6465 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6466 spin_unlock(&resource_alignment_lock); 6467 6468 return count; 6469 } 6470 6471 static ssize_t resource_alignment_store(struct bus_type *bus, 6472 const char *buf, size_t count) 6473 { 6474 char *param, *old, *end; 6475 6476 if (count >= (PAGE_SIZE - 1)) 6477 return -EINVAL; 6478 6479 param = kstrndup(buf, count, GFP_KERNEL); 6480 if (!param) 6481 return -ENOMEM; 6482 6483 end = strchr(param, '\n'); 6484 if (end) 6485 *end = '\0'; 6486 6487 spin_lock(&resource_alignment_lock); 6488 old = resource_alignment_param; 6489 if (strlen(param)) { 6490 resource_alignment_param = param; 6491 } else { 6492 kfree(param); 6493 resource_alignment_param = NULL; 6494 } 6495 spin_unlock(&resource_alignment_lock); 6496 6497 kfree(old); 6498 6499 return count; 6500 } 6501 6502 static BUS_ATTR_RW(resource_alignment); 6503 6504 static int __init pci_resource_alignment_sysfs_init(void) 6505 { 6506 return bus_create_file(&pci_bus_type, 6507 &bus_attr_resource_alignment); 6508 } 6509 late_initcall(pci_resource_alignment_sysfs_init); 6510 6511 static void pci_no_domains(void) 6512 { 6513 #ifdef CONFIG_PCI_DOMAINS 6514 pci_domains_supported = 0; 6515 #endif 6516 } 6517 6518 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6519 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6520 6521 static int pci_get_new_domain_nr(void) 6522 { 6523 return atomic_inc_return(&__domain_nr); 6524 } 6525 6526 static int of_pci_bus_find_domain_nr(struct device *parent) 6527 { 6528 static int use_dt_domains = -1; 6529 int domain = -1; 6530 6531 if (parent) 6532 domain = of_get_pci_domain_nr(parent->of_node); 6533 6534 /* 6535 * Check DT domain and use_dt_domains values. 6536 * 6537 * If DT domain property is valid (domain >= 0) and 6538 * use_dt_domains != 0, the DT assignment is valid since this means 6539 * we have not previously allocated a domain number by using 6540 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6541 * 1, to indicate that we have just assigned a domain number from 6542 * DT. 6543 * 6544 * If DT domain property value is not valid (ie domain < 0), and we 6545 * have not previously assigned a domain number from DT 6546 * (use_dt_domains != 1) we should assign a domain number by 6547 * using the: 6548 * 6549 * pci_get_new_domain_nr() 6550 * 6551 * API and update the use_dt_domains value to keep track of method we 6552 * are using to assign domain numbers (use_dt_domains = 0). 6553 * 6554 * All other combinations imply we have a platform that is trying 6555 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6556 * which is a recipe for domain mishandling and it is prevented by 6557 * invalidating the domain value (domain = -1) and printing a 6558 * corresponding error. 6559 */ 6560 if (domain >= 0 && use_dt_domains) { 6561 use_dt_domains = 1; 6562 } else if (domain < 0 && use_dt_domains != 1) { 6563 use_dt_domains = 0; 6564 domain = pci_get_new_domain_nr(); 6565 } else { 6566 if (parent) 6567 pr_err("Node %pOF has ", parent->of_node); 6568 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6569 domain = -1; 6570 } 6571 6572 return domain; 6573 } 6574 6575 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6576 { 6577 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6578 acpi_pci_bus_find_domain_nr(bus); 6579 } 6580 #endif 6581 6582 /** 6583 * pci_ext_cfg_avail - can we access extended PCI config space? 6584 * 6585 * Returns 1 if we can access PCI extended config space (offsets 6586 * greater than 0xff). This is the default implementation. Architecture 6587 * implementations can override this. 6588 */ 6589 int __weak pci_ext_cfg_avail(void) 6590 { 6591 return 1; 6592 } 6593 6594 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6595 { 6596 } 6597 EXPORT_SYMBOL(pci_fixup_cardbus); 6598 6599 static int __init pci_setup(char *str) 6600 { 6601 while (str) { 6602 char *k = strchr(str, ','); 6603 if (k) 6604 *k++ = 0; 6605 if (*str && (str = pcibios_setup(str)) && *str) { 6606 if (!strcmp(str, "nomsi")) { 6607 pci_no_msi(); 6608 } else if (!strncmp(str, "noats", 5)) { 6609 pr_info("PCIe: ATS is disabled\n"); 6610 pcie_ats_disabled = true; 6611 } else if (!strcmp(str, "noaer")) { 6612 pci_no_aer(); 6613 } else if (!strcmp(str, "earlydump")) { 6614 pci_early_dump = true; 6615 } else if (!strncmp(str, "realloc=", 8)) { 6616 pci_realloc_get_opt(str + 8); 6617 } else if (!strncmp(str, "realloc", 7)) { 6618 pci_realloc_get_opt("on"); 6619 } else if (!strcmp(str, "nodomains")) { 6620 pci_no_domains(); 6621 } else if (!strncmp(str, "noari", 5)) { 6622 pcie_ari_disabled = true; 6623 } else if (!strncmp(str, "cbiosize=", 9)) { 6624 pci_cardbus_io_size = memparse(str + 9, &str); 6625 } else if (!strncmp(str, "cbmemsize=", 10)) { 6626 pci_cardbus_mem_size = memparse(str + 10, &str); 6627 } else if (!strncmp(str, "resource_alignment=", 19)) { 6628 resource_alignment_param = str + 19; 6629 } else if (!strncmp(str, "ecrc=", 5)) { 6630 pcie_ecrc_get_policy(str + 5); 6631 } else if (!strncmp(str, "hpiosize=", 9)) { 6632 pci_hotplug_io_size = memparse(str + 9, &str); 6633 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6634 pci_hotplug_mmio_size = memparse(str + 11, &str); 6635 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6636 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6637 } else if (!strncmp(str, "hpmemsize=", 10)) { 6638 pci_hotplug_mmio_size = memparse(str + 10, &str); 6639 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6640 } else if (!strncmp(str, "hpbussize=", 10)) { 6641 pci_hotplug_bus_size = 6642 simple_strtoul(str + 10, &str, 0); 6643 if (pci_hotplug_bus_size > 0xff) 6644 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6645 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6646 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6647 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6648 pcie_bus_config = PCIE_BUS_SAFE; 6649 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6650 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6651 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6652 pcie_bus_config = PCIE_BUS_PEER2PEER; 6653 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6654 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6655 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6656 disable_acs_redir_param = str + 18; 6657 } else { 6658 pr_err("PCI: Unknown option `%s'\n", str); 6659 } 6660 } 6661 str = k; 6662 } 6663 return 0; 6664 } 6665 early_param("pci", pci_setup); 6666 6667 /* 6668 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6669 * in pci_setup(), above, to point to data in the __initdata section which 6670 * will be freed after the init sequence is complete. We can't allocate memory 6671 * in pci_setup() because some architectures do not have any memory allocation 6672 * service available during an early_param() call. So we allocate memory and 6673 * copy the variable here before the init section is freed. 6674 * 6675 */ 6676 static int __init pci_realloc_setup_params(void) 6677 { 6678 resource_alignment_param = kstrdup(resource_alignment_param, 6679 GFP_KERNEL); 6680 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6681 6682 return 0; 6683 } 6684 pure_initcall(pci_realloc_setup_params); 6685