1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/kernel.h> 12 #include <linux/delay.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/of.h> 16 #include <linux/of_pci.h> 17 #include <linux/pci.h> 18 #include <linux/pm.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/spinlock.h> 22 #include <linux/string.h> 23 #include <linux/log2.h> 24 #include <linux/pci-aspm.h> 25 #include <linux/pm_wakeup.h> 26 #include <linux/interrupt.h> 27 #include <linux/device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/pci_hotplug.h> 30 #include <linux/vmalloc.h> 31 #include <asm/setup.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include "pci.h" 35 36 const char *pci_power_names[] = { 37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 38 }; 39 EXPORT_SYMBOL_GPL(pci_power_names); 40 41 int isa_dma_bridge_buggy; 42 EXPORT_SYMBOL(isa_dma_bridge_buggy); 43 44 int pci_pci_problems; 45 EXPORT_SYMBOL(pci_pci_problems); 46 47 unsigned int pci_pm_d3_delay; 48 49 static void pci_pme_list_scan(struct work_struct *work); 50 51 static LIST_HEAD(pci_pme_list); 52 static DEFINE_MUTEX(pci_pme_list_mutex); 53 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 54 55 struct pci_pme_device { 56 struct list_head list; 57 struct pci_dev *dev; 58 }; 59 60 #define PME_TIMEOUT 1000 /* How long between PME checks */ 61 62 static void pci_dev_d3_sleep(struct pci_dev *dev) 63 { 64 unsigned int delay = dev->d3_delay; 65 66 if (delay < pci_pm_d3_delay) 67 delay = pci_pm_d3_delay; 68 69 msleep(delay); 70 } 71 72 #ifdef CONFIG_PCI_DOMAINS 73 int pci_domains_supported = 1; 74 #endif 75 76 #define DEFAULT_CARDBUS_IO_SIZE (256) 77 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 78 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 79 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 80 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 81 82 #define DEFAULT_HOTPLUG_IO_SIZE (256) 83 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 84 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 85 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 86 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 87 88 #define DEFAULT_HOTPLUG_BUS_SIZE 1 89 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 90 91 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 92 93 /* 94 * The default CLS is used if arch didn't set CLS explicitly and not 95 * all pci devices agree on the same value. Arch can override either 96 * the dfl or actual value as it sees fit. Don't forget this is 97 * measured in 32-bit words, not bytes. 98 */ 99 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 100 u8 pci_cache_line_size; 101 102 /* 103 * If we set up a device for bus mastering, we need to check the latency 104 * timer as certain BIOSes forget to set it properly. 105 */ 106 unsigned int pcibios_max_latency = 255; 107 108 /* If set, the PCIe ARI capability will not be used. */ 109 static bool pcie_ari_disabled; 110 111 /* Disable bridge_d3 for all PCIe ports */ 112 static bool pci_bridge_d3_disable; 113 /* Force bridge_d3 for all PCIe ports */ 114 static bool pci_bridge_d3_force; 115 116 static int __init pcie_port_pm_setup(char *str) 117 { 118 if (!strcmp(str, "off")) 119 pci_bridge_d3_disable = true; 120 else if (!strcmp(str, "force")) 121 pci_bridge_d3_force = true; 122 return 1; 123 } 124 __setup("pcie_port_pm=", pcie_port_pm_setup); 125 126 /** 127 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 128 * @bus: pointer to PCI bus structure to search 129 * 130 * Given a PCI bus, returns the highest PCI bus number present in the set 131 * including the given PCI bus and its list of child PCI buses. 132 */ 133 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 134 { 135 struct pci_bus *tmp; 136 unsigned char max, n; 137 138 max = bus->busn_res.end; 139 list_for_each_entry(tmp, &bus->children, node) { 140 n = pci_bus_max_busnr(tmp); 141 if (n > max) 142 max = n; 143 } 144 return max; 145 } 146 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 147 148 #ifdef CONFIG_HAS_IOMEM 149 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 150 { 151 struct resource *res = &pdev->resource[bar]; 152 153 /* 154 * Make sure the BAR is actually a memory resource, not an IO resource 155 */ 156 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 157 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res); 158 return NULL; 159 } 160 return ioremap_nocache(res->start, resource_size(res)); 161 } 162 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 163 164 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 165 { 166 /* 167 * Make sure the BAR is actually a memory resource, not an IO resource 168 */ 169 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 170 WARN_ON(1); 171 return NULL; 172 } 173 return ioremap_wc(pci_resource_start(pdev, bar), 174 pci_resource_len(pdev, bar)); 175 } 176 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 177 #endif 178 179 180 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 181 u8 pos, int cap, int *ttl) 182 { 183 u8 id; 184 u16 ent; 185 186 pci_bus_read_config_byte(bus, devfn, pos, &pos); 187 188 while ((*ttl)--) { 189 if (pos < 0x40) 190 break; 191 pos &= ~3; 192 pci_bus_read_config_word(bus, devfn, pos, &ent); 193 194 id = ent & 0xff; 195 if (id == 0xff) 196 break; 197 if (id == cap) 198 return pos; 199 pos = (ent >> 8); 200 } 201 return 0; 202 } 203 204 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 205 u8 pos, int cap) 206 { 207 int ttl = PCI_FIND_CAP_TTL; 208 209 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 210 } 211 212 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 213 { 214 return __pci_find_next_cap(dev->bus, dev->devfn, 215 pos + PCI_CAP_LIST_NEXT, cap); 216 } 217 EXPORT_SYMBOL_GPL(pci_find_next_capability); 218 219 static int __pci_bus_find_cap_start(struct pci_bus *bus, 220 unsigned int devfn, u8 hdr_type) 221 { 222 u16 status; 223 224 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 225 if (!(status & PCI_STATUS_CAP_LIST)) 226 return 0; 227 228 switch (hdr_type) { 229 case PCI_HEADER_TYPE_NORMAL: 230 case PCI_HEADER_TYPE_BRIDGE: 231 return PCI_CAPABILITY_LIST; 232 case PCI_HEADER_TYPE_CARDBUS: 233 return PCI_CB_CAPABILITY_LIST; 234 } 235 236 return 0; 237 } 238 239 /** 240 * pci_find_capability - query for devices' capabilities 241 * @dev: PCI device to query 242 * @cap: capability code 243 * 244 * Tell if a device supports a given PCI capability. 245 * Returns the address of the requested capability structure within the 246 * device's PCI configuration space or 0 in case the device does not 247 * support it. Possible values for @cap: 248 * 249 * %PCI_CAP_ID_PM Power Management 250 * %PCI_CAP_ID_AGP Accelerated Graphics Port 251 * %PCI_CAP_ID_VPD Vital Product Data 252 * %PCI_CAP_ID_SLOTID Slot Identification 253 * %PCI_CAP_ID_MSI Message Signalled Interrupts 254 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 255 * %PCI_CAP_ID_PCIX PCI-X 256 * %PCI_CAP_ID_EXP PCI Express 257 */ 258 int pci_find_capability(struct pci_dev *dev, int cap) 259 { 260 int pos; 261 262 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 263 if (pos) 264 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 265 266 return pos; 267 } 268 EXPORT_SYMBOL(pci_find_capability); 269 270 /** 271 * pci_bus_find_capability - query for devices' capabilities 272 * @bus: the PCI bus to query 273 * @devfn: PCI device to query 274 * @cap: capability code 275 * 276 * Like pci_find_capability() but works for pci devices that do not have a 277 * pci_dev structure set up yet. 278 * 279 * Returns the address of the requested capability structure within the 280 * device's PCI configuration space or 0 in case the device does not 281 * support it. 282 */ 283 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 284 { 285 int pos; 286 u8 hdr_type; 287 288 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 289 290 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 291 if (pos) 292 pos = __pci_find_next_cap(bus, devfn, pos, cap); 293 294 return pos; 295 } 296 EXPORT_SYMBOL(pci_bus_find_capability); 297 298 /** 299 * pci_find_next_ext_capability - Find an extended capability 300 * @dev: PCI device to query 301 * @start: address at which to start looking (0 to start at beginning of list) 302 * @cap: capability code 303 * 304 * Returns the address of the next matching extended capability structure 305 * within the device's PCI configuration space or 0 if the device does 306 * not support it. Some capabilities can occur several times, e.g., the 307 * vendor-specific capability, and this provides a way to find them all. 308 */ 309 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 310 { 311 u32 header; 312 int ttl; 313 int pos = PCI_CFG_SPACE_SIZE; 314 315 /* minimum 8 bytes per capability */ 316 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 317 318 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 319 return 0; 320 321 if (start) 322 pos = start; 323 324 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 325 return 0; 326 327 /* 328 * If we have no capabilities, this is indicated by cap ID, 329 * cap version and next pointer all being 0. 330 */ 331 if (header == 0) 332 return 0; 333 334 while (ttl-- > 0) { 335 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 336 return pos; 337 338 pos = PCI_EXT_CAP_NEXT(header); 339 if (pos < PCI_CFG_SPACE_SIZE) 340 break; 341 342 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 343 break; 344 } 345 346 return 0; 347 } 348 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 349 350 /** 351 * pci_find_ext_capability - Find an extended capability 352 * @dev: PCI device to query 353 * @cap: capability code 354 * 355 * Returns the address of the requested extended capability structure 356 * within the device's PCI configuration space or 0 if the device does 357 * not support it. Possible values for @cap: 358 * 359 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 360 * %PCI_EXT_CAP_ID_VC Virtual Channel 361 * %PCI_EXT_CAP_ID_DSN Device Serial Number 362 * %PCI_EXT_CAP_ID_PWR Power Budgeting 363 */ 364 int pci_find_ext_capability(struct pci_dev *dev, int cap) 365 { 366 return pci_find_next_ext_capability(dev, 0, cap); 367 } 368 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 369 370 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 371 { 372 int rc, ttl = PCI_FIND_CAP_TTL; 373 u8 cap, mask; 374 375 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 376 mask = HT_3BIT_CAP_MASK; 377 else 378 mask = HT_5BIT_CAP_MASK; 379 380 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 381 PCI_CAP_ID_HT, &ttl); 382 while (pos) { 383 rc = pci_read_config_byte(dev, pos + 3, &cap); 384 if (rc != PCIBIOS_SUCCESSFUL) 385 return 0; 386 387 if ((cap & mask) == ht_cap) 388 return pos; 389 390 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 391 pos + PCI_CAP_LIST_NEXT, 392 PCI_CAP_ID_HT, &ttl); 393 } 394 395 return 0; 396 } 397 /** 398 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 399 * @dev: PCI device to query 400 * @pos: Position from which to continue searching 401 * @ht_cap: Hypertransport capability code 402 * 403 * To be used in conjunction with pci_find_ht_capability() to search for 404 * all capabilities matching @ht_cap. @pos should always be a value returned 405 * from pci_find_ht_capability(). 406 * 407 * NB. To be 100% safe against broken PCI devices, the caller should take 408 * steps to avoid an infinite loop. 409 */ 410 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 411 { 412 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 413 } 414 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 415 416 /** 417 * pci_find_ht_capability - query a device's Hypertransport capabilities 418 * @dev: PCI device to query 419 * @ht_cap: Hypertransport capability code 420 * 421 * Tell if a device supports a given Hypertransport capability. 422 * Returns an address within the device's PCI configuration space 423 * or 0 in case the device does not support the request capability. 424 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 425 * which has a Hypertransport capability matching @ht_cap. 426 */ 427 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 428 { 429 int pos; 430 431 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 432 if (pos) 433 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 434 435 return pos; 436 } 437 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 438 439 /** 440 * pci_find_parent_resource - return resource region of parent bus of given region 441 * @dev: PCI device structure contains resources to be searched 442 * @res: child resource record for which parent is sought 443 * 444 * For given resource region of given device, return the resource 445 * region of parent bus the given region is contained in. 446 */ 447 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 448 struct resource *res) 449 { 450 const struct pci_bus *bus = dev->bus; 451 struct resource *r; 452 int i; 453 454 pci_bus_for_each_resource(bus, r, i) { 455 if (!r) 456 continue; 457 if (res->start && resource_contains(r, res)) { 458 459 /* 460 * If the window is prefetchable but the BAR is 461 * not, the allocator made a mistake. 462 */ 463 if (r->flags & IORESOURCE_PREFETCH && 464 !(res->flags & IORESOURCE_PREFETCH)) 465 return NULL; 466 467 /* 468 * If we're below a transparent bridge, there may 469 * be both a positively-decoded aperture and a 470 * subtractively-decoded region that contain the BAR. 471 * We want the positively-decoded one, so this depends 472 * on pci_bus_for_each_resource() giving us those 473 * first. 474 */ 475 return r; 476 } 477 } 478 return NULL; 479 } 480 EXPORT_SYMBOL(pci_find_parent_resource); 481 482 /** 483 * pci_find_pcie_root_port - return PCIe Root Port 484 * @dev: PCI device to query 485 * 486 * Traverse up the parent chain and return the PCIe Root Port PCI Device 487 * for a given PCI Device. 488 */ 489 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 490 { 491 struct pci_dev *bridge, *highest_pcie_bridge = NULL; 492 493 bridge = pci_upstream_bridge(dev); 494 while (bridge && pci_is_pcie(bridge)) { 495 highest_pcie_bridge = bridge; 496 bridge = pci_upstream_bridge(bridge); 497 } 498 499 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 500 return NULL; 501 502 return highest_pcie_bridge; 503 } 504 EXPORT_SYMBOL(pci_find_pcie_root_port); 505 506 /** 507 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 508 * @dev: the PCI device to operate on 509 * @pos: config space offset of status word 510 * @mask: mask of bit(s) to care about in status word 511 * 512 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 513 */ 514 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 515 { 516 int i; 517 518 /* Wait for Transaction Pending bit clean */ 519 for (i = 0; i < 4; i++) { 520 u16 status; 521 if (i) 522 msleep((1 << (i - 1)) * 100); 523 524 pci_read_config_word(dev, pos, &status); 525 if (!(status & mask)) 526 return 1; 527 } 528 529 return 0; 530 } 531 532 /** 533 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 534 * @dev: PCI device to have its BARs restored 535 * 536 * Restore the BAR values for a given device, so as to make it 537 * accessible by its driver. 538 */ 539 static void pci_restore_bars(struct pci_dev *dev) 540 { 541 int i; 542 543 /* Per SR-IOV spec 3.4.1.11, VF BARs are RO zero */ 544 if (dev->is_virtfn) 545 return; 546 547 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 548 pci_update_resource(dev, i); 549 } 550 551 static const struct pci_platform_pm_ops *pci_platform_pm; 552 553 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 554 { 555 if (!ops->is_manageable || !ops->set_state || !ops->choose_state || 556 !ops->sleep_wake || !ops->run_wake || !ops->need_resume) 557 return -EINVAL; 558 pci_platform_pm = ops; 559 return 0; 560 } 561 562 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 563 { 564 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 565 } 566 567 static inline int platform_pci_set_power_state(struct pci_dev *dev, 568 pci_power_t t) 569 { 570 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 571 } 572 573 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 574 { 575 return pci_platform_pm ? 576 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 577 } 578 579 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 580 { 581 return pci_platform_pm ? 582 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 583 } 584 585 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 586 { 587 return pci_platform_pm ? 588 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 589 } 590 591 static inline bool platform_pci_need_resume(struct pci_dev *dev) 592 { 593 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 594 } 595 596 /** 597 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 598 * given PCI device 599 * @dev: PCI device to handle. 600 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 601 * 602 * RETURN VALUE: 603 * -EINVAL if the requested state is invalid. 604 * -EIO if device does not support PCI PM or its PM capabilities register has a 605 * wrong version, or device doesn't support the requested state. 606 * 0 if device already is in the requested state. 607 * 0 if device's power state has been successfully changed. 608 */ 609 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 610 { 611 u16 pmcsr; 612 bool need_restore = false; 613 614 /* Check if we're already there */ 615 if (dev->current_state == state) 616 return 0; 617 618 if (!dev->pm_cap) 619 return -EIO; 620 621 if (state < PCI_D0 || state > PCI_D3hot) 622 return -EINVAL; 623 624 /* Validate current state: 625 * Can enter D0 from any state, but if we can only go deeper 626 * to sleep if we're already in a low power state 627 */ 628 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 629 && dev->current_state > state) { 630 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n", 631 dev->current_state, state); 632 return -EINVAL; 633 } 634 635 /* check if this device supports the desired state */ 636 if ((state == PCI_D1 && !dev->d1_support) 637 || (state == PCI_D2 && !dev->d2_support)) 638 return -EIO; 639 640 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 641 642 /* If we're (effectively) in D3, force entire word to 0. 643 * This doesn't affect PME_Status, disables PME_En, and 644 * sets PowerState to 0. 645 */ 646 switch (dev->current_state) { 647 case PCI_D0: 648 case PCI_D1: 649 case PCI_D2: 650 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 651 pmcsr |= state; 652 break; 653 case PCI_D3hot: 654 case PCI_D3cold: 655 case PCI_UNKNOWN: /* Boot-up */ 656 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 657 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 658 need_restore = true; 659 /* Fall-through: force to D0 */ 660 default: 661 pmcsr = 0; 662 break; 663 } 664 665 /* enter specified state */ 666 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 667 668 /* Mandatory power management transition delays */ 669 /* see PCI PM 1.1 5.6.1 table 18 */ 670 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 671 pci_dev_d3_sleep(dev); 672 else if (state == PCI_D2 || dev->current_state == PCI_D2) 673 udelay(PCI_PM_D2_DELAY); 674 675 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 676 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 677 if (dev->current_state != state && printk_ratelimit()) 678 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n", 679 dev->current_state); 680 681 /* 682 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 683 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 684 * from D3hot to D0 _may_ perform an internal reset, thereby 685 * going to "D0 Uninitialized" rather than "D0 Initialized". 686 * For example, at least some versions of the 3c905B and the 687 * 3c556B exhibit this behaviour. 688 * 689 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 690 * devices in a D3hot state at boot. Consequently, we need to 691 * restore at least the BARs so that the device will be 692 * accessible to its driver. 693 */ 694 if (need_restore) 695 pci_restore_bars(dev); 696 697 if (dev->bus->self) 698 pcie_aspm_pm_state_change(dev->bus->self); 699 700 return 0; 701 } 702 703 /** 704 * pci_update_current_state - Read PCI power state of given device from its 705 * PCI PM registers and cache it 706 * @dev: PCI device to handle. 707 * @state: State to cache in case the device doesn't have the PM capability 708 */ 709 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 710 { 711 if (dev->pm_cap) { 712 u16 pmcsr; 713 714 /* 715 * Configuration space is not accessible for device in 716 * D3cold, so just keep or set D3cold for safety 717 */ 718 if (dev->current_state == PCI_D3cold) 719 return; 720 if (state == PCI_D3cold) { 721 dev->current_state = PCI_D3cold; 722 return; 723 } 724 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 725 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 726 } else { 727 dev->current_state = state; 728 } 729 } 730 731 /** 732 * pci_power_up - Put the given device into D0 forcibly 733 * @dev: PCI device to power up 734 */ 735 void pci_power_up(struct pci_dev *dev) 736 { 737 if (platform_pci_power_manageable(dev)) 738 platform_pci_set_power_state(dev, PCI_D0); 739 740 pci_raw_set_power_state(dev, PCI_D0); 741 pci_update_current_state(dev, PCI_D0); 742 } 743 744 /** 745 * pci_platform_power_transition - Use platform to change device power state 746 * @dev: PCI device to handle. 747 * @state: State to put the device into. 748 */ 749 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 750 { 751 int error; 752 753 if (platform_pci_power_manageable(dev)) { 754 error = platform_pci_set_power_state(dev, state); 755 if (!error) 756 pci_update_current_state(dev, state); 757 } else 758 error = -ENODEV; 759 760 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 761 dev->current_state = PCI_D0; 762 763 return error; 764 } 765 766 /** 767 * pci_wakeup - Wake up a PCI device 768 * @pci_dev: Device to handle. 769 * @ign: ignored parameter 770 */ 771 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 772 { 773 pci_wakeup_event(pci_dev); 774 pm_request_resume(&pci_dev->dev); 775 return 0; 776 } 777 778 /** 779 * pci_wakeup_bus - Walk given bus and wake up devices on it 780 * @bus: Top bus of the subtree to walk. 781 */ 782 static void pci_wakeup_bus(struct pci_bus *bus) 783 { 784 if (bus) 785 pci_walk_bus(bus, pci_wakeup, NULL); 786 } 787 788 /** 789 * __pci_start_power_transition - Start power transition of a PCI device 790 * @dev: PCI device to handle. 791 * @state: State to put the device into. 792 */ 793 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 794 { 795 if (state == PCI_D0) { 796 pci_platform_power_transition(dev, PCI_D0); 797 /* 798 * Mandatory power management transition delays, see 799 * PCI Express Base Specification Revision 2.0 Section 800 * 6.6.1: Conventional Reset. Do not delay for 801 * devices powered on/off by corresponding bridge, 802 * because have already delayed for the bridge. 803 */ 804 if (dev->runtime_d3cold) { 805 msleep(dev->d3cold_delay); 806 /* 807 * When powering on a bridge from D3cold, the 808 * whole hierarchy may be powered on into 809 * D0uninitialized state, resume them to give 810 * them a chance to suspend again 811 */ 812 pci_wakeup_bus(dev->subordinate); 813 } 814 } 815 } 816 817 /** 818 * __pci_dev_set_current_state - Set current state of a PCI device 819 * @dev: Device to handle 820 * @data: pointer to state to be set 821 */ 822 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 823 { 824 pci_power_t state = *(pci_power_t *)data; 825 826 dev->current_state = state; 827 return 0; 828 } 829 830 /** 831 * __pci_bus_set_current_state - Walk given bus and set current state of devices 832 * @bus: Top bus of the subtree to walk. 833 * @state: state to be set 834 */ 835 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 836 { 837 if (bus) 838 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 839 } 840 841 /** 842 * __pci_complete_power_transition - Complete power transition of a PCI device 843 * @dev: PCI device to handle. 844 * @state: State to put the device into. 845 * 846 * This function should not be called directly by device drivers. 847 */ 848 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 849 { 850 int ret; 851 852 if (state <= PCI_D0) 853 return -EINVAL; 854 ret = pci_platform_power_transition(dev, state); 855 /* Power off the bridge may power off the whole hierarchy */ 856 if (!ret && state == PCI_D3cold) 857 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 858 return ret; 859 } 860 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 861 862 /** 863 * pci_set_power_state - Set the power state of a PCI device 864 * @dev: PCI device to handle. 865 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 866 * 867 * Transition a device to a new power state, using the platform firmware and/or 868 * the device's PCI PM registers. 869 * 870 * RETURN VALUE: 871 * -EINVAL if the requested state is invalid. 872 * -EIO if device does not support PCI PM or its PM capabilities register has a 873 * wrong version, or device doesn't support the requested state. 874 * 0 if device already is in the requested state. 875 * 0 if device's power state has been successfully changed. 876 */ 877 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 878 { 879 int error; 880 881 /* bound the state we're entering */ 882 if (state > PCI_D3cold) 883 state = PCI_D3cold; 884 else if (state < PCI_D0) 885 state = PCI_D0; 886 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 887 /* 888 * If the device or the parent bridge do not support PCI PM, 889 * ignore the request if we're doing anything other than putting 890 * it into D0 (which would only happen on boot). 891 */ 892 return 0; 893 894 /* Check if we're already there */ 895 if (dev->current_state == state) 896 return 0; 897 898 __pci_start_power_transition(dev, state); 899 900 /* This device is quirked not to be put into D3, so 901 don't put it in D3 */ 902 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 903 return 0; 904 905 /* 906 * To put device in D3cold, we put device into D3hot in native 907 * way, then put device into D3cold with platform ops 908 */ 909 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 910 PCI_D3hot : state); 911 912 if (!__pci_complete_power_transition(dev, state)) 913 error = 0; 914 915 return error; 916 } 917 EXPORT_SYMBOL(pci_set_power_state); 918 919 /** 920 * pci_choose_state - Choose the power state of a PCI device 921 * @dev: PCI device to be suspended 922 * @state: target sleep state for the whole system. This is the value 923 * that is passed to suspend() function. 924 * 925 * Returns PCI power state suitable for given device and given system 926 * message. 927 */ 928 929 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 930 { 931 pci_power_t ret; 932 933 if (!dev->pm_cap) 934 return PCI_D0; 935 936 ret = platform_pci_choose_state(dev); 937 if (ret != PCI_POWER_ERROR) 938 return ret; 939 940 switch (state.event) { 941 case PM_EVENT_ON: 942 return PCI_D0; 943 case PM_EVENT_FREEZE: 944 case PM_EVENT_PRETHAW: 945 /* REVISIT both freeze and pre-thaw "should" use D0 */ 946 case PM_EVENT_SUSPEND: 947 case PM_EVENT_HIBERNATE: 948 return PCI_D3hot; 949 default: 950 dev_info(&dev->dev, "unrecognized suspend event %d\n", 951 state.event); 952 BUG(); 953 } 954 return PCI_D0; 955 } 956 EXPORT_SYMBOL(pci_choose_state); 957 958 #define PCI_EXP_SAVE_REGS 7 959 960 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 961 u16 cap, bool extended) 962 { 963 struct pci_cap_saved_state *tmp; 964 965 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 966 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 967 return tmp; 968 } 969 return NULL; 970 } 971 972 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 973 { 974 return _pci_find_saved_cap(dev, cap, false); 975 } 976 977 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 978 { 979 return _pci_find_saved_cap(dev, cap, true); 980 } 981 982 static int pci_save_pcie_state(struct pci_dev *dev) 983 { 984 int i = 0; 985 struct pci_cap_saved_state *save_state; 986 u16 *cap; 987 988 if (!pci_is_pcie(dev)) 989 return 0; 990 991 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 992 if (!save_state) { 993 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 994 return -ENOMEM; 995 } 996 997 cap = (u16 *)&save_state->cap.data[0]; 998 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 999 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1000 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1001 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1002 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1003 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1004 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1005 1006 return 0; 1007 } 1008 1009 static void pci_restore_pcie_state(struct pci_dev *dev) 1010 { 1011 int i = 0; 1012 struct pci_cap_saved_state *save_state; 1013 u16 *cap; 1014 1015 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1016 if (!save_state) 1017 return; 1018 1019 cap = (u16 *)&save_state->cap.data[0]; 1020 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1021 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1022 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1023 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1024 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1025 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1026 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1027 } 1028 1029 1030 static int pci_save_pcix_state(struct pci_dev *dev) 1031 { 1032 int pos; 1033 struct pci_cap_saved_state *save_state; 1034 1035 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1036 if (!pos) 1037 return 0; 1038 1039 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1040 if (!save_state) { 1041 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 1042 return -ENOMEM; 1043 } 1044 1045 pci_read_config_word(dev, pos + PCI_X_CMD, 1046 (u16 *)save_state->cap.data); 1047 1048 return 0; 1049 } 1050 1051 static void pci_restore_pcix_state(struct pci_dev *dev) 1052 { 1053 int i = 0, pos; 1054 struct pci_cap_saved_state *save_state; 1055 u16 *cap; 1056 1057 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1058 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1059 if (!save_state || !pos) 1060 return; 1061 cap = (u16 *)&save_state->cap.data[0]; 1062 1063 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1064 } 1065 1066 1067 /** 1068 * pci_save_state - save the PCI configuration space of a device before suspending 1069 * @dev: - PCI device that we're dealing with 1070 */ 1071 int pci_save_state(struct pci_dev *dev) 1072 { 1073 int i; 1074 /* XXX: 100% dword access ok here? */ 1075 for (i = 0; i < 16; i++) 1076 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1077 dev->state_saved = true; 1078 1079 i = pci_save_pcie_state(dev); 1080 if (i != 0) 1081 return i; 1082 1083 i = pci_save_pcix_state(dev); 1084 if (i != 0) 1085 return i; 1086 1087 return pci_save_vc_state(dev); 1088 } 1089 EXPORT_SYMBOL(pci_save_state); 1090 1091 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1092 u32 saved_val, int retry) 1093 { 1094 u32 val; 1095 1096 pci_read_config_dword(pdev, offset, &val); 1097 if (val == saved_val) 1098 return; 1099 1100 for (;;) { 1101 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1102 offset, val, saved_val); 1103 pci_write_config_dword(pdev, offset, saved_val); 1104 if (retry-- <= 0) 1105 return; 1106 1107 pci_read_config_dword(pdev, offset, &val); 1108 if (val == saved_val) 1109 return; 1110 1111 mdelay(1); 1112 } 1113 } 1114 1115 static void pci_restore_config_space_range(struct pci_dev *pdev, 1116 int start, int end, int retry) 1117 { 1118 int index; 1119 1120 for (index = end; index >= start; index--) 1121 pci_restore_config_dword(pdev, 4 * index, 1122 pdev->saved_config_space[index], 1123 retry); 1124 } 1125 1126 static void pci_restore_config_space(struct pci_dev *pdev) 1127 { 1128 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1129 pci_restore_config_space_range(pdev, 10, 15, 0); 1130 /* Restore BARs before the command register. */ 1131 pci_restore_config_space_range(pdev, 4, 9, 10); 1132 pci_restore_config_space_range(pdev, 0, 3, 0); 1133 } else { 1134 pci_restore_config_space_range(pdev, 0, 15, 0); 1135 } 1136 } 1137 1138 /** 1139 * pci_restore_state - Restore the saved state of a PCI device 1140 * @dev: - PCI device that we're dealing with 1141 */ 1142 void pci_restore_state(struct pci_dev *dev) 1143 { 1144 if (!dev->state_saved) 1145 return; 1146 1147 /* PCI Express register must be restored first */ 1148 pci_restore_pcie_state(dev); 1149 pci_restore_ats_state(dev); 1150 pci_restore_vc_state(dev); 1151 1152 pci_cleanup_aer_error_status_regs(dev); 1153 1154 pci_restore_config_space(dev); 1155 1156 pci_restore_pcix_state(dev); 1157 pci_restore_msi_state(dev); 1158 1159 /* Restore ACS and IOV configuration state */ 1160 pci_enable_acs(dev); 1161 pci_restore_iov_state(dev); 1162 1163 dev->state_saved = false; 1164 } 1165 EXPORT_SYMBOL(pci_restore_state); 1166 1167 struct pci_saved_state { 1168 u32 config_space[16]; 1169 struct pci_cap_saved_data cap[0]; 1170 }; 1171 1172 /** 1173 * pci_store_saved_state - Allocate and return an opaque struct containing 1174 * the device saved state. 1175 * @dev: PCI device that we're dealing with 1176 * 1177 * Return NULL if no state or error. 1178 */ 1179 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1180 { 1181 struct pci_saved_state *state; 1182 struct pci_cap_saved_state *tmp; 1183 struct pci_cap_saved_data *cap; 1184 size_t size; 1185 1186 if (!dev->state_saved) 1187 return NULL; 1188 1189 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1190 1191 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1192 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1193 1194 state = kzalloc(size, GFP_KERNEL); 1195 if (!state) 1196 return NULL; 1197 1198 memcpy(state->config_space, dev->saved_config_space, 1199 sizeof(state->config_space)); 1200 1201 cap = state->cap; 1202 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1203 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1204 memcpy(cap, &tmp->cap, len); 1205 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1206 } 1207 /* Empty cap_save terminates list */ 1208 1209 return state; 1210 } 1211 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1212 1213 /** 1214 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1215 * @dev: PCI device that we're dealing with 1216 * @state: Saved state returned from pci_store_saved_state() 1217 */ 1218 int pci_load_saved_state(struct pci_dev *dev, 1219 struct pci_saved_state *state) 1220 { 1221 struct pci_cap_saved_data *cap; 1222 1223 dev->state_saved = false; 1224 1225 if (!state) 1226 return 0; 1227 1228 memcpy(dev->saved_config_space, state->config_space, 1229 sizeof(state->config_space)); 1230 1231 cap = state->cap; 1232 while (cap->size) { 1233 struct pci_cap_saved_state *tmp; 1234 1235 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1236 if (!tmp || tmp->cap.size != cap->size) 1237 return -EINVAL; 1238 1239 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1240 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1241 sizeof(struct pci_cap_saved_data) + cap->size); 1242 } 1243 1244 dev->state_saved = true; 1245 return 0; 1246 } 1247 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1248 1249 /** 1250 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1251 * and free the memory allocated for it. 1252 * @dev: PCI device that we're dealing with 1253 * @state: Pointer to saved state returned from pci_store_saved_state() 1254 */ 1255 int pci_load_and_free_saved_state(struct pci_dev *dev, 1256 struct pci_saved_state **state) 1257 { 1258 int ret = pci_load_saved_state(dev, *state); 1259 kfree(*state); 1260 *state = NULL; 1261 return ret; 1262 } 1263 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1264 1265 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1266 { 1267 return pci_enable_resources(dev, bars); 1268 } 1269 1270 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1271 { 1272 int err; 1273 struct pci_dev *bridge; 1274 u16 cmd; 1275 u8 pin; 1276 1277 err = pci_set_power_state(dev, PCI_D0); 1278 if (err < 0 && err != -EIO) 1279 return err; 1280 1281 bridge = pci_upstream_bridge(dev); 1282 if (bridge) 1283 pcie_aspm_powersave_config_link(bridge); 1284 1285 err = pcibios_enable_device(dev, bars); 1286 if (err < 0) 1287 return err; 1288 pci_fixup_device(pci_fixup_enable, dev); 1289 1290 if (dev->msi_enabled || dev->msix_enabled) 1291 return 0; 1292 1293 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1294 if (pin) { 1295 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1296 if (cmd & PCI_COMMAND_INTX_DISABLE) 1297 pci_write_config_word(dev, PCI_COMMAND, 1298 cmd & ~PCI_COMMAND_INTX_DISABLE); 1299 } 1300 1301 return 0; 1302 } 1303 1304 /** 1305 * pci_reenable_device - Resume abandoned device 1306 * @dev: PCI device to be resumed 1307 * 1308 * Note this function is a backend of pci_default_resume and is not supposed 1309 * to be called by normal code, write proper resume handler and use it instead. 1310 */ 1311 int pci_reenable_device(struct pci_dev *dev) 1312 { 1313 if (pci_is_enabled(dev)) 1314 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1315 return 0; 1316 } 1317 EXPORT_SYMBOL(pci_reenable_device); 1318 1319 static void pci_enable_bridge(struct pci_dev *dev) 1320 { 1321 struct pci_dev *bridge; 1322 int retval; 1323 1324 bridge = pci_upstream_bridge(dev); 1325 if (bridge) 1326 pci_enable_bridge(bridge); 1327 1328 if (pci_is_enabled(dev)) { 1329 if (!dev->is_busmaster) 1330 pci_set_master(dev); 1331 return; 1332 } 1333 1334 retval = pci_enable_device(dev); 1335 if (retval) 1336 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1337 retval); 1338 pci_set_master(dev); 1339 } 1340 1341 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1342 { 1343 struct pci_dev *bridge; 1344 int err; 1345 int i, bars = 0; 1346 1347 /* 1348 * Power state could be unknown at this point, either due to a fresh 1349 * boot or a device removal call. So get the current power state 1350 * so that things like MSI message writing will behave as expected 1351 * (e.g. if the device really is in D0 at enable time). 1352 */ 1353 if (dev->pm_cap) { 1354 u16 pmcsr; 1355 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1356 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1357 } 1358 1359 if (atomic_inc_return(&dev->enable_cnt) > 1) 1360 return 0; /* already enabled */ 1361 1362 bridge = pci_upstream_bridge(dev); 1363 if (bridge) 1364 pci_enable_bridge(bridge); 1365 1366 /* only skip sriov related */ 1367 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1368 if (dev->resource[i].flags & flags) 1369 bars |= (1 << i); 1370 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1371 if (dev->resource[i].flags & flags) 1372 bars |= (1 << i); 1373 1374 err = do_pci_enable_device(dev, bars); 1375 if (err < 0) 1376 atomic_dec(&dev->enable_cnt); 1377 return err; 1378 } 1379 1380 /** 1381 * pci_enable_device_io - Initialize a device for use with IO space 1382 * @dev: PCI device to be initialized 1383 * 1384 * Initialize device before it's used by a driver. Ask low-level code 1385 * to enable I/O resources. Wake up the device if it was suspended. 1386 * Beware, this function can fail. 1387 */ 1388 int pci_enable_device_io(struct pci_dev *dev) 1389 { 1390 return pci_enable_device_flags(dev, IORESOURCE_IO); 1391 } 1392 EXPORT_SYMBOL(pci_enable_device_io); 1393 1394 /** 1395 * pci_enable_device_mem - Initialize a device for use with Memory space 1396 * @dev: PCI device to be initialized 1397 * 1398 * Initialize device before it's used by a driver. Ask low-level code 1399 * to enable Memory resources. Wake up the device if it was suspended. 1400 * Beware, this function can fail. 1401 */ 1402 int pci_enable_device_mem(struct pci_dev *dev) 1403 { 1404 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1405 } 1406 EXPORT_SYMBOL(pci_enable_device_mem); 1407 1408 /** 1409 * pci_enable_device - Initialize device before it's used by a driver. 1410 * @dev: PCI device to be initialized 1411 * 1412 * Initialize device before it's used by a driver. Ask low-level code 1413 * to enable I/O and memory. Wake up the device if it was suspended. 1414 * Beware, this function can fail. 1415 * 1416 * Note we don't actually enable the device many times if we call 1417 * this function repeatedly (we just increment the count). 1418 */ 1419 int pci_enable_device(struct pci_dev *dev) 1420 { 1421 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1422 } 1423 EXPORT_SYMBOL(pci_enable_device); 1424 1425 /* 1426 * Managed PCI resources. This manages device on/off, intx/msi/msix 1427 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1428 * there's no need to track it separately. pci_devres is initialized 1429 * when a device is enabled using managed PCI device enable interface. 1430 */ 1431 struct pci_devres { 1432 unsigned int enabled:1; 1433 unsigned int pinned:1; 1434 unsigned int orig_intx:1; 1435 unsigned int restore_intx:1; 1436 u32 region_mask; 1437 }; 1438 1439 static void pcim_release(struct device *gendev, void *res) 1440 { 1441 struct pci_dev *dev = to_pci_dev(gendev); 1442 struct pci_devres *this = res; 1443 int i; 1444 1445 if (dev->msi_enabled) 1446 pci_disable_msi(dev); 1447 if (dev->msix_enabled) 1448 pci_disable_msix(dev); 1449 1450 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1451 if (this->region_mask & (1 << i)) 1452 pci_release_region(dev, i); 1453 1454 if (this->restore_intx) 1455 pci_intx(dev, this->orig_intx); 1456 1457 if (this->enabled && !this->pinned) 1458 pci_disable_device(dev); 1459 } 1460 1461 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1462 { 1463 struct pci_devres *dr, *new_dr; 1464 1465 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1466 if (dr) 1467 return dr; 1468 1469 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1470 if (!new_dr) 1471 return NULL; 1472 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1473 } 1474 1475 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1476 { 1477 if (pci_is_managed(pdev)) 1478 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1479 return NULL; 1480 } 1481 1482 /** 1483 * pcim_enable_device - Managed pci_enable_device() 1484 * @pdev: PCI device to be initialized 1485 * 1486 * Managed pci_enable_device(). 1487 */ 1488 int pcim_enable_device(struct pci_dev *pdev) 1489 { 1490 struct pci_devres *dr; 1491 int rc; 1492 1493 dr = get_pci_dr(pdev); 1494 if (unlikely(!dr)) 1495 return -ENOMEM; 1496 if (dr->enabled) 1497 return 0; 1498 1499 rc = pci_enable_device(pdev); 1500 if (!rc) { 1501 pdev->is_managed = 1; 1502 dr->enabled = 1; 1503 } 1504 return rc; 1505 } 1506 EXPORT_SYMBOL(pcim_enable_device); 1507 1508 /** 1509 * pcim_pin_device - Pin managed PCI device 1510 * @pdev: PCI device to pin 1511 * 1512 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1513 * driver detach. @pdev must have been enabled with 1514 * pcim_enable_device(). 1515 */ 1516 void pcim_pin_device(struct pci_dev *pdev) 1517 { 1518 struct pci_devres *dr; 1519 1520 dr = find_pci_dr(pdev); 1521 WARN_ON(!dr || !dr->enabled); 1522 if (dr) 1523 dr->pinned = 1; 1524 } 1525 EXPORT_SYMBOL(pcim_pin_device); 1526 1527 /* 1528 * pcibios_add_device - provide arch specific hooks when adding device dev 1529 * @dev: the PCI device being added 1530 * 1531 * Permits the platform to provide architecture specific functionality when 1532 * devices are added. This is the default implementation. Architecture 1533 * implementations can override this. 1534 */ 1535 int __weak pcibios_add_device(struct pci_dev *dev) 1536 { 1537 return 0; 1538 } 1539 1540 /** 1541 * pcibios_release_device - provide arch specific hooks when releasing device dev 1542 * @dev: the PCI device being released 1543 * 1544 * Permits the platform to provide architecture specific functionality when 1545 * devices are released. This is the default implementation. Architecture 1546 * implementations can override this. 1547 */ 1548 void __weak pcibios_release_device(struct pci_dev *dev) {} 1549 1550 /** 1551 * pcibios_disable_device - disable arch specific PCI resources for device dev 1552 * @dev: the PCI device to disable 1553 * 1554 * Disables architecture specific PCI resources for the device. This 1555 * is the default implementation. Architecture implementations can 1556 * override this. 1557 */ 1558 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1559 1560 /** 1561 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1562 * @irq: ISA IRQ to penalize 1563 * @active: IRQ active or not 1564 * 1565 * Permits the platform to provide architecture-specific functionality when 1566 * penalizing ISA IRQs. This is the default implementation. Architecture 1567 * implementations can override this. 1568 */ 1569 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1570 1571 static void do_pci_disable_device(struct pci_dev *dev) 1572 { 1573 u16 pci_command; 1574 1575 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1576 if (pci_command & PCI_COMMAND_MASTER) { 1577 pci_command &= ~PCI_COMMAND_MASTER; 1578 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1579 } 1580 1581 pcibios_disable_device(dev); 1582 } 1583 1584 /** 1585 * pci_disable_enabled_device - Disable device without updating enable_cnt 1586 * @dev: PCI device to disable 1587 * 1588 * NOTE: This function is a backend of PCI power management routines and is 1589 * not supposed to be called drivers. 1590 */ 1591 void pci_disable_enabled_device(struct pci_dev *dev) 1592 { 1593 if (pci_is_enabled(dev)) 1594 do_pci_disable_device(dev); 1595 } 1596 1597 /** 1598 * pci_disable_device - Disable PCI device after use 1599 * @dev: PCI device to be disabled 1600 * 1601 * Signal to the system that the PCI device is not in use by the system 1602 * anymore. This only involves disabling PCI bus-mastering, if active. 1603 * 1604 * Note we don't actually disable the device until all callers of 1605 * pci_enable_device() have called pci_disable_device(). 1606 */ 1607 void pci_disable_device(struct pci_dev *dev) 1608 { 1609 struct pci_devres *dr; 1610 1611 dr = find_pci_dr(dev); 1612 if (dr) 1613 dr->enabled = 0; 1614 1615 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1616 "disabling already-disabled device"); 1617 1618 if (atomic_dec_return(&dev->enable_cnt) != 0) 1619 return; 1620 1621 do_pci_disable_device(dev); 1622 1623 dev->is_busmaster = 0; 1624 } 1625 EXPORT_SYMBOL(pci_disable_device); 1626 1627 /** 1628 * pcibios_set_pcie_reset_state - set reset state for device dev 1629 * @dev: the PCIe device reset 1630 * @state: Reset state to enter into 1631 * 1632 * 1633 * Sets the PCIe reset state for the device. This is the default 1634 * implementation. Architecture implementations can override this. 1635 */ 1636 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1637 enum pcie_reset_state state) 1638 { 1639 return -EINVAL; 1640 } 1641 1642 /** 1643 * pci_set_pcie_reset_state - set reset state for device dev 1644 * @dev: the PCIe device reset 1645 * @state: Reset state to enter into 1646 * 1647 * 1648 * Sets the PCI reset state for the device. 1649 */ 1650 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1651 { 1652 return pcibios_set_pcie_reset_state(dev, state); 1653 } 1654 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1655 1656 /** 1657 * pci_check_pme_status - Check if given device has generated PME. 1658 * @dev: Device to check. 1659 * 1660 * Check the PME status of the device and if set, clear it and clear PME enable 1661 * (if set). Return 'true' if PME status and PME enable were both set or 1662 * 'false' otherwise. 1663 */ 1664 bool pci_check_pme_status(struct pci_dev *dev) 1665 { 1666 int pmcsr_pos; 1667 u16 pmcsr; 1668 bool ret = false; 1669 1670 if (!dev->pm_cap) 1671 return false; 1672 1673 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1674 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1675 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1676 return false; 1677 1678 /* Clear PME status. */ 1679 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1680 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1681 /* Disable PME to avoid interrupt flood. */ 1682 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1683 ret = true; 1684 } 1685 1686 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1687 1688 return ret; 1689 } 1690 1691 /** 1692 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1693 * @dev: Device to handle. 1694 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1695 * 1696 * Check if @dev has generated PME and queue a resume request for it in that 1697 * case. 1698 */ 1699 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1700 { 1701 if (pme_poll_reset && dev->pme_poll) 1702 dev->pme_poll = false; 1703 1704 if (pci_check_pme_status(dev)) { 1705 pci_wakeup_event(dev); 1706 pm_request_resume(&dev->dev); 1707 } 1708 return 0; 1709 } 1710 1711 /** 1712 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1713 * @bus: Top bus of the subtree to walk. 1714 */ 1715 void pci_pme_wakeup_bus(struct pci_bus *bus) 1716 { 1717 if (bus) 1718 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1719 } 1720 1721 1722 /** 1723 * pci_pme_capable - check the capability of PCI device to generate PME# 1724 * @dev: PCI device to handle. 1725 * @state: PCI state from which device will issue PME#. 1726 */ 1727 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1728 { 1729 if (!dev->pm_cap) 1730 return false; 1731 1732 return !!(dev->pme_support & (1 << state)); 1733 } 1734 EXPORT_SYMBOL(pci_pme_capable); 1735 1736 static void pci_pme_list_scan(struct work_struct *work) 1737 { 1738 struct pci_pme_device *pme_dev, *n; 1739 1740 mutex_lock(&pci_pme_list_mutex); 1741 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1742 if (pme_dev->dev->pme_poll) { 1743 struct pci_dev *bridge; 1744 1745 bridge = pme_dev->dev->bus->self; 1746 /* 1747 * If bridge is in low power state, the 1748 * configuration space of subordinate devices 1749 * may be not accessible 1750 */ 1751 if (bridge && bridge->current_state != PCI_D0) 1752 continue; 1753 pci_pme_wakeup(pme_dev->dev, NULL); 1754 } else { 1755 list_del(&pme_dev->list); 1756 kfree(pme_dev); 1757 } 1758 } 1759 if (!list_empty(&pci_pme_list)) 1760 schedule_delayed_work(&pci_pme_work, 1761 msecs_to_jiffies(PME_TIMEOUT)); 1762 mutex_unlock(&pci_pme_list_mutex); 1763 } 1764 1765 static void __pci_pme_active(struct pci_dev *dev, bool enable) 1766 { 1767 u16 pmcsr; 1768 1769 if (!dev->pme_support) 1770 return; 1771 1772 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1773 /* Clear PME_Status by writing 1 to it and enable PME# */ 1774 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1775 if (!enable) 1776 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1777 1778 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1779 } 1780 1781 /** 1782 * pci_pme_active - enable or disable PCI device's PME# function 1783 * @dev: PCI device to handle. 1784 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1785 * 1786 * The caller must verify that the device is capable of generating PME# before 1787 * calling this function with @enable equal to 'true'. 1788 */ 1789 void pci_pme_active(struct pci_dev *dev, bool enable) 1790 { 1791 __pci_pme_active(dev, enable); 1792 1793 /* 1794 * PCI (as opposed to PCIe) PME requires that the device have 1795 * its PME# line hooked up correctly. Not all hardware vendors 1796 * do this, so the PME never gets delivered and the device 1797 * remains asleep. The easiest way around this is to 1798 * periodically walk the list of suspended devices and check 1799 * whether any have their PME flag set. The assumption is that 1800 * we'll wake up often enough anyway that this won't be a huge 1801 * hit, and the power savings from the devices will still be a 1802 * win. 1803 * 1804 * Although PCIe uses in-band PME message instead of PME# line 1805 * to report PME, PME does not work for some PCIe devices in 1806 * reality. For example, there are devices that set their PME 1807 * status bits, but don't really bother to send a PME message; 1808 * there are PCI Express Root Ports that don't bother to 1809 * trigger interrupts when they receive PME messages from the 1810 * devices below. So PME poll is used for PCIe devices too. 1811 */ 1812 1813 if (dev->pme_poll) { 1814 struct pci_pme_device *pme_dev; 1815 if (enable) { 1816 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1817 GFP_KERNEL); 1818 if (!pme_dev) { 1819 dev_warn(&dev->dev, "can't enable PME#\n"); 1820 return; 1821 } 1822 pme_dev->dev = dev; 1823 mutex_lock(&pci_pme_list_mutex); 1824 list_add(&pme_dev->list, &pci_pme_list); 1825 if (list_is_singular(&pci_pme_list)) 1826 schedule_delayed_work(&pci_pme_work, 1827 msecs_to_jiffies(PME_TIMEOUT)); 1828 mutex_unlock(&pci_pme_list_mutex); 1829 } else { 1830 mutex_lock(&pci_pme_list_mutex); 1831 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1832 if (pme_dev->dev == dev) { 1833 list_del(&pme_dev->list); 1834 kfree(pme_dev); 1835 break; 1836 } 1837 } 1838 mutex_unlock(&pci_pme_list_mutex); 1839 } 1840 } 1841 1842 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1843 } 1844 EXPORT_SYMBOL(pci_pme_active); 1845 1846 /** 1847 * __pci_enable_wake - enable PCI device as wakeup event source 1848 * @dev: PCI device affected 1849 * @state: PCI state from which device will issue wakeup events 1850 * @runtime: True if the events are to be generated at run time 1851 * @enable: True to enable event generation; false to disable 1852 * 1853 * This enables the device as a wakeup event source, or disables it. 1854 * When such events involves platform-specific hooks, those hooks are 1855 * called automatically by this routine. 1856 * 1857 * Devices with legacy power management (no standard PCI PM capabilities) 1858 * always require such platform hooks. 1859 * 1860 * RETURN VALUE: 1861 * 0 is returned on success 1862 * -EINVAL is returned if device is not supposed to wake up the system 1863 * Error code depending on the platform is returned if both the platform and 1864 * the native mechanism fail to enable the generation of wake-up events 1865 */ 1866 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1867 bool runtime, bool enable) 1868 { 1869 int ret = 0; 1870 1871 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1872 return -EINVAL; 1873 1874 /* Don't do the same thing twice in a row for one device. */ 1875 if (!!enable == !!dev->wakeup_prepared) 1876 return 0; 1877 1878 /* 1879 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1880 * Anderson we should be doing PME# wake enable followed by ACPI wake 1881 * enable. To disable wake-up we call the platform first, for symmetry. 1882 */ 1883 1884 if (enable) { 1885 int error; 1886 1887 if (pci_pme_capable(dev, state)) 1888 pci_pme_active(dev, true); 1889 else 1890 ret = 1; 1891 error = runtime ? platform_pci_run_wake(dev, true) : 1892 platform_pci_sleep_wake(dev, true); 1893 if (ret) 1894 ret = error; 1895 if (!ret) 1896 dev->wakeup_prepared = true; 1897 } else { 1898 if (runtime) 1899 platform_pci_run_wake(dev, false); 1900 else 1901 platform_pci_sleep_wake(dev, false); 1902 pci_pme_active(dev, false); 1903 dev->wakeup_prepared = false; 1904 } 1905 1906 return ret; 1907 } 1908 EXPORT_SYMBOL(__pci_enable_wake); 1909 1910 /** 1911 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1912 * @dev: PCI device to prepare 1913 * @enable: True to enable wake-up event generation; false to disable 1914 * 1915 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1916 * and this function allows them to set that up cleanly - pci_enable_wake() 1917 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1918 * ordering constraints. 1919 * 1920 * This function only returns error code if the device is not capable of 1921 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1922 * enable wake-up power for it. 1923 */ 1924 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1925 { 1926 return pci_pme_capable(dev, PCI_D3cold) ? 1927 pci_enable_wake(dev, PCI_D3cold, enable) : 1928 pci_enable_wake(dev, PCI_D3hot, enable); 1929 } 1930 EXPORT_SYMBOL(pci_wake_from_d3); 1931 1932 /** 1933 * pci_target_state - find an appropriate low power state for a given PCI dev 1934 * @dev: PCI device 1935 * 1936 * Use underlying platform code to find a supported low power state for @dev. 1937 * If the platform can't manage @dev, return the deepest state from which it 1938 * can generate wake events, based on any available PME info. 1939 */ 1940 static pci_power_t pci_target_state(struct pci_dev *dev) 1941 { 1942 pci_power_t target_state = PCI_D3hot; 1943 1944 if (platform_pci_power_manageable(dev)) { 1945 /* 1946 * Call the platform to choose the target state of the device 1947 * and enable wake-up from this state if supported. 1948 */ 1949 pci_power_t state = platform_pci_choose_state(dev); 1950 1951 switch (state) { 1952 case PCI_POWER_ERROR: 1953 case PCI_UNKNOWN: 1954 break; 1955 case PCI_D1: 1956 case PCI_D2: 1957 if (pci_no_d1d2(dev)) 1958 break; 1959 default: 1960 target_state = state; 1961 } 1962 } else if (!dev->pm_cap) { 1963 target_state = PCI_D0; 1964 } else if (device_may_wakeup(&dev->dev)) { 1965 /* 1966 * Find the deepest state from which the device can generate 1967 * wake-up events, make it the target state and enable device 1968 * to generate PME#. 1969 */ 1970 if (dev->pme_support) { 1971 while (target_state 1972 && !(dev->pme_support & (1 << target_state))) 1973 target_state--; 1974 } 1975 } 1976 1977 return target_state; 1978 } 1979 1980 /** 1981 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 1982 * @dev: Device to handle. 1983 * 1984 * Choose the power state appropriate for the device depending on whether 1985 * it can wake up the system and/or is power manageable by the platform 1986 * (PCI_D3hot is the default) and put the device into that state. 1987 */ 1988 int pci_prepare_to_sleep(struct pci_dev *dev) 1989 { 1990 pci_power_t target_state = pci_target_state(dev); 1991 int error; 1992 1993 if (target_state == PCI_POWER_ERROR) 1994 return -EIO; 1995 1996 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 1997 1998 error = pci_set_power_state(dev, target_state); 1999 2000 if (error) 2001 pci_enable_wake(dev, target_state, false); 2002 2003 return error; 2004 } 2005 EXPORT_SYMBOL(pci_prepare_to_sleep); 2006 2007 /** 2008 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 2009 * @dev: Device to handle. 2010 * 2011 * Disable device's system wake-up capability and put it into D0. 2012 */ 2013 int pci_back_from_sleep(struct pci_dev *dev) 2014 { 2015 pci_enable_wake(dev, PCI_D0, false); 2016 return pci_set_power_state(dev, PCI_D0); 2017 } 2018 EXPORT_SYMBOL(pci_back_from_sleep); 2019 2020 /** 2021 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2022 * @dev: PCI device being suspended. 2023 * 2024 * Prepare @dev to generate wake-up events at run time and put it into a low 2025 * power state. 2026 */ 2027 int pci_finish_runtime_suspend(struct pci_dev *dev) 2028 { 2029 pci_power_t target_state = pci_target_state(dev); 2030 int error; 2031 2032 if (target_state == PCI_POWER_ERROR) 2033 return -EIO; 2034 2035 dev->runtime_d3cold = target_state == PCI_D3cold; 2036 2037 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 2038 2039 error = pci_set_power_state(dev, target_state); 2040 2041 if (error) { 2042 __pci_enable_wake(dev, target_state, true, false); 2043 dev->runtime_d3cold = false; 2044 } 2045 2046 return error; 2047 } 2048 2049 /** 2050 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2051 * @dev: Device to check. 2052 * 2053 * Return true if the device itself is capable of generating wake-up events 2054 * (through the platform or using the native PCIe PME) or if the device supports 2055 * PME and one of its upstream bridges can generate wake-up events. 2056 */ 2057 bool pci_dev_run_wake(struct pci_dev *dev) 2058 { 2059 struct pci_bus *bus = dev->bus; 2060 2061 if (device_run_wake(&dev->dev)) 2062 return true; 2063 2064 if (!dev->pme_support) 2065 return false; 2066 2067 while (bus->parent) { 2068 struct pci_dev *bridge = bus->self; 2069 2070 if (device_run_wake(&bridge->dev)) 2071 return true; 2072 2073 bus = bus->parent; 2074 } 2075 2076 /* We have reached the root bus. */ 2077 if (bus->bridge) 2078 return device_run_wake(bus->bridge); 2079 2080 return false; 2081 } 2082 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2083 2084 /** 2085 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2086 * @pci_dev: Device to check. 2087 * 2088 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2089 * reconfigured due to wakeup settings difference between system and runtime 2090 * suspend and the current power state of it is suitable for the upcoming 2091 * (system) transition. 2092 * 2093 * If the device is not configured for system wakeup, disable PME for it before 2094 * returning 'true' to prevent it from waking up the system unnecessarily. 2095 */ 2096 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2097 { 2098 struct device *dev = &pci_dev->dev; 2099 2100 if (!pm_runtime_suspended(dev) 2101 || pci_target_state(pci_dev) != pci_dev->current_state 2102 || platform_pci_need_resume(pci_dev)) 2103 return false; 2104 2105 /* 2106 * At this point the device is good to go unless it's been configured 2107 * to generate PME at the runtime suspend time, but it is not supposed 2108 * to wake up the system. In that case, simply disable PME for it 2109 * (it will have to be re-enabled on exit from system resume). 2110 * 2111 * If the device's power state is D3cold and the platform check above 2112 * hasn't triggered, the device's configuration is suitable and we don't 2113 * need to manipulate it at all. 2114 */ 2115 spin_lock_irq(&dev->power.lock); 2116 2117 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2118 !device_may_wakeup(dev)) 2119 __pci_pme_active(pci_dev, false); 2120 2121 spin_unlock_irq(&dev->power.lock); 2122 return true; 2123 } 2124 2125 /** 2126 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2127 * @pci_dev: Device to handle. 2128 * 2129 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2130 * it might have been disabled during the prepare phase of system suspend if 2131 * the device was not configured for system wakeup. 2132 */ 2133 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2134 { 2135 struct device *dev = &pci_dev->dev; 2136 2137 if (!pci_dev_run_wake(pci_dev)) 2138 return; 2139 2140 spin_lock_irq(&dev->power.lock); 2141 2142 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2143 __pci_pme_active(pci_dev, true); 2144 2145 spin_unlock_irq(&dev->power.lock); 2146 } 2147 2148 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2149 { 2150 struct device *dev = &pdev->dev; 2151 struct device *parent = dev->parent; 2152 2153 if (parent) 2154 pm_runtime_get_sync(parent); 2155 pm_runtime_get_noresume(dev); 2156 /* 2157 * pdev->current_state is set to PCI_D3cold during suspending, 2158 * so wait until suspending completes 2159 */ 2160 pm_runtime_barrier(dev); 2161 /* 2162 * Only need to resume devices in D3cold, because config 2163 * registers are still accessible for devices suspended but 2164 * not in D3cold. 2165 */ 2166 if (pdev->current_state == PCI_D3cold) 2167 pm_runtime_resume(dev); 2168 } 2169 2170 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2171 { 2172 struct device *dev = &pdev->dev; 2173 struct device *parent = dev->parent; 2174 2175 pm_runtime_put(dev); 2176 if (parent) 2177 pm_runtime_put_sync(parent); 2178 } 2179 2180 /** 2181 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2182 * @bridge: Bridge to check 2183 * 2184 * This function checks if it is possible to move the bridge to D3. 2185 * Currently we only allow D3 for recent enough PCIe ports. 2186 */ 2187 static bool pci_bridge_d3_possible(struct pci_dev *bridge) 2188 { 2189 unsigned int year; 2190 2191 if (!pci_is_pcie(bridge)) 2192 return false; 2193 2194 switch (pci_pcie_type(bridge)) { 2195 case PCI_EXP_TYPE_ROOT_PORT: 2196 case PCI_EXP_TYPE_UPSTREAM: 2197 case PCI_EXP_TYPE_DOWNSTREAM: 2198 if (pci_bridge_d3_disable) 2199 return false; 2200 if (pci_bridge_d3_force) 2201 return true; 2202 2203 /* 2204 * It should be safe to put PCIe ports from 2015 or newer 2205 * to D3. 2206 */ 2207 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && 2208 year >= 2015) { 2209 return true; 2210 } 2211 break; 2212 } 2213 2214 return false; 2215 } 2216 2217 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2218 { 2219 bool *d3cold_ok = data; 2220 bool no_d3cold; 2221 2222 /* 2223 * The device needs to be allowed to go D3cold and if it is wake 2224 * capable to do so from D3cold. 2225 */ 2226 no_d3cold = dev->no_d3cold || !dev->d3cold_allowed || 2227 (device_may_wakeup(&dev->dev) && !pci_pme_capable(dev, PCI_D3cold)) || 2228 !pci_power_manageable(dev); 2229 2230 *d3cold_ok = !no_d3cold; 2231 2232 return no_d3cold; 2233 } 2234 2235 /* 2236 * pci_bridge_d3_update - Update bridge D3 capabilities 2237 * @dev: PCI device which is changed 2238 * @remove: Is the device being removed 2239 * 2240 * Update upstream bridge PM capabilities accordingly depending on if the 2241 * device PM configuration was changed or the device is being removed. The 2242 * change is also propagated upstream. 2243 */ 2244 static void pci_bridge_d3_update(struct pci_dev *dev, bool remove) 2245 { 2246 struct pci_dev *bridge; 2247 bool d3cold_ok = true; 2248 2249 bridge = pci_upstream_bridge(dev); 2250 if (!bridge || !pci_bridge_d3_possible(bridge)) 2251 return; 2252 2253 pci_dev_get(bridge); 2254 /* 2255 * If the device is removed we do not care about its D3cold 2256 * capabilities. 2257 */ 2258 if (!remove) 2259 pci_dev_check_d3cold(dev, &d3cold_ok); 2260 2261 if (d3cold_ok) { 2262 /* 2263 * We need to go through all children to find out if all of 2264 * them can still go to D3cold. 2265 */ 2266 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2267 &d3cold_ok); 2268 } 2269 2270 if (bridge->bridge_d3 != d3cold_ok) { 2271 bridge->bridge_d3 = d3cold_ok; 2272 /* Propagate change to upstream bridges */ 2273 pci_bridge_d3_update(bridge, false); 2274 } 2275 2276 pci_dev_put(bridge); 2277 } 2278 2279 /** 2280 * pci_bridge_d3_device_changed - Update bridge D3 capabilities on change 2281 * @dev: PCI device that was changed 2282 * 2283 * If a device is added or its PM configuration, such as is it allowed to 2284 * enter D3cold, is changed this function updates upstream bridge PM 2285 * capabilities accordingly. 2286 */ 2287 void pci_bridge_d3_device_changed(struct pci_dev *dev) 2288 { 2289 pci_bridge_d3_update(dev, false); 2290 } 2291 2292 /** 2293 * pci_bridge_d3_device_removed - Update bridge D3 capabilities on remove 2294 * @dev: PCI device being removed 2295 * 2296 * Function updates upstream bridge PM capabilities based on other devices 2297 * still left on the bus. 2298 */ 2299 void pci_bridge_d3_device_removed(struct pci_dev *dev) 2300 { 2301 pci_bridge_d3_update(dev, true); 2302 } 2303 2304 /** 2305 * pci_d3cold_enable - Enable D3cold for device 2306 * @dev: PCI device to handle 2307 * 2308 * This function can be used in drivers to enable D3cold from the device 2309 * they handle. It also updates upstream PCI bridge PM capabilities 2310 * accordingly. 2311 */ 2312 void pci_d3cold_enable(struct pci_dev *dev) 2313 { 2314 if (dev->no_d3cold) { 2315 dev->no_d3cold = false; 2316 pci_bridge_d3_device_changed(dev); 2317 } 2318 } 2319 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2320 2321 /** 2322 * pci_d3cold_disable - Disable D3cold for device 2323 * @dev: PCI device to handle 2324 * 2325 * This function can be used in drivers to disable D3cold from the device 2326 * they handle. It also updates upstream PCI bridge PM capabilities 2327 * accordingly. 2328 */ 2329 void pci_d3cold_disable(struct pci_dev *dev) 2330 { 2331 if (!dev->no_d3cold) { 2332 dev->no_d3cold = true; 2333 pci_bridge_d3_device_changed(dev); 2334 } 2335 } 2336 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2337 2338 /** 2339 * pci_pm_init - Initialize PM functions of given PCI device 2340 * @dev: PCI device to handle. 2341 */ 2342 void pci_pm_init(struct pci_dev *dev) 2343 { 2344 int pm; 2345 u16 pmc; 2346 2347 pm_runtime_forbid(&dev->dev); 2348 pm_runtime_set_active(&dev->dev); 2349 pm_runtime_enable(&dev->dev); 2350 device_enable_async_suspend(&dev->dev); 2351 dev->wakeup_prepared = false; 2352 2353 dev->pm_cap = 0; 2354 dev->pme_support = 0; 2355 2356 /* find PCI PM capability in list */ 2357 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2358 if (!pm) 2359 return; 2360 /* Check device's ability to generate PME# */ 2361 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2362 2363 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2364 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 2365 pmc & PCI_PM_CAP_VER_MASK); 2366 return; 2367 } 2368 2369 dev->pm_cap = pm; 2370 dev->d3_delay = PCI_PM_D3_WAIT; 2371 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2372 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2373 dev->d3cold_allowed = true; 2374 2375 dev->d1_support = false; 2376 dev->d2_support = false; 2377 if (!pci_no_d1d2(dev)) { 2378 if (pmc & PCI_PM_CAP_D1) 2379 dev->d1_support = true; 2380 if (pmc & PCI_PM_CAP_D2) 2381 dev->d2_support = true; 2382 2383 if (dev->d1_support || dev->d2_support) 2384 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 2385 dev->d1_support ? " D1" : "", 2386 dev->d2_support ? " D2" : ""); 2387 } 2388 2389 pmc &= PCI_PM_CAP_PME_MASK; 2390 if (pmc) { 2391 dev_printk(KERN_DEBUG, &dev->dev, 2392 "PME# supported from%s%s%s%s%s\n", 2393 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2394 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2395 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2396 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2397 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2398 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2399 dev->pme_poll = true; 2400 /* 2401 * Make device's PM flags reflect the wake-up capability, but 2402 * let the user space enable it to wake up the system as needed. 2403 */ 2404 device_set_wakeup_capable(&dev->dev, true); 2405 /* Disable the PME# generation functionality */ 2406 pci_pme_active(dev, false); 2407 } 2408 } 2409 2410 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2411 { 2412 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2413 2414 switch (prop) { 2415 case PCI_EA_P_MEM: 2416 case PCI_EA_P_VF_MEM: 2417 flags |= IORESOURCE_MEM; 2418 break; 2419 case PCI_EA_P_MEM_PREFETCH: 2420 case PCI_EA_P_VF_MEM_PREFETCH: 2421 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2422 break; 2423 case PCI_EA_P_IO: 2424 flags |= IORESOURCE_IO; 2425 break; 2426 default: 2427 return 0; 2428 } 2429 2430 return flags; 2431 } 2432 2433 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2434 u8 prop) 2435 { 2436 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2437 return &dev->resource[bei]; 2438 #ifdef CONFIG_PCI_IOV 2439 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2440 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2441 return &dev->resource[PCI_IOV_RESOURCES + 2442 bei - PCI_EA_BEI_VF_BAR0]; 2443 #endif 2444 else if (bei == PCI_EA_BEI_ROM) 2445 return &dev->resource[PCI_ROM_RESOURCE]; 2446 else 2447 return NULL; 2448 } 2449 2450 /* Read an Enhanced Allocation (EA) entry */ 2451 static int pci_ea_read(struct pci_dev *dev, int offset) 2452 { 2453 struct resource *res; 2454 int ent_size, ent_offset = offset; 2455 resource_size_t start, end; 2456 unsigned long flags; 2457 u32 dw0, bei, base, max_offset; 2458 u8 prop; 2459 bool support_64 = (sizeof(resource_size_t) >= 8); 2460 2461 pci_read_config_dword(dev, ent_offset, &dw0); 2462 ent_offset += 4; 2463 2464 /* Entry size field indicates DWORDs after 1st */ 2465 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2466 2467 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2468 goto out; 2469 2470 bei = (dw0 & PCI_EA_BEI) >> 4; 2471 prop = (dw0 & PCI_EA_PP) >> 8; 2472 2473 /* 2474 * If the Property is in the reserved range, try the Secondary 2475 * Property instead. 2476 */ 2477 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2478 prop = (dw0 & PCI_EA_SP) >> 16; 2479 if (prop > PCI_EA_P_BRIDGE_IO) 2480 goto out; 2481 2482 res = pci_ea_get_resource(dev, bei, prop); 2483 if (!res) { 2484 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei); 2485 goto out; 2486 } 2487 2488 flags = pci_ea_flags(dev, prop); 2489 if (!flags) { 2490 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop); 2491 goto out; 2492 } 2493 2494 /* Read Base */ 2495 pci_read_config_dword(dev, ent_offset, &base); 2496 start = (base & PCI_EA_FIELD_MASK); 2497 ent_offset += 4; 2498 2499 /* Read MaxOffset */ 2500 pci_read_config_dword(dev, ent_offset, &max_offset); 2501 ent_offset += 4; 2502 2503 /* Read Base MSBs (if 64-bit entry) */ 2504 if (base & PCI_EA_IS_64) { 2505 u32 base_upper; 2506 2507 pci_read_config_dword(dev, ent_offset, &base_upper); 2508 ent_offset += 4; 2509 2510 flags |= IORESOURCE_MEM_64; 2511 2512 /* entry starts above 32-bit boundary, can't use */ 2513 if (!support_64 && base_upper) 2514 goto out; 2515 2516 if (support_64) 2517 start |= ((u64)base_upper << 32); 2518 } 2519 2520 end = start + (max_offset | 0x03); 2521 2522 /* Read MaxOffset MSBs (if 64-bit entry) */ 2523 if (max_offset & PCI_EA_IS_64) { 2524 u32 max_offset_upper; 2525 2526 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2527 ent_offset += 4; 2528 2529 flags |= IORESOURCE_MEM_64; 2530 2531 /* entry too big, can't use */ 2532 if (!support_64 && max_offset_upper) 2533 goto out; 2534 2535 if (support_64) 2536 end += ((u64)max_offset_upper << 32); 2537 } 2538 2539 if (end < start) { 2540 dev_err(&dev->dev, "EA Entry crosses address boundary\n"); 2541 goto out; 2542 } 2543 2544 if (ent_size != ent_offset - offset) { 2545 dev_err(&dev->dev, 2546 "EA Entry Size (%d) does not match length read (%d)\n", 2547 ent_size, ent_offset - offset); 2548 goto out; 2549 } 2550 2551 res->name = pci_name(dev); 2552 res->start = start; 2553 res->end = end; 2554 res->flags = flags; 2555 2556 if (bei <= PCI_EA_BEI_BAR5) 2557 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2558 bei, res, prop); 2559 else if (bei == PCI_EA_BEI_ROM) 2560 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2561 res, prop); 2562 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2563 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2564 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2565 else 2566 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2567 bei, res, prop); 2568 2569 out: 2570 return offset + ent_size; 2571 } 2572 2573 /* Enhanced Allocation Initialization */ 2574 void pci_ea_init(struct pci_dev *dev) 2575 { 2576 int ea; 2577 u8 num_ent; 2578 int offset; 2579 int i; 2580 2581 /* find PCI EA capability in list */ 2582 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2583 if (!ea) 2584 return; 2585 2586 /* determine the number of entries */ 2587 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2588 &num_ent); 2589 num_ent &= PCI_EA_NUM_ENT_MASK; 2590 2591 offset = ea + PCI_EA_FIRST_ENT; 2592 2593 /* Skip DWORD 2 for type 1 functions */ 2594 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2595 offset += 4; 2596 2597 /* parse each EA entry */ 2598 for (i = 0; i < num_ent; ++i) 2599 offset = pci_ea_read(dev, offset); 2600 } 2601 2602 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2603 struct pci_cap_saved_state *new_cap) 2604 { 2605 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2606 } 2607 2608 /** 2609 * _pci_add_cap_save_buffer - allocate buffer for saving given 2610 * capability registers 2611 * @dev: the PCI device 2612 * @cap: the capability to allocate the buffer for 2613 * @extended: Standard or Extended capability ID 2614 * @size: requested size of the buffer 2615 */ 2616 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2617 bool extended, unsigned int size) 2618 { 2619 int pos; 2620 struct pci_cap_saved_state *save_state; 2621 2622 if (extended) 2623 pos = pci_find_ext_capability(dev, cap); 2624 else 2625 pos = pci_find_capability(dev, cap); 2626 2627 if (!pos) 2628 return 0; 2629 2630 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2631 if (!save_state) 2632 return -ENOMEM; 2633 2634 save_state->cap.cap_nr = cap; 2635 save_state->cap.cap_extended = extended; 2636 save_state->cap.size = size; 2637 pci_add_saved_cap(dev, save_state); 2638 2639 return 0; 2640 } 2641 2642 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2643 { 2644 return _pci_add_cap_save_buffer(dev, cap, false, size); 2645 } 2646 2647 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2648 { 2649 return _pci_add_cap_save_buffer(dev, cap, true, size); 2650 } 2651 2652 /** 2653 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2654 * @dev: the PCI device 2655 */ 2656 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2657 { 2658 int error; 2659 2660 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2661 PCI_EXP_SAVE_REGS * sizeof(u16)); 2662 if (error) 2663 dev_err(&dev->dev, 2664 "unable to preallocate PCI Express save buffer\n"); 2665 2666 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2667 if (error) 2668 dev_err(&dev->dev, 2669 "unable to preallocate PCI-X save buffer\n"); 2670 2671 pci_allocate_vc_save_buffers(dev); 2672 } 2673 2674 void pci_free_cap_save_buffers(struct pci_dev *dev) 2675 { 2676 struct pci_cap_saved_state *tmp; 2677 struct hlist_node *n; 2678 2679 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2680 kfree(tmp); 2681 } 2682 2683 /** 2684 * pci_configure_ari - enable or disable ARI forwarding 2685 * @dev: the PCI device 2686 * 2687 * If @dev and its upstream bridge both support ARI, enable ARI in the 2688 * bridge. Otherwise, disable ARI in the bridge. 2689 */ 2690 void pci_configure_ari(struct pci_dev *dev) 2691 { 2692 u32 cap; 2693 struct pci_dev *bridge; 2694 2695 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2696 return; 2697 2698 bridge = dev->bus->self; 2699 if (!bridge) 2700 return; 2701 2702 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2703 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2704 return; 2705 2706 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2707 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2708 PCI_EXP_DEVCTL2_ARI); 2709 bridge->ari_enabled = 1; 2710 } else { 2711 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2712 PCI_EXP_DEVCTL2_ARI); 2713 bridge->ari_enabled = 0; 2714 } 2715 } 2716 2717 static int pci_acs_enable; 2718 2719 /** 2720 * pci_request_acs - ask for ACS to be enabled if supported 2721 */ 2722 void pci_request_acs(void) 2723 { 2724 pci_acs_enable = 1; 2725 } 2726 2727 /** 2728 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2729 * @dev: the PCI device 2730 */ 2731 static void pci_std_enable_acs(struct pci_dev *dev) 2732 { 2733 int pos; 2734 u16 cap; 2735 u16 ctrl; 2736 2737 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2738 if (!pos) 2739 return; 2740 2741 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2742 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2743 2744 /* Source Validation */ 2745 ctrl |= (cap & PCI_ACS_SV); 2746 2747 /* P2P Request Redirect */ 2748 ctrl |= (cap & PCI_ACS_RR); 2749 2750 /* P2P Completion Redirect */ 2751 ctrl |= (cap & PCI_ACS_CR); 2752 2753 /* Upstream Forwarding */ 2754 ctrl |= (cap & PCI_ACS_UF); 2755 2756 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2757 } 2758 2759 /** 2760 * pci_enable_acs - enable ACS if hardware support it 2761 * @dev: the PCI device 2762 */ 2763 void pci_enable_acs(struct pci_dev *dev) 2764 { 2765 if (!pci_acs_enable) 2766 return; 2767 2768 if (!pci_dev_specific_enable_acs(dev)) 2769 return; 2770 2771 pci_std_enable_acs(dev); 2772 } 2773 2774 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2775 { 2776 int pos; 2777 u16 cap, ctrl; 2778 2779 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2780 if (!pos) 2781 return false; 2782 2783 /* 2784 * Except for egress control, capabilities are either required 2785 * or only required if controllable. Features missing from the 2786 * capability field can therefore be assumed as hard-wired enabled. 2787 */ 2788 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2789 acs_flags &= (cap | PCI_ACS_EC); 2790 2791 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2792 return (ctrl & acs_flags) == acs_flags; 2793 } 2794 2795 /** 2796 * pci_acs_enabled - test ACS against required flags for a given device 2797 * @pdev: device to test 2798 * @acs_flags: required PCI ACS flags 2799 * 2800 * Return true if the device supports the provided flags. Automatically 2801 * filters out flags that are not implemented on multifunction devices. 2802 * 2803 * Note that this interface checks the effective ACS capabilities of the 2804 * device rather than the actual capabilities. For instance, most single 2805 * function endpoints are not required to support ACS because they have no 2806 * opportunity for peer-to-peer access. We therefore return 'true' 2807 * regardless of whether the device exposes an ACS capability. This makes 2808 * it much easier for callers of this function to ignore the actual type 2809 * or topology of the device when testing ACS support. 2810 */ 2811 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2812 { 2813 int ret; 2814 2815 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2816 if (ret >= 0) 2817 return ret > 0; 2818 2819 /* 2820 * Conventional PCI and PCI-X devices never support ACS, either 2821 * effectively or actually. The shared bus topology implies that 2822 * any device on the bus can receive or snoop DMA. 2823 */ 2824 if (!pci_is_pcie(pdev)) 2825 return false; 2826 2827 switch (pci_pcie_type(pdev)) { 2828 /* 2829 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2830 * but since their primary interface is PCI/X, we conservatively 2831 * handle them as we would a non-PCIe device. 2832 */ 2833 case PCI_EXP_TYPE_PCIE_BRIDGE: 2834 /* 2835 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2836 * applicable... must never implement an ACS Extended Capability...". 2837 * This seems arbitrary, but we take a conservative interpretation 2838 * of this statement. 2839 */ 2840 case PCI_EXP_TYPE_PCI_BRIDGE: 2841 case PCI_EXP_TYPE_RC_EC: 2842 return false; 2843 /* 2844 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2845 * implement ACS in order to indicate their peer-to-peer capabilities, 2846 * regardless of whether they are single- or multi-function devices. 2847 */ 2848 case PCI_EXP_TYPE_DOWNSTREAM: 2849 case PCI_EXP_TYPE_ROOT_PORT: 2850 return pci_acs_flags_enabled(pdev, acs_flags); 2851 /* 2852 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2853 * implemented by the remaining PCIe types to indicate peer-to-peer 2854 * capabilities, but only when they are part of a multifunction 2855 * device. The footnote for section 6.12 indicates the specific 2856 * PCIe types included here. 2857 */ 2858 case PCI_EXP_TYPE_ENDPOINT: 2859 case PCI_EXP_TYPE_UPSTREAM: 2860 case PCI_EXP_TYPE_LEG_END: 2861 case PCI_EXP_TYPE_RC_END: 2862 if (!pdev->multifunction) 2863 break; 2864 2865 return pci_acs_flags_enabled(pdev, acs_flags); 2866 } 2867 2868 /* 2869 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2870 * to single function devices with the exception of downstream ports. 2871 */ 2872 return true; 2873 } 2874 2875 /** 2876 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2877 * @start: starting downstream device 2878 * @end: ending upstream device or NULL to search to the root bus 2879 * @acs_flags: required flags 2880 * 2881 * Walk up a device tree from start to end testing PCI ACS support. If 2882 * any step along the way does not support the required flags, return false. 2883 */ 2884 bool pci_acs_path_enabled(struct pci_dev *start, 2885 struct pci_dev *end, u16 acs_flags) 2886 { 2887 struct pci_dev *pdev, *parent = start; 2888 2889 do { 2890 pdev = parent; 2891 2892 if (!pci_acs_enabled(pdev, acs_flags)) 2893 return false; 2894 2895 if (pci_is_root_bus(pdev->bus)) 2896 return (end == NULL); 2897 2898 parent = pdev->bus->self; 2899 } while (pdev != end); 2900 2901 return true; 2902 } 2903 2904 /** 2905 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2906 * @dev: the PCI device 2907 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 2908 * 2909 * Perform INTx swizzling for a device behind one level of bridge. This is 2910 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2911 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2912 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2913 * the PCI Express Base Specification, Revision 2.1) 2914 */ 2915 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2916 { 2917 int slot; 2918 2919 if (pci_ari_enabled(dev->bus)) 2920 slot = 0; 2921 else 2922 slot = PCI_SLOT(dev->devfn); 2923 2924 return (((pin - 1) + slot) % 4) + 1; 2925 } 2926 2927 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2928 { 2929 u8 pin; 2930 2931 pin = dev->pin; 2932 if (!pin) 2933 return -1; 2934 2935 while (!pci_is_root_bus(dev->bus)) { 2936 pin = pci_swizzle_interrupt_pin(dev, pin); 2937 dev = dev->bus->self; 2938 } 2939 *bridge = dev; 2940 return pin; 2941 } 2942 2943 /** 2944 * pci_common_swizzle - swizzle INTx all the way to root bridge 2945 * @dev: the PCI device 2946 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2947 * 2948 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 2949 * bridges all the way up to a PCI root bus. 2950 */ 2951 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 2952 { 2953 u8 pin = *pinp; 2954 2955 while (!pci_is_root_bus(dev->bus)) { 2956 pin = pci_swizzle_interrupt_pin(dev, pin); 2957 dev = dev->bus->self; 2958 } 2959 *pinp = pin; 2960 return PCI_SLOT(dev->devfn); 2961 } 2962 EXPORT_SYMBOL_GPL(pci_common_swizzle); 2963 2964 /** 2965 * pci_release_region - Release a PCI bar 2966 * @pdev: PCI device whose resources were previously reserved by pci_request_region 2967 * @bar: BAR to release 2968 * 2969 * Releases the PCI I/O and memory resources previously reserved by a 2970 * successful call to pci_request_region. Call this function only 2971 * after all use of the PCI regions has ceased. 2972 */ 2973 void pci_release_region(struct pci_dev *pdev, int bar) 2974 { 2975 struct pci_devres *dr; 2976 2977 if (pci_resource_len(pdev, bar) == 0) 2978 return; 2979 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 2980 release_region(pci_resource_start(pdev, bar), 2981 pci_resource_len(pdev, bar)); 2982 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 2983 release_mem_region(pci_resource_start(pdev, bar), 2984 pci_resource_len(pdev, bar)); 2985 2986 dr = find_pci_dr(pdev); 2987 if (dr) 2988 dr->region_mask &= ~(1 << bar); 2989 } 2990 EXPORT_SYMBOL(pci_release_region); 2991 2992 /** 2993 * __pci_request_region - Reserved PCI I/O and memory resource 2994 * @pdev: PCI device whose resources are to be reserved 2995 * @bar: BAR to be reserved 2996 * @res_name: Name to be associated with resource. 2997 * @exclusive: whether the region access is exclusive or not 2998 * 2999 * Mark the PCI region associated with PCI device @pdev BR @bar as 3000 * being reserved by owner @res_name. Do not access any 3001 * address inside the PCI regions unless this call returns 3002 * successfully. 3003 * 3004 * If @exclusive is set, then the region is marked so that userspace 3005 * is explicitly not allowed to map the resource via /dev/mem or 3006 * sysfs MMIO access. 3007 * 3008 * Returns 0 on success, or %EBUSY on error. A warning 3009 * message is also printed on failure. 3010 */ 3011 static int __pci_request_region(struct pci_dev *pdev, int bar, 3012 const char *res_name, int exclusive) 3013 { 3014 struct pci_devres *dr; 3015 3016 if (pci_resource_len(pdev, bar) == 0) 3017 return 0; 3018 3019 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3020 if (!request_region(pci_resource_start(pdev, bar), 3021 pci_resource_len(pdev, bar), res_name)) 3022 goto err_out; 3023 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3024 if (!__request_mem_region(pci_resource_start(pdev, bar), 3025 pci_resource_len(pdev, bar), res_name, 3026 exclusive)) 3027 goto err_out; 3028 } 3029 3030 dr = find_pci_dr(pdev); 3031 if (dr) 3032 dr->region_mask |= 1 << bar; 3033 3034 return 0; 3035 3036 err_out: 3037 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 3038 &pdev->resource[bar]); 3039 return -EBUSY; 3040 } 3041 3042 /** 3043 * pci_request_region - Reserve PCI I/O and memory resource 3044 * @pdev: PCI device whose resources are to be reserved 3045 * @bar: BAR to be reserved 3046 * @res_name: Name to be associated with resource 3047 * 3048 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3049 * being reserved by owner @res_name. Do not access any 3050 * address inside the PCI regions unless this call returns 3051 * successfully. 3052 * 3053 * Returns 0 on success, or %EBUSY on error. A warning 3054 * message is also printed on failure. 3055 */ 3056 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3057 { 3058 return __pci_request_region(pdev, bar, res_name, 0); 3059 } 3060 EXPORT_SYMBOL(pci_request_region); 3061 3062 /** 3063 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 3064 * @pdev: PCI device whose resources are to be reserved 3065 * @bar: BAR to be reserved 3066 * @res_name: Name to be associated with resource. 3067 * 3068 * Mark the PCI region associated with PCI device @pdev BR @bar as 3069 * being reserved by owner @res_name. Do not access any 3070 * address inside the PCI regions unless this call returns 3071 * successfully. 3072 * 3073 * Returns 0 on success, or %EBUSY on error. A warning 3074 * message is also printed on failure. 3075 * 3076 * The key difference that _exclusive makes it that userspace is 3077 * explicitly not allowed to map the resource via /dev/mem or 3078 * sysfs. 3079 */ 3080 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 3081 const char *res_name) 3082 { 3083 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 3084 } 3085 EXPORT_SYMBOL(pci_request_region_exclusive); 3086 3087 /** 3088 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3089 * @pdev: PCI device whose resources were previously reserved 3090 * @bars: Bitmask of BARs to be released 3091 * 3092 * Release selected PCI I/O and memory resources previously reserved. 3093 * Call this function only after all use of the PCI regions has ceased. 3094 */ 3095 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3096 { 3097 int i; 3098 3099 for (i = 0; i < 6; i++) 3100 if (bars & (1 << i)) 3101 pci_release_region(pdev, i); 3102 } 3103 EXPORT_SYMBOL(pci_release_selected_regions); 3104 3105 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3106 const char *res_name, int excl) 3107 { 3108 int i; 3109 3110 for (i = 0; i < 6; i++) 3111 if (bars & (1 << i)) 3112 if (__pci_request_region(pdev, i, res_name, excl)) 3113 goto err_out; 3114 return 0; 3115 3116 err_out: 3117 while (--i >= 0) 3118 if (bars & (1 << i)) 3119 pci_release_region(pdev, i); 3120 3121 return -EBUSY; 3122 } 3123 3124 3125 /** 3126 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3127 * @pdev: PCI device whose resources are to be reserved 3128 * @bars: Bitmask of BARs to be requested 3129 * @res_name: Name to be associated with resource 3130 */ 3131 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3132 const char *res_name) 3133 { 3134 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3135 } 3136 EXPORT_SYMBOL(pci_request_selected_regions); 3137 3138 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3139 const char *res_name) 3140 { 3141 return __pci_request_selected_regions(pdev, bars, res_name, 3142 IORESOURCE_EXCLUSIVE); 3143 } 3144 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3145 3146 /** 3147 * pci_release_regions - Release reserved PCI I/O and memory resources 3148 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 3149 * 3150 * Releases all PCI I/O and memory resources previously reserved by a 3151 * successful call to pci_request_regions. Call this function only 3152 * after all use of the PCI regions has ceased. 3153 */ 3154 3155 void pci_release_regions(struct pci_dev *pdev) 3156 { 3157 pci_release_selected_regions(pdev, (1 << 6) - 1); 3158 } 3159 EXPORT_SYMBOL(pci_release_regions); 3160 3161 /** 3162 * pci_request_regions - Reserved PCI I/O and memory resources 3163 * @pdev: PCI device whose resources are to be reserved 3164 * @res_name: Name to be associated with resource. 3165 * 3166 * Mark all PCI regions associated with PCI device @pdev as 3167 * being reserved by owner @res_name. Do not access any 3168 * address inside the PCI regions unless this call returns 3169 * successfully. 3170 * 3171 * Returns 0 on success, or %EBUSY on error. A warning 3172 * message is also printed on failure. 3173 */ 3174 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3175 { 3176 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3177 } 3178 EXPORT_SYMBOL(pci_request_regions); 3179 3180 /** 3181 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3182 * @pdev: PCI device whose resources are to be reserved 3183 * @res_name: Name to be associated with resource. 3184 * 3185 * Mark all PCI regions associated with PCI device @pdev as 3186 * being reserved by owner @res_name. Do not access any 3187 * address inside the PCI regions unless this call returns 3188 * successfully. 3189 * 3190 * pci_request_regions_exclusive() will mark the region so that 3191 * /dev/mem and the sysfs MMIO access will not be allowed. 3192 * 3193 * Returns 0 on success, or %EBUSY on error. A warning 3194 * message is also printed on failure. 3195 */ 3196 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3197 { 3198 return pci_request_selected_regions_exclusive(pdev, 3199 ((1 << 6) - 1), res_name); 3200 } 3201 EXPORT_SYMBOL(pci_request_regions_exclusive); 3202 3203 #ifdef PCI_IOBASE 3204 struct io_range { 3205 struct list_head list; 3206 phys_addr_t start; 3207 resource_size_t size; 3208 }; 3209 3210 static LIST_HEAD(io_range_list); 3211 static DEFINE_SPINLOCK(io_range_lock); 3212 #endif 3213 3214 /* 3215 * Record the PCI IO range (expressed as CPU physical address + size). 3216 * Return a negative value if an error has occured, zero otherwise 3217 */ 3218 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size) 3219 { 3220 int err = 0; 3221 3222 #ifdef PCI_IOBASE 3223 struct io_range *range; 3224 resource_size_t allocated_size = 0; 3225 3226 /* check if the range hasn't been previously recorded */ 3227 spin_lock(&io_range_lock); 3228 list_for_each_entry(range, &io_range_list, list) { 3229 if (addr >= range->start && addr + size <= range->start + size) { 3230 /* range already registered, bail out */ 3231 goto end_register; 3232 } 3233 allocated_size += range->size; 3234 } 3235 3236 /* range not registed yet, check for available space */ 3237 if (allocated_size + size - 1 > IO_SPACE_LIMIT) { 3238 /* if it's too big check if 64K space can be reserved */ 3239 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) { 3240 err = -E2BIG; 3241 goto end_register; 3242 } 3243 3244 size = SZ_64K; 3245 pr_warn("Requested IO range too big, new size set to 64K\n"); 3246 } 3247 3248 /* add the range to the list */ 3249 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3250 if (!range) { 3251 err = -ENOMEM; 3252 goto end_register; 3253 } 3254 3255 range->start = addr; 3256 range->size = size; 3257 3258 list_add_tail(&range->list, &io_range_list); 3259 3260 end_register: 3261 spin_unlock(&io_range_lock); 3262 #endif 3263 3264 return err; 3265 } 3266 3267 phys_addr_t pci_pio_to_address(unsigned long pio) 3268 { 3269 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3270 3271 #ifdef PCI_IOBASE 3272 struct io_range *range; 3273 resource_size_t allocated_size = 0; 3274 3275 if (pio > IO_SPACE_LIMIT) 3276 return address; 3277 3278 spin_lock(&io_range_lock); 3279 list_for_each_entry(range, &io_range_list, list) { 3280 if (pio >= allocated_size && pio < allocated_size + range->size) { 3281 address = range->start + pio - allocated_size; 3282 break; 3283 } 3284 allocated_size += range->size; 3285 } 3286 spin_unlock(&io_range_lock); 3287 #endif 3288 3289 return address; 3290 } 3291 3292 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3293 { 3294 #ifdef PCI_IOBASE 3295 struct io_range *res; 3296 resource_size_t offset = 0; 3297 unsigned long addr = -1; 3298 3299 spin_lock(&io_range_lock); 3300 list_for_each_entry(res, &io_range_list, list) { 3301 if (address >= res->start && address < res->start + res->size) { 3302 addr = address - res->start + offset; 3303 break; 3304 } 3305 offset += res->size; 3306 } 3307 spin_unlock(&io_range_lock); 3308 3309 return addr; 3310 #else 3311 if (address > IO_SPACE_LIMIT) 3312 return (unsigned long)-1; 3313 3314 return (unsigned long) address; 3315 #endif 3316 } 3317 3318 /** 3319 * pci_remap_iospace - Remap the memory mapped I/O space 3320 * @res: Resource describing the I/O space 3321 * @phys_addr: physical address of range to be mapped 3322 * 3323 * Remap the memory mapped I/O space described by the @res 3324 * and the CPU physical address @phys_addr into virtual address space. 3325 * Only architectures that have memory mapped IO functions defined 3326 * (and the PCI_IOBASE value defined) should call this function. 3327 */ 3328 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3329 { 3330 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3331 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3332 3333 if (!(res->flags & IORESOURCE_IO)) 3334 return -EINVAL; 3335 3336 if (res->end > IO_SPACE_LIMIT) 3337 return -EINVAL; 3338 3339 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3340 pgprot_device(PAGE_KERNEL)); 3341 #else 3342 /* this architecture does not have memory mapped I/O space, 3343 so this function should never be called */ 3344 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3345 return -ENODEV; 3346 #endif 3347 } 3348 3349 /** 3350 * pci_unmap_iospace - Unmap the memory mapped I/O space 3351 * @res: resource to be unmapped 3352 * 3353 * Unmap the CPU virtual address @res from virtual address space. 3354 * Only architectures that have memory mapped IO functions defined 3355 * (and the PCI_IOBASE value defined) should call this function. 3356 */ 3357 void pci_unmap_iospace(struct resource *res) 3358 { 3359 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3360 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3361 3362 unmap_kernel_range(vaddr, resource_size(res)); 3363 #endif 3364 } 3365 3366 static void __pci_set_master(struct pci_dev *dev, bool enable) 3367 { 3368 u16 old_cmd, cmd; 3369 3370 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 3371 if (enable) 3372 cmd = old_cmd | PCI_COMMAND_MASTER; 3373 else 3374 cmd = old_cmd & ~PCI_COMMAND_MASTER; 3375 if (cmd != old_cmd) { 3376 dev_dbg(&dev->dev, "%s bus mastering\n", 3377 enable ? "enabling" : "disabling"); 3378 pci_write_config_word(dev, PCI_COMMAND, cmd); 3379 } 3380 dev->is_busmaster = enable; 3381 } 3382 3383 /** 3384 * pcibios_setup - process "pci=" kernel boot arguments 3385 * @str: string used to pass in "pci=" kernel boot arguments 3386 * 3387 * Process kernel boot arguments. This is the default implementation. 3388 * Architecture specific implementations can override this as necessary. 3389 */ 3390 char * __weak __init pcibios_setup(char *str) 3391 { 3392 return str; 3393 } 3394 3395 /** 3396 * pcibios_set_master - enable PCI bus-mastering for device dev 3397 * @dev: the PCI device to enable 3398 * 3399 * Enables PCI bus-mastering for the device. This is the default 3400 * implementation. Architecture specific implementations can override 3401 * this if necessary. 3402 */ 3403 void __weak pcibios_set_master(struct pci_dev *dev) 3404 { 3405 u8 lat; 3406 3407 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 3408 if (pci_is_pcie(dev)) 3409 return; 3410 3411 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 3412 if (lat < 16) 3413 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 3414 else if (lat > pcibios_max_latency) 3415 lat = pcibios_max_latency; 3416 else 3417 return; 3418 3419 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 3420 } 3421 3422 /** 3423 * pci_set_master - enables bus-mastering for device dev 3424 * @dev: the PCI device to enable 3425 * 3426 * Enables bus-mastering on the device and calls pcibios_set_master() 3427 * to do the needed arch specific settings. 3428 */ 3429 void pci_set_master(struct pci_dev *dev) 3430 { 3431 __pci_set_master(dev, true); 3432 pcibios_set_master(dev); 3433 } 3434 EXPORT_SYMBOL(pci_set_master); 3435 3436 /** 3437 * pci_clear_master - disables bus-mastering for device dev 3438 * @dev: the PCI device to disable 3439 */ 3440 void pci_clear_master(struct pci_dev *dev) 3441 { 3442 __pci_set_master(dev, false); 3443 } 3444 EXPORT_SYMBOL(pci_clear_master); 3445 3446 /** 3447 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 3448 * @dev: the PCI device for which MWI is to be enabled 3449 * 3450 * Helper function for pci_set_mwi. 3451 * Originally copied from drivers/net/acenic.c. 3452 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 3453 * 3454 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3455 */ 3456 int pci_set_cacheline_size(struct pci_dev *dev) 3457 { 3458 u8 cacheline_size; 3459 3460 if (!pci_cache_line_size) 3461 return -EINVAL; 3462 3463 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 3464 equal to or multiple of the right value. */ 3465 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3466 if (cacheline_size >= pci_cache_line_size && 3467 (cacheline_size % pci_cache_line_size) == 0) 3468 return 0; 3469 3470 /* Write the correct value. */ 3471 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 3472 /* Read it back. */ 3473 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3474 if (cacheline_size == pci_cache_line_size) 3475 return 0; 3476 3477 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n", 3478 pci_cache_line_size << 2); 3479 3480 return -EINVAL; 3481 } 3482 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 3483 3484 /** 3485 * pci_set_mwi - enables memory-write-invalidate PCI transaction 3486 * @dev: the PCI device for which MWI is enabled 3487 * 3488 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3489 * 3490 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3491 */ 3492 int pci_set_mwi(struct pci_dev *dev) 3493 { 3494 #ifdef PCI_DISABLE_MWI 3495 return 0; 3496 #else 3497 int rc; 3498 u16 cmd; 3499 3500 rc = pci_set_cacheline_size(dev); 3501 if (rc) 3502 return rc; 3503 3504 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3505 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 3506 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 3507 cmd |= PCI_COMMAND_INVALIDATE; 3508 pci_write_config_word(dev, PCI_COMMAND, cmd); 3509 } 3510 return 0; 3511 #endif 3512 } 3513 EXPORT_SYMBOL(pci_set_mwi); 3514 3515 /** 3516 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 3517 * @dev: the PCI device for which MWI is enabled 3518 * 3519 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3520 * Callers are not required to check the return value. 3521 * 3522 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3523 */ 3524 int pci_try_set_mwi(struct pci_dev *dev) 3525 { 3526 #ifdef PCI_DISABLE_MWI 3527 return 0; 3528 #else 3529 return pci_set_mwi(dev); 3530 #endif 3531 } 3532 EXPORT_SYMBOL(pci_try_set_mwi); 3533 3534 /** 3535 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 3536 * @dev: the PCI device to disable 3537 * 3538 * Disables PCI Memory-Write-Invalidate transaction on the device 3539 */ 3540 void pci_clear_mwi(struct pci_dev *dev) 3541 { 3542 #ifndef PCI_DISABLE_MWI 3543 u16 cmd; 3544 3545 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3546 if (cmd & PCI_COMMAND_INVALIDATE) { 3547 cmd &= ~PCI_COMMAND_INVALIDATE; 3548 pci_write_config_word(dev, PCI_COMMAND, cmd); 3549 } 3550 #endif 3551 } 3552 EXPORT_SYMBOL(pci_clear_mwi); 3553 3554 /** 3555 * pci_intx - enables/disables PCI INTx for device dev 3556 * @pdev: the PCI device to operate on 3557 * @enable: boolean: whether to enable or disable PCI INTx 3558 * 3559 * Enables/disables PCI INTx for device dev 3560 */ 3561 void pci_intx(struct pci_dev *pdev, int enable) 3562 { 3563 u16 pci_command, new; 3564 3565 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 3566 3567 if (enable) 3568 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 3569 else 3570 new = pci_command | PCI_COMMAND_INTX_DISABLE; 3571 3572 if (new != pci_command) { 3573 struct pci_devres *dr; 3574 3575 pci_write_config_word(pdev, PCI_COMMAND, new); 3576 3577 dr = find_pci_dr(pdev); 3578 if (dr && !dr->restore_intx) { 3579 dr->restore_intx = 1; 3580 dr->orig_intx = !enable; 3581 } 3582 } 3583 } 3584 EXPORT_SYMBOL_GPL(pci_intx); 3585 3586 /** 3587 * pci_intx_mask_supported - probe for INTx masking support 3588 * @dev: the PCI device to operate on 3589 * 3590 * Check if the device dev support INTx masking via the config space 3591 * command word. 3592 */ 3593 bool pci_intx_mask_supported(struct pci_dev *dev) 3594 { 3595 bool mask_supported = false; 3596 u16 orig, new; 3597 3598 if (dev->broken_intx_masking) 3599 return false; 3600 3601 pci_cfg_access_lock(dev); 3602 3603 pci_read_config_word(dev, PCI_COMMAND, &orig); 3604 pci_write_config_word(dev, PCI_COMMAND, 3605 orig ^ PCI_COMMAND_INTX_DISABLE); 3606 pci_read_config_word(dev, PCI_COMMAND, &new); 3607 3608 /* 3609 * There's no way to protect against hardware bugs or detect them 3610 * reliably, but as long as we know what the value should be, let's 3611 * go ahead and check it. 3612 */ 3613 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) { 3614 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n", 3615 orig, new); 3616 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) { 3617 mask_supported = true; 3618 pci_write_config_word(dev, PCI_COMMAND, orig); 3619 } 3620 3621 pci_cfg_access_unlock(dev); 3622 return mask_supported; 3623 } 3624 EXPORT_SYMBOL_GPL(pci_intx_mask_supported); 3625 3626 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3627 { 3628 struct pci_bus *bus = dev->bus; 3629 bool mask_updated = true; 3630 u32 cmd_status_dword; 3631 u16 origcmd, newcmd; 3632 unsigned long flags; 3633 bool irq_pending; 3634 3635 /* 3636 * We do a single dword read to retrieve both command and status. 3637 * Document assumptions that make this possible. 3638 */ 3639 BUILD_BUG_ON(PCI_COMMAND % 4); 3640 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3641 3642 raw_spin_lock_irqsave(&pci_lock, flags); 3643 3644 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3645 3646 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3647 3648 /* 3649 * Check interrupt status register to see whether our device 3650 * triggered the interrupt (when masking) or the next IRQ is 3651 * already pending (when unmasking). 3652 */ 3653 if (mask != irq_pending) { 3654 mask_updated = false; 3655 goto done; 3656 } 3657 3658 origcmd = cmd_status_dword; 3659 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3660 if (mask) 3661 newcmd |= PCI_COMMAND_INTX_DISABLE; 3662 if (newcmd != origcmd) 3663 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3664 3665 done: 3666 raw_spin_unlock_irqrestore(&pci_lock, flags); 3667 3668 return mask_updated; 3669 } 3670 3671 /** 3672 * pci_check_and_mask_intx - mask INTx on pending interrupt 3673 * @dev: the PCI device to operate on 3674 * 3675 * Check if the device dev has its INTx line asserted, mask it and 3676 * return true in that case. False is returned if not interrupt was 3677 * pending. 3678 */ 3679 bool pci_check_and_mask_intx(struct pci_dev *dev) 3680 { 3681 return pci_check_and_set_intx_mask(dev, true); 3682 } 3683 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3684 3685 /** 3686 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3687 * @dev: the PCI device to operate on 3688 * 3689 * Check if the device dev has its INTx line asserted, unmask it if not 3690 * and return true. False is returned and the mask remains active if 3691 * there was still an interrupt pending. 3692 */ 3693 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3694 { 3695 return pci_check_and_set_intx_mask(dev, false); 3696 } 3697 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3698 3699 /** 3700 * pci_wait_for_pending_transaction - waits for pending transaction 3701 * @dev: the PCI device to operate on 3702 * 3703 * Return 0 if transaction is pending 1 otherwise. 3704 */ 3705 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3706 { 3707 if (!pci_is_pcie(dev)) 3708 return 1; 3709 3710 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 3711 PCI_EXP_DEVSTA_TRPND); 3712 } 3713 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3714 3715 /* 3716 * We should only need to wait 100ms after FLR, but some devices take longer. 3717 * Wait for up to 1000ms for config space to return something other than -1. 3718 * Intel IGD requires this when an LCD panel is attached. We read the 2nd 3719 * dword because VFs don't implement the 1st dword. 3720 */ 3721 static void pci_flr_wait(struct pci_dev *dev) 3722 { 3723 int i = 0; 3724 u32 id; 3725 3726 do { 3727 msleep(100); 3728 pci_read_config_dword(dev, PCI_COMMAND, &id); 3729 } while (i++ < 10 && id == ~0); 3730 3731 if (id == ~0) 3732 dev_warn(&dev->dev, "Failed to return from FLR\n"); 3733 else if (i > 1) 3734 dev_info(&dev->dev, "Required additional %dms to return from FLR\n", 3735 (i - 1) * 100); 3736 } 3737 3738 static int pcie_flr(struct pci_dev *dev, int probe) 3739 { 3740 u32 cap; 3741 3742 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3743 if (!(cap & PCI_EXP_DEVCAP_FLR)) 3744 return -ENOTTY; 3745 3746 if (probe) 3747 return 0; 3748 3749 if (!pci_wait_for_pending_transaction(dev)) 3750 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 3751 3752 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 3753 pci_flr_wait(dev); 3754 return 0; 3755 } 3756 3757 static int pci_af_flr(struct pci_dev *dev, int probe) 3758 { 3759 int pos; 3760 u8 cap; 3761 3762 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3763 if (!pos) 3764 return -ENOTTY; 3765 3766 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3767 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3768 return -ENOTTY; 3769 3770 if (probe) 3771 return 0; 3772 3773 /* 3774 * Wait for Transaction Pending bit to clear. A word-aligned test 3775 * is used, so we use the conrol offset rather than status and shift 3776 * the test bit to match. 3777 */ 3778 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 3779 PCI_AF_STATUS_TP << 8)) 3780 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 3781 3782 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3783 pci_flr_wait(dev); 3784 return 0; 3785 } 3786 3787 /** 3788 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3789 * @dev: Device to reset. 3790 * @probe: If set, only check if the device can be reset this way. 3791 * 3792 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3793 * unset, it will be reinitialized internally when going from PCI_D3hot to 3794 * PCI_D0. If that's the case and the device is not in a low-power state 3795 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3796 * 3797 * NOTE: This causes the caller to sleep for twice the device power transition 3798 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3799 * by default (i.e. unless the @dev's d3_delay field has a different value). 3800 * Moreover, only devices in D0 can be reset by this function. 3801 */ 3802 static int pci_pm_reset(struct pci_dev *dev, int probe) 3803 { 3804 u16 csr; 3805 3806 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 3807 return -ENOTTY; 3808 3809 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3810 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3811 return -ENOTTY; 3812 3813 if (probe) 3814 return 0; 3815 3816 if (dev->current_state != PCI_D0) 3817 return -EINVAL; 3818 3819 csr &= ~PCI_PM_CTRL_STATE_MASK; 3820 csr |= PCI_D3hot; 3821 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3822 pci_dev_d3_sleep(dev); 3823 3824 csr &= ~PCI_PM_CTRL_STATE_MASK; 3825 csr |= PCI_D0; 3826 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3827 pci_dev_d3_sleep(dev); 3828 3829 return 0; 3830 } 3831 3832 void pci_reset_secondary_bus(struct pci_dev *dev) 3833 { 3834 u16 ctrl; 3835 3836 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 3837 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3838 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3839 /* 3840 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 3841 * this to 2ms to ensure that we meet the minimum requirement. 3842 */ 3843 msleep(2); 3844 3845 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3846 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3847 3848 /* 3849 * Trhfa for conventional PCI is 2^25 clock cycles. 3850 * Assuming a minimum 33MHz clock this results in a 1s 3851 * delay before we can consider subordinate devices to 3852 * be re-initialized. PCIe has some ways to shorten this, 3853 * but we don't make use of them yet. 3854 */ 3855 ssleep(1); 3856 } 3857 3858 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 3859 { 3860 pci_reset_secondary_bus(dev); 3861 } 3862 3863 /** 3864 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 3865 * @dev: Bridge device 3866 * 3867 * Use the bridge control register to assert reset on the secondary bus. 3868 * Devices on the secondary bus are left in power-on state. 3869 */ 3870 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 3871 { 3872 pcibios_reset_secondary_bus(dev); 3873 } 3874 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 3875 3876 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 3877 { 3878 struct pci_dev *pdev; 3879 3880 if (pci_is_root_bus(dev->bus) || dev->subordinate || 3881 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 3882 return -ENOTTY; 3883 3884 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3885 if (pdev != dev) 3886 return -ENOTTY; 3887 3888 if (probe) 3889 return 0; 3890 3891 pci_reset_bridge_secondary_bus(dev->bus->self); 3892 3893 return 0; 3894 } 3895 3896 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 3897 { 3898 int rc = -ENOTTY; 3899 3900 if (!hotplug || !try_module_get(hotplug->ops->owner)) 3901 return rc; 3902 3903 if (hotplug->ops->reset_slot) 3904 rc = hotplug->ops->reset_slot(hotplug, probe); 3905 3906 module_put(hotplug->ops->owner); 3907 3908 return rc; 3909 } 3910 3911 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 3912 { 3913 struct pci_dev *pdev; 3914 3915 if (dev->subordinate || !dev->slot || 3916 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 3917 return -ENOTTY; 3918 3919 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3920 if (pdev != dev && pdev->slot == dev->slot) 3921 return -ENOTTY; 3922 3923 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 3924 } 3925 3926 static int __pci_dev_reset(struct pci_dev *dev, int probe) 3927 { 3928 int rc; 3929 3930 might_sleep(); 3931 3932 rc = pci_dev_specific_reset(dev, probe); 3933 if (rc != -ENOTTY) 3934 goto done; 3935 3936 rc = pcie_flr(dev, probe); 3937 if (rc != -ENOTTY) 3938 goto done; 3939 3940 rc = pci_af_flr(dev, probe); 3941 if (rc != -ENOTTY) 3942 goto done; 3943 3944 rc = pci_pm_reset(dev, probe); 3945 if (rc != -ENOTTY) 3946 goto done; 3947 3948 rc = pci_dev_reset_slot_function(dev, probe); 3949 if (rc != -ENOTTY) 3950 goto done; 3951 3952 rc = pci_parent_bus_reset(dev, probe); 3953 done: 3954 return rc; 3955 } 3956 3957 static void pci_dev_lock(struct pci_dev *dev) 3958 { 3959 pci_cfg_access_lock(dev); 3960 /* block PM suspend, driver probe, etc. */ 3961 device_lock(&dev->dev); 3962 } 3963 3964 /* Return 1 on successful lock, 0 on contention */ 3965 static int pci_dev_trylock(struct pci_dev *dev) 3966 { 3967 if (pci_cfg_access_trylock(dev)) { 3968 if (device_trylock(&dev->dev)) 3969 return 1; 3970 pci_cfg_access_unlock(dev); 3971 } 3972 3973 return 0; 3974 } 3975 3976 static void pci_dev_unlock(struct pci_dev *dev) 3977 { 3978 device_unlock(&dev->dev); 3979 pci_cfg_access_unlock(dev); 3980 } 3981 3982 /** 3983 * pci_reset_notify - notify device driver of reset 3984 * @dev: device to be notified of reset 3985 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt 3986 * completed 3987 * 3988 * Must be called prior to device access being disabled and after device 3989 * access is restored. 3990 */ 3991 static void pci_reset_notify(struct pci_dev *dev, bool prepare) 3992 { 3993 const struct pci_error_handlers *err_handler = 3994 dev->driver ? dev->driver->err_handler : NULL; 3995 if (err_handler && err_handler->reset_notify) 3996 err_handler->reset_notify(dev, prepare); 3997 } 3998 3999 static void pci_dev_save_and_disable(struct pci_dev *dev) 4000 { 4001 pci_reset_notify(dev, true); 4002 4003 /* 4004 * Wake-up device prior to save. PM registers default to D0 after 4005 * reset and a simple register restore doesn't reliably return 4006 * to a non-D0 state anyway. 4007 */ 4008 pci_set_power_state(dev, PCI_D0); 4009 4010 pci_save_state(dev); 4011 /* 4012 * Disable the device by clearing the Command register, except for 4013 * INTx-disable which is set. This not only disables MMIO and I/O port 4014 * BARs, but also prevents the device from being Bus Master, preventing 4015 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4016 * compliant devices, INTx-disable prevents legacy interrupts. 4017 */ 4018 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4019 } 4020 4021 static void pci_dev_restore(struct pci_dev *dev) 4022 { 4023 pci_restore_state(dev); 4024 pci_reset_notify(dev, false); 4025 } 4026 4027 static int pci_dev_reset(struct pci_dev *dev, int probe) 4028 { 4029 int rc; 4030 4031 if (!probe) 4032 pci_dev_lock(dev); 4033 4034 rc = __pci_dev_reset(dev, probe); 4035 4036 if (!probe) 4037 pci_dev_unlock(dev); 4038 4039 return rc; 4040 } 4041 4042 /** 4043 * __pci_reset_function - reset a PCI device function 4044 * @dev: PCI device to reset 4045 * 4046 * Some devices allow an individual function to be reset without affecting 4047 * other functions in the same device. The PCI device must be responsive 4048 * to PCI config space in order to use this function. 4049 * 4050 * The device function is presumed to be unused when this function is called. 4051 * Resetting the device will make the contents of PCI configuration space 4052 * random, so any caller of this must be prepared to reinitialise the 4053 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4054 * etc. 4055 * 4056 * Returns 0 if the device function was successfully reset or negative if the 4057 * device doesn't support resetting a single function. 4058 */ 4059 int __pci_reset_function(struct pci_dev *dev) 4060 { 4061 return pci_dev_reset(dev, 0); 4062 } 4063 EXPORT_SYMBOL_GPL(__pci_reset_function); 4064 4065 /** 4066 * __pci_reset_function_locked - reset a PCI device function while holding 4067 * the @dev mutex lock. 4068 * @dev: PCI device to reset 4069 * 4070 * Some devices allow an individual function to be reset without affecting 4071 * other functions in the same device. The PCI device must be responsive 4072 * to PCI config space in order to use this function. 4073 * 4074 * The device function is presumed to be unused and the caller is holding 4075 * the device mutex lock when this function is called. 4076 * Resetting the device will make the contents of PCI configuration space 4077 * random, so any caller of this must be prepared to reinitialise the 4078 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4079 * etc. 4080 * 4081 * Returns 0 if the device function was successfully reset or negative if the 4082 * device doesn't support resetting a single function. 4083 */ 4084 int __pci_reset_function_locked(struct pci_dev *dev) 4085 { 4086 return __pci_dev_reset(dev, 0); 4087 } 4088 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4089 4090 /** 4091 * pci_probe_reset_function - check whether the device can be safely reset 4092 * @dev: PCI device to reset 4093 * 4094 * Some devices allow an individual function to be reset without affecting 4095 * other functions in the same device. The PCI device must be responsive 4096 * to PCI config space in order to use this function. 4097 * 4098 * Returns 0 if the device function can be reset or negative if the 4099 * device doesn't support resetting a single function. 4100 */ 4101 int pci_probe_reset_function(struct pci_dev *dev) 4102 { 4103 return pci_dev_reset(dev, 1); 4104 } 4105 4106 /** 4107 * pci_reset_function - quiesce and reset a PCI device function 4108 * @dev: PCI device to reset 4109 * 4110 * Some devices allow an individual function to be reset without affecting 4111 * other functions in the same device. The PCI device must be responsive 4112 * to PCI config space in order to use this function. 4113 * 4114 * This function does not just reset the PCI portion of a device, but 4115 * clears all the state associated with the device. This function differs 4116 * from __pci_reset_function in that it saves and restores device state 4117 * over the reset. 4118 * 4119 * Returns 0 if the device function was successfully reset or negative if the 4120 * device doesn't support resetting a single function. 4121 */ 4122 int pci_reset_function(struct pci_dev *dev) 4123 { 4124 int rc; 4125 4126 rc = pci_dev_reset(dev, 1); 4127 if (rc) 4128 return rc; 4129 4130 pci_dev_save_and_disable(dev); 4131 4132 rc = pci_dev_reset(dev, 0); 4133 4134 pci_dev_restore(dev); 4135 4136 return rc; 4137 } 4138 EXPORT_SYMBOL_GPL(pci_reset_function); 4139 4140 /** 4141 * pci_try_reset_function - quiesce and reset a PCI device function 4142 * @dev: PCI device to reset 4143 * 4144 * Same as above, except return -EAGAIN if unable to lock device. 4145 */ 4146 int pci_try_reset_function(struct pci_dev *dev) 4147 { 4148 int rc; 4149 4150 rc = pci_dev_reset(dev, 1); 4151 if (rc) 4152 return rc; 4153 4154 pci_dev_save_and_disable(dev); 4155 4156 if (pci_dev_trylock(dev)) { 4157 rc = __pci_dev_reset(dev, 0); 4158 pci_dev_unlock(dev); 4159 } else 4160 rc = -EAGAIN; 4161 4162 pci_dev_restore(dev); 4163 4164 return rc; 4165 } 4166 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4167 4168 /* Do any devices on or below this bus prevent a bus reset? */ 4169 static bool pci_bus_resetable(struct pci_bus *bus) 4170 { 4171 struct pci_dev *dev; 4172 4173 list_for_each_entry(dev, &bus->devices, bus_list) { 4174 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4175 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4176 return false; 4177 } 4178 4179 return true; 4180 } 4181 4182 /* Lock devices from the top of the tree down */ 4183 static void pci_bus_lock(struct pci_bus *bus) 4184 { 4185 struct pci_dev *dev; 4186 4187 list_for_each_entry(dev, &bus->devices, bus_list) { 4188 pci_dev_lock(dev); 4189 if (dev->subordinate) 4190 pci_bus_lock(dev->subordinate); 4191 } 4192 } 4193 4194 /* Unlock devices from the bottom of the tree up */ 4195 static void pci_bus_unlock(struct pci_bus *bus) 4196 { 4197 struct pci_dev *dev; 4198 4199 list_for_each_entry(dev, &bus->devices, bus_list) { 4200 if (dev->subordinate) 4201 pci_bus_unlock(dev->subordinate); 4202 pci_dev_unlock(dev); 4203 } 4204 } 4205 4206 /* Return 1 on successful lock, 0 on contention */ 4207 static int pci_bus_trylock(struct pci_bus *bus) 4208 { 4209 struct pci_dev *dev; 4210 4211 list_for_each_entry(dev, &bus->devices, bus_list) { 4212 if (!pci_dev_trylock(dev)) 4213 goto unlock; 4214 if (dev->subordinate) { 4215 if (!pci_bus_trylock(dev->subordinate)) { 4216 pci_dev_unlock(dev); 4217 goto unlock; 4218 } 4219 } 4220 } 4221 return 1; 4222 4223 unlock: 4224 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 4225 if (dev->subordinate) 4226 pci_bus_unlock(dev->subordinate); 4227 pci_dev_unlock(dev); 4228 } 4229 return 0; 4230 } 4231 4232 /* Do any devices on or below this slot prevent a bus reset? */ 4233 static bool pci_slot_resetable(struct pci_slot *slot) 4234 { 4235 struct pci_dev *dev; 4236 4237 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4238 if (!dev->slot || dev->slot != slot) 4239 continue; 4240 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4241 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4242 return false; 4243 } 4244 4245 return true; 4246 } 4247 4248 /* Lock devices from the top of the tree down */ 4249 static void pci_slot_lock(struct pci_slot *slot) 4250 { 4251 struct pci_dev *dev; 4252 4253 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4254 if (!dev->slot || dev->slot != slot) 4255 continue; 4256 pci_dev_lock(dev); 4257 if (dev->subordinate) 4258 pci_bus_lock(dev->subordinate); 4259 } 4260 } 4261 4262 /* Unlock devices from the bottom of the tree up */ 4263 static void pci_slot_unlock(struct pci_slot *slot) 4264 { 4265 struct pci_dev *dev; 4266 4267 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4268 if (!dev->slot || dev->slot != slot) 4269 continue; 4270 if (dev->subordinate) 4271 pci_bus_unlock(dev->subordinate); 4272 pci_dev_unlock(dev); 4273 } 4274 } 4275 4276 /* Return 1 on successful lock, 0 on contention */ 4277 static int pci_slot_trylock(struct pci_slot *slot) 4278 { 4279 struct pci_dev *dev; 4280 4281 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4282 if (!dev->slot || dev->slot != slot) 4283 continue; 4284 if (!pci_dev_trylock(dev)) 4285 goto unlock; 4286 if (dev->subordinate) { 4287 if (!pci_bus_trylock(dev->subordinate)) { 4288 pci_dev_unlock(dev); 4289 goto unlock; 4290 } 4291 } 4292 } 4293 return 1; 4294 4295 unlock: 4296 list_for_each_entry_continue_reverse(dev, 4297 &slot->bus->devices, bus_list) { 4298 if (!dev->slot || dev->slot != slot) 4299 continue; 4300 if (dev->subordinate) 4301 pci_bus_unlock(dev->subordinate); 4302 pci_dev_unlock(dev); 4303 } 4304 return 0; 4305 } 4306 4307 /* Save and disable devices from the top of the tree down */ 4308 static void pci_bus_save_and_disable(struct pci_bus *bus) 4309 { 4310 struct pci_dev *dev; 4311 4312 list_for_each_entry(dev, &bus->devices, bus_list) { 4313 pci_dev_save_and_disable(dev); 4314 if (dev->subordinate) 4315 pci_bus_save_and_disable(dev->subordinate); 4316 } 4317 } 4318 4319 /* 4320 * Restore devices from top of the tree down - parent bridges need to be 4321 * restored before we can get to subordinate devices. 4322 */ 4323 static void pci_bus_restore(struct pci_bus *bus) 4324 { 4325 struct pci_dev *dev; 4326 4327 list_for_each_entry(dev, &bus->devices, bus_list) { 4328 pci_dev_restore(dev); 4329 if (dev->subordinate) 4330 pci_bus_restore(dev->subordinate); 4331 } 4332 } 4333 4334 /* Save and disable devices from the top of the tree down */ 4335 static void pci_slot_save_and_disable(struct pci_slot *slot) 4336 { 4337 struct pci_dev *dev; 4338 4339 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4340 if (!dev->slot || dev->slot != slot) 4341 continue; 4342 pci_dev_save_and_disable(dev); 4343 if (dev->subordinate) 4344 pci_bus_save_and_disable(dev->subordinate); 4345 } 4346 } 4347 4348 /* 4349 * Restore devices from top of the tree down - parent bridges need to be 4350 * restored before we can get to subordinate devices. 4351 */ 4352 static void pci_slot_restore(struct pci_slot *slot) 4353 { 4354 struct pci_dev *dev; 4355 4356 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4357 if (!dev->slot || dev->slot != slot) 4358 continue; 4359 pci_dev_restore(dev); 4360 if (dev->subordinate) 4361 pci_bus_restore(dev->subordinate); 4362 } 4363 } 4364 4365 static int pci_slot_reset(struct pci_slot *slot, int probe) 4366 { 4367 int rc; 4368 4369 if (!slot || !pci_slot_resetable(slot)) 4370 return -ENOTTY; 4371 4372 if (!probe) 4373 pci_slot_lock(slot); 4374 4375 might_sleep(); 4376 4377 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 4378 4379 if (!probe) 4380 pci_slot_unlock(slot); 4381 4382 return rc; 4383 } 4384 4385 /** 4386 * pci_probe_reset_slot - probe whether a PCI slot can be reset 4387 * @slot: PCI slot to probe 4388 * 4389 * Return 0 if slot can be reset, negative if a slot reset is not supported. 4390 */ 4391 int pci_probe_reset_slot(struct pci_slot *slot) 4392 { 4393 return pci_slot_reset(slot, 1); 4394 } 4395 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 4396 4397 /** 4398 * pci_reset_slot - reset a PCI slot 4399 * @slot: PCI slot to reset 4400 * 4401 * A PCI bus may host multiple slots, each slot may support a reset mechanism 4402 * independent of other slots. For instance, some slots may support slot power 4403 * control. In the case of a 1:1 bus to slot architecture, this function may 4404 * wrap the bus reset to avoid spurious slot related events such as hotplug. 4405 * Generally a slot reset should be attempted before a bus reset. All of the 4406 * function of the slot and any subordinate buses behind the slot are reset 4407 * through this function. PCI config space of all devices in the slot and 4408 * behind the slot is saved before and restored after reset. 4409 * 4410 * Return 0 on success, non-zero on error. 4411 */ 4412 int pci_reset_slot(struct pci_slot *slot) 4413 { 4414 int rc; 4415 4416 rc = pci_slot_reset(slot, 1); 4417 if (rc) 4418 return rc; 4419 4420 pci_slot_save_and_disable(slot); 4421 4422 rc = pci_slot_reset(slot, 0); 4423 4424 pci_slot_restore(slot); 4425 4426 return rc; 4427 } 4428 EXPORT_SYMBOL_GPL(pci_reset_slot); 4429 4430 /** 4431 * pci_try_reset_slot - Try to reset a PCI slot 4432 * @slot: PCI slot to reset 4433 * 4434 * Same as above except return -EAGAIN if the slot cannot be locked 4435 */ 4436 int pci_try_reset_slot(struct pci_slot *slot) 4437 { 4438 int rc; 4439 4440 rc = pci_slot_reset(slot, 1); 4441 if (rc) 4442 return rc; 4443 4444 pci_slot_save_and_disable(slot); 4445 4446 if (pci_slot_trylock(slot)) { 4447 might_sleep(); 4448 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 4449 pci_slot_unlock(slot); 4450 } else 4451 rc = -EAGAIN; 4452 4453 pci_slot_restore(slot); 4454 4455 return rc; 4456 } 4457 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 4458 4459 static int pci_bus_reset(struct pci_bus *bus, int probe) 4460 { 4461 if (!bus->self || !pci_bus_resetable(bus)) 4462 return -ENOTTY; 4463 4464 if (probe) 4465 return 0; 4466 4467 pci_bus_lock(bus); 4468 4469 might_sleep(); 4470 4471 pci_reset_bridge_secondary_bus(bus->self); 4472 4473 pci_bus_unlock(bus); 4474 4475 return 0; 4476 } 4477 4478 /** 4479 * pci_probe_reset_bus - probe whether a PCI bus can be reset 4480 * @bus: PCI bus to probe 4481 * 4482 * Return 0 if bus can be reset, negative if a bus reset is not supported. 4483 */ 4484 int pci_probe_reset_bus(struct pci_bus *bus) 4485 { 4486 return pci_bus_reset(bus, 1); 4487 } 4488 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 4489 4490 /** 4491 * pci_reset_bus - reset a PCI bus 4492 * @bus: top level PCI bus to reset 4493 * 4494 * Do a bus reset on the given bus and any subordinate buses, saving 4495 * and restoring state of all devices. 4496 * 4497 * Return 0 on success, non-zero on error. 4498 */ 4499 int pci_reset_bus(struct pci_bus *bus) 4500 { 4501 int rc; 4502 4503 rc = pci_bus_reset(bus, 1); 4504 if (rc) 4505 return rc; 4506 4507 pci_bus_save_and_disable(bus); 4508 4509 rc = pci_bus_reset(bus, 0); 4510 4511 pci_bus_restore(bus); 4512 4513 return rc; 4514 } 4515 EXPORT_SYMBOL_GPL(pci_reset_bus); 4516 4517 /** 4518 * pci_try_reset_bus - Try to reset a PCI bus 4519 * @bus: top level PCI bus to reset 4520 * 4521 * Same as above except return -EAGAIN if the bus cannot be locked 4522 */ 4523 int pci_try_reset_bus(struct pci_bus *bus) 4524 { 4525 int rc; 4526 4527 rc = pci_bus_reset(bus, 1); 4528 if (rc) 4529 return rc; 4530 4531 pci_bus_save_and_disable(bus); 4532 4533 if (pci_bus_trylock(bus)) { 4534 might_sleep(); 4535 pci_reset_bridge_secondary_bus(bus->self); 4536 pci_bus_unlock(bus); 4537 } else 4538 rc = -EAGAIN; 4539 4540 pci_bus_restore(bus); 4541 4542 return rc; 4543 } 4544 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 4545 4546 /** 4547 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 4548 * @dev: PCI device to query 4549 * 4550 * Returns mmrbc: maximum designed memory read count in bytes 4551 * or appropriate error value. 4552 */ 4553 int pcix_get_max_mmrbc(struct pci_dev *dev) 4554 { 4555 int cap; 4556 u32 stat; 4557 4558 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4559 if (!cap) 4560 return -EINVAL; 4561 4562 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4563 return -EINVAL; 4564 4565 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 4566 } 4567 EXPORT_SYMBOL(pcix_get_max_mmrbc); 4568 4569 /** 4570 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 4571 * @dev: PCI device to query 4572 * 4573 * Returns mmrbc: maximum memory read count in bytes 4574 * or appropriate error value. 4575 */ 4576 int pcix_get_mmrbc(struct pci_dev *dev) 4577 { 4578 int cap; 4579 u16 cmd; 4580 4581 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4582 if (!cap) 4583 return -EINVAL; 4584 4585 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4586 return -EINVAL; 4587 4588 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 4589 } 4590 EXPORT_SYMBOL(pcix_get_mmrbc); 4591 4592 /** 4593 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 4594 * @dev: PCI device to query 4595 * @mmrbc: maximum memory read count in bytes 4596 * valid values are 512, 1024, 2048, 4096 4597 * 4598 * If possible sets maximum memory read byte count, some bridges have erratas 4599 * that prevent this. 4600 */ 4601 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 4602 { 4603 int cap; 4604 u32 stat, v, o; 4605 u16 cmd; 4606 4607 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 4608 return -EINVAL; 4609 4610 v = ffs(mmrbc) - 10; 4611 4612 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4613 if (!cap) 4614 return -EINVAL; 4615 4616 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4617 return -EINVAL; 4618 4619 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 4620 return -E2BIG; 4621 4622 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4623 return -EINVAL; 4624 4625 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 4626 if (o != v) { 4627 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 4628 return -EIO; 4629 4630 cmd &= ~PCI_X_CMD_MAX_READ; 4631 cmd |= v << 2; 4632 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 4633 return -EIO; 4634 } 4635 return 0; 4636 } 4637 EXPORT_SYMBOL(pcix_set_mmrbc); 4638 4639 /** 4640 * pcie_get_readrq - get PCI Express read request size 4641 * @dev: PCI device to query 4642 * 4643 * Returns maximum memory read request in bytes 4644 * or appropriate error value. 4645 */ 4646 int pcie_get_readrq(struct pci_dev *dev) 4647 { 4648 u16 ctl; 4649 4650 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4651 4652 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 4653 } 4654 EXPORT_SYMBOL(pcie_get_readrq); 4655 4656 /** 4657 * pcie_set_readrq - set PCI Express maximum memory read request 4658 * @dev: PCI device to query 4659 * @rq: maximum memory read count in bytes 4660 * valid values are 128, 256, 512, 1024, 2048, 4096 4661 * 4662 * If possible sets maximum memory read request in bytes 4663 */ 4664 int pcie_set_readrq(struct pci_dev *dev, int rq) 4665 { 4666 u16 v; 4667 4668 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 4669 return -EINVAL; 4670 4671 /* 4672 * If using the "performance" PCIe config, we clamp the 4673 * read rq size to the max packet size to prevent the 4674 * host bridge generating requests larger than we can 4675 * cope with 4676 */ 4677 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 4678 int mps = pcie_get_mps(dev); 4679 4680 if (mps < rq) 4681 rq = mps; 4682 } 4683 4684 v = (ffs(rq) - 8) << 12; 4685 4686 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4687 PCI_EXP_DEVCTL_READRQ, v); 4688 } 4689 EXPORT_SYMBOL(pcie_set_readrq); 4690 4691 /** 4692 * pcie_get_mps - get PCI Express maximum payload size 4693 * @dev: PCI device to query 4694 * 4695 * Returns maximum payload size in bytes 4696 */ 4697 int pcie_get_mps(struct pci_dev *dev) 4698 { 4699 u16 ctl; 4700 4701 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4702 4703 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 4704 } 4705 EXPORT_SYMBOL(pcie_get_mps); 4706 4707 /** 4708 * pcie_set_mps - set PCI Express maximum payload size 4709 * @dev: PCI device to query 4710 * @mps: maximum payload size in bytes 4711 * valid values are 128, 256, 512, 1024, 2048, 4096 4712 * 4713 * If possible sets maximum payload size 4714 */ 4715 int pcie_set_mps(struct pci_dev *dev, int mps) 4716 { 4717 u16 v; 4718 4719 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 4720 return -EINVAL; 4721 4722 v = ffs(mps) - 8; 4723 if (v > dev->pcie_mpss) 4724 return -EINVAL; 4725 v <<= 5; 4726 4727 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4728 PCI_EXP_DEVCTL_PAYLOAD, v); 4729 } 4730 EXPORT_SYMBOL(pcie_set_mps); 4731 4732 /** 4733 * pcie_get_minimum_link - determine minimum link settings of a PCI device 4734 * @dev: PCI device to query 4735 * @speed: storage for minimum speed 4736 * @width: storage for minimum width 4737 * 4738 * This function will walk up the PCI device chain and determine the minimum 4739 * link width and speed of the device. 4740 */ 4741 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 4742 enum pcie_link_width *width) 4743 { 4744 int ret; 4745 4746 *speed = PCI_SPEED_UNKNOWN; 4747 *width = PCIE_LNK_WIDTH_UNKNOWN; 4748 4749 while (dev) { 4750 u16 lnksta; 4751 enum pci_bus_speed next_speed; 4752 enum pcie_link_width next_width; 4753 4754 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 4755 if (ret) 4756 return ret; 4757 4758 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 4759 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 4760 PCI_EXP_LNKSTA_NLW_SHIFT; 4761 4762 if (next_speed < *speed) 4763 *speed = next_speed; 4764 4765 if (next_width < *width) 4766 *width = next_width; 4767 4768 dev = dev->bus->self; 4769 } 4770 4771 return 0; 4772 } 4773 EXPORT_SYMBOL(pcie_get_minimum_link); 4774 4775 /** 4776 * pci_select_bars - Make BAR mask from the type of resource 4777 * @dev: the PCI device for which BAR mask is made 4778 * @flags: resource type mask to be selected 4779 * 4780 * This helper routine makes bar mask from the type of resource. 4781 */ 4782 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 4783 { 4784 int i, bars = 0; 4785 for (i = 0; i < PCI_NUM_RESOURCES; i++) 4786 if (pci_resource_flags(dev, i) & flags) 4787 bars |= (1 << i); 4788 return bars; 4789 } 4790 EXPORT_SYMBOL(pci_select_bars); 4791 4792 /** 4793 * pci_resource_bar - get position of the BAR associated with a resource 4794 * @dev: the PCI device 4795 * @resno: the resource number 4796 * @type: the BAR type to be filled in 4797 * 4798 * Returns BAR position in config space, or 0 if the BAR is invalid. 4799 */ 4800 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 4801 { 4802 int reg; 4803 4804 if (resno < PCI_ROM_RESOURCE) { 4805 *type = pci_bar_unknown; 4806 return PCI_BASE_ADDRESS_0 + 4 * resno; 4807 } else if (resno == PCI_ROM_RESOURCE) { 4808 *type = pci_bar_mem32; 4809 return dev->rom_base_reg; 4810 } else if (resno < PCI_BRIDGE_RESOURCES) { 4811 /* device specific resource */ 4812 *type = pci_bar_unknown; 4813 reg = pci_iov_resource_bar(dev, resno); 4814 if (reg) 4815 return reg; 4816 } 4817 4818 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno); 4819 return 0; 4820 } 4821 4822 /* Some architectures require additional programming to enable VGA */ 4823 static arch_set_vga_state_t arch_set_vga_state; 4824 4825 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 4826 { 4827 arch_set_vga_state = func; /* NULL disables */ 4828 } 4829 4830 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 4831 unsigned int command_bits, u32 flags) 4832 { 4833 if (arch_set_vga_state) 4834 return arch_set_vga_state(dev, decode, command_bits, 4835 flags); 4836 return 0; 4837 } 4838 4839 /** 4840 * pci_set_vga_state - set VGA decode state on device and parents if requested 4841 * @dev: the PCI device 4842 * @decode: true = enable decoding, false = disable decoding 4843 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 4844 * @flags: traverse ancestors and change bridges 4845 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 4846 */ 4847 int pci_set_vga_state(struct pci_dev *dev, bool decode, 4848 unsigned int command_bits, u32 flags) 4849 { 4850 struct pci_bus *bus; 4851 struct pci_dev *bridge; 4852 u16 cmd; 4853 int rc; 4854 4855 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 4856 4857 /* ARCH specific VGA enables */ 4858 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 4859 if (rc) 4860 return rc; 4861 4862 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 4863 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4864 if (decode == true) 4865 cmd |= command_bits; 4866 else 4867 cmd &= ~command_bits; 4868 pci_write_config_word(dev, PCI_COMMAND, cmd); 4869 } 4870 4871 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 4872 return 0; 4873 4874 bus = dev->bus; 4875 while (bus) { 4876 bridge = bus->self; 4877 if (bridge) { 4878 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 4879 &cmd); 4880 if (decode == true) 4881 cmd |= PCI_BRIDGE_CTL_VGA; 4882 else 4883 cmd &= ~PCI_BRIDGE_CTL_VGA; 4884 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 4885 cmd); 4886 } 4887 bus = bus->parent; 4888 } 4889 return 0; 4890 } 4891 4892 /** 4893 * pci_add_dma_alias - Add a DMA devfn alias for a device 4894 * @dev: the PCI device for which alias is added 4895 * @devfn: alias slot and function 4896 * 4897 * This helper encodes 8-bit devfn as bit number in dma_alias_mask. 4898 * It should be called early, preferably as PCI fixup header quirk. 4899 */ 4900 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 4901 { 4902 if (!dev->dma_alias_mask) 4903 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX), 4904 sizeof(long), GFP_KERNEL); 4905 if (!dev->dma_alias_mask) { 4906 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n"); 4907 return; 4908 } 4909 4910 set_bit(devfn, dev->dma_alias_mask); 4911 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n", 4912 PCI_SLOT(devfn), PCI_FUNC(devfn)); 4913 } 4914 4915 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 4916 { 4917 return (dev1->dma_alias_mask && 4918 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 4919 (dev2->dma_alias_mask && 4920 test_bit(dev1->devfn, dev2->dma_alias_mask)); 4921 } 4922 4923 bool pci_device_is_present(struct pci_dev *pdev) 4924 { 4925 u32 v; 4926 4927 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 4928 } 4929 EXPORT_SYMBOL_GPL(pci_device_is_present); 4930 4931 void pci_ignore_hotplug(struct pci_dev *dev) 4932 { 4933 struct pci_dev *bridge = dev->bus->self; 4934 4935 dev->ignore_hotplug = 1; 4936 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 4937 if (bridge) 4938 bridge->ignore_hotplug = 1; 4939 } 4940 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 4941 4942 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 4943 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 4944 static DEFINE_SPINLOCK(resource_alignment_lock); 4945 4946 /** 4947 * pci_specified_resource_alignment - get resource alignment specified by user. 4948 * @dev: the PCI device to get 4949 * 4950 * RETURNS: Resource alignment if it is specified. 4951 * Zero if it is not specified. 4952 */ 4953 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 4954 { 4955 int seg, bus, slot, func, align_order, count; 4956 unsigned short vendor, device, subsystem_vendor, subsystem_device; 4957 resource_size_t align = 0; 4958 char *p; 4959 4960 spin_lock(&resource_alignment_lock); 4961 p = resource_alignment_param; 4962 while (*p) { 4963 count = 0; 4964 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 4965 p[count] == '@') { 4966 p += count + 1; 4967 } else { 4968 align_order = -1; 4969 } 4970 if (strncmp(p, "pci:", 4) == 0) { 4971 /* PCI vendor/device (subvendor/subdevice) ids are specified */ 4972 p += 4; 4973 if (sscanf(p, "%hx:%hx:%hx:%hx%n", 4974 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) { 4975 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) { 4976 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n", 4977 p); 4978 break; 4979 } 4980 subsystem_vendor = subsystem_device = 0; 4981 } 4982 p += count; 4983 if ((!vendor || (vendor == dev->vendor)) && 4984 (!device || (device == dev->device)) && 4985 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) && 4986 (!subsystem_device || (subsystem_device == dev->subsystem_device))) { 4987 if (align_order == -1) 4988 align = PAGE_SIZE; 4989 else 4990 align = 1 << align_order; 4991 /* Found */ 4992 break; 4993 } 4994 } 4995 else { 4996 if (sscanf(p, "%x:%x:%x.%x%n", 4997 &seg, &bus, &slot, &func, &count) != 4) { 4998 seg = 0; 4999 if (sscanf(p, "%x:%x.%x%n", 5000 &bus, &slot, &func, &count) != 3) { 5001 /* Invalid format */ 5002 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 5003 p); 5004 break; 5005 } 5006 } 5007 p += count; 5008 if (seg == pci_domain_nr(dev->bus) && 5009 bus == dev->bus->number && 5010 slot == PCI_SLOT(dev->devfn) && 5011 func == PCI_FUNC(dev->devfn)) { 5012 if (align_order == -1) 5013 align = PAGE_SIZE; 5014 else 5015 align = 1 << align_order; 5016 /* Found */ 5017 break; 5018 } 5019 } 5020 if (*p != ';' && *p != ',') { 5021 /* End of param or invalid format */ 5022 break; 5023 } 5024 p++; 5025 } 5026 spin_unlock(&resource_alignment_lock); 5027 return align; 5028 } 5029 5030 /* 5031 * This function disables memory decoding and releases memory resources 5032 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 5033 * It also rounds up size to specified alignment. 5034 * Later on, the kernel will assign page-aligned memory resource back 5035 * to the device. 5036 */ 5037 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 5038 { 5039 int i; 5040 struct resource *r; 5041 resource_size_t align, size; 5042 u16 command; 5043 5044 /* check if specified PCI is target device to reassign */ 5045 align = pci_specified_resource_alignment(dev); 5046 if (!align) 5047 return; 5048 5049 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 5050 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 5051 dev_warn(&dev->dev, 5052 "Can't reassign resources to host bridge.\n"); 5053 return; 5054 } 5055 5056 dev_info(&dev->dev, 5057 "Disabling memory decoding and releasing memory resources.\n"); 5058 pci_read_config_word(dev, PCI_COMMAND, &command); 5059 command &= ~PCI_COMMAND_MEMORY; 5060 pci_write_config_word(dev, PCI_COMMAND, command); 5061 5062 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { 5063 r = &dev->resource[i]; 5064 if (!(r->flags & IORESOURCE_MEM)) 5065 continue; 5066 size = resource_size(r); 5067 if (size < align) { 5068 size = align; 5069 dev_info(&dev->dev, 5070 "Rounding up size of resource #%d to %#llx.\n", 5071 i, (unsigned long long)size); 5072 } 5073 r->flags |= IORESOURCE_UNSET; 5074 r->end = size - 1; 5075 r->start = 0; 5076 } 5077 /* Need to disable bridge's resource window, 5078 * to enable the kernel to reassign new resource 5079 * window later on. 5080 */ 5081 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 5082 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 5083 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 5084 r = &dev->resource[i]; 5085 if (!(r->flags & IORESOURCE_MEM)) 5086 continue; 5087 r->flags |= IORESOURCE_UNSET; 5088 r->end = resource_size(r) - 1; 5089 r->start = 0; 5090 } 5091 pci_disable_bridge_window(dev); 5092 } 5093 } 5094 5095 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 5096 { 5097 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 5098 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 5099 spin_lock(&resource_alignment_lock); 5100 strncpy(resource_alignment_param, buf, count); 5101 resource_alignment_param[count] = '\0'; 5102 spin_unlock(&resource_alignment_lock); 5103 return count; 5104 } 5105 5106 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 5107 { 5108 size_t count; 5109 spin_lock(&resource_alignment_lock); 5110 count = snprintf(buf, size, "%s", resource_alignment_param); 5111 spin_unlock(&resource_alignment_lock); 5112 return count; 5113 } 5114 5115 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 5116 { 5117 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 5118 } 5119 5120 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 5121 const char *buf, size_t count) 5122 { 5123 return pci_set_resource_alignment_param(buf, count); 5124 } 5125 5126 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 5127 pci_resource_alignment_store); 5128 5129 static int __init pci_resource_alignment_sysfs_init(void) 5130 { 5131 return bus_create_file(&pci_bus_type, 5132 &bus_attr_resource_alignment); 5133 } 5134 late_initcall(pci_resource_alignment_sysfs_init); 5135 5136 static void pci_no_domains(void) 5137 { 5138 #ifdef CONFIG_PCI_DOMAINS 5139 pci_domains_supported = 0; 5140 #endif 5141 } 5142 5143 #ifdef CONFIG_PCI_DOMAINS 5144 static atomic_t __domain_nr = ATOMIC_INIT(-1); 5145 5146 int pci_get_new_domain_nr(void) 5147 { 5148 return atomic_inc_return(&__domain_nr); 5149 } 5150 5151 #ifdef CONFIG_PCI_DOMAINS_GENERIC 5152 static int of_pci_bus_find_domain_nr(struct device *parent) 5153 { 5154 static int use_dt_domains = -1; 5155 int domain = -1; 5156 5157 if (parent) 5158 domain = of_get_pci_domain_nr(parent->of_node); 5159 /* 5160 * Check DT domain and use_dt_domains values. 5161 * 5162 * If DT domain property is valid (domain >= 0) and 5163 * use_dt_domains != 0, the DT assignment is valid since this means 5164 * we have not previously allocated a domain number by using 5165 * pci_get_new_domain_nr(); we should also update use_dt_domains to 5166 * 1, to indicate that we have just assigned a domain number from 5167 * DT. 5168 * 5169 * If DT domain property value is not valid (ie domain < 0), and we 5170 * have not previously assigned a domain number from DT 5171 * (use_dt_domains != 1) we should assign a domain number by 5172 * using the: 5173 * 5174 * pci_get_new_domain_nr() 5175 * 5176 * API and update the use_dt_domains value to keep track of method we 5177 * are using to assign domain numbers (use_dt_domains = 0). 5178 * 5179 * All other combinations imply we have a platform that is trying 5180 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 5181 * which is a recipe for domain mishandling and it is prevented by 5182 * invalidating the domain value (domain = -1) and printing a 5183 * corresponding error. 5184 */ 5185 if (domain >= 0 && use_dt_domains) { 5186 use_dt_domains = 1; 5187 } else if (domain < 0 && use_dt_domains != 1) { 5188 use_dt_domains = 0; 5189 domain = pci_get_new_domain_nr(); 5190 } else { 5191 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n", 5192 parent->of_node->full_name); 5193 domain = -1; 5194 } 5195 5196 return domain; 5197 } 5198 5199 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 5200 { 5201 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 5202 acpi_pci_bus_find_domain_nr(bus); 5203 } 5204 #endif 5205 #endif 5206 5207 /** 5208 * pci_ext_cfg_avail - can we access extended PCI config space? 5209 * 5210 * Returns 1 if we can access PCI extended config space (offsets 5211 * greater than 0xff). This is the default implementation. Architecture 5212 * implementations can override this. 5213 */ 5214 int __weak pci_ext_cfg_avail(void) 5215 { 5216 return 1; 5217 } 5218 5219 void __weak pci_fixup_cardbus(struct pci_bus *bus) 5220 { 5221 } 5222 EXPORT_SYMBOL(pci_fixup_cardbus); 5223 5224 static int __init pci_setup(char *str) 5225 { 5226 while (str) { 5227 char *k = strchr(str, ','); 5228 if (k) 5229 *k++ = 0; 5230 if (*str && (str = pcibios_setup(str)) && *str) { 5231 if (!strcmp(str, "nomsi")) { 5232 pci_no_msi(); 5233 } else if (!strcmp(str, "noaer")) { 5234 pci_no_aer(); 5235 } else if (!strncmp(str, "realloc=", 8)) { 5236 pci_realloc_get_opt(str + 8); 5237 } else if (!strncmp(str, "realloc", 7)) { 5238 pci_realloc_get_opt("on"); 5239 } else if (!strcmp(str, "nodomains")) { 5240 pci_no_domains(); 5241 } else if (!strncmp(str, "noari", 5)) { 5242 pcie_ari_disabled = true; 5243 } else if (!strncmp(str, "cbiosize=", 9)) { 5244 pci_cardbus_io_size = memparse(str + 9, &str); 5245 } else if (!strncmp(str, "cbmemsize=", 10)) { 5246 pci_cardbus_mem_size = memparse(str + 10, &str); 5247 } else if (!strncmp(str, "resource_alignment=", 19)) { 5248 pci_set_resource_alignment_param(str + 19, 5249 strlen(str + 19)); 5250 } else if (!strncmp(str, "ecrc=", 5)) { 5251 pcie_ecrc_get_policy(str + 5); 5252 } else if (!strncmp(str, "hpiosize=", 9)) { 5253 pci_hotplug_io_size = memparse(str + 9, &str); 5254 } else if (!strncmp(str, "hpmemsize=", 10)) { 5255 pci_hotplug_mem_size = memparse(str + 10, &str); 5256 } else if (!strncmp(str, "hpbussize=", 10)) { 5257 pci_hotplug_bus_size = 5258 simple_strtoul(str + 10, &str, 0); 5259 if (pci_hotplug_bus_size > 0xff) 5260 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 5261 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 5262 pcie_bus_config = PCIE_BUS_TUNE_OFF; 5263 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 5264 pcie_bus_config = PCIE_BUS_SAFE; 5265 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 5266 pcie_bus_config = PCIE_BUS_PERFORMANCE; 5267 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 5268 pcie_bus_config = PCIE_BUS_PEER2PEER; 5269 } else if (!strncmp(str, "pcie_scan_all", 13)) { 5270 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 5271 } else { 5272 printk(KERN_ERR "PCI: Unknown option `%s'\n", 5273 str); 5274 } 5275 } 5276 str = k; 5277 } 5278 return 0; 5279 } 5280 early_param("pci", pci_setup); 5281