1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include "pci.h" 35 36 DEFINE_MUTEX(pci_slot_mutex); 37 38 const char *pci_power_names[] = { 39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 40 }; 41 EXPORT_SYMBOL_GPL(pci_power_names); 42 43 int isa_dma_bridge_buggy; 44 EXPORT_SYMBOL(isa_dma_bridge_buggy); 45 46 int pci_pci_problems; 47 EXPORT_SYMBOL(pci_pci_problems); 48 49 unsigned int pci_pm_d3hot_delay; 50 51 static void pci_pme_list_scan(struct work_struct *work); 52 53 static LIST_HEAD(pci_pme_list); 54 static DEFINE_MUTEX(pci_pme_list_mutex); 55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 56 57 struct pci_pme_device { 58 struct list_head list; 59 struct pci_dev *dev; 60 }; 61 62 #define PME_TIMEOUT 1000 /* How long between PME checks */ 63 64 static void pci_dev_d3_sleep(struct pci_dev *dev) 65 { 66 unsigned int delay = dev->d3hot_delay; 67 68 if (delay < pci_pm_d3hot_delay) 69 delay = pci_pm_d3hot_delay; 70 71 if (delay) 72 msleep(delay); 73 } 74 75 #ifdef CONFIG_PCI_DOMAINS 76 int pci_domains_supported = 1; 77 #endif 78 79 #define DEFAULT_CARDBUS_IO_SIZE (256) 80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 84 85 #define DEFAULT_HOTPLUG_IO_SIZE (256) 86 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 88 /* hpiosize=nn can override this */ 89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 90 /* 91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 93 * pci=hpmemsize=nnM overrides both 94 */ 95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 97 98 #define DEFAULT_HOTPLUG_BUS_SIZE 1 99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 100 101 102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 105 #elif defined CONFIG_PCIE_BUS_SAFE 106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 109 #elif defined CONFIG_PCIE_BUS_PEER2PEER 110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 111 #else 112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 113 #endif 114 115 /* 116 * The default CLS is used if arch didn't set CLS explicitly and not 117 * all pci devices agree on the same value. Arch can override either 118 * the dfl or actual value as it sees fit. Don't forget this is 119 * measured in 32-bit words, not bytes. 120 */ 121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 122 u8 pci_cache_line_size; 123 124 /* 125 * If we set up a device for bus mastering, we need to check the latency 126 * timer as certain BIOSes forget to set it properly. 127 */ 128 unsigned int pcibios_max_latency = 255; 129 130 /* If set, the PCIe ARI capability will not be used. */ 131 static bool pcie_ari_disabled; 132 133 /* If set, the PCIe ATS capability will not be used. */ 134 static bool pcie_ats_disabled; 135 136 /* If set, the PCI config space of each device is printed during boot. */ 137 bool pci_early_dump; 138 139 bool pci_ats_disabled(void) 140 { 141 return pcie_ats_disabled; 142 } 143 EXPORT_SYMBOL_GPL(pci_ats_disabled); 144 145 /* Disable bridge_d3 for all PCIe ports */ 146 static bool pci_bridge_d3_disable; 147 /* Force bridge_d3 for all PCIe ports */ 148 static bool pci_bridge_d3_force; 149 150 static int __init pcie_port_pm_setup(char *str) 151 { 152 if (!strcmp(str, "off")) 153 pci_bridge_d3_disable = true; 154 else if (!strcmp(str, "force")) 155 pci_bridge_d3_force = true; 156 return 1; 157 } 158 __setup("pcie_port_pm=", pcie_port_pm_setup); 159 160 /* Time to wait after a reset for device to become responsive */ 161 #define PCIE_RESET_READY_POLL_MS 60000 162 163 /** 164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 165 * @bus: pointer to PCI bus structure to search 166 * 167 * Given a PCI bus, returns the highest PCI bus number present in the set 168 * including the given PCI bus and its list of child PCI buses. 169 */ 170 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 171 { 172 struct pci_bus *tmp; 173 unsigned char max, n; 174 175 max = bus->busn_res.end; 176 list_for_each_entry(tmp, &bus->children, node) { 177 n = pci_bus_max_busnr(tmp); 178 if (n > max) 179 max = n; 180 } 181 return max; 182 } 183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 184 185 /** 186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 187 * @pdev: the PCI device 188 * 189 * Returns error bits set in PCI_STATUS and clears them. 190 */ 191 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 192 { 193 u16 status; 194 int ret; 195 196 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 197 if (ret != PCIBIOS_SUCCESSFUL) 198 return -EIO; 199 200 status &= PCI_STATUS_ERROR_BITS; 201 if (status) 202 pci_write_config_word(pdev, PCI_STATUS, status); 203 204 return status; 205 } 206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 207 208 #ifdef CONFIG_HAS_IOMEM 209 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 210 { 211 struct resource *res = &pdev->resource[bar]; 212 213 /* 214 * Make sure the BAR is actually a memory resource, not an IO resource 215 */ 216 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 217 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 218 return NULL; 219 } 220 return ioremap(res->start, resource_size(res)); 221 } 222 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 223 224 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 225 { 226 /* 227 * Make sure the BAR is actually a memory resource, not an IO resource 228 */ 229 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 230 WARN_ON(1); 231 return NULL; 232 } 233 return ioremap_wc(pci_resource_start(pdev, bar), 234 pci_resource_len(pdev, bar)); 235 } 236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 237 #endif 238 239 /** 240 * pci_dev_str_match_path - test if a path string matches a device 241 * @dev: the PCI device to test 242 * @path: string to match the device against 243 * @endptr: pointer to the string after the match 244 * 245 * Test if a string (typically from a kernel parameter) formatted as a 246 * path of device/function addresses matches a PCI device. The string must 247 * be of the form: 248 * 249 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 250 * 251 * A path for a device can be obtained using 'lspci -t'. Using a path 252 * is more robust against bus renumbering than using only a single bus, 253 * device and function address. 254 * 255 * Returns 1 if the string matches the device, 0 if it does not and 256 * a negative error code if it fails to parse the string. 257 */ 258 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 259 const char **endptr) 260 { 261 int ret; 262 int seg, bus, slot, func; 263 char *wpath, *p; 264 char end; 265 266 *endptr = strchrnul(path, ';'); 267 268 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 269 if (!wpath) 270 return -ENOMEM; 271 272 while (1) { 273 p = strrchr(wpath, '/'); 274 if (!p) 275 break; 276 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 277 if (ret != 2) { 278 ret = -EINVAL; 279 goto free_and_exit; 280 } 281 282 if (dev->devfn != PCI_DEVFN(slot, func)) { 283 ret = 0; 284 goto free_and_exit; 285 } 286 287 /* 288 * Note: we don't need to get a reference to the upstream 289 * bridge because we hold a reference to the top level 290 * device which should hold a reference to the bridge, 291 * and so on. 292 */ 293 dev = pci_upstream_bridge(dev); 294 if (!dev) { 295 ret = 0; 296 goto free_and_exit; 297 } 298 299 *p = 0; 300 } 301 302 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 303 &func, &end); 304 if (ret != 4) { 305 seg = 0; 306 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 307 if (ret != 3) { 308 ret = -EINVAL; 309 goto free_and_exit; 310 } 311 } 312 313 ret = (seg == pci_domain_nr(dev->bus) && 314 bus == dev->bus->number && 315 dev->devfn == PCI_DEVFN(slot, func)); 316 317 free_and_exit: 318 kfree(wpath); 319 return ret; 320 } 321 322 /** 323 * pci_dev_str_match - test if a string matches a device 324 * @dev: the PCI device to test 325 * @p: string to match the device against 326 * @endptr: pointer to the string after the match 327 * 328 * Test if a string (typically from a kernel parameter) matches a specified 329 * PCI device. The string may be of one of the following formats: 330 * 331 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 332 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 333 * 334 * The first format specifies a PCI bus/device/function address which 335 * may change if new hardware is inserted, if motherboard firmware changes, 336 * or due to changes caused in kernel parameters. If the domain is 337 * left unspecified, it is taken to be 0. In order to be robust against 338 * bus renumbering issues, a path of PCI device/function numbers may be used 339 * to address the specific device. The path for a device can be determined 340 * through the use of 'lspci -t'. 341 * 342 * The second format matches devices using IDs in the configuration 343 * space which may match multiple devices in the system. A value of 0 344 * for any field will match all devices. (Note: this differs from 345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 346 * legacy reasons and convenience so users don't have to specify 347 * FFFFFFFFs on the command line.) 348 * 349 * Returns 1 if the string matches the device, 0 if it does not and 350 * a negative error code if the string cannot be parsed. 351 */ 352 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 353 const char **endptr) 354 { 355 int ret; 356 int count; 357 unsigned short vendor, device, subsystem_vendor, subsystem_device; 358 359 if (strncmp(p, "pci:", 4) == 0) { 360 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 361 p += 4; 362 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 363 &subsystem_vendor, &subsystem_device, &count); 364 if (ret != 4) { 365 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 366 if (ret != 2) 367 return -EINVAL; 368 369 subsystem_vendor = 0; 370 subsystem_device = 0; 371 } 372 373 p += count; 374 375 if ((!vendor || vendor == dev->vendor) && 376 (!device || device == dev->device) && 377 (!subsystem_vendor || 378 subsystem_vendor == dev->subsystem_vendor) && 379 (!subsystem_device || 380 subsystem_device == dev->subsystem_device)) 381 goto found; 382 } else { 383 /* 384 * PCI Bus, Device, Function IDs are specified 385 * (optionally, may include a path of devfns following it) 386 */ 387 ret = pci_dev_str_match_path(dev, p, &p); 388 if (ret < 0) 389 return ret; 390 else if (ret) 391 goto found; 392 } 393 394 *endptr = p; 395 return 0; 396 397 found: 398 *endptr = p; 399 return 1; 400 } 401 402 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 403 u8 pos, int cap, int *ttl) 404 { 405 u8 id; 406 u16 ent; 407 408 pci_bus_read_config_byte(bus, devfn, pos, &pos); 409 410 while ((*ttl)--) { 411 if (pos < 0x40) 412 break; 413 pos &= ~3; 414 pci_bus_read_config_word(bus, devfn, pos, &ent); 415 416 id = ent & 0xff; 417 if (id == 0xff) 418 break; 419 if (id == cap) 420 return pos; 421 pos = (ent >> 8); 422 } 423 return 0; 424 } 425 426 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 427 u8 pos, int cap) 428 { 429 int ttl = PCI_FIND_CAP_TTL; 430 431 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 432 } 433 434 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 435 { 436 return __pci_find_next_cap(dev->bus, dev->devfn, 437 pos + PCI_CAP_LIST_NEXT, cap); 438 } 439 EXPORT_SYMBOL_GPL(pci_find_next_capability); 440 441 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 442 unsigned int devfn, u8 hdr_type) 443 { 444 u16 status; 445 446 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 447 if (!(status & PCI_STATUS_CAP_LIST)) 448 return 0; 449 450 switch (hdr_type) { 451 case PCI_HEADER_TYPE_NORMAL: 452 case PCI_HEADER_TYPE_BRIDGE: 453 return PCI_CAPABILITY_LIST; 454 case PCI_HEADER_TYPE_CARDBUS: 455 return PCI_CB_CAPABILITY_LIST; 456 } 457 458 return 0; 459 } 460 461 /** 462 * pci_find_capability - query for devices' capabilities 463 * @dev: PCI device to query 464 * @cap: capability code 465 * 466 * Tell if a device supports a given PCI capability. 467 * Returns the address of the requested capability structure within the 468 * device's PCI configuration space or 0 in case the device does not 469 * support it. Possible values for @cap include: 470 * 471 * %PCI_CAP_ID_PM Power Management 472 * %PCI_CAP_ID_AGP Accelerated Graphics Port 473 * %PCI_CAP_ID_VPD Vital Product Data 474 * %PCI_CAP_ID_SLOTID Slot Identification 475 * %PCI_CAP_ID_MSI Message Signalled Interrupts 476 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 477 * %PCI_CAP_ID_PCIX PCI-X 478 * %PCI_CAP_ID_EXP PCI Express 479 */ 480 u8 pci_find_capability(struct pci_dev *dev, int cap) 481 { 482 u8 pos; 483 484 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 485 if (pos) 486 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 487 488 return pos; 489 } 490 EXPORT_SYMBOL(pci_find_capability); 491 492 /** 493 * pci_bus_find_capability - query for devices' capabilities 494 * @bus: the PCI bus to query 495 * @devfn: PCI device to query 496 * @cap: capability code 497 * 498 * Like pci_find_capability() but works for PCI devices that do not have a 499 * pci_dev structure set up yet. 500 * 501 * Returns the address of the requested capability structure within the 502 * device's PCI configuration space or 0 in case the device does not 503 * support it. 504 */ 505 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 506 { 507 u8 hdr_type, pos; 508 509 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 510 511 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 512 if (pos) 513 pos = __pci_find_next_cap(bus, devfn, pos, cap); 514 515 return pos; 516 } 517 EXPORT_SYMBOL(pci_bus_find_capability); 518 519 /** 520 * pci_find_next_ext_capability - Find an extended capability 521 * @dev: PCI device to query 522 * @start: address at which to start looking (0 to start at beginning of list) 523 * @cap: capability code 524 * 525 * Returns the address of the next matching extended capability structure 526 * within the device's PCI configuration space or 0 if the device does 527 * not support it. Some capabilities can occur several times, e.g., the 528 * vendor-specific capability, and this provides a way to find them all. 529 */ 530 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 531 { 532 u32 header; 533 int ttl; 534 u16 pos = PCI_CFG_SPACE_SIZE; 535 536 /* minimum 8 bytes per capability */ 537 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 538 539 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 540 return 0; 541 542 if (start) 543 pos = start; 544 545 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 546 return 0; 547 548 /* 549 * If we have no capabilities, this is indicated by cap ID, 550 * cap version and next pointer all being 0. 551 */ 552 if (header == 0) 553 return 0; 554 555 while (ttl-- > 0) { 556 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 557 return pos; 558 559 pos = PCI_EXT_CAP_NEXT(header); 560 if (pos < PCI_CFG_SPACE_SIZE) 561 break; 562 563 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 564 break; 565 } 566 567 return 0; 568 } 569 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 570 571 /** 572 * pci_find_ext_capability - Find an extended capability 573 * @dev: PCI device to query 574 * @cap: capability code 575 * 576 * Returns the address of the requested extended capability structure 577 * within the device's PCI configuration space or 0 if the device does 578 * not support it. Possible values for @cap include: 579 * 580 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 581 * %PCI_EXT_CAP_ID_VC Virtual Channel 582 * %PCI_EXT_CAP_ID_DSN Device Serial Number 583 * %PCI_EXT_CAP_ID_PWR Power Budgeting 584 */ 585 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 586 { 587 return pci_find_next_ext_capability(dev, 0, cap); 588 } 589 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 590 591 /** 592 * pci_get_dsn - Read and return the 8-byte Device Serial Number 593 * @dev: PCI device to query 594 * 595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 596 * Number. 597 * 598 * Returns the DSN, or zero if the capability does not exist. 599 */ 600 u64 pci_get_dsn(struct pci_dev *dev) 601 { 602 u32 dword; 603 u64 dsn; 604 int pos; 605 606 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 607 if (!pos) 608 return 0; 609 610 /* 611 * The Device Serial Number is two dwords offset 4 bytes from the 612 * capability position. The specification says that the first dword is 613 * the lower half, and the second dword is the upper half. 614 */ 615 pos += 4; 616 pci_read_config_dword(dev, pos, &dword); 617 dsn = (u64)dword; 618 pci_read_config_dword(dev, pos + 4, &dword); 619 dsn |= ((u64)dword) << 32; 620 621 return dsn; 622 } 623 EXPORT_SYMBOL_GPL(pci_get_dsn); 624 625 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 626 { 627 int rc, ttl = PCI_FIND_CAP_TTL; 628 u8 cap, mask; 629 630 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 631 mask = HT_3BIT_CAP_MASK; 632 else 633 mask = HT_5BIT_CAP_MASK; 634 635 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 636 PCI_CAP_ID_HT, &ttl); 637 while (pos) { 638 rc = pci_read_config_byte(dev, pos + 3, &cap); 639 if (rc != PCIBIOS_SUCCESSFUL) 640 return 0; 641 642 if ((cap & mask) == ht_cap) 643 return pos; 644 645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 646 pos + PCI_CAP_LIST_NEXT, 647 PCI_CAP_ID_HT, &ttl); 648 } 649 650 return 0; 651 } 652 653 /** 654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 655 * @dev: PCI device to query 656 * @pos: Position from which to continue searching 657 * @ht_cap: HyperTransport capability code 658 * 659 * To be used in conjunction with pci_find_ht_capability() to search for 660 * all capabilities matching @ht_cap. @pos should always be a value returned 661 * from pci_find_ht_capability(). 662 * 663 * NB. To be 100% safe against broken PCI devices, the caller should take 664 * steps to avoid an infinite loop. 665 */ 666 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 667 { 668 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 669 } 670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 671 672 /** 673 * pci_find_ht_capability - query a device's HyperTransport capabilities 674 * @dev: PCI device to query 675 * @ht_cap: HyperTransport capability code 676 * 677 * Tell if a device supports a given HyperTransport capability. 678 * Returns an address within the device's PCI configuration space 679 * or 0 in case the device does not support the request capability. 680 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 681 * which has a HyperTransport capability matching @ht_cap. 682 */ 683 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 684 { 685 u8 pos; 686 687 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 688 if (pos) 689 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 690 691 return pos; 692 } 693 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 694 695 /** 696 * pci_find_parent_resource - return resource region of parent bus of given 697 * region 698 * @dev: PCI device structure contains resources to be searched 699 * @res: child resource record for which parent is sought 700 * 701 * For given resource region of given device, return the resource region of 702 * parent bus the given region is contained in. 703 */ 704 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 705 struct resource *res) 706 { 707 const struct pci_bus *bus = dev->bus; 708 struct resource *r; 709 int i; 710 711 pci_bus_for_each_resource(bus, r, i) { 712 if (!r) 713 continue; 714 if (resource_contains(r, res)) { 715 716 /* 717 * If the window is prefetchable but the BAR is 718 * not, the allocator made a mistake. 719 */ 720 if (r->flags & IORESOURCE_PREFETCH && 721 !(res->flags & IORESOURCE_PREFETCH)) 722 return NULL; 723 724 /* 725 * If we're below a transparent bridge, there may 726 * be both a positively-decoded aperture and a 727 * subtractively-decoded region that contain the BAR. 728 * We want the positively-decoded one, so this depends 729 * on pci_bus_for_each_resource() giving us those 730 * first. 731 */ 732 return r; 733 } 734 } 735 return NULL; 736 } 737 EXPORT_SYMBOL(pci_find_parent_resource); 738 739 /** 740 * pci_find_resource - Return matching PCI device resource 741 * @dev: PCI device to query 742 * @res: Resource to look for 743 * 744 * Goes over standard PCI resources (BARs) and checks if the given resource 745 * is partially or fully contained in any of them. In that case the 746 * matching resource is returned, %NULL otherwise. 747 */ 748 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 749 { 750 int i; 751 752 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 753 struct resource *r = &dev->resource[i]; 754 755 if (r->start && resource_contains(r, res)) 756 return r; 757 } 758 759 return NULL; 760 } 761 EXPORT_SYMBOL(pci_find_resource); 762 763 /** 764 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 765 * @dev: the PCI device to operate on 766 * @pos: config space offset of status word 767 * @mask: mask of bit(s) to care about in status word 768 * 769 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 770 */ 771 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 772 { 773 int i; 774 775 /* Wait for Transaction Pending bit clean */ 776 for (i = 0; i < 4; i++) { 777 u16 status; 778 if (i) 779 msleep((1 << (i - 1)) * 100); 780 781 pci_read_config_word(dev, pos, &status); 782 if (!(status & mask)) 783 return 1; 784 } 785 786 return 0; 787 } 788 789 static int pci_acs_enable; 790 791 /** 792 * pci_request_acs - ask for ACS to be enabled if supported 793 */ 794 void pci_request_acs(void) 795 { 796 pci_acs_enable = 1; 797 } 798 799 static const char *disable_acs_redir_param; 800 801 /** 802 * pci_disable_acs_redir - disable ACS redirect capabilities 803 * @dev: the PCI device 804 * 805 * For only devices specified in the disable_acs_redir parameter. 806 */ 807 static void pci_disable_acs_redir(struct pci_dev *dev) 808 { 809 int ret = 0; 810 const char *p; 811 int pos; 812 u16 ctrl; 813 814 if (!disable_acs_redir_param) 815 return; 816 817 p = disable_acs_redir_param; 818 while (*p) { 819 ret = pci_dev_str_match(dev, p, &p); 820 if (ret < 0) { 821 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 822 disable_acs_redir_param); 823 824 break; 825 } else if (ret == 1) { 826 /* Found a match */ 827 break; 828 } 829 830 if (*p != ';' && *p != ',') { 831 /* End of param or invalid format */ 832 break; 833 } 834 p++; 835 } 836 837 if (ret != 1) 838 return; 839 840 if (!pci_dev_specific_disable_acs_redir(dev)) 841 return; 842 843 pos = dev->acs_cap; 844 if (!pos) { 845 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 846 return; 847 } 848 849 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 850 851 /* P2P Request & Completion Redirect */ 852 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 853 854 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 855 856 pci_info(dev, "disabled ACS redirect\n"); 857 } 858 859 /** 860 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 861 * @dev: the PCI device 862 */ 863 static void pci_std_enable_acs(struct pci_dev *dev) 864 { 865 int pos; 866 u16 cap; 867 u16 ctrl; 868 869 pos = dev->acs_cap; 870 if (!pos) 871 return; 872 873 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 874 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 875 876 /* Source Validation */ 877 ctrl |= (cap & PCI_ACS_SV); 878 879 /* P2P Request Redirect */ 880 ctrl |= (cap & PCI_ACS_RR); 881 882 /* P2P Completion Redirect */ 883 ctrl |= (cap & PCI_ACS_CR); 884 885 /* Upstream Forwarding */ 886 ctrl |= (cap & PCI_ACS_UF); 887 888 /* Enable Translation Blocking for external devices */ 889 if (dev->external_facing || dev->untrusted) 890 ctrl |= (cap & PCI_ACS_TB); 891 892 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 893 } 894 895 /** 896 * pci_enable_acs - enable ACS if hardware support it 897 * @dev: the PCI device 898 */ 899 static void pci_enable_acs(struct pci_dev *dev) 900 { 901 if (!pci_acs_enable) 902 goto disable_acs_redir; 903 904 if (!pci_dev_specific_enable_acs(dev)) 905 goto disable_acs_redir; 906 907 pci_std_enable_acs(dev); 908 909 disable_acs_redir: 910 /* 911 * Note: pci_disable_acs_redir() must be called even if ACS was not 912 * enabled by the kernel because it may have been enabled by 913 * platform firmware. So if we are told to disable it, we should 914 * always disable it after setting the kernel's default 915 * preferences. 916 */ 917 pci_disable_acs_redir(dev); 918 } 919 920 /** 921 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 922 * @dev: PCI device to have its BARs restored 923 * 924 * Restore the BAR values for a given device, so as to make it 925 * accessible by its driver. 926 */ 927 static void pci_restore_bars(struct pci_dev *dev) 928 { 929 int i; 930 931 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 932 pci_update_resource(dev, i); 933 } 934 935 static const struct pci_platform_pm_ops *pci_platform_pm; 936 937 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 938 { 939 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 940 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 941 return -EINVAL; 942 pci_platform_pm = ops; 943 return 0; 944 } 945 946 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 947 { 948 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 949 } 950 951 static inline int platform_pci_set_power_state(struct pci_dev *dev, 952 pci_power_t t) 953 { 954 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 955 } 956 957 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 958 { 959 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 960 } 961 962 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 963 { 964 if (pci_platform_pm && pci_platform_pm->refresh_state) 965 pci_platform_pm->refresh_state(dev); 966 } 967 968 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 969 { 970 return pci_platform_pm ? 971 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 972 } 973 974 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 975 { 976 return pci_platform_pm ? 977 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 978 } 979 980 static inline bool platform_pci_need_resume(struct pci_dev *dev) 981 { 982 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 983 } 984 985 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 986 { 987 if (pci_platform_pm && pci_platform_pm->bridge_d3) 988 return pci_platform_pm->bridge_d3(dev); 989 return false; 990 } 991 992 /** 993 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 994 * given PCI device 995 * @dev: PCI device to handle. 996 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 997 * 998 * RETURN VALUE: 999 * -EINVAL if the requested state is invalid. 1000 * -EIO if device does not support PCI PM or its PM capabilities register has a 1001 * wrong version, or device doesn't support the requested state. 1002 * 0 if device already is in the requested state. 1003 * 0 if device's power state has been successfully changed. 1004 */ 1005 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 1006 { 1007 u16 pmcsr; 1008 bool need_restore = false; 1009 1010 /* Check if we're already there */ 1011 if (dev->current_state == state) 1012 return 0; 1013 1014 if (!dev->pm_cap) 1015 return -EIO; 1016 1017 if (state < PCI_D0 || state > PCI_D3hot) 1018 return -EINVAL; 1019 1020 /* 1021 * Validate transition: We can enter D0 from any state, but if 1022 * we're already in a low-power state, we can only go deeper. E.g., 1023 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1024 * we'd have to go from D3 to D0, then to D1. 1025 */ 1026 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 1027 && dev->current_state > state) { 1028 pci_err(dev, "invalid power transition (from %s to %s)\n", 1029 pci_power_name(dev->current_state), 1030 pci_power_name(state)); 1031 return -EINVAL; 1032 } 1033 1034 /* Check if this device supports the desired state */ 1035 if ((state == PCI_D1 && !dev->d1_support) 1036 || (state == PCI_D2 && !dev->d2_support)) 1037 return -EIO; 1038 1039 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1040 if (pmcsr == (u16) ~0) { 1041 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 1042 pci_power_name(dev->current_state), 1043 pci_power_name(state)); 1044 return -EIO; 1045 } 1046 1047 /* 1048 * If we're (effectively) in D3, force entire word to 0. 1049 * This doesn't affect PME_Status, disables PME_En, and 1050 * sets PowerState to 0. 1051 */ 1052 switch (dev->current_state) { 1053 case PCI_D0: 1054 case PCI_D1: 1055 case PCI_D2: 1056 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1057 pmcsr |= state; 1058 break; 1059 case PCI_D3hot: 1060 case PCI_D3cold: 1061 case PCI_UNKNOWN: /* Boot-up */ 1062 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 1063 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 1064 need_restore = true; 1065 fallthrough; /* force to D0 */ 1066 default: 1067 pmcsr = 0; 1068 break; 1069 } 1070 1071 /* Enter specified state */ 1072 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1073 1074 /* 1075 * Mandatory power management transition delays; see PCI PM 1.1 1076 * 5.6.1 table 18 1077 */ 1078 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 1079 pci_dev_d3_sleep(dev); 1080 else if (state == PCI_D2 || dev->current_state == PCI_D2) 1081 udelay(PCI_PM_D2_DELAY); 1082 1083 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1084 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1085 if (dev->current_state != state) 1086 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 1087 pci_power_name(dev->current_state), 1088 pci_power_name(state)); 1089 1090 /* 1091 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1092 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1093 * from D3hot to D0 _may_ perform an internal reset, thereby 1094 * going to "D0 Uninitialized" rather than "D0 Initialized". 1095 * For example, at least some versions of the 3c905B and the 1096 * 3c556B exhibit this behaviour. 1097 * 1098 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1099 * devices in a D3hot state at boot. Consequently, we need to 1100 * restore at least the BARs so that the device will be 1101 * accessible to its driver. 1102 */ 1103 if (need_restore) 1104 pci_restore_bars(dev); 1105 1106 if (dev->bus->self) 1107 pcie_aspm_pm_state_change(dev->bus->self); 1108 1109 return 0; 1110 } 1111 1112 /** 1113 * pci_update_current_state - Read power state of given device and cache it 1114 * @dev: PCI device to handle. 1115 * @state: State to cache in case the device doesn't have the PM capability 1116 * 1117 * The power state is read from the PMCSR register, which however is 1118 * inaccessible in D3cold. The platform firmware is therefore queried first 1119 * to detect accessibility of the register. In case the platform firmware 1120 * reports an incorrect state or the device isn't power manageable by the 1121 * platform at all, we try to detect D3cold by testing accessibility of the 1122 * vendor ID in config space. 1123 */ 1124 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1125 { 1126 if (platform_pci_get_power_state(dev) == PCI_D3cold || 1127 !pci_device_is_present(dev)) { 1128 dev->current_state = PCI_D3cold; 1129 } else if (dev->pm_cap) { 1130 u16 pmcsr; 1131 1132 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1133 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1134 } else { 1135 dev->current_state = state; 1136 } 1137 } 1138 1139 /** 1140 * pci_refresh_power_state - Refresh the given device's power state data 1141 * @dev: Target PCI device. 1142 * 1143 * Ask the platform to refresh the devices power state information and invoke 1144 * pci_update_current_state() to update its current PCI power state. 1145 */ 1146 void pci_refresh_power_state(struct pci_dev *dev) 1147 { 1148 if (platform_pci_power_manageable(dev)) 1149 platform_pci_refresh_power_state(dev); 1150 1151 pci_update_current_state(dev, dev->current_state); 1152 } 1153 1154 /** 1155 * pci_platform_power_transition - Use platform to change device power state 1156 * @dev: PCI device to handle. 1157 * @state: State to put the device into. 1158 */ 1159 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1160 { 1161 int error; 1162 1163 if (platform_pci_power_manageable(dev)) { 1164 error = platform_pci_set_power_state(dev, state); 1165 if (!error) 1166 pci_update_current_state(dev, state); 1167 } else 1168 error = -ENODEV; 1169 1170 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 1171 dev->current_state = PCI_D0; 1172 1173 return error; 1174 } 1175 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1176 1177 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1178 { 1179 pm_request_resume(&pci_dev->dev); 1180 return 0; 1181 } 1182 1183 /** 1184 * pci_resume_bus - Walk given bus and runtime resume devices on it 1185 * @bus: Top bus of the subtree to walk. 1186 */ 1187 void pci_resume_bus(struct pci_bus *bus) 1188 { 1189 if (bus) 1190 pci_walk_bus(bus, pci_resume_one, NULL); 1191 } 1192 1193 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1194 { 1195 int delay = 1; 1196 u32 id; 1197 1198 /* 1199 * After reset, the device should not silently discard config 1200 * requests, but it may still indicate that it needs more time by 1201 * responding to them with CRS completions. The Root Port will 1202 * generally synthesize ~0 data to complete the read (except when 1203 * CRS SV is enabled and the read was for the Vendor ID; in that 1204 * case it synthesizes 0x0001 data). 1205 * 1206 * Wait for the device to return a non-CRS completion. Read the 1207 * Command register instead of Vendor ID so we don't have to 1208 * contend with the CRS SV value. 1209 */ 1210 pci_read_config_dword(dev, PCI_COMMAND, &id); 1211 while (id == ~0) { 1212 if (delay > timeout) { 1213 pci_warn(dev, "not ready %dms after %s; giving up\n", 1214 delay - 1, reset_type); 1215 return -ENOTTY; 1216 } 1217 1218 if (delay > 1000) 1219 pci_info(dev, "not ready %dms after %s; waiting\n", 1220 delay - 1, reset_type); 1221 1222 msleep(delay); 1223 delay *= 2; 1224 pci_read_config_dword(dev, PCI_COMMAND, &id); 1225 } 1226 1227 if (delay > 1000) 1228 pci_info(dev, "ready %dms after %s\n", delay - 1, 1229 reset_type); 1230 1231 return 0; 1232 } 1233 1234 /** 1235 * pci_power_up - Put the given device into D0 1236 * @dev: PCI device to power up 1237 */ 1238 int pci_power_up(struct pci_dev *dev) 1239 { 1240 pci_platform_power_transition(dev, PCI_D0); 1241 1242 /* 1243 * Mandatory power management transition delays are handled in 1244 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1245 * corresponding bridge. 1246 */ 1247 if (dev->runtime_d3cold) { 1248 /* 1249 * When powering on a bridge from D3cold, the whole hierarchy 1250 * may be powered on into D0uninitialized state, resume them to 1251 * give them a chance to suspend again 1252 */ 1253 pci_resume_bus(dev->subordinate); 1254 } 1255 1256 return pci_raw_set_power_state(dev, PCI_D0); 1257 } 1258 1259 /** 1260 * __pci_dev_set_current_state - Set current state of a PCI device 1261 * @dev: Device to handle 1262 * @data: pointer to state to be set 1263 */ 1264 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1265 { 1266 pci_power_t state = *(pci_power_t *)data; 1267 1268 dev->current_state = state; 1269 return 0; 1270 } 1271 1272 /** 1273 * pci_bus_set_current_state - Walk given bus and set current state of devices 1274 * @bus: Top bus of the subtree to walk. 1275 * @state: state to be set 1276 */ 1277 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1278 { 1279 if (bus) 1280 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1281 } 1282 1283 /** 1284 * pci_set_power_state - Set the power state of a PCI device 1285 * @dev: PCI device to handle. 1286 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1287 * 1288 * Transition a device to a new power state, using the platform firmware and/or 1289 * the device's PCI PM registers. 1290 * 1291 * RETURN VALUE: 1292 * -EINVAL if the requested state is invalid. 1293 * -EIO if device does not support PCI PM or its PM capabilities register has a 1294 * wrong version, or device doesn't support the requested state. 1295 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1296 * 0 if device already is in the requested state. 1297 * 0 if the transition is to D3 but D3 is not supported. 1298 * 0 if device's power state has been successfully changed. 1299 */ 1300 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1301 { 1302 int error; 1303 1304 /* Bound the state we're entering */ 1305 if (state > PCI_D3cold) 1306 state = PCI_D3cold; 1307 else if (state < PCI_D0) 1308 state = PCI_D0; 1309 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1310 1311 /* 1312 * If the device or the parent bridge do not support PCI 1313 * PM, ignore the request if we're doing anything other 1314 * than putting it into D0 (which would only happen on 1315 * boot). 1316 */ 1317 return 0; 1318 1319 /* Check if we're already there */ 1320 if (dev->current_state == state) 1321 return 0; 1322 1323 if (state == PCI_D0) 1324 return pci_power_up(dev); 1325 1326 /* 1327 * This device is quirked not to be put into D3, so don't put it in 1328 * D3 1329 */ 1330 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1331 return 0; 1332 1333 /* 1334 * To put device in D3cold, we put device into D3hot in native 1335 * way, then put device into D3cold with platform ops 1336 */ 1337 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1338 PCI_D3hot : state); 1339 1340 if (pci_platform_power_transition(dev, state)) 1341 return error; 1342 1343 /* Powering off a bridge may power off the whole hierarchy */ 1344 if (state == PCI_D3cold) 1345 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1346 1347 return 0; 1348 } 1349 EXPORT_SYMBOL(pci_set_power_state); 1350 1351 /** 1352 * pci_choose_state - Choose the power state of a PCI device 1353 * @dev: PCI device to be suspended 1354 * @state: target sleep state for the whole system. This is the value 1355 * that is passed to suspend() function. 1356 * 1357 * Returns PCI power state suitable for given device and given system 1358 * message. 1359 */ 1360 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1361 { 1362 pci_power_t ret; 1363 1364 if (!dev->pm_cap) 1365 return PCI_D0; 1366 1367 ret = platform_pci_choose_state(dev); 1368 if (ret != PCI_POWER_ERROR) 1369 return ret; 1370 1371 switch (state.event) { 1372 case PM_EVENT_ON: 1373 return PCI_D0; 1374 case PM_EVENT_FREEZE: 1375 case PM_EVENT_PRETHAW: 1376 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1377 case PM_EVENT_SUSPEND: 1378 case PM_EVENT_HIBERNATE: 1379 return PCI_D3hot; 1380 default: 1381 pci_info(dev, "unrecognized suspend event %d\n", 1382 state.event); 1383 BUG(); 1384 } 1385 return PCI_D0; 1386 } 1387 EXPORT_SYMBOL(pci_choose_state); 1388 1389 #define PCI_EXP_SAVE_REGS 7 1390 1391 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1392 u16 cap, bool extended) 1393 { 1394 struct pci_cap_saved_state *tmp; 1395 1396 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1397 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1398 return tmp; 1399 } 1400 return NULL; 1401 } 1402 1403 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1404 { 1405 return _pci_find_saved_cap(dev, cap, false); 1406 } 1407 1408 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1409 { 1410 return _pci_find_saved_cap(dev, cap, true); 1411 } 1412 1413 static int pci_save_pcie_state(struct pci_dev *dev) 1414 { 1415 int i = 0; 1416 struct pci_cap_saved_state *save_state; 1417 u16 *cap; 1418 1419 if (!pci_is_pcie(dev)) 1420 return 0; 1421 1422 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1423 if (!save_state) { 1424 pci_err(dev, "buffer not found in %s\n", __func__); 1425 return -ENOMEM; 1426 } 1427 1428 cap = (u16 *)&save_state->cap.data[0]; 1429 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1430 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1431 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1432 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1433 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1434 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1435 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1436 1437 return 0; 1438 } 1439 1440 static void pci_restore_pcie_state(struct pci_dev *dev) 1441 { 1442 int i = 0; 1443 struct pci_cap_saved_state *save_state; 1444 u16 *cap; 1445 1446 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1447 if (!save_state) 1448 return; 1449 1450 cap = (u16 *)&save_state->cap.data[0]; 1451 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1452 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1453 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1454 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1455 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1456 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1457 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1458 } 1459 1460 static int pci_save_pcix_state(struct pci_dev *dev) 1461 { 1462 int pos; 1463 struct pci_cap_saved_state *save_state; 1464 1465 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1466 if (!pos) 1467 return 0; 1468 1469 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1470 if (!save_state) { 1471 pci_err(dev, "buffer not found in %s\n", __func__); 1472 return -ENOMEM; 1473 } 1474 1475 pci_read_config_word(dev, pos + PCI_X_CMD, 1476 (u16 *)save_state->cap.data); 1477 1478 return 0; 1479 } 1480 1481 static void pci_restore_pcix_state(struct pci_dev *dev) 1482 { 1483 int i = 0, pos; 1484 struct pci_cap_saved_state *save_state; 1485 u16 *cap; 1486 1487 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1488 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1489 if (!save_state || !pos) 1490 return; 1491 cap = (u16 *)&save_state->cap.data[0]; 1492 1493 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1494 } 1495 1496 static void pci_save_ltr_state(struct pci_dev *dev) 1497 { 1498 int ltr; 1499 struct pci_cap_saved_state *save_state; 1500 u16 *cap; 1501 1502 if (!pci_is_pcie(dev)) 1503 return; 1504 1505 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1506 if (!ltr) 1507 return; 1508 1509 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1510 if (!save_state) { 1511 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1512 return; 1513 } 1514 1515 cap = (u16 *)&save_state->cap.data[0]; 1516 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1517 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1518 } 1519 1520 static void pci_restore_ltr_state(struct pci_dev *dev) 1521 { 1522 struct pci_cap_saved_state *save_state; 1523 int ltr; 1524 u16 *cap; 1525 1526 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1527 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1528 if (!save_state || !ltr) 1529 return; 1530 1531 cap = (u16 *)&save_state->cap.data[0]; 1532 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1533 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1534 } 1535 1536 /** 1537 * pci_save_state - save the PCI configuration space of a device before 1538 * suspending 1539 * @dev: PCI device that we're dealing with 1540 */ 1541 int pci_save_state(struct pci_dev *dev) 1542 { 1543 int i; 1544 /* XXX: 100% dword access ok here? */ 1545 for (i = 0; i < 16; i++) { 1546 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1547 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1548 i * 4, dev->saved_config_space[i]); 1549 } 1550 dev->state_saved = true; 1551 1552 i = pci_save_pcie_state(dev); 1553 if (i != 0) 1554 return i; 1555 1556 i = pci_save_pcix_state(dev); 1557 if (i != 0) 1558 return i; 1559 1560 pci_save_ltr_state(dev); 1561 pci_save_dpc_state(dev); 1562 pci_save_aer_state(dev); 1563 pci_save_ptm_state(dev); 1564 return pci_save_vc_state(dev); 1565 } 1566 EXPORT_SYMBOL(pci_save_state); 1567 1568 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1569 u32 saved_val, int retry, bool force) 1570 { 1571 u32 val; 1572 1573 pci_read_config_dword(pdev, offset, &val); 1574 if (!force && val == saved_val) 1575 return; 1576 1577 for (;;) { 1578 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1579 offset, val, saved_val); 1580 pci_write_config_dword(pdev, offset, saved_val); 1581 if (retry-- <= 0) 1582 return; 1583 1584 pci_read_config_dword(pdev, offset, &val); 1585 if (val == saved_val) 1586 return; 1587 1588 mdelay(1); 1589 } 1590 } 1591 1592 static void pci_restore_config_space_range(struct pci_dev *pdev, 1593 int start, int end, int retry, 1594 bool force) 1595 { 1596 int index; 1597 1598 for (index = end; index >= start; index--) 1599 pci_restore_config_dword(pdev, 4 * index, 1600 pdev->saved_config_space[index], 1601 retry, force); 1602 } 1603 1604 static void pci_restore_config_space(struct pci_dev *pdev) 1605 { 1606 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1607 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1608 /* Restore BARs before the command register. */ 1609 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1610 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1611 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1612 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1613 1614 /* 1615 * Force rewriting of prefetch registers to avoid S3 resume 1616 * issues on Intel PCI bridges that occur when these 1617 * registers are not explicitly written. 1618 */ 1619 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1620 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1621 } else { 1622 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1623 } 1624 } 1625 1626 static void pci_restore_rebar_state(struct pci_dev *pdev) 1627 { 1628 unsigned int pos, nbars, i; 1629 u32 ctrl; 1630 1631 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1632 if (!pos) 1633 return; 1634 1635 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1636 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1637 PCI_REBAR_CTRL_NBAR_SHIFT; 1638 1639 for (i = 0; i < nbars; i++, pos += 8) { 1640 struct resource *res; 1641 int bar_idx, size; 1642 1643 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1644 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1645 res = pdev->resource + bar_idx; 1646 size = ilog2(resource_size(res)) - 20; 1647 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1648 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1649 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1650 } 1651 } 1652 1653 /** 1654 * pci_restore_state - Restore the saved state of a PCI device 1655 * @dev: PCI device that we're dealing with 1656 */ 1657 void pci_restore_state(struct pci_dev *dev) 1658 { 1659 if (!dev->state_saved) 1660 return; 1661 1662 /* 1663 * Restore max latencies (in the LTR capability) before enabling 1664 * LTR itself (in the PCIe capability). 1665 */ 1666 pci_restore_ltr_state(dev); 1667 1668 pci_restore_pcie_state(dev); 1669 pci_restore_pasid_state(dev); 1670 pci_restore_pri_state(dev); 1671 pci_restore_ats_state(dev); 1672 pci_restore_vc_state(dev); 1673 pci_restore_rebar_state(dev); 1674 pci_restore_dpc_state(dev); 1675 pci_restore_ptm_state(dev); 1676 1677 pci_aer_clear_status(dev); 1678 pci_restore_aer_state(dev); 1679 1680 pci_restore_config_space(dev); 1681 1682 pci_restore_pcix_state(dev); 1683 pci_restore_msi_state(dev); 1684 1685 /* Restore ACS and IOV configuration state */ 1686 pci_enable_acs(dev); 1687 pci_restore_iov_state(dev); 1688 1689 dev->state_saved = false; 1690 } 1691 EXPORT_SYMBOL(pci_restore_state); 1692 1693 struct pci_saved_state { 1694 u32 config_space[16]; 1695 struct pci_cap_saved_data cap[]; 1696 }; 1697 1698 /** 1699 * pci_store_saved_state - Allocate and return an opaque struct containing 1700 * the device saved state. 1701 * @dev: PCI device that we're dealing with 1702 * 1703 * Return NULL if no state or error. 1704 */ 1705 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1706 { 1707 struct pci_saved_state *state; 1708 struct pci_cap_saved_state *tmp; 1709 struct pci_cap_saved_data *cap; 1710 size_t size; 1711 1712 if (!dev->state_saved) 1713 return NULL; 1714 1715 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1716 1717 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1718 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1719 1720 state = kzalloc(size, GFP_KERNEL); 1721 if (!state) 1722 return NULL; 1723 1724 memcpy(state->config_space, dev->saved_config_space, 1725 sizeof(state->config_space)); 1726 1727 cap = state->cap; 1728 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1729 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1730 memcpy(cap, &tmp->cap, len); 1731 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1732 } 1733 /* Empty cap_save terminates list */ 1734 1735 return state; 1736 } 1737 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1738 1739 /** 1740 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1741 * @dev: PCI device that we're dealing with 1742 * @state: Saved state returned from pci_store_saved_state() 1743 */ 1744 int pci_load_saved_state(struct pci_dev *dev, 1745 struct pci_saved_state *state) 1746 { 1747 struct pci_cap_saved_data *cap; 1748 1749 dev->state_saved = false; 1750 1751 if (!state) 1752 return 0; 1753 1754 memcpy(dev->saved_config_space, state->config_space, 1755 sizeof(state->config_space)); 1756 1757 cap = state->cap; 1758 while (cap->size) { 1759 struct pci_cap_saved_state *tmp; 1760 1761 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1762 if (!tmp || tmp->cap.size != cap->size) 1763 return -EINVAL; 1764 1765 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1766 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1767 sizeof(struct pci_cap_saved_data) + cap->size); 1768 } 1769 1770 dev->state_saved = true; 1771 return 0; 1772 } 1773 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1774 1775 /** 1776 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1777 * and free the memory allocated for it. 1778 * @dev: PCI device that we're dealing with 1779 * @state: Pointer to saved state returned from pci_store_saved_state() 1780 */ 1781 int pci_load_and_free_saved_state(struct pci_dev *dev, 1782 struct pci_saved_state **state) 1783 { 1784 int ret = pci_load_saved_state(dev, *state); 1785 kfree(*state); 1786 *state = NULL; 1787 return ret; 1788 } 1789 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1790 1791 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1792 { 1793 return pci_enable_resources(dev, bars); 1794 } 1795 1796 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1797 { 1798 int err; 1799 struct pci_dev *bridge; 1800 u16 cmd; 1801 u8 pin; 1802 1803 err = pci_set_power_state(dev, PCI_D0); 1804 if (err < 0 && err != -EIO) 1805 return err; 1806 1807 bridge = pci_upstream_bridge(dev); 1808 if (bridge) 1809 pcie_aspm_powersave_config_link(bridge); 1810 1811 err = pcibios_enable_device(dev, bars); 1812 if (err < 0) 1813 return err; 1814 pci_fixup_device(pci_fixup_enable, dev); 1815 1816 if (dev->msi_enabled || dev->msix_enabled) 1817 return 0; 1818 1819 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1820 if (pin) { 1821 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1822 if (cmd & PCI_COMMAND_INTX_DISABLE) 1823 pci_write_config_word(dev, PCI_COMMAND, 1824 cmd & ~PCI_COMMAND_INTX_DISABLE); 1825 } 1826 1827 return 0; 1828 } 1829 1830 /** 1831 * pci_reenable_device - Resume abandoned device 1832 * @dev: PCI device to be resumed 1833 * 1834 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1835 * to be called by normal code, write proper resume handler and use it instead. 1836 */ 1837 int pci_reenable_device(struct pci_dev *dev) 1838 { 1839 if (pci_is_enabled(dev)) 1840 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1841 return 0; 1842 } 1843 EXPORT_SYMBOL(pci_reenable_device); 1844 1845 static void pci_enable_bridge(struct pci_dev *dev) 1846 { 1847 struct pci_dev *bridge; 1848 int retval; 1849 1850 bridge = pci_upstream_bridge(dev); 1851 if (bridge) 1852 pci_enable_bridge(bridge); 1853 1854 if (pci_is_enabled(dev)) { 1855 if (!dev->is_busmaster) 1856 pci_set_master(dev); 1857 return; 1858 } 1859 1860 retval = pci_enable_device(dev); 1861 if (retval) 1862 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1863 retval); 1864 pci_set_master(dev); 1865 } 1866 1867 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1868 { 1869 struct pci_dev *bridge; 1870 int err; 1871 int i, bars = 0; 1872 1873 /* 1874 * Power state could be unknown at this point, either due to a fresh 1875 * boot or a device removal call. So get the current power state 1876 * so that things like MSI message writing will behave as expected 1877 * (e.g. if the device really is in D0 at enable time). 1878 */ 1879 if (dev->pm_cap) { 1880 u16 pmcsr; 1881 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1882 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1883 } 1884 1885 if (atomic_inc_return(&dev->enable_cnt) > 1) 1886 return 0; /* already enabled */ 1887 1888 bridge = pci_upstream_bridge(dev); 1889 if (bridge) 1890 pci_enable_bridge(bridge); 1891 1892 /* only skip sriov related */ 1893 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1894 if (dev->resource[i].flags & flags) 1895 bars |= (1 << i); 1896 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1897 if (dev->resource[i].flags & flags) 1898 bars |= (1 << i); 1899 1900 err = do_pci_enable_device(dev, bars); 1901 if (err < 0) 1902 atomic_dec(&dev->enable_cnt); 1903 return err; 1904 } 1905 1906 /** 1907 * pci_enable_device_io - Initialize a device for use with IO space 1908 * @dev: PCI device to be initialized 1909 * 1910 * Initialize device before it's used by a driver. Ask low-level code 1911 * to enable I/O resources. Wake up the device if it was suspended. 1912 * Beware, this function can fail. 1913 */ 1914 int pci_enable_device_io(struct pci_dev *dev) 1915 { 1916 return pci_enable_device_flags(dev, IORESOURCE_IO); 1917 } 1918 EXPORT_SYMBOL(pci_enable_device_io); 1919 1920 /** 1921 * pci_enable_device_mem - Initialize a device for use with Memory space 1922 * @dev: PCI device to be initialized 1923 * 1924 * Initialize device before it's used by a driver. Ask low-level code 1925 * to enable Memory resources. Wake up the device if it was suspended. 1926 * Beware, this function can fail. 1927 */ 1928 int pci_enable_device_mem(struct pci_dev *dev) 1929 { 1930 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1931 } 1932 EXPORT_SYMBOL(pci_enable_device_mem); 1933 1934 /** 1935 * pci_enable_device - Initialize device before it's used by a driver. 1936 * @dev: PCI device to be initialized 1937 * 1938 * Initialize device before it's used by a driver. Ask low-level code 1939 * to enable I/O and memory. Wake up the device if it was suspended. 1940 * Beware, this function can fail. 1941 * 1942 * Note we don't actually enable the device many times if we call 1943 * this function repeatedly (we just increment the count). 1944 */ 1945 int pci_enable_device(struct pci_dev *dev) 1946 { 1947 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1948 } 1949 EXPORT_SYMBOL(pci_enable_device); 1950 1951 /* 1952 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1953 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1954 * there's no need to track it separately. pci_devres is initialized 1955 * when a device is enabled using managed PCI device enable interface. 1956 */ 1957 struct pci_devres { 1958 unsigned int enabled:1; 1959 unsigned int pinned:1; 1960 unsigned int orig_intx:1; 1961 unsigned int restore_intx:1; 1962 unsigned int mwi:1; 1963 u32 region_mask; 1964 }; 1965 1966 static void pcim_release(struct device *gendev, void *res) 1967 { 1968 struct pci_dev *dev = to_pci_dev(gendev); 1969 struct pci_devres *this = res; 1970 int i; 1971 1972 if (dev->msi_enabled) 1973 pci_disable_msi(dev); 1974 if (dev->msix_enabled) 1975 pci_disable_msix(dev); 1976 1977 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1978 if (this->region_mask & (1 << i)) 1979 pci_release_region(dev, i); 1980 1981 if (this->mwi) 1982 pci_clear_mwi(dev); 1983 1984 if (this->restore_intx) 1985 pci_intx(dev, this->orig_intx); 1986 1987 if (this->enabled && !this->pinned) 1988 pci_disable_device(dev); 1989 } 1990 1991 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1992 { 1993 struct pci_devres *dr, *new_dr; 1994 1995 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1996 if (dr) 1997 return dr; 1998 1999 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2000 if (!new_dr) 2001 return NULL; 2002 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2003 } 2004 2005 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2006 { 2007 if (pci_is_managed(pdev)) 2008 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2009 return NULL; 2010 } 2011 2012 /** 2013 * pcim_enable_device - Managed pci_enable_device() 2014 * @pdev: PCI device to be initialized 2015 * 2016 * Managed pci_enable_device(). 2017 */ 2018 int pcim_enable_device(struct pci_dev *pdev) 2019 { 2020 struct pci_devres *dr; 2021 int rc; 2022 2023 dr = get_pci_dr(pdev); 2024 if (unlikely(!dr)) 2025 return -ENOMEM; 2026 if (dr->enabled) 2027 return 0; 2028 2029 rc = pci_enable_device(pdev); 2030 if (!rc) { 2031 pdev->is_managed = 1; 2032 dr->enabled = 1; 2033 } 2034 return rc; 2035 } 2036 EXPORT_SYMBOL(pcim_enable_device); 2037 2038 /** 2039 * pcim_pin_device - Pin managed PCI device 2040 * @pdev: PCI device to pin 2041 * 2042 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2043 * driver detach. @pdev must have been enabled with 2044 * pcim_enable_device(). 2045 */ 2046 void pcim_pin_device(struct pci_dev *pdev) 2047 { 2048 struct pci_devres *dr; 2049 2050 dr = find_pci_dr(pdev); 2051 WARN_ON(!dr || !dr->enabled); 2052 if (dr) 2053 dr->pinned = 1; 2054 } 2055 EXPORT_SYMBOL(pcim_pin_device); 2056 2057 /* 2058 * pcibios_add_device - provide arch specific hooks when adding device dev 2059 * @dev: the PCI device being added 2060 * 2061 * Permits the platform to provide architecture specific functionality when 2062 * devices are added. This is the default implementation. Architecture 2063 * implementations can override this. 2064 */ 2065 int __weak pcibios_add_device(struct pci_dev *dev) 2066 { 2067 return 0; 2068 } 2069 2070 /** 2071 * pcibios_release_device - provide arch specific hooks when releasing 2072 * device dev 2073 * @dev: the PCI device being released 2074 * 2075 * Permits the platform to provide architecture specific functionality when 2076 * devices are released. This is the default implementation. Architecture 2077 * implementations can override this. 2078 */ 2079 void __weak pcibios_release_device(struct pci_dev *dev) {} 2080 2081 /** 2082 * pcibios_disable_device - disable arch specific PCI resources for device dev 2083 * @dev: the PCI device to disable 2084 * 2085 * Disables architecture specific PCI resources for the device. This 2086 * is the default implementation. Architecture implementations can 2087 * override this. 2088 */ 2089 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2090 2091 /** 2092 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2093 * @irq: ISA IRQ to penalize 2094 * @active: IRQ active or not 2095 * 2096 * Permits the platform to provide architecture-specific functionality when 2097 * penalizing ISA IRQs. This is the default implementation. Architecture 2098 * implementations can override this. 2099 */ 2100 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2101 2102 static void do_pci_disable_device(struct pci_dev *dev) 2103 { 2104 u16 pci_command; 2105 2106 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2107 if (pci_command & PCI_COMMAND_MASTER) { 2108 pci_command &= ~PCI_COMMAND_MASTER; 2109 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2110 } 2111 2112 pcibios_disable_device(dev); 2113 } 2114 2115 /** 2116 * pci_disable_enabled_device - Disable device without updating enable_cnt 2117 * @dev: PCI device to disable 2118 * 2119 * NOTE: This function is a backend of PCI power management routines and is 2120 * not supposed to be called drivers. 2121 */ 2122 void pci_disable_enabled_device(struct pci_dev *dev) 2123 { 2124 if (pci_is_enabled(dev)) 2125 do_pci_disable_device(dev); 2126 } 2127 2128 /** 2129 * pci_disable_device - Disable PCI device after use 2130 * @dev: PCI device to be disabled 2131 * 2132 * Signal to the system that the PCI device is not in use by the system 2133 * anymore. This only involves disabling PCI bus-mastering, if active. 2134 * 2135 * Note we don't actually disable the device until all callers of 2136 * pci_enable_device() have called pci_disable_device(). 2137 */ 2138 void pci_disable_device(struct pci_dev *dev) 2139 { 2140 struct pci_devres *dr; 2141 2142 dr = find_pci_dr(dev); 2143 if (dr) 2144 dr->enabled = 0; 2145 2146 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2147 "disabling already-disabled device"); 2148 2149 if (atomic_dec_return(&dev->enable_cnt) != 0) 2150 return; 2151 2152 do_pci_disable_device(dev); 2153 2154 dev->is_busmaster = 0; 2155 } 2156 EXPORT_SYMBOL(pci_disable_device); 2157 2158 /** 2159 * pcibios_set_pcie_reset_state - set reset state for device dev 2160 * @dev: the PCIe device reset 2161 * @state: Reset state to enter into 2162 * 2163 * Set the PCIe reset state for the device. This is the default 2164 * implementation. Architecture implementations can override this. 2165 */ 2166 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2167 enum pcie_reset_state state) 2168 { 2169 return -EINVAL; 2170 } 2171 2172 /** 2173 * pci_set_pcie_reset_state - set reset state for device dev 2174 * @dev: the PCIe device reset 2175 * @state: Reset state to enter into 2176 * 2177 * Sets the PCI reset state for the device. 2178 */ 2179 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2180 { 2181 return pcibios_set_pcie_reset_state(dev, state); 2182 } 2183 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2184 2185 void pcie_clear_device_status(struct pci_dev *dev) 2186 { 2187 u16 sta; 2188 2189 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2190 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2191 } 2192 2193 /** 2194 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2195 * @dev: PCIe root port or event collector. 2196 */ 2197 void pcie_clear_root_pme_status(struct pci_dev *dev) 2198 { 2199 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2200 } 2201 2202 /** 2203 * pci_check_pme_status - Check if given device has generated PME. 2204 * @dev: Device to check. 2205 * 2206 * Check the PME status of the device and if set, clear it and clear PME enable 2207 * (if set). Return 'true' if PME status and PME enable were both set or 2208 * 'false' otherwise. 2209 */ 2210 bool pci_check_pme_status(struct pci_dev *dev) 2211 { 2212 int pmcsr_pos; 2213 u16 pmcsr; 2214 bool ret = false; 2215 2216 if (!dev->pm_cap) 2217 return false; 2218 2219 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2220 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2221 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2222 return false; 2223 2224 /* Clear PME status. */ 2225 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2226 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2227 /* Disable PME to avoid interrupt flood. */ 2228 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2229 ret = true; 2230 } 2231 2232 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2233 2234 return ret; 2235 } 2236 2237 /** 2238 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2239 * @dev: Device to handle. 2240 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2241 * 2242 * Check if @dev has generated PME and queue a resume request for it in that 2243 * case. 2244 */ 2245 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2246 { 2247 if (pme_poll_reset && dev->pme_poll) 2248 dev->pme_poll = false; 2249 2250 if (pci_check_pme_status(dev)) { 2251 pci_wakeup_event(dev); 2252 pm_request_resume(&dev->dev); 2253 } 2254 return 0; 2255 } 2256 2257 /** 2258 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2259 * @bus: Top bus of the subtree to walk. 2260 */ 2261 void pci_pme_wakeup_bus(struct pci_bus *bus) 2262 { 2263 if (bus) 2264 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2265 } 2266 2267 2268 /** 2269 * pci_pme_capable - check the capability of PCI device to generate PME# 2270 * @dev: PCI device to handle. 2271 * @state: PCI state from which device will issue PME#. 2272 */ 2273 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2274 { 2275 if (!dev->pm_cap) 2276 return false; 2277 2278 return !!(dev->pme_support & (1 << state)); 2279 } 2280 EXPORT_SYMBOL(pci_pme_capable); 2281 2282 static void pci_pme_list_scan(struct work_struct *work) 2283 { 2284 struct pci_pme_device *pme_dev, *n; 2285 2286 mutex_lock(&pci_pme_list_mutex); 2287 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2288 if (pme_dev->dev->pme_poll) { 2289 struct pci_dev *bridge; 2290 2291 bridge = pme_dev->dev->bus->self; 2292 /* 2293 * If bridge is in low power state, the 2294 * configuration space of subordinate devices 2295 * may be not accessible 2296 */ 2297 if (bridge && bridge->current_state != PCI_D0) 2298 continue; 2299 /* 2300 * If the device is in D3cold it should not be 2301 * polled either. 2302 */ 2303 if (pme_dev->dev->current_state == PCI_D3cold) 2304 continue; 2305 2306 pci_pme_wakeup(pme_dev->dev, NULL); 2307 } else { 2308 list_del(&pme_dev->list); 2309 kfree(pme_dev); 2310 } 2311 } 2312 if (!list_empty(&pci_pme_list)) 2313 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2314 msecs_to_jiffies(PME_TIMEOUT)); 2315 mutex_unlock(&pci_pme_list_mutex); 2316 } 2317 2318 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2319 { 2320 u16 pmcsr; 2321 2322 if (!dev->pme_support) 2323 return; 2324 2325 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2326 /* Clear PME_Status by writing 1 to it and enable PME# */ 2327 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2328 if (!enable) 2329 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2330 2331 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2332 } 2333 2334 /** 2335 * pci_pme_restore - Restore PME configuration after config space restore. 2336 * @dev: PCI device to update. 2337 */ 2338 void pci_pme_restore(struct pci_dev *dev) 2339 { 2340 u16 pmcsr; 2341 2342 if (!dev->pme_support) 2343 return; 2344 2345 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2346 if (dev->wakeup_prepared) { 2347 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2348 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2349 } else { 2350 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2351 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2352 } 2353 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2354 } 2355 2356 /** 2357 * pci_pme_active - enable or disable PCI device's PME# function 2358 * @dev: PCI device to handle. 2359 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2360 * 2361 * The caller must verify that the device is capable of generating PME# before 2362 * calling this function with @enable equal to 'true'. 2363 */ 2364 void pci_pme_active(struct pci_dev *dev, bool enable) 2365 { 2366 __pci_pme_active(dev, enable); 2367 2368 /* 2369 * PCI (as opposed to PCIe) PME requires that the device have 2370 * its PME# line hooked up correctly. Not all hardware vendors 2371 * do this, so the PME never gets delivered and the device 2372 * remains asleep. The easiest way around this is to 2373 * periodically walk the list of suspended devices and check 2374 * whether any have their PME flag set. The assumption is that 2375 * we'll wake up often enough anyway that this won't be a huge 2376 * hit, and the power savings from the devices will still be a 2377 * win. 2378 * 2379 * Although PCIe uses in-band PME message instead of PME# line 2380 * to report PME, PME does not work for some PCIe devices in 2381 * reality. For example, there are devices that set their PME 2382 * status bits, but don't really bother to send a PME message; 2383 * there are PCI Express Root Ports that don't bother to 2384 * trigger interrupts when they receive PME messages from the 2385 * devices below. So PME poll is used for PCIe devices too. 2386 */ 2387 2388 if (dev->pme_poll) { 2389 struct pci_pme_device *pme_dev; 2390 if (enable) { 2391 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2392 GFP_KERNEL); 2393 if (!pme_dev) { 2394 pci_warn(dev, "can't enable PME#\n"); 2395 return; 2396 } 2397 pme_dev->dev = dev; 2398 mutex_lock(&pci_pme_list_mutex); 2399 list_add(&pme_dev->list, &pci_pme_list); 2400 if (list_is_singular(&pci_pme_list)) 2401 queue_delayed_work(system_freezable_wq, 2402 &pci_pme_work, 2403 msecs_to_jiffies(PME_TIMEOUT)); 2404 mutex_unlock(&pci_pme_list_mutex); 2405 } else { 2406 mutex_lock(&pci_pme_list_mutex); 2407 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2408 if (pme_dev->dev == dev) { 2409 list_del(&pme_dev->list); 2410 kfree(pme_dev); 2411 break; 2412 } 2413 } 2414 mutex_unlock(&pci_pme_list_mutex); 2415 } 2416 } 2417 2418 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2419 } 2420 EXPORT_SYMBOL(pci_pme_active); 2421 2422 /** 2423 * __pci_enable_wake - enable PCI device as wakeup event source 2424 * @dev: PCI device affected 2425 * @state: PCI state from which device will issue wakeup events 2426 * @enable: True to enable event generation; false to disable 2427 * 2428 * This enables the device as a wakeup event source, or disables it. 2429 * When such events involves platform-specific hooks, those hooks are 2430 * called automatically by this routine. 2431 * 2432 * Devices with legacy power management (no standard PCI PM capabilities) 2433 * always require such platform hooks. 2434 * 2435 * RETURN VALUE: 2436 * 0 is returned on success 2437 * -EINVAL is returned if device is not supposed to wake up the system 2438 * Error code depending on the platform is returned if both the platform and 2439 * the native mechanism fail to enable the generation of wake-up events 2440 */ 2441 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2442 { 2443 int ret = 0; 2444 2445 /* 2446 * Bridges that are not power-manageable directly only signal 2447 * wakeup on behalf of subordinate devices which is set up 2448 * elsewhere, so skip them. However, bridges that are 2449 * power-manageable may signal wakeup for themselves (for example, 2450 * on a hotplug event) and they need to be covered here. 2451 */ 2452 if (!pci_power_manageable(dev)) 2453 return 0; 2454 2455 /* Don't do the same thing twice in a row for one device. */ 2456 if (!!enable == !!dev->wakeup_prepared) 2457 return 0; 2458 2459 /* 2460 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2461 * Anderson we should be doing PME# wake enable followed by ACPI wake 2462 * enable. To disable wake-up we call the platform first, for symmetry. 2463 */ 2464 2465 if (enable) { 2466 int error; 2467 2468 if (pci_pme_capable(dev, state)) 2469 pci_pme_active(dev, true); 2470 else 2471 ret = 1; 2472 error = platform_pci_set_wakeup(dev, true); 2473 if (ret) 2474 ret = error; 2475 if (!ret) 2476 dev->wakeup_prepared = true; 2477 } else { 2478 platform_pci_set_wakeup(dev, false); 2479 pci_pme_active(dev, false); 2480 dev->wakeup_prepared = false; 2481 } 2482 2483 return ret; 2484 } 2485 2486 /** 2487 * pci_enable_wake - change wakeup settings for a PCI device 2488 * @pci_dev: Target device 2489 * @state: PCI state from which device will issue wakeup events 2490 * @enable: Whether or not to enable event generation 2491 * 2492 * If @enable is set, check device_may_wakeup() for the device before calling 2493 * __pci_enable_wake() for it. 2494 */ 2495 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2496 { 2497 if (enable && !device_may_wakeup(&pci_dev->dev)) 2498 return -EINVAL; 2499 2500 return __pci_enable_wake(pci_dev, state, enable); 2501 } 2502 EXPORT_SYMBOL(pci_enable_wake); 2503 2504 /** 2505 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2506 * @dev: PCI device to prepare 2507 * @enable: True to enable wake-up event generation; false to disable 2508 * 2509 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2510 * and this function allows them to set that up cleanly - pci_enable_wake() 2511 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2512 * ordering constraints. 2513 * 2514 * This function only returns error code if the device is not allowed to wake 2515 * up the system from sleep or it is not capable of generating PME# from both 2516 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2517 */ 2518 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2519 { 2520 return pci_pme_capable(dev, PCI_D3cold) ? 2521 pci_enable_wake(dev, PCI_D3cold, enable) : 2522 pci_enable_wake(dev, PCI_D3hot, enable); 2523 } 2524 EXPORT_SYMBOL(pci_wake_from_d3); 2525 2526 /** 2527 * pci_target_state - find an appropriate low power state for a given PCI dev 2528 * @dev: PCI device 2529 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2530 * 2531 * Use underlying platform code to find a supported low power state for @dev. 2532 * If the platform can't manage @dev, return the deepest state from which it 2533 * can generate wake events, based on any available PME info. 2534 */ 2535 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2536 { 2537 pci_power_t target_state = PCI_D3hot; 2538 2539 if (platform_pci_power_manageable(dev)) { 2540 /* 2541 * Call the platform to find the target state for the device. 2542 */ 2543 pci_power_t state = platform_pci_choose_state(dev); 2544 2545 switch (state) { 2546 case PCI_POWER_ERROR: 2547 case PCI_UNKNOWN: 2548 break; 2549 case PCI_D1: 2550 case PCI_D2: 2551 if (pci_no_d1d2(dev)) 2552 break; 2553 fallthrough; 2554 default: 2555 target_state = state; 2556 } 2557 2558 return target_state; 2559 } 2560 2561 if (!dev->pm_cap) 2562 target_state = PCI_D0; 2563 2564 /* 2565 * If the device is in D3cold even though it's not power-manageable by 2566 * the platform, it may have been powered down by non-standard means. 2567 * Best to let it slumber. 2568 */ 2569 if (dev->current_state == PCI_D3cold) 2570 target_state = PCI_D3cold; 2571 2572 if (wakeup) { 2573 /* 2574 * Find the deepest state from which the device can generate 2575 * PME#. 2576 */ 2577 if (dev->pme_support) { 2578 while (target_state 2579 && !(dev->pme_support & (1 << target_state))) 2580 target_state--; 2581 } 2582 } 2583 2584 return target_state; 2585 } 2586 2587 /** 2588 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2589 * into a sleep state 2590 * @dev: Device to handle. 2591 * 2592 * Choose the power state appropriate for the device depending on whether 2593 * it can wake up the system and/or is power manageable by the platform 2594 * (PCI_D3hot is the default) and put the device into that state. 2595 */ 2596 int pci_prepare_to_sleep(struct pci_dev *dev) 2597 { 2598 bool wakeup = device_may_wakeup(&dev->dev); 2599 pci_power_t target_state = pci_target_state(dev, wakeup); 2600 int error; 2601 2602 if (target_state == PCI_POWER_ERROR) 2603 return -EIO; 2604 2605 /* 2606 * There are systems (for example, Intel mobile chips since Coffee 2607 * Lake) where the power drawn while suspended can be significantly 2608 * reduced by disabling PTM on PCIe root ports as this allows the 2609 * port to enter a lower-power PM state and the SoC to reach a 2610 * lower-power idle state as a whole. 2611 */ 2612 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2613 pci_disable_ptm(dev); 2614 2615 pci_enable_wake(dev, target_state, wakeup); 2616 2617 error = pci_set_power_state(dev, target_state); 2618 2619 if (error) { 2620 pci_enable_wake(dev, target_state, false); 2621 pci_restore_ptm_state(dev); 2622 } 2623 2624 return error; 2625 } 2626 EXPORT_SYMBOL(pci_prepare_to_sleep); 2627 2628 /** 2629 * pci_back_from_sleep - turn PCI device on during system-wide transition 2630 * into working state 2631 * @dev: Device to handle. 2632 * 2633 * Disable device's system wake-up capability and put it into D0. 2634 */ 2635 int pci_back_from_sleep(struct pci_dev *dev) 2636 { 2637 pci_enable_wake(dev, PCI_D0, false); 2638 return pci_set_power_state(dev, PCI_D0); 2639 } 2640 EXPORT_SYMBOL(pci_back_from_sleep); 2641 2642 /** 2643 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2644 * @dev: PCI device being suspended. 2645 * 2646 * Prepare @dev to generate wake-up events at run time and put it into a low 2647 * power state. 2648 */ 2649 int pci_finish_runtime_suspend(struct pci_dev *dev) 2650 { 2651 pci_power_t target_state; 2652 int error; 2653 2654 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2655 if (target_state == PCI_POWER_ERROR) 2656 return -EIO; 2657 2658 dev->runtime_d3cold = target_state == PCI_D3cold; 2659 2660 /* 2661 * There are systems (for example, Intel mobile chips since Coffee 2662 * Lake) where the power drawn while suspended can be significantly 2663 * reduced by disabling PTM on PCIe root ports as this allows the 2664 * port to enter a lower-power PM state and the SoC to reach a 2665 * lower-power idle state as a whole. 2666 */ 2667 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2668 pci_disable_ptm(dev); 2669 2670 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2671 2672 error = pci_set_power_state(dev, target_state); 2673 2674 if (error) { 2675 pci_enable_wake(dev, target_state, false); 2676 pci_restore_ptm_state(dev); 2677 dev->runtime_d3cold = false; 2678 } 2679 2680 return error; 2681 } 2682 2683 /** 2684 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2685 * @dev: Device to check. 2686 * 2687 * Return true if the device itself is capable of generating wake-up events 2688 * (through the platform or using the native PCIe PME) or if the device supports 2689 * PME and one of its upstream bridges can generate wake-up events. 2690 */ 2691 bool pci_dev_run_wake(struct pci_dev *dev) 2692 { 2693 struct pci_bus *bus = dev->bus; 2694 2695 if (!dev->pme_support) 2696 return false; 2697 2698 /* PME-capable in principle, but not from the target power state */ 2699 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2700 return false; 2701 2702 if (device_can_wakeup(&dev->dev)) 2703 return true; 2704 2705 while (bus->parent) { 2706 struct pci_dev *bridge = bus->self; 2707 2708 if (device_can_wakeup(&bridge->dev)) 2709 return true; 2710 2711 bus = bus->parent; 2712 } 2713 2714 /* We have reached the root bus. */ 2715 if (bus->bridge) 2716 return device_can_wakeup(bus->bridge); 2717 2718 return false; 2719 } 2720 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2721 2722 /** 2723 * pci_dev_need_resume - Check if it is necessary to resume the device. 2724 * @pci_dev: Device to check. 2725 * 2726 * Return 'true' if the device is not runtime-suspended or it has to be 2727 * reconfigured due to wakeup settings difference between system and runtime 2728 * suspend, or the current power state of it is not suitable for the upcoming 2729 * (system-wide) transition. 2730 */ 2731 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2732 { 2733 struct device *dev = &pci_dev->dev; 2734 pci_power_t target_state; 2735 2736 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2737 return true; 2738 2739 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2740 2741 /* 2742 * If the earlier platform check has not triggered, D3cold is just power 2743 * removal on top of D3hot, so no need to resume the device in that 2744 * case. 2745 */ 2746 return target_state != pci_dev->current_state && 2747 target_state != PCI_D3cold && 2748 pci_dev->current_state != PCI_D3hot; 2749 } 2750 2751 /** 2752 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2753 * @pci_dev: Device to check. 2754 * 2755 * If the device is suspended and it is not configured for system wakeup, 2756 * disable PME for it to prevent it from waking up the system unnecessarily. 2757 * 2758 * Note that if the device's power state is D3cold and the platform check in 2759 * pci_dev_need_resume() has not triggered, the device's configuration need not 2760 * be changed. 2761 */ 2762 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2763 { 2764 struct device *dev = &pci_dev->dev; 2765 2766 spin_lock_irq(&dev->power.lock); 2767 2768 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2769 pci_dev->current_state < PCI_D3cold) 2770 __pci_pme_active(pci_dev, false); 2771 2772 spin_unlock_irq(&dev->power.lock); 2773 } 2774 2775 /** 2776 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2777 * @pci_dev: Device to handle. 2778 * 2779 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2780 * it might have been disabled during the prepare phase of system suspend if 2781 * the device was not configured for system wakeup. 2782 */ 2783 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2784 { 2785 struct device *dev = &pci_dev->dev; 2786 2787 if (!pci_dev_run_wake(pci_dev)) 2788 return; 2789 2790 spin_lock_irq(&dev->power.lock); 2791 2792 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2793 __pci_pme_active(pci_dev, true); 2794 2795 spin_unlock_irq(&dev->power.lock); 2796 } 2797 2798 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2799 { 2800 struct device *dev = &pdev->dev; 2801 struct device *parent = dev->parent; 2802 2803 if (parent) 2804 pm_runtime_get_sync(parent); 2805 pm_runtime_get_noresume(dev); 2806 /* 2807 * pdev->current_state is set to PCI_D3cold during suspending, 2808 * so wait until suspending completes 2809 */ 2810 pm_runtime_barrier(dev); 2811 /* 2812 * Only need to resume devices in D3cold, because config 2813 * registers are still accessible for devices suspended but 2814 * not in D3cold. 2815 */ 2816 if (pdev->current_state == PCI_D3cold) 2817 pm_runtime_resume(dev); 2818 } 2819 2820 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2821 { 2822 struct device *dev = &pdev->dev; 2823 struct device *parent = dev->parent; 2824 2825 pm_runtime_put(dev); 2826 if (parent) 2827 pm_runtime_put_sync(parent); 2828 } 2829 2830 static const struct dmi_system_id bridge_d3_blacklist[] = { 2831 #ifdef CONFIG_X86 2832 { 2833 /* 2834 * Gigabyte X299 root port is not marked as hotplug capable 2835 * which allows Linux to power manage it. However, this 2836 * confuses the BIOS SMI handler so don't power manage root 2837 * ports on that system. 2838 */ 2839 .ident = "X299 DESIGNARE EX-CF", 2840 .matches = { 2841 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2842 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2843 }, 2844 }, 2845 #endif 2846 { } 2847 }; 2848 2849 /** 2850 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2851 * @bridge: Bridge to check 2852 * 2853 * This function checks if it is possible to move the bridge to D3. 2854 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2855 */ 2856 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2857 { 2858 if (!pci_is_pcie(bridge)) 2859 return false; 2860 2861 switch (pci_pcie_type(bridge)) { 2862 case PCI_EXP_TYPE_ROOT_PORT: 2863 case PCI_EXP_TYPE_UPSTREAM: 2864 case PCI_EXP_TYPE_DOWNSTREAM: 2865 if (pci_bridge_d3_disable) 2866 return false; 2867 2868 /* 2869 * Hotplug ports handled by firmware in System Management Mode 2870 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2871 */ 2872 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2873 return false; 2874 2875 if (pci_bridge_d3_force) 2876 return true; 2877 2878 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2879 if (bridge->is_thunderbolt) 2880 return true; 2881 2882 /* Platform might know better if the bridge supports D3 */ 2883 if (platform_pci_bridge_d3(bridge)) 2884 return true; 2885 2886 /* 2887 * Hotplug ports handled natively by the OS were not validated 2888 * by vendors for runtime D3 at least until 2018 because there 2889 * was no OS support. 2890 */ 2891 if (bridge->is_hotplug_bridge) 2892 return false; 2893 2894 if (dmi_check_system(bridge_d3_blacklist)) 2895 return false; 2896 2897 /* 2898 * It should be safe to put PCIe ports from 2015 or newer 2899 * to D3. 2900 */ 2901 if (dmi_get_bios_year() >= 2015) 2902 return true; 2903 break; 2904 } 2905 2906 return false; 2907 } 2908 2909 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2910 { 2911 bool *d3cold_ok = data; 2912 2913 if (/* The device needs to be allowed to go D3cold ... */ 2914 dev->no_d3cold || !dev->d3cold_allowed || 2915 2916 /* ... and if it is wakeup capable to do so from D3cold. */ 2917 (device_may_wakeup(&dev->dev) && 2918 !pci_pme_capable(dev, PCI_D3cold)) || 2919 2920 /* If it is a bridge it must be allowed to go to D3. */ 2921 !pci_power_manageable(dev)) 2922 2923 *d3cold_ok = false; 2924 2925 return !*d3cold_ok; 2926 } 2927 2928 /* 2929 * pci_bridge_d3_update - Update bridge D3 capabilities 2930 * @dev: PCI device which is changed 2931 * 2932 * Update upstream bridge PM capabilities accordingly depending on if the 2933 * device PM configuration was changed or the device is being removed. The 2934 * change is also propagated upstream. 2935 */ 2936 void pci_bridge_d3_update(struct pci_dev *dev) 2937 { 2938 bool remove = !device_is_registered(&dev->dev); 2939 struct pci_dev *bridge; 2940 bool d3cold_ok = true; 2941 2942 bridge = pci_upstream_bridge(dev); 2943 if (!bridge || !pci_bridge_d3_possible(bridge)) 2944 return; 2945 2946 /* 2947 * If D3 is currently allowed for the bridge, removing one of its 2948 * children won't change that. 2949 */ 2950 if (remove && bridge->bridge_d3) 2951 return; 2952 2953 /* 2954 * If D3 is currently allowed for the bridge and a child is added or 2955 * changed, disallowance of D3 can only be caused by that child, so 2956 * we only need to check that single device, not any of its siblings. 2957 * 2958 * If D3 is currently not allowed for the bridge, checking the device 2959 * first may allow us to skip checking its siblings. 2960 */ 2961 if (!remove) 2962 pci_dev_check_d3cold(dev, &d3cold_ok); 2963 2964 /* 2965 * If D3 is currently not allowed for the bridge, this may be caused 2966 * either by the device being changed/removed or any of its siblings, 2967 * so we need to go through all children to find out if one of them 2968 * continues to block D3. 2969 */ 2970 if (d3cold_ok && !bridge->bridge_d3) 2971 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2972 &d3cold_ok); 2973 2974 if (bridge->bridge_d3 != d3cold_ok) { 2975 bridge->bridge_d3 = d3cold_ok; 2976 /* Propagate change to upstream bridges */ 2977 pci_bridge_d3_update(bridge); 2978 } 2979 } 2980 2981 /** 2982 * pci_d3cold_enable - Enable D3cold for device 2983 * @dev: PCI device to handle 2984 * 2985 * This function can be used in drivers to enable D3cold from the device 2986 * they handle. It also updates upstream PCI bridge PM capabilities 2987 * accordingly. 2988 */ 2989 void pci_d3cold_enable(struct pci_dev *dev) 2990 { 2991 if (dev->no_d3cold) { 2992 dev->no_d3cold = false; 2993 pci_bridge_d3_update(dev); 2994 } 2995 } 2996 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2997 2998 /** 2999 * pci_d3cold_disable - Disable D3cold for device 3000 * @dev: PCI device to handle 3001 * 3002 * This function can be used in drivers to disable D3cold from the device 3003 * they handle. It also updates upstream PCI bridge PM capabilities 3004 * accordingly. 3005 */ 3006 void pci_d3cold_disable(struct pci_dev *dev) 3007 { 3008 if (!dev->no_d3cold) { 3009 dev->no_d3cold = true; 3010 pci_bridge_d3_update(dev); 3011 } 3012 } 3013 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3014 3015 /** 3016 * pci_pm_init - Initialize PM functions of given PCI device 3017 * @dev: PCI device to handle. 3018 */ 3019 void pci_pm_init(struct pci_dev *dev) 3020 { 3021 int pm; 3022 u16 status; 3023 u16 pmc; 3024 3025 pm_runtime_forbid(&dev->dev); 3026 pm_runtime_set_active(&dev->dev); 3027 pm_runtime_enable(&dev->dev); 3028 device_enable_async_suspend(&dev->dev); 3029 dev->wakeup_prepared = false; 3030 3031 dev->pm_cap = 0; 3032 dev->pme_support = 0; 3033 3034 /* find PCI PM capability in list */ 3035 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3036 if (!pm) 3037 return; 3038 /* Check device's ability to generate PME# */ 3039 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3040 3041 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3042 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3043 pmc & PCI_PM_CAP_VER_MASK); 3044 return; 3045 } 3046 3047 dev->pm_cap = pm; 3048 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3049 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3050 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3051 dev->d3cold_allowed = true; 3052 3053 dev->d1_support = false; 3054 dev->d2_support = false; 3055 if (!pci_no_d1d2(dev)) { 3056 if (pmc & PCI_PM_CAP_D1) 3057 dev->d1_support = true; 3058 if (pmc & PCI_PM_CAP_D2) 3059 dev->d2_support = true; 3060 3061 if (dev->d1_support || dev->d2_support) 3062 pci_info(dev, "supports%s%s\n", 3063 dev->d1_support ? " D1" : "", 3064 dev->d2_support ? " D2" : ""); 3065 } 3066 3067 pmc &= PCI_PM_CAP_PME_MASK; 3068 if (pmc) { 3069 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3070 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3071 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3072 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3073 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3074 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3075 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3076 dev->pme_poll = true; 3077 /* 3078 * Make device's PM flags reflect the wake-up capability, but 3079 * let the user space enable it to wake up the system as needed. 3080 */ 3081 device_set_wakeup_capable(&dev->dev, true); 3082 /* Disable the PME# generation functionality */ 3083 pci_pme_active(dev, false); 3084 } 3085 3086 pci_read_config_word(dev, PCI_STATUS, &status); 3087 if (status & PCI_STATUS_IMM_READY) 3088 dev->imm_ready = 1; 3089 } 3090 3091 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3092 { 3093 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3094 3095 switch (prop) { 3096 case PCI_EA_P_MEM: 3097 case PCI_EA_P_VF_MEM: 3098 flags |= IORESOURCE_MEM; 3099 break; 3100 case PCI_EA_P_MEM_PREFETCH: 3101 case PCI_EA_P_VF_MEM_PREFETCH: 3102 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3103 break; 3104 case PCI_EA_P_IO: 3105 flags |= IORESOURCE_IO; 3106 break; 3107 default: 3108 return 0; 3109 } 3110 3111 return flags; 3112 } 3113 3114 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3115 u8 prop) 3116 { 3117 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3118 return &dev->resource[bei]; 3119 #ifdef CONFIG_PCI_IOV 3120 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3121 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3122 return &dev->resource[PCI_IOV_RESOURCES + 3123 bei - PCI_EA_BEI_VF_BAR0]; 3124 #endif 3125 else if (bei == PCI_EA_BEI_ROM) 3126 return &dev->resource[PCI_ROM_RESOURCE]; 3127 else 3128 return NULL; 3129 } 3130 3131 /* Read an Enhanced Allocation (EA) entry */ 3132 static int pci_ea_read(struct pci_dev *dev, int offset) 3133 { 3134 struct resource *res; 3135 int ent_size, ent_offset = offset; 3136 resource_size_t start, end; 3137 unsigned long flags; 3138 u32 dw0, bei, base, max_offset; 3139 u8 prop; 3140 bool support_64 = (sizeof(resource_size_t) >= 8); 3141 3142 pci_read_config_dword(dev, ent_offset, &dw0); 3143 ent_offset += 4; 3144 3145 /* Entry size field indicates DWORDs after 1st */ 3146 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3147 3148 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3149 goto out; 3150 3151 bei = (dw0 & PCI_EA_BEI) >> 4; 3152 prop = (dw0 & PCI_EA_PP) >> 8; 3153 3154 /* 3155 * If the Property is in the reserved range, try the Secondary 3156 * Property instead. 3157 */ 3158 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3159 prop = (dw0 & PCI_EA_SP) >> 16; 3160 if (prop > PCI_EA_P_BRIDGE_IO) 3161 goto out; 3162 3163 res = pci_ea_get_resource(dev, bei, prop); 3164 if (!res) { 3165 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3166 goto out; 3167 } 3168 3169 flags = pci_ea_flags(dev, prop); 3170 if (!flags) { 3171 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3172 goto out; 3173 } 3174 3175 /* Read Base */ 3176 pci_read_config_dword(dev, ent_offset, &base); 3177 start = (base & PCI_EA_FIELD_MASK); 3178 ent_offset += 4; 3179 3180 /* Read MaxOffset */ 3181 pci_read_config_dword(dev, ent_offset, &max_offset); 3182 ent_offset += 4; 3183 3184 /* Read Base MSBs (if 64-bit entry) */ 3185 if (base & PCI_EA_IS_64) { 3186 u32 base_upper; 3187 3188 pci_read_config_dword(dev, ent_offset, &base_upper); 3189 ent_offset += 4; 3190 3191 flags |= IORESOURCE_MEM_64; 3192 3193 /* entry starts above 32-bit boundary, can't use */ 3194 if (!support_64 && base_upper) 3195 goto out; 3196 3197 if (support_64) 3198 start |= ((u64)base_upper << 32); 3199 } 3200 3201 end = start + (max_offset | 0x03); 3202 3203 /* Read MaxOffset MSBs (if 64-bit entry) */ 3204 if (max_offset & PCI_EA_IS_64) { 3205 u32 max_offset_upper; 3206 3207 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3208 ent_offset += 4; 3209 3210 flags |= IORESOURCE_MEM_64; 3211 3212 /* entry too big, can't use */ 3213 if (!support_64 && max_offset_upper) 3214 goto out; 3215 3216 if (support_64) 3217 end += ((u64)max_offset_upper << 32); 3218 } 3219 3220 if (end < start) { 3221 pci_err(dev, "EA Entry crosses address boundary\n"); 3222 goto out; 3223 } 3224 3225 if (ent_size != ent_offset - offset) { 3226 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3227 ent_size, ent_offset - offset); 3228 goto out; 3229 } 3230 3231 res->name = pci_name(dev); 3232 res->start = start; 3233 res->end = end; 3234 res->flags = flags; 3235 3236 if (bei <= PCI_EA_BEI_BAR5) 3237 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3238 bei, res, prop); 3239 else if (bei == PCI_EA_BEI_ROM) 3240 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3241 res, prop); 3242 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3243 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3244 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3245 else 3246 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3247 bei, res, prop); 3248 3249 out: 3250 return offset + ent_size; 3251 } 3252 3253 /* Enhanced Allocation Initialization */ 3254 void pci_ea_init(struct pci_dev *dev) 3255 { 3256 int ea; 3257 u8 num_ent; 3258 int offset; 3259 int i; 3260 3261 /* find PCI EA capability in list */ 3262 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3263 if (!ea) 3264 return; 3265 3266 /* determine the number of entries */ 3267 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3268 &num_ent); 3269 num_ent &= PCI_EA_NUM_ENT_MASK; 3270 3271 offset = ea + PCI_EA_FIRST_ENT; 3272 3273 /* Skip DWORD 2 for type 1 functions */ 3274 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3275 offset += 4; 3276 3277 /* parse each EA entry */ 3278 for (i = 0; i < num_ent; ++i) 3279 offset = pci_ea_read(dev, offset); 3280 } 3281 3282 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3283 struct pci_cap_saved_state *new_cap) 3284 { 3285 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3286 } 3287 3288 /** 3289 * _pci_add_cap_save_buffer - allocate buffer for saving given 3290 * capability registers 3291 * @dev: the PCI device 3292 * @cap: the capability to allocate the buffer for 3293 * @extended: Standard or Extended capability ID 3294 * @size: requested size of the buffer 3295 */ 3296 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3297 bool extended, unsigned int size) 3298 { 3299 int pos; 3300 struct pci_cap_saved_state *save_state; 3301 3302 if (extended) 3303 pos = pci_find_ext_capability(dev, cap); 3304 else 3305 pos = pci_find_capability(dev, cap); 3306 3307 if (!pos) 3308 return 0; 3309 3310 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3311 if (!save_state) 3312 return -ENOMEM; 3313 3314 save_state->cap.cap_nr = cap; 3315 save_state->cap.cap_extended = extended; 3316 save_state->cap.size = size; 3317 pci_add_saved_cap(dev, save_state); 3318 3319 return 0; 3320 } 3321 3322 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3323 { 3324 return _pci_add_cap_save_buffer(dev, cap, false, size); 3325 } 3326 3327 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3328 { 3329 return _pci_add_cap_save_buffer(dev, cap, true, size); 3330 } 3331 3332 /** 3333 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3334 * @dev: the PCI device 3335 */ 3336 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3337 { 3338 int error; 3339 3340 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3341 PCI_EXP_SAVE_REGS * sizeof(u16)); 3342 if (error) 3343 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3344 3345 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3346 if (error) 3347 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3348 3349 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3350 2 * sizeof(u16)); 3351 if (error) 3352 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3353 3354 pci_allocate_vc_save_buffers(dev); 3355 } 3356 3357 void pci_free_cap_save_buffers(struct pci_dev *dev) 3358 { 3359 struct pci_cap_saved_state *tmp; 3360 struct hlist_node *n; 3361 3362 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3363 kfree(tmp); 3364 } 3365 3366 /** 3367 * pci_configure_ari - enable or disable ARI forwarding 3368 * @dev: the PCI device 3369 * 3370 * If @dev and its upstream bridge both support ARI, enable ARI in the 3371 * bridge. Otherwise, disable ARI in the bridge. 3372 */ 3373 void pci_configure_ari(struct pci_dev *dev) 3374 { 3375 u32 cap; 3376 struct pci_dev *bridge; 3377 3378 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3379 return; 3380 3381 bridge = dev->bus->self; 3382 if (!bridge) 3383 return; 3384 3385 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3386 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3387 return; 3388 3389 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3390 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3391 PCI_EXP_DEVCTL2_ARI); 3392 bridge->ari_enabled = 1; 3393 } else { 3394 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3395 PCI_EXP_DEVCTL2_ARI); 3396 bridge->ari_enabled = 0; 3397 } 3398 } 3399 3400 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3401 { 3402 int pos; 3403 u16 cap, ctrl; 3404 3405 pos = pdev->acs_cap; 3406 if (!pos) 3407 return false; 3408 3409 /* 3410 * Except for egress control, capabilities are either required 3411 * or only required if controllable. Features missing from the 3412 * capability field can therefore be assumed as hard-wired enabled. 3413 */ 3414 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3415 acs_flags &= (cap | PCI_ACS_EC); 3416 3417 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3418 return (ctrl & acs_flags) == acs_flags; 3419 } 3420 3421 /** 3422 * pci_acs_enabled - test ACS against required flags for a given device 3423 * @pdev: device to test 3424 * @acs_flags: required PCI ACS flags 3425 * 3426 * Return true if the device supports the provided flags. Automatically 3427 * filters out flags that are not implemented on multifunction devices. 3428 * 3429 * Note that this interface checks the effective ACS capabilities of the 3430 * device rather than the actual capabilities. For instance, most single 3431 * function endpoints are not required to support ACS because they have no 3432 * opportunity for peer-to-peer access. We therefore return 'true' 3433 * regardless of whether the device exposes an ACS capability. This makes 3434 * it much easier for callers of this function to ignore the actual type 3435 * or topology of the device when testing ACS support. 3436 */ 3437 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3438 { 3439 int ret; 3440 3441 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3442 if (ret >= 0) 3443 return ret > 0; 3444 3445 /* 3446 * Conventional PCI and PCI-X devices never support ACS, either 3447 * effectively or actually. The shared bus topology implies that 3448 * any device on the bus can receive or snoop DMA. 3449 */ 3450 if (!pci_is_pcie(pdev)) 3451 return false; 3452 3453 switch (pci_pcie_type(pdev)) { 3454 /* 3455 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3456 * but since their primary interface is PCI/X, we conservatively 3457 * handle them as we would a non-PCIe device. 3458 */ 3459 case PCI_EXP_TYPE_PCIE_BRIDGE: 3460 /* 3461 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3462 * applicable... must never implement an ACS Extended Capability...". 3463 * This seems arbitrary, but we take a conservative interpretation 3464 * of this statement. 3465 */ 3466 case PCI_EXP_TYPE_PCI_BRIDGE: 3467 case PCI_EXP_TYPE_RC_EC: 3468 return false; 3469 /* 3470 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3471 * implement ACS in order to indicate their peer-to-peer capabilities, 3472 * regardless of whether they are single- or multi-function devices. 3473 */ 3474 case PCI_EXP_TYPE_DOWNSTREAM: 3475 case PCI_EXP_TYPE_ROOT_PORT: 3476 return pci_acs_flags_enabled(pdev, acs_flags); 3477 /* 3478 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3479 * implemented by the remaining PCIe types to indicate peer-to-peer 3480 * capabilities, but only when they are part of a multifunction 3481 * device. The footnote for section 6.12 indicates the specific 3482 * PCIe types included here. 3483 */ 3484 case PCI_EXP_TYPE_ENDPOINT: 3485 case PCI_EXP_TYPE_UPSTREAM: 3486 case PCI_EXP_TYPE_LEG_END: 3487 case PCI_EXP_TYPE_RC_END: 3488 if (!pdev->multifunction) 3489 break; 3490 3491 return pci_acs_flags_enabled(pdev, acs_flags); 3492 } 3493 3494 /* 3495 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3496 * to single function devices with the exception of downstream ports. 3497 */ 3498 return true; 3499 } 3500 3501 /** 3502 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3503 * @start: starting downstream device 3504 * @end: ending upstream device or NULL to search to the root bus 3505 * @acs_flags: required flags 3506 * 3507 * Walk up a device tree from start to end testing PCI ACS support. If 3508 * any step along the way does not support the required flags, return false. 3509 */ 3510 bool pci_acs_path_enabled(struct pci_dev *start, 3511 struct pci_dev *end, u16 acs_flags) 3512 { 3513 struct pci_dev *pdev, *parent = start; 3514 3515 do { 3516 pdev = parent; 3517 3518 if (!pci_acs_enabled(pdev, acs_flags)) 3519 return false; 3520 3521 if (pci_is_root_bus(pdev->bus)) 3522 return (end == NULL); 3523 3524 parent = pdev->bus->self; 3525 } while (pdev != end); 3526 3527 return true; 3528 } 3529 3530 /** 3531 * pci_acs_init - Initialize ACS if hardware supports it 3532 * @dev: the PCI device 3533 */ 3534 void pci_acs_init(struct pci_dev *dev) 3535 { 3536 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3537 3538 /* 3539 * Attempt to enable ACS regardless of capability because some Root 3540 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3541 * the standard ACS capability but still support ACS via those 3542 * quirks. 3543 */ 3544 pci_enable_acs(dev); 3545 } 3546 3547 /** 3548 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3549 * @pdev: PCI device 3550 * @bar: BAR to find 3551 * 3552 * Helper to find the position of the ctrl register for a BAR. 3553 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3554 * Returns -ENOENT if no ctrl register for the BAR could be found. 3555 */ 3556 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3557 { 3558 unsigned int pos, nbars, i; 3559 u32 ctrl; 3560 3561 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3562 if (!pos) 3563 return -ENOTSUPP; 3564 3565 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3566 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3567 PCI_REBAR_CTRL_NBAR_SHIFT; 3568 3569 for (i = 0; i < nbars; i++, pos += 8) { 3570 int bar_idx; 3571 3572 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3573 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3574 if (bar_idx == bar) 3575 return pos; 3576 } 3577 3578 return -ENOENT; 3579 } 3580 3581 /** 3582 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3583 * @pdev: PCI device 3584 * @bar: BAR to query 3585 * 3586 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3587 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3588 */ 3589 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3590 { 3591 int pos; 3592 u32 cap; 3593 3594 pos = pci_rebar_find_pos(pdev, bar); 3595 if (pos < 0) 3596 return 0; 3597 3598 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3599 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3600 } 3601 3602 /** 3603 * pci_rebar_get_current_size - get the current size of a BAR 3604 * @pdev: PCI device 3605 * @bar: BAR to set size to 3606 * 3607 * Read the size of a BAR from the resizable BAR config. 3608 * Returns size if found or negative error code. 3609 */ 3610 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3611 { 3612 int pos; 3613 u32 ctrl; 3614 3615 pos = pci_rebar_find_pos(pdev, bar); 3616 if (pos < 0) 3617 return pos; 3618 3619 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3620 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3621 } 3622 3623 /** 3624 * pci_rebar_set_size - set a new size for a BAR 3625 * @pdev: PCI device 3626 * @bar: BAR to set size to 3627 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3628 * 3629 * Set the new size of a BAR as defined in the spec. 3630 * Returns zero if resizing was successful, error code otherwise. 3631 */ 3632 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3633 { 3634 int pos; 3635 u32 ctrl; 3636 3637 pos = pci_rebar_find_pos(pdev, bar); 3638 if (pos < 0) 3639 return pos; 3640 3641 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3642 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3643 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3644 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3645 return 0; 3646 } 3647 3648 /** 3649 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3650 * @dev: the PCI device 3651 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3652 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3653 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3654 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3655 * 3656 * Return 0 if all upstream bridges support AtomicOp routing, egress 3657 * blocking is disabled on all upstream ports, and the root port supports 3658 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3659 * AtomicOp completion), or negative otherwise. 3660 */ 3661 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3662 { 3663 struct pci_bus *bus = dev->bus; 3664 struct pci_dev *bridge; 3665 u32 cap, ctl2; 3666 3667 if (!pci_is_pcie(dev)) 3668 return -EINVAL; 3669 3670 /* 3671 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3672 * AtomicOp requesters. For now, we only support endpoints as 3673 * requesters and root ports as completers. No endpoints as 3674 * completers, and no peer-to-peer. 3675 */ 3676 3677 switch (pci_pcie_type(dev)) { 3678 case PCI_EXP_TYPE_ENDPOINT: 3679 case PCI_EXP_TYPE_LEG_END: 3680 case PCI_EXP_TYPE_RC_END: 3681 break; 3682 default: 3683 return -EINVAL; 3684 } 3685 3686 while (bus->parent) { 3687 bridge = bus->self; 3688 3689 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3690 3691 switch (pci_pcie_type(bridge)) { 3692 /* Ensure switch ports support AtomicOp routing */ 3693 case PCI_EXP_TYPE_UPSTREAM: 3694 case PCI_EXP_TYPE_DOWNSTREAM: 3695 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3696 return -EINVAL; 3697 break; 3698 3699 /* Ensure root port supports all the sizes we care about */ 3700 case PCI_EXP_TYPE_ROOT_PORT: 3701 if ((cap & cap_mask) != cap_mask) 3702 return -EINVAL; 3703 break; 3704 } 3705 3706 /* Ensure upstream ports don't block AtomicOps on egress */ 3707 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3708 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3709 &ctl2); 3710 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3711 return -EINVAL; 3712 } 3713 3714 bus = bus->parent; 3715 } 3716 3717 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3718 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3719 return 0; 3720 } 3721 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3722 3723 /** 3724 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3725 * @dev: the PCI device 3726 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3727 * 3728 * Perform INTx swizzling for a device behind one level of bridge. This is 3729 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3730 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3731 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3732 * the PCI Express Base Specification, Revision 2.1) 3733 */ 3734 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3735 { 3736 int slot; 3737 3738 if (pci_ari_enabled(dev->bus)) 3739 slot = 0; 3740 else 3741 slot = PCI_SLOT(dev->devfn); 3742 3743 return (((pin - 1) + slot) % 4) + 1; 3744 } 3745 3746 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3747 { 3748 u8 pin; 3749 3750 pin = dev->pin; 3751 if (!pin) 3752 return -1; 3753 3754 while (!pci_is_root_bus(dev->bus)) { 3755 pin = pci_swizzle_interrupt_pin(dev, pin); 3756 dev = dev->bus->self; 3757 } 3758 *bridge = dev; 3759 return pin; 3760 } 3761 3762 /** 3763 * pci_common_swizzle - swizzle INTx all the way to root bridge 3764 * @dev: the PCI device 3765 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3766 * 3767 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3768 * bridges all the way up to a PCI root bus. 3769 */ 3770 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3771 { 3772 u8 pin = *pinp; 3773 3774 while (!pci_is_root_bus(dev->bus)) { 3775 pin = pci_swizzle_interrupt_pin(dev, pin); 3776 dev = dev->bus->self; 3777 } 3778 *pinp = pin; 3779 return PCI_SLOT(dev->devfn); 3780 } 3781 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3782 3783 /** 3784 * pci_release_region - Release a PCI bar 3785 * @pdev: PCI device whose resources were previously reserved by 3786 * pci_request_region() 3787 * @bar: BAR to release 3788 * 3789 * Releases the PCI I/O and memory resources previously reserved by a 3790 * successful call to pci_request_region(). Call this function only 3791 * after all use of the PCI regions has ceased. 3792 */ 3793 void pci_release_region(struct pci_dev *pdev, int bar) 3794 { 3795 struct pci_devres *dr; 3796 3797 if (pci_resource_len(pdev, bar) == 0) 3798 return; 3799 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3800 release_region(pci_resource_start(pdev, bar), 3801 pci_resource_len(pdev, bar)); 3802 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3803 release_mem_region(pci_resource_start(pdev, bar), 3804 pci_resource_len(pdev, bar)); 3805 3806 dr = find_pci_dr(pdev); 3807 if (dr) 3808 dr->region_mask &= ~(1 << bar); 3809 } 3810 EXPORT_SYMBOL(pci_release_region); 3811 3812 /** 3813 * __pci_request_region - Reserved PCI I/O and memory resource 3814 * @pdev: PCI device whose resources are to be reserved 3815 * @bar: BAR to be reserved 3816 * @res_name: Name to be associated with resource. 3817 * @exclusive: whether the region access is exclusive or not 3818 * 3819 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3820 * being reserved by owner @res_name. Do not access any 3821 * address inside the PCI regions unless this call returns 3822 * successfully. 3823 * 3824 * If @exclusive is set, then the region is marked so that userspace 3825 * is explicitly not allowed to map the resource via /dev/mem or 3826 * sysfs MMIO access. 3827 * 3828 * Returns 0 on success, or %EBUSY on error. A warning 3829 * message is also printed on failure. 3830 */ 3831 static int __pci_request_region(struct pci_dev *pdev, int bar, 3832 const char *res_name, int exclusive) 3833 { 3834 struct pci_devres *dr; 3835 3836 if (pci_resource_len(pdev, bar) == 0) 3837 return 0; 3838 3839 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3840 if (!request_region(pci_resource_start(pdev, bar), 3841 pci_resource_len(pdev, bar), res_name)) 3842 goto err_out; 3843 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3844 if (!__request_mem_region(pci_resource_start(pdev, bar), 3845 pci_resource_len(pdev, bar), res_name, 3846 exclusive)) 3847 goto err_out; 3848 } 3849 3850 dr = find_pci_dr(pdev); 3851 if (dr) 3852 dr->region_mask |= 1 << bar; 3853 3854 return 0; 3855 3856 err_out: 3857 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3858 &pdev->resource[bar]); 3859 return -EBUSY; 3860 } 3861 3862 /** 3863 * pci_request_region - Reserve PCI I/O and memory resource 3864 * @pdev: PCI device whose resources are to be reserved 3865 * @bar: BAR to be reserved 3866 * @res_name: Name to be associated with resource 3867 * 3868 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3869 * being reserved by owner @res_name. Do not access any 3870 * address inside the PCI regions unless this call returns 3871 * successfully. 3872 * 3873 * Returns 0 on success, or %EBUSY on error. A warning 3874 * message is also printed on failure. 3875 */ 3876 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3877 { 3878 return __pci_request_region(pdev, bar, res_name, 0); 3879 } 3880 EXPORT_SYMBOL(pci_request_region); 3881 3882 /** 3883 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3884 * @pdev: PCI device whose resources were previously reserved 3885 * @bars: Bitmask of BARs to be released 3886 * 3887 * Release selected PCI I/O and memory resources previously reserved. 3888 * Call this function only after all use of the PCI regions has ceased. 3889 */ 3890 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3891 { 3892 int i; 3893 3894 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3895 if (bars & (1 << i)) 3896 pci_release_region(pdev, i); 3897 } 3898 EXPORT_SYMBOL(pci_release_selected_regions); 3899 3900 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3901 const char *res_name, int excl) 3902 { 3903 int i; 3904 3905 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3906 if (bars & (1 << i)) 3907 if (__pci_request_region(pdev, i, res_name, excl)) 3908 goto err_out; 3909 return 0; 3910 3911 err_out: 3912 while (--i >= 0) 3913 if (bars & (1 << i)) 3914 pci_release_region(pdev, i); 3915 3916 return -EBUSY; 3917 } 3918 3919 3920 /** 3921 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3922 * @pdev: PCI device whose resources are to be reserved 3923 * @bars: Bitmask of BARs to be requested 3924 * @res_name: Name to be associated with resource 3925 */ 3926 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3927 const char *res_name) 3928 { 3929 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3930 } 3931 EXPORT_SYMBOL(pci_request_selected_regions); 3932 3933 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3934 const char *res_name) 3935 { 3936 return __pci_request_selected_regions(pdev, bars, res_name, 3937 IORESOURCE_EXCLUSIVE); 3938 } 3939 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3940 3941 /** 3942 * pci_release_regions - Release reserved PCI I/O and memory resources 3943 * @pdev: PCI device whose resources were previously reserved by 3944 * pci_request_regions() 3945 * 3946 * Releases all PCI I/O and memory resources previously reserved by a 3947 * successful call to pci_request_regions(). Call this function only 3948 * after all use of the PCI regions has ceased. 3949 */ 3950 3951 void pci_release_regions(struct pci_dev *pdev) 3952 { 3953 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 3954 } 3955 EXPORT_SYMBOL(pci_release_regions); 3956 3957 /** 3958 * pci_request_regions - Reserve PCI I/O and memory resources 3959 * @pdev: PCI device whose resources are to be reserved 3960 * @res_name: Name to be associated with resource. 3961 * 3962 * Mark all PCI regions associated with PCI device @pdev as 3963 * being reserved by owner @res_name. Do not access any 3964 * address inside the PCI regions unless this call returns 3965 * successfully. 3966 * 3967 * Returns 0 on success, or %EBUSY on error. A warning 3968 * message is also printed on failure. 3969 */ 3970 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3971 { 3972 return pci_request_selected_regions(pdev, 3973 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3974 } 3975 EXPORT_SYMBOL(pci_request_regions); 3976 3977 /** 3978 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 3979 * @pdev: PCI device whose resources are to be reserved 3980 * @res_name: Name to be associated with resource. 3981 * 3982 * Mark all PCI regions associated with PCI device @pdev as being reserved 3983 * by owner @res_name. Do not access any address inside the PCI regions 3984 * unless this call returns successfully. 3985 * 3986 * pci_request_regions_exclusive() will mark the region so that /dev/mem 3987 * and the sysfs MMIO access will not be allowed. 3988 * 3989 * Returns 0 on success, or %EBUSY on error. A warning message is also 3990 * printed on failure. 3991 */ 3992 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3993 { 3994 return pci_request_selected_regions_exclusive(pdev, 3995 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3996 } 3997 EXPORT_SYMBOL(pci_request_regions_exclusive); 3998 3999 /* 4000 * Record the PCI IO range (expressed as CPU physical address + size). 4001 * Return a negative value if an error has occurred, zero otherwise 4002 */ 4003 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4004 resource_size_t size) 4005 { 4006 int ret = 0; 4007 #ifdef PCI_IOBASE 4008 struct logic_pio_hwaddr *range; 4009 4010 if (!size || addr + size < addr) 4011 return -EINVAL; 4012 4013 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4014 if (!range) 4015 return -ENOMEM; 4016 4017 range->fwnode = fwnode; 4018 range->size = size; 4019 range->hw_start = addr; 4020 range->flags = LOGIC_PIO_CPU_MMIO; 4021 4022 ret = logic_pio_register_range(range); 4023 if (ret) 4024 kfree(range); 4025 #endif 4026 4027 return ret; 4028 } 4029 4030 phys_addr_t pci_pio_to_address(unsigned long pio) 4031 { 4032 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 4033 4034 #ifdef PCI_IOBASE 4035 if (pio >= MMIO_UPPER_LIMIT) 4036 return address; 4037 4038 address = logic_pio_to_hwaddr(pio); 4039 #endif 4040 4041 return address; 4042 } 4043 4044 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4045 { 4046 #ifdef PCI_IOBASE 4047 return logic_pio_trans_cpuaddr(address); 4048 #else 4049 if (address > IO_SPACE_LIMIT) 4050 return (unsigned long)-1; 4051 4052 return (unsigned long) address; 4053 #endif 4054 } 4055 4056 /** 4057 * pci_remap_iospace - Remap the memory mapped I/O space 4058 * @res: Resource describing the I/O space 4059 * @phys_addr: physical address of range to be mapped 4060 * 4061 * Remap the memory mapped I/O space described by the @res and the CPU 4062 * physical address @phys_addr into virtual address space. Only 4063 * architectures that have memory mapped IO functions defined (and the 4064 * PCI_IOBASE value defined) should call this function. 4065 */ 4066 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4067 { 4068 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4069 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4070 4071 if (!(res->flags & IORESOURCE_IO)) 4072 return -EINVAL; 4073 4074 if (res->end > IO_SPACE_LIMIT) 4075 return -EINVAL; 4076 4077 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4078 pgprot_device(PAGE_KERNEL)); 4079 #else 4080 /* 4081 * This architecture does not have memory mapped I/O space, 4082 * so this function should never be called 4083 */ 4084 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4085 return -ENODEV; 4086 #endif 4087 } 4088 EXPORT_SYMBOL(pci_remap_iospace); 4089 4090 /** 4091 * pci_unmap_iospace - Unmap the memory mapped I/O space 4092 * @res: resource to be unmapped 4093 * 4094 * Unmap the CPU virtual address @res from virtual address space. Only 4095 * architectures that have memory mapped IO functions defined (and the 4096 * PCI_IOBASE value defined) should call this function. 4097 */ 4098 void pci_unmap_iospace(struct resource *res) 4099 { 4100 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4101 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4102 4103 unmap_kernel_range(vaddr, resource_size(res)); 4104 #endif 4105 } 4106 EXPORT_SYMBOL(pci_unmap_iospace); 4107 4108 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4109 { 4110 struct resource **res = ptr; 4111 4112 pci_unmap_iospace(*res); 4113 } 4114 4115 /** 4116 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4117 * @dev: Generic device to remap IO address for 4118 * @res: Resource describing the I/O space 4119 * @phys_addr: physical address of range to be mapped 4120 * 4121 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4122 * detach. 4123 */ 4124 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4125 phys_addr_t phys_addr) 4126 { 4127 const struct resource **ptr; 4128 int error; 4129 4130 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4131 if (!ptr) 4132 return -ENOMEM; 4133 4134 error = pci_remap_iospace(res, phys_addr); 4135 if (error) { 4136 devres_free(ptr); 4137 } else { 4138 *ptr = res; 4139 devres_add(dev, ptr); 4140 } 4141 4142 return error; 4143 } 4144 EXPORT_SYMBOL(devm_pci_remap_iospace); 4145 4146 /** 4147 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4148 * @dev: Generic device to remap IO address for 4149 * @offset: Resource address to map 4150 * @size: Size of map 4151 * 4152 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4153 * detach. 4154 */ 4155 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4156 resource_size_t offset, 4157 resource_size_t size) 4158 { 4159 void __iomem **ptr, *addr; 4160 4161 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4162 if (!ptr) 4163 return NULL; 4164 4165 addr = pci_remap_cfgspace(offset, size); 4166 if (addr) { 4167 *ptr = addr; 4168 devres_add(dev, ptr); 4169 } else 4170 devres_free(ptr); 4171 4172 return addr; 4173 } 4174 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4175 4176 /** 4177 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4178 * @dev: generic device to handle the resource for 4179 * @res: configuration space resource to be handled 4180 * 4181 * Checks that a resource is a valid memory region, requests the memory 4182 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4183 * proper PCI configuration space memory attributes are guaranteed. 4184 * 4185 * All operations are managed and will be undone on driver detach. 4186 * 4187 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4188 * on failure. Usage example:: 4189 * 4190 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4191 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4192 * if (IS_ERR(base)) 4193 * return PTR_ERR(base); 4194 */ 4195 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4196 struct resource *res) 4197 { 4198 resource_size_t size; 4199 const char *name; 4200 void __iomem *dest_ptr; 4201 4202 BUG_ON(!dev); 4203 4204 if (!res || resource_type(res) != IORESOURCE_MEM) { 4205 dev_err(dev, "invalid resource\n"); 4206 return IOMEM_ERR_PTR(-EINVAL); 4207 } 4208 4209 size = resource_size(res); 4210 4211 if (res->name) 4212 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4213 res->name); 4214 else 4215 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4216 if (!name) 4217 return IOMEM_ERR_PTR(-ENOMEM); 4218 4219 if (!devm_request_mem_region(dev, res->start, size, name)) { 4220 dev_err(dev, "can't request region for resource %pR\n", res); 4221 return IOMEM_ERR_PTR(-EBUSY); 4222 } 4223 4224 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4225 if (!dest_ptr) { 4226 dev_err(dev, "ioremap failed for resource %pR\n", res); 4227 devm_release_mem_region(dev, res->start, size); 4228 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4229 } 4230 4231 return dest_ptr; 4232 } 4233 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4234 4235 static void __pci_set_master(struct pci_dev *dev, bool enable) 4236 { 4237 u16 old_cmd, cmd; 4238 4239 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4240 if (enable) 4241 cmd = old_cmd | PCI_COMMAND_MASTER; 4242 else 4243 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4244 if (cmd != old_cmd) { 4245 pci_dbg(dev, "%s bus mastering\n", 4246 enable ? "enabling" : "disabling"); 4247 pci_write_config_word(dev, PCI_COMMAND, cmd); 4248 } 4249 dev->is_busmaster = enable; 4250 } 4251 4252 /** 4253 * pcibios_setup - process "pci=" kernel boot arguments 4254 * @str: string used to pass in "pci=" kernel boot arguments 4255 * 4256 * Process kernel boot arguments. This is the default implementation. 4257 * Architecture specific implementations can override this as necessary. 4258 */ 4259 char * __weak __init pcibios_setup(char *str) 4260 { 4261 return str; 4262 } 4263 4264 /** 4265 * pcibios_set_master - enable PCI bus-mastering for device dev 4266 * @dev: the PCI device to enable 4267 * 4268 * Enables PCI bus-mastering for the device. This is the default 4269 * implementation. Architecture specific implementations can override 4270 * this if necessary. 4271 */ 4272 void __weak pcibios_set_master(struct pci_dev *dev) 4273 { 4274 u8 lat; 4275 4276 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4277 if (pci_is_pcie(dev)) 4278 return; 4279 4280 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4281 if (lat < 16) 4282 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4283 else if (lat > pcibios_max_latency) 4284 lat = pcibios_max_latency; 4285 else 4286 return; 4287 4288 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4289 } 4290 4291 /** 4292 * pci_set_master - enables bus-mastering for device dev 4293 * @dev: the PCI device to enable 4294 * 4295 * Enables bus-mastering on the device and calls pcibios_set_master() 4296 * to do the needed arch specific settings. 4297 */ 4298 void pci_set_master(struct pci_dev *dev) 4299 { 4300 __pci_set_master(dev, true); 4301 pcibios_set_master(dev); 4302 } 4303 EXPORT_SYMBOL(pci_set_master); 4304 4305 /** 4306 * pci_clear_master - disables bus-mastering for device dev 4307 * @dev: the PCI device to disable 4308 */ 4309 void pci_clear_master(struct pci_dev *dev) 4310 { 4311 __pci_set_master(dev, false); 4312 } 4313 EXPORT_SYMBOL(pci_clear_master); 4314 4315 /** 4316 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4317 * @dev: the PCI device for which MWI is to be enabled 4318 * 4319 * Helper function for pci_set_mwi. 4320 * Originally copied from drivers/net/acenic.c. 4321 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4322 * 4323 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4324 */ 4325 int pci_set_cacheline_size(struct pci_dev *dev) 4326 { 4327 u8 cacheline_size; 4328 4329 if (!pci_cache_line_size) 4330 return -EINVAL; 4331 4332 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4333 equal to or multiple of the right value. */ 4334 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4335 if (cacheline_size >= pci_cache_line_size && 4336 (cacheline_size % pci_cache_line_size) == 0) 4337 return 0; 4338 4339 /* Write the correct value. */ 4340 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4341 /* Read it back. */ 4342 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4343 if (cacheline_size == pci_cache_line_size) 4344 return 0; 4345 4346 pci_dbg(dev, "cache line size of %d is not supported\n", 4347 pci_cache_line_size << 2); 4348 4349 return -EINVAL; 4350 } 4351 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4352 4353 /** 4354 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4355 * @dev: the PCI device for which MWI is enabled 4356 * 4357 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4358 * 4359 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4360 */ 4361 int pci_set_mwi(struct pci_dev *dev) 4362 { 4363 #ifdef PCI_DISABLE_MWI 4364 return 0; 4365 #else 4366 int rc; 4367 u16 cmd; 4368 4369 rc = pci_set_cacheline_size(dev); 4370 if (rc) 4371 return rc; 4372 4373 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4374 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4375 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4376 cmd |= PCI_COMMAND_INVALIDATE; 4377 pci_write_config_word(dev, PCI_COMMAND, cmd); 4378 } 4379 return 0; 4380 #endif 4381 } 4382 EXPORT_SYMBOL(pci_set_mwi); 4383 4384 /** 4385 * pcim_set_mwi - a device-managed pci_set_mwi() 4386 * @dev: the PCI device for which MWI is enabled 4387 * 4388 * Managed pci_set_mwi(). 4389 * 4390 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4391 */ 4392 int pcim_set_mwi(struct pci_dev *dev) 4393 { 4394 struct pci_devres *dr; 4395 4396 dr = find_pci_dr(dev); 4397 if (!dr) 4398 return -ENOMEM; 4399 4400 dr->mwi = 1; 4401 return pci_set_mwi(dev); 4402 } 4403 EXPORT_SYMBOL(pcim_set_mwi); 4404 4405 /** 4406 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4407 * @dev: the PCI device for which MWI is enabled 4408 * 4409 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4410 * Callers are not required to check the return value. 4411 * 4412 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4413 */ 4414 int pci_try_set_mwi(struct pci_dev *dev) 4415 { 4416 #ifdef PCI_DISABLE_MWI 4417 return 0; 4418 #else 4419 return pci_set_mwi(dev); 4420 #endif 4421 } 4422 EXPORT_SYMBOL(pci_try_set_mwi); 4423 4424 /** 4425 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4426 * @dev: the PCI device to disable 4427 * 4428 * Disables PCI Memory-Write-Invalidate transaction on the device 4429 */ 4430 void pci_clear_mwi(struct pci_dev *dev) 4431 { 4432 #ifndef PCI_DISABLE_MWI 4433 u16 cmd; 4434 4435 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4436 if (cmd & PCI_COMMAND_INVALIDATE) { 4437 cmd &= ~PCI_COMMAND_INVALIDATE; 4438 pci_write_config_word(dev, PCI_COMMAND, cmd); 4439 } 4440 #endif 4441 } 4442 EXPORT_SYMBOL(pci_clear_mwi); 4443 4444 /** 4445 * pci_intx - enables/disables PCI INTx for device dev 4446 * @pdev: the PCI device to operate on 4447 * @enable: boolean: whether to enable or disable PCI INTx 4448 * 4449 * Enables/disables PCI INTx for device @pdev 4450 */ 4451 void pci_intx(struct pci_dev *pdev, int enable) 4452 { 4453 u16 pci_command, new; 4454 4455 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4456 4457 if (enable) 4458 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4459 else 4460 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4461 4462 if (new != pci_command) { 4463 struct pci_devres *dr; 4464 4465 pci_write_config_word(pdev, PCI_COMMAND, new); 4466 4467 dr = find_pci_dr(pdev); 4468 if (dr && !dr->restore_intx) { 4469 dr->restore_intx = 1; 4470 dr->orig_intx = !enable; 4471 } 4472 } 4473 } 4474 EXPORT_SYMBOL_GPL(pci_intx); 4475 4476 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4477 { 4478 struct pci_bus *bus = dev->bus; 4479 bool mask_updated = true; 4480 u32 cmd_status_dword; 4481 u16 origcmd, newcmd; 4482 unsigned long flags; 4483 bool irq_pending; 4484 4485 /* 4486 * We do a single dword read to retrieve both command and status. 4487 * Document assumptions that make this possible. 4488 */ 4489 BUILD_BUG_ON(PCI_COMMAND % 4); 4490 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4491 4492 raw_spin_lock_irqsave(&pci_lock, flags); 4493 4494 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4495 4496 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4497 4498 /* 4499 * Check interrupt status register to see whether our device 4500 * triggered the interrupt (when masking) or the next IRQ is 4501 * already pending (when unmasking). 4502 */ 4503 if (mask != irq_pending) { 4504 mask_updated = false; 4505 goto done; 4506 } 4507 4508 origcmd = cmd_status_dword; 4509 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4510 if (mask) 4511 newcmd |= PCI_COMMAND_INTX_DISABLE; 4512 if (newcmd != origcmd) 4513 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4514 4515 done: 4516 raw_spin_unlock_irqrestore(&pci_lock, flags); 4517 4518 return mask_updated; 4519 } 4520 4521 /** 4522 * pci_check_and_mask_intx - mask INTx on pending interrupt 4523 * @dev: the PCI device to operate on 4524 * 4525 * Check if the device dev has its INTx line asserted, mask it and return 4526 * true in that case. False is returned if no interrupt was pending. 4527 */ 4528 bool pci_check_and_mask_intx(struct pci_dev *dev) 4529 { 4530 return pci_check_and_set_intx_mask(dev, true); 4531 } 4532 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4533 4534 /** 4535 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4536 * @dev: the PCI device to operate on 4537 * 4538 * Check if the device dev has its INTx line asserted, unmask it if not and 4539 * return true. False is returned and the mask remains active if there was 4540 * still an interrupt pending. 4541 */ 4542 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4543 { 4544 return pci_check_and_set_intx_mask(dev, false); 4545 } 4546 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4547 4548 /** 4549 * pci_wait_for_pending_transaction - wait for pending transaction 4550 * @dev: the PCI device to operate on 4551 * 4552 * Return 0 if transaction is pending 1 otherwise. 4553 */ 4554 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4555 { 4556 if (!pci_is_pcie(dev)) 4557 return 1; 4558 4559 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4560 PCI_EXP_DEVSTA_TRPND); 4561 } 4562 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4563 4564 /** 4565 * pcie_has_flr - check if a device supports function level resets 4566 * @dev: device to check 4567 * 4568 * Returns true if the device advertises support for PCIe function level 4569 * resets. 4570 */ 4571 bool pcie_has_flr(struct pci_dev *dev) 4572 { 4573 u32 cap; 4574 4575 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4576 return false; 4577 4578 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4579 return cap & PCI_EXP_DEVCAP_FLR; 4580 } 4581 EXPORT_SYMBOL_GPL(pcie_has_flr); 4582 4583 /** 4584 * pcie_flr - initiate a PCIe function level reset 4585 * @dev: device to reset 4586 * 4587 * Initiate a function level reset on @dev. The caller should ensure the 4588 * device supports FLR before calling this function, e.g. by using the 4589 * pcie_has_flr() helper. 4590 */ 4591 int pcie_flr(struct pci_dev *dev) 4592 { 4593 if (!pci_wait_for_pending_transaction(dev)) 4594 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4595 4596 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4597 4598 if (dev->imm_ready) 4599 return 0; 4600 4601 /* 4602 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4603 * 100ms, but may silently discard requests while the FLR is in 4604 * progress. Wait 100ms before trying to access the device. 4605 */ 4606 msleep(100); 4607 4608 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4609 } 4610 EXPORT_SYMBOL_GPL(pcie_flr); 4611 4612 static int pci_af_flr(struct pci_dev *dev, int probe) 4613 { 4614 int pos; 4615 u8 cap; 4616 4617 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4618 if (!pos) 4619 return -ENOTTY; 4620 4621 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4622 return -ENOTTY; 4623 4624 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4625 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4626 return -ENOTTY; 4627 4628 if (probe) 4629 return 0; 4630 4631 /* 4632 * Wait for Transaction Pending bit to clear. A word-aligned test 4633 * is used, so we use the control offset rather than status and shift 4634 * the test bit to match. 4635 */ 4636 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4637 PCI_AF_STATUS_TP << 8)) 4638 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4639 4640 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4641 4642 if (dev->imm_ready) 4643 return 0; 4644 4645 /* 4646 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4647 * updated 27 July 2006; a device must complete an FLR within 4648 * 100ms, but may silently discard requests while the FLR is in 4649 * progress. Wait 100ms before trying to access the device. 4650 */ 4651 msleep(100); 4652 4653 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4654 } 4655 4656 /** 4657 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4658 * @dev: Device to reset. 4659 * @probe: If set, only check if the device can be reset this way. 4660 * 4661 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4662 * unset, it will be reinitialized internally when going from PCI_D3hot to 4663 * PCI_D0. If that's the case and the device is not in a low-power state 4664 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4665 * 4666 * NOTE: This causes the caller to sleep for twice the device power transition 4667 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4668 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4669 * Moreover, only devices in D0 can be reset by this function. 4670 */ 4671 static int pci_pm_reset(struct pci_dev *dev, int probe) 4672 { 4673 u16 csr; 4674 4675 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4676 return -ENOTTY; 4677 4678 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4679 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4680 return -ENOTTY; 4681 4682 if (probe) 4683 return 0; 4684 4685 if (dev->current_state != PCI_D0) 4686 return -EINVAL; 4687 4688 csr &= ~PCI_PM_CTRL_STATE_MASK; 4689 csr |= PCI_D3hot; 4690 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4691 pci_dev_d3_sleep(dev); 4692 4693 csr &= ~PCI_PM_CTRL_STATE_MASK; 4694 csr |= PCI_D0; 4695 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4696 pci_dev_d3_sleep(dev); 4697 4698 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4699 } 4700 4701 /** 4702 * pcie_wait_for_link_delay - Wait until link is active or inactive 4703 * @pdev: Bridge device 4704 * @active: waiting for active or inactive? 4705 * @delay: Delay to wait after link has become active (in ms) 4706 * 4707 * Use this to wait till link becomes active or inactive. 4708 */ 4709 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4710 int delay) 4711 { 4712 int timeout = 1000; 4713 bool ret; 4714 u16 lnk_status; 4715 4716 /* 4717 * Some controllers might not implement link active reporting. In this 4718 * case, we wait for 1000 ms + any delay requested by the caller. 4719 */ 4720 if (!pdev->link_active_reporting) { 4721 msleep(timeout + delay); 4722 return true; 4723 } 4724 4725 /* 4726 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4727 * after which we should expect an link active if the reset was 4728 * successful. If so, software must wait a minimum 100ms before sending 4729 * configuration requests to devices downstream this port. 4730 * 4731 * If the link fails to activate, either the device was physically 4732 * removed or the link is permanently failed. 4733 */ 4734 if (active) 4735 msleep(20); 4736 for (;;) { 4737 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4738 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4739 if (ret == active) 4740 break; 4741 if (timeout <= 0) 4742 break; 4743 msleep(10); 4744 timeout -= 10; 4745 } 4746 if (active && ret) 4747 msleep(delay); 4748 4749 return ret == active; 4750 } 4751 4752 /** 4753 * pcie_wait_for_link - Wait until link is active or inactive 4754 * @pdev: Bridge device 4755 * @active: waiting for active or inactive? 4756 * 4757 * Use this to wait till link becomes active or inactive. 4758 */ 4759 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4760 { 4761 return pcie_wait_for_link_delay(pdev, active, 100); 4762 } 4763 4764 /* 4765 * Find maximum D3cold delay required by all the devices on the bus. The 4766 * spec says 100 ms, but firmware can lower it and we allow drivers to 4767 * increase it as well. 4768 * 4769 * Called with @pci_bus_sem locked for reading. 4770 */ 4771 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4772 { 4773 const struct pci_dev *pdev; 4774 int min_delay = 100; 4775 int max_delay = 0; 4776 4777 list_for_each_entry(pdev, &bus->devices, bus_list) { 4778 if (pdev->d3cold_delay < min_delay) 4779 min_delay = pdev->d3cold_delay; 4780 if (pdev->d3cold_delay > max_delay) 4781 max_delay = pdev->d3cold_delay; 4782 } 4783 4784 return max(min_delay, max_delay); 4785 } 4786 4787 /** 4788 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4789 * @dev: PCI bridge 4790 * 4791 * Handle necessary delays before access to the devices on the secondary 4792 * side of the bridge are permitted after D3cold to D0 transition. 4793 * 4794 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4795 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4796 * 4.3.2. 4797 */ 4798 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4799 { 4800 struct pci_dev *child; 4801 int delay; 4802 4803 if (pci_dev_is_disconnected(dev)) 4804 return; 4805 4806 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4807 return; 4808 4809 down_read(&pci_bus_sem); 4810 4811 /* 4812 * We only deal with devices that are present currently on the bus. 4813 * For any hot-added devices the access delay is handled in pciehp 4814 * board_added(). In case of ACPI hotplug the firmware is expected 4815 * to configure the devices before OS is notified. 4816 */ 4817 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4818 up_read(&pci_bus_sem); 4819 return; 4820 } 4821 4822 /* Take d3cold_delay requirements into account */ 4823 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4824 if (!delay) { 4825 up_read(&pci_bus_sem); 4826 return; 4827 } 4828 4829 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4830 bus_list); 4831 up_read(&pci_bus_sem); 4832 4833 /* 4834 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4835 * accessing the device after reset (that is 1000 ms + 100 ms). In 4836 * practice this should not be needed because we don't do power 4837 * management for them (see pci_bridge_d3_possible()). 4838 */ 4839 if (!pci_is_pcie(dev)) { 4840 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4841 msleep(1000 + delay); 4842 return; 4843 } 4844 4845 /* 4846 * For PCIe downstream and root ports that do not support speeds 4847 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4848 * speeds (gen3) we need to wait first for the data link layer to 4849 * become active. 4850 * 4851 * However, 100 ms is the minimum and the PCIe spec says the 4852 * software must allow at least 1s before it can determine that the 4853 * device that did not respond is a broken device. There is 4854 * evidence that 100 ms is not always enough, for example certain 4855 * Titan Ridge xHCI controller does not always respond to 4856 * configuration requests if we only wait for 100 ms (see 4857 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4858 * 4859 * Therefore we wait for 100 ms and check for the device presence. 4860 * If it is still not present give it an additional 100 ms. 4861 */ 4862 if (!pcie_downstream_port(dev)) 4863 return; 4864 4865 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4866 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4867 msleep(delay); 4868 } else { 4869 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4870 delay); 4871 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4872 /* Did not train, no need to wait any further */ 4873 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 4874 return; 4875 } 4876 } 4877 4878 if (!pci_device_is_present(child)) { 4879 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 4880 msleep(delay); 4881 } 4882 } 4883 4884 void pci_reset_secondary_bus(struct pci_dev *dev) 4885 { 4886 u16 ctrl; 4887 4888 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4889 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4890 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4891 4892 /* 4893 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4894 * this to 2ms to ensure that we meet the minimum requirement. 4895 */ 4896 msleep(2); 4897 4898 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4899 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4900 4901 /* 4902 * Trhfa for conventional PCI is 2^25 clock cycles. 4903 * Assuming a minimum 33MHz clock this results in a 1s 4904 * delay before we can consider subordinate devices to 4905 * be re-initialized. PCIe has some ways to shorten this, 4906 * but we don't make use of them yet. 4907 */ 4908 ssleep(1); 4909 } 4910 4911 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4912 { 4913 pci_reset_secondary_bus(dev); 4914 } 4915 4916 /** 4917 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4918 * @dev: Bridge device 4919 * 4920 * Use the bridge control register to assert reset on the secondary bus. 4921 * Devices on the secondary bus are left in power-on state. 4922 */ 4923 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4924 { 4925 pcibios_reset_secondary_bus(dev); 4926 4927 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4928 } 4929 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4930 4931 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4932 { 4933 struct pci_dev *pdev; 4934 4935 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4936 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4937 return -ENOTTY; 4938 4939 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4940 if (pdev != dev) 4941 return -ENOTTY; 4942 4943 if (probe) 4944 return 0; 4945 4946 return pci_bridge_secondary_bus_reset(dev->bus->self); 4947 } 4948 4949 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4950 { 4951 int rc = -ENOTTY; 4952 4953 if (!hotplug || !try_module_get(hotplug->owner)) 4954 return rc; 4955 4956 if (hotplug->ops->reset_slot) 4957 rc = hotplug->ops->reset_slot(hotplug, probe); 4958 4959 module_put(hotplug->owner); 4960 4961 return rc; 4962 } 4963 4964 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4965 { 4966 if (dev->multifunction || dev->subordinate || !dev->slot || 4967 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4968 return -ENOTTY; 4969 4970 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4971 } 4972 4973 static void pci_dev_lock(struct pci_dev *dev) 4974 { 4975 pci_cfg_access_lock(dev); 4976 /* block PM suspend, driver probe, etc. */ 4977 device_lock(&dev->dev); 4978 } 4979 4980 /* Return 1 on successful lock, 0 on contention */ 4981 static int pci_dev_trylock(struct pci_dev *dev) 4982 { 4983 if (pci_cfg_access_trylock(dev)) { 4984 if (device_trylock(&dev->dev)) 4985 return 1; 4986 pci_cfg_access_unlock(dev); 4987 } 4988 4989 return 0; 4990 } 4991 4992 static void pci_dev_unlock(struct pci_dev *dev) 4993 { 4994 device_unlock(&dev->dev); 4995 pci_cfg_access_unlock(dev); 4996 } 4997 4998 static void pci_dev_save_and_disable(struct pci_dev *dev) 4999 { 5000 const struct pci_error_handlers *err_handler = 5001 dev->driver ? dev->driver->err_handler : NULL; 5002 5003 /* 5004 * dev->driver->err_handler->reset_prepare() is protected against 5005 * races with ->remove() by the device lock, which must be held by 5006 * the caller. 5007 */ 5008 if (err_handler && err_handler->reset_prepare) 5009 err_handler->reset_prepare(dev); 5010 5011 /* 5012 * Wake-up device prior to save. PM registers default to D0 after 5013 * reset and a simple register restore doesn't reliably return 5014 * to a non-D0 state anyway. 5015 */ 5016 pci_set_power_state(dev, PCI_D0); 5017 5018 pci_save_state(dev); 5019 /* 5020 * Disable the device by clearing the Command register, except for 5021 * INTx-disable which is set. This not only disables MMIO and I/O port 5022 * BARs, but also prevents the device from being Bus Master, preventing 5023 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5024 * compliant devices, INTx-disable prevents legacy interrupts. 5025 */ 5026 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5027 } 5028 5029 static void pci_dev_restore(struct pci_dev *dev) 5030 { 5031 const struct pci_error_handlers *err_handler = 5032 dev->driver ? dev->driver->err_handler : NULL; 5033 5034 pci_restore_state(dev); 5035 5036 /* 5037 * dev->driver->err_handler->reset_done() is protected against 5038 * races with ->remove() by the device lock, which must be held by 5039 * the caller. 5040 */ 5041 if (err_handler && err_handler->reset_done) 5042 err_handler->reset_done(dev); 5043 } 5044 5045 /** 5046 * __pci_reset_function_locked - reset a PCI device function while holding 5047 * the @dev mutex lock. 5048 * @dev: PCI device to reset 5049 * 5050 * Some devices allow an individual function to be reset without affecting 5051 * other functions in the same device. The PCI device must be responsive 5052 * to PCI config space in order to use this function. 5053 * 5054 * The device function is presumed to be unused and the caller is holding 5055 * the device mutex lock when this function is called. 5056 * 5057 * Resetting the device will make the contents of PCI configuration space 5058 * random, so any caller of this must be prepared to reinitialise the 5059 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5060 * etc. 5061 * 5062 * Returns 0 if the device function was successfully reset or negative if the 5063 * device doesn't support resetting a single function. 5064 */ 5065 int __pci_reset_function_locked(struct pci_dev *dev) 5066 { 5067 int rc; 5068 5069 might_sleep(); 5070 5071 /* 5072 * A reset method returns -ENOTTY if it doesn't support this device 5073 * and we should try the next method. 5074 * 5075 * If it returns 0 (success), we're finished. If it returns any 5076 * other error, we're also finished: this indicates that further 5077 * reset mechanisms might be broken on the device. 5078 */ 5079 rc = pci_dev_specific_reset(dev, 0); 5080 if (rc != -ENOTTY) 5081 return rc; 5082 if (pcie_has_flr(dev)) { 5083 rc = pcie_flr(dev); 5084 if (rc != -ENOTTY) 5085 return rc; 5086 } 5087 rc = pci_af_flr(dev, 0); 5088 if (rc != -ENOTTY) 5089 return rc; 5090 rc = pci_pm_reset(dev, 0); 5091 if (rc != -ENOTTY) 5092 return rc; 5093 rc = pci_dev_reset_slot_function(dev, 0); 5094 if (rc != -ENOTTY) 5095 return rc; 5096 return pci_parent_bus_reset(dev, 0); 5097 } 5098 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5099 5100 /** 5101 * pci_probe_reset_function - check whether the device can be safely reset 5102 * @dev: PCI device to reset 5103 * 5104 * Some devices allow an individual function to be reset without affecting 5105 * other functions in the same device. The PCI device must be responsive 5106 * to PCI config space in order to use this function. 5107 * 5108 * Returns 0 if the device function can be reset or negative if the 5109 * device doesn't support resetting a single function. 5110 */ 5111 int pci_probe_reset_function(struct pci_dev *dev) 5112 { 5113 int rc; 5114 5115 might_sleep(); 5116 5117 rc = pci_dev_specific_reset(dev, 1); 5118 if (rc != -ENOTTY) 5119 return rc; 5120 if (pcie_has_flr(dev)) 5121 return 0; 5122 rc = pci_af_flr(dev, 1); 5123 if (rc != -ENOTTY) 5124 return rc; 5125 rc = pci_pm_reset(dev, 1); 5126 if (rc != -ENOTTY) 5127 return rc; 5128 rc = pci_dev_reset_slot_function(dev, 1); 5129 if (rc != -ENOTTY) 5130 return rc; 5131 5132 return pci_parent_bus_reset(dev, 1); 5133 } 5134 5135 /** 5136 * pci_reset_function - quiesce and reset a PCI device function 5137 * @dev: PCI device to reset 5138 * 5139 * Some devices allow an individual function to be reset without affecting 5140 * other functions in the same device. The PCI device must be responsive 5141 * to PCI config space in order to use this function. 5142 * 5143 * This function does not just reset the PCI portion of a device, but 5144 * clears all the state associated with the device. This function differs 5145 * from __pci_reset_function_locked() in that it saves and restores device state 5146 * over the reset and takes the PCI device lock. 5147 * 5148 * Returns 0 if the device function was successfully reset or negative if the 5149 * device doesn't support resetting a single function. 5150 */ 5151 int pci_reset_function(struct pci_dev *dev) 5152 { 5153 int rc; 5154 5155 if (!dev->reset_fn) 5156 return -ENOTTY; 5157 5158 pci_dev_lock(dev); 5159 pci_dev_save_and_disable(dev); 5160 5161 rc = __pci_reset_function_locked(dev); 5162 5163 pci_dev_restore(dev); 5164 pci_dev_unlock(dev); 5165 5166 return rc; 5167 } 5168 EXPORT_SYMBOL_GPL(pci_reset_function); 5169 5170 /** 5171 * pci_reset_function_locked - quiesce and reset a PCI device function 5172 * @dev: PCI device to reset 5173 * 5174 * Some devices allow an individual function to be reset without affecting 5175 * other functions in the same device. The PCI device must be responsive 5176 * to PCI config space in order to use this function. 5177 * 5178 * This function does not just reset the PCI portion of a device, but 5179 * clears all the state associated with the device. This function differs 5180 * from __pci_reset_function_locked() in that it saves and restores device state 5181 * over the reset. It also differs from pci_reset_function() in that it 5182 * requires the PCI device lock to be held. 5183 * 5184 * Returns 0 if the device function was successfully reset or negative if the 5185 * device doesn't support resetting a single function. 5186 */ 5187 int pci_reset_function_locked(struct pci_dev *dev) 5188 { 5189 int rc; 5190 5191 if (!dev->reset_fn) 5192 return -ENOTTY; 5193 5194 pci_dev_save_and_disable(dev); 5195 5196 rc = __pci_reset_function_locked(dev); 5197 5198 pci_dev_restore(dev); 5199 5200 return rc; 5201 } 5202 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5203 5204 /** 5205 * pci_try_reset_function - quiesce and reset a PCI device function 5206 * @dev: PCI device to reset 5207 * 5208 * Same as above, except return -EAGAIN if unable to lock device. 5209 */ 5210 int pci_try_reset_function(struct pci_dev *dev) 5211 { 5212 int rc; 5213 5214 if (!dev->reset_fn) 5215 return -ENOTTY; 5216 5217 if (!pci_dev_trylock(dev)) 5218 return -EAGAIN; 5219 5220 pci_dev_save_and_disable(dev); 5221 rc = __pci_reset_function_locked(dev); 5222 pci_dev_restore(dev); 5223 pci_dev_unlock(dev); 5224 5225 return rc; 5226 } 5227 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5228 5229 /* Do any devices on or below this bus prevent a bus reset? */ 5230 static bool pci_bus_resetable(struct pci_bus *bus) 5231 { 5232 struct pci_dev *dev; 5233 5234 5235 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5236 return false; 5237 5238 list_for_each_entry(dev, &bus->devices, bus_list) { 5239 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5240 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5241 return false; 5242 } 5243 5244 return true; 5245 } 5246 5247 /* Lock devices from the top of the tree down */ 5248 static void pci_bus_lock(struct pci_bus *bus) 5249 { 5250 struct pci_dev *dev; 5251 5252 list_for_each_entry(dev, &bus->devices, bus_list) { 5253 pci_dev_lock(dev); 5254 if (dev->subordinate) 5255 pci_bus_lock(dev->subordinate); 5256 } 5257 } 5258 5259 /* Unlock devices from the bottom of the tree up */ 5260 static void pci_bus_unlock(struct pci_bus *bus) 5261 { 5262 struct pci_dev *dev; 5263 5264 list_for_each_entry(dev, &bus->devices, bus_list) { 5265 if (dev->subordinate) 5266 pci_bus_unlock(dev->subordinate); 5267 pci_dev_unlock(dev); 5268 } 5269 } 5270 5271 /* Return 1 on successful lock, 0 on contention */ 5272 static int pci_bus_trylock(struct pci_bus *bus) 5273 { 5274 struct pci_dev *dev; 5275 5276 list_for_each_entry(dev, &bus->devices, bus_list) { 5277 if (!pci_dev_trylock(dev)) 5278 goto unlock; 5279 if (dev->subordinate) { 5280 if (!pci_bus_trylock(dev->subordinate)) { 5281 pci_dev_unlock(dev); 5282 goto unlock; 5283 } 5284 } 5285 } 5286 return 1; 5287 5288 unlock: 5289 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5290 if (dev->subordinate) 5291 pci_bus_unlock(dev->subordinate); 5292 pci_dev_unlock(dev); 5293 } 5294 return 0; 5295 } 5296 5297 /* Do any devices on or below this slot prevent a bus reset? */ 5298 static bool pci_slot_resetable(struct pci_slot *slot) 5299 { 5300 struct pci_dev *dev; 5301 5302 if (slot->bus->self && 5303 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5304 return false; 5305 5306 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5307 if (!dev->slot || dev->slot != slot) 5308 continue; 5309 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5310 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5311 return false; 5312 } 5313 5314 return true; 5315 } 5316 5317 /* Lock devices from the top of the tree down */ 5318 static void pci_slot_lock(struct pci_slot *slot) 5319 { 5320 struct pci_dev *dev; 5321 5322 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5323 if (!dev->slot || dev->slot != slot) 5324 continue; 5325 pci_dev_lock(dev); 5326 if (dev->subordinate) 5327 pci_bus_lock(dev->subordinate); 5328 } 5329 } 5330 5331 /* Unlock devices from the bottom of the tree up */ 5332 static void pci_slot_unlock(struct pci_slot *slot) 5333 { 5334 struct pci_dev *dev; 5335 5336 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5337 if (!dev->slot || dev->slot != slot) 5338 continue; 5339 if (dev->subordinate) 5340 pci_bus_unlock(dev->subordinate); 5341 pci_dev_unlock(dev); 5342 } 5343 } 5344 5345 /* Return 1 on successful lock, 0 on contention */ 5346 static int pci_slot_trylock(struct pci_slot *slot) 5347 { 5348 struct pci_dev *dev; 5349 5350 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5351 if (!dev->slot || dev->slot != slot) 5352 continue; 5353 if (!pci_dev_trylock(dev)) 5354 goto unlock; 5355 if (dev->subordinate) { 5356 if (!pci_bus_trylock(dev->subordinate)) { 5357 pci_dev_unlock(dev); 5358 goto unlock; 5359 } 5360 } 5361 } 5362 return 1; 5363 5364 unlock: 5365 list_for_each_entry_continue_reverse(dev, 5366 &slot->bus->devices, bus_list) { 5367 if (!dev->slot || dev->slot != slot) 5368 continue; 5369 if (dev->subordinate) 5370 pci_bus_unlock(dev->subordinate); 5371 pci_dev_unlock(dev); 5372 } 5373 return 0; 5374 } 5375 5376 /* 5377 * Save and disable devices from the top of the tree down while holding 5378 * the @dev mutex lock for the entire tree. 5379 */ 5380 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5381 { 5382 struct pci_dev *dev; 5383 5384 list_for_each_entry(dev, &bus->devices, bus_list) { 5385 pci_dev_save_and_disable(dev); 5386 if (dev->subordinate) 5387 pci_bus_save_and_disable_locked(dev->subordinate); 5388 } 5389 } 5390 5391 /* 5392 * Restore devices from top of the tree down while holding @dev mutex lock 5393 * for the entire tree. Parent bridges need to be restored before we can 5394 * get to subordinate devices. 5395 */ 5396 static void pci_bus_restore_locked(struct pci_bus *bus) 5397 { 5398 struct pci_dev *dev; 5399 5400 list_for_each_entry(dev, &bus->devices, bus_list) { 5401 pci_dev_restore(dev); 5402 if (dev->subordinate) 5403 pci_bus_restore_locked(dev->subordinate); 5404 } 5405 } 5406 5407 /* 5408 * Save and disable devices from the top of the tree down while holding 5409 * the @dev mutex lock for the entire tree. 5410 */ 5411 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5412 { 5413 struct pci_dev *dev; 5414 5415 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5416 if (!dev->slot || dev->slot != slot) 5417 continue; 5418 pci_dev_save_and_disable(dev); 5419 if (dev->subordinate) 5420 pci_bus_save_and_disable_locked(dev->subordinate); 5421 } 5422 } 5423 5424 /* 5425 * Restore devices from top of the tree down while holding @dev mutex lock 5426 * for the entire tree. Parent bridges need to be restored before we can 5427 * get to subordinate devices. 5428 */ 5429 static void pci_slot_restore_locked(struct pci_slot *slot) 5430 { 5431 struct pci_dev *dev; 5432 5433 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5434 if (!dev->slot || dev->slot != slot) 5435 continue; 5436 pci_dev_restore(dev); 5437 if (dev->subordinate) 5438 pci_bus_restore_locked(dev->subordinate); 5439 } 5440 } 5441 5442 static int pci_slot_reset(struct pci_slot *slot, int probe) 5443 { 5444 int rc; 5445 5446 if (!slot || !pci_slot_resetable(slot)) 5447 return -ENOTTY; 5448 5449 if (!probe) 5450 pci_slot_lock(slot); 5451 5452 might_sleep(); 5453 5454 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5455 5456 if (!probe) 5457 pci_slot_unlock(slot); 5458 5459 return rc; 5460 } 5461 5462 /** 5463 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5464 * @slot: PCI slot to probe 5465 * 5466 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5467 */ 5468 int pci_probe_reset_slot(struct pci_slot *slot) 5469 { 5470 return pci_slot_reset(slot, 1); 5471 } 5472 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5473 5474 /** 5475 * __pci_reset_slot - Try to reset a PCI slot 5476 * @slot: PCI slot to reset 5477 * 5478 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5479 * independent of other slots. For instance, some slots may support slot power 5480 * control. In the case of a 1:1 bus to slot architecture, this function may 5481 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5482 * Generally a slot reset should be attempted before a bus reset. All of the 5483 * function of the slot and any subordinate buses behind the slot are reset 5484 * through this function. PCI config space of all devices in the slot and 5485 * behind the slot is saved before and restored after reset. 5486 * 5487 * Same as above except return -EAGAIN if the slot cannot be locked 5488 */ 5489 static int __pci_reset_slot(struct pci_slot *slot) 5490 { 5491 int rc; 5492 5493 rc = pci_slot_reset(slot, 1); 5494 if (rc) 5495 return rc; 5496 5497 if (pci_slot_trylock(slot)) { 5498 pci_slot_save_and_disable_locked(slot); 5499 might_sleep(); 5500 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5501 pci_slot_restore_locked(slot); 5502 pci_slot_unlock(slot); 5503 } else 5504 rc = -EAGAIN; 5505 5506 return rc; 5507 } 5508 5509 static int pci_bus_reset(struct pci_bus *bus, int probe) 5510 { 5511 int ret; 5512 5513 if (!bus->self || !pci_bus_resetable(bus)) 5514 return -ENOTTY; 5515 5516 if (probe) 5517 return 0; 5518 5519 pci_bus_lock(bus); 5520 5521 might_sleep(); 5522 5523 ret = pci_bridge_secondary_bus_reset(bus->self); 5524 5525 pci_bus_unlock(bus); 5526 5527 return ret; 5528 } 5529 5530 /** 5531 * pci_bus_error_reset - reset the bridge's subordinate bus 5532 * @bridge: The parent device that connects to the bus to reset 5533 * 5534 * This function will first try to reset the slots on this bus if the method is 5535 * available. If slot reset fails or is not available, this will fall back to a 5536 * secondary bus reset. 5537 */ 5538 int pci_bus_error_reset(struct pci_dev *bridge) 5539 { 5540 struct pci_bus *bus = bridge->subordinate; 5541 struct pci_slot *slot; 5542 5543 if (!bus) 5544 return -ENOTTY; 5545 5546 mutex_lock(&pci_slot_mutex); 5547 if (list_empty(&bus->slots)) 5548 goto bus_reset; 5549 5550 list_for_each_entry(slot, &bus->slots, list) 5551 if (pci_probe_reset_slot(slot)) 5552 goto bus_reset; 5553 5554 list_for_each_entry(slot, &bus->slots, list) 5555 if (pci_slot_reset(slot, 0)) 5556 goto bus_reset; 5557 5558 mutex_unlock(&pci_slot_mutex); 5559 return 0; 5560 bus_reset: 5561 mutex_unlock(&pci_slot_mutex); 5562 return pci_bus_reset(bridge->subordinate, 0); 5563 } 5564 5565 /** 5566 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5567 * @bus: PCI bus to probe 5568 * 5569 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5570 */ 5571 int pci_probe_reset_bus(struct pci_bus *bus) 5572 { 5573 return pci_bus_reset(bus, 1); 5574 } 5575 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5576 5577 /** 5578 * __pci_reset_bus - Try to reset a PCI bus 5579 * @bus: top level PCI bus to reset 5580 * 5581 * Same as above except return -EAGAIN if the bus cannot be locked 5582 */ 5583 static int __pci_reset_bus(struct pci_bus *bus) 5584 { 5585 int rc; 5586 5587 rc = pci_bus_reset(bus, 1); 5588 if (rc) 5589 return rc; 5590 5591 if (pci_bus_trylock(bus)) { 5592 pci_bus_save_and_disable_locked(bus); 5593 might_sleep(); 5594 rc = pci_bridge_secondary_bus_reset(bus->self); 5595 pci_bus_restore_locked(bus); 5596 pci_bus_unlock(bus); 5597 } else 5598 rc = -EAGAIN; 5599 5600 return rc; 5601 } 5602 5603 /** 5604 * pci_reset_bus - Try to reset a PCI bus 5605 * @pdev: top level PCI device to reset via slot/bus 5606 * 5607 * Same as above except return -EAGAIN if the bus cannot be locked 5608 */ 5609 int pci_reset_bus(struct pci_dev *pdev) 5610 { 5611 return (!pci_probe_reset_slot(pdev->slot)) ? 5612 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5613 } 5614 EXPORT_SYMBOL_GPL(pci_reset_bus); 5615 5616 /** 5617 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5618 * @dev: PCI device to query 5619 * 5620 * Returns mmrbc: maximum designed memory read count in bytes or 5621 * appropriate error value. 5622 */ 5623 int pcix_get_max_mmrbc(struct pci_dev *dev) 5624 { 5625 int cap; 5626 u32 stat; 5627 5628 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5629 if (!cap) 5630 return -EINVAL; 5631 5632 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5633 return -EINVAL; 5634 5635 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5636 } 5637 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5638 5639 /** 5640 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5641 * @dev: PCI device to query 5642 * 5643 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5644 * value. 5645 */ 5646 int pcix_get_mmrbc(struct pci_dev *dev) 5647 { 5648 int cap; 5649 u16 cmd; 5650 5651 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5652 if (!cap) 5653 return -EINVAL; 5654 5655 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5656 return -EINVAL; 5657 5658 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5659 } 5660 EXPORT_SYMBOL(pcix_get_mmrbc); 5661 5662 /** 5663 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5664 * @dev: PCI device to query 5665 * @mmrbc: maximum memory read count in bytes 5666 * valid values are 512, 1024, 2048, 4096 5667 * 5668 * If possible sets maximum memory read byte count, some bridges have errata 5669 * that prevent this. 5670 */ 5671 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5672 { 5673 int cap; 5674 u32 stat, v, o; 5675 u16 cmd; 5676 5677 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5678 return -EINVAL; 5679 5680 v = ffs(mmrbc) - 10; 5681 5682 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5683 if (!cap) 5684 return -EINVAL; 5685 5686 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5687 return -EINVAL; 5688 5689 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5690 return -E2BIG; 5691 5692 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5693 return -EINVAL; 5694 5695 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5696 if (o != v) { 5697 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5698 return -EIO; 5699 5700 cmd &= ~PCI_X_CMD_MAX_READ; 5701 cmd |= v << 2; 5702 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5703 return -EIO; 5704 } 5705 return 0; 5706 } 5707 EXPORT_SYMBOL(pcix_set_mmrbc); 5708 5709 /** 5710 * pcie_get_readrq - get PCI Express read request size 5711 * @dev: PCI device to query 5712 * 5713 * Returns maximum memory read request in bytes or appropriate error value. 5714 */ 5715 int pcie_get_readrq(struct pci_dev *dev) 5716 { 5717 u16 ctl; 5718 5719 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5720 5721 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5722 } 5723 EXPORT_SYMBOL(pcie_get_readrq); 5724 5725 /** 5726 * pcie_set_readrq - set PCI Express maximum memory read request 5727 * @dev: PCI device to query 5728 * @rq: maximum memory read count in bytes 5729 * valid values are 128, 256, 512, 1024, 2048, 4096 5730 * 5731 * If possible sets maximum memory read request in bytes 5732 */ 5733 int pcie_set_readrq(struct pci_dev *dev, int rq) 5734 { 5735 u16 v; 5736 int ret; 5737 5738 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5739 return -EINVAL; 5740 5741 /* 5742 * If using the "performance" PCIe config, we clamp the read rq 5743 * size to the max packet size to keep the host bridge from 5744 * generating requests larger than we can cope with. 5745 */ 5746 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5747 int mps = pcie_get_mps(dev); 5748 5749 if (mps < rq) 5750 rq = mps; 5751 } 5752 5753 v = (ffs(rq) - 8) << 12; 5754 5755 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5756 PCI_EXP_DEVCTL_READRQ, v); 5757 5758 return pcibios_err_to_errno(ret); 5759 } 5760 EXPORT_SYMBOL(pcie_set_readrq); 5761 5762 /** 5763 * pcie_get_mps - get PCI Express maximum payload size 5764 * @dev: PCI device to query 5765 * 5766 * Returns maximum payload size in bytes 5767 */ 5768 int pcie_get_mps(struct pci_dev *dev) 5769 { 5770 u16 ctl; 5771 5772 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5773 5774 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5775 } 5776 EXPORT_SYMBOL(pcie_get_mps); 5777 5778 /** 5779 * pcie_set_mps - set PCI Express maximum payload size 5780 * @dev: PCI device to query 5781 * @mps: maximum payload size in bytes 5782 * valid values are 128, 256, 512, 1024, 2048, 4096 5783 * 5784 * If possible sets maximum payload size 5785 */ 5786 int pcie_set_mps(struct pci_dev *dev, int mps) 5787 { 5788 u16 v; 5789 int ret; 5790 5791 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5792 return -EINVAL; 5793 5794 v = ffs(mps) - 8; 5795 if (v > dev->pcie_mpss) 5796 return -EINVAL; 5797 v <<= 5; 5798 5799 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5800 PCI_EXP_DEVCTL_PAYLOAD, v); 5801 5802 return pcibios_err_to_errno(ret); 5803 } 5804 EXPORT_SYMBOL(pcie_set_mps); 5805 5806 /** 5807 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5808 * device and its bandwidth limitation 5809 * @dev: PCI device to query 5810 * @limiting_dev: storage for device causing the bandwidth limitation 5811 * @speed: storage for speed of limiting device 5812 * @width: storage for width of limiting device 5813 * 5814 * Walk up the PCI device chain and find the point where the minimum 5815 * bandwidth is available. Return the bandwidth available there and (if 5816 * limiting_dev, speed, and width pointers are supplied) information about 5817 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5818 * raw bandwidth. 5819 */ 5820 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5821 enum pci_bus_speed *speed, 5822 enum pcie_link_width *width) 5823 { 5824 u16 lnksta; 5825 enum pci_bus_speed next_speed; 5826 enum pcie_link_width next_width; 5827 u32 bw, next_bw; 5828 5829 if (speed) 5830 *speed = PCI_SPEED_UNKNOWN; 5831 if (width) 5832 *width = PCIE_LNK_WIDTH_UNKNOWN; 5833 5834 bw = 0; 5835 5836 while (dev) { 5837 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5838 5839 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5840 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5841 PCI_EXP_LNKSTA_NLW_SHIFT; 5842 5843 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5844 5845 /* Check if current device limits the total bandwidth */ 5846 if (!bw || next_bw <= bw) { 5847 bw = next_bw; 5848 5849 if (limiting_dev) 5850 *limiting_dev = dev; 5851 if (speed) 5852 *speed = next_speed; 5853 if (width) 5854 *width = next_width; 5855 } 5856 5857 dev = pci_upstream_bridge(dev); 5858 } 5859 5860 return bw; 5861 } 5862 EXPORT_SYMBOL(pcie_bandwidth_available); 5863 5864 /** 5865 * pcie_get_speed_cap - query for the PCI device's link speed capability 5866 * @dev: PCI device to query 5867 * 5868 * Query the PCI device speed capability. Return the maximum link speed 5869 * supported by the device. 5870 */ 5871 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5872 { 5873 u32 lnkcap2, lnkcap; 5874 5875 /* 5876 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5877 * implementation note there recommends using the Supported Link 5878 * Speeds Vector in Link Capabilities 2 when supported. 5879 * 5880 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5881 * should use the Supported Link Speeds field in Link Capabilities, 5882 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5883 */ 5884 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5885 5886 /* PCIe r3.0-compliant */ 5887 if (lnkcap2) 5888 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 5889 5890 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5891 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5892 return PCIE_SPEED_5_0GT; 5893 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5894 return PCIE_SPEED_2_5GT; 5895 5896 return PCI_SPEED_UNKNOWN; 5897 } 5898 EXPORT_SYMBOL(pcie_get_speed_cap); 5899 5900 /** 5901 * pcie_get_width_cap - query for the PCI device's link width capability 5902 * @dev: PCI device to query 5903 * 5904 * Query the PCI device width capability. Return the maximum link width 5905 * supported by the device. 5906 */ 5907 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5908 { 5909 u32 lnkcap; 5910 5911 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5912 if (lnkcap) 5913 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5914 5915 return PCIE_LNK_WIDTH_UNKNOWN; 5916 } 5917 EXPORT_SYMBOL(pcie_get_width_cap); 5918 5919 /** 5920 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5921 * @dev: PCI device 5922 * @speed: storage for link speed 5923 * @width: storage for link width 5924 * 5925 * Calculate a PCI device's link bandwidth by querying for its link speed 5926 * and width, multiplying them, and applying encoding overhead. The result 5927 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5928 */ 5929 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5930 enum pcie_link_width *width) 5931 { 5932 *speed = pcie_get_speed_cap(dev); 5933 *width = pcie_get_width_cap(dev); 5934 5935 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5936 return 0; 5937 5938 return *width * PCIE_SPEED2MBS_ENC(*speed); 5939 } 5940 5941 /** 5942 * __pcie_print_link_status - Report the PCI device's link speed and width 5943 * @dev: PCI device to query 5944 * @verbose: Print info even when enough bandwidth is available 5945 * 5946 * If the available bandwidth at the device is less than the device is 5947 * capable of, report the device's maximum possible bandwidth and the 5948 * upstream link that limits its performance. If @verbose, always print 5949 * the available bandwidth, even if the device isn't constrained. 5950 */ 5951 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5952 { 5953 enum pcie_link_width width, width_cap; 5954 enum pci_bus_speed speed, speed_cap; 5955 struct pci_dev *limiting_dev = NULL; 5956 u32 bw_avail, bw_cap; 5957 5958 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5959 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5960 5961 if (bw_avail >= bw_cap && verbose) 5962 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5963 bw_cap / 1000, bw_cap % 1000, 5964 pci_speed_string(speed_cap), width_cap); 5965 else if (bw_avail < bw_cap) 5966 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5967 bw_avail / 1000, bw_avail % 1000, 5968 pci_speed_string(speed), width, 5969 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5970 bw_cap / 1000, bw_cap % 1000, 5971 pci_speed_string(speed_cap), width_cap); 5972 } 5973 5974 /** 5975 * pcie_print_link_status - Report the PCI device's link speed and width 5976 * @dev: PCI device to query 5977 * 5978 * Report the available bandwidth at the device. 5979 */ 5980 void pcie_print_link_status(struct pci_dev *dev) 5981 { 5982 __pcie_print_link_status(dev, true); 5983 } 5984 EXPORT_SYMBOL(pcie_print_link_status); 5985 5986 /** 5987 * pci_select_bars - Make BAR mask from the type of resource 5988 * @dev: the PCI device for which BAR mask is made 5989 * @flags: resource type mask to be selected 5990 * 5991 * This helper routine makes bar mask from the type of resource. 5992 */ 5993 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5994 { 5995 int i, bars = 0; 5996 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5997 if (pci_resource_flags(dev, i) & flags) 5998 bars |= (1 << i); 5999 return bars; 6000 } 6001 EXPORT_SYMBOL(pci_select_bars); 6002 6003 /* Some architectures require additional programming to enable VGA */ 6004 static arch_set_vga_state_t arch_set_vga_state; 6005 6006 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6007 { 6008 arch_set_vga_state = func; /* NULL disables */ 6009 } 6010 6011 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6012 unsigned int command_bits, u32 flags) 6013 { 6014 if (arch_set_vga_state) 6015 return arch_set_vga_state(dev, decode, command_bits, 6016 flags); 6017 return 0; 6018 } 6019 6020 /** 6021 * pci_set_vga_state - set VGA decode state on device and parents if requested 6022 * @dev: the PCI device 6023 * @decode: true = enable decoding, false = disable decoding 6024 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6025 * @flags: traverse ancestors and change bridges 6026 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6027 */ 6028 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6029 unsigned int command_bits, u32 flags) 6030 { 6031 struct pci_bus *bus; 6032 struct pci_dev *bridge; 6033 u16 cmd; 6034 int rc; 6035 6036 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6037 6038 /* ARCH specific VGA enables */ 6039 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6040 if (rc) 6041 return rc; 6042 6043 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6044 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6045 if (decode) 6046 cmd |= command_bits; 6047 else 6048 cmd &= ~command_bits; 6049 pci_write_config_word(dev, PCI_COMMAND, cmd); 6050 } 6051 6052 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6053 return 0; 6054 6055 bus = dev->bus; 6056 while (bus) { 6057 bridge = bus->self; 6058 if (bridge) { 6059 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6060 &cmd); 6061 if (decode) 6062 cmd |= PCI_BRIDGE_CTL_VGA; 6063 else 6064 cmd &= ~PCI_BRIDGE_CTL_VGA; 6065 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6066 cmd); 6067 } 6068 bus = bus->parent; 6069 } 6070 return 0; 6071 } 6072 6073 #ifdef CONFIG_ACPI 6074 bool pci_pr3_present(struct pci_dev *pdev) 6075 { 6076 struct acpi_device *adev; 6077 6078 if (acpi_disabled) 6079 return false; 6080 6081 adev = ACPI_COMPANION(&pdev->dev); 6082 if (!adev) 6083 return false; 6084 6085 return adev->power.flags.power_resources && 6086 acpi_has_method(adev->handle, "_PR3"); 6087 } 6088 EXPORT_SYMBOL_GPL(pci_pr3_present); 6089 #endif 6090 6091 /** 6092 * pci_add_dma_alias - Add a DMA devfn alias for a device 6093 * @dev: the PCI device for which alias is added 6094 * @devfn_from: alias slot and function 6095 * @nr_devfns: number of subsequent devfns to alias 6096 * 6097 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6098 * which is used to program permissible bus-devfn source addresses for DMA 6099 * requests in an IOMMU. These aliases factor into IOMMU group creation 6100 * and are useful for devices generating DMA requests beyond or different 6101 * from their logical bus-devfn. Examples include device quirks where the 6102 * device simply uses the wrong devfn, as well as non-transparent bridges 6103 * where the alias may be a proxy for devices in another domain. 6104 * 6105 * IOMMU group creation is performed during device discovery or addition, 6106 * prior to any potential DMA mapping and therefore prior to driver probing 6107 * (especially for userspace assigned devices where IOMMU group definition 6108 * cannot be left as a userspace activity). DMA aliases should therefore 6109 * be configured via quirks, such as the PCI fixup header quirk. 6110 */ 6111 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns) 6112 { 6113 int devfn_to; 6114 6115 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from); 6116 devfn_to = devfn_from + nr_devfns - 1; 6117 6118 if (!dev->dma_alias_mask) 6119 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6120 if (!dev->dma_alias_mask) { 6121 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6122 return; 6123 } 6124 6125 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6126 6127 if (nr_devfns == 1) 6128 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6129 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6130 else if (nr_devfns > 1) 6131 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6132 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6133 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6134 } 6135 6136 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6137 { 6138 return (dev1->dma_alias_mask && 6139 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6140 (dev2->dma_alias_mask && 6141 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6142 pci_real_dma_dev(dev1) == dev2 || 6143 pci_real_dma_dev(dev2) == dev1; 6144 } 6145 6146 bool pci_device_is_present(struct pci_dev *pdev) 6147 { 6148 u32 v; 6149 6150 if (pci_dev_is_disconnected(pdev)) 6151 return false; 6152 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6153 } 6154 EXPORT_SYMBOL_GPL(pci_device_is_present); 6155 6156 void pci_ignore_hotplug(struct pci_dev *dev) 6157 { 6158 struct pci_dev *bridge = dev->bus->self; 6159 6160 dev->ignore_hotplug = 1; 6161 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6162 if (bridge) 6163 bridge->ignore_hotplug = 1; 6164 } 6165 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6166 6167 /** 6168 * pci_real_dma_dev - Get PCI DMA device for PCI device 6169 * @dev: the PCI device that may have a PCI DMA alias 6170 * 6171 * Permits the platform to provide architecture-specific functionality to 6172 * devices needing to alias DMA to another PCI device on another PCI bus. If 6173 * the PCI device is on the same bus, it is recommended to use 6174 * pci_add_dma_alias(). This is the default implementation. Architecture 6175 * implementations can override this. 6176 */ 6177 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6178 { 6179 return dev; 6180 } 6181 6182 resource_size_t __weak pcibios_default_alignment(void) 6183 { 6184 return 0; 6185 } 6186 6187 /* 6188 * Arches that don't want to expose struct resource to userland as-is in 6189 * sysfs and /proc can implement their own pci_resource_to_user(). 6190 */ 6191 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6192 const struct resource *rsrc, 6193 resource_size_t *start, resource_size_t *end) 6194 { 6195 *start = rsrc->start; 6196 *end = rsrc->end; 6197 } 6198 6199 static char *resource_alignment_param; 6200 static DEFINE_SPINLOCK(resource_alignment_lock); 6201 6202 /** 6203 * pci_specified_resource_alignment - get resource alignment specified by user. 6204 * @dev: the PCI device to get 6205 * @resize: whether or not to change resources' size when reassigning alignment 6206 * 6207 * RETURNS: Resource alignment if it is specified. 6208 * Zero if it is not specified. 6209 */ 6210 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6211 bool *resize) 6212 { 6213 int align_order, count; 6214 resource_size_t align = pcibios_default_alignment(); 6215 const char *p; 6216 int ret; 6217 6218 spin_lock(&resource_alignment_lock); 6219 p = resource_alignment_param; 6220 if (!p || !*p) 6221 goto out; 6222 if (pci_has_flag(PCI_PROBE_ONLY)) { 6223 align = 0; 6224 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6225 goto out; 6226 } 6227 6228 while (*p) { 6229 count = 0; 6230 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6231 p[count] == '@') { 6232 p += count + 1; 6233 if (align_order > 63) { 6234 pr_err("PCI: Invalid requested alignment (order %d)\n", 6235 align_order); 6236 align_order = PAGE_SHIFT; 6237 } 6238 } else { 6239 align_order = PAGE_SHIFT; 6240 } 6241 6242 ret = pci_dev_str_match(dev, p, &p); 6243 if (ret == 1) { 6244 *resize = true; 6245 align = 1ULL << align_order; 6246 break; 6247 } else if (ret < 0) { 6248 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6249 p); 6250 break; 6251 } 6252 6253 if (*p != ';' && *p != ',') { 6254 /* End of param or invalid format */ 6255 break; 6256 } 6257 p++; 6258 } 6259 out: 6260 spin_unlock(&resource_alignment_lock); 6261 return align; 6262 } 6263 6264 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6265 resource_size_t align, bool resize) 6266 { 6267 struct resource *r = &dev->resource[bar]; 6268 resource_size_t size; 6269 6270 if (!(r->flags & IORESOURCE_MEM)) 6271 return; 6272 6273 if (r->flags & IORESOURCE_PCI_FIXED) { 6274 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6275 bar, r, (unsigned long long)align); 6276 return; 6277 } 6278 6279 size = resource_size(r); 6280 if (size >= align) 6281 return; 6282 6283 /* 6284 * Increase the alignment of the resource. There are two ways we 6285 * can do this: 6286 * 6287 * 1) Increase the size of the resource. BARs are aligned on their 6288 * size, so when we reallocate space for this resource, we'll 6289 * allocate it with the larger alignment. This also prevents 6290 * assignment of any other BARs inside the alignment region, so 6291 * if we're requesting page alignment, this means no other BARs 6292 * will share the page. 6293 * 6294 * The disadvantage is that this makes the resource larger than 6295 * the hardware BAR, which may break drivers that compute things 6296 * based on the resource size, e.g., to find registers at a 6297 * fixed offset before the end of the BAR. 6298 * 6299 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6300 * set r->start to the desired alignment. By itself this 6301 * doesn't prevent other BARs being put inside the alignment 6302 * region, but if we realign *every* resource of every device in 6303 * the system, none of them will share an alignment region. 6304 * 6305 * When the user has requested alignment for only some devices via 6306 * the "pci=resource_alignment" argument, "resize" is true and we 6307 * use the first method. Otherwise we assume we're aligning all 6308 * devices and we use the second. 6309 */ 6310 6311 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6312 bar, r, (unsigned long long)align); 6313 6314 if (resize) { 6315 r->start = 0; 6316 r->end = align - 1; 6317 } else { 6318 r->flags &= ~IORESOURCE_SIZEALIGN; 6319 r->flags |= IORESOURCE_STARTALIGN; 6320 r->start = align; 6321 r->end = r->start + size - 1; 6322 } 6323 r->flags |= IORESOURCE_UNSET; 6324 } 6325 6326 /* 6327 * This function disables memory decoding and releases memory resources 6328 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6329 * It also rounds up size to specified alignment. 6330 * Later on, the kernel will assign page-aligned memory resource back 6331 * to the device. 6332 */ 6333 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6334 { 6335 int i; 6336 struct resource *r; 6337 resource_size_t align; 6338 u16 command; 6339 bool resize = false; 6340 6341 /* 6342 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6343 * 3.4.1.11. Their resources are allocated from the space 6344 * described by the VF BARx register in the PF's SR-IOV capability. 6345 * We can't influence their alignment here. 6346 */ 6347 if (dev->is_virtfn) 6348 return; 6349 6350 /* check if specified PCI is target device to reassign */ 6351 align = pci_specified_resource_alignment(dev, &resize); 6352 if (!align) 6353 return; 6354 6355 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6356 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6357 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6358 return; 6359 } 6360 6361 pci_read_config_word(dev, PCI_COMMAND, &command); 6362 command &= ~PCI_COMMAND_MEMORY; 6363 pci_write_config_word(dev, PCI_COMMAND, command); 6364 6365 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6366 pci_request_resource_alignment(dev, i, align, resize); 6367 6368 /* 6369 * Need to disable bridge's resource window, 6370 * to enable the kernel to reassign new resource 6371 * window later on. 6372 */ 6373 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6374 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6375 r = &dev->resource[i]; 6376 if (!(r->flags & IORESOURCE_MEM)) 6377 continue; 6378 r->flags |= IORESOURCE_UNSET; 6379 r->end = resource_size(r) - 1; 6380 r->start = 0; 6381 } 6382 pci_disable_bridge_window(dev); 6383 } 6384 } 6385 6386 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6387 { 6388 size_t count = 0; 6389 6390 spin_lock(&resource_alignment_lock); 6391 if (resource_alignment_param) 6392 count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param); 6393 spin_unlock(&resource_alignment_lock); 6394 6395 /* 6396 * When set by the command line, resource_alignment_param will not 6397 * have a trailing line feed, which is ugly. So conditionally add 6398 * it here. 6399 */ 6400 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) { 6401 buf[count - 1] = '\n'; 6402 buf[count++] = 0; 6403 } 6404 6405 return count; 6406 } 6407 6408 static ssize_t resource_alignment_store(struct bus_type *bus, 6409 const char *buf, size_t count) 6410 { 6411 char *param = kstrndup(buf, count, GFP_KERNEL); 6412 6413 if (!param) 6414 return -ENOMEM; 6415 6416 spin_lock(&resource_alignment_lock); 6417 kfree(resource_alignment_param); 6418 resource_alignment_param = param; 6419 spin_unlock(&resource_alignment_lock); 6420 return count; 6421 } 6422 6423 static BUS_ATTR_RW(resource_alignment); 6424 6425 static int __init pci_resource_alignment_sysfs_init(void) 6426 { 6427 return bus_create_file(&pci_bus_type, 6428 &bus_attr_resource_alignment); 6429 } 6430 late_initcall(pci_resource_alignment_sysfs_init); 6431 6432 static void pci_no_domains(void) 6433 { 6434 #ifdef CONFIG_PCI_DOMAINS 6435 pci_domains_supported = 0; 6436 #endif 6437 } 6438 6439 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6440 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6441 6442 static int pci_get_new_domain_nr(void) 6443 { 6444 return atomic_inc_return(&__domain_nr); 6445 } 6446 6447 static int of_pci_bus_find_domain_nr(struct device *parent) 6448 { 6449 static int use_dt_domains = -1; 6450 int domain = -1; 6451 6452 if (parent) 6453 domain = of_get_pci_domain_nr(parent->of_node); 6454 6455 /* 6456 * Check DT domain and use_dt_domains values. 6457 * 6458 * If DT domain property is valid (domain >= 0) and 6459 * use_dt_domains != 0, the DT assignment is valid since this means 6460 * we have not previously allocated a domain number by using 6461 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6462 * 1, to indicate that we have just assigned a domain number from 6463 * DT. 6464 * 6465 * If DT domain property value is not valid (ie domain < 0), and we 6466 * have not previously assigned a domain number from DT 6467 * (use_dt_domains != 1) we should assign a domain number by 6468 * using the: 6469 * 6470 * pci_get_new_domain_nr() 6471 * 6472 * API and update the use_dt_domains value to keep track of method we 6473 * are using to assign domain numbers (use_dt_domains = 0). 6474 * 6475 * All other combinations imply we have a platform that is trying 6476 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6477 * which is a recipe for domain mishandling and it is prevented by 6478 * invalidating the domain value (domain = -1) and printing a 6479 * corresponding error. 6480 */ 6481 if (domain >= 0 && use_dt_domains) { 6482 use_dt_domains = 1; 6483 } else if (domain < 0 && use_dt_domains != 1) { 6484 use_dt_domains = 0; 6485 domain = pci_get_new_domain_nr(); 6486 } else { 6487 if (parent) 6488 pr_err("Node %pOF has ", parent->of_node); 6489 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6490 domain = -1; 6491 } 6492 6493 return domain; 6494 } 6495 6496 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6497 { 6498 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6499 acpi_pci_bus_find_domain_nr(bus); 6500 } 6501 #endif 6502 6503 /** 6504 * pci_ext_cfg_avail - can we access extended PCI config space? 6505 * 6506 * Returns 1 if we can access PCI extended config space (offsets 6507 * greater than 0xff). This is the default implementation. Architecture 6508 * implementations can override this. 6509 */ 6510 int __weak pci_ext_cfg_avail(void) 6511 { 6512 return 1; 6513 } 6514 6515 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6516 { 6517 } 6518 EXPORT_SYMBOL(pci_fixup_cardbus); 6519 6520 static int __init pci_setup(char *str) 6521 { 6522 while (str) { 6523 char *k = strchr(str, ','); 6524 if (k) 6525 *k++ = 0; 6526 if (*str && (str = pcibios_setup(str)) && *str) { 6527 if (!strcmp(str, "nomsi")) { 6528 pci_no_msi(); 6529 } else if (!strncmp(str, "noats", 5)) { 6530 pr_info("PCIe: ATS is disabled\n"); 6531 pcie_ats_disabled = true; 6532 } else if (!strcmp(str, "noaer")) { 6533 pci_no_aer(); 6534 } else if (!strcmp(str, "earlydump")) { 6535 pci_early_dump = true; 6536 } else if (!strncmp(str, "realloc=", 8)) { 6537 pci_realloc_get_opt(str + 8); 6538 } else if (!strncmp(str, "realloc", 7)) { 6539 pci_realloc_get_opt("on"); 6540 } else if (!strcmp(str, "nodomains")) { 6541 pci_no_domains(); 6542 } else if (!strncmp(str, "noari", 5)) { 6543 pcie_ari_disabled = true; 6544 } else if (!strncmp(str, "cbiosize=", 9)) { 6545 pci_cardbus_io_size = memparse(str + 9, &str); 6546 } else if (!strncmp(str, "cbmemsize=", 10)) { 6547 pci_cardbus_mem_size = memparse(str + 10, &str); 6548 } else if (!strncmp(str, "resource_alignment=", 19)) { 6549 resource_alignment_param = str + 19; 6550 } else if (!strncmp(str, "ecrc=", 5)) { 6551 pcie_ecrc_get_policy(str + 5); 6552 } else if (!strncmp(str, "hpiosize=", 9)) { 6553 pci_hotplug_io_size = memparse(str + 9, &str); 6554 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6555 pci_hotplug_mmio_size = memparse(str + 11, &str); 6556 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6557 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6558 } else if (!strncmp(str, "hpmemsize=", 10)) { 6559 pci_hotplug_mmio_size = memparse(str + 10, &str); 6560 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6561 } else if (!strncmp(str, "hpbussize=", 10)) { 6562 pci_hotplug_bus_size = 6563 simple_strtoul(str + 10, &str, 0); 6564 if (pci_hotplug_bus_size > 0xff) 6565 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6566 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6567 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6568 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6569 pcie_bus_config = PCIE_BUS_SAFE; 6570 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6571 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6572 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6573 pcie_bus_config = PCIE_BUS_PEER2PEER; 6574 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6575 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6576 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6577 disable_acs_redir_param = str + 18; 6578 } else { 6579 pr_err("PCI: Unknown option `%s'\n", str); 6580 } 6581 } 6582 str = k; 6583 } 6584 return 0; 6585 } 6586 early_param("pci", pci_setup); 6587 6588 /* 6589 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6590 * in pci_setup(), above, to point to data in the __initdata section which 6591 * will be freed after the init sequence is complete. We can't allocate memory 6592 * in pci_setup() because some architectures do not have any memory allocation 6593 * service available during an early_param() call. So we allocate memory and 6594 * copy the variable here before the init section is freed. 6595 * 6596 */ 6597 static int __init pci_realloc_setup_params(void) 6598 { 6599 resource_alignment_param = kstrdup(resource_alignment_param, 6600 GFP_KERNEL); 6601 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6602 6603 return 0; 6604 } 6605 pure_initcall(pci_realloc_setup_params); 6606