xref: /linux/drivers/pci/pci.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/dma.h>
32 #include <linux/aer.h>
33 #include <linux/bitfield.h>
34 #include "pci.h"
35 
36 DEFINE_MUTEX(pci_slot_mutex);
37 
38 const char *pci_power_names[] = {
39 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42 
43 #ifdef CONFIG_X86_32
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 #endif
47 
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
50 
51 unsigned int pci_pm_d3hot_delay;
52 
53 static void pci_pme_list_scan(struct work_struct *work);
54 
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 
59 struct pci_pme_device {
60 	struct list_head list;
61 	struct pci_dev *dev;
62 };
63 
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 
66 /*
67  * Following exit from Conventional Reset, devices must be ready within 1 sec
68  * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
69  * Reset (PCIe r6.0 sec 5.8).
70  */
71 #define PCI_RESET_WAIT 1000 /* msec */
72 
73 /*
74  * Devices may extend the 1 sec period through Request Retry Status
75  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
76  * limit, but 60 sec ought to be enough for any device to become
77  * responsive.
78  */
79 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
80 
81 static void pci_dev_d3_sleep(struct pci_dev *dev)
82 {
83 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
84 	unsigned int upper;
85 
86 	if (delay_ms) {
87 		/* Use a 20% upper bound, 1ms minimum */
88 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
89 		usleep_range(delay_ms * USEC_PER_MSEC,
90 			     (delay_ms + upper) * USEC_PER_MSEC);
91 	}
92 }
93 
94 bool pci_reset_supported(struct pci_dev *dev)
95 {
96 	return dev->reset_methods[0] != 0;
97 }
98 
99 #ifdef CONFIG_PCI_DOMAINS
100 int pci_domains_supported = 1;
101 #endif
102 
103 #define DEFAULT_CARDBUS_IO_SIZE		(256)
104 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
105 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
106 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
107 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
108 
109 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
110 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
111 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
112 /* hpiosize=nn can override this */
113 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
114 /*
115  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
116  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
117  * pci=hpmemsize=nnM overrides both
118  */
119 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
120 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
121 
122 #define DEFAULT_HOTPLUG_BUS_SIZE	1
123 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
124 
125 
126 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
127 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
129 #elif defined CONFIG_PCIE_BUS_SAFE
130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
131 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
132 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
133 #elif defined CONFIG_PCIE_BUS_PEER2PEER
134 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
135 #else
136 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
137 #endif
138 
139 /*
140  * The default CLS is used if arch didn't set CLS explicitly and not
141  * all pci devices agree on the same value.  Arch can override either
142  * the dfl or actual value as it sees fit.  Don't forget this is
143  * measured in 32-bit words, not bytes.
144  */
145 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
146 u8 pci_cache_line_size __ro_after_init ;
147 
148 /*
149  * If we set up a device for bus mastering, we need to check the latency
150  * timer as certain BIOSes forget to set it properly.
151  */
152 unsigned int pcibios_max_latency = 255;
153 
154 /* If set, the PCIe ARI capability will not be used. */
155 static bool pcie_ari_disabled;
156 
157 /* If set, the PCIe ATS capability will not be used. */
158 static bool pcie_ats_disabled;
159 
160 /* If set, the PCI config space of each device is printed during boot. */
161 bool pci_early_dump;
162 
163 bool pci_ats_disabled(void)
164 {
165 	return pcie_ats_disabled;
166 }
167 EXPORT_SYMBOL_GPL(pci_ats_disabled);
168 
169 /* Disable bridge_d3 for all PCIe ports */
170 static bool pci_bridge_d3_disable;
171 /* Force bridge_d3 for all PCIe ports */
172 static bool pci_bridge_d3_force;
173 
174 static int __init pcie_port_pm_setup(char *str)
175 {
176 	if (!strcmp(str, "off"))
177 		pci_bridge_d3_disable = true;
178 	else if (!strcmp(str, "force"))
179 		pci_bridge_d3_force = true;
180 	return 1;
181 }
182 __setup("pcie_port_pm=", pcie_port_pm_setup);
183 
184 /**
185  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
186  * @bus: pointer to PCI bus structure to search
187  *
188  * Given a PCI bus, returns the highest PCI bus number present in the set
189  * including the given PCI bus and its list of child PCI buses.
190  */
191 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
192 {
193 	struct pci_bus *tmp;
194 	unsigned char max, n;
195 
196 	max = bus->busn_res.end;
197 	list_for_each_entry(tmp, &bus->children, node) {
198 		n = pci_bus_max_busnr(tmp);
199 		if (n > max)
200 			max = n;
201 	}
202 	return max;
203 }
204 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
205 
206 /**
207  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
208  * @pdev: the PCI device
209  *
210  * Returns error bits set in PCI_STATUS and clears them.
211  */
212 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
213 {
214 	u16 status;
215 	int ret;
216 
217 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
218 	if (ret != PCIBIOS_SUCCESSFUL)
219 		return -EIO;
220 
221 	status &= PCI_STATUS_ERROR_BITS;
222 	if (status)
223 		pci_write_config_word(pdev, PCI_STATUS, status);
224 
225 	return status;
226 }
227 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
228 
229 #ifdef CONFIG_HAS_IOMEM
230 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
231 					    bool write_combine)
232 {
233 	struct resource *res = &pdev->resource[bar];
234 	resource_size_t start = res->start;
235 	resource_size_t size = resource_size(res);
236 
237 	/*
238 	 * Make sure the BAR is actually a memory resource, not an IO resource
239 	 */
240 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
241 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
242 		return NULL;
243 	}
244 
245 	if (write_combine)
246 		return ioremap_wc(start, size);
247 
248 	return ioremap(start, size);
249 }
250 
251 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
252 {
253 	return __pci_ioremap_resource(pdev, bar, false);
254 }
255 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
256 
257 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
258 {
259 	return __pci_ioremap_resource(pdev, bar, true);
260 }
261 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
262 #endif
263 
264 /**
265  * pci_dev_str_match_path - test if a path string matches a device
266  * @dev: the PCI device to test
267  * @path: string to match the device against
268  * @endptr: pointer to the string after the match
269  *
270  * Test if a string (typically from a kernel parameter) formatted as a
271  * path of device/function addresses matches a PCI device. The string must
272  * be of the form:
273  *
274  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
275  *
276  * A path for a device can be obtained using 'lspci -t'.  Using a path
277  * is more robust against bus renumbering than using only a single bus,
278  * device and function address.
279  *
280  * Returns 1 if the string matches the device, 0 if it does not and
281  * a negative error code if it fails to parse the string.
282  */
283 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
284 				  const char **endptr)
285 {
286 	int ret;
287 	unsigned int seg, bus, slot, func;
288 	char *wpath, *p;
289 	char end;
290 
291 	*endptr = strchrnul(path, ';');
292 
293 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
294 	if (!wpath)
295 		return -ENOMEM;
296 
297 	while (1) {
298 		p = strrchr(wpath, '/');
299 		if (!p)
300 			break;
301 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
302 		if (ret != 2) {
303 			ret = -EINVAL;
304 			goto free_and_exit;
305 		}
306 
307 		if (dev->devfn != PCI_DEVFN(slot, func)) {
308 			ret = 0;
309 			goto free_and_exit;
310 		}
311 
312 		/*
313 		 * Note: we don't need to get a reference to the upstream
314 		 * bridge because we hold a reference to the top level
315 		 * device which should hold a reference to the bridge,
316 		 * and so on.
317 		 */
318 		dev = pci_upstream_bridge(dev);
319 		if (!dev) {
320 			ret = 0;
321 			goto free_and_exit;
322 		}
323 
324 		*p = 0;
325 	}
326 
327 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
328 		     &func, &end);
329 	if (ret != 4) {
330 		seg = 0;
331 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
332 		if (ret != 3) {
333 			ret = -EINVAL;
334 			goto free_and_exit;
335 		}
336 	}
337 
338 	ret = (seg == pci_domain_nr(dev->bus) &&
339 	       bus == dev->bus->number &&
340 	       dev->devfn == PCI_DEVFN(slot, func));
341 
342 free_and_exit:
343 	kfree(wpath);
344 	return ret;
345 }
346 
347 /**
348  * pci_dev_str_match - test if a string matches a device
349  * @dev: the PCI device to test
350  * @p: string to match the device against
351  * @endptr: pointer to the string after the match
352  *
353  * Test if a string (typically from a kernel parameter) matches a specified
354  * PCI device. The string may be of one of the following formats:
355  *
356  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
357  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
358  *
359  * The first format specifies a PCI bus/device/function address which
360  * may change if new hardware is inserted, if motherboard firmware changes,
361  * or due to changes caused in kernel parameters. If the domain is
362  * left unspecified, it is taken to be 0.  In order to be robust against
363  * bus renumbering issues, a path of PCI device/function numbers may be used
364  * to address the specific device.  The path for a device can be determined
365  * through the use of 'lspci -t'.
366  *
367  * The second format matches devices using IDs in the configuration
368  * space which may match multiple devices in the system. A value of 0
369  * for any field will match all devices. (Note: this differs from
370  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
371  * legacy reasons and convenience so users don't have to specify
372  * FFFFFFFFs on the command line.)
373  *
374  * Returns 1 if the string matches the device, 0 if it does not and
375  * a negative error code if the string cannot be parsed.
376  */
377 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
378 			     const char **endptr)
379 {
380 	int ret;
381 	int count;
382 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
383 
384 	if (strncmp(p, "pci:", 4) == 0) {
385 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
386 		p += 4;
387 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
388 			     &subsystem_vendor, &subsystem_device, &count);
389 		if (ret != 4) {
390 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
391 			if (ret != 2)
392 				return -EINVAL;
393 
394 			subsystem_vendor = 0;
395 			subsystem_device = 0;
396 		}
397 
398 		p += count;
399 
400 		if ((!vendor || vendor == dev->vendor) &&
401 		    (!device || device == dev->device) &&
402 		    (!subsystem_vendor ||
403 			    subsystem_vendor == dev->subsystem_vendor) &&
404 		    (!subsystem_device ||
405 			    subsystem_device == dev->subsystem_device))
406 			goto found;
407 	} else {
408 		/*
409 		 * PCI Bus, Device, Function IDs are specified
410 		 * (optionally, may include a path of devfns following it)
411 		 */
412 		ret = pci_dev_str_match_path(dev, p, &p);
413 		if (ret < 0)
414 			return ret;
415 		else if (ret)
416 			goto found;
417 	}
418 
419 	*endptr = p;
420 	return 0;
421 
422 found:
423 	*endptr = p;
424 	return 1;
425 }
426 
427 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
428 				  u8 pos, int cap, int *ttl)
429 {
430 	u8 id;
431 	u16 ent;
432 
433 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
434 
435 	while ((*ttl)--) {
436 		if (pos < 0x40)
437 			break;
438 		pos &= ~3;
439 		pci_bus_read_config_word(bus, devfn, pos, &ent);
440 
441 		id = ent & 0xff;
442 		if (id == 0xff)
443 			break;
444 		if (id == cap)
445 			return pos;
446 		pos = (ent >> 8);
447 	}
448 	return 0;
449 }
450 
451 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
452 			      u8 pos, int cap)
453 {
454 	int ttl = PCI_FIND_CAP_TTL;
455 
456 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
457 }
458 
459 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
460 {
461 	return __pci_find_next_cap(dev->bus, dev->devfn,
462 				   pos + PCI_CAP_LIST_NEXT, cap);
463 }
464 EXPORT_SYMBOL_GPL(pci_find_next_capability);
465 
466 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
467 				    unsigned int devfn, u8 hdr_type)
468 {
469 	u16 status;
470 
471 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
472 	if (!(status & PCI_STATUS_CAP_LIST))
473 		return 0;
474 
475 	switch (hdr_type) {
476 	case PCI_HEADER_TYPE_NORMAL:
477 	case PCI_HEADER_TYPE_BRIDGE:
478 		return PCI_CAPABILITY_LIST;
479 	case PCI_HEADER_TYPE_CARDBUS:
480 		return PCI_CB_CAPABILITY_LIST;
481 	}
482 
483 	return 0;
484 }
485 
486 /**
487  * pci_find_capability - query for devices' capabilities
488  * @dev: PCI device to query
489  * @cap: capability code
490  *
491  * Tell if a device supports a given PCI capability.
492  * Returns the address of the requested capability structure within the
493  * device's PCI configuration space or 0 in case the device does not
494  * support it.  Possible values for @cap include:
495  *
496  *  %PCI_CAP_ID_PM           Power Management
497  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
498  *  %PCI_CAP_ID_VPD          Vital Product Data
499  *  %PCI_CAP_ID_SLOTID       Slot Identification
500  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
501  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
502  *  %PCI_CAP_ID_PCIX         PCI-X
503  *  %PCI_CAP_ID_EXP          PCI Express
504  */
505 u8 pci_find_capability(struct pci_dev *dev, int cap)
506 {
507 	u8 pos;
508 
509 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
510 	if (pos)
511 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
512 
513 	return pos;
514 }
515 EXPORT_SYMBOL(pci_find_capability);
516 
517 /**
518  * pci_bus_find_capability - query for devices' capabilities
519  * @bus: the PCI bus to query
520  * @devfn: PCI device to query
521  * @cap: capability code
522  *
523  * Like pci_find_capability() but works for PCI devices that do not have a
524  * pci_dev structure set up yet.
525  *
526  * Returns the address of the requested capability structure within the
527  * device's PCI configuration space or 0 in case the device does not
528  * support it.
529  */
530 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
531 {
532 	u8 hdr_type, pos;
533 
534 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
535 
536 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
537 	if (pos)
538 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
539 
540 	return pos;
541 }
542 EXPORT_SYMBOL(pci_bus_find_capability);
543 
544 /**
545  * pci_find_next_ext_capability - Find an extended capability
546  * @dev: PCI device to query
547  * @start: address at which to start looking (0 to start at beginning of list)
548  * @cap: capability code
549  *
550  * Returns the address of the next matching extended capability structure
551  * within the device's PCI configuration space or 0 if the device does
552  * not support it.  Some capabilities can occur several times, e.g., the
553  * vendor-specific capability, and this provides a way to find them all.
554  */
555 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
556 {
557 	u32 header;
558 	int ttl;
559 	u16 pos = PCI_CFG_SPACE_SIZE;
560 
561 	/* minimum 8 bytes per capability */
562 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
563 
564 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
565 		return 0;
566 
567 	if (start)
568 		pos = start;
569 
570 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
571 		return 0;
572 
573 	/*
574 	 * If we have no capabilities, this is indicated by cap ID,
575 	 * cap version and next pointer all being 0.
576 	 */
577 	if (header == 0)
578 		return 0;
579 
580 	while (ttl-- > 0) {
581 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
582 			return pos;
583 
584 		pos = PCI_EXT_CAP_NEXT(header);
585 		if (pos < PCI_CFG_SPACE_SIZE)
586 			break;
587 
588 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
589 			break;
590 	}
591 
592 	return 0;
593 }
594 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
595 
596 /**
597  * pci_find_ext_capability - Find an extended capability
598  * @dev: PCI device to query
599  * @cap: capability code
600  *
601  * Returns the address of the requested extended capability structure
602  * within the device's PCI configuration space or 0 if the device does
603  * not support it.  Possible values for @cap include:
604  *
605  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
606  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
607  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
608  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
609  */
610 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
611 {
612 	return pci_find_next_ext_capability(dev, 0, cap);
613 }
614 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
615 
616 /**
617  * pci_get_dsn - Read and return the 8-byte Device Serial Number
618  * @dev: PCI device to query
619  *
620  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
621  * Number.
622  *
623  * Returns the DSN, or zero if the capability does not exist.
624  */
625 u64 pci_get_dsn(struct pci_dev *dev)
626 {
627 	u32 dword;
628 	u64 dsn;
629 	int pos;
630 
631 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
632 	if (!pos)
633 		return 0;
634 
635 	/*
636 	 * The Device Serial Number is two dwords offset 4 bytes from the
637 	 * capability position. The specification says that the first dword is
638 	 * the lower half, and the second dword is the upper half.
639 	 */
640 	pos += 4;
641 	pci_read_config_dword(dev, pos, &dword);
642 	dsn = (u64)dword;
643 	pci_read_config_dword(dev, pos + 4, &dword);
644 	dsn |= ((u64)dword) << 32;
645 
646 	return dsn;
647 }
648 EXPORT_SYMBOL_GPL(pci_get_dsn);
649 
650 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
651 {
652 	int rc, ttl = PCI_FIND_CAP_TTL;
653 	u8 cap, mask;
654 
655 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
656 		mask = HT_3BIT_CAP_MASK;
657 	else
658 		mask = HT_5BIT_CAP_MASK;
659 
660 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
661 				      PCI_CAP_ID_HT, &ttl);
662 	while (pos) {
663 		rc = pci_read_config_byte(dev, pos + 3, &cap);
664 		if (rc != PCIBIOS_SUCCESSFUL)
665 			return 0;
666 
667 		if ((cap & mask) == ht_cap)
668 			return pos;
669 
670 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
671 					      pos + PCI_CAP_LIST_NEXT,
672 					      PCI_CAP_ID_HT, &ttl);
673 	}
674 
675 	return 0;
676 }
677 
678 /**
679  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
680  * @dev: PCI device to query
681  * @pos: Position from which to continue searching
682  * @ht_cap: HyperTransport capability code
683  *
684  * To be used in conjunction with pci_find_ht_capability() to search for
685  * all capabilities matching @ht_cap. @pos should always be a value returned
686  * from pci_find_ht_capability().
687  *
688  * NB. To be 100% safe against broken PCI devices, the caller should take
689  * steps to avoid an infinite loop.
690  */
691 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
692 {
693 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
694 }
695 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
696 
697 /**
698  * pci_find_ht_capability - query a device's HyperTransport capabilities
699  * @dev: PCI device to query
700  * @ht_cap: HyperTransport capability code
701  *
702  * Tell if a device supports a given HyperTransport capability.
703  * Returns an address within the device's PCI configuration space
704  * or 0 in case the device does not support the request capability.
705  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
706  * which has a HyperTransport capability matching @ht_cap.
707  */
708 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
709 {
710 	u8 pos;
711 
712 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
713 	if (pos)
714 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
715 
716 	return pos;
717 }
718 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
719 
720 /**
721  * pci_find_vsec_capability - Find a vendor-specific extended capability
722  * @dev: PCI device to query
723  * @vendor: Vendor ID for which capability is defined
724  * @cap: Vendor-specific capability ID
725  *
726  * If @dev has Vendor ID @vendor, search for a VSEC capability with
727  * VSEC ID @cap. If found, return the capability offset in
728  * config space; otherwise return 0.
729  */
730 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
731 {
732 	u16 vsec = 0;
733 	u32 header;
734 	int ret;
735 
736 	if (vendor != dev->vendor)
737 		return 0;
738 
739 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 						     PCI_EXT_CAP_ID_VNDR))) {
741 		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
742 		if (ret != PCIBIOS_SUCCESSFUL)
743 			continue;
744 
745 		if (PCI_VNDR_HEADER_ID(header) == cap)
746 			return vsec;
747 	}
748 
749 	return 0;
750 }
751 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
752 
753 /**
754  * pci_find_dvsec_capability - Find DVSEC for vendor
755  * @dev: PCI device to query
756  * @vendor: Vendor ID to match for the DVSEC
757  * @dvsec: Designated Vendor-specific capability ID
758  *
759  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
760  * offset in config space; otherwise return 0.
761  */
762 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
763 {
764 	int pos;
765 
766 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
767 	if (!pos)
768 		return 0;
769 
770 	while (pos) {
771 		u16 v, id;
772 
773 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
774 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
775 		if (vendor == v && dvsec == id)
776 			return pos;
777 
778 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
779 	}
780 
781 	return 0;
782 }
783 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
784 
785 /**
786  * pci_find_parent_resource - return resource region of parent bus of given
787  *			      region
788  * @dev: PCI device structure contains resources to be searched
789  * @res: child resource record for which parent is sought
790  *
791  * For given resource region of given device, return the resource region of
792  * parent bus the given region is contained in.
793  */
794 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
795 					  struct resource *res)
796 {
797 	const struct pci_bus *bus = dev->bus;
798 	struct resource *r;
799 
800 	pci_bus_for_each_resource(bus, r) {
801 		if (!r)
802 			continue;
803 		if (resource_contains(r, res)) {
804 
805 			/*
806 			 * If the window is prefetchable but the BAR is
807 			 * not, the allocator made a mistake.
808 			 */
809 			if (r->flags & IORESOURCE_PREFETCH &&
810 			    !(res->flags & IORESOURCE_PREFETCH))
811 				return NULL;
812 
813 			/*
814 			 * If we're below a transparent bridge, there may
815 			 * be both a positively-decoded aperture and a
816 			 * subtractively-decoded region that contain the BAR.
817 			 * We want the positively-decoded one, so this depends
818 			 * on pci_bus_for_each_resource() giving us those
819 			 * first.
820 			 */
821 			return r;
822 		}
823 	}
824 	return NULL;
825 }
826 EXPORT_SYMBOL(pci_find_parent_resource);
827 
828 /**
829  * pci_find_resource - Return matching PCI device resource
830  * @dev: PCI device to query
831  * @res: Resource to look for
832  *
833  * Goes over standard PCI resources (BARs) and checks if the given resource
834  * is partially or fully contained in any of them. In that case the
835  * matching resource is returned, %NULL otherwise.
836  */
837 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
838 {
839 	int i;
840 
841 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
842 		struct resource *r = &dev->resource[i];
843 
844 		if (r->start && resource_contains(r, res))
845 			return r;
846 	}
847 
848 	return NULL;
849 }
850 EXPORT_SYMBOL(pci_find_resource);
851 
852 /**
853  * pci_resource_name - Return the name of the PCI resource
854  * @dev: PCI device to query
855  * @i: index of the resource
856  *
857  * Return the standard PCI resource (BAR) name according to their index.
858  */
859 const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
860 {
861 	static const char * const bar_name[] = {
862 		"BAR 0",
863 		"BAR 1",
864 		"BAR 2",
865 		"BAR 3",
866 		"BAR 4",
867 		"BAR 5",
868 		"ROM",
869 #ifdef CONFIG_PCI_IOV
870 		"VF BAR 0",
871 		"VF BAR 1",
872 		"VF BAR 2",
873 		"VF BAR 3",
874 		"VF BAR 4",
875 		"VF BAR 5",
876 #endif
877 		"bridge window",	/* "io" included in %pR */
878 		"bridge window",	/* "mem" included in %pR */
879 		"bridge window",	/* "mem pref" included in %pR */
880 	};
881 	static const char * const cardbus_name[] = {
882 		"BAR 1",
883 		"unknown",
884 		"unknown",
885 		"unknown",
886 		"unknown",
887 		"unknown",
888 #ifdef CONFIG_PCI_IOV
889 		"unknown",
890 		"unknown",
891 		"unknown",
892 		"unknown",
893 		"unknown",
894 		"unknown",
895 #endif
896 		"CardBus bridge window 0",	/* I/O */
897 		"CardBus bridge window 1",	/* I/O */
898 		"CardBus bridge window 0",	/* mem */
899 		"CardBus bridge window 1",	/* mem */
900 	};
901 
902 	if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
903 	    i < ARRAY_SIZE(cardbus_name))
904 		return cardbus_name[i];
905 
906 	if (i < ARRAY_SIZE(bar_name))
907 		return bar_name[i];
908 
909 	return "unknown";
910 }
911 
912 /**
913  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
914  * @dev: the PCI device to operate on
915  * @pos: config space offset of status word
916  * @mask: mask of bit(s) to care about in status word
917  *
918  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
919  */
920 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
921 {
922 	int i;
923 
924 	/* Wait for Transaction Pending bit clean */
925 	for (i = 0; i < 4; i++) {
926 		u16 status;
927 		if (i)
928 			msleep((1 << (i - 1)) * 100);
929 
930 		pci_read_config_word(dev, pos, &status);
931 		if (!(status & mask))
932 			return 1;
933 	}
934 
935 	return 0;
936 }
937 
938 static int pci_acs_enable;
939 
940 /**
941  * pci_request_acs - ask for ACS to be enabled if supported
942  */
943 void pci_request_acs(void)
944 {
945 	pci_acs_enable = 1;
946 }
947 
948 static const char *disable_acs_redir_param;
949 
950 /**
951  * pci_disable_acs_redir - disable ACS redirect capabilities
952  * @dev: the PCI device
953  *
954  * For only devices specified in the disable_acs_redir parameter.
955  */
956 static void pci_disable_acs_redir(struct pci_dev *dev)
957 {
958 	int ret = 0;
959 	const char *p;
960 	int pos;
961 	u16 ctrl;
962 
963 	if (!disable_acs_redir_param)
964 		return;
965 
966 	p = disable_acs_redir_param;
967 	while (*p) {
968 		ret = pci_dev_str_match(dev, p, &p);
969 		if (ret < 0) {
970 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
971 				     disable_acs_redir_param);
972 
973 			break;
974 		} else if (ret == 1) {
975 			/* Found a match */
976 			break;
977 		}
978 
979 		if (*p != ';' && *p != ',') {
980 			/* End of param or invalid format */
981 			break;
982 		}
983 		p++;
984 	}
985 
986 	if (ret != 1)
987 		return;
988 
989 	if (!pci_dev_specific_disable_acs_redir(dev))
990 		return;
991 
992 	pos = dev->acs_cap;
993 	if (!pos) {
994 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
995 		return;
996 	}
997 
998 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
999 
1000 	/* P2P Request & Completion Redirect */
1001 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
1002 
1003 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1004 
1005 	pci_info(dev, "disabled ACS redirect\n");
1006 }
1007 
1008 /**
1009  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1010  * @dev: the PCI device
1011  */
1012 static void pci_std_enable_acs(struct pci_dev *dev)
1013 {
1014 	int pos;
1015 	u16 cap;
1016 	u16 ctrl;
1017 
1018 	pos = dev->acs_cap;
1019 	if (!pos)
1020 		return;
1021 
1022 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1023 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1024 
1025 	/* Source Validation */
1026 	ctrl |= (cap & PCI_ACS_SV);
1027 
1028 	/* P2P Request Redirect */
1029 	ctrl |= (cap & PCI_ACS_RR);
1030 
1031 	/* P2P Completion Redirect */
1032 	ctrl |= (cap & PCI_ACS_CR);
1033 
1034 	/* Upstream Forwarding */
1035 	ctrl |= (cap & PCI_ACS_UF);
1036 
1037 	/* Enable Translation Blocking for external devices and noats */
1038 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1039 		ctrl |= (cap & PCI_ACS_TB);
1040 
1041 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1042 }
1043 
1044 /**
1045  * pci_enable_acs - enable ACS if hardware support it
1046  * @dev: the PCI device
1047  */
1048 static void pci_enable_acs(struct pci_dev *dev)
1049 {
1050 	if (!pci_acs_enable)
1051 		goto disable_acs_redir;
1052 
1053 	if (!pci_dev_specific_enable_acs(dev))
1054 		goto disable_acs_redir;
1055 
1056 	pci_std_enable_acs(dev);
1057 
1058 disable_acs_redir:
1059 	/*
1060 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
1061 	 * enabled by the kernel because it may have been enabled by
1062 	 * platform firmware.  So if we are told to disable it, we should
1063 	 * always disable it after setting the kernel's default
1064 	 * preferences.
1065 	 */
1066 	pci_disable_acs_redir(dev);
1067 }
1068 
1069 /**
1070  * pcie_read_tlp_log - read TLP Header Log
1071  * @dev: PCIe device
1072  * @where: PCI Config offset of TLP Header Log
1073  * @tlp_log: TLP Log structure to fill
1074  *
1075  * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1076  *
1077  * Return: 0 on success and filled TLP Log structure, <0 on error.
1078  */
1079 int pcie_read_tlp_log(struct pci_dev *dev, int where,
1080 		      struct pcie_tlp_log *tlp_log)
1081 {
1082 	int i, ret;
1083 
1084 	memset(tlp_log, 0, sizeof(*tlp_log));
1085 
1086 	for (i = 0; i < 4; i++) {
1087 		ret = pci_read_config_dword(dev, where + i * 4,
1088 					    &tlp_log->dw[i]);
1089 		if (ret)
1090 			return pcibios_err_to_errno(ret);
1091 	}
1092 
1093 	return 0;
1094 }
1095 EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1096 
1097 /**
1098  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1099  * @dev: PCI device to have its BARs restored
1100  *
1101  * Restore the BAR values for a given device, so as to make it
1102  * accessible by its driver.
1103  */
1104 static void pci_restore_bars(struct pci_dev *dev)
1105 {
1106 	int i;
1107 
1108 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1109 		pci_update_resource(dev, i);
1110 }
1111 
1112 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1113 {
1114 	if (pci_use_mid_pm())
1115 		return true;
1116 
1117 	return acpi_pci_power_manageable(dev);
1118 }
1119 
1120 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1121 					       pci_power_t t)
1122 {
1123 	if (pci_use_mid_pm())
1124 		return mid_pci_set_power_state(dev, t);
1125 
1126 	return acpi_pci_set_power_state(dev, t);
1127 }
1128 
1129 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1130 {
1131 	if (pci_use_mid_pm())
1132 		return mid_pci_get_power_state(dev);
1133 
1134 	return acpi_pci_get_power_state(dev);
1135 }
1136 
1137 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1138 {
1139 	if (!pci_use_mid_pm())
1140 		acpi_pci_refresh_power_state(dev);
1141 }
1142 
1143 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1144 {
1145 	if (pci_use_mid_pm())
1146 		return PCI_POWER_ERROR;
1147 
1148 	return acpi_pci_choose_state(dev);
1149 }
1150 
1151 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1152 {
1153 	if (pci_use_mid_pm())
1154 		return PCI_POWER_ERROR;
1155 
1156 	return acpi_pci_wakeup(dev, enable);
1157 }
1158 
1159 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1160 {
1161 	if (pci_use_mid_pm())
1162 		return false;
1163 
1164 	return acpi_pci_need_resume(dev);
1165 }
1166 
1167 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1168 {
1169 	if (pci_use_mid_pm())
1170 		return false;
1171 
1172 	return acpi_pci_bridge_d3(dev);
1173 }
1174 
1175 /**
1176  * pci_update_current_state - Read power state of given device and cache it
1177  * @dev: PCI device to handle.
1178  * @state: State to cache in case the device doesn't have the PM capability
1179  *
1180  * The power state is read from the PMCSR register, which however is
1181  * inaccessible in D3cold.  The platform firmware is therefore queried first
1182  * to detect accessibility of the register.  In case the platform firmware
1183  * reports an incorrect state or the device isn't power manageable by the
1184  * platform at all, we try to detect D3cold by testing accessibility of the
1185  * vendor ID in config space.
1186  */
1187 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1188 {
1189 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1190 		dev->current_state = PCI_D3cold;
1191 	} else if (dev->pm_cap) {
1192 		u16 pmcsr;
1193 
1194 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1195 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1196 			dev->current_state = PCI_D3cold;
1197 			return;
1198 		}
1199 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1200 	} else {
1201 		dev->current_state = state;
1202 	}
1203 }
1204 
1205 /**
1206  * pci_refresh_power_state - Refresh the given device's power state data
1207  * @dev: Target PCI device.
1208  *
1209  * Ask the platform to refresh the devices power state information and invoke
1210  * pci_update_current_state() to update its current PCI power state.
1211  */
1212 void pci_refresh_power_state(struct pci_dev *dev)
1213 {
1214 	platform_pci_refresh_power_state(dev);
1215 	pci_update_current_state(dev, dev->current_state);
1216 }
1217 
1218 /**
1219  * pci_platform_power_transition - Use platform to change device power state
1220  * @dev: PCI device to handle.
1221  * @state: State to put the device into.
1222  */
1223 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1224 {
1225 	int error;
1226 
1227 	error = platform_pci_set_power_state(dev, state);
1228 	if (!error)
1229 		pci_update_current_state(dev, state);
1230 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1231 		dev->current_state = PCI_D0;
1232 
1233 	return error;
1234 }
1235 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1236 
1237 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1238 {
1239 	pm_request_resume(&pci_dev->dev);
1240 	return 0;
1241 }
1242 
1243 /**
1244  * pci_resume_bus - Walk given bus and runtime resume devices on it
1245  * @bus: Top bus of the subtree to walk.
1246  */
1247 void pci_resume_bus(struct pci_bus *bus)
1248 {
1249 	if (bus)
1250 		pci_walk_bus(bus, pci_resume_one, NULL);
1251 }
1252 
1253 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1254 {
1255 	int delay = 1;
1256 	bool retrain = false;
1257 	struct pci_dev *bridge;
1258 
1259 	if (pci_is_pcie(dev)) {
1260 		bridge = pci_upstream_bridge(dev);
1261 		if (bridge)
1262 			retrain = true;
1263 	}
1264 
1265 	/*
1266 	 * After reset, the device should not silently discard config
1267 	 * requests, but it may still indicate that it needs more time by
1268 	 * responding to them with CRS completions.  The Root Port will
1269 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1270 	 * the read (except when CRS SV is enabled and the read was for the
1271 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1272 	 *
1273 	 * Wait for the device to return a non-CRS completion.  Read the
1274 	 * Command register instead of Vendor ID so we don't have to
1275 	 * contend with the CRS SV value.
1276 	 */
1277 	for (;;) {
1278 		u32 id;
1279 
1280 		if (pci_dev_is_disconnected(dev)) {
1281 			pci_dbg(dev, "disconnected; not waiting\n");
1282 			return -ENOTTY;
1283 		}
1284 
1285 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1286 		if (!PCI_POSSIBLE_ERROR(id))
1287 			break;
1288 
1289 		if (delay > timeout) {
1290 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1291 				 delay - 1, reset_type);
1292 			return -ENOTTY;
1293 		}
1294 
1295 		if (delay > PCI_RESET_WAIT) {
1296 			if (retrain) {
1297 				retrain = false;
1298 				if (pcie_failed_link_retrain(bridge)) {
1299 					delay = 1;
1300 					continue;
1301 				}
1302 			}
1303 			pci_info(dev, "not ready %dms after %s; waiting\n",
1304 				 delay - 1, reset_type);
1305 		}
1306 
1307 		msleep(delay);
1308 		delay *= 2;
1309 	}
1310 
1311 	if (delay > PCI_RESET_WAIT)
1312 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1313 			 reset_type);
1314 	else
1315 		pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1316 			reset_type);
1317 
1318 	return 0;
1319 }
1320 
1321 /**
1322  * pci_power_up - Put the given device into D0
1323  * @dev: PCI device to power up
1324  *
1325  * On success, return 0 or 1, depending on whether or not it is necessary to
1326  * restore the device's BARs subsequently (1 is returned in that case).
1327  *
1328  * On failure, return a negative error code.  Always return failure if @dev
1329  * lacks a Power Management Capability, even if the platform was able to
1330  * put the device in D0 via non-PCI means.
1331  */
1332 int pci_power_up(struct pci_dev *dev)
1333 {
1334 	bool need_restore;
1335 	pci_power_t state;
1336 	u16 pmcsr;
1337 
1338 	platform_pci_set_power_state(dev, PCI_D0);
1339 
1340 	if (!dev->pm_cap) {
1341 		state = platform_pci_get_power_state(dev);
1342 		if (state == PCI_UNKNOWN)
1343 			dev->current_state = PCI_D0;
1344 		else
1345 			dev->current_state = state;
1346 
1347 		return -EIO;
1348 	}
1349 
1350 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1351 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1352 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1353 			pci_power_name(dev->current_state));
1354 		dev->current_state = PCI_D3cold;
1355 		return -EIO;
1356 	}
1357 
1358 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1359 
1360 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1361 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1362 
1363 	if (state == PCI_D0)
1364 		goto end;
1365 
1366 	/*
1367 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1368 	 * PME_En, and sets PowerState to 0.
1369 	 */
1370 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1371 
1372 	/* Mandatory transition delays; see PCI PM 1.2. */
1373 	if (state == PCI_D3hot)
1374 		pci_dev_d3_sleep(dev);
1375 	else if (state == PCI_D2)
1376 		udelay(PCI_PM_D2_DELAY);
1377 
1378 end:
1379 	dev->current_state = PCI_D0;
1380 	if (need_restore)
1381 		return 1;
1382 
1383 	return 0;
1384 }
1385 
1386 /**
1387  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1388  * @dev: PCI device to power up
1389  * @locked: whether pci_bus_sem is held
1390  *
1391  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1392  * to confirm the state change, restore its BARs if they might be lost and
1393  * reconfigure ASPM in accordance with the new power state.
1394  *
1395  * If pci_restore_state() is going to be called right after a power state change
1396  * to D0, it is more efficient to use pci_power_up() directly instead of this
1397  * function.
1398  */
1399 static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1400 {
1401 	u16 pmcsr;
1402 	int ret;
1403 
1404 	ret = pci_power_up(dev);
1405 	if (ret < 0) {
1406 		if (dev->current_state == PCI_D0)
1407 			return 0;
1408 
1409 		return ret;
1410 	}
1411 
1412 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1413 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1414 	if (dev->current_state != PCI_D0) {
1415 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1416 				     pci_power_name(dev->current_state));
1417 	} else if (ret > 0) {
1418 		/*
1419 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1420 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1421 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1422 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1423 		 * For example, at least some versions of the 3c905B and the
1424 		 * 3c556B exhibit this behaviour.
1425 		 *
1426 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1427 		 * devices in a D3hot state at boot.  Consequently, we need to
1428 		 * restore at least the BARs so that the device will be
1429 		 * accessible to its driver.
1430 		 */
1431 		pci_restore_bars(dev);
1432 	}
1433 
1434 	if (dev->bus->self)
1435 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1436 
1437 	return 0;
1438 }
1439 
1440 /**
1441  * __pci_dev_set_current_state - Set current state of a PCI device
1442  * @dev: Device to handle
1443  * @data: pointer to state to be set
1444  */
1445 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1446 {
1447 	pci_power_t state = *(pci_power_t *)data;
1448 
1449 	dev->current_state = state;
1450 	return 0;
1451 }
1452 
1453 /**
1454  * pci_bus_set_current_state - Walk given bus and set current state of devices
1455  * @bus: Top bus of the subtree to walk.
1456  * @state: state to be set
1457  */
1458 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1459 {
1460 	if (bus)
1461 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1462 }
1463 
1464 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1465 {
1466 	if (!bus)
1467 		return;
1468 
1469 	if (locked)
1470 		pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1471 	else
1472 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1473 }
1474 
1475 /**
1476  * pci_set_low_power_state - Put a PCI device into a low-power state.
1477  * @dev: PCI device to handle.
1478  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1479  * @locked: whether pci_bus_sem is held
1480  *
1481  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1482  *
1483  * RETURN VALUE:
1484  * -EINVAL if the requested state is invalid.
1485  * -EIO if device does not support PCI PM or its PM capabilities register has a
1486  * wrong version, or device doesn't support the requested state.
1487  * 0 if device already is in the requested state.
1488  * 0 if device's power state has been successfully changed.
1489  */
1490 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1491 {
1492 	u16 pmcsr;
1493 
1494 	if (!dev->pm_cap)
1495 		return -EIO;
1496 
1497 	/*
1498 	 * Validate transition: We can enter D0 from any state, but if
1499 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1500 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1501 	 * we'd have to go from D3 to D0, then to D1.
1502 	 */
1503 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1504 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1505 			pci_power_name(dev->current_state),
1506 			pci_power_name(state));
1507 		return -EINVAL;
1508 	}
1509 
1510 	/* Check if this device supports the desired state */
1511 	if ((state == PCI_D1 && !dev->d1_support)
1512 	   || (state == PCI_D2 && !dev->d2_support))
1513 		return -EIO;
1514 
1515 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1516 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1517 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1518 			pci_power_name(dev->current_state),
1519 			pci_power_name(state));
1520 		dev->current_state = PCI_D3cold;
1521 		return -EIO;
1522 	}
1523 
1524 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1525 	pmcsr |= state;
1526 
1527 	/* Enter specified state */
1528 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1529 
1530 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1531 	if (state == PCI_D3hot)
1532 		pci_dev_d3_sleep(dev);
1533 	else if (state == PCI_D2)
1534 		udelay(PCI_PM_D2_DELAY);
1535 
1536 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1537 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1538 	if (dev->current_state != state)
1539 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1540 				     pci_power_name(dev->current_state),
1541 				     pci_power_name(state));
1542 
1543 	if (dev->bus->self)
1544 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1545 
1546 	return 0;
1547 }
1548 
1549 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1550 {
1551 	int error;
1552 
1553 	/* Bound the state we're entering */
1554 	if (state > PCI_D3cold)
1555 		state = PCI_D3cold;
1556 	else if (state < PCI_D0)
1557 		state = PCI_D0;
1558 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1559 
1560 		/*
1561 		 * If the device or the parent bridge do not support PCI
1562 		 * PM, ignore the request if we're doing anything other
1563 		 * than putting it into D0 (which would only happen on
1564 		 * boot).
1565 		 */
1566 		return 0;
1567 
1568 	/* Check if we're already there */
1569 	if (dev->current_state == state)
1570 		return 0;
1571 
1572 	if (state == PCI_D0)
1573 		return pci_set_full_power_state(dev, locked);
1574 
1575 	/*
1576 	 * This device is quirked not to be put into D3, so don't put it in
1577 	 * D3
1578 	 */
1579 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1580 		return 0;
1581 
1582 	if (state == PCI_D3cold) {
1583 		/*
1584 		 * To put the device in D3cold, put it into D3hot in the native
1585 		 * way, then put it into D3cold using platform ops.
1586 		 */
1587 		error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1588 
1589 		if (pci_platform_power_transition(dev, PCI_D3cold))
1590 			return error;
1591 
1592 		/* Powering off a bridge may power off the whole hierarchy */
1593 		if (dev->current_state == PCI_D3cold)
1594 			__pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1595 	} else {
1596 		error = pci_set_low_power_state(dev, state, locked);
1597 
1598 		if (pci_platform_power_transition(dev, state))
1599 			return error;
1600 	}
1601 
1602 	return 0;
1603 }
1604 
1605 /**
1606  * pci_set_power_state - Set the power state of a PCI device
1607  * @dev: PCI device to handle.
1608  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1609  *
1610  * Transition a device to a new power state, using the platform firmware and/or
1611  * the device's PCI PM registers.
1612  *
1613  * RETURN VALUE:
1614  * -EINVAL if the requested state is invalid.
1615  * -EIO if device does not support PCI PM or its PM capabilities register has a
1616  * wrong version, or device doesn't support the requested state.
1617  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1618  * 0 if device already is in the requested state.
1619  * 0 if the transition is to D3 but D3 is not supported.
1620  * 0 if device's power state has been successfully changed.
1621  */
1622 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1623 {
1624 	return __pci_set_power_state(dev, state, false);
1625 }
1626 EXPORT_SYMBOL(pci_set_power_state);
1627 
1628 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1629 {
1630 	lockdep_assert_held(&pci_bus_sem);
1631 
1632 	return __pci_set_power_state(dev, state, true);
1633 }
1634 EXPORT_SYMBOL(pci_set_power_state_locked);
1635 
1636 #define PCI_EXP_SAVE_REGS	7
1637 
1638 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1639 						       u16 cap, bool extended)
1640 {
1641 	struct pci_cap_saved_state *tmp;
1642 
1643 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1644 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1645 			return tmp;
1646 	}
1647 	return NULL;
1648 }
1649 
1650 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1651 {
1652 	return _pci_find_saved_cap(dev, cap, false);
1653 }
1654 
1655 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1656 {
1657 	return _pci_find_saved_cap(dev, cap, true);
1658 }
1659 
1660 static int pci_save_pcie_state(struct pci_dev *dev)
1661 {
1662 	int i = 0;
1663 	struct pci_cap_saved_state *save_state;
1664 	u16 *cap;
1665 
1666 	if (!pci_is_pcie(dev))
1667 		return 0;
1668 
1669 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1670 	if (!save_state) {
1671 		pci_err(dev, "buffer not found in %s\n", __func__);
1672 		return -ENOMEM;
1673 	}
1674 
1675 	cap = (u16 *)&save_state->cap.data[0];
1676 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1677 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1678 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1679 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1680 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1681 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1682 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1683 
1684 	pci_save_aspm_l1ss_state(dev);
1685 	pci_save_ltr_state(dev);
1686 
1687 	return 0;
1688 }
1689 
1690 static void pci_restore_pcie_state(struct pci_dev *dev)
1691 {
1692 	int i = 0;
1693 	struct pci_cap_saved_state *save_state;
1694 	u16 *cap;
1695 
1696 	/*
1697 	 * Restore max latencies (in the LTR capability) before enabling
1698 	 * LTR itself in PCI_EXP_DEVCTL2.
1699 	 */
1700 	pci_restore_ltr_state(dev);
1701 	pci_restore_aspm_l1ss_state(dev);
1702 
1703 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1704 	if (!save_state)
1705 		return;
1706 
1707 	/*
1708 	 * Downstream ports reset the LTR enable bit when link goes down.
1709 	 * Check and re-configure the bit here before restoring device.
1710 	 * PCIe r5.0, sec 7.5.3.16.
1711 	 */
1712 	pci_bridge_reconfigure_ltr(dev);
1713 
1714 	cap = (u16 *)&save_state->cap.data[0];
1715 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1716 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1717 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1718 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1719 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1720 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1721 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1722 }
1723 
1724 static int pci_save_pcix_state(struct pci_dev *dev)
1725 {
1726 	int pos;
1727 	struct pci_cap_saved_state *save_state;
1728 
1729 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1730 	if (!pos)
1731 		return 0;
1732 
1733 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1734 	if (!save_state) {
1735 		pci_err(dev, "buffer not found in %s\n", __func__);
1736 		return -ENOMEM;
1737 	}
1738 
1739 	pci_read_config_word(dev, pos + PCI_X_CMD,
1740 			     (u16 *)save_state->cap.data);
1741 
1742 	return 0;
1743 }
1744 
1745 static void pci_restore_pcix_state(struct pci_dev *dev)
1746 {
1747 	int i = 0, pos;
1748 	struct pci_cap_saved_state *save_state;
1749 	u16 *cap;
1750 
1751 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1752 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1753 	if (!save_state || !pos)
1754 		return;
1755 	cap = (u16 *)&save_state->cap.data[0];
1756 
1757 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1758 }
1759 
1760 /**
1761  * pci_save_state - save the PCI configuration space of a device before
1762  *		    suspending
1763  * @dev: PCI device that we're dealing with
1764  */
1765 int pci_save_state(struct pci_dev *dev)
1766 {
1767 	int i;
1768 	/* XXX: 100% dword access ok here? */
1769 	for (i = 0; i < 16; i++) {
1770 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1771 		pci_dbg(dev, "save config %#04x: %#010x\n",
1772 			i * 4, dev->saved_config_space[i]);
1773 	}
1774 	dev->state_saved = true;
1775 
1776 	i = pci_save_pcie_state(dev);
1777 	if (i != 0)
1778 		return i;
1779 
1780 	i = pci_save_pcix_state(dev);
1781 	if (i != 0)
1782 		return i;
1783 
1784 	pci_save_dpc_state(dev);
1785 	pci_save_aer_state(dev);
1786 	pci_save_ptm_state(dev);
1787 	return pci_save_vc_state(dev);
1788 }
1789 EXPORT_SYMBOL(pci_save_state);
1790 
1791 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1792 				     u32 saved_val, int retry, bool force)
1793 {
1794 	u32 val;
1795 
1796 	pci_read_config_dword(pdev, offset, &val);
1797 	if (!force && val == saved_val)
1798 		return;
1799 
1800 	for (;;) {
1801 		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1802 			offset, val, saved_val);
1803 		pci_write_config_dword(pdev, offset, saved_val);
1804 		if (retry-- <= 0)
1805 			return;
1806 
1807 		pci_read_config_dword(pdev, offset, &val);
1808 		if (val == saved_val)
1809 			return;
1810 
1811 		mdelay(1);
1812 	}
1813 }
1814 
1815 static void pci_restore_config_space_range(struct pci_dev *pdev,
1816 					   int start, int end, int retry,
1817 					   bool force)
1818 {
1819 	int index;
1820 
1821 	for (index = end; index >= start; index--)
1822 		pci_restore_config_dword(pdev, 4 * index,
1823 					 pdev->saved_config_space[index],
1824 					 retry, force);
1825 }
1826 
1827 static void pci_restore_config_space(struct pci_dev *pdev)
1828 {
1829 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1830 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1831 		/* Restore BARs before the command register. */
1832 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1833 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1834 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1835 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1836 
1837 		/*
1838 		 * Force rewriting of prefetch registers to avoid S3 resume
1839 		 * issues on Intel PCI bridges that occur when these
1840 		 * registers are not explicitly written.
1841 		 */
1842 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1843 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1844 	} else {
1845 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1846 	}
1847 }
1848 
1849 static void pci_restore_rebar_state(struct pci_dev *pdev)
1850 {
1851 	unsigned int pos, nbars, i;
1852 	u32 ctrl;
1853 
1854 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1855 	if (!pos)
1856 		return;
1857 
1858 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1859 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1860 
1861 	for (i = 0; i < nbars; i++, pos += 8) {
1862 		struct resource *res;
1863 		int bar_idx, size;
1864 
1865 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1866 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1867 		res = pdev->resource + bar_idx;
1868 		size = pci_rebar_bytes_to_size(resource_size(res));
1869 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1870 		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1871 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1872 	}
1873 }
1874 
1875 /**
1876  * pci_restore_state - Restore the saved state of a PCI device
1877  * @dev: PCI device that we're dealing with
1878  */
1879 void pci_restore_state(struct pci_dev *dev)
1880 {
1881 	if (!dev->state_saved)
1882 		return;
1883 
1884 	pci_restore_pcie_state(dev);
1885 	pci_restore_pasid_state(dev);
1886 	pci_restore_pri_state(dev);
1887 	pci_restore_ats_state(dev);
1888 	pci_restore_vc_state(dev);
1889 	pci_restore_rebar_state(dev);
1890 	pci_restore_dpc_state(dev);
1891 	pci_restore_ptm_state(dev);
1892 
1893 	pci_aer_clear_status(dev);
1894 	pci_restore_aer_state(dev);
1895 
1896 	pci_restore_config_space(dev);
1897 
1898 	pci_restore_pcix_state(dev);
1899 	pci_restore_msi_state(dev);
1900 
1901 	/* Restore ACS and IOV configuration state */
1902 	pci_enable_acs(dev);
1903 	pci_restore_iov_state(dev);
1904 
1905 	dev->state_saved = false;
1906 }
1907 EXPORT_SYMBOL(pci_restore_state);
1908 
1909 struct pci_saved_state {
1910 	u32 config_space[16];
1911 	struct pci_cap_saved_data cap[];
1912 };
1913 
1914 /**
1915  * pci_store_saved_state - Allocate and return an opaque struct containing
1916  *			   the device saved state.
1917  * @dev: PCI device that we're dealing with
1918  *
1919  * Return NULL if no state or error.
1920  */
1921 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1922 {
1923 	struct pci_saved_state *state;
1924 	struct pci_cap_saved_state *tmp;
1925 	struct pci_cap_saved_data *cap;
1926 	size_t size;
1927 
1928 	if (!dev->state_saved)
1929 		return NULL;
1930 
1931 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1932 
1933 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1934 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1935 
1936 	state = kzalloc(size, GFP_KERNEL);
1937 	if (!state)
1938 		return NULL;
1939 
1940 	memcpy(state->config_space, dev->saved_config_space,
1941 	       sizeof(state->config_space));
1942 
1943 	cap = state->cap;
1944 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1945 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1946 		memcpy(cap, &tmp->cap, len);
1947 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1948 	}
1949 	/* Empty cap_save terminates list */
1950 
1951 	return state;
1952 }
1953 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1954 
1955 /**
1956  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1957  * @dev: PCI device that we're dealing with
1958  * @state: Saved state returned from pci_store_saved_state()
1959  */
1960 int pci_load_saved_state(struct pci_dev *dev,
1961 			 struct pci_saved_state *state)
1962 {
1963 	struct pci_cap_saved_data *cap;
1964 
1965 	dev->state_saved = false;
1966 
1967 	if (!state)
1968 		return 0;
1969 
1970 	memcpy(dev->saved_config_space, state->config_space,
1971 	       sizeof(state->config_space));
1972 
1973 	cap = state->cap;
1974 	while (cap->size) {
1975 		struct pci_cap_saved_state *tmp;
1976 
1977 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1978 		if (!tmp || tmp->cap.size != cap->size)
1979 			return -EINVAL;
1980 
1981 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1982 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1983 		       sizeof(struct pci_cap_saved_data) + cap->size);
1984 	}
1985 
1986 	dev->state_saved = true;
1987 	return 0;
1988 }
1989 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1990 
1991 /**
1992  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1993  *				   and free the memory allocated for it.
1994  * @dev: PCI device that we're dealing with
1995  * @state: Pointer to saved state returned from pci_store_saved_state()
1996  */
1997 int pci_load_and_free_saved_state(struct pci_dev *dev,
1998 				  struct pci_saved_state **state)
1999 {
2000 	int ret = pci_load_saved_state(dev, *state);
2001 	kfree(*state);
2002 	*state = NULL;
2003 	return ret;
2004 }
2005 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2006 
2007 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2008 {
2009 	return pci_enable_resources(dev, bars);
2010 }
2011 
2012 static int do_pci_enable_device(struct pci_dev *dev, int bars)
2013 {
2014 	int err;
2015 	struct pci_dev *bridge;
2016 	u16 cmd;
2017 	u8 pin;
2018 
2019 	err = pci_set_power_state(dev, PCI_D0);
2020 	if (err < 0 && err != -EIO)
2021 		return err;
2022 
2023 	bridge = pci_upstream_bridge(dev);
2024 	if (bridge)
2025 		pcie_aspm_powersave_config_link(bridge);
2026 
2027 	err = pcibios_enable_device(dev, bars);
2028 	if (err < 0)
2029 		return err;
2030 	pci_fixup_device(pci_fixup_enable, dev);
2031 
2032 	if (dev->msi_enabled || dev->msix_enabled)
2033 		return 0;
2034 
2035 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2036 	if (pin) {
2037 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
2038 		if (cmd & PCI_COMMAND_INTX_DISABLE)
2039 			pci_write_config_word(dev, PCI_COMMAND,
2040 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
2041 	}
2042 
2043 	return 0;
2044 }
2045 
2046 /**
2047  * pci_reenable_device - Resume abandoned device
2048  * @dev: PCI device to be resumed
2049  *
2050  * NOTE: This function is a backend of pci_default_resume() and is not supposed
2051  * to be called by normal code, write proper resume handler and use it instead.
2052  */
2053 int pci_reenable_device(struct pci_dev *dev)
2054 {
2055 	if (pci_is_enabled(dev))
2056 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2057 	return 0;
2058 }
2059 EXPORT_SYMBOL(pci_reenable_device);
2060 
2061 static void pci_enable_bridge(struct pci_dev *dev)
2062 {
2063 	struct pci_dev *bridge;
2064 	int retval;
2065 
2066 	bridge = pci_upstream_bridge(dev);
2067 	if (bridge)
2068 		pci_enable_bridge(bridge);
2069 
2070 	if (pci_is_enabled(dev)) {
2071 		if (!dev->is_busmaster)
2072 			pci_set_master(dev);
2073 		return;
2074 	}
2075 
2076 	retval = pci_enable_device(dev);
2077 	if (retval)
2078 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2079 			retval);
2080 	pci_set_master(dev);
2081 }
2082 
2083 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2084 {
2085 	struct pci_dev *bridge;
2086 	int err;
2087 	int i, bars = 0;
2088 
2089 	/*
2090 	 * Power state could be unknown at this point, either due to a fresh
2091 	 * boot or a device removal call.  So get the current power state
2092 	 * so that things like MSI message writing will behave as expected
2093 	 * (e.g. if the device really is in D0 at enable time).
2094 	 */
2095 	pci_update_current_state(dev, dev->current_state);
2096 
2097 	if (atomic_inc_return(&dev->enable_cnt) > 1)
2098 		return 0;		/* already enabled */
2099 
2100 	bridge = pci_upstream_bridge(dev);
2101 	if (bridge)
2102 		pci_enable_bridge(bridge);
2103 
2104 	/* only skip sriov related */
2105 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2106 		if (dev->resource[i].flags & flags)
2107 			bars |= (1 << i);
2108 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2109 		if (dev->resource[i].flags & flags)
2110 			bars |= (1 << i);
2111 
2112 	err = do_pci_enable_device(dev, bars);
2113 	if (err < 0)
2114 		atomic_dec(&dev->enable_cnt);
2115 	return err;
2116 }
2117 
2118 /**
2119  * pci_enable_device_mem - Initialize a device for use with Memory space
2120  * @dev: PCI device to be initialized
2121  *
2122  * Initialize device before it's used by a driver. Ask low-level code
2123  * to enable Memory resources. Wake up the device if it was suspended.
2124  * Beware, this function can fail.
2125  */
2126 int pci_enable_device_mem(struct pci_dev *dev)
2127 {
2128 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2129 }
2130 EXPORT_SYMBOL(pci_enable_device_mem);
2131 
2132 /**
2133  * pci_enable_device - Initialize device before it's used by a driver.
2134  * @dev: PCI device to be initialized
2135  *
2136  * Initialize device before it's used by a driver. Ask low-level code
2137  * to enable I/O and memory. Wake up the device if it was suspended.
2138  * Beware, this function can fail.
2139  *
2140  * Note we don't actually enable the device many times if we call
2141  * this function repeatedly (we just increment the count).
2142  */
2143 int pci_enable_device(struct pci_dev *dev)
2144 {
2145 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2146 }
2147 EXPORT_SYMBOL(pci_enable_device);
2148 
2149 /*
2150  * pcibios_device_add - provide arch specific hooks when adding device dev
2151  * @dev: the PCI device being added
2152  *
2153  * Permits the platform to provide architecture specific functionality when
2154  * devices are added. This is the default implementation. Architecture
2155  * implementations can override this.
2156  */
2157 int __weak pcibios_device_add(struct pci_dev *dev)
2158 {
2159 	return 0;
2160 }
2161 
2162 /**
2163  * pcibios_release_device - provide arch specific hooks when releasing
2164  *			    device dev
2165  * @dev: the PCI device being released
2166  *
2167  * Permits the platform to provide architecture specific functionality when
2168  * devices are released. This is the default implementation. Architecture
2169  * implementations can override this.
2170  */
2171 void __weak pcibios_release_device(struct pci_dev *dev) {}
2172 
2173 /**
2174  * pcibios_disable_device - disable arch specific PCI resources for device dev
2175  * @dev: the PCI device to disable
2176  *
2177  * Disables architecture specific PCI resources for the device. This
2178  * is the default implementation. Architecture implementations can
2179  * override this.
2180  */
2181 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2182 
2183 static void do_pci_disable_device(struct pci_dev *dev)
2184 {
2185 	u16 pci_command;
2186 
2187 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2188 	if (pci_command & PCI_COMMAND_MASTER) {
2189 		pci_command &= ~PCI_COMMAND_MASTER;
2190 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2191 	}
2192 
2193 	pcibios_disable_device(dev);
2194 }
2195 
2196 /**
2197  * pci_disable_enabled_device - Disable device without updating enable_cnt
2198  * @dev: PCI device to disable
2199  *
2200  * NOTE: This function is a backend of PCI power management routines and is
2201  * not supposed to be called drivers.
2202  */
2203 void pci_disable_enabled_device(struct pci_dev *dev)
2204 {
2205 	if (pci_is_enabled(dev))
2206 		do_pci_disable_device(dev);
2207 }
2208 
2209 /**
2210  * pci_disable_device - Disable PCI device after use
2211  * @dev: PCI device to be disabled
2212  *
2213  * Signal to the system that the PCI device is not in use by the system
2214  * anymore.  This only involves disabling PCI bus-mastering, if active.
2215  *
2216  * Note we don't actually disable the device until all callers of
2217  * pci_enable_device() have called pci_disable_device().
2218  */
2219 void pci_disable_device(struct pci_dev *dev)
2220 {
2221 	struct pci_devres *dr;
2222 
2223 	dr = find_pci_dr(dev);
2224 	if (dr)
2225 		dr->enabled = 0;
2226 
2227 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2228 		      "disabling already-disabled device");
2229 
2230 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2231 		return;
2232 
2233 	do_pci_disable_device(dev);
2234 
2235 	dev->is_busmaster = 0;
2236 }
2237 EXPORT_SYMBOL(pci_disable_device);
2238 
2239 /**
2240  * pcibios_set_pcie_reset_state - set reset state for device dev
2241  * @dev: the PCIe device reset
2242  * @state: Reset state to enter into
2243  *
2244  * Set the PCIe reset state for the device. This is the default
2245  * implementation. Architecture implementations can override this.
2246  */
2247 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2248 					enum pcie_reset_state state)
2249 {
2250 	return -EINVAL;
2251 }
2252 
2253 /**
2254  * pci_set_pcie_reset_state - set reset state for device dev
2255  * @dev: the PCIe device reset
2256  * @state: Reset state to enter into
2257  *
2258  * Sets the PCI reset state for the device.
2259  */
2260 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2261 {
2262 	return pcibios_set_pcie_reset_state(dev, state);
2263 }
2264 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2265 
2266 #ifdef CONFIG_PCIEAER
2267 void pcie_clear_device_status(struct pci_dev *dev)
2268 {
2269 	u16 sta;
2270 
2271 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2272 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2273 }
2274 #endif
2275 
2276 /**
2277  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2278  * @dev: PCIe root port or event collector.
2279  */
2280 void pcie_clear_root_pme_status(struct pci_dev *dev)
2281 {
2282 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2283 }
2284 
2285 /**
2286  * pci_check_pme_status - Check if given device has generated PME.
2287  * @dev: Device to check.
2288  *
2289  * Check the PME status of the device and if set, clear it and clear PME enable
2290  * (if set).  Return 'true' if PME status and PME enable were both set or
2291  * 'false' otherwise.
2292  */
2293 bool pci_check_pme_status(struct pci_dev *dev)
2294 {
2295 	int pmcsr_pos;
2296 	u16 pmcsr;
2297 	bool ret = false;
2298 
2299 	if (!dev->pm_cap)
2300 		return false;
2301 
2302 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2303 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2304 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2305 		return false;
2306 
2307 	/* Clear PME status. */
2308 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2309 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2310 		/* Disable PME to avoid interrupt flood. */
2311 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2312 		ret = true;
2313 	}
2314 
2315 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2316 
2317 	return ret;
2318 }
2319 
2320 /**
2321  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2322  * @dev: Device to handle.
2323  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2324  *
2325  * Check if @dev has generated PME and queue a resume request for it in that
2326  * case.
2327  */
2328 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2329 {
2330 	if (pme_poll_reset && dev->pme_poll)
2331 		dev->pme_poll = false;
2332 
2333 	if (pci_check_pme_status(dev)) {
2334 		pci_wakeup_event(dev);
2335 		pm_request_resume(&dev->dev);
2336 	}
2337 	return 0;
2338 }
2339 
2340 /**
2341  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2342  * @bus: Top bus of the subtree to walk.
2343  */
2344 void pci_pme_wakeup_bus(struct pci_bus *bus)
2345 {
2346 	if (bus)
2347 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2348 }
2349 
2350 
2351 /**
2352  * pci_pme_capable - check the capability of PCI device to generate PME#
2353  * @dev: PCI device to handle.
2354  * @state: PCI state from which device will issue PME#.
2355  */
2356 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2357 {
2358 	if (!dev->pm_cap)
2359 		return false;
2360 
2361 	return !!(dev->pme_support & (1 << state));
2362 }
2363 EXPORT_SYMBOL(pci_pme_capable);
2364 
2365 static void pci_pme_list_scan(struct work_struct *work)
2366 {
2367 	struct pci_pme_device *pme_dev, *n;
2368 
2369 	mutex_lock(&pci_pme_list_mutex);
2370 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2371 		struct pci_dev *pdev = pme_dev->dev;
2372 
2373 		if (pdev->pme_poll) {
2374 			struct pci_dev *bridge = pdev->bus->self;
2375 			struct device *dev = &pdev->dev;
2376 			struct device *bdev = bridge ? &bridge->dev : NULL;
2377 			int bref = 0;
2378 
2379 			/*
2380 			 * If we have a bridge, it should be in an active/D0
2381 			 * state or the configuration space of subordinate
2382 			 * devices may not be accessible or stable over the
2383 			 * course of the call.
2384 			 */
2385 			if (bdev) {
2386 				bref = pm_runtime_get_if_active(bdev);
2387 				if (!bref)
2388 					continue;
2389 
2390 				if (bridge->current_state != PCI_D0)
2391 					goto put_bridge;
2392 			}
2393 
2394 			/*
2395 			 * The device itself should be suspended but config
2396 			 * space must be accessible, therefore it cannot be in
2397 			 * D3cold.
2398 			 */
2399 			if (pm_runtime_suspended(dev) &&
2400 			    pdev->current_state != PCI_D3cold)
2401 				pci_pme_wakeup(pdev, NULL);
2402 
2403 put_bridge:
2404 			if (bref > 0)
2405 				pm_runtime_put(bdev);
2406 		} else {
2407 			list_del(&pme_dev->list);
2408 			kfree(pme_dev);
2409 		}
2410 	}
2411 	if (!list_empty(&pci_pme_list))
2412 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2413 				   msecs_to_jiffies(PME_TIMEOUT));
2414 	mutex_unlock(&pci_pme_list_mutex);
2415 }
2416 
2417 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2418 {
2419 	u16 pmcsr;
2420 
2421 	if (!dev->pme_support)
2422 		return;
2423 
2424 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2425 	/* Clear PME_Status by writing 1 to it and enable PME# */
2426 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2427 	if (!enable)
2428 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2429 
2430 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2431 }
2432 
2433 /**
2434  * pci_pme_restore - Restore PME configuration after config space restore.
2435  * @dev: PCI device to update.
2436  */
2437 void pci_pme_restore(struct pci_dev *dev)
2438 {
2439 	u16 pmcsr;
2440 
2441 	if (!dev->pme_support)
2442 		return;
2443 
2444 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2445 	if (dev->wakeup_prepared) {
2446 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2447 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2448 	} else {
2449 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2450 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2451 	}
2452 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2453 }
2454 
2455 /**
2456  * pci_pme_active - enable or disable PCI device's PME# function
2457  * @dev: PCI device to handle.
2458  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2459  *
2460  * The caller must verify that the device is capable of generating PME# before
2461  * calling this function with @enable equal to 'true'.
2462  */
2463 void pci_pme_active(struct pci_dev *dev, bool enable)
2464 {
2465 	__pci_pme_active(dev, enable);
2466 
2467 	/*
2468 	 * PCI (as opposed to PCIe) PME requires that the device have
2469 	 * its PME# line hooked up correctly. Not all hardware vendors
2470 	 * do this, so the PME never gets delivered and the device
2471 	 * remains asleep. The easiest way around this is to
2472 	 * periodically walk the list of suspended devices and check
2473 	 * whether any have their PME flag set. The assumption is that
2474 	 * we'll wake up often enough anyway that this won't be a huge
2475 	 * hit, and the power savings from the devices will still be a
2476 	 * win.
2477 	 *
2478 	 * Although PCIe uses in-band PME message instead of PME# line
2479 	 * to report PME, PME does not work for some PCIe devices in
2480 	 * reality.  For example, there are devices that set their PME
2481 	 * status bits, but don't really bother to send a PME message;
2482 	 * there are PCI Express Root Ports that don't bother to
2483 	 * trigger interrupts when they receive PME messages from the
2484 	 * devices below.  So PME poll is used for PCIe devices too.
2485 	 */
2486 
2487 	if (dev->pme_poll) {
2488 		struct pci_pme_device *pme_dev;
2489 		if (enable) {
2490 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2491 					  GFP_KERNEL);
2492 			if (!pme_dev) {
2493 				pci_warn(dev, "can't enable PME#\n");
2494 				return;
2495 			}
2496 			pme_dev->dev = dev;
2497 			mutex_lock(&pci_pme_list_mutex);
2498 			list_add(&pme_dev->list, &pci_pme_list);
2499 			if (list_is_singular(&pci_pme_list))
2500 				queue_delayed_work(system_freezable_wq,
2501 						   &pci_pme_work,
2502 						   msecs_to_jiffies(PME_TIMEOUT));
2503 			mutex_unlock(&pci_pme_list_mutex);
2504 		} else {
2505 			mutex_lock(&pci_pme_list_mutex);
2506 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2507 				if (pme_dev->dev == dev) {
2508 					list_del(&pme_dev->list);
2509 					kfree(pme_dev);
2510 					break;
2511 				}
2512 			}
2513 			mutex_unlock(&pci_pme_list_mutex);
2514 		}
2515 	}
2516 
2517 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2518 }
2519 EXPORT_SYMBOL(pci_pme_active);
2520 
2521 /**
2522  * __pci_enable_wake - enable PCI device as wakeup event source
2523  * @dev: PCI device affected
2524  * @state: PCI state from which device will issue wakeup events
2525  * @enable: True to enable event generation; false to disable
2526  *
2527  * This enables the device as a wakeup event source, or disables it.
2528  * When such events involves platform-specific hooks, those hooks are
2529  * called automatically by this routine.
2530  *
2531  * Devices with legacy power management (no standard PCI PM capabilities)
2532  * always require such platform hooks.
2533  *
2534  * RETURN VALUE:
2535  * 0 is returned on success
2536  * -EINVAL is returned if device is not supposed to wake up the system
2537  * Error code depending on the platform is returned if both the platform and
2538  * the native mechanism fail to enable the generation of wake-up events
2539  */
2540 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2541 {
2542 	int ret = 0;
2543 
2544 	/*
2545 	 * Bridges that are not power-manageable directly only signal
2546 	 * wakeup on behalf of subordinate devices which is set up
2547 	 * elsewhere, so skip them. However, bridges that are
2548 	 * power-manageable may signal wakeup for themselves (for example,
2549 	 * on a hotplug event) and they need to be covered here.
2550 	 */
2551 	if (!pci_power_manageable(dev))
2552 		return 0;
2553 
2554 	/* Don't do the same thing twice in a row for one device. */
2555 	if (!!enable == !!dev->wakeup_prepared)
2556 		return 0;
2557 
2558 	/*
2559 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2560 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2561 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2562 	 */
2563 
2564 	if (enable) {
2565 		int error;
2566 
2567 		/*
2568 		 * Enable PME signaling if the device can signal PME from
2569 		 * D3cold regardless of whether or not it can signal PME from
2570 		 * the current target state, because that will allow it to
2571 		 * signal PME when the hierarchy above it goes into D3cold and
2572 		 * the device itself ends up in D3cold as a result of that.
2573 		 */
2574 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2575 			pci_pme_active(dev, true);
2576 		else
2577 			ret = 1;
2578 		error = platform_pci_set_wakeup(dev, true);
2579 		if (ret)
2580 			ret = error;
2581 		if (!ret)
2582 			dev->wakeup_prepared = true;
2583 	} else {
2584 		platform_pci_set_wakeup(dev, false);
2585 		pci_pme_active(dev, false);
2586 		dev->wakeup_prepared = false;
2587 	}
2588 
2589 	return ret;
2590 }
2591 
2592 /**
2593  * pci_enable_wake - change wakeup settings for a PCI device
2594  * @pci_dev: Target device
2595  * @state: PCI state from which device will issue wakeup events
2596  * @enable: Whether or not to enable event generation
2597  *
2598  * If @enable is set, check device_may_wakeup() for the device before calling
2599  * __pci_enable_wake() for it.
2600  */
2601 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2602 {
2603 	if (enable && !device_may_wakeup(&pci_dev->dev))
2604 		return -EINVAL;
2605 
2606 	return __pci_enable_wake(pci_dev, state, enable);
2607 }
2608 EXPORT_SYMBOL(pci_enable_wake);
2609 
2610 /**
2611  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2612  * @dev: PCI device to prepare
2613  * @enable: True to enable wake-up event generation; false to disable
2614  *
2615  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2616  * and this function allows them to set that up cleanly - pci_enable_wake()
2617  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2618  * ordering constraints.
2619  *
2620  * This function only returns error code if the device is not allowed to wake
2621  * up the system from sleep or it is not capable of generating PME# from both
2622  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2623  */
2624 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2625 {
2626 	return pci_pme_capable(dev, PCI_D3cold) ?
2627 			pci_enable_wake(dev, PCI_D3cold, enable) :
2628 			pci_enable_wake(dev, PCI_D3hot, enable);
2629 }
2630 EXPORT_SYMBOL(pci_wake_from_d3);
2631 
2632 /**
2633  * pci_target_state - find an appropriate low power state for a given PCI dev
2634  * @dev: PCI device
2635  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2636  *
2637  * Use underlying platform code to find a supported low power state for @dev.
2638  * If the platform can't manage @dev, return the deepest state from which it
2639  * can generate wake events, based on any available PME info.
2640  */
2641 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2642 {
2643 	if (platform_pci_power_manageable(dev)) {
2644 		/*
2645 		 * Call the platform to find the target state for the device.
2646 		 */
2647 		pci_power_t state = platform_pci_choose_state(dev);
2648 
2649 		switch (state) {
2650 		case PCI_POWER_ERROR:
2651 		case PCI_UNKNOWN:
2652 			return PCI_D3hot;
2653 
2654 		case PCI_D1:
2655 		case PCI_D2:
2656 			if (pci_no_d1d2(dev))
2657 				return PCI_D3hot;
2658 		}
2659 
2660 		return state;
2661 	}
2662 
2663 	/*
2664 	 * If the device is in D3cold even though it's not power-manageable by
2665 	 * the platform, it may have been powered down by non-standard means.
2666 	 * Best to let it slumber.
2667 	 */
2668 	if (dev->current_state == PCI_D3cold)
2669 		return PCI_D3cold;
2670 	else if (!dev->pm_cap)
2671 		return PCI_D0;
2672 
2673 	if (wakeup && dev->pme_support) {
2674 		pci_power_t state = PCI_D3hot;
2675 
2676 		/*
2677 		 * Find the deepest state from which the device can generate
2678 		 * PME#.
2679 		 */
2680 		while (state && !(dev->pme_support & (1 << state)))
2681 			state--;
2682 
2683 		if (state)
2684 			return state;
2685 		else if (dev->pme_support & 1)
2686 			return PCI_D0;
2687 	}
2688 
2689 	return PCI_D3hot;
2690 }
2691 
2692 /**
2693  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2694  *			  into a sleep state
2695  * @dev: Device to handle.
2696  *
2697  * Choose the power state appropriate for the device depending on whether
2698  * it can wake up the system and/or is power manageable by the platform
2699  * (PCI_D3hot is the default) and put the device into that state.
2700  */
2701 int pci_prepare_to_sleep(struct pci_dev *dev)
2702 {
2703 	bool wakeup = device_may_wakeup(&dev->dev);
2704 	pci_power_t target_state = pci_target_state(dev, wakeup);
2705 	int error;
2706 
2707 	if (target_state == PCI_POWER_ERROR)
2708 		return -EIO;
2709 
2710 	pci_enable_wake(dev, target_state, wakeup);
2711 
2712 	error = pci_set_power_state(dev, target_state);
2713 
2714 	if (error)
2715 		pci_enable_wake(dev, target_state, false);
2716 
2717 	return error;
2718 }
2719 EXPORT_SYMBOL(pci_prepare_to_sleep);
2720 
2721 /**
2722  * pci_back_from_sleep - turn PCI device on during system-wide transition
2723  *			 into working state
2724  * @dev: Device to handle.
2725  *
2726  * Disable device's system wake-up capability and put it into D0.
2727  */
2728 int pci_back_from_sleep(struct pci_dev *dev)
2729 {
2730 	int ret = pci_set_power_state(dev, PCI_D0);
2731 
2732 	if (ret)
2733 		return ret;
2734 
2735 	pci_enable_wake(dev, PCI_D0, false);
2736 	return 0;
2737 }
2738 EXPORT_SYMBOL(pci_back_from_sleep);
2739 
2740 /**
2741  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2742  * @dev: PCI device being suspended.
2743  *
2744  * Prepare @dev to generate wake-up events at run time and put it into a low
2745  * power state.
2746  */
2747 int pci_finish_runtime_suspend(struct pci_dev *dev)
2748 {
2749 	pci_power_t target_state;
2750 	int error;
2751 
2752 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2753 	if (target_state == PCI_POWER_ERROR)
2754 		return -EIO;
2755 
2756 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2757 
2758 	error = pci_set_power_state(dev, target_state);
2759 
2760 	if (error)
2761 		pci_enable_wake(dev, target_state, false);
2762 
2763 	return error;
2764 }
2765 
2766 /**
2767  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2768  * @dev: Device to check.
2769  *
2770  * Return true if the device itself is capable of generating wake-up events
2771  * (through the platform or using the native PCIe PME) or if the device supports
2772  * PME and one of its upstream bridges can generate wake-up events.
2773  */
2774 bool pci_dev_run_wake(struct pci_dev *dev)
2775 {
2776 	struct pci_bus *bus = dev->bus;
2777 
2778 	if (!dev->pme_support)
2779 		return false;
2780 
2781 	/* PME-capable in principle, but not from the target power state */
2782 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2783 		return false;
2784 
2785 	if (device_can_wakeup(&dev->dev))
2786 		return true;
2787 
2788 	while (bus->parent) {
2789 		struct pci_dev *bridge = bus->self;
2790 
2791 		if (device_can_wakeup(&bridge->dev))
2792 			return true;
2793 
2794 		bus = bus->parent;
2795 	}
2796 
2797 	/* We have reached the root bus. */
2798 	if (bus->bridge)
2799 		return device_can_wakeup(bus->bridge);
2800 
2801 	return false;
2802 }
2803 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2804 
2805 /**
2806  * pci_dev_need_resume - Check if it is necessary to resume the device.
2807  * @pci_dev: Device to check.
2808  *
2809  * Return 'true' if the device is not runtime-suspended or it has to be
2810  * reconfigured due to wakeup settings difference between system and runtime
2811  * suspend, or the current power state of it is not suitable for the upcoming
2812  * (system-wide) transition.
2813  */
2814 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2815 {
2816 	struct device *dev = &pci_dev->dev;
2817 	pci_power_t target_state;
2818 
2819 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2820 		return true;
2821 
2822 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2823 
2824 	/*
2825 	 * If the earlier platform check has not triggered, D3cold is just power
2826 	 * removal on top of D3hot, so no need to resume the device in that
2827 	 * case.
2828 	 */
2829 	return target_state != pci_dev->current_state &&
2830 		target_state != PCI_D3cold &&
2831 		pci_dev->current_state != PCI_D3hot;
2832 }
2833 
2834 /**
2835  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2836  * @pci_dev: Device to check.
2837  *
2838  * If the device is suspended and it is not configured for system wakeup,
2839  * disable PME for it to prevent it from waking up the system unnecessarily.
2840  *
2841  * Note that if the device's power state is D3cold and the platform check in
2842  * pci_dev_need_resume() has not triggered, the device's configuration need not
2843  * be changed.
2844  */
2845 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2846 {
2847 	struct device *dev = &pci_dev->dev;
2848 
2849 	spin_lock_irq(&dev->power.lock);
2850 
2851 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2852 	    pci_dev->current_state < PCI_D3cold)
2853 		__pci_pme_active(pci_dev, false);
2854 
2855 	spin_unlock_irq(&dev->power.lock);
2856 }
2857 
2858 /**
2859  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2860  * @pci_dev: Device to handle.
2861  *
2862  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2863  * it might have been disabled during the prepare phase of system suspend if
2864  * the device was not configured for system wakeup.
2865  */
2866 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2867 {
2868 	struct device *dev = &pci_dev->dev;
2869 
2870 	if (!pci_dev_run_wake(pci_dev))
2871 		return;
2872 
2873 	spin_lock_irq(&dev->power.lock);
2874 
2875 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2876 		__pci_pme_active(pci_dev, true);
2877 
2878 	spin_unlock_irq(&dev->power.lock);
2879 }
2880 
2881 /**
2882  * pci_choose_state - Choose the power state of a PCI device.
2883  * @dev: Target PCI device.
2884  * @state: Target state for the whole system.
2885  *
2886  * Returns PCI power state suitable for @dev and @state.
2887  */
2888 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2889 {
2890 	if (state.event == PM_EVENT_ON)
2891 		return PCI_D0;
2892 
2893 	return pci_target_state(dev, false);
2894 }
2895 EXPORT_SYMBOL(pci_choose_state);
2896 
2897 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2898 {
2899 	struct device *dev = &pdev->dev;
2900 	struct device *parent = dev->parent;
2901 
2902 	if (parent)
2903 		pm_runtime_get_sync(parent);
2904 	pm_runtime_get_noresume(dev);
2905 	/*
2906 	 * pdev->current_state is set to PCI_D3cold during suspending,
2907 	 * so wait until suspending completes
2908 	 */
2909 	pm_runtime_barrier(dev);
2910 	/*
2911 	 * Only need to resume devices in D3cold, because config
2912 	 * registers are still accessible for devices suspended but
2913 	 * not in D3cold.
2914 	 */
2915 	if (pdev->current_state == PCI_D3cold)
2916 		pm_runtime_resume(dev);
2917 }
2918 
2919 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2920 {
2921 	struct device *dev = &pdev->dev;
2922 	struct device *parent = dev->parent;
2923 
2924 	pm_runtime_put(dev);
2925 	if (parent)
2926 		pm_runtime_put_sync(parent);
2927 }
2928 
2929 static const struct dmi_system_id bridge_d3_blacklist[] = {
2930 #ifdef CONFIG_X86
2931 	{
2932 		/*
2933 		 * Gigabyte X299 root port is not marked as hotplug capable
2934 		 * which allows Linux to power manage it.  However, this
2935 		 * confuses the BIOS SMI handler so don't power manage root
2936 		 * ports on that system.
2937 		 */
2938 		.ident = "X299 DESIGNARE EX-CF",
2939 		.matches = {
2940 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2941 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2942 		},
2943 	},
2944 	{
2945 		/*
2946 		 * Downstream device is not accessible after putting a root port
2947 		 * into D3cold and back into D0 on Elo Continental Z2 board
2948 		 */
2949 		.ident = "Elo Continental Z2",
2950 		.matches = {
2951 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2952 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2953 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2954 		},
2955 	},
2956 	{
2957 		/*
2958 		 * Changing power state of root port dGPU is connected fails
2959 		 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
2960 		 */
2961 		.ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
2962 		.matches = {
2963 			DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
2964 			DMI_MATCH(DMI_BOARD_NAME, "1972"),
2965 			DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
2966 		},
2967 	},
2968 #endif
2969 	{ }
2970 };
2971 
2972 /**
2973  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2974  * @bridge: Bridge to check
2975  *
2976  * This function checks if it is possible to move the bridge to D3.
2977  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2978  */
2979 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2980 {
2981 	if (!pci_is_pcie(bridge))
2982 		return false;
2983 
2984 	switch (pci_pcie_type(bridge)) {
2985 	case PCI_EXP_TYPE_ROOT_PORT:
2986 	case PCI_EXP_TYPE_UPSTREAM:
2987 	case PCI_EXP_TYPE_DOWNSTREAM:
2988 		if (pci_bridge_d3_disable)
2989 			return false;
2990 
2991 		/*
2992 		 * Hotplug ports handled by firmware in System Management Mode
2993 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2994 		 */
2995 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2996 			return false;
2997 
2998 		if (pci_bridge_d3_force)
2999 			return true;
3000 
3001 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3002 		if (bridge->is_thunderbolt)
3003 			return true;
3004 
3005 		/* Platform might know better if the bridge supports D3 */
3006 		if (platform_pci_bridge_d3(bridge))
3007 			return true;
3008 
3009 		/*
3010 		 * Hotplug ports handled natively by the OS were not validated
3011 		 * by vendors for runtime D3 at least until 2018 because there
3012 		 * was no OS support.
3013 		 */
3014 		if (bridge->is_hotplug_bridge)
3015 			return false;
3016 
3017 		if (dmi_check_system(bridge_d3_blacklist))
3018 			return false;
3019 
3020 		/*
3021 		 * It should be safe to put PCIe ports from 2015 or newer
3022 		 * to D3.
3023 		 */
3024 		if (dmi_get_bios_year() >= 2015)
3025 			return true;
3026 		break;
3027 	}
3028 
3029 	return false;
3030 }
3031 
3032 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3033 {
3034 	bool *d3cold_ok = data;
3035 
3036 	if (/* The device needs to be allowed to go D3cold ... */
3037 	    dev->no_d3cold || !dev->d3cold_allowed ||
3038 
3039 	    /* ... and if it is wakeup capable to do so from D3cold. */
3040 	    (device_may_wakeup(&dev->dev) &&
3041 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3042 
3043 	    /* If it is a bridge it must be allowed to go to D3. */
3044 	    !pci_power_manageable(dev))
3045 
3046 		*d3cold_ok = false;
3047 
3048 	return !*d3cold_ok;
3049 }
3050 
3051 /*
3052  * pci_bridge_d3_update - Update bridge D3 capabilities
3053  * @dev: PCI device which is changed
3054  *
3055  * Update upstream bridge PM capabilities accordingly depending on if the
3056  * device PM configuration was changed or the device is being removed.  The
3057  * change is also propagated upstream.
3058  */
3059 void pci_bridge_d3_update(struct pci_dev *dev)
3060 {
3061 	bool remove = !device_is_registered(&dev->dev);
3062 	struct pci_dev *bridge;
3063 	bool d3cold_ok = true;
3064 
3065 	bridge = pci_upstream_bridge(dev);
3066 	if (!bridge || !pci_bridge_d3_possible(bridge))
3067 		return;
3068 
3069 	/*
3070 	 * If D3 is currently allowed for the bridge, removing one of its
3071 	 * children won't change that.
3072 	 */
3073 	if (remove && bridge->bridge_d3)
3074 		return;
3075 
3076 	/*
3077 	 * If D3 is currently allowed for the bridge and a child is added or
3078 	 * changed, disallowance of D3 can only be caused by that child, so
3079 	 * we only need to check that single device, not any of its siblings.
3080 	 *
3081 	 * If D3 is currently not allowed for the bridge, checking the device
3082 	 * first may allow us to skip checking its siblings.
3083 	 */
3084 	if (!remove)
3085 		pci_dev_check_d3cold(dev, &d3cold_ok);
3086 
3087 	/*
3088 	 * If D3 is currently not allowed for the bridge, this may be caused
3089 	 * either by the device being changed/removed or any of its siblings,
3090 	 * so we need to go through all children to find out if one of them
3091 	 * continues to block D3.
3092 	 */
3093 	if (d3cold_ok && !bridge->bridge_d3)
3094 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3095 			     &d3cold_ok);
3096 
3097 	if (bridge->bridge_d3 != d3cold_ok) {
3098 		bridge->bridge_d3 = d3cold_ok;
3099 		/* Propagate change to upstream bridges */
3100 		pci_bridge_d3_update(bridge);
3101 	}
3102 }
3103 
3104 /**
3105  * pci_d3cold_enable - Enable D3cold for device
3106  * @dev: PCI device to handle
3107  *
3108  * This function can be used in drivers to enable D3cold from the device
3109  * they handle.  It also updates upstream PCI bridge PM capabilities
3110  * accordingly.
3111  */
3112 void pci_d3cold_enable(struct pci_dev *dev)
3113 {
3114 	if (dev->no_d3cold) {
3115 		dev->no_d3cold = false;
3116 		pci_bridge_d3_update(dev);
3117 	}
3118 }
3119 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3120 
3121 /**
3122  * pci_d3cold_disable - Disable D3cold for device
3123  * @dev: PCI device to handle
3124  *
3125  * This function can be used in drivers to disable D3cold from the device
3126  * they handle.  It also updates upstream PCI bridge PM capabilities
3127  * accordingly.
3128  */
3129 void pci_d3cold_disable(struct pci_dev *dev)
3130 {
3131 	if (!dev->no_d3cold) {
3132 		dev->no_d3cold = true;
3133 		pci_bridge_d3_update(dev);
3134 	}
3135 }
3136 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3137 
3138 /**
3139  * pci_pm_init - Initialize PM functions of given PCI device
3140  * @dev: PCI device to handle.
3141  */
3142 void pci_pm_init(struct pci_dev *dev)
3143 {
3144 	int pm;
3145 	u16 status;
3146 	u16 pmc;
3147 
3148 	pm_runtime_forbid(&dev->dev);
3149 	pm_runtime_set_active(&dev->dev);
3150 	pm_runtime_enable(&dev->dev);
3151 	device_enable_async_suspend(&dev->dev);
3152 	dev->wakeup_prepared = false;
3153 
3154 	dev->pm_cap = 0;
3155 	dev->pme_support = 0;
3156 
3157 	/* find PCI PM capability in list */
3158 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3159 	if (!pm)
3160 		return;
3161 	/* Check device's ability to generate PME# */
3162 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3163 
3164 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3165 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3166 			pmc & PCI_PM_CAP_VER_MASK);
3167 		return;
3168 	}
3169 
3170 	dev->pm_cap = pm;
3171 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3172 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3173 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3174 	dev->d3cold_allowed = true;
3175 
3176 	dev->d1_support = false;
3177 	dev->d2_support = false;
3178 	if (!pci_no_d1d2(dev)) {
3179 		if (pmc & PCI_PM_CAP_D1)
3180 			dev->d1_support = true;
3181 		if (pmc & PCI_PM_CAP_D2)
3182 			dev->d2_support = true;
3183 
3184 		if (dev->d1_support || dev->d2_support)
3185 			pci_info(dev, "supports%s%s\n",
3186 				   dev->d1_support ? " D1" : "",
3187 				   dev->d2_support ? " D2" : "");
3188 	}
3189 
3190 	pmc &= PCI_PM_CAP_PME_MASK;
3191 	if (pmc) {
3192 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3193 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3194 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3195 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3196 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3197 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3198 		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3199 		dev->pme_poll = true;
3200 		/*
3201 		 * Make device's PM flags reflect the wake-up capability, but
3202 		 * let the user space enable it to wake up the system as needed.
3203 		 */
3204 		device_set_wakeup_capable(&dev->dev, true);
3205 		/* Disable the PME# generation functionality */
3206 		pci_pme_active(dev, false);
3207 	}
3208 
3209 	pci_read_config_word(dev, PCI_STATUS, &status);
3210 	if (status & PCI_STATUS_IMM_READY)
3211 		dev->imm_ready = 1;
3212 }
3213 
3214 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3215 {
3216 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3217 
3218 	switch (prop) {
3219 	case PCI_EA_P_MEM:
3220 	case PCI_EA_P_VF_MEM:
3221 		flags |= IORESOURCE_MEM;
3222 		break;
3223 	case PCI_EA_P_MEM_PREFETCH:
3224 	case PCI_EA_P_VF_MEM_PREFETCH:
3225 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3226 		break;
3227 	case PCI_EA_P_IO:
3228 		flags |= IORESOURCE_IO;
3229 		break;
3230 	default:
3231 		return 0;
3232 	}
3233 
3234 	return flags;
3235 }
3236 
3237 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3238 					    u8 prop)
3239 {
3240 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3241 		return &dev->resource[bei];
3242 #ifdef CONFIG_PCI_IOV
3243 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3244 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3245 		return &dev->resource[PCI_IOV_RESOURCES +
3246 				      bei - PCI_EA_BEI_VF_BAR0];
3247 #endif
3248 	else if (bei == PCI_EA_BEI_ROM)
3249 		return &dev->resource[PCI_ROM_RESOURCE];
3250 	else
3251 		return NULL;
3252 }
3253 
3254 /* Read an Enhanced Allocation (EA) entry */
3255 static int pci_ea_read(struct pci_dev *dev, int offset)
3256 {
3257 	struct resource *res;
3258 	const char *res_name;
3259 	int ent_size, ent_offset = offset;
3260 	resource_size_t start, end;
3261 	unsigned long flags;
3262 	u32 dw0, bei, base, max_offset;
3263 	u8 prop;
3264 	bool support_64 = (sizeof(resource_size_t) >= 8);
3265 
3266 	pci_read_config_dword(dev, ent_offset, &dw0);
3267 	ent_offset += 4;
3268 
3269 	/* Entry size field indicates DWORDs after 1st */
3270 	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3271 
3272 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3273 		goto out;
3274 
3275 	bei = FIELD_GET(PCI_EA_BEI, dw0);
3276 	prop = FIELD_GET(PCI_EA_PP, dw0);
3277 
3278 	/*
3279 	 * If the Property is in the reserved range, try the Secondary
3280 	 * Property instead.
3281 	 */
3282 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3283 		prop = FIELD_GET(PCI_EA_SP, dw0);
3284 	if (prop > PCI_EA_P_BRIDGE_IO)
3285 		goto out;
3286 
3287 	res = pci_ea_get_resource(dev, bei, prop);
3288 	res_name = pci_resource_name(dev, bei);
3289 	if (!res) {
3290 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3291 		goto out;
3292 	}
3293 
3294 	flags = pci_ea_flags(dev, prop);
3295 	if (!flags) {
3296 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3297 		goto out;
3298 	}
3299 
3300 	/* Read Base */
3301 	pci_read_config_dword(dev, ent_offset, &base);
3302 	start = (base & PCI_EA_FIELD_MASK);
3303 	ent_offset += 4;
3304 
3305 	/* Read MaxOffset */
3306 	pci_read_config_dword(dev, ent_offset, &max_offset);
3307 	ent_offset += 4;
3308 
3309 	/* Read Base MSBs (if 64-bit entry) */
3310 	if (base & PCI_EA_IS_64) {
3311 		u32 base_upper;
3312 
3313 		pci_read_config_dword(dev, ent_offset, &base_upper);
3314 		ent_offset += 4;
3315 
3316 		flags |= IORESOURCE_MEM_64;
3317 
3318 		/* entry starts above 32-bit boundary, can't use */
3319 		if (!support_64 && base_upper)
3320 			goto out;
3321 
3322 		if (support_64)
3323 			start |= ((u64)base_upper << 32);
3324 	}
3325 
3326 	end = start + (max_offset | 0x03);
3327 
3328 	/* Read MaxOffset MSBs (if 64-bit entry) */
3329 	if (max_offset & PCI_EA_IS_64) {
3330 		u32 max_offset_upper;
3331 
3332 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3333 		ent_offset += 4;
3334 
3335 		flags |= IORESOURCE_MEM_64;
3336 
3337 		/* entry too big, can't use */
3338 		if (!support_64 && max_offset_upper)
3339 			goto out;
3340 
3341 		if (support_64)
3342 			end += ((u64)max_offset_upper << 32);
3343 	}
3344 
3345 	if (end < start) {
3346 		pci_err(dev, "EA Entry crosses address boundary\n");
3347 		goto out;
3348 	}
3349 
3350 	if (ent_size != ent_offset - offset) {
3351 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3352 			ent_size, ent_offset - offset);
3353 		goto out;
3354 	}
3355 
3356 	res->name = pci_name(dev);
3357 	res->start = start;
3358 	res->end = end;
3359 	res->flags = flags;
3360 
3361 	if (bei <= PCI_EA_BEI_BAR5)
3362 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3363 			 res_name, res, prop);
3364 	else if (bei == PCI_EA_BEI_ROM)
3365 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3366 			 res_name, res, prop);
3367 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3368 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3369 			 res_name, res, prop);
3370 	else
3371 		pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3372 			   bei, res, prop);
3373 
3374 out:
3375 	return offset + ent_size;
3376 }
3377 
3378 /* Enhanced Allocation Initialization */
3379 void pci_ea_init(struct pci_dev *dev)
3380 {
3381 	int ea;
3382 	u8 num_ent;
3383 	int offset;
3384 	int i;
3385 
3386 	/* find PCI EA capability in list */
3387 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3388 	if (!ea)
3389 		return;
3390 
3391 	/* determine the number of entries */
3392 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3393 					&num_ent);
3394 	num_ent &= PCI_EA_NUM_ENT_MASK;
3395 
3396 	offset = ea + PCI_EA_FIRST_ENT;
3397 
3398 	/* Skip DWORD 2 for type 1 functions */
3399 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3400 		offset += 4;
3401 
3402 	/* parse each EA entry */
3403 	for (i = 0; i < num_ent; ++i)
3404 		offset = pci_ea_read(dev, offset);
3405 }
3406 
3407 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3408 	struct pci_cap_saved_state *new_cap)
3409 {
3410 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3411 }
3412 
3413 /**
3414  * _pci_add_cap_save_buffer - allocate buffer for saving given
3415  *			      capability registers
3416  * @dev: the PCI device
3417  * @cap: the capability to allocate the buffer for
3418  * @extended: Standard or Extended capability ID
3419  * @size: requested size of the buffer
3420  */
3421 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3422 				    bool extended, unsigned int size)
3423 {
3424 	int pos;
3425 	struct pci_cap_saved_state *save_state;
3426 
3427 	if (extended)
3428 		pos = pci_find_ext_capability(dev, cap);
3429 	else
3430 		pos = pci_find_capability(dev, cap);
3431 
3432 	if (!pos)
3433 		return 0;
3434 
3435 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3436 	if (!save_state)
3437 		return -ENOMEM;
3438 
3439 	save_state->cap.cap_nr = cap;
3440 	save_state->cap.cap_extended = extended;
3441 	save_state->cap.size = size;
3442 	pci_add_saved_cap(dev, save_state);
3443 
3444 	return 0;
3445 }
3446 
3447 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3448 {
3449 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3450 }
3451 
3452 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3453 {
3454 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3455 }
3456 
3457 /**
3458  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3459  * @dev: the PCI device
3460  */
3461 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3462 {
3463 	int error;
3464 
3465 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3466 					PCI_EXP_SAVE_REGS * sizeof(u16));
3467 	if (error)
3468 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3469 
3470 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3471 	if (error)
3472 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3473 
3474 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3475 					    2 * sizeof(u16));
3476 	if (error)
3477 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3478 
3479 	pci_allocate_vc_save_buffers(dev);
3480 }
3481 
3482 void pci_free_cap_save_buffers(struct pci_dev *dev)
3483 {
3484 	struct pci_cap_saved_state *tmp;
3485 	struct hlist_node *n;
3486 
3487 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3488 		kfree(tmp);
3489 }
3490 
3491 /**
3492  * pci_configure_ari - enable or disable ARI forwarding
3493  * @dev: the PCI device
3494  *
3495  * If @dev and its upstream bridge both support ARI, enable ARI in the
3496  * bridge.  Otherwise, disable ARI in the bridge.
3497  */
3498 void pci_configure_ari(struct pci_dev *dev)
3499 {
3500 	u32 cap;
3501 	struct pci_dev *bridge;
3502 
3503 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3504 		return;
3505 
3506 	bridge = dev->bus->self;
3507 	if (!bridge)
3508 		return;
3509 
3510 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3511 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3512 		return;
3513 
3514 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3515 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3516 					 PCI_EXP_DEVCTL2_ARI);
3517 		bridge->ari_enabled = 1;
3518 	} else {
3519 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3520 					   PCI_EXP_DEVCTL2_ARI);
3521 		bridge->ari_enabled = 0;
3522 	}
3523 }
3524 
3525 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3526 {
3527 	int pos;
3528 	u16 cap, ctrl;
3529 
3530 	pos = pdev->acs_cap;
3531 	if (!pos)
3532 		return false;
3533 
3534 	/*
3535 	 * Except for egress control, capabilities are either required
3536 	 * or only required if controllable.  Features missing from the
3537 	 * capability field can therefore be assumed as hard-wired enabled.
3538 	 */
3539 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3540 	acs_flags &= (cap | PCI_ACS_EC);
3541 
3542 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3543 	return (ctrl & acs_flags) == acs_flags;
3544 }
3545 
3546 /**
3547  * pci_acs_enabled - test ACS against required flags for a given device
3548  * @pdev: device to test
3549  * @acs_flags: required PCI ACS flags
3550  *
3551  * Return true if the device supports the provided flags.  Automatically
3552  * filters out flags that are not implemented on multifunction devices.
3553  *
3554  * Note that this interface checks the effective ACS capabilities of the
3555  * device rather than the actual capabilities.  For instance, most single
3556  * function endpoints are not required to support ACS because they have no
3557  * opportunity for peer-to-peer access.  We therefore return 'true'
3558  * regardless of whether the device exposes an ACS capability.  This makes
3559  * it much easier for callers of this function to ignore the actual type
3560  * or topology of the device when testing ACS support.
3561  */
3562 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3563 {
3564 	int ret;
3565 
3566 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3567 	if (ret >= 0)
3568 		return ret > 0;
3569 
3570 	/*
3571 	 * Conventional PCI and PCI-X devices never support ACS, either
3572 	 * effectively or actually.  The shared bus topology implies that
3573 	 * any device on the bus can receive or snoop DMA.
3574 	 */
3575 	if (!pci_is_pcie(pdev))
3576 		return false;
3577 
3578 	switch (pci_pcie_type(pdev)) {
3579 	/*
3580 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3581 	 * but since their primary interface is PCI/X, we conservatively
3582 	 * handle them as we would a non-PCIe device.
3583 	 */
3584 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3585 	/*
3586 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3587 	 * applicable... must never implement an ACS Extended Capability...".
3588 	 * This seems arbitrary, but we take a conservative interpretation
3589 	 * of this statement.
3590 	 */
3591 	case PCI_EXP_TYPE_PCI_BRIDGE:
3592 	case PCI_EXP_TYPE_RC_EC:
3593 		return false;
3594 	/*
3595 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3596 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3597 	 * regardless of whether they are single- or multi-function devices.
3598 	 */
3599 	case PCI_EXP_TYPE_DOWNSTREAM:
3600 	case PCI_EXP_TYPE_ROOT_PORT:
3601 		return pci_acs_flags_enabled(pdev, acs_flags);
3602 	/*
3603 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3604 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3605 	 * capabilities, but only when they are part of a multifunction
3606 	 * device.  The footnote for section 6.12 indicates the specific
3607 	 * PCIe types included here.
3608 	 */
3609 	case PCI_EXP_TYPE_ENDPOINT:
3610 	case PCI_EXP_TYPE_UPSTREAM:
3611 	case PCI_EXP_TYPE_LEG_END:
3612 	case PCI_EXP_TYPE_RC_END:
3613 		if (!pdev->multifunction)
3614 			break;
3615 
3616 		return pci_acs_flags_enabled(pdev, acs_flags);
3617 	}
3618 
3619 	/*
3620 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3621 	 * to single function devices with the exception of downstream ports.
3622 	 */
3623 	return true;
3624 }
3625 
3626 /**
3627  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3628  * @start: starting downstream device
3629  * @end: ending upstream device or NULL to search to the root bus
3630  * @acs_flags: required flags
3631  *
3632  * Walk up a device tree from start to end testing PCI ACS support.  If
3633  * any step along the way does not support the required flags, return false.
3634  */
3635 bool pci_acs_path_enabled(struct pci_dev *start,
3636 			  struct pci_dev *end, u16 acs_flags)
3637 {
3638 	struct pci_dev *pdev, *parent = start;
3639 
3640 	do {
3641 		pdev = parent;
3642 
3643 		if (!pci_acs_enabled(pdev, acs_flags))
3644 			return false;
3645 
3646 		if (pci_is_root_bus(pdev->bus))
3647 			return (end == NULL);
3648 
3649 		parent = pdev->bus->self;
3650 	} while (pdev != end);
3651 
3652 	return true;
3653 }
3654 
3655 /**
3656  * pci_acs_init - Initialize ACS if hardware supports it
3657  * @dev: the PCI device
3658  */
3659 void pci_acs_init(struct pci_dev *dev)
3660 {
3661 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3662 
3663 	/*
3664 	 * Attempt to enable ACS regardless of capability because some Root
3665 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3666 	 * the standard ACS capability but still support ACS via those
3667 	 * quirks.
3668 	 */
3669 	pci_enable_acs(dev);
3670 }
3671 
3672 /**
3673  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3674  * @pdev: PCI device
3675  * @bar: BAR to find
3676  *
3677  * Helper to find the position of the ctrl register for a BAR.
3678  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3679  * Returns -ENOENT if no ctrl register for the BAR could be found.
3680  */
3681 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3682 {
3683 	unsigned int pos, nbars, i;
3684 	u32 ctrl;
3685 
3686 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3687 	if (!pos)
3688 		return -ENOTSUPP;
3689 
3690 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3691 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3692 
3693 	for (i = 0; i < nbars; i++, pos += 8) {
3694 		int bar_idx;
3695 
3696 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3697 		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3698 		if (bar_idx == bar)
3699 			return pos;
3700 	}
3701 
3702 	return -ENOENT;
3703 }
3704 
3705 /**
3706  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3707  * @pdev: PCI device
3708  * @bar: BAR to query
3709  *
3710  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3711  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3712  */
3713 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3714 {
3715 	int pos;
3716 	u32 cap;
3717 
3718 	pos = pci_rebar_find_pos(pdev, bar);
3719 	if (pos < 0)
3720 		return 0;
3721 
3722 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3723 	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3724 
3725 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3726 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3727 	    bar == 0 && cap == 0x700)
3728 		return 0x3f00;
3729 
3730 	return cap;
3731 }
3732 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3733 
3734 /**
3735  * pci_rebar_get_current_size - get the current size of a BAR
3736  * @pdev: PCI device
3737  * @bar: BAR to set size to
3738  *
3739  * Read the size of a BAR from the resizable BAR config.
3740  * Returns size if found or negative error code.
3741  */
3742 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3743 {
3744 	int pos;
3745 	u32 ctrl;
3746 
3747 	pos = pci_rebar_find_pos(pdev, bar);
3748 	if (pos < 0)
3749 		return pos;
3750 
3751 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3752 	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3753 }
3754 
3755 /**
3756  * pci_rebar_set_size - set a new size for a BAR
3757  * @pdev: PCI device
3758  * @bar: BAR to set size to
3759  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3760  *
3761  * Set the new size of a BAR as defined in the spec.
3762  * Returns zero if resizing was successful, error code otherwise.
3763  */
3764 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3765 {
3766 	int pos;
3767 	u32 ctrl;
3768 
3769 	pos = pci_rebar_find_pos(pdev, bar);
3770 	if (pos < 0)
3771 		return pos;
3772 
3773 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3774 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3775 	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3776 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3777 	return 0;
3778 }
3779 
3780 /**
3781  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3782  * @dev: the PCI device
3783  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3784  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3785  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3786  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3787  *
3788  * Return 0 if all upstream bridges support AtomicOp routing, egress
3789  * blocking is disabled on all upstream ports, and the root port supports
3790  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3791  * AtomicOp completion), or negative otherwise.
3792  */
3793 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3794 {
3795 	struct pci_bus *bus = dev->bus;
3796 	struct pci_dev *bridge;
3797 	u32 cap, ctl2;
3798 
3799 	/*
3800 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3801 	 * in Device Control 2 is reserved in VFs and the PF value applies
3802 	 * to all associated VFs.
3803 	 */
3804 	if (dev->is_virtfn)
3805 		return -EINVAL;
3806 
3807 	if (!pci_is_pcie(dev))
3808 		return -EINVAL;
3809 
3810 	/*
3811 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3812 	 * AtomicOp requesters.  For now, we only support endpoints as
3813 	 * requesters and root ports as completers.  No endpoints as
3814 	 * completers, and no peer-to-peer.
3815 	 */
3816 
3817 	switch (pci_pcie_type(dev)) {
3818 	case PCI_EXP_TYPE_ENDPOINT:
3819 	case PCI_EXP_TYPE_LEG_END:
3820 	case PCI_EXP_TYPE_RC_END:
3821 		break;
3822 	default:
3823 		return -EINVAL;
3824 	}
3825 
3826 	while (bus->parent) {
3827 		bridge = bus->self;
3828 
3829 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3830 
3831 		switch (pci_pcie_type(bridge)) {
3832 		/* Ensure switch ports support AtomicOp routing */
3833 		case PCI_EXP_TYPE_UPSTREAM:
3834 		case PCI_EXP_TYPE_DOWNSTREAM:
3835 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3836 				return -EINVAL;
3837 			break;
3838 
3839 		/* Ensure root port supports all the sizes we care about */
3840 		case PCI_EXP_TYPE_ROOT_PORT:
3841 			if ((cap & cap_mask) != cap_mask)
3842 				return -EINVAL;
3843 			break;
3844 		}
3845 
3846 		/* Ensure upstream ports don't block AtomicOps on egress */
3847 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3848 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3849 						   &ctl2);
3850 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3851 				return -EINVAL;
3852 		}
3853 
3854 		bus = bus->parent;
3855 	}
3856 
3857 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3858 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3859 	return 0;
3860 }
3861 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3862 
3863 /**
3864  * pci_release_region - Release a PCI bar
3865  * @pdev: PCI device whose resources were previously reserved by
3866  *	  pci_request_region()
3867  * @bar: BAR to release
3868  *
3869  * Releases the PCI I/O and memory resources previously reserved by a
3870  * successful call to pci_request_region().  Call this function only
3871  * after all use of the PCI regions has ceased.
3872  */
3873 void pci_release_region(struct pci_dev *pdev, int bar)
3874 {
3875 	struct pci_devres *dr;
3876 
3877 	if (pci_resource_len(pdev, bar) == 0)
3878 		return;
3879 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3880 		release_region(pci_resource_start(pdev, bar),
3881 				pci_resource_len(pdev, bar));
3882 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3883 		release_mem_region(pci_resource_start(pdev, bar),
3884 				pci_resource_len(pdev, bar));
3885 
3886 	dr = find_pci_dr(pdev);
3887 	if (dr)
3888 		dr->region_mask &= ~(1 << bar);
3889 }
3890 EXPORT_SYMBOL(pci_release_region);
3891 
3892 /**
3893  * __pci_request_region - Reserved PCI I/O and memory resource
3894  * @pdev: PCI device whose resources are to be reserved
3895  * @bar: BAR to be reserved
3896  * @res_name: Name to be associated with resource.
3897  * @exclusive: whether the region access is exclusive or not
3898  *
3899  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3900  * being reserved by owner @res_name.  Do not access any
3901  * address inside the PCI regions unless this call returns
3902  * successfully.
3903  *
3904  * If @exclusive is set, then the region is marked so that userspace
3905  * is explicitly not allowed to map the resource via /dev/mem or
3906  * sysfs MMIO access.
3907  *
3908  * Returns 0 on success, or %EBUSY on error.  A warning
3909  * message is also printed on failure.
3910  */
3911 static int __pci_request_region(struct pci_dev *pdev, int bar,
3912 				const char *res_name, int exclusive)
3913 {
3914 	struct pci_devres *dr;
3915 
3916 	if (pci_resource_len(pdev, bar) == 0)
3917 		return 0;
3918 
3919 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3920 		if (!request_region(pci_resource_start(pdev, bar),
3921 			    pci_resource_len(pdev, bar), res_name))
3922 			goto err_out;
3923 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3924 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3925 					pci_resource_len(pdev, bar), res_name,
3926 					exclusive))
3927 			goto err_out;
3928 	}
3929 
3930 	dr = find_pci_dr(pdev);
3931 	if (dr)
3932 		dr->region_mask |= 1 << bar;
3933 
3934 	return 0;
3935 
3936 err_out:
3937 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3938 		 &pdev->resource[bar]);
3939 	return -EBUSY;
3940 }
3941 
3942 /**
3943  * pci_request_region - Reserve PCI I/O and memory resource
3944  * @pdev: PCI device whose resources are to be reserved
3945  * @bar: BAR to be reserved
3946  * @res_name: Name to be associated with resource
3947  *
3948  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3949  * being reserved by owner @res_name.  Do not access any
3950  * address inside the PCI regions unless this call returns
3951  * successfully.
3952  *
3953  * Returns 0 on success, or %EBUSY on error.  A warning
3954  * message is also printed on failure.
3955  */
3956 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3957 {
3958 	return __pci_request_region(pdev, bar, res_name, 0);
3959 }
3960 EXPORT_SYMBOL(pci_request_region);
3961 
3962 /**
3963  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3964  * @pdev: PCI device whose resources were previously reserved
3965  * @bars: Bitmask of BARs to be released
3966  *
3967  * Release selected PCI I/O and memory resources previously reserved.
3968  * Call this function only after all use of the PCI regions has ceased.
3969  */
3970 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3971 {
3972 	int i;
3973 
3974 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3975 		if (bars & (1 << i))
3976 			pci_release_region(pdev, i);
3977 }
3978 EXPORT_SYMBOL(pci_release_selected_regions);
3979 
3980 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3981 					  const char *res_name, int excl)
3982 {
3983 	int i;
3984 
3985 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3986 		if (bars & (1 << i))
3987 			if (__pci_request_region(pdev, i, res_name, excl))
3988 				goto err_out;
3989 	return 0;
3990 
3991 err_out:
3992 	while (--i >= 0)
3993 		if (bars & (1 << i))
3994 			pci_release_region(pdev, i);
3995 
3996 	return -EBUSY;
3997 }
3998 
3999 
4000 /**
4001  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4002  * @pdev: PCI device whose resources are to be reserved
4003  * @bars: Bitmask of BARs to be requested
4004  * @res_name: Name to be associated with resource
4005  */
4006 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4007 				 const char *res_name)
4008 {
4009 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4010 }
4011 EXPORT_SYMBOL(pci_request_selected_regions);
4012 
4013 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4014 					   const char *res_name)
4015 {
4016 	return __pci_request_selected_regions(pdev, bars, res_name,
4017 			IORESOURCE_EXCLUSIVE);
4018 }
4019 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4020 
4021 /**
4022  * pci_release_regions - Release reserved PCI I/O and memory resources
4023  * @pdev: PCI device whose resources were previously reserved by
4024  *	  pci_request_regions()
4025  *
4026  * Releases all PCI I/O and memory resources previously reserved by a
4027  * successful call to pci_request_regions().  Call this function only
4028  * after all use of the PCI regions has ceased.
4029  */
4030 
4031 void pci_release_regions(struct pci_dev *pdev)
4032 {
4033 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4034 }
4035 EXPORT_SYMBOL(pci_release_regions);
4036 
4037 /**
4038  * pci_request_regions - Reserve PCI I/O and memory resources
4039  * @pdev: PCI device whose resources are to be reserved
4040  * @res_name: Name to be associated with resource.
4041  *
4042  * Mark all PCI regions associated with PCI device @pdev as
4043  * being reserved by owner @res_name.  Do not access any
4044  * address inside the PCI regions unless this call returns
4045  * successfully.
4046  *
4047  * Returns 0 on success, or %EBUSY on error.  A warning
4048  * message is also printed on failure.
4049  */
4050 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4051 {
4052 	return pci_request_selected_regions(pdev,
4053 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4054 }
4055 EXPORT_SYMBOL(pci_request_regions);
4056 
4057 /**
4058  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4059  * @pdev: PCI device whose resources are to be reserved
4060  * @res_name: Name to be associated with resource.
4061  *
4062  * Mark all PCI regions associated with PCI device @pdev as being reserved
4063  * by owner @res_name.  Do not access any address inside the PCI regions
4064  * unless this call returns successfully.
4065  *
4066  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4067  * and the sysfs MMIO access will not be allowed.
4068  *
4069  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4070  * printed on failure.
4071  */
4072 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4073 {
4074 	return pci_request_selected_regions_exclusive(pdev,
4075 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4076 }
4077 EXPORT_SYMBOL(pci_request_regions_exclusive);
4078 
4079 /*
4080  * Record the PCI IO range (expressed as CPU physical address + size).
4081  * Return a negative value if an error has occurred, zero otherwise
4082  */
4083 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4084 			resource_size_t	size)
4085 {
4086 	int ret = 0;
4087 #ifdef PCI_IOBASE
4088 	struct logic_pio_hwaddr *range;
4089 
4090 	if (!size || addr + size < addr)
4091 		return -EINVAL;
4092 
4093 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4094 	if (!range)
4095 		return -ENOMEM;
4096 
4097 	range->fwnode = fwnode;
4098 	range->size = size;
4099 	range->hw_start = addr;
4100 	range->flags = LOGIC_PIO_CPU_MMIO;
4101 
4102 	ret = logic_pio_register_range(range);
4103 	if (ret)
4104 		kfree(range);
4105 
4106 	/* Ignore duplicates due to deferred probing */
4107 	if (ret == -EEXIST)
4108 		ret = 0;
4109 #endif
4110 
4111 	return ret;
4112 }
4113 
4114 phys_addr_t pci_pio_to_address(unsigned long pio)
4115 {
4116 #ifdef PCI_IOBASE
4117 	if (pio < MMIO_UPPER_LIMIT)
4118 		return logic_pio_to_hwaddr(pio);
4119 #endif
4120 
4121 	return (phys_addr_t) OF_BAD_ADDR;
4122 }
4123 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4124 
4125 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4126 {
4127 #ifdef PCI_IOBASE
4128 	return logic_pio_trans_cpuaddr(address);
4129 #else
4130 	if (address > IO_SPACE_LIMIT)
4131 		return (unsigned long)-1;
4132 
4133 	return (unsigned long) address;
4134 #endif
4135 }
4136 
4137 /**
4138  * pci_remap_iospace - Remap the memory mapped I/O space
4139  * @res: Resource describing the I/O space
4140  * @phys_addr: physical address of range to be mapped
4141  *
4142  * Remap the memory mapped I/O space described by the @res and the CPU
4143  * physical address @phys_addr into virtual address space.  Only
4144  * architectures that have memory mapped IO functions defined (and the
4145  * PCI_IOBASE value defined) should call this function.
4146  */
4147 #ifndef pci_remap_iospace
4148 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4149 {
4150 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4151 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4152 
4153 	if (!(res->flags & IORESOURCE_IO))
4154 		return -EINVAL;
4155 
4156 	if (res->end > IO_SPACE_LIMIT)
4157 		return -EINVAL;
4158 
4159 	return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4160 			       pgprot_device(PAGE_KERNEL));
4161 #else
4162 	/*
4163 	 * This architecture does not have memory mapped I/O space,
4164 	 * so this function should never be called
4165 	 */
4166 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4167 	return -ENODEV;
4168 #endif
4169 }
4170 EXPORT_SYMBOL(pci_remap_iospace);
4171 #endif
4172 
4173 /**
4174  * pci_unmap_iospace - Unmap the memory mapped I/O space
4175  * @res: resource to be unmapped
4176  *
4177  * Unmap the CPU virtual address @res from virtual address space.  Only
4178  * architectures that have memory mapped IO functions defined (and the
4179  * PCI_IOBASE value defined) should call this function.
4180  */
4181 void pci_unmap_iospace(struct resource *res)
4182 {
4183 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4184 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4185 
4186 	vunmap_range(vaddr, vaddr + resource_size(res));
4187 #endif
4188 }
4189 EXPORT_SYMBOL(pci_unmap_iospace);
4190 
4191 static void __pci_set_master(struct pci_dev *dev, bool enable)
4192 {
4193 	u16 old_cmd, cmd;
4194 
4195 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4196 	if (enable)
4197 		cmd = old_cmd | PCI_COMMAND_MASTER;
4198 	else
4199 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4200 	if (cmd != old_cmd) {
4201 		pci_dbg(dev, "%s bus mastering\n",
4202 			enable ? "enabling" : "disabling");
4203 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4204 	}
4205 	dev->is_busmaster = enable;
4206 }
4207 
4208 /**
4209  * pcibios_setup - process "pci=" kernel boot arguments
4210  * @str: string used to pass in "pci=" kernel boot arguments
4211  *
4212  * Process kernel boot arguments.  This is the default implementation.
4213  * Architecture specific implementations can override this as necessary.
4214  */
4215 char * __weak __init pcibios_setup(char *str)
4216 {
4217 	return str;
4218 }
4219 
4220 /**
4221  * pcibios_set_master - enable PCI bus-mastering for device dev
4222  * @dev: the PCI device to enable
4223  *
4224  * Enables PCI bus-mastering for the device.  This is the default
4225  * implementation.  Architecture specific implementations can override
4226  * this if necessary.
4227  */
4228 void __weak pcibios_set_master(struct pci_dev *dev)
4229 {
4230 	u8 lat;
4231 
4232 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4233 	if (pci_is_pcie(dev))
4234 		return;
4235 
4236 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4237 	if (lat < 16)
4238 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4239 	else if (lat > pcibios_max_latency)
4240 		lat = pcibios_max_latency;
4241 	else
4242 		return;
4243 
4244 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4245 }
4246 
4247 /**
4248  * pci_set_master - enables bus-mastering for device dev
4249  * @dev: the PCI device to enable
4250  *
4251  * Enables bus-mastering on the device and calls pcibios_set_master()
4252  * to do the needed arch specific settings.
4253  */
4254 void pci_set_master(struct pci_dev *dev)
4255 {
4256 	__pci_set_master(dev, true);
4257 	pcibios_set_master(dev);
4258 }
4259 EXPORT_SYMBOL(pci_set_master);
4260 
4261 /**
4262  * pci_clear_master - disables bus-mastering for device dev
4263  * @dev: the PCI device to disable
4264  */
4265 void pci_clear_master(struct pci_dev *dev)
4266 {
4267 	__pci_set_master(dev, false);
4268 }
4269 EXPORT_SYMBOL(pci_clear_master);
4270 
4271 /**
4272  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4273  * @dev: the PCI device for which MWI is to be enabled
4274  *
4275  * Helper function for pci_set_mwi.
4276  * Originally copied from drivers/net/acenic.c.
4277  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4278  *
4279  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4280  */
4281 int pci_set_cacheline_size(struct pci_dev *dev)
4282 {
4283 	u8 cacheline_size;
4284 
4285 	if (!pci_cache_line_size)
4286 		return -EINVAL;
4287 
4288 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4289 	   equal to or multiple of the right value. */
4290 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4291 	if (cacheline_size >= pci_cache_line_size &&
4292 	    (cacheline_size % pci_cache_line_size) == 0)
4293 		return 0;
4294 
4295 	/* Write the correct value. */
4296 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4297 	/* Read it back. */
4298 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4299 	if (cacheline_size == pci_cache_line_size)
4300 		return 0;
4301 
4302 	pci_dbg(dev, "cache line size of %d is not supported\n",
4303 		   pci_cache_line_size << 2);
4304 
4305 	return -EINVAL;
4306 }
4307 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4308 
4309 /**
4310  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4311  * @dev: the PCI device for which MWI is enabled
4312  *
4313  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4314  *
4315  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4316  */
4317 int pci_set_mwi(struct pci_dev *dev)
4318 {
4319 #ifdef PCI_DISABLE_MWI
4320 	return 0;
4321 #else
4322 	int rc;
4323 	u16 cmd;
4324 
4325 	rc = pci_set_cacheline_size(dev);
4326 	if (rc)
4327 		return rc;
4328 
4329 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4330 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4331 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4332 		cmd |= PCI_COMMAND_INVALIDATE;
4333 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4334 	}
4335 	return 0;
4336 #endif
4337 }
4338 EXPORT_SYMBOL(pci_set_mwi);
4339 
4340 /**
4341  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4342  * @dev: the PCI device for which MWI is enabled
4343  *
4344  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4345  * Callers are not required to check the return value.
4346  *
4347  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4348  */
4349 int pci_try_set_mwi(struct pci_dev *dev)
4350 {
4351 #ifdef PCI_DISABLE_MWI
4352 	return 0;
4353 #else
4354 	return pci_set_mwi(dev);
4355 #endif
4356 }
4357 EXPORT_SYMBOL(pci_try_set_mwi);
4358 
4359 /**
4360  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4361  * @dev: the PCI device to disable
4362  *
4363  * Disables PCI Memory-Write-Invalidate transaction on the device
4364  */
4365 void pci_clear_mwi(struct pci_dev *dev)
4366 {
4367 #ifndef PCI_DISABLE_MWI
4368 	u16 cmd;
4369 
4370 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4371 	if (cmd & PCI_COMMAND_INVALIDATE) {
4372 		cmd &= ~PCI_COMMAND_INVALIDATE;
4373 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4374 	}
4375 #endif
4376 }
4377 EXPORT_SYMBOL(pci_clear_mwi);
4378 
4379 /**
4380  * pci_disable_parity - disable parity checking for device
4381  * @dev: the PCI device to operate on
4382  *
4383  * Disable parity checking for device @dev
4384  */
4385 void pci_disable_parity(struct pci_dev *dev)
4386 {
4387 	u16 cmd;
4388 
4389 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4390 	if (cmd & PCI_COMMAND_PARITY) {
4391 		cmd &= ~PCI_COMMAND_PARITY;
4392 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4393 	}
4394 }
4395 
4396 /**
4397  * pci_intx - enables/disables PCI INTx for device dev
4398  * @pdev: the PCI device to operate on
4399  * @enable: boolean: whether to enable or disable PCI INTx
4400  *
4401  * Enables/disables PCI INTx for device @pdev
4402  */
4403 void pci_intx(struct pci_dev *pdev, int enable)
4404 {
4405 	u16 pci_command, new;
4406 
4407 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4408 
4409 	if (enable)
4410 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4411 	else
4412 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4413 
4414 	if (new != pci_command) {
4415 		struct pci_devres *dr;
4416 
4417 		pci_write_config_word(pdev, PCI_COMMAND, new);
4418 
4419 		dr = find_pci_dr(pdev);
4420 		if (dr && !dr->restore_intx) {
4421 			dr->restore_intx = 1;
4422 			dr->orig_intx = !enable;
4423 		}
4424 	}
4425 }
4426 EXPORT_SYMBOL_GPL(pci_intx);
4427 
4428 /**
4429  * pci_wait_for_pending_transaction - wait for pending transaction
4430  * @dev: the PCI device to operate on
4431  *
4432  * Return 0 if transaction is pending 1 otherwise.
4433  */
4434 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4435 {
4436 	if (!pci_is_pcie(dev))
4437 		return 1;
4438 
4439 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4440 				    PCI_EXP_DEVSTA_TRPND);
4441 }
4442 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4443 
4444 /**
4445  * pcie_flr - initiate a PCIe function level reset
4446  * @dev: device to reset
4447  *
4448  * Initiate a function level reset unconditionally on @dev without
4449  * checking any flags and DEVCAP
4450  */
4451 int pcie_flr(struct pci_dev *dev)
4452 {
4453 	if (!pci_wait_for_pending_transaction(dev))
4454 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4455 
4456 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4457 
4458 	if (dev->imm_ready)
4459 		return 0;
4460 
4461 	/*
4462 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4463 	 * 100ms, but may silently discard requests while the FLR is in
4464 	 * progress.  Wait 100ms before trying to access the device.
4465 	 */
4466 	msleep(100);
4467 
4468 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4469 }
4470 EXPORT_SYMBOL_GPL(pcie_flr);
4471 
4472 /**
4473  * pcie_reset_flr - initiate a PCIe function level reset
4474  * @dev: device to reset
4475  * @probe: if true, return 0 if device can be reset this way
4476  *
4477  * Initiate a function level reset on @dev.
4478  */
4479 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4480 {
4481 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4482 		return -ENOTTY;
4483 
4484 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4485 		return -ENOTTY;
4486 
4487 	if (probe)
4488 		return 0;
4489 
4490 	return pcie_flr(dev);
4491 }
4492 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4493 
4494 static int pci_af_flr(struct pci_dev *dev, bool probe)
4495 {
4496 	int pos;
4497 	u8 cap;
4498 
4499 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4500 	if (!pos)
4501 		return -ENOTTY;
4502 
4503 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4504 		return -ENOTTY;
4505 
4506 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4507 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4508 		return -ENOTTY;
4509 
4510 	if (probe)
4511 		return 0;
4512 
4513 	/*
4514 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4515 	 * is used, so we use the control offset rather than status and shift
4516 	 * the test bit to match.
4517 	 */
4518 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4519 				 PCI_AF_STATUS_TP << 8))
4520 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4521 
4522 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4523 
4524 	if (dev->imm_ready)
4525 		return 0;
4526 
4527 	/*
4528 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4529 	 * updated 27 July 2006; a device must complete an FLR within
4530 	 * 100ms, but may silently discard requests while the FLR is in
4531 	 * progress.  Wait 100ms before trying to access the device.
4532 	 */
4533 	msleep(100);
4534 
4535 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4536 }
4537 
4538 /**
4539  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4540  * @dev: Device to reset.
4541  * @probe: if true, return 0 if the device can be reset this way.
4542  *
4543  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4544  * unset, it will be reinitialized internally when going from PCI_D3hot to
4545  * PCI_D0.  If that's the case and the device is not in a low-power state
4546  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4547  *
4548  * NOTE: This causes the caller to sleep for twice the device power transition
4549  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4550  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4551  * Moreover, only devices in D0 can be reset by this function.
4552  */
4553 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4554 {
4555 	u16 csr;
4556 
4557 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4558 		return -ENOTTY;
4559 
4560 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4561 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4562 		return -ENOTTY;
4563 
4564 	if (probe)
4565 		return 0;
4566 
4567 	if (dev->current_state != PCI_D0)
4568 		return -EINVAL;
4569 
4570 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4571 	csr |= PCI_D3hot;
4572 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4573 	pci_dev_d3_sleep(dev);
4574 
4575 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4576 	csr |= PCI_D0;
4577 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4578 	pci_dev_d3_sleep(dev);
4579 
4580 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4581 }
4582 
4583 /**
4584  * pcie_wait_for_link_status - Wait for link status change
4585  * @pdev: Device whose link to wait for.
4586  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4587  * @active: Waiting for active or inactive?
4588  *
4589  * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4590  * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4591  */
4592 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4593 				     bool use_lt, bool active)
4594 {
4595 	u16 lnksta_mask, lnksta_match;
4596 	unsigned long end_jiffies;
4597 	u16 lnksta;
4598 
4599 	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4600 	lnksta_match = active ? lnksta_mask : 0;
4601 
4602 	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4603 	do {
4604 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4605 		if ((lnksta & lnksta_mask) == lnksta_match)
4606 			return 0;
4607 		msleep(1);
4608 	} while (time_before(jiffies, end_jiffies));
4609 
4610 	return -ETIMEDOUT;
4611 }
4612 
4613 /**
4614  * pcie_retrain_link - Request a link retrain and wait for it to complete
4615  * @pdev: Device whose link to retrain.
4616  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4617  *
4618  * Retrain completion status is retrieved from the Link Status Register
4619  * according to @use_lt.  It is not verified whether the use of the DLLLA
4620  * bit is valid.
4621  *
4622  * Return 0 if successful, or -ETIMEDOUT if training has not completed
4623  * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4624  */
4625 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4626 {
4627 	int rc;
4628 
4629 	/*
4630 	 * Ensure the updated LNKCTL parameters are used during link
4631 	 * training by checking that there is no ongoing link training that
4632 	 * may have started before link parameters were changed, so as to
4633 	 * avoid LTSSM race as recommended in Implementation Note at the end
4634 	 * of PCIe r6.1 sec 7.5.3.7.
4635 	 */
4636 	rc = pcie_wait_for_link_status(pdev, true, false);
4637 	if (rc)
4638 		return rc;
4639 
4640 	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4641 	if (pdev->clear_retrain_link) {
4642 		/*
4643 		 * Due to an erratum in some devices the Retrain Link bit
4644 		 * needs to be cleared again manually to allow the link
4645 		 * training to succeed.
4646 		 */
4647 		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4648 	}
4649 
4650 	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4651 }
4652 
4653 /**
4654  * pcie_wait_for_link_delay - Wait until link is active or inactive
4655  * @pdev: Bridge device
4656  * @active: waiting for active or inactive?
4657  * @delay: Delay to wait after link has become active (in ms)
4658  *
4659  * Use this to wait till link becomes active or inactive.
4660  */
4661 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4662 				     int delay)
4663 {
4664 	int rc;
4665 
4666 	/*
4667 	 * Some controllers might not implement link active reporting. In this
4668 	 * case, we wait for 1000 ms + any delay requested by the caller.
4669 	 */
4670 	if (!pdev->link_active_reporting) {
4671 		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4672 		return true;
4673 	}
4674 
4675 	/*
4676 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4677 	 * after which we should expect an link active if the reset was
4678 	 * successful. If so, software must wait a minimum 100ms before sending
4679 	 * configuration requests to devices downstream this port.
4680 	 *
4681 	 * If the link fails to activate, either the device was physically
4682 	 * removed or the link is permanently failed.
4683 	 */
4684 	if (active)
4685 		msleep(20);
4686 	rc = pcie_wait_for_link_status(pdev, false, active);
4687 	if (active) {
4688 		if (rc)
4689 			rc = pcie_failed_link_retrain(pdev);
4690 		if (rc)
4691 			return false;
4692 
4693 		msleep(delay);
4694 		return true;
4695 	}
4696 
4697 	if (rc)
4698 		return false;
4699 
4700 	return true;
4701 }
4702 
4703 /**
4704  * pcie_wait_for_link - Wait until link is active or inactive
4705  * @pdev: Bridge device
4706  * @active: waiting for active or inactive?
4707  *
4708  * Use this to wait till link becomes active or inactive.
4709  */
4710 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4711 {
4712 	return pcie_wait_for_link_delay(pdev, active, 100);
4713 }
4714 
4715 /*
4716  * Find maximum D3cold delay required by all the devices on the bus.  The
4717  * spec says 100 ms, but firmware can lower it and we allow drivers to
4718  * increase it as well.
4719  *
4720  * Called with @pci_bus_sem locked for reading.
4721  */
4722 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4723 {
4724 	const struct pci_dev *pdev;
4725 	int min_delay = 100;
4726 	int max_delay = 0;
4727 
4728 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4729 		if (pdev->d3cold_delay < min_delay)
4730 			min_delay = pdev->d3cold_delay;
4731 		if (pdev->d3cold_delay > max_delay)
4732 			max_delay = pdev->d3cold_delay;
4733 	}
4734 
4735 	return max(min_delay, max_delay);
4736 }
4737 
4738 /**
4739  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4740  * @dev: PCI bridge
4741  * @reset_type: reset type in human-readable form
4742  *
4743  * Handle necessary delays before access to the devices on the secondary
4744  * side of the bridge are permitted after D3cold to D0 transition
4745  * or Conventional Reset.
4746  *
4747  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4748  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4749  * 4.3.2.
4750  *
4751  * Return 0 on success or -ENOTTY if the first device on the secondary bus
4752  * failed to become accessible.
4753  */
4754 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4755 {
4756 	struct pci_dev *child;
4757 	int delay;
4758 
4759 	if (pci_dev_is_disconnected(dev))
4760 		return 0;
4761 
4762 	if (!pci_is_bridge(dev))
4763 		return 0;
4764 
4765 	down_read(&pci_bus_sem);
4766 
4767 	/*
4768 	 * We only deal with devices that are present currently on the bus.
4769 	 * For any hot-added devices the access delay is handled in pciehp
4770 	 * board_added(). In case of ACPI hotplug the firmware is expected
4771 	 * to configure the devices before OS is notified.
4772 	 */
4773 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4774 		up_read(&pci_bus_sem);
4775 		return 0;
4776 	}
4777 
4778 	/* Take d3cold_delay requirements into account */
4779 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4780 	if (!delay) {
4781 		up_read(&pci_bus_sem);
4782 		return 0;
4783 	}
4784 
4785 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4786 				 bus_list);
4787 	up_read(&pci_bus_sem);
4788 
4789 	/*
4790 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4791 	 * accessing the device after reset (that is 1000 ms + 100 ms).
4792 	 */
4793 	if (!pci_is_pcie(dev)) {
4794 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4795 		msleep(1000 + delay);
4796 		return 0;
4797 	}
4798 
4799 	/*
4800 	 * For PCIe downstream and root ports that do not support speeds
4801 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4802 	 * speeds (gen3) we need to wait first for the data link layer to
4803 	 * become active.
4804 	 *
4805 	 * However, 100 ms is the minimum and the PCIe spec says the
4806 	 * software must allow at least 1s before it can determine that the
4807 	 * device that did not respond is a broken device. Also device can
4808 	 * take longer than that to respond if it indicates so through Request
4809 	 * Retry Status completions.
4810 	 *
4811 	 * Therefore we wait for 100 ms and check for the device presence
4812 	 * until the timeout expires.
4813 	 */
4814 	if (!pcie_downstream_port(dev))
4815 		return 0;
4816 
4817 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4818 		u16 status;
4819 
4820 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4821 		msleep(delay);
4822 
4823 		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4824 			return 0;
4825 
4826 		/*
4827 		 * If the port supports active link reporting we now check
4828 		 * whether the link is active and if not bail out early with
4829 		 * the assumption that the device is not present anymore.
4830 		 */
4831 		if (!dev->link_active_reporting)
4832 			return -ENOTTY;
4833 
4834 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4835 		if (!(status & PCI_EXP_LNKSTA_DLLLA))
4836 			return -ENOTTY;
4837 
4838 		return pci_dev_wait(child, reset_type,
4839 				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4840 	}
4841 
4842 	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4843 		delay);
4844 	if (!pcie_wait_for_link_delay(dev, true, delay)) {
4845 		/* Did not train, no need to wait any further */
4846 		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4847 		return -ENOTTY;
4848 	}
4849 
4850 	return pci_dev_wait(child, reset_type,
4851 			    PCIE_RESET_READY_POLL_MS - delay);
4852 }
4853 
4854 void pci_reset_secondary_bus(struct pci_dev *dev)
4855 {
4856 	u16 ctrl;
4857 
4858 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4859 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4860 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4861 
4862 	/*
4863 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4864 	 * this to 2ms to ensure that we meet the minimum requirement.
4865 	 */
4866 	msleep(2);
4867 
4868 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4869 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4870 }
4871 
4872 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4873 {
4874 	pci_reset_secondary_bus(dev);
4875 }
4876 
4877 /**
4878  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4879  * @dev: Bridge device
4880  *
4881  * Use the bridge control register to assert reset on the secondary bus.
4882  * Devices on the secondary bus are left in power-on state.
4883  */
4884 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4885 {
4886 	lock_map_assert_held(&dev->cfg_access_lock);
4887 	pcibios_reset_secondary_bus(dev);
4888 
4889 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4890 }
4891 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4892 
4893 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4894 {
4895 	struct pci_dev *pdev;
4896 
4897 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4898 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4899 		return -ENOTTY;
4900 
4901 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4902 		if (pdev != dev)
4903 			return -ENOTTY;
4904 
4905 	if (probe)
4906 		return 0;
4907 
4908 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4909 }
4910 
4911 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
4912 {
4913 	int rc = -ENOTTY;
4914 
4915 	if (!hotplug || !try_module_get(hotplug->owner))
4916 		return rc;
4917 
4918 	if (hotplug->ops->reset_slot)
4919 		rc = hotplug->ops->reset_slot(hotplug, probe);
4920 
4921 	module_put(hotplug->owner);
4922 
4923 	return rc;
4924 }
4925 
4926 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
4927 {
4928 	if (dev->multifunction || dev->subordinate || !dev->slot ||
4929 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4930 		return -ENOTTY;
4931 
4932 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4933 }
4934 
4935 static u16 cxl_port_dvsec(struct pci_dev *dev)
4936 {
4937 	return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
4938 					 PCI_DVSEC_CXL_PORT);
4939 }
4940 
4941 static bool cxl_sbr_masked(struct pci_dev *dev)
4942 {
4943 	u16 dvsec, reg;
4944 	int rc;
4945 
4946 	dvsec = cxl_port_dvsec(dev);
4947 	if (!dvsec)
4948 		return false;
4949 
4950 	rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, &reg);
4951 	if (rc || PCI_POSSIBLE_ERROR(reg))
4952 		return false;
4953 
4954 	/*
4955 	 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
4956 	 * bit in Bridge Control has no effect.  When 1, the Port generates
4957 	 * hot reset when the SBR bit is set to 1.
4958 	 */
4959 	if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
4960 		return false;
4961 
4962 	return true;
4963 }
4964 
4965 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
4966 {
4967 	struct pci_dev *bridge = pci_upstream_bridge(dev);
4968 	int rc;
4969 
4970 	/*
4971 	 * If "dev" is below a CXL port that has SBR control masked, SBR
4972 	 * won't do anything, so return error.
4973 	 */
4974 	if (bridge && cxl_sbr_masked(bridge)) {
4975 		if (probe)
4976 			return 0;
4977 
4978 		return -ENOTTY;
4979 	}
4980 
4981 	rc = pci_dev_reset_slot_function(dev, probe);
4982 	if (rc != -ENOTTY)
4983 		return rc;
4984 	return pci_parent_bus_reset(dev, probe);
4985 }
4986 
4987 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
4988 {
4989 	struct pci_dev *bridge;
4990 	u16 dvsec, reg, val;
4991 	int rc;
4992 
4993 	bridge = pci_upstream_bridge(dev);
4994 	if (!bridge)
4995 		return -ENOTTY;
4996 
4997 	dvsec = cxl_port_dvsec(bridge);
4998 	if (!dvsec)
4999 		return -ENOTTY;
5000 
5001 	if (probe)
5002 		return 0;
5003 
5004 	rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, &reg);
5005 	if (rc)
5006 		return -ENOTTY;
5007 
5008 	if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
5009 		val = reg;
5010 	} else {
5011 		val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
5012 		pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5013 				      val);
5014 	}
5015 
5016 	rc = pci_reset_bus_function(dev, probe);
5017 
5018 	if (reg != val)
5019 		pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5020 				      reg);
5021 
5022 	return rc;
5023 }
5024 
5025 void pci_dev_lock(struct pci_dev *dev)
5026 {
5027 	/* block PM suspend, driver probe, etc. */
5028 	device_lock(&dev->dev);
5029 	pci_cfg_access_lock(dev);
5030 }
5031 EXPORT_SYMBOL_GPL(pci_dev_lock);
5032 
5033 /* Return 1 on successful lock, 0 on contention */
5034 int pci_dev_trylock(struct pci_dev *dev)
5035 {
5036 	if (device_trylock(&dev->dev)) {
5037 		if (pci_cfg_access_trylock(dev))
5038 			return 1;
5039 		device_unlock(&dev->dev);
5040 	}
5041 
5042 	return 0;
5043 }
5044 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5045 
5046 void pci_dev_unlock(struct pci_dev *dev)
5047 {
5048 	pci_cfg_access_unlock(dev);
5049 	device_unlock(&dev->dev);
5050 }
5051 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5052 
5053 static void pci_dev_save_and_disable(struct pci_dev *dev)
5054 {
5055 	const struct pci_error_handlers *err_handler =
5056 			dev->driver ? dev->driver->err_handler : NULL;
5057 
5058 	/*
5059 	 * dev->driver->err_handler->reset_prepare() is protected against
5060 	 * races with ->remove() by the device lock, which must be held by
5061 	 * the caller.
5062 	 */
5063 	if (err_handler && err_handler->reset_prepare)
5064 		err_handler->reset_prepare(dev);
5065 
5066 	/*
5067 	 * Wake-up device prior to save.  PM registers default to D0 after
5068 	 * reset and a simple register restore doesn't reliably return
5069 	 * to a non-D0 state anyway.
5070 	 */
5071 	pci_set_power_state(dev, PCI_D0);
5072 
5073 	pci_save_state(dev);
5074 	/*
5075 	 * Disable the device by clearing the Command register, except for
5076 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5077 	 * BARs, but also prevents the device from being Bus Master, preventing
5078 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5079 	 * compliant devices, INTx-disable prevents legacy interrupts.
5080 	 */
5081 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5082 }
5083 
5084 static void pci_dev_restore(struct pci_dev *dev)
5085 {
5086 	const struct pci_error_handlers *err_handler =
5087 			dev->driver ? dev->driver->err_handler : NULL;
5088 
5089 	pci_restore_state(dev);
5090 
5091 	/*
5092 	 * dev->driver->err_handler->reset_done() is protected against
5093 	 * races with ->remove() by the device lock, which must be held by
5094 	 * the caller.
5095 	 */
5096 	if (err_handler && err_handler->reset_done)
5097 		err_handler->reset_done(dev);
5098 }
5099 
5100 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5101 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5102 	{ },
5103 	{ pci_dev_specific_reset, .name = "device_specific" },
5104 	{ pci_dev_acpi_reset, .name = "acpi" },
5105 	{ pcie_reset_flr, .name = "flr" },
5106 	{ pci_af_flr, .name = "af_flr" },
5107 	{ pci_pm_reset, .name = "pm" },
5108 	{ pci_reset_bus_function, .name = "bus" },
5109 	{ cxl_reset_bus_function, .name = "cxl_bus" },
5110 };
5111 
5112 static ssize_t reset_method_show(struct device *dev,
5113 				 struct device_attribute *attr, char *buf)
5114 {
5115 	struct pci_dev *pdev = to_pci_dev(dev);
5116 	ssize_t len = 0;
5117 	int i, m;
5118 
5119 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5120 		m = pdev->reset_methods[i];
5121 		if (!m)
5122 			break;
5123 
5124 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5125 				     pci_reset_fn_methods[m].name);
5126 	}
5127 
5128 	if (len)
5129 		len += sysfs_emit_at(buf, len, "\n");
5130 
5131 	return len;
5132 }
5133 
5134 static int reset_method_lookup(const char *name)
5135 {
5136 	int m;
5137 
5138 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5139 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5140 			return m;
5141 	}
5142 
5143 	return 0;	/* not found */
5144 }
5145 
5146 static ssize_t reset_method_store(struct device *dev,
5147 				  struct device_attribute *attr,
5148 				  const char *buf, size_t count)
5149 {
5150 	struct pci_dev *pdev = to_pci_dev(dev);
5151 	char *options, *name;
5152 	int m, n;
5153 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5154 
5155 	if (sysfs_streq(buf, "")) {
5156 		pdev->reset_methods[0] = 0;
5157 		pci_warn(pdev, "All device reset methods disabled by user");
5158 		return count;
5159 	}
5160 
5161 	if (sysfs_streq(buf, "default")) {
5162 		pci_init_reset_methods(pdev);
5163 		return count;
5164 	}
5165 
5166 	options = kstrndup(buf, count, GFP_KERNEL);
5167 	if (!options)
5168 		return -ENOMEM;
5169 
5170 	n = 0;
5171 	while ((name = strsep(&options, " ")) != NULL) {
5172 		if (sysfs_streq(name, ""))
5173 			continue;
5174 
5175 		name = strim(name);
5176 
5177 		m = reset_method_lookup(name);
5178 		if (!m) {
5179 			pci_err(pdev, "Invalid reset method '%s'", name);
5180 			goto error;
5181 		}
5182 
5183 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5184 			pci_err(pdev, "Unsupported reset method '%s'", name);
5185 			goto error;
5186 		}
5187 
5188 		if (n == PCI_NUM_RESET_METHODS - 1) {
5189 			pci_err(pdev, "Too many reset methods\n");
5190 			goto error;
5191 		}
5192 
5193 		reset_methods[n++] = m;
5194 	}
5195 
5196 	reset_methods[n] = 0;
5197 
5198 	/* Warn if dev-specific supported but not highest priority */
5199 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5200 	    reset_methods[0] != 1)
5201 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5202 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5203 	kfree(options);
5204 	return count;
5205 
5206 error:
5207 	/* Leave previous methods unchanged */
5208 	kfree(options);
5209 	return -EINVAL;
5210 }
5211 static DEVICE_ATTR_RW(reset_method);
5212 
5213 static struct attribute *pci_dev_reset_method_attrs[] = {
5214 	&dev_attr_reset_method.attr,
5215 	NULL,
5216 };
5217 
5218 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5219 						    struct attribute *a, int n)
5220 {
5221 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5222 
5223 	if (!pci_reset_supported(pdev))
5224 		return 0;
5225 
5226 	return a->mode;
5227 }
5228 
5229 const struct attribute_group pci_dev_reset_method_attr_group = {
5230 	.attrs = pci_dev_reset_method_attrs,
5231 	.is_visible = pci_dev_reset_method_attr_is_visible,
5232 };
5233 
5234 /**
5235  * __pci_reset_function_locked - reset a PCI device function while holding
5236  * the @dev mutex lock.
5237  * @dev: PCI device to reset
5238  *
5239  * Some devices allow an individual function to be reset without affecting
5240  * other functions in the same device.  The PCI device must be responsive
5241  * to PCI config space in order to use this function.
5242  *
5243  * The device function is presumed to be unused and the caller is holding
5244  * the device mutex lock when this function is called.
5245  *
5246  * Resetting the device will make the contents of PCI configuration space
5247  * random, so any caller of this must be prepared to reinitialise the
5248  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5249  * etc.
5250  *
5251  * Returns 0 if the device function was successfully reset or negative if the
5252  * device doesn't support resetting a single function.
5253  */
5254 int __pci_reset_function_locked(struct pci_dev *dev)
5255 {
5256 	int i, m, rc;
5257 
5258 	might_sleep();
5259 
5260 	/*
5261 	 * A reset method returns -ENOTTY if it doesn't support this device and
5262 	 * we should try the next method.
5263 	 *
5264 	 * If it returns 0 (success), we're finished.  If it returns any other
5265 	 * error, we're also finished: this indicates that further reset
5266 	 * mechanisms might be broken on the device.
5267 	 */
5268 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5269 		m = dev->reset_methods[i];
5270 		if (!m)
5271 			return -ENOTTY;
5272 
5273 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5274 		if (!rc)
5275 			return 0;
5276 		if (rc != -ENOTTY)
5277 			return rc;
5278 	}
5279 
5280 	return -ENOTTY;
5281 }
5282 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5283 
5284 /**
5285  * pci_init_reset_methods - check whether device can be safely reset
5286  * and store supported reset mechanisms.
5287  * @dev: PCI device to check for reset mechanisms
5288  *
5289  * Some devices allow an individual function to be reset without affecting
5290  * other functions in the same device.  The PCI device must be in D0-D3hot
5291  * state.
5292  *
5293  * Stores reset mechanisms supported by device in reset_methods byte array
5294  * which is a member of struct pci_dev.
5295  */
5296 void pci_init_reset_methods(struct pci_dev *dev)
5297 {
5298 	int m, i, rc;
5299 
5300 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5301 
5302 	might_sleep();
5303 
5304 	i = 0;
5305 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5306 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5307 		if (!rc)
5308 			dev->reset_methods[i++] = m;
5309 		else if (rc != -ENOTTY)
5310 			break;
5311 	}
5312 
5313 	dev->reset_methods[i] = 0;
5314 }
5315 
5316 /**
5317  * pci_reset_function - quiesce and reset a PCI device function
5318  * @dev: PCI device to reset
5319  *
5320  * Some devices allow an individual function to be reset without affecting
5321  * other functions in the same device.  The PCI device must be responsive
5322  * to PCI config space in order to use this function.
5323  *
5324  * This function does not just reset the PCI portion of a device, but
5325  * clears all the state associated with the device.  This function differs
5326  * from __pci_reset_function_locked() in that it saves and restores device state
5327  * over the reset and takes the PCI device lock.
5328  *
5329  * Returns 0 if the device function was successfully reset or negative if the
5330  * device doesn't support resetting a single function.
5331  */
5332 int pci_reset_function(struct pci_dev *dev)
5333 {
5334 	struct pci_dev *bridge;
5335 	int rc;
5336 
5337 	if (!pci_reset_supported(dev))
5338 		return -ENOTTY;
5339 
5340 	/*
5341 	 * If there's no upstream bridge, no locking is needed since there is
5342 	 * no upstream bridge configuration to hold consistent.
5343 	 */
5344 	bridge = pci_upstream_bridge(dev);
5345 	if (bridge)
5346 		pci_dev_lock(bridge);
5347 
5348 	pci_dev_lock(dev);
5349 	pci_dev_save_and_disable(dev);
5350 
5351 	rc = __pci_reset_function_locked(dev);
5352 
5353 	pci_dev_restore(dev);
5354 	pci_dev_unlock(dev);
5355 
5356 	if (bridge)
5357 		pci_dev_unlock(bridge);
5358 
5359 	return rc;
5360 }
5361 EXPORT_SYMBOL_GPL(pci_reset_function);
5362 
5363 /**
5364  * pci_reset_function_locked - quiesce and reset a PCI device function
5365  * @dev: PCI device to reset
5366  *
5367  * Some devices allow an individual function to be reset without affecting
5368  * other functions in the same device.  The PCI device must be responsive
5369  * to PCI config space in order to use this function.
5370  *
5371  * This function does not just reset the PCI portion of a device, but
5372  * clears all the state associated with the device.  This function differs
5373  * from __pci_reset_function_locked() in that it saves and restores device state
5374  * over the reset.  It also differs from pci_reset_function() in that it
5375  * requires the PCI device lock to be held.
5376  *
5377  * Returns 0 if the device function was successfully reset or negative if the
5378  * device doesn't support resetting a single function.
5379  */
5380 int pci_reset_function_locked(struct pci_dev *dev)
5381 {
5382 	int rc;
5383 
5384 	if (!pci_reset_supported(dev))
5385 		return -ENOTTY;
5386 
5387 	pci_dev_save_and_disable(dev);
5388 
5389 	rc = __pci_reset_function_locked(dev);
5390 
5391 	pci_dev_restore(dev);
5392 
5393 	return rc;
5394 }
5395 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5396 
5397 /**
5398  * pci_try_reset_function - quiesce and reset a PCI device function
5399  * @dev: PCI device to reset
5400  *
5401  * Same as above, except return -EAGAIN if unable to lock device.
5402  */
5403 int pci_try_reset_function(struct pci_dev *dev)
5404 {
5405 	int rc;
5406 
5407 	if (!pci_reset_supported(dev))
5408 		return -ENOTTY;
5409 
5410 	if (!pci_dev_trylock(dev))
5411 		return -EAGAIN;
5412 
5413 	pci_dev_save_and_disable(dev);
5414 	rc = __pci_reset_function_locked(dev);
5415 	pci_dev_restore(dev);
5416 	pci_dev_unlock(dev);
5417 
5418 	return rc;
5419 }
5420 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5421 
5422 /* Do any devices on or below this bus prevent a bus reset? */
5423 static bool pci_bus_resettable(struct pci_bus *bus)
5424 {
5425 	struct pci_dev *dev;
5426 
5427 
5428 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5429 		return false;
5430 
5431 	list_for_each_entry(dev, &bus->devices, bus_list) {
5432 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5433 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5434 			return false;
5435 	}
5436 
5437 	return true;
5438 }
5439 
5440 /* Lock devices from the top of the tree down */
5441 static void pci_bus_lock(struct pci_bus *bus)
5442 {
5443 	struct pci_dev *dev;
5444 
5445 	list_for_each_entry(dev, &bus->devices, bus_list) {
5446 		pci_dev_lock(dev);
5447 		if (dev->subordinate)
5448 			pci_bus_lock(dev->subordinate);
5449 	}
5450 }
5451 
5452 /* Unlock devices from the bottom of the tree up */
5453 static void pci_bus_unlock(struct pci_bus *bus)
5454 {
5455 	struct pci_dev *dev;
5456 
5457 	list_for_each_entry(dev, &bus->devices, bus_list) {
5458 		if (dev->subordinate)
5459 			pci_bus_unlock(dev->subordinate);
5460 		pci_dev_unlock(dev);
5461 	}
5462 }
5463 
5464 /* Return 1 on successful lock, 0 on contention */
5465 static int pci_bus_trylock(struct pci_bus *bus)
5466 {
5467 	struct pci_dev *dev;
5468 
5469 	list_for_each_entry(dev, &bus->devices, bus_list) {
5470 		if (!pci_dev_trylock(dev))
5471 			goto unlock;
5472 		if (dev->subordinate) {
5473 			if (!pci_bus_trylock(dev->subordinate)) {
5474 				pci_dev_unlock(dev);
5475 				goto unlock;
5476 			}
5477 		}
5478 	}
5479 	return 1;
5480 
5481 unlock:
5482 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5483 		if (dev->subordinate)
5484 			pci_bus_unlock(dev->subordinate);
5485 		pci_dev_unlock(dev);
5486 	}
5487 	return 0;
5488 }
5489 
5490 /* Do any devices on or below this slot prevent a bus reset? */
5491 static bool pci_slot_resettable(struct pci_slot *slot)
5492 {
5493 	struct pci_dev *dev;
5494 
5495 	if (slot->bus->self &&
5496 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5497 		return false;
5498 
5499 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5500 		if (!dev->slot || dev->slot != slot)
5501 			continue;
5502 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5503 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5504 			return false;
5505 	}
5506 
5507 	return true;
5508 }
5509 
5510 /* Lock devices from the top of the tree down */
5511 static void pci_slot_lock(struct pci_slot *slot)
5512 {
5513 	struct pci_dev *dev;
5514 
5515 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5516 		if (!dev->slot || dev->slot != slot)
5517 			continue;
5518 		pci_dev_lock(dev);
5519 		if (dev->subordinate)
5520 			pci_bus_lock(dev->subordinate);
5521 	}
5522 }
5523 
5524 /* Unlock devices from the bottom of the tree up */
5525 static void pci_slot_unlock(struct pci_slot *slot)
5526 {
5527 	struct pci_dev *dev;
5528 
5529 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5530 		if (!dev->slot || dev->slot != slot)
5531 			continue;
5532 		if (dev->subordinate)
5533 			pci_bus_unlock(dev->subordinate);
5534 		pci_dev_unlock(dev);
5535 	}
5536 }
5537 
5538 /* Return 1 on successful lock, 0 on contention */
5539 static int pci_slot_trylock(struct pci_slot *slot)
5540 {
5541 	struct pci_dev *dev;
5542 
5543 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5544 		if (!dev->slot || dev->slot != slot)
5545 			continue;
5546 		if (!pci_dev_trylock(dev))
5547 			goto unlock;
5548 		if (dev->subordinate) {
5549 			if (!pci_bus_trylock(dev->subordinate)) {
5550 				pci_dev_unlock(dev);
5551 				goto unlock;
5552 			}
5553 		}
5554 	}
5555 	return 1;
5556 
5557 unlock:
5558 	list_for_each_entry_continue_reverse(dev,
5559 					     &slot->bus->devices, bus_list) {
5560 		if (!dev->slot || dev->slot != slot)
5561 			continue;
5562 		if (dev->subordinate)
5563 			pci_bus_unlock(dev->subordinate);
5564 		pci_dev_unlock(dev);
5565 	}
5566 	return 0;
5567 }
5568 
5569 /*
5570  * Save and disable devices from the top of the tree down while holding
5571  * the @dev mutex lock for the entire tree.
5572  */
5573 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5574 {
5575 	struct pci_dev *dev;
5576 
5577 	list_for_each_entry(dev, &bus->devices, bus_list) {
5578 		pci_dev_save_and_disable(dev);
5579 		if (dev->subordinate)
5580 			pci_bus_save_and_disable_locked(dev->subordinate);
5581 	}
5582 }
5583 
5584 /*
5585  * Restore devices from top of the tree down while holding @dev mutex lock
5586  * for the entire tree.  Parent bridges need to be restored before we can
5587  * get to subordinate devices.
5588  */
5589 static void pci_bus_restore_locked(struct pci_bus *bus)
5590 {
5591 	struct pci_dev *dev;
5592 
5593 	list_for_each_entry(dev, &bus->devices, bus_list) {
5594 		pci_dev_restore(dev);
5595 		if (dev->subordinate)
5596 			pci_bus_restore_locked(dev->subordinate);
5597 	}
5598 }
5599 
5600 /*
5601  * Save and disable devices from the top of the tree down while holding
5602  * the @dev mutex lock for the entire tree.
5603  */
5604 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5605 {
5606 	struct pci_dev *dev;
5607 
5608 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5609 		if (!dev->slot || dev->slot != slot)
5610 			continue;
5611 		pci_dev_save_and_disable(dev);
5612 		if (dev->subordinate)
5613 			pci_bus_save_and_disable_locked(dev->subordinate);
5614 	}
5615 }
5616 
5617 /*
5618  * Restore devices from top of the tree down while holding @dev mutex lock
5619  * for the entire tree.  Parent bridges need to be restored before we can
5620  * get to subordinate devices.
5621  */
5622 static void pci_slot_restore_locked(struct pci_slot *slot)
5623 {
5624 	struct pci_dev *dev;
5625 
5626 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5627 		if (!dev->slot || dev->slot != slot)
5628 			continue;
5629 		pci_dev_restore(dev);
5630 		if (dev->subordinate)
5631 			pci_bus_restore_locked(dev->subordinate);
5632 	}
5633 }
5634 
5635 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5636 {
5637 	int rc;
5638 
5639 	if (!slot || !pci_slot_resettable(slot))
5640 		return -ENOTTY;
5641 
5642 	if (!probe)
5643 		pci_slot_lock(slot);
5644 
5645 	might_sleep();
5646 
5647 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5648 
5649 	if (!probe)
5650 		pci_slot_unlock(slot);
5651 
5652 	return rc;
5653 }
5654 
5655 /**
5656  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5657  * @slot: PCI slot to probe
5658  *
5659  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5660  */
5661 int pci_probe_reset_slot(struct pci_slot *slot)
5662 {
5663 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5664 }
5665 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5666 
5667 /**
5668  * __pci_reset_slot - Try to reset a PCI slot
5669  * @slot: PCI slot to reset
5670  *
5671  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5672  * independent of other slots.  For instance, some slots may support slot power
5673  * control.  In the case of a 1:1 bus to slot architecture, this function may
5674  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5675  * Generally a slot reset should be attempted before a bus reset.  All of the
5676  * function of the slot and any subordinate buses behind the slot are reset
5677  * through this function.  PCI config space of all devices in the slot and
5678  * behind the slot is saved before and restored after reset.
5679  *
5680  * Same as above except return -EAGAIN if the slot cannot be locked
5681  */
5682 static int __pci_reset_slot(struct pci_slot *slot)
5683 {
5684 	int rc;
5685 
5686 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5687 	if (rc)
5688 		return rc;
5689 
5690 	if (pci_slot_trylock(slot)) {
5691 		pci_slot_save_and_disable_locked(slot);
5692 		might_sleep();
5693 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5694 		pci_slot_restore_locked(slot);
5695 		pci_slot_unlock(slot);
5696 	} else
5697 		rc = -EAGAIN;
5698 
5699 	return rc;
5700 }
5701 
5702 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5703 {
5704 	int ret;
5705 
5706 	if (!bus->self || !pci_bus_resettable(bus))
5707 		return -ENOTTY;
5708 
5709 	if (probe)
5710 		return 0;
5711 
5712 	pci_bus_lock(bus);
5713 
5714 	might_sleep();
5715 
5716 	ret = pci_bridge_secondary_bus_reset(bus->self);
5717 
5718 	pci_bus_unlock(bus);
5719 
5720 	return ret;
5721 }
5722 
5723 /**
5724  * pci_bus_error_reset - reset the bridge's subordinate bus
5725  * @bridge: The parent device that connects to the bus to reset
5726  *
5727  * This function will first try to reset the slots on this bus if the method is
5728  * available. If slot reset fails or is not available, this will fall back to a
5729  * secondary bus reset.
5730  */
5731 int pci_bus_error_reset(struct pci_dev *bridge)
5732 {
5733 	struct pci_bus *bus = bridge->subordinate;
5734 	struct pci_slot *slot;
5735 
5736 	if (!bus)
5737 		return -ENOTTY;
5738 
5739 	mutex_lock(&pci_slot_mutex);
5740 	if (list_empty(&bus->slots))
5741 		goto bus_reset;
5742 
5743 	list_for_each_entry(slot, &bus->slots, list)
5744 		if (pci_probe_reset_slot(slot))
5745 			goto bus_reset;
5746 
5747 	list_for_each_entry(slot, &bus->slots, list)
5748 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5749 			goto bus_reset;
5750 
5751 	mutex_unlock(&pci_slot_mutex);
5752 	return 0;
5753 bus_reset:
5754 	mutex_unlock(&pci_slot_mutex);
5755 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5756 }
5757 
5758 /**
5759  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5760  * @bus: PCI bus to probe
5761  *
5762  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5763  */
5764 int pci_probe_reset_bus(struct pci_bus *bus)
5765 {
5766 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5767 }
5768 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5769 
5770 /**
5771  * __pci_reset_bus - Try to reset a PCI bus
5772  * @bus: top level PCI bus to reset
5773  *
5774  * Same as above except return -EAGAIN if the bus cannot be locked
5775  */
5776 static int __pci_reset_bus(struct pci_bus *bus)
5777 {
5778 	int rc;
5779 
5780 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5781 	if (rc)
5782 		return rc;
5783 
5784 	if (pci_bus_trylock(bus)) {
5785 		pci_bus_save_and_disable_locked(bus);
5786 		might_sleep();
5787 		rc = pci_bridge_secondary_bus_reset(bus->self);
5788 		pci_bus_restore_locked(bus);
5789 		pci_bus_unlock(bus);
5790 	} else
5791 		rc = -EAGAIN;
5792 
5793 	return rc;
5794 }
5795 
5796 /**
5797  * pci_reset_bus - Try to reset a PCI bus
5798  * @pdev: top level PCI device to reset via slot/bus
5799  *
5800  * Same as above except return -EAGAIN if the bus cannot be locked
5801  */
5802 int pci_reset_bus(struct pci_dev *pdev)
5803 {
5804 	return (!pci_probe_reset_slot(pdev->slot)) ?
5805 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5806 }
5807 EXPORT_SYMBOL_GPL(pci_reset_bus);
5808 
5809 /**
5810  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5811  * @dev: PCI device to query
5812  *
5813  * Returns mmrbc: maximum designed memory read count in bytes or
5814  * appropriate error value.
5815  */
5816 int pcix_get_max_mmrbc(struct pci_dev *dev)
5817 {
5818 	int cap;
5819 	u32 stat;
5820 
5821 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5822 	if (!cap)
5823 		return -EINVAL;
5824 
5825 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5826 		return -EINVAL;
5827 
5828 	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5829 }
5830 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5831 
5832 /**
5833  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5834  * @dev: PCI device to query
5835  *
5836  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5837  * value.
5838  */
5839 int pcix_get_mmrbc(struct pci_dev *dev)
5840 {
5841 	int cap;
5842 	u16 cmd;
5843 
5844 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5845 	if (!cap)
5846 		return -EINVAL;
5847 
5848 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5849 		return -EINVAL;
5850 
5851 	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5852 }
5853 EXPORT_SYMBOL(pcix_get_mmrbc);
5854 
5855 /**
5856  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5857  * @dev: PCI device to query
5858  * @mmrbc: maximum memory read count in bytes
5859  *    valid values are 512, 1024, 2048, 4096
5860  *
5861  * If possible sets maximum memory read byte count, some bridges have errata
5862  * that prevent this.
5863  */
5864 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5865 {
5866 	int cap;
5867 	u32 stat, v, o;
5868 	u16 cmd;
5869 
5870 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5871 		return -EINVAL;
5872 
5873 	v = ffs(mmrbc) - 10;
5874 
5875 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5876 	if (!cap)
5877 		return -EINVAL;
5878 
5879 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5880 		return -EINVAL;
5881 
5882 	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5883 		return -E2BIG;
5884 
5885 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5886 		return -EINVAL;
5887 
5888 	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5889 	if (o != v) {
5890 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5891 			return -EIO;
5892 
5893 		cmd &= ~PCI_X_CMD_MAX_READ;
5894 		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
5895 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5896 			return -EIO;
5897 	}
5898 	return 0;
5899 }
5900 EXPORT_SYMBOL(pcix_set_mmrbc);
5901 
5902 /**
5903  * pcie_get_readrq - get PCI Express read request size
5904  * @dev: PCI device to query
5905  *
5906  * Returns maximum memory read request in bytes or appropriate error value.
5907  */
5908 int pcie_get_readrq(struct pci_dev *dev)
5909 {
5910 	u16 ctl;
5911 
5912 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5913 
5914 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
5915 }
5916 EXPORT_SYMBOL(pcie_get_readrq);
5917 
5918 /**
5919  * pcie_set_readrq - set PCI Express maximum memory read request
5920  * @dev: PCI device to query
5921  * @rq: maximum memory read count in bytes
5922  *    valid values are 128, 256, 512, 1024, 2048, 4096
5923  *
5924  * If possible sets maximum memory read request in bytes
5925  */
5926 int pcie_set_readrq(struct pci_dev *dev, int rq)
5927 {
5928 	u16 v;
5929 	int ret;
5930 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
5931 
5932 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5933 		return -EINVAL;
5934 
5935 	/*
5936 	 * If using the "performance" PCIe config, we clamp the read rq
5937 	 * size to the max packet size to keep the host bridge from
5938 	 * generating requests larger than we can cope with.
5939 	 */
5940 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5941 		int mps = pcie_get_mps(dev);
5942 
5943 		if (mps < rq)
5944 			rq = mps;
5945 	}
5946 
5947 	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
5948 
5949 	if (bridge->no_inc_mrrs) {
5950 		int max_mrrs = pcie_get_readrq(dev);
5951 
5952 		if (rq > max_mrrs) {
5953 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
5954 			return -EINVAL;
5955 		}
5956 	}
5957 
5958 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5959 						  PCI_EXP_DEVCTL_READRQ, v);
5960 
5961 	return pcibios_err_to_errno(ret);
5962 }
5963 EXPORT_SYMBOL(pcie_set_readrq);
5964 
5965 /**
5966  * pcie_get_mps - get PCI Express maximum payload size
5967  * @dev: PCI device to query
5968  *
5969  * Returns maximum payload size in bytes
5970  */
5971 int pcie_get_mps(struct pci_dev *dev)
5972 {
5973 	u16 ctl;
5974 
5975 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5976 
5977 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
5978 }
5979 EXPORT_SYMBOL(pcie_get_mps);
5980 
5981 /**
5982  * pcie_set_mps - set PCI Express maximum payload size
5983  * @dev: PCI device to query
5984  * @mps: maximum payload size in bytes
5985  *    valid values are 128, 256, 512, 1024, 2048, 4096
5986  *
5987  * If possible sets maximum payload size
5988  */
5989 int pcie_set_mps(struct pci_dev *dev, int mps)
5990 {
5991 	u16 v;
5992 	int ret;
5993 
5994 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5995 		return -EINVAL;
5996 
5997 	v = ffs(mps) - 8;
5998 	if (v > dev->pcie_mpss)
5999 		return -EINVAL;
6000 	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6001 
6002 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6003 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6004 
6005 	return pcibios_err_to_errno(ret);
6006 }
6007 EXPORT_SYMBOL(pcie_set_mps);
6008 
6009 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6010 {
6011 	return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6012 }
6013 
6014 int pcie_link_speed_mbps(struct pci_dev *pdev)
6015 {
6016 	u16 lnksta;
6017 	int err;
6018 
6019 	err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6020 	if (err)
6021 		return err;
6022 
6023 	switch (to_pcie_link_speed(lnksta)) {
6024 	case PCIE_SPEED_2_5GT:
6025 		return 2500;
6026 	case PCIE_SPEED_5_0GT:
6027 		return 5000;
6028 	case PCIE_SPEED_8_0GT:
6029 		return 8000;
6030 	case PCIE_SPEED_16_0GT:
6031 		return 16000;
6032 	case PCIE_SPEED_32_0GT:
6033 		return 32000;
6034 	case PCIE_SPEED_64_0GT:
6035 		return 64000;
6036 	default:
6037 		break;
6038 	}
6039 
6040 	return -EINVAL;
6041 }
6042 EXPORT_SYMBOL(pcie_link_speed_mbps);
6043 
6044 /**
6045  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6046  *			      device and its bandwidth limitation
6047  * @dev: PCI device to query
6048  * @limiting_dev: storage for device causing the bandwidth limitation
6049  * @speed: storage for speed of limiting device
6050  * @width: storage for width of limiting device
6051  *
6052  * Walk up the PCI device chain and find the point where the minimum
6053  * bandwidth is available.  Return the bandwidth available there and (if
6054  * limiting_dev, speed, and width pointers are supplied) information about
6055  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6056  * raw bandwidth.
6057  */
6058 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6059 			     enum pci_bus_speed *speed,
6060 			     enum pcie_link_width *width)
6061 {
6062 	u16 lnksta;
6063 	enum pci_bus_speed next_speed;
6064 	enum pcie_link_width next_width;
6065 	u32 bw, next_bw;
6066 
6067 	if (speed)
6068 		*speed = PCI_SPEED_UNKNOWN;
6069 	if (width)
6070 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6071 
6072 	bw = 0;
6073 
6074 	while (dev) {
6075 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6076 
6077 		next_speed = to_pcie_link_speed(lnksta);
6078 		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6079 
6080 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6081 
6082 		/* Check if current device limits the total bandwidth */
6083 		if (!bw || next_bw <= bw) {
6084 			bw = next_bw;
6085 
6086 			if (limiting_dev)
6087 				*limiting_dev = dev;
6088 			if (speed)
6089 				*speed = next_speed;
6090 			if (width)
6091 				*width = next_width;
6092 		}
6093 
6094 		dev = pci_upstream_bridge(dev);
6095 	}
6096 
6097 	return bw;
6098 }
6099 EXPORT_SYMBOL(pcie_bandwidth_available);
6100 
6101 /**
6102  * pcie_get_speed_cap - query for the PCI device's link speed capability
6103  * @dev: PCI device to query
6104  *
6105  * Query the PCI device speed capability.  Return the maximum link speed
6106  * supported by the device.
6107  */
6108 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6109 {
6110 	u32 lnkcap2, lnkcap;
6111 
6112 	/*
6113 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6114 	 * implementation note there recommends using the Supported Link
6115 	 * Speeds Vector in Link Capabilities 2 when supported.
6116 	 *
6117 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6118 	 * should use the Supported Link Speeds field in Link Capabilities,
6119 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6120 	 */
6121 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6122 
6123 	/* PCIe r3.0-compliant */
6124 	if (lnkcap2)
6125 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6126 
6127 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6128 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6129 		return PCIE_SPEED_5_0GT;
6130 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6131 		return PCIE_SPEED_2_5GT;
6132 
6133 	return PCI_SPEED_UNKNOWN;
6134 }
6135 EXPORT_SYMBOL(pcie_get_speed_cap);
6136 
6137 /**
6138  * pcie_get_width_cap - query for the PCI device's link width capability
6139  * @dev: PCI device to query
6140  *
6141  * Query the PCI device width capability.  Return the maximum link width
6142  * supported by the device.
6143  */
6144 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6145 {
6146 	u32 lnkcap;
6147 
6148 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6149 	if (lnkcap)
6150 		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6151 
6152 	return PCIE_LNK_WIDTH_UNKNOWN;
6153 }
6154 EXPORT_SYMBOL(pcie_get_width_cap);
6155 
6156 /**
6157  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6158  * @dev: PCI device
6159  * @speed: storage for link speed
6160  * @width: storage for link width
6161  *
6162  * Calculate a PCI device's link bandwidth by querying for its link speed
6163  * and width, multiplying them, and applying encoding overhead.  The result
6164  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6165  */
6166 static u32 pcie_bandwidth_capable(struct pci_dev *dev,
6167 				  enum pci_bus_speed *speed,
6168 				  enum pcie_link_width *width)
6169 {
6170 	*speed = pcie_get_speed_cap(dev);
6171 	*width = pcie_get_width_cap(dev);
6172 
6173 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6174 		return 0;
6175 
6176 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6177 }
6178 
6179 /**
6180  * __pcie_print_link_status - Report the PCI device's link speed and width
6181  * @dev: PCI device to query
6182  * @verbose: Print info even when enough bandwidth is available
6183  *
6184  * If the available bandwidth at the device is less than the device is
6185  * capable of, report the device's maximum possible bandwidth and the
6186  * upstream link that limits its performance.  If @verbose, always print
6187  * the available bandwidth, even if the device isn't constrained.
6188  */
6189 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6190 {
6191 	enum pcie_link_width width, width_cap;
6192 	enum pci_bus_speed speed, speed_cap;
6193 	struct pci_dev *limiting_dev = NULL;
6194 	u32 bw_avail, bw_cap;
6195 
6196 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6197 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6198 
6199 	if (bw_avail >= bw_cap && verbose)
6200 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6201 			 bw_cap / 1000, bw_cap % 1000,
6202 			 pci_speed_string(speed_cap), width_cap);
6203 	else if (bw_avail < bw_cap)
6204 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6205 			 bw_avail / 1000, bw_avail % 1000,
6206 			 pci_speed_string(speed), width,
6207 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6208 			 bw_cap / 1000, bw_cap % 1000,
6209 			 pci_speed_string(speed_cap), width_cap);
6210 }
6211 
6212 /**
6213  * pcie_print_link_status - Report the PCI device's link speed and width
6214  * @dev: PCI device to query
6215  *
6216  * Report the available bandwidth at the device.
6217  */
6218 void pcie_print_link_status(struct pci_dev *dev)
6219 {
6220 	__pcie_print_link_status(dev, true);
6221 }
6222 EXPORT_SYMBOL(pcie_print_link_status);
6223 
6224 /**
6225  * pci_select_bars - Make BAR mask from the type of resource
6226  * @dev: the PCI device for which BAR mask is made
6227  * @flags: resource type mask to be selected
6228  *
6229  * This helper routine makes bar mask from the type of resource.
6230  */
6231 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6232 {
6233 	int i, bars = 0;
6234 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6235 		if (pci_resource_flags(dev, i) & flags)
6236 			bars |= (1 << i);
6237 	return bars;
6238 }
6239 EXPORT_SYMBOL(pci_select_bars);
6240 
6241 /* Some architectures require additional programming to enable VGA */
6242 static arch_set_vga_state_t arch_set_vga_state;
6243 
6244 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6245 {
6246 	arch_set_vga_state = func;	/* NULL disables */
6247 }
6248 
6249 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6250 				  unsigned int command_bits, u32 flags)
6251 {
6252 	if (arch_set_vga_state)
6253 		return arch_set_vga_state(dev, decode, command_bits,
6254 						flags);
6255 	return 0;
6256 }
6257 
6258 /**
6259  * pci_set_vga_state - set VGA decode state on device and parents if requested
6260  * @dev: the PCI device
6261  * @decode: true = enable decoding, false = disable decoding
6262  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6263  * @flags: traverse ancestors and change bridges
6264  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6265  */
6266 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6267 		      unsigned int command_bits, u32 flags)
6268 {
6269 	struct pci_bus *bus;
6270 	struct pci_dev *bridge;
6271 	u16 cmd;
6272 	int rc;
6273 
6274 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6275 
6276 	/* ARCH specific VGA enables */
6277 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6278 	if (rc)
6279 		return rc;
6280 
6281 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6282 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6283 		if (decode)
6284 			cmd |= command_bits;
6285 		else
6286 			cmd &= ~command_bits;
6287 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6288 	}
6289 
6290 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6291 		return 0;
6292 
6293 	bus = dev->bus;
6294 	while (bus) {
6295 		bridge = bus->self;
6296 		if (bridge) {
6297 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6298 					     &cmd);
6299 			if (decode)
6300 				cmd |= PCI_BRIDGE_CTL_VGA;
6301 			else
6302 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6303 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6304 					      cmd);
6305 		}
6306 		bus = bus->parent;
6307 	}
6308 	return 0;
6309 }
6310 
6311 #ifdef CONFIG_ACPI
6312 bool pci_pr3_present(struct pci_dev *pdev)
6313 {
6314 	struct acpi_device *adev;
6315 
6316 	if (acpi_disabled)
6317 		return false;
6318 
6319 	adev = ACPI_COMPANION(&pdev->dev);
6320 	if (!adev)
6321 		return false;
6322 
6323 	return adev->power.flags.power_resources &&
6324 		acpi_has_method(adev->handle, "_PR3");
6325 }
6326 EXPORT_SYMBOL_GPL(pci_pr3_present);
6327 #endif
6328 
6329 /**
6330  * pci_add_dma_alias - Add a DMA devfn alias for a device
6331  * @dev: the PCI device for which alias is added
6332  * @devfn_from: alias slot and function
6333  * @nr_devfns: number of subsequent devfns to alias
6334  *
6335  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6336  * which is used to program permissible bus-devfn source addresses for DMA
6337  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6338  * and are useful for devices generating DMA requests beyond or different
6339  * from their logical bus-devfn.  Examples include device quirks where the
6340  * device simply uses the wrong devfn, as well as non-transparent bridges
6341  * where the alias may be a proxy for devices in another domain.
6342  *
6343  * IOMMU group creation is performed during device discovery or addition,
6344  * prior to any potential DMA mapping and therefore prior to driver probing
6345  * (especially for userspace assigned devices where IOMMU group definition
6346  * cannot be left as a userspace activity).  DMA aliases should therefore
6347  * be configured via quirks, such as the PCI fixup header quirk.
6348  */
6349 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6350 		       unsigned int nr_devfns)
6351 {
6352 	int devfn_to;
6353 
6354 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6355 	devfn_to = devfn_from + nr_devfns - 1;
6356 
6357 	if (!dev->dma_alias_mask)
6358 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6359 	if (!dev->dma_alias_mask) {
6360 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6361 		return;
6362 	}
6363 
6364 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6365 
6366 	if (nr_devfns == 1)
6367 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6368 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6369 	else if (nr_devfns > 1)
6370 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6371 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6372 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6373 }
6374 
6375 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6376 {
6377 	return (dev1->dma_alias_mask &&
6378 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6379 	       (dev2->dma_alias_mask &&
6380 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6381 	       pci_real_dma_dev(dev1) == dev2 ||
6382 	       pci_real_dma_dev(dev2) == dev1;
6383 }
6384 
6385 bool pci_device_is_present(struct pci_dev *pdev)
6386 {
6387 	u32 v;
6388 
6389 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6390 	pdev = pci_physfn(pdev);
6391 	if (pci_dev_is_disconnected(pdev))
6392 		return false;
6393 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6394 }
6395 EXPORT_SYMBOL_GPL(pci_device_is_present);
6396 
6397 void pci_ignore_hotplug(struct pci_dev *dev)
6398 {
6399 	struct pci_dev *bridge = dev->bus->self;
6400 
6401 	dev->ignore_hotplug = 1;
6402 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6403 	if (bridge)
6404 		bridge->ignore_hotplug = 1;
6405 }
6406 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6407 
6408 /**
6409  * pci_real_dma_dev - Get PCI DMA device for PCI device
6410  * @dev: the PCI device that may have a PCI DMA alias
6411  *
6412  * Permits the platform to provide architecture-specific functionality to
6413  * devices needing to alias DMA to another PCI device on another PCI bus. If
6414  * the PCI device is on the same bus, it is recommended to use
6415  * pci_add_dma_alias(). This is the default implementation. Architecture
6416  * implementations can override this.
6417  */
6418 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6419 {
6420 	return dev;
6421 }
6422 
6423 resource_size_t __weak pcibios_default_alignment(void)
6424 {
6425 	return 0;
6426 }
6427 
6428 /*
6429  * Arches that don't want to expose struct resource to userland as-is in
6430  * sysfs and /proc can implement their own pci_resource_to_user().
6431  */
6432 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6433 				 const struct resource *rsrc,
6434 				 resource_size_t *start, resource_size_t *end)
6435 {
6436 	*start = rsrc->start;
6437 	*end = rsrc->end;
6438 }
6439 
6440 static char *resource_alignment_param;
6441 static DEFINE_SPINLOCK(resource_alignment_lock);
6442 
6443 /**
6444  * pci_specified_resource_alignment - get resource alignment specified by user.
6445  * @dev: the PCI device to get
6446  * @resize: whether or not to change resources' size when reassigning alignment
6447  *
6448  * RETURNS: Resource alignment if it is specified.
6449  *          Zero if it is not specified.
6450  */
6451 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6452 							bool *resize)
6453 {
6454 	int align_order, count;
6455 	resource_size_t align = pcibios_default_alignment();
6456 	const char *p;
6457 	int ret;
6458 
6459 	spin_lock(&resource_alignment_lock);
6460 	p = resource_alignment_param;
6461 	if (!p || !*p)
6462 		goto out;
6463 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6464 		align = 0;
6465 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6466 		goto out;
6467 	}
6468 
6469 	while (*p) {
6470 		count = 0;
6471 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6472 		    p[count] == '@') {
6473 			p += count + 1;
6474 			if (align_order > 63) {
6475 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6476 				       align_order);
6477 				align_order = PAGE_SHIFT;
6478 			}
6479 		} else {
6480 			align_order = PAGE_SHIFT;
6481 		}
6482 
6483 		ret = pci_dev_str_match(dev, p, &p);
6484 		if (ret == 1) {
6485 			*resize = true;
6486 			align = 1ULL << align_order;
6487 			break;
6488 		} else if (ret < 0) {
6489 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6490 			       p);
6491 			break;
6492 		}
6493 
6494 		if (*p != ';' && *p != ',') {
6495 			/* End of param or invalid format */
6496 			break;
6497 		}
6498 		p++;
6499 	}
6500 out:
6501 	spin_unlock(&resource_alignment_lock);
6502 	return align;
6503 }
6504 
6505 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6506 					   resource_size_t align, bool resize)
6507 {
6508 	struct resource *r = &dev->resource[bar];
6509 	const char *r_name = pci_resource_name(dev, bar);
6510 	resource_size_t size;
6511 
6512 	if (!(r->flags & IORESOURCE_MEM))
6513 		return;
6514 
6515 	if (r->flags & IORESOURCE_PCI_FIXED) {
6516 		pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6517 			 r_name, r, (unsigned long long)align);
6518 		return;
6519 	}
6520 
6521 	size = resource_size(r);
6522 	if (size >= align)
6523 		return;
6524 
6525 	/*
6526 	 * Increase the alignment of the resource.  There are two ways we
6527 	 * can do this:
6528 	 *
6529 	 * 1) Increase the size of the resource.  BARs are aligned on their
6530 	 *    size, so when we reallocate space for this resource, we'll
6531 	 *    allocate it with the larger alignment.  This also prevents
6532 	 *    assignment of any other BARs inside the alignment region, so
6533 	 *    if we're requesting page alignment, this means no other BARs
6534 	 *    will share the page.
6535 	 *
6536 	 *    The disadvantage is that this makes the resource larger than
6537 	 *    the hardware BAR, which may break drivers that compute things
6538 	 *    based on the resource size, e.g., to find registers at a
6539 	 *    fixed offset before the end of the BAR.
6540 	 *
6541 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6542 	 *    set r->start to the desired alignment.  By itself this
6543 	 *    doesn't prevent other BARs being put inside the alignment
6544 	 *    region, but if we realign *every* resource of every device in
6545 	 *    the system, none of them will share an alignment region.
6546 	 *
6547 	 * When the user has requested alignment for only some devices via
6548 	 * the "pci=resource_alignment" argument, "resize" is true and we
6549 	 * use the first method.  Otherwise we assume we're aligning all
6550 	 * devices and we use the second.
6551 	 */
6552 
6553 	pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6554 		 r_name, r, (unsigned long long)align);
6555 
6556 	if (resize) {
6557 		r->start = 0;
6558 		r->end = align - 1;
6559 	} else {
6560 		r->flags &= ~IORESOURCE_SIZEALIGN;
6561 		r->flags |= IORESOURCE_STARTALIGN;
6562 		r->start = align;
6563 		r->end = r->start + size - 1;
6564 	}
6565 	r->flags |= IORESOURCE_UNSET;
6566 }
6567 
6568 /*
6569  * This function disables memory decoding and releases memory resources
6570  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6571  * It also rounds up size to specified alignment.
6572  * Later on, the kernel will assign page-aligned memory resource back
6573  * to the device.
6574  */
6575 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6576 {
6577 	int i;
6578 	struct resource *r;
6579 	resource_size_t align;
6580 	u16 command;
6581 	bool resize = false;
6582 
6583 	/*
6584 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6585 	 * 3.4.1.11.  Their resources are allocated from the space
6586 	 * described by the VF BARx register in the PF's SR-IOV capability.
6587 	 * We can't influence their alignment here.
6588 	 */
6589 	if (dev->is_virtfn)
6590 		return;
6591 
6592 	/* check if specified PCI is target device to reassign */
6593 	align = pci_specified_resource_alignment(dev, &resize);
6594 	if (!align)
6595 		return;
6596 
6597 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6598 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6599 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6600 		return;
6601 	}
6602 
6603 	pci_read_config_word(dev, PCI_COMMAND, &command);
6604 	command &= ~PCI_COMMAND_MEMORY;
6605 	pci_write_config_word(dev, PCI_COMMAND, command);
6606 
6607 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6608 		pci_request_resource_alignment(dev, i, align, resize);
6609 
6610 	/*
6611 	 * Need to disable bridge's resource window,
6612 	 * to enable the kernel to reassign new resource
6613 	 * window later on.
6614 	 */
6615 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6616 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6617 			r = &dev->resource[i];
6618 			if (!(r->flags & IORESOURCE_MEM))
6619 				continue;
6620 			r->flags |= IORESOURCE_UNSET;
6621 			r->end = resource_size(r) - 1;
6622 			r->start = 0;
6623 		}
6624 		pci_disable_bridge_window(dev);
6625 	}
6626 }
6627 
6628 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6629 {
6630 	size_t count = 0;
6631 
6632 	spin_lock(&resource_alignment_lock);
6633 	if (resource_alignment_param)
6634 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6635 	spin_unlock(&resource_alignment_lock);
6636 
6637 	return count;
6638 }
6639 
6640 static ssize_t resource_alignment_store(const struct bus_type *bus,
6641 					const char *buf, size_t count)
6642 {
6643 	char *param, *old, *end;
6644 
6645 	if (count >= (PAGE_SIZE - 1))
6646 		return -EINVAL;
6647 
6648 	param = kstrndup(buf, count, GFP_KERNEL);
6649 	if (!param)
6650 		return -ENOMEM;
6651 
6652 	end = strchr(param, '\n');
6653 	if (end)
6654 		*end = '\0';
6655 
6656 	spin_lock(&resource_alignment_lock);
6657 	old = resource_alignment_param;
6658 	if (strlen(param)) {
6659 		resource_alignment_param = param;
6660 	} else {
6661 		kfree(param);
6662 		resource_alignment_param = NULL;
6663 	}
6664 	spin_unlock(&resource_alignment_lock);
6665 
6666 	kfree(old);
6667 
6668 	return count;
6669 }
6670 
6671 static BUS_ATTR_RW(resource_alignment);
6672 
6673 static int __init pci_resource_alignment_sysfs_init(void)
6674 {
6675 	return bus_create_file(&pci_bus_type,
6676 					&bus_attr_resource_alignment);
6677 }
6678 late_initcall(pci_resource_alignment_sysfs_init);
6679 
6680 static void pci_no_domains(void)
6681 {
6682 #ifdef CONFIG_PCI_DOMAINS
6683 	pci_domains_supported = 0;
6684 #endif
6685 }
6686 
6687 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6688 static DEFINE_IDA(pci_domain_nr_static_ida);
6689 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6690 
6691 static void of_pci_reserve_static_domain_nr(void)
6692 {
6693 	struct device_node *np;
6694 	int domain_nr;
6695 
6696 	for_each_node_by_type(np, "pci") {
6697 		domain_nr = of_get_pci_domain_nr(np);
6698 		if (domain_nr < 0)
6699 			continue;
6700 		/*
6701 		 * Permanently allocate domain_nr in dynamic_ida
6702 		 * to prevent it from dynamic allocation.
6703 		 */
6704 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6705 				domain_nr, domain_nr, GFP_KERNEL);
6706 	}
6707 }
6708 
6709 static int of_pci_bus_find_domain_nr(struct device *parent)
6710 {
6711 	static bool static_domains_reserved = false;
6712 	int domain_nr;
6713 
6714 	/* On the first call scan device tree for static allocations. */
6715 	if (!static_domains_reserved) {
6716 		of_pci_reserve_static_domain_nr();
6717 		static_domains_reserved = true;
6718 	}
6719 
6720 	if (parent) {
6721 		/*
6722 		 * If domain is in DT, allocate it in static IDA.  This
6723 		 * prevents duplicate static allocations in case of errors
6724 		 * in DT.
6725 		 */
6726 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6727 		if (domain_nr >= 0)
6728 			return ida_alloc_range(&pci_domain_nr_static_ida,
6729 					       domain_nr, domain_nr,
6730 					       GFP_KERNEL);
6731 	}
6732 
6733 	/*
6734 	 * If domain was not specified in DT, choose a free ID from dynamic
6735 	 * allocations. All domain numbers from DT are permanently in
6736 	 * dynamic allocations to prevent assigning them to other DT nodes
6737 	 * without static domain.
6738 	 */
6739 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6740 }
6741 
6742 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6743 {
6744 	if (bus->domain_nr < 0)
6745 		return;
6746 
6747 	/* Release domain from IDA where it was allocated. */
6748 	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6749 		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6750 	else
6751 		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6752 }
6753 
6754 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6755 {
6756 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6757 			       acpi_pci_bus_find_domain_nr(bus);
6758 }
6759 
6760 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6761 {
6762 	if (!acpi_disabled)
6763 		return;
6764 	of_pci_bus_release_domain_nr(bus, parent);
6765 }
6766 #endif
6767 
6768 /**
6769  * pci_ext_cfg_avail - can we access extended PCI config space?
6770  *
6771  * Returns 1 if we can access PCI extended config space (offsets
6772  * greater than 0xff). This is the default implementation. Architecture
6773  * implementations can override this.
6774  */
6775 int __weak pci_ext_cfg_avail(void)
6776 {
6777 	return 1;
6778 }
6779 
6780 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6781 {
6782 }
6783 EXPORT_SYMBOL(pci_fixup_cardbus);
6784 
6785 static int __init pci_setup(char *str)
6786 {
6787 	while (str) {
6788 		char *k = strchr(str, ',');
6789 		if (k)
6790 			*k++ = 0;
6791 		if (*str && (str = pcibios_setup(str)) && *str) {
6792 			if (!strcmp(str, "nomsi")) {
6793 				pci_no_msi();
6794 			} else if (!strncmp(str, "noats", 5)) {
6795 				pr_info("PCIe: ATS is disabled\n");
6796 				pcie_ats_disabled = true;
6797 			} else if (!strcmp(str, "noaer")) {
6798 				pci_no_aer();
6799 			} else if (!strcmp(str, "earlydump")) {
6800 				pci_early_dump = true;
6801 			} else if (!strncmp(str, "realloc=", 8)) {
6802 				pci_realloc_get_opt(str + 8);
6803 			} else if (!strncmp(str, "realloc", 7)) {
6804 				pci_realloc_get_opt("on");
6805 			} else if (!strcmp(str, "nodomains")) {
6806 				pci_no_domains();
6807 			} else if (!strncmp(str, "noari", 5)) {
6808 				pcie_ari_disabled = true;
6809 			} else if (!strncmp(str, "cbiosize=", 9)) {
6810 				pci_cardbus_io_size = memparse(str + 9, &str);
6811 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6812 				pci_cardbus_mem_size = memparse(str + 10, &str);
6813 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6814 				resource_alignment_param = str + 19;
6815 			} else if (!strncmp(str, "ecrc=", 5)) {
6816 				pcie_ecrc_get_policy(str + 5);
6817 			} else if (!strncmp(str, "hpiosize=", 9)) {
6818 				pci_hotplug_io_size = memparse(str + 9, &str);
6819 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6820 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6821 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6822 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6823 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6824 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6825 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6826 			} else if (!strncmp(str, "hpbussize=", 10)) {
6827 				pci_hotplug_bus_size =
6828 					simple_strtoul(str + 10, &str, 0);
6829 				if (pci_hotplug_bus_size > 0xff)
6830 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6831 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6832 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6833 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6834 				pcie_bus_config = PCIE_BUS_SAFE;
6835 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6836 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6837 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6838 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6839 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6840 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6841 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6842 				disable_acs_redir_param = str + 18;
6843 			} else {
6844 				pr_err("PCI: Unknown option `%s'\n", str);
6845 			}
6846 		}
6847 		str = k;
6848 	}
6849 	return 0;
6850 }
6851 early_param("pci", pci_setup);
6852 
6853 /*
6854  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6855  * in pci_setup(), above, to point to data in the __initdata section which
6856  * will be freed after the init sequence is complete. We can't allocate memory
6857  * in pci_setup() because some architectures do not have any memory allocation
6858  * service available during an early_param() call. So we allocate memory and
6859  * copy the variable here before the init section is freed.
6860  *
6861  */
6862 static int __init pci_realloc_setup_params(void)
6863 {
6864 	resource_alignment_param = kstrdup(resource_alignment_param,
6865 					   GFP_KERNEL);
6866 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6867 
6868 	return 0;
6869 }
6870 pure_initcall(pci_realloc_setup_params);
6871