xref: /linux/drivers/pci/pci.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/of.h>
14 #include <linux/of_pci.h>
15 #include <linux/pci.h>
16 #include <linux/pm.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/log2.h>
22 #include <linux/pci-aspm.h>
23 #include <linux/pm_wakeup.h>
24 #include <linux/interrupt.h>
25 #include <linux/device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pci_hotplug.h>
28 #include <asm-generic/pci-bridge.h>
29 #include <asm/setup.h>
30 #include "pci.h"
31 
32 const char *pci_power_names[] = {
33 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
34 };
35 EXPORT_SYMBOL_GPL(pci_power_names);
36 
37 int isa_dma_bridge_buggy;
38 EXPORT_SYMBOL(isa_dma_bridge_buggy);
39 
40 int pci_pci_problems;
41 EXPORT_SYMBOL(pci_pci_problems);
42 
43 unsigned int pci_pm_d3_delay;
44 
45 static void pci_pme_list_scan(struct work_struct *work);
46 
47 static LIST_HEAD(pci_pme_list);
48 static DEFINE_MUTEX(pci_pme_list_mutex);
49 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
50 
51 struct pci_pme_device {
52 	struct list_head list;
53 	struct pci_dev *dev;
54 };
55 
56 #define PME_TIMEOUT 1000 /* How long between PME checks */
57 
58 static void pci_dev_d3_sleep(struct pci_dev *dev)
59 {
60 	unsigned int delay = dev->d3_delay;
61 
62 	if (delay < pci_pm_d3_delay)
63 		delay = pci_pm_d3_delay;
64 
65 	msleep(delay);
66 }
67 
68 #ifdef CONFIG_PCI_DOMAINS
69 int pci_domains_supported = 1;
70 #endif
71 
72 #define DEFAULT_CARDBUS_IO_SIZE		(256)
73 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
74 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
75 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
76 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
77 
78 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
79 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
80 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
81 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
82 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
83 
84 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
85 
86 /*
87  * The default CLS is used if arch didn't set CLS explicitly and not
88  * all pci devices agree on the same value.  Arch can override either
89  * the dfl or actual value as it sees fit.  Don't forget this is
90  * measured in 32-bit words, not bytes.
91  */
92 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
93 u8 pci_cache_line_size;
94 
95 /*
96  * If we set up a device for bus mastering, we need to check the latency
97  * timer as certain BIOSes forget to set it properly.
98  */
99 unsigned int pcibios_max_latency = 255;
100 
101 /* If set, the PCIe ARI capability will not be used. */
102 static bool pcie_ari_disabled;
103 
104 /**
105  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
106  * @bus: pointer to PCI bus structure to search
107  *
108  * Given a PCI bus, returns the highest PCI bus number present in the set
109  * including the given PCI bus and its list of child PCI buses.
110  */
111 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
112 {
113 	struct pci_bus *tmp;
114 	unsigned char max, n;
115 
116 	max = bus->busn_res.end;
117 	list_for_each_entry(tmp, &bus->children, node) {
118 		n = pci_bus_max_busnr(tmp);
119 		if (n > max)
120 			max = n;
121 	}
122 	return max;
123 }
124 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
125 
126 #ifdef CONFIG_HAS_IOMEM
127 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
128 {
129 	struct resource *res = &pdev->resource[bar];
130 
131 	/*
132 	 * Make sure the BAR is actually a memory resource, not an IO resource
133 	 */
134 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
135 		dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
136 		return NULL;
137 	}
138 	return ioremap_nocache(res->start, resource_size(res));
139 }
140 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
141 #endif
142 
143 #define PCI_FIND_CAP_TTL	48
144 
145 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
146 				   u8 pos, int cap, int *ttl)
147 {
148 	u8 id;
149 	u16 ent;
150 
151 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
152 
153 	while ((*ttl)--) {
154 		if (pos < 0x40)
155 			break;
156 		pos &= ~3;
157 		pci_bus_read_config_word(bus, devfn, pos, &ent);
158 
159 		id = ent & 0xff;
160 		if (id == 0xff)
161 			break;
162 		if (id == cap)
163 			return pos;
164 		pos = (ent >> 8);
165 	}
166 	return 0;
167 }
168 
169 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
170 			       u8 pos, int cap)
171 {
172 	int ttl = PCI_FIND_CAP_TTL;
173 
174 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
175 }
176 
177 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
178 {
179 	return __pci_find_next_cap(dev->bus, dev->devfn,
180 				   pos + PCI_CAP_LIST_NEXT, cap);
181 }
182 EXPORT_SYMBOL_GPL(pci_find_next_capability);
183 
184 static int __pci_bus_find_cap_start(struct pci_bus *bus,
185 				    unsigned int devfn, u8 hdr_type)
186 {
187 	u16 status;
188 
189 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
190 	if (!(status & PCI_STATUS_CAP_LIST))
191 		return 0;
192 
193 	switch (hdr_type) {
194 	case PCI_HEADER_TYPE_NORMAL:
195 	case PCI_HEADER_TYPE_BRIDGE:
196 		return PCI_CAPABILITY_LIST;
197 	case PCI_HEADER_TYPE_CARDBUS:
198 		return PCI_CB_CAPABILITY_LIST;
199 	default:
200 		return 0;
201 	}
202 
203 	return 0;
204 }
205 
206 /**
207  * pci_find_capability - query for devices' capabilities
208  * @dev: PCI device to query
209  * @cap: capability code
210  *
211  * Tell if a device supports a given PCI capability.
212  * Returns the address of the requested capability structure within the
213  * device's PCI configuration space or 0 in case the device does not
214  * support it.  Possible values for @cap:
215  *
216  *  %PCI_CAP_ID_PM           Power Management
217  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
218  *  %PCI_CAP_ID_VPD          Vital Product Data
219  *  %PCI_CAP_ID_SLOTID       Slot Identification
220  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
221  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
222  *  %PCI_CAP_ID_PCIX         PCI-X
223  *  %PCI_CAP_ID_EXP          PCI Express
224  */
225 int pci_find_capability(struct pci_dev *dev, int cap)
226 {
227 	int pos;
228 
229 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
230 	if (pos)
231 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
232 
233 	return pos;
234 }
235 EXPORT_SYMBOL(pci_find_capability);
236 
237 /**
238  * pci_bus_find_capability - query for devices' capabilities
239  * @bus:   the PCI bus to query
240  * @devfn: PCI device to query
241  * @cap:   capability code
242  *
243  * Like pci_find_capability() but works for pci devices that do not have a
244  * pci_dev structure set up yet.
245  *
246  * Returns the address of the requested capability structure within the
247  * device's PCI configuration space or 0 in case the device does not
248  * support it.
249  */
250 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
251 {
252 	int pos;
253 	u8 hdr_type;
254 
255 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
256 
257 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
258 	if (pos)
259 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
260 
261 	return pos;
262 }
263 EXPORT_SYMBOL(pci_bus_find_capability);
264 
265 /**
266  * pci_find_next_ext_capability - Find an extended capability
267  * @dev: PCI device to query
268  * @start: address at which to start looking (0 to start at beginning of list)
269  * @cap: capability code
270  *
271  * Returns the address of the next matching extended capability structure
272  * within the device's PCI configuration space or 0 if the device does
273  * not support it.  Some capabilities can occur several times, e.g., the
274  * vendor-specific capability, and this provides a way to find them all.
275  */
276 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
277 {
278 	u32 header;
279 	int ttl;
280 	int pos = PCI_CFG_SPACE_SIZE;
281 
282 	/* minimum 8 bytes per capability */
283 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
284 
285 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
286 		return 0;
287 
288 	if (start)
289 		pos = start;
290 
291 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
292 		return 0;
293 
294 	/*
295 	 * If we have no capabilities, this is indicated by cap ID,
296 	 * cap version and next pointer all being 0.
297 	 */
298 	if (header == 0)
299 		return 0;
300 
301 	while (ttl-- > 0) {
302 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
303 			return pos;
304 
305 		pos = PCI_EXT_CAP_NEXT(header);
306 		if (pos < PCI_CFG_SPACE_SIZE)
307 			break;
308 
309 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
310 			break;
311 	}
312 
313 	return 0;
314 }
315 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
316 
317 /**
318  * pci_find_ext_capability - Find an extended capability
319  * @dev: PCI device to query
320  * @cap: capability code
321  *
322  * Returns the address of the requested extended capability structure
323  * within the device's PCI configuration space or 0 if the device does
324  * not support it.  Possible values for @cap:
325  *
326  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
327  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
328  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
329  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
330  */
331 int pci_find_ext_capability(struct pci_dev *dev, int cap)
332 {
333 	return pci_find_next_ext_capability(dev, 0, cap);
334 }
335 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
336 
337 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
338 {
339 	int rc, ttl = PCI_FIND_CAP_TTL;
340 	u8 cap, mask;
341 
342 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
343 		mask = HT_3BIT_CAP_MASK;
344 	else
345 		mask = HT_5BIT_CAP_MASK;
346 
347 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
348 				      PCI_CAP_ID_HT, &ttl);
349 	while (pos) {
350 		rc = pci_read_config_byte(dev, pos + 3, &cap);
351 		if (rc != PCIBIOS_SUCCESSFUL)
352 			return 0;
353 
354 		if ((cap & mask) == ht_cap)
355 			return pos;
356 
357 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
358 					      pos + PCI_CAP_LIST_NEXT,
359 					      PCI_CAP_ID_HT, &ttl);
360 	}
361 
362 	return 0;
363 }
364 /**
365  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
366  * @dev: PCI device to query
367  * @pos: Position from which to continue searching
368  * @ht_cap: Hypertransport capability code
369  *
370  * To be used in conjunction with pci_find_ht_capability() to search for
371  * all capabilities matching @ht_cap. @pos should always be a value returned
372  * from pci_find_ht_capability().
373  *
374  * NB. To be 100% safe against broken PCI devices, the caller should take
375  * steps to avoid an infinite loop.
376  */
377 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
378 {
379 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
380 }
381 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
382 
383 /**
384  * pci_find_ht_capability - query a device's Hypertransport capabilities
385  * @dev: PCI device to query
386  * @ht_cap: Hypertransport capability code
387  *
388  * Tell if a device supports a given Hypertransport capability.
389  * Returns an address within the device's PCI configuration space
390  * or 0 in case the device does not support the request capability.
391  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
392  * which has a Hypertransport capability matching @ht_cap.
393  */
394 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
395 {
396 	int pos;
397 
398 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
399 	if (pos)
400 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
401 
402 	return pos;
403 }
404 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
405 
406 /**
407  * pci_find_parent_resource - return resource region of parent bus of given region
408  * @dev: PCI device structure contains resources to be searched
409  * @res: child resource record for which parent is sought
410  *
411  *  For given resource region of given device, return the resource
412  *  region of parent bus the given region is contained in.
413  */
414 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
415 					  struct resource *res)
416 {
417 	const struct pci_bus *bus = dev->bus;
418 	struct resource *r;
419 	int i;
420 
421 	pci_bus_for_each_resource(bus, r, i) {
422 		if (!r)
423 			continue;
424 		if (res->start && resource_contains(r, res)) {
425 
426 			/*
427 			 * If the window is prefetchable but the BAR is
428 			 * not, the allocator made a mistake.
429 			 */
430 			if (r->flags & IORESOURCE_PREFETCH &&
431 			    !(res->flags & IORESOURCE_PREFETCH))
432 				return NULL;
433 
434 			/*
435 			 * If we're below a transparent bridge, there may
436 			 * be both a positively-decoded aperture and a
437 			 * subtractively-decoded region that contain the BAR.
438 			 * We want the positively-decoded one, so this depends
439 			 * on pci_bus_for_each_resource() giving us those
440 			 * first.
441 			 */
442 			return r;
443 		}
444 	}
445 	return NULL;
446 }
447 EXPORT_SYMBOL(pci_find_parent_resource);
448 
449 /**
450  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
451  * @dev: the PCI device to operate on
452  * @pos: config space offset of status word
453  * @mask: mask of bit(s) to care about in status word
454  *
455  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
456  */
457 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
458 {
459 	int i;
460 
461 	/* Wait for Transaction Pending bit clean */
462 	for (i = 0; i < 4; i++) {
463 		u16 status;
464 		if (i)
465 			msleep((1 << (i - 1)) * 100);
466 
467 		pci_read_config_word(dev, pos, &status);
468 		if (!(status & mask))
469 			return 1;
470 	}
471 
472 	return 0;
473 }
474 
475 /**
476  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
477  * @dev: PCI device to have its BARs restored
478  *
479  * Restore the BAR values for a given device, so as to make it
480  * accessible by its driver.
481  */
482 static void pci_restore_bars(struct pci_dev *dev)
483 {
484 	int i;
485 
486 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
487 		pci_update_resource(dev, i);
488 }
489 
490 static struct pci_platform_pm_ops *pci_platform_pm;
491 
492 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
493 {
494 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
495 	    || !ops->sleep_wake)
496 		return -EINVAL;
497 	pci_platform_pm = ops;
498 	return 0;
499 }
500 
501 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
502 {
503 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
504 }
505 
506 static inline int platform_pci_set_power_state(struct pci_dev *dev,
507 					       pci_power_t t)
508 {
509 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
510 }
511 
512 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
513 {
514 	return pci_platform_pm ?
515 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
516 }
517 
518 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
519 {
520 	return pci_platform_pm ?
521 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
522 }
523 
524 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
525 {
526 	return pci_platform_pm ?
527 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
528 }
529 
530 static inline bool platform_pci_need_resume(struct pci_dev *dev)
531 {
532 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
533 }
534 
535 /**
536  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
537  *                           given PCI device
538  * @dev: PCI device to handle.
539  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
540  *
541  * RETURN VALUE:
542  * -EINVAL if the requested state is invalid.
543  * -EIO if device does not support PCI PM or its PM capabilities register has a
544  * wrong version, or device doesn't support the requested state.
545  * 0 if device already is in the requested state.
546  * 0 if device's power state has been successfully changed.
547  */
548 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
549 {
550 	u16 pmcsr;
551 	bool need_restore = false;
552 
553 	/* Check if we're already there */
554 	if (dev->current_state == state)
555 		return 0;
556 
557 	if (!dev->pm_cap)
558 		return -EIO;
559 
560 	if (state < PCI_D0 || state > PCI_D3hot)
561 		return -EINVAL;
562 
563 	/* Validate current state:
564 	 * Can enter D0 from any state, but if we can only go deeper
565 	 * to sleep if we're already in a low power state
566 	 */
567 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
568 	    && dev->current_state > state) {
569 		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
570 			dev->current_state, state);
571 		return -EINVAL;
572 	}
573 
574 	/* check if this device supports the desired state */
575 	if ((state == PCI_D1 && !dev->d1_support)
576 	   || (state == PCI_D2 && !dev->d2_support))
577 		return -EIO;
578 
579 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
580 
581 	/* If we're (effectively) in D3, force entire word to 0.
582 	 * This doesn't affect PME_Status, disables PME_En, and
583 	 * sets PowerState to 0.
584 	 */
585 	switch (dev->current_state) {
586 	case PCI_D0:
587 	case PCI_D1:
588 	case PCI_D2:
589 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
590 		pmcsr |= state;
591 		break;
592 	case PCI_D3hot:
593 	case PCI_D3cold:
594 	case PCI_UNKNOWN: /* Boot-up */
595 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
596 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
597 			need_restore = true;
598 		/* Fall-through: force to D0 */
599 	default:
600 		pmcsr = 0;
601 		break;
602 	}
603 
604 	/* enter specified state */
605 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
606 
607 	/* Mandatory power management transition delays */
608 	/* see PCI PM 1.1 5.6.1 table 18 */
609 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
610 		pci_dev_d3_sleep(dev);
611 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
612 		udelay(PCI_PM_D2_DELAY);
613 
614 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
615 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
616 	if (dev->current_state != state && printk_ratelimit())
617 		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
618 			 dev->current_state);
619 
620 	/*
621 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
622 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
623 	 * from D3hot to D0 _may_ perform an internal reset, thereby
624 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
625 	 * For example, at least some versions of the 3c905B and the
626 	 * 3c556B exhibit this behaviour.
627 	 *
628 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
629 	 * devices in a D3hot state at boot.  Consequently, we need to
630 	 * restore at least the BARs so that the device will be
631 	 * accessible to its driver.
632 	 */
633 	if (need_restore)
634 		pci_restore_bars(dev);
635 
636 	if (dev->bus->self)
637 		pcie_aspm_pm_state_change(dev->bus->self);
638 
639 	return 0;
640 }
641 
642 /**
643  * pci_update_current_state - Read PCI power state of given device from its
644  *                            PCI PM registers and cache it
645  * @dev: PCI device to handle.
646  * @state: State to cache in case the device doesn't have the PM capability
647  */
648 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
649 {
650 	if (dev->pm_cap) {
651 		u16 pmcsr;
652 
653 		/*
654 		 * Configuration space is not accessible for device in
655 		 * D3cold, so just keep or set D3cold for safety
656 		 */
657 		if (dev->current_state == PCI_D3cold)
658 			return;
659 		if (state == PCI_D3cold) {
660 			dev->current_state = PCI_D3cold;
661 			return;
662 		}
663 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
664 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
665 	} else {
666 		dev->current_state = state;
667 	}
668 }
669 
670 /**
671  * pci_power_up - Put the given device into D0 forcibly
672  * @dev: PCI device to power up
673  */
674 void pci_power_up(struct pci_dev *dev)
675 {
676 	if (platform_pci_power_manageable(dev))
677 		platform_pci_set_power_state(dev, PCI_D0);
678 
679 	pci_raw_set_power_state(dev, PCI_D0);
680 	pci_update_current_state(dev, PCI_D0);
681 }
682 
683 /**
684  * pci_platform_power_transition - Use platform to change device power state
685  * @dev: PCI device to handle.
686  * @state: State to put the device into.
687  */
688 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
689 {
690 	int error;
691 
692 	if (platform_pci_power_manageable(dev)) {
693 		error = platform_pci_set_power_state(dev, state);
694 		if (!error)
695 			pci_update_current_state(dev, state);
696 	} else
697 		error = -ENODEV;
698 
699 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
700 		dev->current_state = PCI_D0;
701 
702 	return error;
703 }
704 
705 /**
706  * pci_wakeup - Wake up a PCI device
707  * @pci_dev: Device to handle.
708  * @ign: ignored parameter
709  */
710 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
711 {
712 	pci_wakeup_event(pci_dev);
713 	pm_request_resume(&pci_dev->dev);
714 	return 0;
715 }
716 
717 /**
718  * pci_wakeup_bus - Walk given bus and wake up devices on it
719  * @bus: Top bus of the subtree to walk.
720  */
721 static void pci_wakeup_bus(struct pci_bus *bus)
722 {
723 	if (bus)
724 		pci_walk_bus(bus, pci_wakeup, NULL);
725 }
726 
727 /**
728  * __pci_start_power_transition - Start power transition of a PCI device
729  * @dev: PCI device to handle.
730  * @state: State to put the device into.
731  */
732 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
733 {
734 	if (state == PCI_D0) {
735 		pci_platform_power_transition(dev, PCI_D0);
736 		/*
737 		 * Mandatory power management transition delays, see
738 		 * PCI Express Base Specification Revision 2.0 Section
739 		 * 6.6.1: Conventional Reset.  Do not delay for
740 		 * devices powered on/off by corresponding bridge,
741 		 * because have already delayed for the bridge.
742 		 */
743 		if (dev->runtime_d3cold) {
744 			msleep(dev->d3cold_delay);
745 			/*
746 			 * When powering on a bridge from D3cold, the
747 			 * whole hierarchy may be powered on into
748 			 * D0uninitialized state, resume them to give
749 			 * them a chance to suspend again
750 			 */
751 			pci_wakeup_bus(dev->subordinate);
752 		}
753 	}
754 }
755 
756 /**
757  * __pci_dev_set_current_state - Set current state of a PCI device
758  * @dev: Device to handle
759  * @data: pointer to state to be set
760  */
761 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
762 {
763 	pci_power_t state = *(pci_power_t *)data;
764 
765 	dev->current_state = state;
766 	return 0;
767 }
768 
769 /**
770  * __pci_bus_set_current_state - Walk given bus and set current state of devices
771  * @bus: Top bus of the subtree to walk.
772  * @state: state to be set
773  */
774 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
775 {
776 	if (bus)
777 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
778 }
779 
780 /**
781  * __pci_complete_power_transition - Complete power transition of a PCI device
782  * @dev: PCI device to handle.
783  * @state: State to put the device into.
784  *
785  * This function should not be called directly by device drivers.
786  */
787 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
788 {
789 	int ret;
790 
791 	if (state <= PCI_D0)
792 		return -EINVAL;
793 	ret = pci_platform_power_transition(dev, state);
794 	/* Power off the bridge may power off the whole hierarchy */
795 	if (!ret && state == PCI_D3cold)
796 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
797 	return ret;
798 }
799 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
800 
801 /**
802  * pci_set_power_state - Set the power state of a PCI device
803  * @dev: PCI device to handle.
804  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
805  *
806  * Transition a device to a new power state, using the platform firmware and/or
807  * the device's PCI PM registers.
808  *
809  * RETURN VALUE:
810  * -EINVAL if the requested state is invalid.
811  * -EIO if device does not support PCI PM or its PM capabilities register has a
812  * wrong version, or device doesn't support the requested state.
813  * 0 if device already is in the requested state.
814  * 0 if device's power state has been successfully changed.
815  */
816 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
817 {
818 	int error;
819 
820 	/* bound the state we're entering */
821 	if (state > PCI_D3cold)
822 		state = PCI_D3cold;
823 	else if (state < PCI_D0)
824 		state = PCI_D0;
825 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
826 		/*
827 		 * If the device or the parent bridge do not support PCI PM,
828 		 * ignore the request if we're doing anything other than putting
829 		 * it into D0 (which would only happen on boot).
830 		 */
831 		return 0;
832 
833 	/* Check if we're already there */
834 	if (dev->current_state == state)
835 		return 0;
836 
837 	__pci_start_power_transition(dev, state);
838 
839 	/* This device is quirked not to be put into D3, so
840 	   don't put it in D3 */
841 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
842 		return 0;
843 
844 	/*
845 	 * To put device in D3cold, we put device into D3hot in native
846 	 * way, then put device into D3cold with platform ops
847 	 */
848 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
849 					PCI_D3hot : state);
850 
851 	if (!__pci_complete_power_transition(dev, state))
852 		error = 0;
853 
854 	return error;
855 }
856 EXPORT_SYMBOL(pci_set_power_state);
857 
858 /**
859  * pci_choose_state - Choose the power state of a PCI device
860  * @dev: PCI device to be suspended
861  * @state: target sleep state for the whole system. This is the value
862  *	that is passed to suspend() function.
863  *
864  * Returns PCI power state suitable for given device and given system
865  * message.
866  */
867 
868 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
869 {
870 	pci_power_t ret;
871 
872 	if (!dev->pm_cap)
873 		return PCI_D0;
874 
875 	ret = platform_pci_choose_state(dev);
876 	if (ret != PCI_POWER_ERROR)
877 		return ret;
878 
879 	switch (state.event) {
880 	case PM_EVENT_ON:
881 		return PCI_D0;
882 	case PM_EVENT_FREEZE:
883 	case PM_EVENT_PRETHAW:
884 		/* REVISIT both freeze and pre-thaw "should" use D0 */
885 	case PM_EVENT_SUSPEND:
886 	case PM_EVENT_HIBERNATE:
887 		return PCI_D3hot;
888 	default:
889 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
890 			 state.event);
891 		BUG();
892 	}
893 	return PCI_D0;
894 }
895 EXPORT_SYMBOL(pci_choose_state);
896 
897 #define PCI_EXP_SAVE_REGS	7
898 
899 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
900 						       u16 cap, bool extended)
901 {
902 	struct pci_cap_saved_state *tmp;
903 
904 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
905 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
906 			return tmp;
907 	}
908 	return NULL;
909 }
910 
911 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
912 {
913 	return _pci_find_saved_cap(dev, cap, false);
914 }
915 
916 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
917 {
918 	return _pci_find_saved_cap(dev, cap, true);
919 }
920 
921 static int pci_save_pcie_state(struct pci_dev *dev)
922 {
923 	int i = 0;
924 	struct pci_cap_saved_state *save_state;
925 	u16 *cap;
926 
927 	if (!pci_is_pcie(dev))
928 		return 0;
929 
930 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
931 	if (!save_state) {
932 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
933 		return -ENOMEM;
934 	}
935 
936 	cap = (u16 *)&save_state->cap.data[0];
937 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
938 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
939 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
940 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
941 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
942 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
943 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
944 
945 	return 0;
946 }
947 
948 static void pci_restore_pcie_state(struct pci_dev *dev)
949 {
950 	int i = 0;
951 	struct pci_cap_saved_state *save_state;
952 	u16 *cap;
953 
954 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
955 	if (!save_state)
956 		return;
957 
958 	cap = (u16 *)&save_state->cap.data[0];
959 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
960 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
961 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
962 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
963 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
964 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
965 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
966 }
967 
968 
969 static int pci_save_pcix_state(struct pci_dev *dev)
970 {
971 	int pos;
972 	struct pci_cap_saved_state *save_state;
973 
974 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
975 	if (pos <= 0)
976 		return 0;
977 
978 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
979 	if (!save_state) {
980 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
981 		return -ENOMEM;
982 	}
983 
984 	pci_read_config_word(dev, pos + PCI_X_CMD,
985 			     (u16 *)save_state->cap.data);
986 
987 	return 0;
988 }
989 
990 static void pci_restore_pcix_state(struct pci_dev *dev)
991 {
992 	int i = 0, pos;
993 	struct pci_cap_saved_state *save_state;
994 	u16 *cap;
995 
996 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
997 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
998 	if (!save_state || pos <= 0)
999 		return;
1000 	cap = (u16 *)&save_state->cap.data[0];
1001 
1002 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1003 }
1004 
1005 
1006 /**
1007  * pci_save_state - save the PCI configuration space of a device before suspending
1008  * @dev: - PCI device that we're dealing with
1009  */
1010 int pci_save_state(struct pci_dev *dev)
1011 {
1012 	int i;
1013 	/* XXX: 100% dword access ok here? */
1014 	for (i = 0; i < 16; i++)
1015 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1016 	dev->state_saved = true;
1017 
1018 	i = pci_save_pcie_state(dev);
1019 	if (i != 0)
1020 		return i;
1021 
1022 	i = pci_save_pcix_state(dev);
1023 	if (i != 0)
1024 		return i;
1025 
1026 	return pci_save_vc_state(dev);
1027 }
1028 EXPORT_SYMBOL(pci_save_state);
1029 
1030 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1031 				     u32 saved_val, int retry)
1032 {
1033 	u32 val;
1034 
1035 	pci_read_config_dword(pdev, offset, &val);
1036 	if (val == saved_val)
1037 		return;
1038 
1039 	for (;;) {
1040 		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1041 			offset, val, saved_val);
1042 		pci_write_config_dword(pdev, offset, saved_val);
1043 		if (retry-- <= 0)
1044 			return;
1045 
1046 		pci_read_config_dword(pdev, offset, &val);
1047 		if (val == saved_val)
1048 			return;
1049 
1050 		mdelay(1);
1051 	}
1052 }
1053 
1054 static void pci_restore_config_space_range(struct pci_dev *pdev,
1055 					   int start, int end, int retry)
1056 {
1057 	int index;
1058 
1059 	for (index = end; index >= start; index--)
1060 		pci_restore_config_dword(pdev, 4 * index,
1061 					 pdev->saved_config_space[index],
1062 					 retry);
1063 }
1064 
1065 static void pci_restore_config_space(struct pci_dev *pdev)
1066 {
1067 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1068 		pci_restore_config_space_range(pdev, 10, 15, 0);
1069 		/* Restore BARs before the command register. */
1070 		pci_restore_config_space_range(pdev, 4, 9, 10);
1071 		pci_restore_config_space_range(pdev, 0, 3, 0);
1072 	} else {
1073 		pci_restore_config_space_range(pdev, 0, 15, 0);
1074 	}
1075 }
1076 
1077 /**
1078  * pci_restore_state - Restore the saved state of a PCI device
1079  * @dev: - PCI device that we're dealing with
1080  */
1081 void pci_restore_state(struct pci_dev *dev)
1082 {
1083 	if (!dev->state_saved)
1084 		return;
1085 
1086 	/* PCI Express register must be restored first */
1087 	pci_restore_pcie_state(dev);
1088 	pci_restore_ats_state(dev);
1089 	pci_restore_vc_state(dev);
1090 
1091 	pci_restore_config_space(dev);
1092 
1093 	pci_restore_pcix_state(dev);
1094 	pci_restore_msi_state(dev);
1095 	pci_restore_iov_state(dev);
1096 
1097 	dev->state_saved = false;
1098 }
1099 EXPORT_SYMBOL(pci_restore_state);
1100 
1101 struct pci_saved_state {
1102 	u32 config_space[16];
1103 	struct pci_cap_saved_data cap[0];
1104 };
1105 
1106 /**
1107  * pci_store_saved_state - Allocate and return an opaque struct containing
1108  *			   the device saved state.
1109  * @dev: PCI device that we're dealing with
1110  *
1111  * Return NULL if no state or error.
1112  */
1113 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1114 {
1115 	struct pci_saved_state *state;
1116 	struct pci_cap_saved_state *tmp;
1117 	struct pci_cap_saved_data *cap;
1118 	size_t size;
1119 
1120 	if (!dev->state_saved)
1121 		return NULL;
1122 
1123 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1124 
1125 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1126 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1127 
1128 	state = kzalloc(size, GFP_KERNEL);
1129 	if (!state)
1130 		return NULL;
1131 
1132 	memcpy(state->config_space, dev->saved_config_space,
1133 	       sizeof(state->config_space));
1134 
1135 	cap = state->cap;
1136 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1137 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1138 		memcpy(cap, &tmp->cap, len);
1139 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1140 	}
1141 	/* Empty cap_save terminates list */
1142 
1143 	return state;
1144 }
1145 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1146 
1147 /**
1148  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1149  * @dev: PCI device that we're dealing with
1150  * @state: Saved state returned from pci_store_saved_state()
1151  */
1152 int pci_load_saved_state(struct pci_dev *dev,
1153 			 struct pci_saved_state *state)
1154 {
1155 	struct pci_cap_saved_data *cap;
1156 
1157 	dev->state_saved = false;
1158 
1159 	if (!state)
1160 		return 0;
1161 
1162 	memcpy(dev->saved_config_space, state->config_space,
1163 	       sizeof(state->config_space));
1164 
1165 	cap = state->cap;
1166 	while (cap->size) {
1167 		struct pci_cap_saved_state *tmp;
1168 
1169 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1170 		if (!tmp || tmp->cap.size != cap->size)
1171 			return -EINVAL;
1172 
1173 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1174 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1175 		       sizeof(struct pci_cap_saved_data) + cap->size);
1176 	}
1177 
1178 	dev->state_saved = true;
1179 	return 0;
1180 }
1181 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1182 
1183 /**
1184  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1185  *				   and free the memory allocated for it.
1186  * @dev: PCI device that we're dealing with
1187  * @state: Pointer to saved state returned from pci_store_saved_state()
1188  */
1189 int pci_load_and_free_saved_state(struct pci_dev *dev,
1190 				  struct pci_saved_state **state)
1191 {
1192 	int ret = pci_load_saved_state(dev, *state);
1193 	kfree(*state);
1194 	*state = NULL;
1195 	return ret;
1196 }
1197 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1198 
1199 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1200 {
1201 	return pci_enable_resources(dev, bars);
1202 }
1203 
1204 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1205 {
1206 	int err;
1207 	struct pci_dev *bridge;
1208 	u16 cmd;
1209 	u8 pin;
1210 
1211 	err = pci_set_power_state(dev, PCI_D0);
1212 	if (err < 0 && err != -EIO)
1213 		return err;
1214 
1215 	bridge = pci_upstream_bridge(dev);
1216 	if (bridge)
1217 		pcie_aspm_powersave_config_link(bridge);
1218 
1219 	err = pcibios_enable_device(dev, bars);
1220 	if (err < 0)
1221 		return err;
1222 	pci_fixup_device(pci_fixup_enable, dev);
1223 
1224 	if (dev->msi_enabled || dev->msix_enabled)
1225 		return 0;
1226 
1227 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1228 	if (pin) {
1229 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1230 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1231 			pci_write_config_word(dev, PCI_COMMAND,
1232 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 /**
1239  * pci_reenable_device - Resume abandoned device
1240  * @dev: PCI device to be resumed
1241  *
1242  *  Note this function is a backend of pci_default_resume and is not supposed
1243  *  to be called by normal code, write proper resume handler and use it instead.
1244  */
1245 int pci_reenable_device(struct pci_dev *dev)
1246 {
1247 	if (pci_is_enabled(dev))
1248 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1249 	return 0;
1250 }
1251 EXPORT_SYMBOL(pci_reenable_device);
1252 
1253 static void pci_enable_bridge(struct pci_dev *dev)
1254 {
1255 	struct pci_dev *bridge;
1256 	int retval;
1257 
1258 	bridge = pci_upstream_bridge(dev);
1259 	if (bridge)
1260 		pci_enable_bridge(bridge);
1261 
1262 	if (pci_is_enabled(dev)) {
1263 		if (!dev->is_busmaster)
1264 			pci_set_master(dev);
1265 		return;
1266 	}
1267 
1268 	retval = pci_enable_device(dev);
1269 	if (retval)
1270 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1271 			retval);
1272 	pci_set_master(dev);
1273 }
1274 
1275 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1276 {
1277 	struct pci_dev *bridge;
1278 	int err;
1279 	int i, bars = 0;
1280 
1281 	/*
1282 	 * Power state could be unknown at this point, either due to a fresh
1283 	 * boot or a device removal call.  So get the current power state
1284 	 * so that things like MSI message writing will behave as expected
1285 	 * (e.g. if the device really is in D0 at enable time).
1286 	 */
1287 	if (dev->pm_cap) {
1288 		u16 pmcsr;
1289 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1290 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1291 	}
1292 
1293 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1294 		return 0;		/* already enabled */
1295 
1296 	bridge = pci_upstream_bridge(dev);
1297 	if (bridge)
1298 		pci_enable_bridge(bridge);
1299 
1300 	/* only skip sriov related */
1301 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1302 		if (dev->resource[i].flags & flags)
1303 			bars |= (1 << i);
1304 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1305 		if (dev->resource[i].flags & flags)
1306 			bars |= (1 << i);
1307 
1308 	err = do_pci_enable_device(dev, bars);
1309 	if (err < 0)
1310 		atomic_dec(&dev->enable_cnt);
1311 	return err;
1312 }
1313 
1314 /**
1315  * pci_enable_device_io - Initialize a device for use with IO space
1316  * @dev: PCI device to be initialized
1317  *
1318  *  Initialize device before it's used by a driver. Ask low-level code
1319  *  to enable I/O resources. Wake up the device if it was suspended.
1320  *  Beware, this function can fail.
1321  */
1322 int pci_enable_device_io(struct pci_dev *dev)
1323 {
1324 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1325 }
1326 EXPORT_SYMBOL(pci_enable_device_io);
1327 
1328 /**
1329  * pci_enable_device_mem - Initialize a device for use with Memory space
1330  * @dev: PCI device to be initialized
1331  *
1332  *  Initialize device before it's used by a driver. Ask low-level code
1333  *  to enable Memory resources. Wake up the device if it was suspended.
1334  *  Beware, this function can fail.
1335  */
1336 int pci_enable_device_mem(struct pci_dev *dev)
1337 {
1338 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1339 }
1340 EXPORT_SYMBOL(pci_enable_device_mem);
1341 
1342 /**
1343  * pci_enable_device - Initialize device before it's used by a driver.
1344  * @dev: PCI device to be initialized
1345  *
1346  *  Initialize device before it's used by a driver. Ask low-level code
1347  *  to enable I/O and memory. Wake up the device if it was suspended.
1348  *  Beware, this function can fail.
1349  *
1350  *  Note we don't actually enable the device many times if we call
1351  *  this function repeatedly (we just increment the count).
1352  */
1353 int pci_enable_device(struct pci_dev *dev)
1354 {
1355 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1356 }
1357 EXPORT_SYMBOL(pci_enable_device);
1358 
1359 /*
1360  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1361  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1362  * there's no need to track it separately.  pci_devres is initialized
1363  * when a device is enabled using managed PCI device enable interface.
1364  */
1365 struct pci_devres {
1366 	unsigned int enabled:1;
1367 	unsigned int pinned:1;
1368 	unsigned int orig_intx:1;
1369 	unsigned int restore_intx:1;
1370 	u32 region_mask;
1371 };
1372 
1373 static void pcim_release(struct device *gendev, void *res)
1374 {
1375 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1376 	struct pci_devres *this = res;
1377 	int i;
1378 
1379 	if (dev->msi_enabled)
1380 		pci_disable_msi(dev);
1381 	if (dev->msix_enabled)
1382 		pci_disable_msix(dev);
1383 
1384 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1385 		if (this->region_mask & (1 << i))
1386 			pci_release_region(dev, i);
1387 
1388 	if (this->restore_intx)
1389 		pci_intx(dev, this->orig_intx);
1390 
1391 	if (this->enabled && !this->pinned)
1392 		pci_disable_device(dev);
1393 }
1394 
1395 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1396 {
1397 	struct pci_devres *dr, *new_dr;
1398 
1399 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1400 	if (dr)
1401 		return dr;
1402 
1403 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1404 	if (!new_dr)
1405 		return NULL;
1406 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1407 }
1408 
1409 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1410 {
1411 	if (pci_is_managed(pdev))
1412 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1413 	return NULL;
1414 }
1415 
1416 /**
1417  * pcim_enable_device - Managed pci_enable_device()
1418  * @pdev: PCI device to be initialized
1419  *
1420  * Managed pci_enable_device().
1421  */
1422 int pcim_enable_device(struct pci_dev *pdev)
1423 {
1424 	struct pci_devres *dr;
1425 	int rc;
1426 
1427 	dr = get_pci_dr(pdev);
1428 	if (unlikely(!dr))
1429 		return -ENOMEM;
1430 	if (dr->enabled)
1431 		return 0;
1432 
1433 	rc = pci_enable_device(pdev);
1434 	if (!rc) {
1435 		pdev->is_managed = 1;
1436 		dr->enabled = 1;
1437 	}
1438 	return rc;
1439 }
1440 EXPORT_SYMBOL(pcim_enable_device);
1441 
1442 /**
1443  * pcim_pin_device - Pin managed PCI device
1444  * @pdev: PCI device to pin
1445  *
1446  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1447  * driver detach.  @pdev must have been enabled with
1448  * pcim_enable_device().
1449  */
1450 void pcim_pin_device(struct pci_dev *pdev)
1451 {
1452 	struct pci_devres *dr;
1453 
1454 	dr = find_pci_dr(pdev);
1455 	WARN_ON(!dr || !dr->enabled);
1456 	if (dr)
1457 		dr->pinned = 1;
1458 }
1459 EXPORT_SYMBOL(pcim_pin_device);
1460 
1461 /*
1462  * pcibios_add_device - provide arch specific hooks when adding device dev
1463  * @dev: the PCI device being added
1464  *
1465  * Permits the platform to provide architecture specific functionality when
1466  * devices are added. This is the default implementation. Architecture
1467  * implementations can override this.
1468  */
1469 int __weak pcibios_add_device(struct pci_dev *dev)
1470 {
1471 	return 0;
1472 }
1473 
1474 /**
1475  * pcibios_release_device - provide arch specific hooks when releasing device dev
1476  * @dev: the PCI device being released
1477  *
1478  * Permits the platform to provide architecture specific functionality when
1479  * devices are released. This is the default implementation. Architecture
1480  * implementations can override this.
1481  */
1482 void __weak pcibios_release_device(struct pci_dev *dev) {}
1483 
1484 /**
1485  * pcibios_disable_device - disable arch specific PCI resources for device dev
1486  * @dev: the PCI device to disable
1487  *
1488  * Disables architecture specific PCI resources for the device. This
1489  * is the default implementation. Architecture implementations can
1490  * override this.
1491  */
1492 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1493 
1494 /**
1495  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1496  * @irq: ISA IRQ to penalize
1497  * @active: IRQ active or not
1498  *
1499  * Permits the platform to provide architecture-specific functionality when
1500  * penalizing ISA IRQs. This is the default implementation. Architecture
1501  * implementations can override this.
1502  */
1503 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1504 
1505 static void do_pci_disable_device(struct pci_dev *dev)
1506 {
1507 	u16 pci_command;
1508 
1509 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1510 	if (pci_command & PCI_COMMAND_MASTER) {
1511 		pci_command &= ~PCI_COMMAND_MASTER;
1512 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1513 	}
1514 
1515 	pcibios_disable_device(dev);
1516 }
1517 
1518 /**
1519  * pci_disable_enabled_device - Disable device without updating enable_cnt
1520  * @dev: PCI device to disable
1521  *
1522  * NOTE: This function is a backend of PCI power management routines and is
1523  * not supposed to be called drivers.
1524  */
1525 void pci_disable_enabled_device(struct pci_dev *dev)
1526 {
1527 	if (pci_is_enabled(dev))
1528 		do_pci_disable_device(dev);
1529 }
1530 
1531 /**
1532  * pci_disable_device - Disable PCI device after use
1533  * @dev: PCI device to be disabled
1534  *
1535  * Signal to the system that the PCI device is not in use by the system
1536  * anymore.  This only involves disabling PCI bus-mastering, if active.
1537  *
1538  * Note we don't actually disable the device until all callers of
1539  * pci_enable_device() have called pci_disable_device().
1540  */
1541 void pci_disable_device(struct pci_dev *dev)
1542 {
1543 	struct pci_devres *dr;
1544 
1545 	dr = find_pci_dr(dev);
1546 	if (dr)
1547 		dr->enabled = 0;
1548 
1549 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1550 		      "disabling already-disabled device");
1551 
1552 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1553 		return;
1554 
1555 	do_pci_disable_device(dev);
1556 
1557 	dev->is_busmaster = 0;
1558 }
1559 EXPORT_SYMBOL(pci_disable_device);
1560 
1561 /**
1562  * pcibios_set_pcie_reset_state - set reset state for device dev
1563  * @dev: the PCIe device reset
1564  * @state: Reset state to enter into
1565  *
1566  *
1567  * Sets the PCIe reset state for the device. This is the default
1568  * implementation. Architecture implementations can override this.
1569  */
1570 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1571 					enum pcie_reset_state state)
1572 {
1573 	return -EINVAL;
1574 }
1575 
1576 /**
1577  * pci_set_pcie_reset_state - set reset state for device dev
1578  * @dev: the PCIe device reset
1579  * @state: Reset state to enter into
1580  *
1581  *
1582  * Sets the PCI reset state for the device.
1583  */
1584 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1585 {
1586 	return pcibios_set_pcie_reset_state(dev, state);
1587 }
1588 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1589 
1590 /**
1591  * pci_check_pme_status - Check if given device has generated PME.
1592  * @dev: Device to check.
1593  *
1594  * Check the PME status of the device and if set, clear it and clear PME enable
1595  * (if set).  Return 'true' if PME status and PME enable were both set or
1596  * 'false' otherwise.
1597  */
1598 bool pci_check_pme_status(struct pci_dev *dev)
1599 {
1600 	int pmcsr_pos;
1601 	u16 pmcsr;
1602 	bool ret = false;
1603 
1604 	if (!dev->pm_cap)
1605 		return false;
1606 
1607 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1608 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1609 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1610 		return false;
1611 
1612 	/* Clear PME status. */
1613 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1614 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1615 		/* Disable PME to avoid interrupt flood. */
1616 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1617 		ret = true;
1618 	}
1619 
1620 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1621 
1622 	return ret;
1623 }
1624 
1625 /**
1626  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1627  * @dev: Device to handle.
1628  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1629  *
1630  * Check if @dev has generated PME and queue a resume request for it in that
1631  * case.
1632  */
1633 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1634 {
1635 	if (pme_poll_reset && dev->pme_poll)
1636 		dev->pme_poll = false;
1637 
1638 	if (pci_check_pme_status(dev)) {
1639 		pci_wakeup_event(dev);
1640 		pm_request_resume(&dev->dev);
1641 	}
1642 	return 0;
1643 }
1644 
1645 /**
1646  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1647  * @bus: Top bus of the subtree to walk.
1648  */
1649 void pci_pme_wakeup_bus(struct pci_bus *bus)
1650 {
1651 	if (bus)
1652 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1653 }
1654 
1655 
1656 /**
1657  * pci_pme_capable - check the capability of PCI device to generate PME#
1658  * @dev: PCI device to handle.
1659  * @state: PCI state from which device will issue PME#.
1660  */
1661 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1662 {
1663 	if (!dev->pm_cap)
1664 		return false;
1665 
1666 	return !!(dev->pme_support & (1 << state));
1667 }
1668 EXPORT_SYMBOL(pci_pme_capable);
1669 
1670 static void pci_pme_list_scan(struct work_struct *work)
1671 {
1672 	struct pci_pme_device *pme_dev, *n;
1673 
1674 	mutex_lock(&pci_pme_list_mutex);
1675 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1676 		if (pme_dev->dev->pme_poll) {
1677 			struct pci_dev *bridge;
1678 
1679 			bridge = pme_dev->dev->bus->self;
1680 			/*
1681 			 * If bridge is in low power state, the
1682 			 * configuration space of subordinate devices
1683 			 * may be not accessible
1684 			 */
1685 			if (bridge && bridge->current_state != PCI_D0)
1686 				continue;
1687 			pci_pme_wakeup(pme_dev->dev, NULL);
1688 		} else {
1689 			list_del(&pme_dev->list);
1690 			kfree(pme_dev);
1691 		}
1692 	}
1693 	if (!list_empty(&pci_pme_list))
1694 		schedule_delayed_work(&pci_pme_work,
1695 				      msecs_to_jiffies(PME_TIMEOUT));
1696 	mutex_unlock(&pci_pme_list_mutex);
1697 }
1698 
1699 /**
1700  * pci_pme_active - enable or disable PCI device's PME# function
1701  * @dev: PCI device to handle.
1702  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1703  *
1704  * The caller must verify that the device is capable of generating PME# before
1705  * calling this function with @enable equal to 'true'.
1706  */
1707 void pci_pme_active(struct pci_dev *dev, bool enable)
1708 {
1709 	u16 pmcsr;
1710 
1711 	if (!dev->pme_support)
1712 		return;
1713 
1714 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1715 	/* Clear PME_Status by writing 1 to it and enable PME# */
1716 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1717 	if (!enable)
1718 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1719 
1720 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1721 
1722 	/*
1723 	 * PCI (as opposed to PCIe) PME requires that the device have
1724 	 * its PME# line hooked up correctly. Not all hardware vendors
1725 	 * do this, so the PME never gets delivered and the device
1726 	 * remains asleep. The easiest way around this is to
1727 	 * periodically walk the list of suspended devices and check
1728 	 * whether any have their PME flag set. The assumption is that
1729 	 * we'll wake up often enough anyway that this won't be a huge
1730 	 * hit, and the power savings from the devices will still be a
1731 	 * win.
1732 	 *
1733 	 * Although PCIe uses in-band PME message instead of PME# line
1734 	 * to report PME, PME does not work for some PCIe devices in
1735 	 * reality.  For example, there are devices that set their PME
1736 	 * status bits, but don't really bother to send a PME message;
1737 	 * there are PCI Express Root Ports that don't bother to
1738 	 * trigger interrupts when they receive PME messages from the
1739 	 * devices below.  So PME poll is used for PCIe devices too.
1740 	 */
1741 
1742 	if (dev->pme_poll) {
1743 		struct pci_pme_device *pme_dev;
1744 		if (enable) {
1745 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1746 					  GFP_KERNEL);
1747 			if (!pme_dev) {
1748 				dev_warn(&dev->dev, "can't enable PME#\n");
1749 				return;
1750 			}
1751 			pme_dev->dev = dev;
1752 			mutex_lock(&pci_pme_list_mutex);
1753 			list_add(&pme_dev->list, &pci_pme_list);
1754 			if (list_is_singular(&pci_pme_list))
1755 				schedule_delayed_work(&pci_pme_work,
1756 						      msecs_to_jiffies(PME_TIMEOUT));
1757 			mutex_unlock(&pci_pme_list_mutex);
1758 		} else {
1759 			mutex_lock(&pci_pme_list_mutex);
1760 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1761 				if (pme_dev->dev == dev) {
1762 					list_del(&pme_dev->list);
1763 					kfree(pme_dev);
1764 					break;
1765 				}
1766 			}
1767 			mutex_unlock(&pci_pme_list_mutex);
1768 		}
1769 	}
1770 
1771 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1772 }
1773 EXPORT_SYMBOL(pci_pme_active);
1774 
1775 /**
1776  * __pci_enable_wake - enable PCI device as wakeup event source
1777  * @dev: PCI device affected
1778  * @state: PCI state from which device will issue wakeup events
1779  * @runtime: True if the events are to be generated at run time
1780  * @enable: True to enable event generation; false to disable
1781  *
1782  * This enables the device as a wakeup event source, or disables it.
1783  * When such events involves platform-specific hooks, those hooks are
1784  * called automatically by this routine.
1785  *
1786  * Devices with legacy power management (no standard PCI PM capabilities)
1787  * always require such platform hooks.
1788  *
1789  * RETURN VALUE:
1790  * 0 is returned on success
1791  * -EINVAL is returned if device is not supposed to wake up the system
1792  * Error code depending on the platform is returned if both the platform and
1793  * the native mechanism fail to enable the generation of wake-up events
1794  */
1795 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1796 		      bool runtime, bool enable)
1797 {
1798 	int ret = 0;
1799 
1800 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1801 		return -EINVAL;
1802 
1803 	/* Don't do the same thing twice in a row for one device. */
1804 	if (!!enable == !!dev->wakeup_prepared)
1805 		return 0;
1806 
1807 	/*
1808 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1809 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1810 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1811 	 */
1812 
1813 	if (enable) {
1814 		int error;
1815 
1816 		if (pci_pme_capable(dev, state))
1817 			pci_pme_active(dev, true);
1818 		else
1819 			ret = 1;
1820 		error = runtime ? platform_pci_run_wake(dev, true) :
1821 					platform_pci_sleep_wake(dev, true);
1822 		if (ret)
1823 			ret = error;
1824 		if (!ret)
1825 			dev->wakeup_prepared = true;
1826 	} else {
1827 		if (runtime)
1828 			platform_pci_run_wake(dev, false);
1829 		else
1830 			platform_pci_sleep_wake(dev, false);
1831 		pci_pme_active(dev, false);
1832 		dev->wakeup_prepared = false;
1833 	}
1834 
1835 	return ret;
1836 }
1837 EXPORT_SYMBOL(__pci_enable_wake);
1838 
1839 /**
1840  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1841  * @dev: PCI device to prepare
1842  * @enable: True to enable wake-up event generation; false to disable
1843  *
1844  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1845  * and this function allows them to set that up cleanly - pci_enable_wake()
1846  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1847  * ordering constraints.
1848  *
1849  * This function only returns error code if the device is not capable of
1850  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1851  * enable wake-up power for it.
1852  */
1853 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1854 {
1855 	return pci_pme_capable(dev, PCI_D3cold) ?
1856 			pci_enable_wake(dev, PCI_D3cold, enable) :
1857 			pci_enable_wake(dev, PCI_D3hot, enable);
1858 }
1859 EXPORT_SYMBOL(pci_wake_from_d3);
1860 
1861 /**
1862  * pci_target_state - find an appropriate low power state for a given PCI dev
1863  * @dev: PCI device
1864  *
1865  * Use underlying platform code to find a supported low power state for @dev.
1866  * If the platform can't manage @dev, return the deepest state from which it
1867  * can generate wake events, based on any available PME info.
1868  */
1869 static pci_power_t pci_target_state(struct pci_dev *dev)
1870 {
1871 	pci_power_t target_state = PCI_D3hot;
1872 
1873 	if (platform_pci_power_manageable(dev)) {
1874 		/*
1875 		 * Call the platform to choose the target state of the device
1876 		 * and enable wake-up from this state if supported.
1877 		 */
1878 		pci_power_t state = platform_pci_choose_state(dev);
1879 
1880 		switch (state) {
1881 		case PCI_POWER_ERROR:
1882 		case PCI_UNKNOWN:
1883 			break;
1884 		case PCI_D1:
1885 		case PCI_D2:
1886 			if (pci_no_d1d2(dev))
1887 				break;
1888 		default:
1889 			target_state = state;
1890 		}
1891 	} else if (!dev->pm_cap) {
1892 		target_state = PCI_D0;
1893 	} else if (device_may_wakeup(&dev->dev)) {
1894 		/*
1895 		 * Find the deepest state from which the device can generate
1896 		 * wake-up events, make it the target state and enable device
1897 		 * to generate PME#.
1898 		 */
1899 		if (dev->pme_support) {
1900 			while (target_state
1901 			      && !(dev->pme_support & (1 << target_state)))
1902 				target_state--;
1903 		}
1904 	}
1905 
1906 	return target_state;
1907 }
1908 
1909 /**
1910  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1911  * @dev: Device to handle.
1912  *
1913  * Choose the power state appropriate for the device depending on whether
1914  * it can wake up the system and/or is power manageable by the platform
1915  * (PCI_D3hot is the default) and put the device into that state.
1916  */
1917 int pci_prepare_to_sleep(struct pci_dev *dev)
1918 {
1919 	pci_power_t target_state = pci_target_state(dev);
1920 	int error;
1921 
1922 	if (target_state == PCI_POWER_ERROR)
1923 		return -EIO;
1924 
1925 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1926 
1927 	error = pci_set_power_state(dev, target_state);
1928 
1929 	if (error)
1930 		pci_enable_wake(dev, target_state, false);
1931 
1932 	return error;
1933 }
1934 EXPORT_SYMBOL(pci_prepare_to_sleep);
1935 
1936 /**
1937  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1938  * @dev: Device to handle.
1939  *
1940  * Disable device's system wake-up capability and put it into D0.
1941  */
1942 int pci_back_from_sleep(struct pci_dev *dev)
1943 {
1944 	pci_enable_wake(dev, PCI_D0, false);
1945 	return pci_set_power_state(dev, PCI_D0);
1946 }
1947 EXPORT_SYMBOL(pci_back_from_sleep);
1948 
1949 /**
1950  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1951  * @dev: PCI device being suspended.
1952  *
1953  * Prepare @dev to generate wake-up events at run time and put it into a low
1954  * power state.
1955  */
1956 int pci_finish_runtime_suspend(struct pci_dev *dev)
1957 {
1958 	pci_power_t target_state = pci_target_state(dev);
1959 	int error;
1960 
1961 	if (target_state == PCI_POWER_ERROR)
1962 		return -EIO;
1963 
1964 	dev->runtime_d3cold = target_state == PCI_D3cold;
1965 
1966 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1967 
1968 	error = pci_set_power_state(dev, target_state);
1969 
1970 	if (error) {
1971 		__pci_enable_wake(dev, target_state, true, false);
1972 		dev->runtime_d3cold = false;
1973 	}
1974 
1975 	return error;
1976 }
1977 
1978 /**
1979  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1980  * @dev: Device to check.
1981  *
1982  * Return true if the device itself is capable of generating wake-up events
1983  * (through the platform or using the native PCIe PME) or if the device supports
1984  * PME and one of its upstream bridges can generate wake-up events.
1985  */
1986 bool pci_dev_run_wake(struct pci_dev *dev)
1987 {
1988 	struct pci_bus *bus = dev->bus;
1989 
1990 	if (device_run_wake(&dev->dev))
1991 		return true;
1992 
1993 	if (!dev->pme_support)
1994 		return false;
1995 
1996 	while (bus->parent) {
1997 		struct pci_dev *bridge = bus->self;
1998 
1999 		if (device_run_wake(&bridge->dev))
2000 			return true;
2001 
2002 		bus = bus->parent;
2003 	}
2004 
2005 	/* We have reached the root bus. */
2006 	if (bus->bridge)
2007 		return device_run_wake(bus->bridge);
2008 
2009 	return false;
2010 }
2011 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2012 
2013 /**
2014  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2015  * @pci_dev: Device to check.
2016  *
2017  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2018  * reconfigured due to wakeup settings difference between system and runtime
2019  * suspend and the current power state of it is suitable for the upcoming
2020  * (system) transition.
2021  */
2022 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2023 {
2024 	struct device *dev = &pci_dev->dev;
2025 
2026 	if (!pm_runtime_suspended(dev)
2027 	    || (device_can_wakeup(dev) && !device_may_wakeup(dev))
2028 	    || platform_pci_need_resume(pci_dev))
2029 		return false;
2030 
2031 	return pci_target_state(pci_dev) == pci_dev->current_state;
2032 }
2033 
2034 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2035 {
2036 	struct device *dev = &pdev->dev;
2037 	struct device *parent = dev->parent;
2038 
2039 	if (parent)
2040 		pm_runtime_get_sync(parent);
2041 	pm_runtime_get_noresume(dev);
2042 	/*
2043 	 * pdev->current_state is set to PCI_D3cold during suspending,
2044 	 * so wait until suspending completes
2045 	 */
2046 	pm_runtime_barrier(dev);
2047 	/*
2048 	 * Only need to resume devices in D3cold, because config
2049 	 * registers are still accessible for devices suspended but
2050 	 * not in D3cold.
2051 	 */
2052 	if (pdev->current_state == PCI_D3cold)
2053 		pm_runtime_resume(dev);
2054 }
2055 
2056 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2057 {
2058 	struct device *dev = &pdev->dev;
2059 	struct device *parent = dev->parent;
2060 
2061 	pm_runtime_put(dev);
2062 	if (parent)
2063 		pm_runtime_put_sync(parent);
2064 }
2065 
2066 /**
2067  * pci_pm_init - Initialize PM functions of given PCI device
2068  * @dev: PCI device to handle.
2069  */
2070 void pci_pm_init(struct pci_dev *dev)
2071 {
2072 	int pm;
2073 	u16 pmc;
2074 
2075 	pm_runtime_forbid(&dev->dev);
2076 	pm_runtime_set_active(&dev->dev);
2077 	pm_runtime_enable(&dev->dev);
2078 	device_enable_async_suspend(&dev->dev);
2079 	dev->wakeup_prepared = false;
2080 
2081 	dev->pm_cap = 0;
2082 	dev->pme_support = 0;
2083 
2084 	/* find PCI PM capability in list */
2085 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2086 	if (!pm)
2087 		return;
2088 	/* Check device's ability to generate PME# */
2089 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2090 
2091 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2092 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2093 			pmc & PCI_PM_CAP_VER_MASK);
2094 		return;
2095 	}
2096 
2097 	dev->pm_cap = pm;
2098 	dev->d3_delay = PCI_PM_D3_WAIT;
2099 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2100 	dev->d3cold_allowed = true;
2101 
2102 	dev->d1_support = false;
2103 	dev->d2_support = false;
2104 	if (!pci_no_d1d2(dev)) {
2105 		if (pmc & PCI_PM_CAP_D1)
2106 			dev->d1_support = true;
2107 		if (pmc & PCI_PM_CAP_D2)
2108 			dev->d2_support = true;
2109 
2110 		if (dev->d1_support || dev->d2_support)
2111 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2112 				   dev->d1_support ? " D1" : "",
2113 				   dev->d2_support ? " D2" : "");
2114 	}
2115 
2116 	pmc &= PCI_PM_CAP_PME_MASK;
2117 	if (pmc) {
2118 		dev_printk(KERN_DEBUG, &dev->dev,
2119 			 "PME# supported from%s%s%s%s%s\n",
2120 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2121 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2122 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2123 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2124 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2125 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2126 		dev->pme_poll = true;
2127 		/*
2128 		 * Make device's PM flags reflect the wake-up capability, but
2129 		 * let the user space enable it to wake up the system as needed.
2130 		 */
2131 		device_set_wakeup_capable(&dev->dev, true);
2132 		/* Disable the PME# generation functionality */
2133 		pci_pme_active(dev, false);
2134 	}
2135 }
2136 
2137 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2138 	struct pci_cap_saved_state *new_cap)
2139 {
2140 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2141 }
2142 
2143 /**
2144  * _pci_add_cap_save_buffer - allocate buffer for saving given
2145  *                            capability registers
2146  * @dev: the PCI device
2147  * @cap: the capability to allocate the buffer for
2148  * @extended: Standard or Extended capability ID
2149  * @size: requested size of the buffer
2150  */
2151 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2152 				    bool extended, unsigned int size)
2153 {
2154 	int pos;
2155 	struct pci_cap_saved_state *save_state;
2156 
2157 	if (extended)
2158 		pos = pci_find_ext_capability(dev, cap);
2159 	else
2160 		pos = pci_find_capability(dev, cap);
2161 
2162 	if (pos <= 0)
2163 		return 0;
2164 
2165 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2166 	if (!save_state)
2167 		return -ENOMEM;
2168 
2169 	save_state->cap.cap_nr = cap;
2170 	save_state->cap.cap_extended = extended;
2171 	save_state->cap.size = size;
2172 	pci_add_saved_cap(dev, save_state);
2173 
2174 	return 0;
2175 }
2176 
2177 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2178 {
2179 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2180 }
2181 
2182 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2183 {
2184 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2185 }
2186 
2187 /**
2188  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2189  * @dev: the PCI device
2190  */
2191 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2192 {
2193 	int error;
2194 
2195 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2196 					PCI_EXP_SAVE_REGS * sizeof(u16));
2197 	if (error)
2198 		dev_err(&dev->dev,
2199 			"unable to preallocate PCI Express save buffer\n");
2200 
2201 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2202 	if (error)
2203 		dev_err(&dev->dev,
2204 			"unable to preallocate PCI-X save buffer\n");
2205 
2206 	pci_allocate_vc_save_buffers(dev);
2207 }
2208 
2209 void pci_free_cap_save_buffers(struct pci_dev *dev)
2210 {
2211 	struct pci_cap_saved_state *tmp;
2212 	struct hlist_node *n;
2213 
2214 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2215 		kfree(tmp);
2216 }
2217 
2218 /**
2219  * pci_configure_ari - enable or disable ARI forwarding
2220  * @dev: the PCI device
2221  *
2222  * If @dev and its upstream bridge both support ARI, enable ARI in the
2223  * bridge.  Otherwise, disable ARI in the bridge.
2224  */
2225 void pci_configure_ari(struct pci_dev *dev)
2226 {
2227 	u32 cap;
2228 	struct pci_dev *bridge;
2229 
2230 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2231 		return;
2232 
2233 	bridge = dev->bus->self;
2234 	if (!bridge)
2235 		return;
2236 
2237 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2238 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2239 		return;
2240 
2241 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2242 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2243 					 PCI_EXP_DEVCTL2_ARI);
2244 		bridge->ari_enabled = 1;
2245 	} else {
2246 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2247 					   PCI_EXP_DEVCTL2_ARI);
2248 		bridge->ari_enabled = 0;
2249 	}
2250 }
2251 
2252 static int pci_acs_enable;
2253 
2254 /**
2255  * pci_request_acs - ask for ACS to be enabled if supported
2256  */
2257 void pci_request_acs(void)
2258 {
2259 	pci_acs_enable = 1;
2260 }
2261 
2262 /**
2263  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2264  * @dev: the PCI device
2265  */
2266 static int pci_std_enable_acs(struct pci_dev *dev)
2267 {
2268 	int pos;
2269 	u16 cap;
2270 	u16 ctrl;
2271 
2272 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2273 	if (!pos)
2274 		return -ENODEV;
2275 
2276 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2277 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2278 
2279 	/* Source Validation */
2280 	ctrl |= (cap & PCI_ACS_SV);
2281 
2282 	/* P2P Request Redirect */
2283 	ctrl |= (cap & PCI_ACS_RR);
2284 
2285 	/* P2P Completion Redirect */
2286 	ctrl |= (cap & PCI_ACS_CR);
2287 
2288 	/* Upstream Forwarding */
2289 	ctrl |= (cap & PCI_ACS_UF);
2290 
2291 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2292 
2293 	return 0;
2294 }
2295 
2296 /**
2297  * pci_enable_acs - enable ACS if hardware support it
2298  * @dev: the PCI device
2299  */
2300 void pci_enable_acs(struct pci_dev *dev)
2301 {
2302 	if (!pci_acs_enable)
2303 		return;
2304 
2305 	if (!pci_std_enable_acs(dev))
2306 		return;
2307 
2308 	pci_dev_specific_enable_acs(dev);
2309 }
2310 
2311 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2312 {
2313 	int pos;
2314 	u16 cap, ctrl;
2315 
2316 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2317 	if (!pos)
2318 		return false;
2319 
2320 	/*
2321 	 * Except for egress control, capabilities are either required
2322 	 * or only required if controllable.  Features missing from the
2323 	 * capability field can therefore be assumed as hard-wired enabled.
2324 	 */
2325 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2326 	acs_flags &= (cap | PCI_ACS_EC);
2327 
2328 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2329 	return (ctrl & acs_flags) == acs_flags;
2330 }
2331 
2332 /**
2333  * pci_acs_enabled - test ACS against required flags for a given device
2334  * @pdev: device to test
2335  * @acs_flags: required PCI ACS flags
2336  *
2337  * Return true if the device supports the provided flags.  Automatically
2338  * filters out flags that are not implemented on multifunction devices.
2339  *
2340  * Note that this interface checks the effective ACS capabilities of the
2341  * device rather than the actual capabilities.  For instance, most single
2342  * function endpoints are not required to support ACS because they have no
2343  * opportunity for peer-to-peer access.  We therefore return 'true'
2344  * regardless of whether the device exposes an ACS capability.  This makes
2345  * it much easier for callers of this function to ignore the actual type
2346  * or topology of the device when testing ACS support.
2347  */
2348 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2349 {
2350 	int ret;
2351 
2352 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2353 	if (ret >= 0)
2354 		return ret > 0;
2355 
2356 	/*
2357 	 * Conventional PCI and PCI-X devices never support ACS, either
2358 	 * effectively or actually.  The shared bus topology implies that
2359 	 * any device on the bus can receive or snoop DMA.
2360 	 */
2361 	if (!pci_is_pcie(pdev))
2362 		return false;
2363 
2364 	switch (pci_pcie_type(pdev)) {
2365 	/*
2366 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2367 	 * but since their primary interface is PCI/X, we conservatively
2368 	 * handle them as we would a non-PCIe device.
2369 	 */
2370 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2371 	/*
2372 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2373 	 * applicable... must never implement an ACS Extended Capability...".
2374 	 * This seems arbitrary, but we take a conservative interpretation
2375 	 * of this statement.
2376 	 */
2377 	case PCI_EXP_TYPE_PCI_BRIDGE:
2378 	case PCI_EXP_TYPE_RC_EC:
2379 		return false;
2380 	/*
2381 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2382 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2383 	 * regardless of whether they are single- or multi-function devices.
2384 	 */
2385 	case PCI_EXP_TYPE_DOWNSTREAM:
2386 	case PCI_EXP_TYPE_ROOT_PORT:
2387 		return pci_acs_flags_enabled(pdev, acs_flags);
2388 	/*
2389 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2390 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2391 	 * capabilities, but only when they are part of a multifunction
2392 	 * device.  The footnote for section 6.12 indicates the specific
2393 	 * PCIe types included here.
2394 	 */
2395 	case PCI_EXP_TYPE_ENDPOINT:
2396 	case PCI_EXP_TYPE_UPSTREAM:
2397 	case PCI_EXP_TYPE_LEG_END:
2398 	case PCI_EXP_TYPE_RC_END:
2399 		if (!pdev->multifunction)
2400 			break;
2401 
2402 		return pci_acs_flags_enabled(pdev, acs_flags);
2403 	}
2404 
2405 	/*
2406 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2407 	 * to single function devices with the exception of downstream ports.
2408 	 */
2409 	return true;
2410 }
2411 
2412 /**
2413  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2414  * @start: starting downstream device
2415  * @end: ending upstream device or NULL to search to the root bus
2416  * @acs_flags: required flags
2417  *
2418  * Walk up a device tree from start to end testing PCI ACS support.  If
2419  * any step along the way does not support the required flags, return false.
2420  */
2421 bool pci_acs_path_enabled(struct pci_dev *start,
2422 			  struct pci_dev *end, u16 acs_flags)
2423 {
2424 	struct pci_dev *pdev, *parent = start;
2425 
2426 	do {
2427 		pdev = parent;
2428 
2429 		if (!pci_acs_enabled(pdev, acs_flags))
2430 			return false;
2431 
2432 		if (pci_is_root_bus(pdev->bus))
2433 			return (end == NULL);
2434 
2435 		parent = pdev->bus->self;
2436 	} while (pdev != end);
2437 
2438 	return true;
2439 }
2440 
2441 /**
2442  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2443  * @dev: the PCI device
2444  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2445  *
2446  * Perform INTx swizzling for a device behind one level of bridge.  This is
2447  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2448  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2449  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2450  * the PCI Express Base Specification, Revision 2.1)
2451  */
2452 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2453 {
2454 	int slot;
2455 
2456 	if (pci_ari_enabled(dev->bus))
2457 		slot = 0;
2458 	else
2459 		slot = PCI_SLOT(dev->devfn);
2460 
2461 	return (((pin - 1) + slot) % 4) + 1;
2462 }
2463 
2464 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2465 {
2466 	u8 pin;
2467 
2468 	pin = dev->pin;
2469 	if (!pin)
2470 		return -1;
2471 
2472 	while (!pci_is_root_bus(dev->bus)) {
2473 		pin = pci_swizzle_interrupt_pin(dev, pin);
2474 		dev = dev->bus->self;
2475 	}
2476 	*bridge = dev;
2477 	return pin;
2478 }
2479 
2480 /**
2481  * pci_common_swizzle - swizzle INTx all the way to root bridge
2482  * @dev: the PCI device
2483  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2484  *
2485  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2486  * bridges all the way up to a PCI root bus.
2487  */
2488 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2489 {
2490 	u8 pin = *pinp;
2491 
2492 	while (!pci_is_root_bus(dev->bus)) {
2493 		pin = pci_swizzle_interrupt_pin(dev, pin);
2494 		dev = dev->bus->self;
2495 	}
2496 	*pinp = pin;
2497 	return PCI_SLOT(dev->devfn);
2498 }
2499 EXPORT_SYMBOL_GPL(pci_common_swizzle);
2500 
2501 /**
2502  *	pci_release_region - Release a PCI bar
2503  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2504  *	@bar: BAR to release
2505  *
2506  *	Releases the PCI I/O and memory resources previously reserved by a
2507  *	successful call to pci_request_region.  Call this function only
2508  *	after all use of the PCI regions has ceased.
2509  */
2510 void pci_release_region(struct pci_dev *pdev, int bar)
2511 {
2512 	struct pci_devres *dr;
2513 
2514 	if (pci_resource_len(pdev, bar) == 0)
2515 		return;
2516 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2517 		release_region(pci_resource_start(pdev, bar),
2518 				pci_resource_len(pdev, bar));
2519 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2520 		release_mem_region(pci_resource_start(pdev, bar),
2521 				pci_resource_len(pdev, bar));
2522 
2523 	dr = find_pci_dr(pdev);
2524 	if (dr)
2525 		dr->region_mask &= ~(1 << bar);
2526 }
2527 EXPORT_SYMBOL(pci_release_region);
2528 
2529 /**
2530  *	__pci_request_region - Reserved PCI I/O and memory resource
2531  *	@pdev: PCI device whose resources are to be reserved
2532  *	@bar: BAR to be reserved
2533  *	@res_name: Name to be associated with resource.
2534  *	@exclusive: whether the region access is exclusive or not
2535  *
2536  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2537  *	being reserved by owner @res_name.  Do not access any
2538  *	address inside the PCI regions unless this call returns
2539  *	successfully.
2540  *
2541  *	If @exclusive is set, then the region is marked so that userspace
2542  *	is explicitly not allowed to map the resource via /dev/mem or
2543  *	sysfs MMIO access.
2544  *
2545  *	Returns 0 on success, or %EBUSY on error.  A warning
2546  *	message is also printed on failure.
2547  */
2548 static int __pci_request_region(struct pci_dev *pdev, int bar,
2549 				const char *res_name, int exclusive)
2550 {
2551 	struct pci_devres *dr;
2552 
2553 	if (pci_resource_len(pdev, bar) == 0)
2554 		return 0;
2555 
2556 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2557 		if (!request_region(pci_resource_start(pdev, bar),
2558 			    pci_resource_len(pdev, bar), res_name))
2559 			goto err_out;
2560 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2561 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2562 					pci_resource_len(pdev, bar), res_name,
2563 					exclusive))
2564 			goto err_out;
2565 	}
2566 
2567 	dr = find_pci_dr(pdev);
2568 	if (dr)
2569 		dr->region_mask |= 1 << bar;
2570 
2571 	return 0;
2572 
2573 err_out:
2574 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2575 		 &pdev->resource[bar]);
2576 	return -EBUSY;
2577 }
2578 
2579 /**
2580  *	pci_request_region - Reserve PCI I/O and memory resource
2581  *	@pdev: PCI device whose resources are to be reserved
2582  *	@bar: BAR to be reserved
2583  *	@res_name: Name to be associated with resource
2584  *
2585  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2586  *	being reserved by owner @res_name.  Do not access any
2587  *	address inside the PCI regions unless this call returns
2588  *	successfully.
2589  *
2590  *	Returns 0 on success, or %EBUSY on error.  A warning
2591  *	message is also printed on failure.
2592  */
2593 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2594 {
2595 	return __pci_request_region(pdev, bar, res_name, 0);
2596 }
2597 EXPORT_SYMBOL(pci_request_region);
2598 
2599 /**
2600  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2601  *	@pdev: PCI device whose resources are to be reserved
2602  *	@bar: BAR to be reserved
2603  *	@res_name: Name to be associated with resource.
2604  *
2605  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2606  *	being reserved by owner @res_name.  Do not access any
2607  *	address inside the PCI regions unless this call returns
2608  *	successfully.
2609  *
2610  *	Returns 0 on success, or %EBUSY on error.  A warning
2611  *	message is also printed on failure.
2612  *
2613  *	The key difference that _exclusive makes it that userspace is
2614  *	explicitly not allowed to map the resource via /dev/mem or
2615  *	sysfs.
2616  */
2617 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2618 				 const char *res_name)
2619 {
2620 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2621 }
2622 EXPORT_SYMBOL(pci_request_region_exclusive);
2623 
2624 /**
2625  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2626  * @pdev: PCI device whose resources were previously reserved
2627  * @bars: Bitmask of BARs to be released
2628  *
2629  * Release selected PCI I/O and memory resources previously reserved.
2630  * Call this function only after all use of the PCI regions has ceased.
2631  */
2632 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2633 {
2634 	int i;
2635 
2636 	for (i = 0; i < 6; i++)
2637 		if (bars & (1 << i))
2638 			pci_release_region(pdev, i);
2639 }
2640 EXPORT_SYMBOL(pci_release_selected_regions);
2641 
2642 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2643 					  const char *res_name, int excl)
2644 {
2645 	int i;
2646 
2647 	for (i = 0; i < 6; i++)
2648 		if (bars & (1 << i))
2649 			if (__pci_request_region(pdev, i, res_name, excl))
2650 				goto err_out;
2651 	return 0;
2652 
2653 err_out:
2654 	while (--i >= 0)
2655 		if (bars & (1 << i))
2656 			pci_release_region(pdev, i);
2657 
2658 	return -EBUSY;
2659 }
2660 
2661 
2662 /**
2663  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2664  * @pdev: PCI device whose resources are to be reserved
2665  * @bars: Bitmask of BARs to be requested
2666  * @res_name: Name to be associated with resource
2667  */
2668 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2669 				 const char *res_name)
2670 {
2671 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2672 }
2673 EXPORT_SYMBOL(pci_request_selected_regions);
2674 
2675 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2676 					   const char *res_name)
2677 {
2678 	return __pci_request_selected_regions(pdev, bars, res_name,
2679 			IORESOURCE_EXCLUSIVE);
2680 }
2681 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2682 
2683 /**
2684  *	pci_release_regions - Release reserved PCI I/O and memory resources
2685  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2686  *
2687  *	Releases all PCI I/O and memory resources previously reserved by a
2688  *	successful call to pci_request_regions.  Call this function only
2689  *	after all use of the PCI regions has ceased.
2690  */
2691 
2692 void pci_release_regions(struct pci_dev *pdev)
2693 {
2694 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2695 }
2696 EXPORT_SYMBOL(pci_release_regions);
2697 
2698 /**
2699  *	pci_request_regions - Reserved PCI I/O and memory resources
2700  *	@pdev: PCI device whose resources are to be reserved
2701  *	@res_name: Name to be associated with resource.
2702  *
2703  *	Mark all PCI regions associated with PCI device @pdev as
2704  *	being reserved by owner @res_name.  Do not access any
2705  *	address inside the PCI regions unless this call returns
2706  *	successfully.
2707  *
2708  *	Returns 0 on success, or %EBUSY on error.  A warning
2709  *	message is also printed on failure.
2710  */
2711 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2712 {
2713 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2714 }
2715 EXPORT_SYMBOL(pci_request_regions);
2716 
2717 /**
2718  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2719  *	@pdev: PCI device whose resources are to be reserved
2720  *	@res_name: Name to be associated with resource.
2721  *
2722  *	Mark all PCI regions associated with PCI device @pdev as
2723  *	being reserved by owner @res_name.  Do not access any
2724  *	address inside the PCI regions unless this call returns
2725  *	successfully.
2726  *
2727  *	pci_request_regions_exclusive() will mark the region so that
2728  *	/dev/mem and the sysfs MMIO access will not be allowed.
2729  *
2730  *	Returns 0 on success, or %EBUSY on error.  A warning
2731  *	message is also printed on failure.
2732  */
2733 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2734 {
2735 	return pci_request_selected_regions_exclusive(pdev,
2736 					((1 << 6) - 1), res_name);
2737 }
2738 EXPORT_SYMBOL(pci_request_regions_exclusive);
2739 
2740 /**
2741  *	pci_remap_iospace - Remap the memory mapped I/O space
2742  *	@res: Resource describing the I/O space
2743  *	@phys_addr: physical address of range to be mapped
2744  *
2745  *	Remap the memory mapped I/O space described by the @res
2746  *	and the CPU physical address @phys_addr into virtual address space.
2747  *	Only architectures that have memory mapped IO functions defined
2748  *	(and the PCI_IOBASE value defined) should call this function.
2749  */
2750 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
2751 {
2752 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
2753 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
2754 
2755 	if (!(res->flags & IORESOURCE_IO))
2756 		return -EINVAL;
2757 
2758 	if (res->end > IO_SPACE_LIMIT)
2759 		return -EINVAL;
2760 
2761 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
2762 				  pgprot_device(PAGE_KERNEL));
2763 #else
2764 	/* this architecture does not have memory mapped I/O space,
2765 	   so this function should never be called */
2766 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
2767 	return -ENODEV;
2768 #endif
2769 }
2770 
2771 static void __pci_set_master(struct pci_dev *dev, bool enable)
2772 {
2773 	u16 old_cmd, cmd;
2774 
2775 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2776 	if (enable)
2777 		cmd = old_cmd | PCI_COMMAND_MASTER;
2778 	else
2779 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2780 	if (cmd != old_cmd) {
2781 		dev_dbg(&dev->dev, "%s bus mastering\n",
2782 			enable ? "enabling" : "disabling");
2783 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2784 	}
2785 	dev->is_busmaster = enable;
2786 }
2787 
2788 /**
2789  * pcibios_setup - process "pci=" kernel boot arguments
2790  * @str: string used to pass in "pci=" kernel boot arguments
2791  *
2792  * Process kernel boot arguments.  This is the default implementation.
2793  * Architecture specific implementations can override this as necessary.
2794  */
2795 char * __weak __init pcibios_setup(char *str)
2796 {
2797 	return str;
2798 }
2799 
2800 /**
2801  * pcibios_set_master - enable PCI bus-mastering for device dev
2802  * @dev: the PCI device to enable
2803  *
2804  * Enables PCI bus-mastering for the device.  This is the default
2805  * implementation.  Architecture specific implementations can override
2806  * this if necessary.
2807  */
2808 void __weak pcibios_set_master(struct pci_dev *dev)
2809 {
2810 	u8 lat;
2811 
2812 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2813 	if (pci_is_pcie(dev))
2814 		return;
2815 
2816 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2817 	if (lat < 16)
2818 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2819 	else if (lat > pcibios_max_latency)
2820 		lat = pcibios_max_latency;
2821 	else
2822 		return;
2823 
2824 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2825 }
2826 
2827 /**
2828  * pci_set_master - enables bus-mastering for device dev
2829  * @dev: the PCI device to enable
2830  *
2831  * Enables bus-mastering on the device and calls pcibios_set_master()
2832  * to do the needed arch specific settings.
2833  */
2834 void pci_set_master(struct pci_dev *dev)
2835 {
2836 	__pci_set_master(dev, true);
2837 	pcibios_set_master(dev);
2838 }
2839 EXPORT_SYMBOL(pci_set_master);
2840 
2841 /**
2842  * pci_clear_master - disables bus-mastering for device dev
2843  * @dev: the PCI device to disable
2844  */
2845 void pci_clear_master(struct pci_dev *dev)
2846 {
2847 	__pci_set_master(dev, false);
2848 }
2849 EXPORT_SYMBOL(pci_clear_master);
2850 
2851 /**
2852  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2853  * @dev: the PCI device for which MWI is to be enabled
2854  *
2855  * Helper function for pci_set_mwi.
2856  * Originally copied from drivers/net/acenic.c.
2857  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2858  *
2859  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2860  */
2861 int pci_set_cacheline_size(struct pci_dev *dev)
2862 {
2863 	u8 cacheline_size;
2864 
2865 	if (!pci_cache_line_size)
2866 		return -EINVAL;
2867 
2868 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2869 	   equal to or multiple of the right value. */
2870 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2871 	if (cacheline_size >= pci_cache_line_size &&
2872 	    (cacheline_size % pci_cache_line_size) == 0)
2873 		return 0;
2874 
2875 	/* Write the correct value. */
2876 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2877 	/* Read it back. */
2878 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2879 	if (cacheline_size == pci_cache_line_size)
2880 		return 0;
2881 
2882 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
2883 		   pci_cache_line_size << 2);
2884 
2885 	return -EINVAL;
2886 }
2887 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2888 
2889 /**
2890  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2891  * @dev: the PCI device for which MWI is enabled
2892  *
2893  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2894  *
2895  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2896  */
2897 int pci_set_mwi(struct pci_dev *dev)
2898 {
2899 #ifdef PCI_DISABLE_MWI
2900 	return 0;
2901 #else
2902 	int rc;
2903 	u16 cmd;
2904 
2905 	rc = pci_set_cacheline_size(dev);
2906 	if (rc)
2907 		return rc;
2908 
2909 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2910 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
2911 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2912 		cmd |= PCI_COMMAND_INVALIDATE;
2913 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2914 	}
2915 	return 0;
2916 #endif
2917 }
2918 EXPORT_SYMBOL(pci_set_mwi);
2919 
2920 /**
2921  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2922  * @dev: the PCI device for which MWI is enabled
2923  *
2924  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2925  * Callers are not required to check the return value.
2926  *
2927  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2928  */
2929 int pci_try_set_mwi(struct pci_dev *dev)
2930 {
2931 #ifdef PCI_DISABLE_MWI
2932 	return 0;
2933 #else
2934 	return pci_set_mwi(dev);
2935 #endif
2936 }
2937 EXPORT_SYMBOL(pci_try_set_mwi);
2938 
2939 /**
2940  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2941  * @dev: the PCI device to disable
2942  *
2943  * Disables PCI Memory-Write-Invalidate transaction on the device
2944  */
2945 void pci_clear_mwi(struct pci_dev *dev)
2946 {
2947 #ifndef PCI_DISABLE_MWI
2948 	u16 cmd;
2949 
2950 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2951 	if (cmd & PCI_COMMAND_INVALIDATE) {
2952 		cmd &= ~PCI_COMMAND_INVALIDATE;
2953 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2954 	}
2955 #endif
2956 }
2957 EXPORT_SYMBOL(pci_clear_mwi);
2958 
2959 /**
2960  * pci_intx - enables/disables PCI INTx for device dev
2961  * @pdev: the PCI device to operate on
2962  * @enable: boolean: whether to enable or disable PCI INTx
2963  *
2964  * Enables/disables PCI INTx for device dev
2965  */
2966 void pci_intx(struct pci_dev *pdev, int enable)
2967 {
2968 	u16 pci_command, new;
2969 
2970 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2971 
2972 	if (enable)
2973 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2974 	else
2975 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2976 
2977 	if (new != pci_command) {
2978 		struct pci_devres *dr;
2979 
2980 		pci_write_config_word(pdev, PCI_COMMAND, new);
2981 
2982 		dr = find_pci_dr(pdev);
2983 		if (dr && !dr->restore_intx) {
2984 			dr->restore_intx = 1;
2985 			dr->orig_intx = !enable;
2986 		}
2987 	}
2988 }
2989 EXPORT_SYMBOL_GPL(pci_intx);
2990 
2991 /**
2992  * pci_intx_mask_supported - probe for INTx masking support
2993  * @dev: the PCI device to operate on
2994  *
2995  * Check if the device dev support INTx masking via the config space
2996  * command word.
2997  */
2998 bool pci_intx_mask_supported(struct pci_dev *dev)
2999 {
3000 	bool mask_supported = false;
3001 	u16 orig, new;
3002 
3003 	if (dev->broken_intx_masking)
3004 		return false;
3005 
3006 	pci_cfg_access_lock(dev);
3007 
3008 	pci_read_config_word(dev, PCI_COMMAND, &orig);
3009 	pci_write_config_word(dev, PCI_COMMAND,
3010 			      orig ^ PCI_COMMAND_INTX_DISABLE);
3011 	pci_read_config_word(dev, PCI_COMMAND, &new);
3012 
3013 	/*
3014 	 * There's no way to protect against hardware bugs or detect them
3015 	 * reliably, but as long as we know what the value should be, let's
3016 	 * go ahead and check it.
3017 	 */
3018 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3019 		dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3020 			orig, new);
3021 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3022 		mask_supported = true;
3023 		pci_write_config_word(dev, PCI_COMMAND, orig);
3024 	}
3025 
3026 	pci_cfg_access_unlock(dev);
3027 	return mask_supported;
3028 }
3029 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3030 
3031 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3032 {
3033 	struct pci_bus *bus = dev->bus;
3034 	bool mask_updated = true;
3035 	u32 cmd_status_dword;
3036 	u16 origcmd, newcmd;
3037 	unsigned long flags;
3038 	bool irq_pending;
3039 
3040 	/*
3041 	 * We do a single dword read to retrieve both command and status.
3042 	 * Document assumptions that make this possible.
3043 	 */
3044 	BUILD_BUG_ON(PCI_COMMAND % 4);
3045 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3046 
3047 	raw_spin_lock_irqsave(&pci_lock, flags);
3048 
3049 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3050 
3051 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3052 
3053 	/*
3054 	 * Check interrupt status register to see whether our device
3055 	 * triggered the interrupt (when masking) or the next IRQ is
3056 	 * already pending (when unmasking).
3057 	 */
3058 	if (mask != irq_pending) {
3059 		mask_updated = false;
3060 		goto done;
3061 	}
3062 
3063 	origcmd = cmd_status_dword;
3064 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3065 	if (mask)
3066 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3067 	if (newcmd != origcmd)
3068 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3069 
3070 done:
3071 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3072 
3073 	return mask_updated;
3074 }
3075 
3076 /**
3077  * pci_check_and_mask_intx - mask INTx on pending interrupt
3078  * @dev: the PCI device to operate on
3079  *
3080  * Check if the device dev has its INTx line asserted, mask it and
3081  * return true in that case. False is returned if not interrupt was
3082  * pending.
3083  */
3084 bool pci_check_and_mask_intx(struct pci_dev *dev)
3085 {
3086 	return pci_check_and_set_intx_mask(dev, true);
3087 }
3088 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3089 
3090 /**
3091  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3092  * @dev: the PCI device to operate on
3093  *
3094  * Check if the device dev has its INTx line asserted, unmask it if not
3095  * and return true. False is returned and the mask remains active if
3096  * there was still an interrupt pending.
3097  */
3098 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3099 {
3100 	return pci_check_and_set_intx_mask(dev, false);
3101 }
3102 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3103 
3104 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3105 {
3106 	return dma_set_max_seg_size(&dev->dev, size);
3107 }
3108 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3109 
3110 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3111 {
3112 	return dma_set_seg_boundary(&dev->dev, mask);
3113 }
3114 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3115 
3116 /**
3117  * pci_wait_for_pending_transaction - waits for pending transaction
3118  * @dev: the PCI device to operate on
3119  *
3120  * Return 0 if transaction is pending 1 otherwise.
3121  */
3122 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3123 {
3124 	if (!pci_is_pcie(dev))
3125 		return 1;
3126 
3127 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3128 				    PCI_EXP_DEVSTA_TRPND);
3129 }
3130 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3131 
3132 static int pcie_flr(struct pci_dev *dev, int probe)
3133 {
3134 	u32 cap;
3135 
3136 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3137 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3138 		return -ENOTTY;
3139 
3140 	if (probe)
3141 		return 0;
3142 
3143 	if (!pci_wait_for_pending_transaction(dev))
3144 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3145 
3146 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3147 	msleep(100);
3148 	return 0;
3149 }
3150 
3151 static int pci_af_flr(struct pci_dev *dev, int probe)
3152 {
3153 	int pos;
3154 	u8 cap;
3155 
3156 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3157 	if (!pos)
3158 		return -ENOTTY;
3159 
3160 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3161 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3162 		return -ENOTTY;
3163 
3164 	if (probe)
3165 		return 0;
3166 
3167 	/*
3168 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3169 	 * is used, so we use the conrol offset rather than status and shift
3170 	 * the test bit to match.
3171 	 */
3172 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3173 				 PCI_AF_STATUS_TP << 8))
3174 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3175 
3176 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3177 	msleep(100);
3178 	return 0;
3179 }
3180 
3181 /**
3182  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3183  * @dev: Device to reset.
3184  * @probe: If set, only check if the device can be reset this way.
3185  *
3186  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3187  * unset, it will be reinitialized internally when going from PCI_D3hot to
3188  * PCI_D0.  If that's the case and the device is not in a low-power state
3189  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3190  *
3191  * NOTE: This causes the caller to sleep for twice the device power transition
3192  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3193  * by default (i.e. unless the @dev's d3_delay field has a different value).
3194  * Moreover, only devices in D0 can be reset by this function.
3195  */
3196 static int pci_pm_reset(struct pci_dev *dev, int probe)
3197 {
3198 	u16 csr;
3199 
3200 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3201 		return -ENOTTY;
3202 
3203 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3204 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3205 		return -ENOTTY;
3206 
3207 	if (probe)
3208 		return 0;
3209 
3210 	if (dev->current_state != PCI_D0)
3211 		return -EINVAL;
3212 
3213 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3214 	csr |= PCI_D3hot;
3215 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3216 	pci_dev_d3_sleep(dev);
3217 
3218 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3219 	csr |= PCI_D0;
3220 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3221 	pci_dev_d3_sleep(dev);
3222 
3223 	return 0;
3224 }
3225 
3226 void pci_reset_secondary_bus(struct pci_dev *dev)
3227 {
3228 	u16 ctrl;
3229 
3230 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3231 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3232 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3233 	/*
3234 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3235 	 * this to 2ms to ensure that we meet the minimum requirement.
3236 	 */
3237 	msleep(2);
3238 
3239 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3240 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3241 
3242 	/*
3243 	 * Trhfa for conventional PCI is 2^25 clock cycles.
3244 	 * Assuming a minimum 33MHz clock this results in a 1s
3245 	 * delay before we can consider subordinate devices to
3246 	 * be re-initialized.  PCIe has some ways to shorten this,
3247 	 * but we don't make use of them yet.
3248 	 */
3249 	ssleep(1);
3250 }
3251 
3252 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3253 {
3254 	pci_reset_secondary_bus(dev);
3255 }
3256 
3257 /**
3258  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3259  * @dev: Bridge device
3260  *
3261  * Use the bridge control register to assert reset on the secondary bus.
3262  * Devices on the secondary bus are left in power-on state.
3263  */
3264 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3265 {
3266 	pcibios_reset_secondary_bus(dev);
3267 }
3268 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3269 
3270 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3271 {
3272 	struct pci_dev *pdev;
3273 
3274 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3275 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3276 		return -ENOTTY;
3277 
3278 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3279 		if (pdev != dev)
3280 			return -ENOTTY;
3281 
3282 	if (probe)
3283 		return 0;
3284 
3285 	pci_reset_bridge_secondary_bus(dev->bus->self);
3286 
3287 	return 0;
3288 }
3289 
3290 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3291 {
3292 	int rc = -ENOTTY;
3293 
3294 	if (!hotplug || !try_module_get(hotplug->ops->owner))
3295 		return rc;
3296 
3297 	if (hotplug->ops->reset_slot)
3298 		rc = hotplug->ops->reset_slot(hotplug, probe);
3299 
3300 	module_put(hotplug->ops->owner);
3301 
3302 	return rc;
3303 }
3304 
3305 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3306 {
3307 	struct pci_dev *pdev;
3308 
3309 	if (dev->subordinate || !dev->slot ||
3310 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3311 		return -ENOTTY;
3312 
3313 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3314 		if (pdev != dev && pdev->slot == dev->slot)
3315 			return -ENOTTY;
3316 
3317 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3318 }
3319 
3320 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3321 {
3322 	int rc;
3323 
3324 	might_sleep();
3325 
3326 	rc = pci_dev_specific_reset(dev, probe);
3327 	if (rc != -ENOTTY)
3328 		goto done;
3329 
3330 	rc = pcie_flr(dev, probe);
3331 	if (rc != -ENOTTY)
3332 		goto done;
3333 
3334 	rc = pci_af_flr(dev, probe);
3335 	if (rc != -ENOTTY)
3336 		goto done;
3337 
3338 	rc = pci_pm_reset(dev, probe);
3339 	if (rc != -ENOTTY)
3340 		goto done;
3341 
3342 	rc = pci_dev_reset_slot_function(dev, probe);
3343 	if (rc != -ENOTTY)
3344 		goto done;
3345 
3346 	rc = pci_parent_bus_reset(dev, probe);
3347 done:
3348 	return rc;
3349 }
3350 
3351 static void pci_dev_lock(struct pci_dev *dev)
3352 {
3353 	pci_cfg_access_lock(dev);
3354 	/* block PM suspend, driver probe, etc. */
3355 	device_lock(&dev->dev);
3356 }
3357 
3358 /* Return 1 on successful lock, 0 on contention */
3359 static int pci_dev_trylock(struct pci_dev *dev)
3360 {
3361 	if (pci_cfg_access_trylock(dev)) {
3362 		if (device_trylock(&dev->dev))
3363 			return 1;
3364 		pci_cfg_access_unlock(dev);
3365 	}
3366 
3367 	return 0;
3368 }
3369 
3370 static void pci_dev_unlock(struct pci_dev *dev)
3371 {
3372 	device_unlock(&dev->dev);
3373 	pci_cfg_access_unlock(dev);
3374 }
3375 
3376 /**
3377  * pci_reset_notify - notify device driver of reset
3378  * @dev: device to be notified of reset
3379  * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3380  *           completed
3381  *
3382  * Must be called prior to device access being disabled and after device
3383  * access is restored.
3384  */
3385 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3386 {
3387 	const struct pci_error_handlers *err_handler =
3388 			dev->driver ? dev->driver->err_handler : NULL;
3389 	if (err_handler && err_handler->reset_notify)
3390 		err_handler->reset_notify(dev, prepare);
3391 }
3392 
3393 static void pci_dev_save_and_disable(struct pci_dev *dev)
3394 {
3395 	pci_reset_notify(dev, true);
3396 
3397 	/*
3398 	 * Wake-up device prior to save.  PM registers default to D0 after
3399 	 * reset and a simple register restore doesn't reliably return
3400 	 * to a non-D0 state anyway.
3401 	 */
3402 	pci_set_power_state(dev, PCI_D0);
3403 
3404 	pci_save_state(dev);
3405 	/*
3406 	 * Disable the device by clearing the Command register, except for
3407 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
3408 	 * BARs, but also prevents the device from being Bus Master, preventing
3409 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3410 	 * compliant devices, INTx-disable prevents legacy interrupts.
3411 	 */
3412 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3413 }
3414 
3415 static void pci_dev_restore(struct pci_dev *dev)
3416 {
3417 	pci_restore_state(dev);
3418 	pci_reset_notify(dev, false);
3419 }
3420 
3421 static int pci_dev_reset(struct pci_dev *dev, int probe)
3422 {
3423 	int rc;
3424 
3425 	if (!probe)
3426 		pci_dev_lock(dev);
3427 
3428 	rc = __pci_dev_reset(dev, probe);
3429 
3430 	if (!probe)
3431 		pci_dev_unlock(dev);
3432 
3433 	return rc;
3434 }
3435 
3436 /**
3437  * __pci_reset_function - reset a PCI device function
3438  * @dev: PCI device to reset
3439  *
3440  * Some devices allow an individual function to be reset without affecting
3441  * other functions in the same device.  The PCI device must be responsive
3442  * to PCI config space in order to use this function.
3443  *
3444  * The device function is presumed to be unused when this function is called.
3445  * Resetting the device will make the contents of PCI configuration space
3446  * random, so any caller of this must be prepared to reinitialise the
3447  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3448  * etc.
3449  *
3450  * Returns 0 if the device function was successfully reset or negative if the
3451  * device doesn't support resetting a single function.
3452  */
3453 int __pci_reset_function(struct pci_dev *dev)
3454 {
3455 	return pci_dev_reset(dev, 0);
3456 }
3457 EXPORT_SYMBOL_GPL(__pci_reset_function);
3458 
3459 /**
3460  * __pci_reset_function_locked - reset a PCI device function while holding
3461  * the @dev mutex lock.
3462  * @dev: PCI device to reset
3463  *
3464  * Some devices allow an individual function to be reset without affecting
3465  * other functions in the same device.  The PCI device must be responsive
3466  * to PCI config space in order to use this function.
3467  *
3468  * The device function is presumed to be unused and the caller is holding
3469  * the device mutex lock when this function is called.
3470  * Resetting the device will make the contents of PCI configuration space
3471  * random, so any caller of this must be prepared to reinitialise the
3472  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3473  * etc.
3474  *
3475  * Returns 0 if the device function was successfully reset or negative if the
3476  * device doesn't support resetting a single function.
3477  */
3478 int __pci_reset_function_locked(struct pci_dev *dev)
3479 {
3480 	return __pci_dev_reset(dev, 0);
3481 }
3482 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3483 
3484 /**
3485  * pci_probe_reset_function - check whether the device can be safely reset
3486  * @dev: PCI device to reset
3487  *
3488  * Some devices allow an individual function to be reset without affecting
3489  * other functions in the same device.  The PCI device must be responsive
3490  * to PCI config space in order to use this function.
3491  *
3492  * Returns 0 if the device function can be reset or negative if the
3493  * device doesn't support resetting a single function.
3494  */
3495 int pci_probe_reset_function(struct pci_dev *dev)
3496 {
3497 	return pci_dev_reset(dev, 1);
3498 }
3499 
3500 /**
3501  * pci_reset_function - quiesce and reset a PCI device function
3502  * @dev: PCI device to reset
3503  *
3504  * Some devices allow an individual function to be reset without affecting
3505  * other functions in the same device.  The PCI device must be responsive
3506  * to PCI config space in order to use this function.
3507  *
3508  * This function does not just reset the PCI portion of a device, but
3509  * clears all the state associated with the device.  This function differs
3510  * from __pci_reset_function in that it saves and restores device state
3511  * over the reset.
3512  *
3513  * Returns 0 if the device function was successfully reset or negative if the
3514  * device doesn't support resetting a single function.
3515  */
3516 int pci_reset_function(struct pci_dev *dev)
3517 {
3518 	int rc;
3519 
3520 	rc = pci_dev_reset(dev, 1);
3521 	if (rc)
3522 		return rc;
3523 
3524 	pci_dev_save_and_disable(dev);
3525 
3526 	rc = pci_dev_reset(dev, 0);
3527 
3528 	pci_dev_restore(dev);
3529 
3530 	return rc;
3531 }
3532 EXPORT_SYMBOL_GPL(pci_reset_function);
3533 
3534 /**
3535  * pci_try_reset_function - quiesce and reset a PCI device function
3536  * @dev: PCI device to reset
3537  *
3538  * Same as above, except return -EAGAIN if unable to lock device.
3539  */
3540 int pci_try_reset_function(struct pci_dev *dev)
3541 {
3542 	int rc;
3543 
3544 	rc = pci_dev_reset(dev, 1);
3545 	if (rc)
3546 		return rc;
3547 
3548 	pci_dev_save_and_disable(dev);
3549 
3550 	if (pci_dev_trylock(dev)) {
3551 		rc = __pci_dev_reset(dev, 0);
3552 		pci_dev_unlock(dev);
3553 	} else
3554 		rc = -EAGAIN;
3555 
3556 	pci_dev_restore(dev);
3557 
3558 	return rc;
3559 }
3560 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3561 
3562 /* Do any devices on or below this bus prevent a bus reset? */
3563 static bool pci_bus_resetable(struct pci_bus *bus)
3564 {
3565 	struct pci_dev *dev;
3566 
3567 	list_for_each_entry(dev, &bus->devices, bus_list) {
3568 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3569 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3570 			return false;
3571 	}
3572 
3573 	return true;
3574 }
3575 
3576 /* Lock devices from the top of the tree down */
3577 static void pci_bus_lock(struct pci_bus *bus)
3578 {
3579 	struct pci_dev *dev;
3580 
3581 	list_for_each_entry(dev, &bus->devices, bus_list) {
3582 		pci_dev_lock(dev);
3583 		if (dev->subordinate)
3584 			pci_bus_lock(dev->subordinate);
3585 	}
3586 }
3587 
3588 /* Unlock devices from the bottom of the tree up */
3589 static void pci_bus_unlock(struct pci_bus *bus)
3590 {
3591 	struct pci_dev *dev;
3592 
3593 	list_for_each_entry(dev, &bus->devices, bus_list) {
3594 		if (dev->subordinate)
3595 			pci_bus_unlock(dev->subordinate);
3596 		pci_dev_unlock(dev);
3597 	}
3598 }
3599 
3600 /* Return 1 on successful lock, 0 on contention */
3601 static int pci_bus_trylock(struct pci_bus *bus)
3602 {
3603 	struct pci_dev *dev;
3604 
3605 	list_for_each_entry(dev, &bus->devices, bus_list) {
3606 		if (!pci_dev_trylock(dev))
3607 			goto unlock;
3608 		if (dev->subordinate) {
3609 			if (!pci_bus_trylock(dev->subordinate)) {
3610 				pci_dev_unlock(dev);
3611 				goto unlock;
3612 			}
3613 		}
3614 	}
3615 	return 1;
3616 
3617 unlock:
3618 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3619 		if (dev->subordinate)
3620 			pci_bus_unlock(dev->subordinate);
3621 		pci_dev_unlock(dev);
3622 	}
3623 	return 0;
3624 }
3625 
3626 /* Do any devices on or below this slot prevent a bus reset? */
3627 static bool pci_slot_resetable(struct pci_slot *slot)
3628 {
3629 	struct pci_dev *dev;
3630 
3631 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3632 		if (!dev->slot || dev->slot != slot)
3633 			continue;
3634 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3635 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3636 			return false;
3637 	}
3638 
3639 	return true;
3640 }
3641 
3642 /* Lock devices from the top of the tree down */
3643 static void pci_slot_lock(struct pci_slot *slot)
3644 {
3645 	struct pci_dev *dev;
3646 
3647 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3648 		if (!dev->slot || dev->slot != slot)
3649 			continue;
3650 		pci_dev_lock(dev);
3651 		if (dev->subordinate)
3652 			pci_bus_lock(dev->subordinate);
3653 	}
3654 }
3655 
3656 /* Unlock devices from the bottom of the tree up */
3657 static void pci_slot_unlock(struct pci_slot *slot)
3658 {
3659 	struct pci_dev *dev;
3660 
3661 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3662 		if (!dev->slot || dev->slot != slot)
3663 			continue;
3664 		if (dev->subordinate)
3665 			pci_bus_unlock(dev->subordinate);
3666 		pci_dev_unlock(dev);
3667 	}
3668 }
3669 
3670 /* Return 1 on successful lock, 0 on contention */
3671 static int pci_slot_trylock(struct pci_slot *slot)
3672 {
3673 	struct pci_dev *dev;
3674 
3675 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3676 		if (!dev->slot || dev->slot != slot)
3677 			continue;
3678 		if (!pci_dev_trylock(dev))
3679 			goto unlock;
3680 		if (dev->subordinate) {
3681 			if (!pci_bus_trylock(dev->subordinate)) {
3682 				pci_dev_unlock(dev);
3683 				goto unlock;
3684 			}
3685 		}
3686 	}
3687 	return 1;
3688 
3689 unlock:
3690 	list_for_each_entry_continue_reverse(dev,
3691 					     &slot->bus->devices, bus_list) {
3692 		if (!dev->slot || dev->slot != slot)
3693 			continue;
3694 		if (dev->subordinate)
3695 			pci_bus_unlock(dev->subordinate);
3696 		pci_dev_unlock(dev);
3697 	}
3698 	return 0;
3699 }
3700 
3701 /* Save and disable devices from the top of the tree down */
3702 static void pci_bus_save_and_disable(struct pci_bus *bus)
3703 {
3704 	struct pci_dev *dev;
3705 
3706 	list_for_each_entry(dev, &bus->devices, bus_list) {
3707 		pci_dev_save_and_disable(dev);
3708 		if (dev->subordinate)
3709 			pci_bus_save_and_disable(dev->subordinate);
3710 	}
3711 }
3712 
3713 /*
3714  * Restore devices from top of the tree down - parent bridges need to be
3715  * restored before we can get to subordinate devices.
3716  */
3717 static void pci_bus_restore(struct pci_bus *bus)
3718 {
3719 	struct pci_dev *dev;
3720 
3721 	list_for_each_entry(dev, &bus->devices, bus_list) {
3722 		pci_dev_restore(dev);
3723 		if (dev->subordinate)
3724 			pci_bus_restore(dev->subordinate);
3725 	}
3726 }
3727 
3728 /* Save and disable devices from the top of the tree down */
3729 static void pci_slot_save_and_disable(struct pci_slot *slot)
3730 {
3731 	struct pci_dev *dev;
3732 
3733 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3734 		if (!dev->slot || dev->slot != slot)
3735 			continue;
3736 		pci_dev_save_and_disable(dev);
3737 		if (dev->subordinate)
3738 			pci_bus_save_and_disable(dev->subordinate);
3739 	}
3740 }
3741 
3742 /*
3743  * Restore devices from top of the tree down - parent bridges need to be
3744  * restored before we can get to subordinate devices.
3745  */
3746 static void pci_slot_restore(struct pci_slot *slot)
3747 {
3748 	struct pci_dev *dev;
3749 
3750 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3751 		if (!dev->slot || dev->slot != slot)
3752 			continue;
3753 		pci_dev_restore(dev);
3754 		if (dev->subordinate)
3755 			pci_bus_restore(dev->subordinate);
3756 	}
3757 }
3758 
3759 static int pci_slot_reset(struct pci_slot *slot, int probe)
3760 {
3761 	int rc;
3762 
3763 	if (!slot || !pci_slot_resetable(slot))
3764 		return -ENOTTY;
3765 
3766 	if (!probe)
3767 		pci_slot_lock(slot);
3768 
3769 	might_sleep();
3770 
3771 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3772 
3773 	if (!probe)
3774 		pci_slot_unlock(slot);
3775 
3776 	return rc;
3777 }
3778 
3779 /**
3780  * pci_probe_reset_slot - probe whether a PCI slot can be reset
3781  * @slot: PCI slot to probe
3782  *
3783  * Return 0 if slot can be reset, negative if a slot reset is not supported.
3784  */
3785 int pci_probe_reset_slot(struct pci_slot *slot)
3786 {
3787 	return pci_slot_reset(slot, 1);
3788 }
3789 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3790 
3791 /**
3792  * pci_reset_slot - reset a PCI slot
3793  * @slot: PCI slot to reset
3794  *
3795  * A PCI bus may host multiple slots, each slot may support a reset mechanism
3796  * independent of other slots.  For instance, some slots may support slot power
3797  * control.  In the case of a 1:1 bus to slot architecture, this function may
3798  * wrap the bus reset to avoid spurious slot related events such as hotplug.
3799  * Generally a slot reset should be attempted before a bus reset.  All of the
3800  * function of the slot and any subordinate buses behind the slot are reset
3801  * through this function.  PCI config space of all devices in the slot and
3802  * behind the slot is saved before and restored after reset.
3803  *
3804  * Return 0 on success, non-zero on error.
3805  */
3806 int pci_reset_slot(struct pci_slot *slot)
3807 {
3808 	int rc;
3809 
3810 	rc = pci_slot_reset(slot, 1);
3811 	if (rc)
3812 		return rc;
3813 
3814 	pci_slot_save_and_disable(slot);
3815 
3816 	rc = pci_slot_reset(slot, 0);
3817 
3818 	pci_slot_restore(slot);
3819 
3820 	return rc;
3821 }
3822 EXPORT_SYMBOL_GPL(pci_reset_slot);
3823 
3824 /**
3825  * pci_try_reset_slot - Try to reset a PCI slot
3826  * @slot: PCI slot to reset
3827  *
3828  * Same as above except return -EAGAIN if the slot cannot be locked
3829  */
3830 int pci_try_reset_slot(struct pci_slot *slot)
3831 {
3832 	int rc;
3833 
3834 	rc = pci_slot_reset(slot, 1);
3835 	if (rc)
3836 		return rc;
3837 
3838 	pci_slot_save_and_disable(slot);
3839 
3840 	if (pci_slot_trylock(slot)) {
3841 		might_sleep();
3842 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3843 		pci_slot_unlock(slot);
3844 	} else
3845 		rc = -EAGAIN;
3846 
3847 	pci_slot_restore(slot);
3848 
3849 	return rc;
3850 }
3851 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3852 
3853 static int pci_bus_reset(struct pci_bus *bus, int probe)
3854 {
3855 	if (!bus->self || !pci_bus_resetable(bus))
3856 		return -ENOTTY;
3857 
3858 	if (probe)
3859 		return 0;
3860 
3861 	pci_bus_lock(bus);
3862 
3863 	might_sleep();
3864 
3865 	pci_reset_bridge_secondary_bus(bus->self);
3866 
3867 	pci_bus_unlock(bus);
3868 
3869 	return 0;
3870 }
3871 
3872 /**
3873  * pci_probe_reset_bus - probe whether a PCI bus can be reset
3874  * @bus: PCI bus to probe
3875  *
3876  * Return 0 if bus can be reset, negative if a bus reset is not supported.
3877  */
3878 int pci_probe_reset_bus(struct pci_bus *bus)
3879 {
3880 	return pci_bus_reset(bus, 1);
3881 }
3882 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3883 
3884 /**
3885  * pci_reset_bus - reset a PCI bus
3886  * @bus: top level PCI bus to reset
3887  *
3888  * Do a bus reset on the given bus and any subordinate buses, saving
3889  * and restoring state of all devices.
3890  *
3891  * Return 0 on success, non-zero on error.
3892  */
3893 int pci_reset_bus(struct pci_bus *bus)
3894 {
3895 	int rc;
3896 
3897 	rc = pci_bus_reset(bus, 1);
3898 	if (rc)
3899 		return rc;
3900 
3901 	pci_bus_save_and_disable(bus);
3902 
3903 	rc = pci_bus_reset(bus, 0);
3904 
3905 	pci_bus_restore(bus);
3906 
3907 	return rc;
3908 }
3909 EXPORT_SYMBOL_GPL(pci_reset_bus);
3910 
3911 /**
3912  * pci_try_reset_bus - Try to reset a PCI bus
3913  * @bus: top level PCI bus to reset
3914  *
3915  * Same as above except return -EAGAIN if the bus cannot be locked
3916  */
3917 int pci_try_reset_bus(struct pci_bus *bus)
3918 {
3919 	int rc;
3920 
3921 	rc = pci_bus_reset(bus, 1);
3922 	if (rc)
3923 		return rc;
3924 
3925 	pci_bus_save_and_disable(bus);
3926 
3927 	if (pci_bus_trylock(bus)) {
3928 		might_sleep();
3929 		pci_reset_bridge_secondary_bus(bus->self);
3930 		pci_bus_unlock(bus);
3931 	} else
3932 		rc = -EAGAIN;
3933 
3934 	pci_bus_restore(bus);
3935 
3936 	return rc;
3937 }
3938 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3939 
3940 /**
3941  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3942  * @dev: PCI device to query
3943  *
3944  * Returns mmrbc: maximum designed memory read count in bytes
3945  *    or appropriate error value.
3946  */
3947 int pcix_get_max_mmrbc(struct pci_dev *dev)
3948 {
3949 	int cap;
3950 	u32 stat;
3951 
3952 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3953 	if (!cap)
3954 		return -EINVAL;
3955 
3956 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3957 		return -EINVAL;
3958 
3959 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3960 }
3961 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3962 
3963 /**
3964  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3965  * @dev: PCI device to query
3966  *
3967  * Returns mmrbc: maximum memory read count in bytes
3968  *    or appropriate error value.
3969  */
3970 int pcix_get_mmrbc(struct pci_dev *dev)
3971 {
3972 	int cap;
3973 	u16 cmd;
3974 
3975 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3976 	if (!cap)
3977 		return -EINVAL;
3978 
3979 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3980 		return -EINVAL;
3981 
3982 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3983 }
3984 EXPORT_SYMBOL(pcix_get_mmrbc);
3985 
3986 /**
3987  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3988  * @dev: PCI device to query
3989  * @mmrbc: maximum memory read count in bytes
3990  *    valid values are 512, 1024, 2048, 4096
3991  *
3992  * If possible sets maximum memory read byte count, some bridges have erratas
3993  * that prevent this.
3994  */
3995 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3996 {
3997 	int cap;
3998 	u32 stat, v, o;
3999 	u16 cmd;
4000 
4001 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4002 		return -EINVAL;
4003 
4004 	v = ffs(mmrbc) - 10;
4005 
4006 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4007 	if (!cap)
4008 		return -EINVAL;
4009 
4010 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4011 		return -EINVAL;
4012 
4013 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4014 		return -E2BIG;
4015 
4016 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4017 		return -EINVAL;
4018 
4019 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4020 	if (o != v) {
4021 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4022 			return -EIO;
4023 
4024 		cmd &= ~PCI_X_CMD_MAX_READ;
4025 		cmd |= v << 2;
4026 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4027 			return -EIO;
4028 	}
4029 	return 0;
4030 }
4031 EXPORT_SYMBOL(pcix_set_mmrbc);
4032 
4033 /**
4034  * pcie_get_readrq - get PCI Express read request size
4035  * @dev: PCI device to query
4036  *
4037  * Returns maximum memory read request in bytes
4038  *    or appropriate error value.
4039  */
4040 int pcie_get_readrq(struct pci_dev *dev)
4041 {
4042 	u16 ctl;
4043 
4044 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4045 
4046 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4047 }
4048 EXPORT_SYMBOL(pcie_get_readrq);
4049 
4050 /**
4051  * pcie_set_readrq - set PCI Express maximum memory read request
4052  * @dev: PCI device to query
4053  * @rq: maximum memory read count in bytes
4054  *    valid values are 128, 256, 512, 1024, 2048, 4096
4055  *
4056  * If possible sets maximum memory read request in bytes
4057  */
4058 int pcie_set_readrq(struct pci_dev *dev, int rq)
4059 {
4060 	u16 v;
4061 
4062 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4063 		return -EINVAL;
4064 
4065 	/*
4066 	 * If using the "performance" PCIe config, we clamp the
4067 	 * read rq size to the max packet size to prevent the
4068 	 * host bridge generating requests larger than we can
4069 	 * cope with
4070 	 */
4071 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4072 		int mps = pcie_get_mps(dev);
4073 
4074 		if (mps < rq)
4075 			rq = mps;
4076 	}
4077 
4078 	v = (ffs(rq) - 8) << 12;
4079 
4080 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4081 						  PCI_EXP_DEVCTL_READRQ, v);
4082 }
4083 EXPORT_SYMBOL(pcie_set_readrq);
4084 
4085 /**
4086  * pcie_get_mps - get PCI Express maximum payload size
4087  * @dev: PCI device to query
4088  *
4089  * Returns maximum payload size in bytes
4090  */
4091 int pcie_get_mps(struct pci_dev *dev)
4092 {
4093 	u16 ctl;
4094 
4095 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4096 
4097 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4098 }
4099 EXPORT_SYMBOL(pcie_get_mps);
4100 
4101 /**
4102  * pcie_set_mps - set PCI Express maximum payload size
4103  * @dev: PCI device to query
4104  * @mps: maximum payload size in bytes
4105  *    valid values are 128, 256, 512, 1024, 2048, 4096
4106  *
4107  * If possible sets maximum payload size
4108  */
4109 int pcie_set_mps(struct pci_dev *dev, int mps)
4110 {
4111 	u16 v;
4112 
4113 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4114 		return -EINVAL;
4115 
4116 	v = ffs(mps) - 8;
4117 	if (v > dev->pcie_mpss)
4118 		return -EINVAL;
4119 	v <<= 5;
4120 
4121 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4122 						  PCI_EXP_DEVCTL_PAYLOAD, v);
4123 }
4124 EXPORT_SYMBOL(pcie_set_mps);
4125 
4126 /**
4127  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4128  * @dev: PCI device to query
4129  * @speed: storage for minimum speed
4130  * @width: storage for minimum width
4131  *
4132  * This function will walk up the PCI device chain and determine the minimum
4133  * link width and speed of the device.
4134  */
4135 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4136 			  enum pcie_link_width *width)
4137 {
4138 	int ret;
4139 
4140 	*speed = PCI_SPEED_UNKNOWN;
4141 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4142 
4143 	while (dev) {
4144 		u16 lnksta;
4145 		enum pci_bus_speed next_speed;
4146 		enum pcie_link_width next_width;
4147 
4148 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4149 		if (ret)
4150 			return ret;
4151 
4152 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4153 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4154 			PCI_EXP_LNKSTA_NLW_SHIFT;
4155 
4156 		if (next_speed < *speed)
4157 			*speed = next_speed;
4158 
4159 		if (next_width < *width)
4160 			*width = next_width;
4161 
4162 		dev = dev->bus->self;
4163 	}
4164 
4165 	return 0;
4166 }
4167 EXPORT_SYMBOL(pcie_get_minimum_link);
4168 
4169 /**
4170  * pci_select_bars - Make BAR mask from the type of resource
4171  * @dev: the PCI device for which BAR mask is made
4172  * @flags: resource type mask to be selected
4173  *
4174  * This helper routine makes bar mask from the type of resource.
4175  */
4176 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4177 {
4178 	int i, bars = 0;
4179 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4180 		if (pci_resource_flags(dev, i) & flags)
4181 			bars |= (1 << i);
4182 	return bars;
4183 }
4184 EXPORT_SYMBOL(pci_select_bars);
4185 
4186 /**
4187  * pci_resource_bar - get position of the BAR associated with a resource
4188  * @dev: the PCI device
4189  * @resno: the resource number
4190  * @type: the BAR type to be filled in
4191  *
4192  * Returns BAR position in config space, or 0 if the BAR is invalid.
4193  */
4194 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4195 {
4196 	int reg;
4197 
4198 	if (resno < PCI_ROM_RESOURCE) {
4199 		*type = pci_bar_unknown;
4200 		return PCI_BASE_ADDRESS_0 + 4 * resno;
4201 	} else if (resno == PCI_ROM_RESOURCE) {
4202 		*type = pci_bar_mem32;
4203 		return dev->rom_base_reg;
4204 	} else if (resno < PCI_BRIDGE_RESOURCES) {
4205 		/* device specific resource */
4206 		*type = pci_bar_unknown;
4207 		reg = pci_iov_resource_bar(dev, resno);
4208 		if (reg)
4209 			return reg;
4210 	}
4211 
4212 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4213 	return 0;
4214 }
4215 
4216 /* Some architectures require additional programming to enable VGA */
4217 static arch_set_vga_state_t arch_set_vga_state;
4218 
4219 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4220 {
4221 	arch_set_vga_state = func;	/* NULL disables */
4222 }
4223 
4224 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4225 				  unsigned int command_bits, u32 flags)
4226 {
4227 	if (arch_set_vga_state)
4228 		return arch_set_vga_state(dev, decode, command_bits,
4229 						flags);
4230 	return 0;
4231 }
4232 
4233 /**
4234  * pci_set_vga_state - set VGA decode state on device and parents if requested
4235  * @dev: the PCI device
4236  * @decode: true = enable decoding, false = disable decoding
4237  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4238  * @flags: traverse ancestors and change bridges
4239  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4240  */
4241 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4242 		      unsigned int command_bits, u32 flags)
4243 {
4244 	struct pci_bus *bus;
4245 	struct pci_dev *bridge;
4246 	u16 cmd;
4247 	int rc;
4248 
4249 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4250 
4251 	/* ARCH specific VGA enables */
4252 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4253 	if (rc)
4254 		return rc;
4255 
4256 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4257 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4258 		if (decode == true)
4259 			cmd |= command_bits;
4260 		else
4261 			cmd &= ~command_bits;
4262 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4263 	}
4264 
4265 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4266 		return 0;
4267 
4268 	bus = dev->bus;
4269 	while (bus) {
4270 		bridge = bus->self;
4271 		if (bridge) {
4272 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4273 					     &cmd);
4274 			if (decode == true)
4275 				cmd |= PCI_BRIDGE_CTL_VGA;
4276 			else
4277 				cmd &= ~PCI_BRIDGE_CTL_VGA;
4278 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4279 					      cmd);
4280 		}
4281 		bus = bus->parent;
4282 	}
4283 	return 0;
4284 }
4285 
4286 bool pci_device_is_present(struct pci_dev *pdev)
4287 {
4288 	u32 v;
4289 
4290 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4291 }
4292 EXPORT_SYMBOL_GPL(pci_device_is_present);
4293 
4294 void pci_ignore_hotplug(struct pci_dev *dev)
4295 {
4296 	struct pci_dev *bridge = dev->bus->self;
4297 
4298 	dev->ignore_hotplug = 1;
4299 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
4300 	if (bridge)
4301 		bridge->ignore_hotplug = 1;
4302 }
4303 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4304 
4305 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4306 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4307 static DEFINE_SPINLOCK(resource_alignment_lock);
4308 
4309 /**
4310  * pci_specified_resource_alignment - get resource alignment specified by user.
4311  * @dev: the PCI device to get
4312  *
4313  * RETURNS: Resource alignment if it is specified.
4314  *          Zero if it is not specified.
4315  */
4316 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4317 {
4318 	int seg, bus, slot, func, align_order, count;
4319 	resource_size_t align = 0;
4320 	char *p;
4321 
4322 	spin_lock(&resource_alignment_lock);
4323 	p = resource_alignment_param;
4324 	while (*p) {
4325 		count = 0;
4326 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4327 							p[count] == '@') {
4328 			p += count + 1;
4329 		} else {
4330 			align_order = -1;
4331 		}
4332 		if (sscanf(p, "%x:%x:%x.%x%n",
4333 			&seg, &bus, &slot, &func, &count) != 4) {
4334 			seg = 0;
4335 			if (sscanf(p, "%x:%x.%x%n",
4336 					&bus, &slot, &func, &count) != 3) {
4337 				/* Invalid format */
4338 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4339 					p);
4340 				break;
4341 			}
4342 		}
4343 		p += count;
4344 		if (seg == pci_domain_nr(dev->bus) &&
4345 			bus == dev->bus->number &&
4346 			slot == PCI_SLOT(dev->devfn) &&
4347 			func == PCI_FUNC(dev->devfn)) {
4348 			if (align_order == -1)
4349 				align = PAGE_SIZE;
4350 			else
4351 				align = 1 << align_order;
4352 			/* Found */
4353 			break;
4354 		}
4355 		if (*p != ';' && *p != ',') {
4356 			/* End of param or invalid format */
4357 			break;
4358 		}
4359 		p++;
4360 	}
4361 	spin_unlock(&resource_alignment_lock);
4362 	return align;
4363 }
4364 
4365 /*
4366  * This function disables memory decoding and releases memory resources
4367  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4368  * It also rounds up size to specified alignment.
4369  * Later on, the kernel will assign page-aligned memory resource back
4370  * to the device.
4371  */
4372 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4373 {
4374 	int i;
4375 	struct resource *r;
4376 	resource_size_t align, size;
4377 	u16 command;
4378 
4379 	/* check if specified PCI is target device to reassign */
4380 	align = pci_specified_resource_alignment(dev);
4381 	if (!align)
4382 		return;
4383 
4384 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4385 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4386 		dev_warn(&dev->dev,
4387 			"Can't reassign resources to host bridge.\n");
4388 		return;
4389 	}
4390 
4391 	dev_info(&dev->dev,
4392 		"Disabling memory decoding and releasing memory resources.\n");
4393 	pci_read_config_word(dev, PCI_COMMAND, &command);
4394 	command &= ~PCI_COMMAND_MEMORY;
4395 	pci_write_config_word(dev, PCI_COMMAND, command);
4396 
4397 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4398 		r = &dev->resource[i];
4399 		if (!(r->flags & IORESOURCE_MEM))
4400 			continue;
4401 		size = resource_size(r);
4402 		if (size < align) {
4403 			size = align;
4404 			dev_info(&dev->dev,
4405 				"Rounding up size of resource #%d to %#llx.\n",
4406 				i, (unsigned long long)size);
4407 		}
4408 		r->flags |= IORESOURCE_UNSET;
4409 		r->end = size - 1;
4410 		r->start = 0;
4411 	}
4412 	/* Need to disable bridge's resource window,
4413 	 * to enable the kernel to reassign new resource
4414 	 * window later on.
4415 	 */
4416 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4417 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4418 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4419 			r = &dev->resource[i];
4420 			if (!(r->flags & IORESOURCE_MEM))
4421 				continue;
4422 			r->flags |= IORESOURCE_UNSET;
4423 			r->end = resource_size(r) - 1;
4424 			r->start = 0;
4425 		}
4426 		pci_disable_bridge_window(dev);
4427 	}
4428 }
4429 
4430 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4431 {
4432 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4433 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4434 	spin_lock(&resource_alignment_lock);
4435 	strncpy(resource_alignment_param, buf, count);
4436 	resource_alignment_param[count] = '\0';
4437 	spin_unlock(&resource_alignment_lock);
4438 	return count;
4439 }
4440 
4441 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4442 {
4443 	size_t count;
4444 	spin_lock(&resource_alignment_lock);
4445 	count = snprintf(buf, size, "%s", resource_alignment_param);
4446 	spin_unlock(&resource_alignment_lock);
4447 	return count;
4448 }
4449 
4450 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4451 {
4452 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4453 }
4454 
4455 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4456 					const char *buf, size_t count)
4457 {
4458 	return pci_set_resource_alignment_param(buf, count);
4459 }
4460 
4461 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4462 					pci_resource_alignment_store);
4463 
4464 static int __init pci_resource_alignment_sysfs_init(void)
4465 {
4466 	return bus_create_file(&pci_bus_type,
4467 					&bus_attr_resource_alignment);
4468 }
4469 late_initcall(pci_resource_alignment_sysfs_init);
4470 
4471 static void pci_no_domains(void)
4472 {
4473 #ifdef CONFIG_PCI_DOMAINS
4474 	pci_domains_supported = 0;
4475 #endif
4476 }
4477 
4478 #ifdef CONFIG_PCI_DOMAINS
4479 static atomic_t __domain_nr = ATOMIC_INIT(-1);
4480 
4481 int pci_get_new_domain_nr(void)
4482 {
4483 	return atomic_inc_return(&__domain_nr);
4484 }
4485 
4486 #ifdef CONFIG_PCI_DOMAINS_GENERIC
4487 void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent)
4488 {
4489 	static int use_dt_domains = -1;
4490 	int domain = of_get_pci_domain_nr(parent->of_node);
4491 
4492 	/*
4493 	 * Check DT domain and use_dt_domains values.
4494 	 *
4495 	 * If DT domain property is valid (domain >= 0) and
4496 	 * use_dt_domains != 0, the DT assignment is valid since this means
4497 	 * we have not previously allocated a domain number by using
4498 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4499 	 * 1, to indicate that we have just assigned a domain number from
4500 	 * DT.
4501 	 *
4502 	 * If DT domain property value is not valid (ie domain < 0), and we
4503 	 * have not previously assigned a domain number from DT
4504 	 * (use_dt_domains != 1) we should assign a domain number by
4505 	 * using the:
4506 	 *
4507 	 * pci_get_new_domain_nr()
4508 	 *
4509 	 * API and update the use_dt_domains value to keep track of method we
4510 	 * are using to assign domain numbers (use_dt_domains = 0).
4511 	 *
4512 	 * All other combinations imply we have a platform that is trying
4513 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4514 	 * which is a recipe for domain mishandling and it is prevented by
4515 	 * invalidating the domain value (domain = -1) and printing a
4516 	 * corresponding error.
4517 	 */
4518 	if (domain >= 0 && use_dt_domains) {
4519 		use_dt_domains = 1;
4520 	} else if (domain < 0 && use_dt_domains != 1) {
4521 		use_dt_domains = 0;
4522 		domain = pci_get_new_domain_nr();
4523 	} else {
4524 		dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4525 			parent->of_node->full_name);
4526 		domain = -1;
4527 	}
4528 
4529 	bus->domain_nr = domain;
4530 }
4531 #endif
4532 #endif
4533 
4534 /**
4535  * pci_ext_cfg_avail - can we access extended PCI config space?
4536  *
4537  * Returns 1 if we can access PCI extended config space (offsets
4538  * greater than 0xff). This is the default implementation. Architecture
4539  * implementations can override this.
4540  */
4541 int __weak pci_ext_cfg_avail(void)
4542 {
4543 	return 1;
4544 }
4545 
4546 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4547 {
4548 }
4549 EXPORT_SYMBOL(pci_fixup_cardbus);
4550 
4551 static int __init pci_setup(char *str)
4552 {
4553 	while (str) {
4554 		char *k = strchr(str, ',');
4555 		if (k)
4556 			*k++ = 0;
4557 		if (*str && (str = pcibios_setup(str)) && *str) {
4558 			if (!strcmp(str, "nomsi")) {
4559 				pci_no_msi();
4560 			} else if (!strcmp(str, "noaer")) {
4561 				pci_no_aer();
4562 			} else if (!strncmp(str, "realloc=", 8)) {
4563 				pci_realloc_get_opt(str + 8);
4564 			} else if (!strncmp(str, "realloc", 7)) {
4565 				pci_realloc_get_opt("on");
4566 			} else if (!strcmp(str, "nodomains")) {
4567 				pci_no_domains();
4568 			} else if (!strncmp(str, "noari", 5)) {
4569 				pcie_ari_disabled = true;
4570 			} else if (!strncmp(str, "cbiosize=", 9)) {
4571 				pci_cardbus_io_size = memparse(str + 9, &str);
4572 			} else if (!strncmp(str, "cbmemsize=", 10)) {
4573 				pci_cardbus_mem_size = memparse(str + 10, &str);
4574 			} else if (!strncmp(str, "resource_alignment=", 19)) {
4575 				pci_set_resource_alignment_param(str + 19,
4576 							strlen(str + 19));
4577 			} else if (!strncmp(str, "ecrc=", 5)) {
4578 				pcie_ecrc_get_policy(str + 5);
4579 			} else if (!strncmp(str, "hpiosize=", 9)) {
4580 				pci_hotplug_io_size = memparse(str + 9, &str);
4581 			} else if (!strncmp(str, "hpmemsize=", 10)) {
4582 				pci_hotplug_mem_size = memparse(str + 10, &str);
4583 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4584 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
4585 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
4586 				pcie_bus_config = PCIE_BUS_SAFE;
4587 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
4588 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
4589 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4590 				pcie_bus_config = PCIE_BUS_PEER2PEER;
4591 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
4592 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4593 			} else {
4594 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
4595 						str);
4596 			}
4597 		}
4598 		str = k;
4599 	}
4600 	return 0;
4601 }
4602 early_param("pci", pci_setup);
4603