1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/device.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/pci_hotplug.h> 29 #include <linux/vmalloc.h> 30 #include <asm/dma.h> 31 #include <linux/aer.h> 32 #include <linux/bitfield.h> 33 #include "pci.h" 34 35 DEFINE_MUTEX(pci_slot_mutex); 36 37 const char *pci_power_names[] = { 38 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 39 }; 40 EXPORT_SYMBOL_GPL(pci_power_names); 41 42 #ifdef CONFIG_X86_32 43 int isa_dma_bridge_buggy; 44 EXPORT_SYMBOL(isa_dma_bridge_buggy); 45 #endif 46 47 int pci_pci_problems; 48 EXPORT_SYMBOL(pci_pci_problems); 49 50 unsigned int pci_pm_d3hot_delay; 51 52 static void pci_pme_list_scan(struct work_struct *work); 53 54 static LIST_HEAD(pci_pme_list); 55 static DEFINE_MUTEX(pci_pme_list_mutex); 56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 57 58 struct pci_pme_device { 59 struct list_head list; 60 struct pci_dev *dev; 61 }; 62 63 #define PME_TIMEOUT 1000 /* How long between PME checks */ 64 65 /* 66 * Following exit from Conventional Reset, devices must be ready within 1 sec 67 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 68 * Reset (PCIe r6.0 sec 5.8). 69 */ 70 #define PCI_RESET_WAIT 1000 /* msec */ 71 72 /* 73 * Devices may extend the 1 sec period through Request Retry Status 74 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 75 * limit, but 60 sec ought to be enough for any device to become 76 * responsive. 77 */ 78 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 79 80 static void pci_dev_d3_sleep(struct pci_dev *dev) 81 { 82 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 83 unsigned int upper; 84 85 if (delay_ms) { 86 /* Use a 20% upper bound, 1ms minimum */ 87 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 88 usleep_range(delay_ms * USEC_PER_MSEC, 89 (delay_ms + upper) * USEC_PER_MSEC); 90 } 91 } 92 93 bool pci_reset_supported(struct pci_dev *dev) 94 { 95 return dev->reset_methods[0] != 0; 96 } 97 98 #ifdef CONFIG_PCI_DOMAINS 99 int pci_domains_supported = 1; 100 #endif 101 102 #define DEFAULT_CARDBUS_IO_SIZE (256) 103 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 104 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 105 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 106 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 107 108 #define DEFAULT_HOTPLUG_IO_SIZE (256) 109 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 110 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 111 /* hpiosize=nn can override this */ 112 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 113 /* 114 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 115 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 116 * pci=hpmemsize=nnM overrides both 117 */ 118 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 119 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 120 121 #define DEFAULT_HOTPLUG_BUS_SIZE 1 122 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 123 124 125 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 126 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 127 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 128 #elif defined CONFIG_PCIE_BUS_SAFE 129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 130 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 132 #elif defined CONFIG_PCIE_BUS_PEER2PEER 133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 134 #else 135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 136 #endif 137 138 /* 139 * The default CLS is used if arch didn't set CLS explicitly and not 140 * all pci devices agree on the same value. Arch can override either 141 * the dfl or actual value as it sees fit. Don't forget this is 142 * measured in 32-bit words, not bytes. 143 */ 144 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2; 145 u8 pci_cache_line_size __ro_after_init ; 146 147 /* 148 * If we set up a device for bus mastering, we need to check the latency 149 * timer as certain BIOSes forget to set it properly. 150 */ 151 unsigned int pcibios_max_latency = 255; 152 153 /* If set, the PCIe ARI capability will not be used. */ 154 static bool pcie_ari_disabled; 155 156 /* If set, the PCIe ATS capability will not be used. */ 157 static bool pcie_ats_disabled; 158 159 /* If set, the PCI config space of each device is printed during boot. */ 160 bool pci_early_dump; 161 162 bool pci_ats_disabled(void) 163 { 164 return pcie_ats_disabled; 165 } 166 EXPORT_SYMBOL_GPL(pci_ats_disabled); 167 168 /* Disable bridge_d3 for all PCIe ports */ 169 static bool pci_bridge_d3_disable; 170 /* Force bridge_d3 for all PCIe ports */ 171 static bool pci_bridge_d3_force; 172 173 static int __init pcie_port_pm_setup(char *str) 174 { 175 if (!strcmp(str, "off")) 176 pci_bridge_d3_disable = true; 177 else if (!strcmp(str, "force")) 178 pci_bridge_d3_force = true; 179 return 1; 180 } 181 __setup("pcie_port_pm=", pcie_port_pm_setup); 182 183 /** 184 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 185 * @bus: pointer to PCI bus structure to search 186 * 187 * Given a PCI bus, returns the highest PCI bus number present in the set 188 * including the given PCI bus and its list of child PCI buses. 189 */ 190 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 191 { 192 struct pci_bus *tmp; 193 unsigned char max, n; 194 195 max = bus->busn_res.end; 196 list_for_each_entry(tmp, &bus->children, node) { 197 n = pci_bus_max_busnr(tmp); 198 if (n > max) 199 max = n; 200 } 201 return max; 202 } 203 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 204 205 /** 206 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 207 * @pdev: the PCI device 208 * 209 * Returns error bits set in PCI_STATUS and clears them. 210 */ 211 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 212 { 213 u16 status; 214 int ret; 215 216 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 217 if (ret != PCIBIOS_SUCCESSFUL) 218 return -EIO; 219 220 status &= PCI_STATUS_ERROR_BITS; 221 if (status) 222 pci_write_config_word(pdev, PCI_STATUS, status); 223 224 return status; 225 } 226 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 227 228 #ifdef CONFIG_HAS_IOMEM 229 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 230 bool write_combine) 231 { 232 struct resource *res = &pdev->resource[bar]; 233 resource_size_t start = res->start; 234 resource_size_t size = resource_size(res); 235 236 /* 237 * Make sure the BAR is actually a memory resource, not an IO resource 238 */ 239 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 240 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 241 return NULL; 242 } 243 244 if (write_combine) 245 return ioremap_wc(start, size); 246 247 return ioremap(start, size); 248 } 249 250 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 251 { 252 return __pci_ioremap_resource(pdev, bar, false); 253 } 254 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 255 256 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 257 { 258 return __pci_ioremap_resource(pdev, bar, true); 259 } 260 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 261 #endif 262 263 /** 264 * pci_dev_str_match_path - test if a path string matches a device 265 * @dev: the PCI device to test 266 * @path: string to match the device against 267 * @endptr: pointer to the string after the match 268 * 269 * Test if a string (typically from a kernel parameter) formatted as a 270 * path of device/function addresses matches a PCI device. The string must 271 * be of the form: 272 * 273 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 274 * 275 * A path for a device can be obtained using 'lspci -t'. Using a path 276 * is more robust against bus renumbering than using only a single bus, 277 * device and function address. 278 * 279 * Returns 1 if the string matches the device, 0 if it does not and 280 * a negative error code if it fails to parse the string. 281 */ 282 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 283 const char **endptr) 284 { 285 int ret; 286 unsigned int seg, bus, slot, func; 287 char *wpath, *p; 288 char end; 289 290 *endptr = strchrnul(path, ';'); 291 292 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 293 if (!wpath) 294 return -ENOMEM; 295 296 while (1) { 297 p = strrchr(wpath, '/'); 298 if (!p) 299 break; 300 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 301 if (ret != 2) { 302 ret = -EINVAL; 303 goto free_and_exit; 304 } 305 306 if (dev->devfn != PCI_DEVFN(slot, func)) { 307 ret = 0; 308 goto free_and_exit; 309 } 310 311 /* 312 * Note: we don't need to get a reference to the upstream 313 * bridge because we hold a reference to the top level 314 * device which should hold a reference to the bridge, 315 * and so on. 316 */ 317 dev = pci_upstream_bridge(dev); 318 if (!dev) { 319 ret = 0; 320 goto free_and_exit; 321 } 322 323 *p = 0; 324 } 325 326 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 327 &func, &end); 328 if (ret != 4) { 329 seg = 0; 330 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 331 if (ret != 3) { 332 ret = -EINVAL; 333 goto free_and_exit; 334 } 335 } 336 337 ret = (seg == pci_domain_nr(dev->bus) && 338 bus == dev->bus->number && 339 dev->devfn == PCI_DEVFN(slot, func)); 340 341 free_and_exit: 342 kfree(wpath); 343 return ret; 344 } 345 346 /** 347 * pci_dev_str_match - test if a string matches a device 348 * @dev: the PCI device to test 349 * @p: string to match the device against 350 * @endptr: pointer to the string after the match 351 * 352 * Test if a string (typically from a kernel parameter) matches a specified 353 * PCI device. The string may be of one of the following formats: 354 * 355 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 356 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 357 * 358 * The first format specifies a PCI bus/device/function address which 359 * may change if new hardware is inserted, if motherboard firmware changes, 360 * or due to changes caused in kernel parameters. If the domain is 361 * left unspecified, it is taken to be 0. In order to be robust against 362 * bus renumbering issues, a path of PCI device/function numbers may be used 363 * to address the specific device. The path for a device can be determined 364 * through the use of 'lspci -t'. 365 * 366 * The second format matches devices using IDs in the configuration 367 * space which may match multiple devices in the system. A value of 0 368 * for any field will match all devices. (Note: this differs from 369 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 370 * legacy reasons and convenience so users don't have to specify 371 * FFFFFFFFs on the command line.) 372 * 373 * Returns 1 if the string matches the device, 0 if it does not and 374 * a negative error code if the string cannot be parsed. 375 */ 376 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 377 const char **endptr) 378 { 379 int ret; 380 int count; 381 unsigned short vendor, device, subsystem_vendor, subsystem_device; 382 383 if (strncmp(p, "pci:", 4) == 0) { 384 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 385 p += 4; 386 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 387 &subsystem_vendor, &subsystem_device, &count); 388 if (ret != 4) { 389 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 390 if (ret != 2) 391 return -EINVAL; 392 393 subsystem_vendor = 0; 394 subsystem_device = 0; 395 } 396 397 p += count; 398 399 if ((!vendor || vendor == dev->vendor) && 400 (!device || device == dev->device) && 401 (!subsystem_vendor || 402 subsystem_vendor == dev->subsystem_vendor) && 403 (!subsystem_device || 404 subsystem_device == dev->subsystem_device)) 405 goto found; 406 } else { 407 /* 408 * PCI Bus, Device, Function IDs are specified 409 * (optionally, may include a path of devfns following it) 410 */ 411 ret = pci_dev_str_match_path(dev, p, &p); 412 if (ret < 0) 413 return ret; 414 else if (ret) 415 goto found; 416 } 417 418 *endptr = p; 419 return 0; 420 421 found: 422 *endptr = p; 423 return 1; 424 } 425 426 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 427 u8 pos, int cap, int *ttl) 428 { 429 u8 id; 430 u16 ent; 431 432 pci_bus_read_config_byte(bus, devfn, pos, &pos); 433 434 while ((*ttl)--) { 435 if (pos < 0x40) 436 break; 437 pos &= ~3; 438 pci_bus_read_config_word(bus, devfn, pos, &ent); 439 440 id = ent & 0xff; 441 if (id == 0xff) 442 break; 443 if (id == cap) 444 return pos; 445 pos = (ent >> 8); 446 } 447 return 0; 448 } 449 450 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 451 u8 pos, int cap) 452 { 453 int ttl = PCI_FIND_CAP_TTL; 454 455 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 456 } 457 458 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 459 { 460 return __pci_find_next_cap(dev->bus, dev->devfn, 461 pos + PCI_CAP_LIST_NEXT, cap); 462 } 463 EXPORT_SYMBOL_GPL(pci_find_next_capability); 464 465 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 466 unsigned int devfn, u8 hdr_type) 467 { 468 u16 status; 469 470 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 471 if (!(status & PCI_STATUS_CAP_LIST)) 472 return 0; 473 474 switch (hdr_type) { 475 case PCI_HEADER_TYPE_NORMAL: 476 case PCI_HEADER_TYPE_BRIDGE: 477 return PCI_CAPABILITY_LIST; 478 case PCI_HEADER_TYPE_CARDBUS: 479 return PCI_CB_CAPABILITY_LIST; 480 } 481 482 return 0; 483 } 484 485 /** 486 * pci_find_capability - query for devices' capabilities 487 * @dev: PCI device to query 488 * @cap: capability code 489 * 490 * Tell if a device supports a given PCI capability. 491 * Returns the address of the requested capability structure within the 492 * device's PCI configuration space or 0 in case the device does not 493 * support it. Possible values for @cap include: 494 * 495 * %PCI_CAP_ID_PM Power Management 496 * %PCI_CAP_ID_AGP Accelerated Graphics Port 497 * %PCI_CAP_ID_VPD Vital Product Data 498 * %PCI_CAP_ID_SLOTID Slot Identification 499 * %PCI_CAP_ID_MSI Message Signalled Interrupts 500 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 501 * %PCI_CAP_ID_PCIX PCI-X 502 * %PCI_CAP_ID_EXP PCI Express 503 */ 504 u8 pci_find_capability(struct pci_dev *dev, int cap) 505 { 506 u8 pos; 507 508 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 509 if (pos) 510 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 511 512 return pos; 513 } 514 EXPORT_SYMBOL(pci_find_capability); 515 516 /** 517 * pci_bus_find_capability - query for devices' capabilities 518 * @bus: the PCI bus to query 519 * @devfn: PCI device to query 520 * @cap: capability code 521 * 522 * Like pci_find_capability() but works for PCI devices that do not have a 523 * pci_dev structure set up yet. 524 * 525 * Returns the address of the requested capability structure within the 526 * device's PCI configuration space or 0 in case the device does not 527 * support it. 528 */ 529 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 530 { 531 u8 hdr_type, pos; 532 533 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 534 535 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK); 536 if (pos) 537 pos = __pci_find_next_cap(bus, devfn, pos, cap); 538 539 return pos; 540 } 541 EXPORT_SYMBOL(pci_bus_find_capability); 542 543 /** 544 * pci_find_next_ext_capability - Find an extended capability 545 * @dev: PCI device to query 546 * @start: address at which to start looking (0 to start at beginning of list) 547 * @cap: capability code 548 * 549 * Returns the address of the next matching extended capability structure 550 * within the device's PCI configuration space or 0 if the device does 551 * not support it. Some capabilities can occur several times, e.g., the 552 * vendor-specific capability, and this provides a way to find them all. 553 */ 554 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 555 { 556 u32 header; 557 int ttl; 558 u16 pos = PCI_CFG_SPACE_SIZE; 559 560 /* minimum 8 bytes per capability */ 561 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 562 563 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 564 return 0; 565 566 if (start) 567 pos = start; 568 569 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 570 return 0; 571 572 /* 573 * If we have no capabilities, this is indicated by cap ID, 574 * cap version and next pointer all being 0. 575 */ 576 if (header == 0) 577 return 0; 578 579 while (ttl-- > 0) { 580 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 581 return pos; 582 583 pos = PCI_EXT_CAP_NEXT(header); 584 if (pos < PCI_CFG_SPACE_SIZE) 585 break; 586 587 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 588 break; 589 } 590 591 return 0; 592 } 593 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 594 595 /** 596 * pci_find_ext_capability - Find an extended capability 597 * @dev: PCI device to query 598 * @cap: capability code 599 * 600 * Returns the address of the requested extended capability structure 601 * within the device's PCI configuration space or 0 if the device does 602 * not support it. Possible values for @cap include: 603 * 604 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 605 * %PCI_EXT_CAP_ID_VC Virtual Channel 606 * %PCI_EXT_CAP_ID_DSN Device Serial Number 607 * %PCI_EXT_CAP_ID_PWR Power Budgeting 608 */ 609 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 610 { 611 return pci_find_next_ext_capability(dev, 0, cap); 612 } 613 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 614 615 /** 616 * pci_get_dsn - Read and return the 8-byte Device Serial Number 617 * @dev: PCI device to query 618 * 619 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 620 * Number. 621 * 622 * Returns the DSN, or zero if the capability does not exist. 623 */ 624 u64 pci_get_dsn(struct pci_dev *dev) 625 { 626 u32 dword; 627 u64 dsn; 628 int pos; 629 630 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 631 if (!pos) 632 return 0; 633 634 /* 635 * The Device Serial Number is two dwords offset 4 bytes from the 636 * capability position. The specification says that the first dword is 637 * the lower half, and the second dword is the upper half. 638 */ 639 pos += 4; 640 pci_read_config_dword(dev, pos, &dword); 641 dsn = (u64)dword; 642 pci_read_config_dword(dev, pos + 4, &dword); 643 dsn |= ((u64)dword) << 32; 644 645 return dsn; 646 } 647 EXPORT_SYMBOL_GPL(pci_get_dsn); 648 649 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 650 { 651 int rc, ttl = PCI_FIND_CAP_TTL; 652 u8 cap, mask; 653 654 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 655 mask = HT_3BIT_CAP_MASK; 656 else 657 mask = HT_5BIT_CAP_MASK; 658 659 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 660 PCI_CAP_ID_HT, &ttl); 661 while (pos) { 662 rc = pci_read_config_byte(dev, pos + 3, &cap); 663 if (rc != PCIBIOS_SUCCESSFUL) 664 return 0; 665 666 if ((cap & mask) == ht_cap) 667 return pos; 668 669 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 670 pos + PCI_CAP_LIST_NEXT, 671 PCI_CAP_ID_HT, &ttl); 672 } 673 674 return 0; 675 } 676 677 /** 678 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 679 * @dev: PCI device to query 680 * @pos: Position from which to continue searching 681 * @ht_cap: HyperTransport capability code 682 * 683 * To be used in conjunction with pci_find_ht_capability() to search for 684 * all capabilities matching @ht_cap. @pos should always be a value returned 685 * from pci_find_ht_capability(). 686 * 687 * NB. To be 100% safe against broken PCI devices, the caller should take 688 * steps to avoid an infinite loop. 689 */ 690 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 691 { 692 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 693 } 694 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 695 696 /** 697 * pci_find_ht_capability - query a device's HyperTransport capabilities 698 * @dev: PCI device to query 699 * @ht_cap: HyperTransport capability code 700 * 701 * Tell if a device supports a given HyperTransport capability. 702 * Returns an address within the device's PCI configuration space 703 * or 0 in case the device does not support the request capability. 704 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 705 * which has a HyperTransport capability matching @ht_cap. 706 */ 707 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 708 { 709 u8 pos; 710 711 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 712 if (pos) 713 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 714 715 return pos; 716 } 717 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 718 719 /** 720 * pci_find_vsec_capability - Find a vendor-specific extended capability 721 * @dev: PCI device to query 722 * @vendor: Vendor ID for which capability is defined 723 * @cap: Vendor-specific capability ID 724 * 725 * If @dev has Vendor ID @vendor, search for a VSEC capability with 726 * VSEC ID @cap. If found, return the capability offset in 727 * config space; otherwise return 0. 728 */ 729 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 730 { 731 u16 vsec = 0; 732 u32 header; 733 int ret; 734 735 if (vendor != dev->vendor) 736 return 0; 737 738 while ((vsec = pci_find_next_ext_capability(dev, vsec, 739 PCI_EXT_CAP_ID_VNDR))) { 740 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 741 if (ret != PCIBIOS_SUCCESSFUL) 742 continue; 743 744 if (PCI_VNDR_HEADER_ID(header) == cap) 745 return vsec; 746 } 747 748 return 0; 749 } 750 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 751 752 /** 753 * pci_find_dvsec_capability - Find DVSEC for vendor 754 * @dev: PCI device to query 755 * @vendor: Vendor ID to match for the DVSEC 756 * @dvsec: Designated Vendor-specific capability ID 757 * 758 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 759 * offset in config space; otherwise return 0. 760 */ 761 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 762 { 763 int pos; 764 765 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 766 if (!pos) 767 return 0; 768 769 while (pos) { 770 u16 v, id; 771 772 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 774 if (vendor == v && dvsec == id) 775 return pos; 776 777 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 778 } 779 780 return 0; 781 } 782 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 783 784 /** 785 * pci_find_parent_resource - return resource region of parent bus of given 786 * region 787 * @dev: PCI device structure contains resources to be searched 788 * @res: child resource record for which parent is sought 789 * 790 * For given resource region of given device, return the resource region of 791 * parent bus the given region is contained in. 792 */ 793 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 794 struct resource *res) 795 { 796 const struct pci_bus *bus = dev->bus; 797 struct resource *r; 798 799 pci_bus_for_each_resource(bus, r) { 800 if (!r) 801 continue; 802 if (resource_contains(r, res)) { 803 804 /* 805 * If the window is prefetchable but the BAR is 806 * not, the allocator made a mistake. 807 */ 808 if (r->flags & IORESOURCE_PREFETCH && 809 !(res->flags & IORESOURCE_PREFETCH)) 810 return NULL; 811 812 /* 813 * If we're below a transparent bridge, there may 814 * be both a positively-decoded aperture and a 815 * subtractively-decoded region that contain the BAR. 816 * We want the positively-decoded one, so this depends 817 * on pci_bus_for_each_resource() giving us those 818 * first. 819 */ 820 return r; 821 } 822 } 823 return NULL; 824 } 825 EXPORT_SYMBOL(pci_find_parent_resource); 826 827 /** 828 * pci_find_resource - Return matching PCI device resource 829 * @dev: PCI device to query 830 * @res: Resource to look for 831 * 832 * Goes over standard PCI resources (BARs) and checks if the given resource 833 * is partially or fully contained in any of them. In that case the 834 * matching resource is returned, %NULL otherwise. 835 */ 836 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 837 { 838 int i; 839 840 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 841 struct resource *r = &dev->resource[i]; 842 843 if (r->start && resource_contains(r, res)) 844 return r; 845 } 846 847 return NULL; 848 } 849 EXPORT_SYMBOL(pci_find_resource); 850 851 /** 852 * pci_resource_name - Return the name of the PCI resource 853 * @dev: PCI device to query 854 * @i: index of the resource 855 * 856 * Return the standard PCI resource (BAR) name according to their index. 857 */ 858 const char *pci_resource_name(struct pci_dev *dev, unsigned int i) 859 { 860 static const char * const bar_name[] = { 861 "BAR 0", 862 "BAR 1", 863 "BAR 2", 864 "BAR 3", 865 "BAR 4", 866 "BAR 5", 867 "ROM", 868 #ifdef CONFIG_PCI_IOV 869 "VF BAR 0", 870 "VF BAR 1", 871 "VF BAR 2", 872 "VF BAR 3", 873 "VF BAR 4", 874 "VF BAR 5", 875 #endif 876 "bridge window", /* "io" included in %pR */ 877 "bridge window", /* "mem" included in %pR */ 878 "bridge window", /* "mem pref" included in %pR */ 879 }; 880 static const char * const cardbus_name[] = { 881 "BAR 1", 882 "unknown", 883 "unknown", 884 "unknown", 885 "unknown", 886 "unknown", 887 #ifdef CONFIG_PCI_IOV 888 "unknown", 889 "unknown", 890 "unknown", 891 "unknown", 892 "unknown", 893 "unknown", 894 #endif 895 "CardBus bridge window 0", /* I/O */ 896 "CardBus bridge window 1", /* I/O */ 897 "CardBus bridge window 0", /* mem */ 898 "CardBus bridge window 1", /* mem */ 899 }; 900 901 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS && 902 i < ARRAY_SIZE(cardbus_name)) 903 return cardbus_name[i]; 904 905 if (i < ARRAY_SIZE(bar_name)) 906 return bar_name[i]; 907 908 return "unknown"; 909 } 910 911 /** 912 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 913 * @dev: the PCI device to operate on 914 * @pos: config space offset of status word 915 * @mask: mask of bit(s) to care about in status word 916 * 917 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 918 */ 919 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 920 { 921 int i; 922 923 /* Wait for Transaction Pending bit clean */ 924 for (i = 0; i < 4; i++) { 925 u16 status; 926 if (i) 927 msleep((1 << (i - 1)) * 100); 928 929 pci_read_config_word(dev, pos, &status); 930 if (!(status & mask)) 931 return 1; 932 } 933 934 return 0; 935 } 936 937 static int pci_acs_enable; 938 939 /** 940 * pci_request_acs - ask for ACS to be enabled if supported 941 */ 942 void pci_request_acs(void) 943 { 944 pci_acs_enable = 1; 945 } 946 947 static const char *disable_acs_redir_param; 948 static const char *config_acs_param; 949 950 struct pci_acs { 951 u16 cap; 952 u16 ctrl; 953 u16 fw_ctrl; 954 }; 955 956 static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps, 957 const char *p, const u16 acs_mask, const u16 acs_flags) 958 { 959 u16 flags = acs_flags; 960 u16 mask = acs_mask; 961 char *delimit; 962 int ret = 0; 963 964 if (!p) 965 return; 966 967 while (*p) { 968 if (!acs_mask) { 969 /* Check for ACS flags */ 970 delimit = strstr(p, "@"); 971 if (delimit) { 972 int end; 973 u32 shift = 0; 974 975 end = delimit - p - 1; 976 mask = 0; 977 flags = 0; 978 979 while (end > -1) { 980 if (*(p + end) == '0') { 981 mask |= 1 << shift; 982 shift++; 983 end--; 984 } else if (*(p + end) == '1') { 985 mask |= 1 << shift; 986 flags |= 1 << shift; 987 shift++; 988 end--; 989 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) { 990 shift++; 991 end--; 992 } else { 993 pci_err(dev, "Invalid ACS flags... Ignoring\n"); 994 return; 995 } 996 } 997 p = delimit + 1; 998 } else { 999 pci_err(dev, "ACS Flags missing\n"); 1000 return; 1001 } 1002 } 1003 1004 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR | 1005 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) { 1006 pci_err(dev, "Invalid ACS flags specified\n"); 1007 return; 1008 } 1009 1010 ret = pci_dev_str_match(dev, p, &p); 1011 if (ret < 0) { 1012 pr_info_once("PCI: Can't parse ACS command line parameter\n"); 1013 break; 1014 } else if (ret == 1) { 1015 /* Found a match */ 1016 break; 1017 } 1018 1019 if (*p != ';' && *p != ',') { 1020 /* End of param or invalid format */ 1021 break; 1022 } 1023 p++; 1024 } 1025 1026 if (ret != 1) 1027 return; 1028 1029 if (!pci_dev_specific_disable_acs_redir(dev)) 1030 return; 1031 1032 pci_dbg(dev, "ACS mask = %#06x\n", mask); 1033 pci_dbg(dev, "ACS flags = %#06x\n", flags); 1034 pci_dbg(dev, "ACS control = %#06x\n", caps->ctrl); 1035 pci_dbg(dev, "ACS fw_ctrl = %#06x\n", caps->fw_ctrl); 1036 1037 /* 1038 * For mask bits that are 0, copy them from the firmware setting 1039 * and apply flags for all the mask bits that are 1. 1040 */ 1041 caps->ctrl = (caps->fw_ctrl & ~mask) | (flags & mask); 1042 1043 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl); 1044 } 1045 1046 /** 1047 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 1048 * @dev: the PCI device 1049 * @caps: default ACS controls 1050 */ 1051 static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps) 1052 { 1053 /* Source Validation */ 1054 caps->ctrl |= (caps->cap & PCI_ACS_SV); 1055 1056 /* P2P Request Redirect */ 1057 caps->ctrl |= (caps->cap & PCI_ACS_RR); 1058 1059 /* P2P Completion Redirect */ 1060 caps->ctrl |= (caps->cap & PCI_ACS_CR); 1061 1062 /* Upstream Forwarding */ 1063 caps->ctrl |= (caps->cap & PCI_ACS_UF); 1064 1065 /* Enable Translation Blocking for external devices and noats */ 1066 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 1067 caps->ctrl |= (caps->cap & PCI_ACS_TB); 1068 } 1069 1070 /** 1071 * pci_enable_acs - enable ACS if hardware support it 1072 * @dev: the PCI device 1073 */ 1074 static void pci_enable_acs(struct pci_dev *dev) 1075 { 1076 struct pci_acs caps; 1077 bool enable_acs = false; 1078 int pos; 1079 1080 /* If an iommu is present we start with kernel default caps */ 1081 if (pci_acs_enable) { 1082 if (pci_dev_specific_enable_acs(dev)) 1083 enable_acs = true; 1084 } 1085 1086 pos = dev->acs_cap; 1087 if (!pos) 1088 return; 1089 1090 pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap); 1091 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl); 1092 caps.fw_ctrl = caps.ctrl; 1093 1094 if (enable_acs) 1095 pci_std_enable_acs(dev, &caps); 1096 1097 /* 1098 * Always apply caps from the command line, even if there is no iommu. 1099 * Trust that the admin has a reason to change the ACS settings. 1100 */ 1101 __pci_config_acs(dev, &caps, disable_acs_redir_param, 1102 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC, 1103 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)); 1104 __pci_config_acs(dev, &caps, config_acs_param, 0, 0); 1105 1106 pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl); 1107 } 1108 1109 /** 1110 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1111 * @dev: PCI device to have its BARs restored 1112 * 1113 * Restore the BAR values for a given device, so as to make it 1114 * accessible by its driver. 1115 */ 1116 static void pci_restore_bars(struct pci_dev *dev) 1117 { 1118 int i; 1119 1120 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1121 pci_update_resource(dev, i); 1122 } 1123 1124 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1125 { 1126 if (pci_use_mid_pm()) 1127 return true; 1128 1129 return acpi_pci_power_manageable(dev); 1130 } 1131 1132 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1133 pci_power_t t) 1134 { 1135 if (pci_use_mid_pm()) 1136 return mid_pci_set_power_state(dev, t); 1137 1138 return acpi_pci_set_power_state(dev, t); 1139 } 1140 1141 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1142 { 1143 if (pci_use_mid_pm()) 1144 return mid_pci_get_power_state(dev); 1145 1146 return acpi_pci_get_power_state(dev); 1147 } 1148 1149 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1150 { 1151 if (!pci_use_mid_pm()) 1152 acpi_pci_refresh_power_state(dev); 1153 } 1154 1155 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1156 { 1157 if (pci_use_mid_pm()) 1158 return PCI_POWER_ERROR; 1159 1160 return acpi_pci_choose_state(dev); 1161 } 1162 1163 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1164 { 1165 if (pci_use_mid_pm()) 1166 return PCI_POWER_ERROR; 1167 1168 return acpi_pci_wakeup(dev, enable); 1169 } 1170 1171 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1172 { 1173 if (pci_use_mid_pm()) 1174 return false; 1175 1176 return acpi_pci_need_resume(dev); 1177 } 1178 1179 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1180 { 1181 if (pci_use_mid_pm()) 1182 return false; 1183 1184 return acpi_pci_bridge_d3(dev); 1185 } 1186 1187 /** 1188 * pci_update_current_state - Read power state of given device and cache it 1189 * @dev: PCI device to handle. 1190 * @state: State to cache in case the device doesn't have the PM capability 1191 * 1192 * The power state is read from the PMCSR register, which however is 1193 * inaccessible in D3cold. The platform firmware is therefore queried first 1194 * to detect accessibility of the register. In case the platform firmware 1195 * reports an incorrect state or the device isn't power manageable by the 1196 * platform at all, we try to detect D3cold by testing accessibility of the 1197 * vendor ID in config space. 1198 */ 1199 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1200 { 1201 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1202 dev->current_state = PCI_D3cold; 1203 } else if (dev->pm_cap) { 1204 u16 pmcsr; 1205 1206 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1207 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1208 dev->current_state = PCI_D3cold; 1209 return; 1210 } 1211 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1212 } else { 1213 dev->current_state = state; 1214 } 1215 } 1216 1217 /** 1218 * pci_refresh_power_state - Refresh the given device's power state data 1219 * @dev: Target PCI device. 1220 * 1221 * Ask the platform to refresh the devices power state information and invoke 1222 * pci_update_current_state() to update its current PCI power state. 1223 */ 1224 void pci_refresh_power_state(struct pci_dev *dev) 1225 { 1226 platform_pci_refresh_power_state(dev); 1227 pci_update_current_state(dev, dev->current_state); 1228 } 1229 1230 /** 1231 * pci_platform_power_transition - Use platform to change device power state 1232 * @dev: PCI device to handle. 1233 * @state: State to put the device into. 1234 */ 1235 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1236 { 1237 int error; 1238 1239 error = platform_pci_set_power_state(dev, state); 1240 if (!error) 1241 pci_update_current_state(dev, state); 1242 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1243 dev->current_state = PCI_D0; 1244 1245 return error; 1246 } 1247 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1248 1249 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1250 { 1251 pm_request_resume(&pci_dev->dev); 1252 return 0; 1253 } 1254 1255 /** 1256 * pci_resume_bus - Walk given bus and runtime resume devices on it 1257 * @bus: Top bus of the subtree to walk. 1258 */ 1259 void pci_resume_bus(struct pci_bus *bus) 1260 { 1261 if (bus) 1262 pci_walk_bus(bus, pci_resume_one, NULL); 1263 } 1264 1265 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1266 { 1267 int delay = 1; 1268 bool retrain = false; 1269 struct pci_dev *root, *bridge; 1270 1271 root = pcie_find_root_port(dev); 1272 1273 if (pci_is_pcie(dev)) { 1274 bridge = pci_upstream_bridge(dev); 1275 if (bridge) 1276 retrain = true; 1277 } 1278 1279 /* 1280 * The caller has already waited long enough after a reset that the 1281 * device should respond to config requests, but it may respond 1282 * with Request Retry Status (RRS) if it needs more time to 1283 * initialize. 1284 * 1285 * If the device is below a Root Port with Configuration RRS 1286 * Software Visibility enabled, reading the Vendor ID returns a 1287 * special data value if the device responded with RRS. Read the 1288 * Vendor ID until we get non-RRS status. 1289 * 1290 * If there's no Root Port or Configuration RRS Software Visibility 1291 * is not enabled, the device may still respond with RRS, but 1292 * hardware may retry the config request. If no retries receive 1293 * Successful Completion, hardware generally synthesizes ~0 1294 * (PCI_ERROR_RESPONSE) data to complete the read. Reading Vendor 1295 * ID for VFs and non-existent devices also returns ~0, so read the 1296 * Command register until it returns something other than ~0. 1297 */ 1298 for (;;) { 1299 u32 id; 1300 1301 if (pci_dev_is_disconnected(dev)) { 1302 pci_dbg(dev, "disconnected; not waiting\n"); 1303 return -ENOTTY; 1304 } 1305 1306 if (root && root->config_rrs_sv) { 1307 pci_read_config_dword(dev, PCI_VENDOR_ID, &id); 1308 if (!pci_bus_rrs_vendor_id(id)) 1309 break; 1310 } else { 1311 pci_read_config_dword(dev, PCI_COMMAND, &id); 1312 if (!PCI_POSSIBLE_ERROR(id)) 1313 break; 1314 } 1315 1316 if (delay > timeout) { 1317 pci_warn(dev, "not ready %dms after %s; giving up\n", 1318 delay - 1, reset_type); 1319 return -ENOTTY; 1320 } 1321 1322 if (delay > PCI_RESET_WAIT) { 1323 if (retrain) { 1324 retrain = false; 1325 if (pcie_failed_link_retrain(bridge) == 0) { 1326 delay = 1; 1327 continue; 1328 } 1329 } 1330 pci_info(dev, "not ready %dms after %s; waiting\n", 1331 delay - 1, reset_type); 1332 } 1333 1334 msleep(delay); 1335 delay *= 2; 1336 } 1337 1338 if (delay > PCI_RESET_WAIT) 1339 pci_info(dev, "ready %dms after %s\n", delay - 1, 1340 reset_type); 1341 else 1342 pci_dbg(dev, "ready %dms after %s\n", delay - 1, 1343 reset_type); 1344 1345 return 0; 1346 } 1347 1348 /** 1349 * pci_power_up - Put the given device into D0 1350 * @dev: PCI device to power up 1351 * 1352 * On success, return 0 or 1, depending on whether or not it is necessary to 1353 * restore the device's BARs subsequently (1 is returned in that case). 1354 * 1355 * On failure, return a negative error code. Always return failure if @dev 1356 * lacks a Power Management Capability, even if the platform was able to 1357 * put the device in D0 via non-PCI means. 1358 */ 1359 int pci_power_up(struct pci_dev *dev) 1360 { 1361 bool need_restore; 1362 pci_power_t state; 1363 u16 pmcsr; 1364 1365 platform_pci_set_power_state(dev, PCI_D0); 1366 1367 if (!dev->pm_cap) { 1368 state = platform_pci_get_power_state(dev); 1369 if (state == PCI_UNKNOWN) 1370 dev->current_state = PCI_D0; 1371 else 1372 dev->current_state = state; 1373 1374 return -EIO; 1375 } 1376 1377 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1378 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1379 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1380 pci_power_name(dev->current_state)); 1381 dev->current_state = PCI_D3cold; 1382 return -EIO; 1383 } 1384 1385 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1386 1387 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1388 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1389 1390 if (state == PCI_D0) 1391 goto end; 1392 1393 /* 1394 * Force the entire word to 0. This doesn't affect PME_Status, disables 1395 * PME_En, and sets PowerState to 0. 1396 */ 1397 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1398 1399 /* Mandatory transition delays; see PCI PM 1.2. */ 1400 if (state == PCI_D3hot) 1401 pci_dev_d3_sleep(dev); 1402 else if (state == PCI_D2) 1403 udelay(PCI_PM_D2_DELAY); 1404 1405 end: 1406 dev->current_state = PCI_D0; 1407 if (need_restore) 1408 return 1; 1409 1410 return 0; 1411 } 1412 1413 /** 1414 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1415 * @dev: PCI device to power up 1416 * @locked: whether pci_bus_sem is held 1417 * 1418 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1419 * to confirm the state change, restore its BARs if they might be lost and 1420 * reconfigure ASPM in accordance with the new power state. 1421 * 1422 * If pci_restore_state() is going to be called right after a power state change 1423 * to D0, it is more efficient to use pci_power_up() directly instead of this 1424 * function. 1425 */ 1426 static int pci_set_full_power_state(struct pci_dev *dev, bool locked) 1427 { 1428 u16 pmcsr; 1429 int ret; 1430 1431 ret = pci_power_up(dev); 1432 if (ret < 0) { 1433 if (dev->current_state == PCI_D0) 1434 return 0; 1435 1436 return ret; 1437 } 1438 1439 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1440 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1441 if (dev->current_state != PCI_D0) { 1442 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1443 pci_power_name(dev->current_state)); 1444 } else if (ret > 0) { 1445 /* 1446 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1447 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1448 * from D3hot to D0 _may_ perform an internal reset, thereby 1449 * going to "D0 Uninitialized" rather than "D0 Initialized". 1450 * For example, at least some versions of the 3c905B and the 1451 * 3c556B exhibit this behaviour. 1452 * 1453 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1454 * devices in a D3hot state at boot. Consequently, we need to 1455 * restore at least the BARs so that the device will be 1456 * accessible to its driver. 1457 */ 1458 pci_restore_bars(dev); 1459 } 1460 1461 if (dev->bus->self) 1462 pcie_aspm_pm_state_change(dev->bus->self, locked); 1463 1464 return 0; 1465 } 1466 1467 /** 1468 * __pci_dev_set_current_state - Set current state of a PCI device 1469 * @dev: Device to handle 1470 * @data: pointer to state to be set 1471 */ 1472 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1473 { 1474 pci_power_t state = *(pci_power_t *)data; 1475 1476 dev->current_state = state; 1477 return 0; 1478 } 1479 1480 /** 1481 * pci_bus_set_current_state - Walk given bus and set current state of devices 1482 * @bus: Top bus of the subtree to walk. 1483 * @state: state to be set 1484 */ 1485 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1486 { 1487 if (bus) 1488 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1489 } 1490 1491 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked) 1492 { 1493 if (!bus) 1494 return; 1495 1496 if (locked) 1497 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state); 1498 else 1499 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1500 } 1501 1502 /** 1503 * pci_set_low_power_state - Put a PCI device into a low-power state. 1504 * @dev: PCI device to handle. 1505 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1506 * @locked: whether pci_bus_sem is held 1507 * 1508 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1509 * 1510 * RETURN VALUE: 1511 * -EINVAL if the requested state is invalid. 1512 * -EIO if device does not support PCI PM or its PM capabilities register has a 1513 * wrong version, or device doesn't support the requested state. 1514 * 0 if device already is in the requested state. 1515 * 0 if device's power state has been successfully changed. 1516 */ 1517 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1518 { 1519 u16 pmcsr; 1520 1521 if (!dev->pm_cap) 1522 return -EIO; 1523 1524 /* 1525 * Validate transition: We can enter D0 from any state, but if 1526 * we're already in a low-power state, we can only go deeper. E.g., 1527 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1528 * we'd have to go from D3 to D0, then to D1. 1529 */ 1530 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1531 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1532 pci_power_name(dev->current_state), 1533 pci_power_name(state)); 1534 return -EINVAL; 1535 } 1536 1537 /* Check if this device supports the desired state */ 1538 if ((state == PCI_D1 && !dev->d1_support) 1539 || (state == PCI_D2 && !dev->d2_support)) 1540 return -EIO; 1541 1542 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1543 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1544 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1545 pci_power_name(dev->current_state), 1546 pci_power_name(state)); 1547 dev->current_state = PCI_D3cold; 1548 return -EIO; 1549 } 1550 1551 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1552 pmcsr |= state; 1553 1554 /* Enter specified state */ 1555 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1556 1557 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1558 if (state == PCI_D3hot) 1559 pci_dev_d3_sleep(dev); 1560 else if (state == PCI_D2) 1561 udelay(PCI_PM_D2_DELAY); 1562 1563 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1564 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1565 if (dev->current_state != state) 1566 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1567 pci_power_name(dev->current_state), 1568 pci_power_name(state)); 1569 1570 if (dev->bus->self) 1571 pcie_aspm_pm_state_change(dev->bus->self, locked); 1572 1573 return 0; 1574 } 1575 1576 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1577 { 1578 int error; 1579 1580 /* Bound the state we're entering */ 1581 if (state > PCI_D3cold) 1582 state = PCI_D3cold; 1583 else if (state < PCI_D0) 1584 state = PCI_D0; 1585 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1586 1587 /* 1588 * If the device or the parent bridge do not support PCI 1589 * PM, ignore the request if we're doing anything other 1590 * than putting it into D0 (which would only happen on 1591 * boot). 1592 */ 1593 return 0; 1594 1595 /* Check if we're already there */ 1596 if (dev->current_state == state) 1597 return 0; 1598 1599 if (state == PCI_D0) 1600 return pci_set_full_power_state(dev, locked); 1601 1602 /* 1603 * This device is quirked not to be put into D3, so don't put it in 1604 * D3 1605 */ 1606 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1607 return 0; 1608 1609 if (state == PCI_D3cold) { 1610 /* 1611 * To put the device in D3cold, put it into D3hot in the native 1612 * way, then put it into D3cold using platform ops. 1613 */ 1614 error = pci_set_low_power_state(dev, PCI_D3hot, locked); 1615 1616 if (pci_platform_power_transition(dev, PCI_D3cold)) 1617 return error; 1618 1619 /* Powering off a bridge may power off the whole hierarchy */ 1620 if (dev->current_state == PCI_D3cold) 1621 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked); 1622 } else { 1623 error = pci_set_low_power_state(dev, state, locked); 1624 1625 if (pci_platform_power_transition(dev, state)) 1626 return error; 1627 } 1628 1629 return 0; 1630 } 1631 1632 /** 1633 * pci_set_power_state - Set the power state of a PCI device 1634 * @dev: PCI device to handle. 1635 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1636 * 1637 * Transition a device to a new power state, using the platform firmware and/or 1638 * the device's PCI PM registers. 1639 * 1640 * RETURN VALUE: 1641 * -EINVAL if the requested state is invalid. 1642 * -EIO if device does not support PCI PM or its PM capabilities register has a 1643 * wrong version, or device doesn't support the requested state. 1644 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1645 * 0 if device already is in the requested state. 1646 * 0 if the transition is to D3 but D3 is not supported. 1647 * 0 if device's power state has been successfully changed. 1648 */ 1649 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1650 { 1651 return __pci_set_power_state(dev, state, false); 1652 } 1653 EXPORT_SYMBOL(pci_set_power_state); 1654 1655 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state) 1656 { 1657 lockdep_assert_held(&pci_bus_sem); 1658 1659 return __pci_set_power_state(dev, state, true); 1660 } 1661 EXPORT_SYMBOL(pci_set_power_state_locked); 1662 1663 #define PCI_EXP_SAVE_REGS 7 1664 1665 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1666 u16 cap, bool extended) 1667 { 1668 struct pci_cap_saved_state *tmp; 1669 1670 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1671 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1672 return tmp; 1673 } 1674 return NULL; 1675 } 1676 1677 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1678 { 1679 return _pci_find_saved_cap(dev, cap, false); 1680 } 1681 1682 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1683 { 1684 return _pci_find_saved_cap(dev, cap, true); 1685 } 1686 1687 static int pci_save_pcie_state(struct pci_dev *dev) 1688 { 1689 int i = 0; 1690 struct pci_cap_saved_state *save_state; 1691 u16 *cap; 1692 1693 if (!pci_is_pcie(dev)) 1694 return 0; 1695 1696 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1697 if (!save_state) { 1698 pci_err(dev, "buffer not found in %s\n", __func__); 1699 return -ENOMEM; 1700 } 1701 1702 cap = (u16 *)&save_state->cap.data[0]; 1703 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1704 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1705 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1706 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1707 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1708 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1709 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1710 1711 pci_save_aspm_l1ss_state(dev); 1712 pci_save_ltr_state(dev); 1713 1714 return 0; 1715 } 1716 1717 static void pci_restore_pcie_state(struct pci_dev *dev) 1718 { 1719 int i = 0; 1720 struct pci_cap_saved_state *save_state; 1721 u16 *cap; 1722 1723 /* 1724 * Restore max latencies (in the LTR capability) before enabling 1725 * LTR itself in PCI_EXP_DEVCTL2. 1726 */ 1727 pci_restore_ltr_state(dev); 1728 pci_restore_aspm_l1ss_state(dev); 1729 1730 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1731 if (!save_state) 1732 return; 1733 1734 /* 1735 * Downstream ports reset the LTR enable bit when link goes down. 1736 * Check and re-configure the bit here before restoring device. 1737 * PCIe r5.0, sec 7.5.3.16. 1738 */ 1739 pci_bridge_reconfigure_ltr(dev); 1740 1741 cap = (u16 *)&save_state->cap.data[0]; 1742 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1743 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1744 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1745 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1746 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1747 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1748 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1749 } 1750 1751 static int pci_save_pcix_state(struct pci_dev *dev) 1752 { 1753 int pos; 1754 struct pci_cap_saved_state *save_state; 1755 1756 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1757 if (!pos) 1758 return 0; 1759 1760 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1761 if (!save_state) { 1762 pci_err(dev, "buffer not found in %s\n", __func__); 1763 return -ENOMEM; 1764 } 1765 1766 pci_read_config_word(dev, pos + PCI_X_CMD, 1767 (u16 *)save_state->cap.data); 1768 1769 return 0; 1770 } 1771 1772 static void pci_restore_pcix_state(struct pci_dev *dev) 1773 { 1774 int i = 0, pos; 1775 struct pci_cap_saved_state *save_state; 1776 u16 *cap; 1777 1778 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1779 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1780 if (!save_state || !pos) 1781 return; 1782 cap = (u16 *)&save_state->cap.data[0]; 1783 1784 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1785 } 1786 1787 /** 1788 * pci_save_state - save the PCI configuration space of a device before 1789 * suspending 1790 * @dev: PCI device that we're dealing with 1791 */ 1792 int pci_save_state(struct pci_dev *dev) 1793 { 1794 int i; 1795 /* XXX: 100% dword access ok here? */ 1796 for (i = 0; i < 16; i++) { 1797 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1798 pci_dbg(dev, "save config %#04x: %#010x\n", 1799 i * 4, dev->saved_config_space[i]); 1800 } 1801 dev->state_saved = true; 1802 1803 i = pci_save_pcie_state(dev); 1804 if (i != 0) 1805 return i; 1806 1807 i = pci_save_pcix_state(dev); 1808 if (i != 0) 1809 return i; 1810 1811 pci_save_dpc_state(dev); 1812 pci_save_aer_state(dev); 1813 pci_save_ptm_state(dev); 1814 pci_save_tph_state(dev); 1815 return pci_save_vc_state(dev); 1816 } 1817 EXPORT_SYMBOL(pci_save_state); 1818 1819 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1820 u32 saved_val, int retry, bool force) 1821 { 1822 u32 val; 1823 1824 pci_read_config_dword(pdev, offset, &val); 1825 if (!force && val == saved_val) 1826 return; 1827 1828 for (;;) { 1829 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1830 offset, val, saved_val); 1831 pci_write_config_dword(pdev, offset, saved_val); 1832 if (retry-- <= 0) 1833 return; 1834 1835 pci_read_config_dword(pdev, offset, &val); 1836 if (val == saved_val) 1837 return; 1838 1839 mdelay(1); 1840 } 1841 } 1842 1843 static void pci_restore_config_space_range(struct pci_dev *pdev, 1844 int start, int end, int retry, 1845 bool force) 1846 { 1847 int index; 1848 1849 for (index = end; index >= start; index--) 1850 pci_restore_config_dword(pdev, 4 * index, 1851 pdev->saved_config_space[index], 1852 retry, force); 1853 } 1854 1855 static void pci_restore_config_space(struct pci_dev *pdev) 1856 { 1857 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1858 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1859 /* Restore BARs before the command register. */ 1860 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1861 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1862 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1863 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1864 1865 /* 1866 * Force rewriting of prefetch registers to avoid S3 resume 1867 * issues on Intel PCI bridges that occur when these 1868 * registers are not explicitly written. 1869 */ 1870 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1871 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1872 } else { 1873 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1874 } 1875 } 1876 1877 static void pci_restore_rebar_state(struct pci_dev *pdev) 1878 { 1879 unsigned int pos, nbars, i; 1880 u32 ctrl; 1881 1882 pos = pdev->rebar_cap; 1883 if (!pos) 1884 return; 1885 1886 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1887 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 1888 1889 for (i = 0; i < nbars; i++, pos += 8) { 1890 struct resource *res; 1891 int bar_idx, size; 1892 1893 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1894 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1895 res = pci_resource_n(pdev, bar_idx); 1896 size = pci_rebar_bytes_to_size(resource_size(res)); 1897 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1898 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 1899 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1900 } 1901 } 1902 1903 /** 1904 * pci_restore_state - Restore the saved state of a PCI device 1905 * @dev: PCI device that we're dealing with 1906 */ 1907 void pci_restore_state(struct pci_dev *dev) 1908 { 1909 if (!dev->state_saved) 1910 return; 1911 1912 pci_restore_pcie_state(dev); 1913 pci_restore_pasid_state(dev); 1914 pci_restore_pri_state(dev); 1915 pci_restore_ats_state(dev); 1916 pci_restore_vc_state(dev); 1917 pci_restore_rebar_state(dev); 1918 pci_restore_dpc_state(dev); 1919 pci_restore_ptm_state(dev); 1920 pci_restore_tph_state(dev); 1921 1922 pci_aer_clear_status(dev); 1923 pci_restore_aer_state(dev); 1924 1925 pci_restore_config_space(dev); 1926 1927 pci_restore_pcix_state(dev); 1928 pci_restore_msi_state(dev); 1929 1930 /* Restore ACS and IOV configuration state */ 1931 pci_enable_acs(dev); 1932 pci_restore_iov_state(dev); 1933 1934 dev->state_saved = false; 1935 } 1936 EXPORT_SYMBOL(pci_restore_state); 1937 1938 struct pci_saved_state { 1939 u32 config_space[16]; 1940 struct pci_cap_saved_data cap[]; 1941 }; 1942 1943 /** 1944 * pci_store_saved_state - Allocate and return an opaque struct containing 1945 * the device saved state. 1946 * @dev: PCI device that we're dealing with 1947 * 1948 * Return NULL if no state or error. 1949 */ 1950 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1951 { 1952 struct pci_saved_state *state; 1953 struct pci_cap_saved_state *tmp; 1954 struct pci_cap_saved_data *cap; 1955 size_t size; 1956 1957 if (!dev->state_saved) 1958 return NULL; 1959 1960 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1961 1962 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1963 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1964 1965 state = kzalloc(size, GFP_KERNEL); 1966 if (!state) 1967 return NULL; 1968 1969 memcpy(state->config_space, dev->saved_config_space, 1970 sizeof(state->config_space)); 1971 1972 cap = state->cap; 1973 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1974 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1975 memcpy(cap, &tmp->cap, len); 1976 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1977 } 1978 /* Empty cap_save terminates list */ 1979 1980 return state; 1981 } 1982 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1983 1984 /** 1985 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1986 * @dev: PCI device that we're dealing with 1987 * @state: Saved state returned from pci_store_saved_state() 1988 */ 1989 int pci_load_saved_state(struct pci_dev *dev, 1990 struct pci_saved_state *state) 1991 { 1992 struct pci_cap_saved_data *cap; 1993 1994 dev->state_saved = false; 1995 1996 if (!state) 1997 return 0; 1998 1999 memcpy(dev->saved_config_space, state->config_space, 2000 sizeof(state->config_space)); 2001 2002 cap = state->cap; 2003 while (cap->size) { 2004 struct pci_cap_saved_state *tmp; 2005 2006 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 2007 if (!tmp || tmp->cap.size != cap->size) 2008 return -EINVAL; 2009 2010 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 2011 cap = (struct pci_cap_saved_data *)((u8 *)cap + 2012 sizeof(struct pci_cap_saved_data) + cap->size); 2013 } 2014 2015 dev->state_saved = true; 2016 return 0; 2017 } 2018 EXPORT_SYMBOL_GPL(pci_load_saved_state); 2019 2020 /** 2021 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 2022 * and free the memory allocated for it. 2023 * @dev: PCI device that we're dealing with 2024 * @state: Pointer to saved state returned from pci_store_saved_state() 2025 */ 2026 int pci_load_and_free_saved_state(struct pci_dev *dev, 2027 struct pci_saved_state **state) 2028 { 2029 int ret = pci_load_saved_state(dev, *state); 2030 kfree(*state); 2031 *state = NULL; 2032 return ret; 2033 } 2034 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 2035 2036 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 2037 { 2038 return pci_enable_resources(dev, bars); 2039 } 2040 2041 static int pci_host_bridge_enable_device(struct pci_dev *dev) 2042 { 2043 struct pci_host_bridge *host_bridge = pci_find_host_bridge(dev->bus); 2044 int err; 2045 2046 if (host_bridge && host_bridge->enable_device) { 2047 err = host_bridge->enable_device(host_bridge, dev); 2048 if (err) 2049 return err; 2050 } 2051 2052 return 0; 2053 } 2054 2055 static void pci_host_bridge_disable_device(struct pci_dev *dev) 2056 { 2057 struct pci_host_bridge *host_bridge = pci_find_host_bridge(dev->bus); 2058 2059 if (host_bridge && host_bridge->disable_device) 2060 host_bridge->disable_device(host_bridge, dev); 2061 } 2062 2063 static int do_pci_enable_device(struct pci_dev *dev, int bars) 2064 { 2065 int err; 2066 struct pci_dev *bridge; 2067 u16 cmd; 2068 u8 pin; 2069 2070 err = pci_set_power_state(dev, PCI_D0); 2071 if (err < 0 && err != -EIO) 2072 return err; 2073 2074 bridge = pci_upstream_bridge(dev); 2075 if (bridge) 2076 pcie_aspm_powersave_config_link(bridge); 2077 2078 err = pci_host_bridge_enable_device(dev); 2079 if (err) 2080 return err; 2081 2082 err = pcibios_enable_device(dev, bars); 2083 if (err < 0) 2084 goto err_enable; 2085 pci_fixup_device(pci_fixup_enable, dev); 2086 2087 if (dev->msi_enabled || dev->msix_enabled) 2088 return 0; 2089 2090 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 2091 if (pin) { 2092 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2093 if (cmd & PCI_COMMAND_INTX_DISABLE) 2094 pci_write_config_word(dev, PCI_COMMAND, 2095 cmd & ~PCI_COMMAND_INTX_DISABLE); 2096 } 2097 2098 return 0; 2099 2100 err_enable: 2101 pci_host_bridge_disable_device(dev); 2102 2103 return err; 2104 2105 } 2106 2107 /** 2108 * pci_reenable_device - Resume abandoned device 2109 * @dev: PCI device to be resumed 2110 * 2111 * NOTE: This function is a backend of pci_default_resume() and is not supposed 2112 * to be called by normal code, write proper resume handler and use it instead. 2113 */ 2114 int pci_reenable_device(struct pci_dev *dev) 2115 { 2116 if (pci_is_enabled(dev)) 2117 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 2118 return 0; 2119 } 2120 EXPORT_SYMBOL(pci_reenable_device); 2121 2122 static void pci_enable_bridge(struct pci_dev *dev) 2123 { 2124 struct pci_dev *bridge; 2125 int retval; 2126 2127 bridge = pci_upstream_bridge(dev); 2128 if (bridge) 2129 pci_enable_bridge(bridge); 2130 2131 if (pci_is_enabled(dev)) { 2132 if (!dev->is_busmaster) 2133 pci_set_master(dev); 2134 return; 2135 } 2136 2137 retval = pci_enable_device(dev); 2138 if (retval) 2139 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2140 retval); 2141 pci_set_master(dev); 2142 } 2143 2144 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2145 { 2146 struct pci_dev *bridge; 2147 int err; 2148 int i, bars = 0; 2149 2150 /* 2151 * Power state could be unknown at this point, either due to a fresh 2152 * boot or a device removal call. So get the current power state 2153 * so that things like MSI message writing will behave as expected 2154 * (e.g. if the device really is in D0 at enable time). 2155 */ 2156 pci_update_current_state(dev, dev->current_state); 2157 2158 if (atomic_inc_return(&dev->enable_cnt) > 1) 2159 return 0; /* already enabled */ 2160 2161 bridge = pci_upstream_bridge(dev); 2162 if (bridge) 2163 pci_enable_bridge(bridge); 2164 2165 /* only skip sriov related */ 2166 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2167 if (dev->resource[i].flags & flags) 2168 bars |= (1 << i); 2169 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2170 if (dev->resource[i].flags & flags) 2171 bars |= (1 << i); 2172 2173 err = do_pci_enable_device(dev, bars); 2174 if (err < 0) 2175 atomic_dec(&dev->enable_cnt); 2176 return err; 2177 } 2178 2179 /** 2180 * pci_enable_device_mem - Initialize a device for use with Memory space 2181 * @dev: PCI device to be initialized 2182 * 2183 * Initialize device before it's used by a driver. Ask low-level code 2184 * to enable Memory resources. Wake up the device if it was suspended. 2185 * Beware, this function can fail. 2186 */ 2187 int pci_enable_device_mem(struct pci_dev *dev) 2188 { 2189 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2190 } 2191 EXPORT_SYMBOL(pci_enable_device_mem); 2192 2193 /** 2194 * pci_enable_device - Initialize device before it's used by a driver. 2195 * @dev: PCI device to be initialized 2196 * 2197 * Initialize device before it's used by a driver. Ask low-level code 2198 * to enable I/O and memory. Wake up the device if it was suspended. 2199 * Beware, this function can fail. 2200 * 2201 * Note we don't actually enable the device many times if we call 2202 * this function repeatedly (we just increment the count). 2203 */ 2204 int pci_enable_device(struct pci_dev *dev) 2205 { 2206 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2207 } 2208 EXPORT_SYMBOL(pci_enable_device); 2209 2210 /* 2211 * pcibios_device_add - provide arch specific hooks when adding device dev 2212 * @dev: the PCI device being added 2213 * 2214 * Permits the platform to provide architecture specific functionality when 2215 * devices are added. This is the default implementation. Architecture 2216 * implementations can override this. 2217 */ 2218 int __weak pcibios_device_add(struct pci_dev *dev) 2219 { 2220 return 0; 2221 } 2222 2223 /** 2224 * pcibios_release_device - provide arch specific hooks when releasing 2225 * device dev 2226 * @dev: the PCI device being released 2227 * 2228 * Permits the platform to provide architecture specific functionality when 2229 * devices are released. This is the default implementation. Architecture 2230 * implementations can override this. 2231 */ 2232 void __weak pcibios_release_device(struct pci_dev *dev) {} 2233 2234 /** 2235 * pcibios_disable_device - disable arch specific PCI resources for device dev 2236 * @dev: the PCI device to disable 2237 * 2238 * Disables architecture specific PCI resources for the device. This 2239 * is the default implementation. Architecture implementations can 2240 * override this. 2241 */ 2242 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2243 2244 static void do_pci_disable_device(struct pci_dev *dev) 2245 { 2246 u16 pci_command; 2247 2248 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2249 if (pci_command & PCI_COMMAND_MASTER) { 2250 pci_command &= ~PCI_COMMAND_MASTER; 2251 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2252 } 2253 2254 pcibios_disable_device(dev); 2255 } 2256 2257 /** 2258 * pci_disable_enabled_device - Disable device without updating enable_cnt 2259 * @dev: PCI device to disable 2260 * 2261 * NOTE: This function is a backend of PCI power management routines and is 2262 * not supposed to be called drivers. 2263 */ 2264 void pci_disable_enabled_device(struct pci_dev *dev) 2265 { 2266 if (pci_is_enabled(dev)) 2267 do_pci_disable_device(dev); 2268 } 2269 2270 /** 2271 * pci_disable_device - Disable PCI device after use 2272 * @dev: PCI device to be disabled 2273 * 2274 * Signal to the system that the PCI device is not in use by the system 2275 * anymore. This only involves disabling PCI bus-mastering, if active. 2276 * 2277 * Note we don't actually disable the device until all callers of 2278 * pci_enable_device() have called pci_disable_device(). 2279 */ 2280 void pci_disable_device(struct pci_dev *dev) 2281 { 2282 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2283 "disabling already-disabled device"); 2284 2285 if (atomic_dec_return(&dev->enable_cnt) != 0) 2286 return; 2287 2288 pci_host_bridge_disable_device(dev); 2289 2290 do_pci_disable_device(dev); 2291 2292 dev->is_busmaster = 0; 2293 } 2294 EXPORT_SYMBOL(pci_disable_device); 2295 2296 /** 2297 * pcibios_set_pcie_reset_state - set reset state for device dev 2298 * @dev: the PCIe device reset 2299 * @state: Reset state to enter into 2300 * 2301 * Set the PCIe reset state for the device. This is the default 2302 * implementation. Architecture implementations can override this. 2303 */ 2304 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2305 enum pcie_reset_state state) 2306 { 2307 return -EINVAL; 2308 } 2309 2310 /** 2311 * pci_set_pcie_reset_state - set reset state for device dev 2312 * @dev: the PCIe device reset 2313 * @state: Reset state to enter into 2314 * 2315 * Sets the PCI reset state for the device. 2316 */ 2317 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2318 { 2319 return pcibios_set_pcie_reset_state(dev, state); 2320 } 2321 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2322 2323 #ifdef CONFIG_PCIEAER 2324 void pcie_clear_device_status(struct pci_dev *dev) 2325 { 2326 u16 sta; 2327 2328 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2329 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2330 } 2331 #endif 2332 2333 /** 2334 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2335 * @dev: PCIe root port or event collector. 2336 */ 2337 void pcie_clear_root_pme_status(struct pci_dev *dev) 2338 { 2339 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2340 } 2341 2342 /** 2343 * pci_check_pme_status - Check if given device has generated PME. 2344 * @dev: Device to check. 2345 * 2346 * Check the PME status of the device and if set, clear it and clear PME enable 2347 * (if set). Return 'true' if PME status and PME enable were both set or 2348 * 'false' otherwise. 2349 */ 2350 bool pci_check_pme_status(struct pci_dev *dev) 2351 { 2352 int pmcsr_pos; 2353 u16 pmcsr; 2354 bool ret = false; 2355 2356 if (!dev->pm_cap) 2357 return false; 2358 2359 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2360 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2361 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2362 return false; 2363 2364 /* Clear PME status. */ 2365 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2366 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2367 /* Disable PME to avoid interrupt flood. */ 2368 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2369 ret = true; 2370 } 2371 2372 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2373 2374 return ret; 2375 } 2376 2377 /** 2378 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2379 * @dev: Device to handle. 2380 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2381 * 2382 * Check if @dev has generated PME and queue a resume request for it in that 2383 * case. 2384 */ 2385 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2386 { 2387 if (pme_poll_reset && dev->pme_poll) 2388 dev->pme_poll = false; 2389 2390 if (pci_check_pme_status(dev)) { 2391 pci_wakeup_event(dev); 2392 pm_request_resume(&dev->dev); 2393 } 2394 return 0; 2395 } 2396 2397 /** 2398 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2399 * @bus: Top bus of the subtree to walk. 2400 */ 2401 void pci_pme_wakeup_bus(struct pci_bus *bus) 2402 { 2403 if (bus) 2404 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2405 } 2406 2407 2408 /** 2409 * pci_pme_capable - check the capability of PCI device to generate PME# 2410 * @dev: PCI device to handle. 2411 * @state: PCI state from which device will issue PME#. 2412 */ 2413 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2414 { 2415 if (!dev->pm_cap) 2416 return false; 2417 2418 return !!(dev->pme_support & (1 << state)); 2419 } 2420 EXPORT_SYMBOL(pci_pme_capable); 2421 2422 static void pci_pme_list_scan(struct work_struct *work) 2423 { 2424 struct pci_pme_device *pme_dev, *n; 2425 2426 mutex_lock(&pci_pme_list_mutex); 2427 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2428 struct pci_dev *pdev = pme_dev->dev; 2429 2430 if (pdev->pme_poll) { 2431 struct pci_dev *bridge = pdev->bus->self; 2432 struct device *dev = &pdev->dev; 2433 struct device *bdev = bridge ? &bridge->dev : NULL; 2434 int bref = 0; 2435 2436 /* 2437 * If we have a bridge, it should be in an active/D0 2438 * state or the configuration space of subordinate 2439 * devices may not be accessible or stable over the 2440 * course of the call. 2441 */ 2442 if (bdev) { 2443 bref = pm_runtime_get_if_active(bdev); 2444 if (!bref) 2445 continue; 2446 2447 if (bridge->current_state != PCI_D0) 2448 goto put_bridge; 2449 } 2450 2451 /* 2452 * The device itself should be suspended but config 2453 * space must be accessible, therefore it cannot be in 2454 * D3cold. 2455 */ 2456 if (pm_runtime_suspended(dev) && 2457 pdev->current_state != PCI_D3cold) 2458 pci_pme_wakeup(pdev, NULL); 2459 2460 put_bridge: 2461 if (bref > 0) 2462 pm_runtime_put(bdev); 2463 } else { 2464 list_del(&pme_dev->list); 2465 kfree(pme_dev); 2466 } 2467 } 2468 if (!list_empty(&pci_pme_list)) 2469 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2470 msecs_to_jiffies(PME_TIMEOUT)); 2471 mutex_unlock(&pci_pme_list_mutex); 2472 } 2473 2474 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2475 { 2476 u16 pmcsr; 2477 2478 if (!dev->pme_support) 2479 return; 2480 2481 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2482 /* Clear PME_Status by writing 1 to it and enable PME# */ 2483 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2484 if (!enable) 2485 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2486 2487 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2488 } 2489 2490 /** 2491 * pci_pme_restore - Restore PME configuration after config space restore. 2492 * @dev: PCI device to update. 2493 */ 2494 void pci_pme_restore(struct pci_dev *dev) 2495 { 2496 u16 pmcsr; 2497 2498 if (!dev->pme_support) 2499 return; 2500 2501 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2502 if (dev->wakeup_prepared) { 2503 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2504 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2505 } else { 2506 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2507 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2508 } 2509 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2510 } 2511 2512 /** 2513 * pci_pme_active - enable or disable PCI device's PME# function 2514 * @dev: PCI device to handle. 2515 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2516 * 2517 * The caller must verify that the device is capable of generating PME# before 2518 * calling this function with @enable equal to 'true'. 2519 */ 2520 void pci_pme_active(struct pci_dev *dev, bool enable) 2521 { 2522 __pci_pme_active(dev, enable); 2523 2524 /* 2525 * PCI (as opposed to PCIe) PME requires that the device have 2526 * its PME# line hooked up correctly. Not all hardware vendors 2527 * do this, so the PME never gets delivered and the device 2528 * remains asleep. The easiest way around this is to 2529 * periodically walk the list of suspended devices and check 2530 * whether any have their PME flag set. The assumption is that 2531 * we'll wake up often enough anyway that this won't be a huge 2532 * hit, and the power savings from the devices will still be a 2533 * win. 2534 * 2535 * Although PCIe uses in-band PME message instead of PME# line 2536 * to report PME, PME does not work for some PCIe devices in 2537 * reality. For example, there are devices that set their PME 2538 * status bits, but don't really bother to send a PME message; 2539 * there are PCI Express Root Ports that don't bother to 2540 * trigger interrupts when they receive PME messages from the 2541 * devices below. So PME poll is used for PCIe devices too. 2542 */ 2543 2544 if (dev->pme_poll) { 2545 struct pci_pme_device *pme_dev; 2546 if (enable) { 2547 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2548 GFP_KERNEL); 2549 if (!pme_dev) { 2550 pci_warn(dev, "can't enable PME#\n"); 2551 return; 2552 } 2553 pme_dev->dev = dev; 2554 mutex_lock(&pci_pme_list_mutex); 2555 list_add(&pme_dev->list, &pci_pme_list); 2556 if (list_is_singular(&pci_pme_list)) 2557 queue_delayed_work(system_freezable_wq, 2558 &pci_pme_work, 2559 msecs_to_jiffies(PME_TIMEOUT)); 2560 mutex_unlock(&pci_pme_list_mutex); 2561 } else { 2562 mutex_lock(&pci_pme_list_mutex); 2563 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2564 if (pme_dev->dev == dev) { 2565 list_del(&pme_dev->list); 2566 kfree(pme_dev); 2567 break; 2568 } 2569 } 2570 mutex_unlock(&pci_pme_list_mutex); 2571 } 2572 } 2573 2574 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2575 } 2576 EXPORT_SYMBOL(pci_pme_active); 2577 2578 /** 2579 * __pci_enable_wake - enable PCI device as wakeup event source 2580 * @dev: PCI device affected 2581 * @state: PCI state from which device will issue wakeup events 2582 * @enable: True to enable event generation; false to disable 2583 * 2584 * This enables the device as a wakeup event source, or disables it. 2585 * When such events involves platform-specific hooks, those hooks are 2586 * called automatically by this routine. 2587 * 2588 * Devices with legacy power management (no standard PCI PM capabilities) 2589 * always require such platform hooks. 2590 * 2591 * RETURN VALUE: 2592 * 0 is returned on success 2593 * -EINVAL is returned if device is not supposed to wake up the system 2594 * Error code depending on the platform is returned if both the platform and 2595 * the native mechanism fail to enable the generation of wake-up events 2596 */ 2597 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2598 { 2599 int ret = 0; 2600 2601 /* 2602 * Bridges that are not power-manageable directly only signal 2603 * wakeup on behalf of subordinate devices which is set up 2604 * elsewhere, so skip them. However, bridges that are 2605 * power-manageable may signal wakeup for themselves (for example, 2606 * on a hotplug event) and they need to be covered here. 2607 */ 2608 if (!pci_power_manageable(dev)) 2609 return 0; 2610 2611 /* Don't do the same thing twice in a row for one device. */ 2612 if (!!enable == !!dev->wakeup_prepared) 2613 return 0; 2614 2615 /* 2616 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2617 * Anderson we should be doing PME# wake enable followed by ACPI wake 2618 * enable. To disable wake-up we call the platform first, for symmetry. 2619 */ 2620 2621 if (enable) { 2622 int error; 2623 2624 /* 2625 * Enable PME signaling if the device can signal PME from 2626 * D3cold regardless of whether or not it can signal PME from 2627 * the current target state, because that will allow it to 2628 * signal PME when the hierarchy above it goes into D3cold and 2629 * the device itself ends up in D3cold as a result of that. 2630 */ 2631 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2632 pci_pme_active(dev, true); 2633 else 2634 ret = 1; 2635 error = platform_pci_set_wakeup(dev, true); 2636 if (ret) 2637 ret = error; 2638 if (!ret) 2639 dev->wakeup_prepared = true; 2640 } else { 2641 platform_pci_set_wakeup(dev, false); 2642 pci_pme_active(dev, false); 2643 dev->wakeup_prepared = false; 2644 } 2645 2646 return ret; 2647 } 2648 2649 /** 2650 * pci_enable_wake - change wakeup settings for a PCI device 2651 * @pci_dev: Target device 2652 * @state: PCI state from which device will issue wakeup events 2653 * @enable: Whether or not to enable event generation 2654 * 2655 * If @enable is set, check device_may_wakeup() for the device before calling 2656 * __pci_enable_wake() for it. 2657 */ 2658 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2659 { 2660 if (enable && !device_may_wakeup(&pci_dev->dev)) 2661 return -EINVAL; 2662 2663 return __pci_enable_wake(pci_dev, state, enable); 2664 } 2665 EXPORT_SYMBOL(pci_enable_wake); 2666 2667 /** 2668 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2669 * @dev: PCI device to prepare 2670 * @enable: True to enable wake-up event generation; false to disable 2671 * 2672 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2673 * and this function allows them to set that up cleanly - pci_enable_wake() 2674 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2675 * ordering constraints. 2676 * 2677 * This function only returns error code if the device is not allowed to wake 2678 * up the system from sleep or it is not capable of generating PME# from both 2679 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2680 */ 2681 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2682 { 2683 return pci_pme_capable(dev, PCI_D3cold) ? 2684 pci_enable_wake(dev, PCI_D3cold, enable) : 2685 pci_enable_wake(dev, PCI_D3hot, enable); 2686 } 2687 EXPORT_SYMBOL(pci_wake_from_d3); 2688 2689 /** 2690 * pci_target_state - find an appropriate low power state for a given PCI dev 2691 * @dev: PCI device 2692 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2693 * 2694 * Use underlying platform code to find a supported low power state for @dev. 2695 * If the platform can't manage @dev, return the deepest state from which it 2696 * can generate wake events, based on any available PME info. 2697 */ 2698 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2699 { 2700 if (platform_pci_power_manageable(dev)) { 2701 /* 2702 * Call the platform to find the target state for the device. 2703 */ 2704 pci_power_t state = platform_pci_choose_state(dev); 2705 2706 switch (state) { 2707 case PCI_POWER_ERROR: 2708 case PCI_UNKNOWN: 2709 return PCI_D3hot; 2710 2711 case PCI_D1: 2712 case PCI_D2: 2713 if (pci_no_d1d2(dev)) 2714 return PCI_D3hot; 2715 } 2716 2717 return state; 2718 } 2719 2720 /* 2721 * If the device is in D3cold even though it's not power-manageable by 2722 * the platform, it may have been powered down by non-standard means. 2723 * Best to let it slumber. 2724 */ 2725 if (dev->current_state == PCI_D3cold) 2726 return PCI_D3cold; 2727 else if (!dev->pm_cap) 2728 return PCI_D0; 2729 2730 if (wakeup && dev->pme_support) { 2731 pci_power_t state = PCI_D3hot; 2732 2733 /* 2734 * Find the deepest state from which the device can generate 2735 * PME#. 2736 */ 2737 while (state && !(dev->pme_support & (1 << state))) 2738 state--; 2739 2740 if (state) 2741 return state; 2742 else if (dev->pme_support & 1) 2743 return PCI_D0; 2744 } 2745 2746 return PCI_D3hot; 2747 } 2748 2749 /** 2750 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2751 * into a sleep state 2752 * @dev: Device to handle. 2753 * 2754 * Choose the power state appropriate for the device depending on whether 2755 * it can wake up the system and/or is power manageable by the platform 2756 * (PCI_D3hot is the default) and put the device into that state. 2757 */ 2758 int pci_prepare_to_sleep(struct pci_dev *dev) 2759 { 2760 bool wakeup = device_may_wakeup(&dev->dev); 2761 pci_power_t target_state = pci_target_state(dev, wakeup); 2762 int error; 2763 2764 if (target_state == PCI_POWER_ERROR) 2765 return -EIO; 2766 2767 pci_enable_wake(dev, target_state, wakeup); 2768 2769 error = pci_set_power_state(dev, target_state); 2770 2771 if (error) 2772 pci_enable_wake(dev, target_state, false); 2773 2774 return error; 2775 } 2776 EXPORT_SYMBOL(pci_prepare_to_sleep); 2777 2778 /** 2779 * pci_back_from_sleep - turn PCI device on during system-wide transition 2780 * into working state 2781 * @dev: Device to handle. 2782 * 2783 * Disable device's system wake-up capability and put it into D0. 2784 */ 2785 int pci_back_from_sleep(struct pci_dev *dev) 2786 { 2787 int ret = pci_set_power_state(dev, PCI_D0); 2788 2789 if (ret) 2790 return ret; 2791 2792 pci_enable_wake(dev, PCI_D0, false); 2793 return 0; 2794 } 2795 EXPORT_SYMBOL(pci_back_from_sleep); 2796 2797 /** 2798 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2799 * @dev: PCI device being suspended. 2800 * 2801 * Prepare @dev to generate wake-up events at run time and put it into a low 2802 * power state. 2803 */ 2804 int pci_finish_runtime_suspend(struct pci_dev *dev) 2805 { 2806 pci_power_t target_state; 2807 int error; 2808 2809 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2810 if (target_state == PCI_POWER_ERROR) 2811 return -EIO; 2812 2813 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2814 2815 error = pci_set_power_state(dev, target_state); 2816 2817 if (error) 2818 pci_enable_wake(dev, target_state, false); 2819 2820 return error; 2821 } 2822 2823 /** 2824 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2825 * @dev: Device to check. 2826 * 2827 * Return true if the device itself is capable of generating wake-up events 2828 * (through the platform or using the native PCIe PME) or if the device supports 2829 * PME and one of its upstream bridges can generate wake-up events. 2830 */ 2831 bool pci_dev_run_wake(struct pci_dev *dev) 2832 { 2833 struct pci_bus *bus = dev->bus; 2834 2835 if (!dev->pme_support) 2836 return false; 2837 2838 /* PME-capable in principle, but not from the target power state */ 2839 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2840 return false; 2841 2842 if (device_can_wakeup(&dev->dev)) 2843 return true; 2844 2845 while (bus->parent) { 2846 struct pci_dev *bridge = bus->self; 2847 2848 if (device_can_wakeup(&bridge->dev)) 2849 return true; 2850 2851 bus = bus->parent; 2852 } 2853 2854 /* We have reached the root bus. */ 2855 if (bus->bridge) 2856 return device_can_wakeup(bus->bridge); 2857 2858 return false; 2859 } 2860 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2861 2862 /** 2863 * pci_dev_need_resume - Check if it is necessary to resume the device. 2864 * @pci_dev: Device to check. 2865 * 2866 * Return 'true' if the device is not runtime-suspended or it has to be 2867 * reconfigured due to wakeup settings difference between system and runtime 2868 * suspend, or the current power state of it is not suitable for the upcoming 2869 * (system-wide) transition. 2870 */ 2871 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2872 { 2873 struct device *dev = &pci_dev->dev; 2874 pci_power_t target_state; 2875 2876 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2877 return true; 2878 2879 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2880 2881 /* 2882 * If the earlier platform check has not triggered, D3cold is just power 2883 * removal on top of D3hot, so no need to resume the device in that 2884 * case. 2885 */ 2886 return target_state != pci_dev->current_state && 2887 target_state != PCI_D3cold && 2888 pci_dev->current_state != PCI_D3hot; 2889 } 2890 2891 /** 2892 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2893 * @pci_dev: Device to check. 2894 * 2895 * If the device is suspended and it is not configured for system wakeup, 2896 * disable PME for it to prevent it from waking up the system unnecessarily. 2897 * 2898 * Note that if the device's power state is D3cold and the platform check in 2899 * pci_dev_need_resume() has not triggered, the device's configuration need not 2900 * be changed. 2901 */ 2902 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2903 { 2904 struct device *dev = &pci_dev->dev; 2905 2906 spin_lock_irq(&dev->power.lock); 2907 2908 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2909 pci_dev->current_state < PCI_D3cold) 2910 __pci_pme_active(pci_dev, false); 2911 2912 spin_unlock_irq(&dev->power.lock); 2913 } 2914 2915 /** 2916 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2917 * @pci_dev: Device to handle. 2918 * 2919 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2920 * it might have been disabled during the prepare phase of system suspend if 2921 * the device was not configured for system wakeup. 2922 */ 2923 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2924 { 2925 struct device *dev = &pci_dev->dev; 2926 2927 if (!pci_dev_run_wake(pci_dev)) 2928 return; 2929 2930 spin_lock_irq(&dev->power.lock); 2931 2932 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2933 __pci_pme_active(pci_dev, true); 2934 2935 spin_unlock_irq(&dev->power.lock); 2936 } 2937 2938 /** 2939 * pci_choose_state - Choose the power state of a PCI device. 2940 * @dev: Target PCI device. 2941 * @state: Target state for the whole system. 2942 * 2943 * Returns PCI power state suitable for @dev and @state. 2944 */ 2945 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2946 { 2947 if (state.event == PM_EVENT_ON) 2948 return PCI_D0; 2949 2950 return pci_target_state(dev, false); 2951 } 2952 EXPORT_SYMBOL(pci_choose_state); 2953 2954 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2955 { 2956 struct device *dev = &pdev->dev; 2957 struct device *parent = dev->parent; 2958 2959 if (parent) 2960 pm_runtime_get_sync(parent); 2961 pm_runtime_get_noresume(dev); 2962 /* 2963 * pdev->current_state is set to PCI_D3cold during suspending, 2964 * so wait until suspending completes 2965 */ 2966 pm_runtime_barrier(dev); 2967 /* 2968 * Only need to resume devices in D3cold, because config 2969 * registers are still accessible for devices suspended but 2970 * not in D3cold. 2971 */ 2972 if (pdev->current_state == PCI_D3cold) 2973 pm_runtime_resume(dev); 2974 } 2975 2976 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2977 { 2978 struct device *dev = &pdev->dev; 2979 struct device *parent = dev->parent; 2980 2981 pm_runtime_put(dev); 2982 if (parent) 2983 pm_runtime_put_sync(parent); 2984 } 2985 2986 static const struct dmi_system_id bridge_d3_blacklist[] = { 2987 #ifdef CONFIG_X86 2988 { 2989 /* 2990 * Gigabyte X299 root port is not marked as hotplug capable 2991 * which allows Linux to power manage it. However, this 2992 * confuses the BIOS SMI handler so don't power manage root 2993 * ports on that system. 2994 */ 2995 .ident = "X299 DESIGNARE EX-CF", 2996 .matches = { 2997 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2998 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2999 }, 3000 }, 3001 { 3002 /* 3003 * Downstream device is not accessible after putting a root port 3004 * into D3cold and back into D0 on Elo Continental Z2 board 3005 */ 3006 .ident = "Elo Continental Z2", 3007 .matches = { 3008 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 3009 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 3010 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 3011 }, 3012 }, 3013 { 3014 /* 3015 * Changing power state of root port dGPU is connected fails 3016 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229 3017 */ 3018 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972", 3019 .matches = { 3020 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"), 3021 DMI_MATCH(DMI_BOARD_NAME, "1972"), 3022 DMI_MATCH(DMI_BOARD_VERSION, "95.33"), 3023 }, 3024 }, 3025 #endif 3026 { } 3027 }; 3028 3029 /** 3030 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 3031 * @bridge: Bridge to check 3032 * 3033 * This function checks if it is possible to move the bridge to D3. 3034 * Currently we only allow D3 for some PCIe ports and for Thunderbolt. 3035 */ 3036 bool pci_bridge_d3_possible(struct pci_dev *bridge) 3037 { 3038 if (!pci_is_pcie(bridge)) 3039 return false; 3040 3041 switch (pci_pcie_type(bridge)) { 3042 case PCI_EXP_TYPE_ROOT_PORT: 3043 case PCI_EXP_TYPE_UPSTREAM: 3044 case PCI_EXP_TYPE_DOWNSTREAM: 3045 if (pci_bridge_d3_disable) 3046 return false; 3047 3048 /* 3049 * Hotplug ports handled by firmware in System Management Mode 3050 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3051 */ 3052 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3053 return false; 3054 3055 if (pci_bridge_d3_force) 3056 return true; 3057 3058 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3059 if (bridge->is_thunderbolt) 3060 return true; 3061 3062 /* Platform might know better if the bridge supports D3 */ 3063 if (platform_pci_bridge_d3(bridge)) 3064 return true; 3065 3066 /* 3067 * Hotplug ports handled natively by the OS were not validated 3068 * by vendors for runtime D3 at least until 2018 because there 3069 * was no OS support. 3070 */ 3071 if (bridge->is_hotplug_bridge) 3072 return false; 3073 3074 if (dmi_check_system(bridge_d3_blacklist)) 3075 return false; 3076 3077 /* 3078 * Out of caution, we only allow PCIe ports from 2015 or newer 3079 * into D3 on x86. 3080 */ 3081 if (!IS_ENABLED(CONFIG_X86) || dmi_get_bios_year() >= 2015) 3082 return true; 3083 break; 3084 } 3085 3086 return false; 3087 } 3088 3089 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3090 { 3091 bool *d3cold_ok = data; 3092 3093 if (/* The device needs to be allowed to go D3cold ... */ 3094 dev->no_d3cold || !dev->d3cold_allowed || 3095 3096 /* ... and if it is wakeup capable to do so from D3cold. */ 3097 (device_may_wakeup(&dev->dev) && 3098 !pci_pme_capable(dev, PCI_D3cold)) || 3099 3100 /* If it is a bridge it must be allowed to go to D3. */ 3101 !pci_power_manageable(dev)) 3102 3103 *d3cold_ok = false; 3104 3105 return !*d3cold_ok; 3106 } 3107 3108 /* 3109 * pci_bridge_d3_update - Update bridge D3 capabilities 3110 * @dev: PCI device which is changed 3111 * 3112 * Update upstream bridge PM capabilities accordingly depending on if the 3113 * device PM configuration was changed or the device is being removed. The 3114 * change is also propagated upstream. 3115 */ 3116 void pci_bridge_d3_update(struct pci_dev *dev) 3117 { 3118 bool remove = !device_is_registered(&dev->dev); 3119 struct pci_dev *bridge; 3120 bool d3cold_ok = true; 3121 3122 bridge = pci_upstream_bridge(dev); 3123 if (!bridge || !pci_bridge_d3_possible(bridge)) 3124 return; 3125 3126 /* 3127 * If D3 is currently allowed for the bridge, removing one of its 3128 * children won't change that. 3129 */ 3130 if (remove && bridge->bridge_d3) 3131 return; 3132 3133 /* 3134 * If D3 is currently allowed for the bridge and a child is added or 3135 * changed, disallowance of D3 can only be caused by that child, so 3136 * we only need to check that single device, not any of its siblings. 3137 * 3138 * If D3 is currently not allowed for the bridge, checking the device 3139 * first may allow us to skip checking its siblings. 3140 */ 3141 if (!remove) 3142 pci_dev_check_d3cold(dev, &d3cold_ok); 3143 3144 /* 3145 * If D3 is currently not allowed for the bridge, this may be caused 3146 * either by the device being changed/removed or any of its siblings, 3147 * so we need to go through all children to find out if one of them 3148 * continues to block D3. 3149 */ 3150 if (d3cold_ok && !bridge->bridge_d3) 3151 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3152 &d3cold_ok); 3153 3154 if (bridge->bridge_d3 != d3cold_ok) { 3155 bridge->bridge_d3 = d3cold_ok; 3156 /* Propagate change to upstream bridges */ 3157 pci_bridge_d3_update(bridge); 3158 } 3159 } 3160 3161 /** 3162 * pci_d3cold_enable - Enable D3cold for device 3163 * @dev: PCI device to handle 3164 * 3165 * This function can be used in drivers to enable D3cold from the device 3166 * they handle. It also updates upstream PCI bridge PM capabilities 3167 * accordingly. 3168 */ 3169 void pci_d3cold_enable(struct pci_dev *dev) 3170 { 3171 if (dev->no_d3cold) { 3172 dev->no_d3cold = false; 3173 pci_bridge_d3_update(dev); 3174 } 3175 } 3176 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3177 3178 /** 3179 * pci_d3cold_disable - Disable D3cold for device 3180 * @dev: PCI device to handle 3181 * 3182 * This function can be used in drivers to disable D3cold from the device 3183 * they handle. It also updates upstream PCI bridge PM capabilities 3184 * accordingly. 3185 */ 3186 void pci_d3cold_disable(struct pci_dev *dev) 3187 { 3188 if (!dev->no_d3cold) { 3189 dev->no_d3cold = true; 3190 pci_bridge_d3_update(dev); 3191 } 3192 } 3193 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3194 3195 void pci_pm_power_up_and_verify_state(struct pci_dev *pci_dev) 3196 { 3197 pci_power_up(pci_dev); 3198 pci_update_current_state(pci_dev, PCI_D0); 3199 } 3200 3201 /** 3202 * pci_pm_init - Initialize PM functions of given PCI device 3203 * @dev: PCI device to handle. 3204 */ 3205 void pci_pm_init(struct pci_dev *dev) 3206 { 3207 int pm; 3208 u16 status; 3209 u16 pmc; 3210 3211 device_enable_async_suspend(&dev->dev); 3212 dev->wakeup_prepared = false; 3213 3214 dev->pm_cap = 0; 3215 dev->pme_support = 0; 3216 3217 /* find PCI PM capability in list */ 3218 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3219 if (!pm) 3220 goto poweron; 3221 /* Check device's ability to generate PME# */ 3222 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3223 3224 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3225 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3226 pmc & PCI_PM_CAP_VER_MASK); 3227 goto poweron; 3228 } 3229 3230 dev->pm_cap = pm; 3231 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3232 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3233 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3234 dev->d3cold_allowed = true; 3235 3236 dev->d1_support = false; 3237 dev->d2_support = false; 3238 if (!pci_no_d1d2(dev)) { 3239 if (pmc & PCI_PM_CAP_D1) 3240 dev->d1_support = true; 3241 if (pmc & PCI_PM_CAP_D2) 3242 dev->d2_support = true; 3243 3244 if (dev->d1_support || dev->d2_support) 3245 pci_info(dev, "supports%s%s\n", 3246 dev->d1_support ? " D1" : "", 3247 dev->d2_support ? " D2" : ""); 3248 } 3249 3250 pmc &= PCI_PM_CAP_PME_MASK; 3251 if (pmc) { 3252 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3253 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3254 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3255 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3256 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3257 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3258 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc); 3259 dev->pme_poll = true; 3260 /* 3261 * Make device's PM flags reflect the wake-up capability, but 3262 * let the user space enable it to wake up the system as needed. 3263 */ 3264 device_set_wakeup_capable(&dev->dev, true); 3265 /* Disable the PME# generation functionality */ 3266 pci_pme_active(dev, false); 3267 } 3268 3269 pci_read_config_word(dev, PCI_STATUS, &status); 3270 if (status & PCI_STATUS_IMM_READY) 3271 dev->imm_ready = 1; 3272 poweron: 3273 pci_pm_power_up_and_verify_state(dev); 3274 pm_runtime_forbid(&dev->dev); 3275 pm_runtime_set_active(&dev->dev); 3276 pm_runtime_enable(&dev->dev); 3277 } 3278 3279 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3280 { 3281 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3282 3283 switch (prop) { 3284 case PCI_EA_P_MEM: 3285 case PCI_EA_P_VF_MEM: 3286 flags |= IORESOURCE_MEM; 3287 break; 3288 case PCI_EA_P_MEM_PREFETCH: 3289 case PCI_EA_P_VF_MEM_PREFETCH: 3290 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3291 break; 3292 case PCI_EA_P_IO: 3293 flags |= IORESOURCE_IO; 3294 break; 3295 default: 3296 return 0; 3297 } 3298 3299 return flags; 3300 } 3301 3302 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3303 u8 prop) 3304 { 3305 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3306 return &dev->resource[bei]; 3307 #ifdef CONFIG_PCI_IOV 3308 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3309 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3310 return &dev->resource[PCI_IOV_RESOURCES + 3311 bei - PCI_EA_BEI_VF_BAR0]; 3312 #endif 3313 else if (bei == PCI_EA_BEI_ROM) 3314 return &dev->resource[PCI_ROM_RESOURCE]; 3315 else 3316 return NULL; 3317 } 3318 3319 /* Read an Enhanced Allocation (EA) entry */ 3320 static int pci_ea_read(struct pci_dev *dev, int offset) 3321 { 3322 struct resource *res; 3323 const char *res_name; 3324 int ent_size, ent_offset = offset; 3325 resource_size_t start, end; 3326 unsigned long flags; 3327 u32 dw0, bei, base, max_offset; 3328 u8 prop; 3329 bool support_64 = (sizeof(resource_size_t) >= 8); 3330 3331 pci_read_config_dword(dev, ent_offset, &dw0); 3332 ent_offset += 4; 3333 3334 /* Entry size field indicates DWORDs after 1st */ 3335 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2; 3336 3337 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3338 goto out; 3339 3340 bei = FIELD_GET(PCI_EA_BEI, dw0); 3341 prop = FIELD_GET(PCI_EA_PP, dw0); 3342 3343 /* 3344 * If the Property is in the reserved range, try the Secondary 3345 * Property instead. 3346 */ 3347 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3348 prop = FIELD_GET(PCI_EA_SP, dw0); 3349 if (prop > PCI_EA_P_BRIDGE_IO) 3350 goto out; 3351 3352 res = pci_ea_get_resource(dev, bei, prop); 3353 res_name = pci_resource_name(dev, bei); 3354 if (!res) { 3355 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3356 goto out; 3357 } 3358 3359 flags = pci_ea_flags(dev, prop); 3360 if (!flags) { 3361 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3362 goto out; 3363 } 3364 3365 /* Read Base */ 3366 pci_read_config_dword(dev, ent_offset, &base); 3367 start = (base & PCI_EA_FIELD_MASK); 3368 ent_offset += 4; 3369 3370 /* Read MaxOffset */ 3371 pci_read_config_dword(dev, ent_offset, &max_offset); 3372 ent_offset += 4; 3373 3374 /* Read Base MSBs (if 64-bit entry) */ 3375 if (base & PCI_EA_IS_64) { 3376 u32 base_upper; 3377 3378 pci_read_config_dword(dev, ent_offset, &base_upper); 3379 ent_offset += 4; 3380 3381 flags |= IORESOURCE_MEM_64; 3382 3383 /* entry starts above 32-bit boundary, can't use */ 3384 if (!support_64 && base_upper) 3385 goto out; 3386 3387 if (support_64) 3388 start |= ((u64)base_upper << 32); 3389 } 3390 3391 end = start + (max_offset | 0x03); 3392 3393 /* Read MaxOffset MSBs (if 64-bit entry) */ 3394 if (max_offset & PCI_EA_IS_64) { 3395 u32 max_offset_upper; 3396 3397 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3398 ent_offset += 4; 3399 3400 flags |= IORESOURCE_MEM_64; 3401 3402 /* entry too big, can't use */ 3403 if (!support_64 && max_offset_upper) 3404 goto out; 3405 3406 if (support_64) 3407 end += ((u64)max_offset_upper << 32); 3408 } 3409 3410 if (end < start) { 3411 pci_err(dev, "EA Entry crosses address boundary\n"); 3412 goto out; 3413 } 3414 3415 if (ent_size != ent_offset - offset) { 3416 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3417 ent_size, ent_offset - offset); 3418 goto out; 3419 } 3420 3421 res->name = pci_name(dev); 3422 res->start = start; 3423 res->end = end; 3424 res->flags = flags; 3425 3426 if (bei <= PCI_EA_BEI_BAR5) 3427 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3428 res_name, res, prop); 3429 else if (bei == PCI_EA_BEI_ROM) 3430 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3431 res_name, res, prop); 3432 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3433 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", 3434 res_name, res, prop); 3435 else 3436 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n", 3437 bei, res, prop); 3438 3439 out: 3440 return offset + ent_size; 3441 } 3442 3443 /* Enhanced Allocation Initialization */ 3444 void pci_ea_init(struct pci_dev *dev) 3445 { 3446 int ea; 3447 u8 num_ent; 3448 int offset; 3449 int i; 3450 3451 /* find PCI EA capability in list */ 3452 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3453 if (!ea) 3454 return; 3455 3456 /* determine the number of entries */ 3457 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3458 &num_ent); 3459 num_ent &= PCI_EA_NUM_ENT_MASK; 3460 3461 offset = ea + PCI_EA_FIRST_ENT; 3462 3463 /* Skip DWORD 2 for type 1 functions */ 3464 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3465 offset += 4; 3466 3467 /* parse each EA entry */ 3468 for (i = 0; i < num_ent; ++i) 3469 offset = pci_ea_read(dev, offset); 3470 } 3471 3472 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3473 struct pci_cap_saved_state *new_cap) 3474 { 3475 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3476 } 3477 3478 /** 3479 * _pci_add_cap_save_buffer - allocate buffer for saving given 3480 * capability registers 3481 * @dev: the PCI device 3482 * @cap: the capability to allocate the buffer for 3483 * @extended: Standard or Extended capability ID 3484 * @size: requested size of the buffer 3485 */ 3486 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3487 bool extended, unsigned int size) 3488 { 3489 int pos; 3490 struct pci_cap_saved_state *save_state; 3491 3492 if (extended) 3493 pos = pci_find_ext_capability(dev, cap); 3494 else 3495 pos = pci_find_capability(dev, cap); 3496 3497 if (!pos) 3498 return 0; 3499 3500 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3501 if (!save_state) 3502 return -ENOMEM; 3503 3504 save_state->cap.cap_nr = cap; 3505 save_state->cap.cap_extended = extended; 3506 save_state->cap.size = size; 3507 pci_add_saved_cap(dev, save_state); 3508 3509 return 0; 3510 } 3511 3512 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3513 { 3514 return _pci_add_cap_save_buffer(dev, cap, false, size); 3515 } 3516 3517 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3518 { 3519 return _pci_add_cap_save_buffer(dev, cap, true, size); 3520 } 3521 3522 /** 3523 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3524 * @dev: the PCI device 3525 */ 3526 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3527 { 3528 int error; 3529 3530 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3531 PCI_EXP_SAVE_REGS * sizeof(u16)); 3532 if (error) 3533 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3534 3535 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3536 if (error) 3537 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3538 3539 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3540 2 * sizeof(u16)); 3541 if (error) 3542 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3543 3544 pci_allocate_vc_save_buffers(dev); 3545 } 3546 3547 void pci_free_cap_save_buffers(struct pci_dev *dev) 3548 { 3549 struct pci_cap_saved_state *tmp; 3550 struct hlist_node *n; 3551 3552 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3553 kfree(tmp); 3554 } 3555 3556 /** 3557 * pci_configure_ari - enable or disable ARI forwarding 3558 * @dev: the PCI device 3559 * 3560 * If @dev and its upstream bridge both support ARI, enable ARI in the 3561 * bridge. Otherwise, disable ARI in the bridge. 3562 */ 3563 void pci_configure_ari(struct pci_dev *dev) 3564 { 3565 u32 cap; 3566 struct pci_dev *bridge; 3567 3568 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3569 return; 3570 3571 bridge = dev->bus->self; 3572 if (!bridge) 3573 return; 3574 3575 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3576 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3577 return; 3578 3579 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3580 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3581 PCI_EXP_DEVCTL2_ARI); 3582 bridge->ari_enabled = 1; 3583 } else { 3584 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3585 PCI_EXP_DEVCTL2_ARI); 3586 bridge->ari_enabled = 0; 3587 } 3588 } 3589 3590 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3591 { 3592 int pos; 3593 u16 cap, ctrl; 3594 3595 pos = pdev->acs_cap; 3596 if (!pos) 3597 return false; 3598 3599 /* 3600 * Except for egress control, capabilities are either required 3601 * or only required if controllable. Features missing from the 3602 * capability field can therefore be assumed as hard-wired enabled. 3603 */ 3604 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3605 acs_flags &= (cap | PCI_ACS_EC); 3606 3607 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3608 return (ctrl & acs_flags) == acs_flags; 3609 } 3610 3611 /** 3612 * pci_acs_enabled - test ACS against required flags for a given device 3613 * @pdev: device to test 3614 * @acs_flags: required PCI ACS flags 3615 * 3616 * Return true if the device supports the provided flags. Automatically 3617 * filters out flags that are not implemented on multifunction devices. 3618 * 3619 * Note that this interface checks the effective ACS capabilities of the 3620 * device rather than the actual capabilities. For instance, most single 3621 * function endpoints are not required to support ACS because they have no 3622 * opportunity for peer-to-peer access. We therefore return 'true' 3623 * regardless of whether the device exposes an ACS capability. This makes 3624 * it much easier for callers of this function to ignore the actual type 3625 * or topology of the device when testing ACS support. 3626 */ 3627 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3628 { 3629 int ret; 3630 3631 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3632 if (ret >= 0) 3633 return ret > 0; 3634 3635 /* 3636 * Conventional PCI and PCI-X devices never support ACS, either 3637 * effectively or actually. The shared bus topology implies that 3638 * any device on the bus can receive or snoop DMA. 3639 */ 3640 if (!pci_is_pcie(pdev)) 3641 return false; 3642 3643 switch (pci_pcie_type(pdev)) { 3644 /* 3645 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3646 * but since their primary interface is PCI/X, we conservatively 3647 * handle them as we would a non-PCIe device. 3648 */ 3649 case PCI_EXP_TYPE_PCIE_BRIDGE: 3650 /* 3651 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3652 * applicable... must never implement an ACS Extended Capability...". 3653 * This seems arbitrary, but we take a conservative interpretation 3654 * of this statement. 3655 */ 3656 case PCI_EXP_TYPE_PCI_BRIDGE: 3657 case PCI_EXP_TYPE_RC_EC: 3658 return false; 3659 /* 3660 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3661 * implement ACS in order to indicate their peer-to-peer capabilities, 3662 * regardless of whether they are single- or multi-function devices. 3663 */ 3664 case PCI_EXP_TYPE_DOWNSTREAM: 3665 case PCI_EXP_TYPE_ROOT_PORT: 3666 return pci_acs_flags_enabled(pdev, acs_flags); 3667 /* 3668 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3669 * implemented by the remaining PCIe types to indicate peer-to-peer 3670 * capabilities, but only when they are part of a multifunction 3671 * device. The footnote for section 6.12 indicates the specific 3672 * PCIe types included here. 3673 */ 3674 case PCI_EXP_TYPE_ENDPOINT: 3675 case PCI_EXP_TYPE_UPSTREAM: 3676 case PCI_EXP_TYPE_LEG_END: 3677 case PCI_EXP_TYPE_RC_END: 3678 if (!pdev->multifunction) 3679 break; 3680 3681 return pci_acs_flags_enabled(pdev, acs_flags); 3682 } 3683 3684 /* 3685 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3686 * to single function devices with the exception of downstream ports. 3687 */ 3688 return true; 3689 } 3690 3691 /** 3692 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3693 * @start: starting downstream device 3694 * @end: ending upstream device or NULL to search to the root bus 3695 * @acs_flags: required flags 3696 * 3697 * Walk up a device tree from start to end testing PCI ACS support. If 3698 * any step along the way does not support the required flags, return false. 3699 */ 3700 bool pci_acs_path_enabled(struct pci_dev *start, 3701 struct pci_dev *end, u16 acs_flags) 3702 { 3703 struct pci_dev *pdev, *parent = start; 3704 3705 do { 3706 pdev = parent; 3707 3708 if (!pci_acs_enabled(pdev, acs_flags)) 3709 return false; 3710 3711 if (pci_is_root_bus(pdev->bus)) 3712 return (end == NULL); 3713 3714 parent = pdev->bus->self; 3715 } while (pdev != end); 3716 3717 return true; 3718 } 3719 3720 /** 3721 * pci_acs_init - Initialize ACS if hardware supports it 3722 * @dev: the PCI device 3723 */ 3724 void pci_acs_init(struct pci_dev *dev) 3725 { 3726 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3727 3728 /* 3729 * Attempt to enable ACS regardless of capability because some Root 3730 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3731 * the standard ACS capability but still support ACS via those 3732 * quirks. 3733 */ 3734 pci_enable_acs(dev); 3735 } 3736 3737 void pci_rebar_init(struct pci_dev *pdev) 3738 { 3739 pdev->rebar_cap = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3740 } 3741 3742 /** 3743 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3744 * @pdev: PCI device 3745 * @bar: BAR to find 3746 * 3747 * Helper to find the position of the ctrl register for a BAR. 3748 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3749 * Returns -ENOENT if no ctrl register for the BAR could be found. 3750 */ 3751 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3752 { 3753 unsigned int pos, nbars, i; 3754 u32 ctrl; 3755 3756 pos = pdev->rebar_cap; 3757 if (!pos) 3758 return -ENOTSUPP; 3759 3760 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3761 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 3762 3763 for (i = 0; i < nbars; i++, pos += 8) { 3764 int bar_idx; 3765 3766 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3767 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl); 3768 if (bar_idx == bar) 3769 return pos; 3770 } 3771 3772 return -ENOENT; 3773 } 3774 3775 /** 3776 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3777 * @pdev: PCI device 3778 * @bar: BAR to query 3779 * 3780 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3781 * (bit 0=1MB, bit 31=128TB). Returns 0 if BAR isn't resizable. 3782 */ 3783 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3784 { 3785 int pos; 3786 u32 cap; 3787 3788 pos = pci_rebar_find_pos(pdev, bar); 3789 if (pos < 0) 3790 return 0; 3791 3792 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3793 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3794 3795 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3796 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3797 bar == 0 && cap == 0x700) 3798 return 0x3f00; 3799 3800 return cap; 3801 } 3802 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3803 3804 /** 3805 * pci_rebar_get_current_size - get the current size of a BAR 3806 * @pdev: PCI device 3807 * @bar: BAR to set size to 3808 * 3809 * Read the size of a BAR from the resizable BAR config. 3810 * Returns size if found or negative error code. 3811 */ 3812 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3813 { 3814 int pos; 3815 u32 ctrl; 3816 3817 pos = pci_rebar_find_pos(pdev, bar); 3818 if (pos < 0) 3819 return pos; 3820 3821 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3822 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl); 3823 } 3824 3825 /** 3826 * pci_rebar_set_size - set a new size for a BAR 3827 * @pdev: PCI device 3828 * @bar: BAR to set size to 3829 * @size: new size as defined in the spec (0=1MB, 31=128TB) 3830 * 3831 * Set the new size of a BAR as defined in the spec. 3832 * Returns zero if resizing was successful, error code otherwise. 3833 */ 3834 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3835 { 3836 int pos; 3837 u32 ctrl; 3838 3839 pos = pci_rebar_find_pos(pdev, bar); 3840 if (pos < 0) 3841 return pos; 3842 3843 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3844 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3845 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 3846 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3847 return 0; 3848 } 3849 3850 /** 3851 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3852 * @dev: the PCI device 3853 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3854 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3855 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3856 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3857 * 3858 * Return 0 if all upstream bridges support AtomicOp routing, egress 3859 * blocking is disabled on all upstream ports, and the root port supports 3860 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3861 * AtomicOp completion), or negative otherwise. 3862 */ 3863 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3864 { 3865 struct pci_bus *bus = dev->bus; 3866 struct pci_dev *bridge; 3867 u32 cap, ctl2; 3868 3869 /* 3870 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3871 * in Device Control 2 is reserved in VFs and the PF value applies 3872 * to all associated VFs. 3873 */ 3874 if (dev->is_virtfn) 3875 return -EINVAL; 3876 3877 if (!pci_is_pcie(dev)) 3878 return -EINVAL; 3879 3880 /* 3881 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3882 * AtomicOp requesters. For now, we only support endpoints as 3883 * requesters and root ports as completers. No endpoints as 3884 * completers, and no peer-to-peer. 3885 */ 3886 3887 switch (pci_pcie_type(dev)) { 3888 case PCI_EXP_TYPE_ENDPOINT: 3889 case PCI_EXP_TYPE_LEG_END: 3890 case PCI_EXP_TYPE_RC_END: 3891 break; 3892 default: 3893 return -EINVAL; 3894 } 3895 3896 while (bus->parent) { 3897 bridge = bus->self; 3898 3899 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3900 3901 switch (pci_pcie_type(bridge)) { 3902 /* Ensure switch ports support AtomicOp routing */ 3903 case PCI_EXP_TYPE_UPSTREAM: 3904 case PCI_EXP_TYPE_DOWNSTREAM: 3905 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3906 return -EINVAL; 3907 break; 3908 3909 /* Ensure root port supports all the sizes we care about */ 3910 case PCI_EXP_TYPE_ROOT_PORT: 3911 if ((cap & cap_mask) != cap_mask) 3912 return -EINVAL; 3913 break; 3914 } 3915 3916 /* Ensure upstream ports don't block AtomicOps on egress */ 3917 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3918 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3919 &ctl2); 3920 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3921 return -EINVAL; 3922 } 3923 3924 bus = bus->parent; 3925 } 3926 3927 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3928 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3929 return 0; 3930 } 3931 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3932 3933 /** 3934 * pci_release_region - Release a PCI bar 3935 * @pdev: PCI device whose resources were previously reserved by 3936 * pci_request_region() 3937 * @bar: BAR to release 3938 * 3939 * Releases the PCI I/O and memory resources previously reserved by a 3940 * successful call to pci_request_region(). Call this function only 3941 * after all use of the PCI regions has ceased. 3942 */ 3943 void pci_release_region(struct pci_dev *pdev, int bar) 3944 { 3945 if (!pci_bar_index_is_valid(bar)) 3946 return; 3947 3948 if (pci_resource_len(pdev, bar) == 0) 3949 return; 3950 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3951 release_region(pci_resource_start(pdev, bar), 3952 pci_resource_len(pdev, bar)); 3953 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3954 release_mem_region(pci_resource_start(pdev, bar), 3955 pci_resource_len(pdev, bar)); 3956 } 3957 EXPORT_SYMBOL(pci_release_region); 3958 3959 /** 3960 * __pci_request_region - Reserved PCI I/O and memory resource 3961 * @pdev: PCI device whose resources are to be reserved 3962 * @bar: BAR to be reserved 3963 * @name: name of the driver requesting the resource 3964 * @exclusive: whether the region access is exclusive or not 3965 * 3966 * Returns: 0 on success, negative error code on failure. 3967 * 3968 * Mark the PCI region associated with PCI device @pdev BAR @bar as being 3969 * reserved by owner @name. Do not access any address inside the PCI regions 3970 * unless this call returns successfully. 3971 * 3972 * If @exclusive is set, then the region is marked so that userspace 3973 * is explicitly not allowed to map the resource via /dev/mem or 3974 * sysfs MMIO access. 3975 * 3976 * Returns 0 on success, or %EBUSY on error. A warning 3977 * message is also printed on failure. 3978 */ 3979 static int __pci_request_region(struct pci_dev *pdev, int bar, 3980 const char *name, int exclusive) 3981 { 3982 if (!pci_bar_index_is_valid(bar)) 3983 return -EINVAL; 3984 3985 if (pci_resource_len(pdev, bar) == 0) 3986 return 0; 3987 3988 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3989 if (!request_region(pci_resource_start(pdev, bar), 3990 pci_resource_len(pdev, bar), name)) 3991 goto err_out; 3992 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3993 if (!__request_mem_region(pci_resource_start(pdev, bar), 3994 pci_resource_len(pdev, bar), name, 3995 exclusive)) 3996 goto err_out; 3997 } 3998 3999 return 0; 4000 4001 err_out: 4002 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 4003 &pdev->resource[bar]); 4004 return -EBUSY; 4005 } 4006 4007 /** 4008 * pci_request_region - Reserve PCI I/O and memory resource 4009 * @pdev: PCI device whose resources are to be reserved 4010 * @bar: BAR to be reserved 4011 * @name: name of the driver requesting the resource 4012 * 4013 * Returns: 0 on success, negative error code on failure. 4014 * 4015 * Mark the PCI region associated with PCI device @pdev BAR @bar as being 4016 * reserved by owner @name. Do not access any address inside the PCI regions 4017 * unless this call returns successfully. 4018 * 4019 * Returns 0 on success, or %EBUSY on error. A warning 4020 * message is also printed on failure. 4021 */ 4022 int pci_request_region(struct pci_dev *pdev, int bar, const char *name) 4023 { 4024 return __pci_request_region(pdev, bar, name, 0); 4025 } 4026 EXPORT_SYMBOL(pci_request_region); 4027 4028 /** 4029 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4030 * @pdev: PCI device whose resources were previously reserved 4031 * @bars: Bitmask of BARs to be released 4032 * 4033 * Release selected PCI I/O and memory resources previously reserved. 4034 * Call this function only after all use of the PCI regions has ceased. 4035 */ 4036 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4037 { 4038 int i; 4039 4040 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4041 if (bars & (1 << i)) 4042 pci_release_region(pdev, i); 4043 } 4044 EXPORT_SYMBOL(pci_release_selected_regions); 4045 4046 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4047 const char *name, int excl) 4048 { 4049 int i; 4050 4051 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4052 if (bars & (1 << i)) 4053 if (__pci_request_region(pdev, i, name, excl)) 4054 goto err_out; 4055 return 0; 4056 4057 err_out: 4058 while (--i >= 0) 4059 if (bars & (1 << i)) 4060 pci_release_region(pdev, i); 4061 4062 return -EBUSY; 4063 } 4064 4065 4066 /** 4067 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4068 * @pdev: PCI device whose resources are to be reserved 4069 * @bars: Bitmask of BARs to be requested 4070 * @name: Name of the driver requesting the resources 4071 * 4072 * Returns: 0 on success, negative error code on failure. 4073 */ 4074 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4075 const char *name) 4076 { 4077 return __pci_request_selected_regions(pdev, bars, name, 0); 4078 } 4079 EXPORT_SYMBOL(pci_request_selected_regions); 4080 4081 /** 4082 * pci_request_selected_regions_exclusive - Request regions exclusively 4083 * @pdev: PCI device to request regions from 4084 * @bars: bit mask of BARs to request 4085 * @name: name of the driver requesting the resources 4086 * 4087 * Returns: 0 on success, negative error code on failure. 4088 */ 4089 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4090 const char *name) 4091 { 4092 return __pci_request_selected_regions(pdev, bars, name, 4093 IORESOURCE_EXCLUSIVE); 4094 } 4095 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4096 4097 /** 4098 * pci_release_regions - Release reserved PCI I/O and memory resources 4099 * @pdev: PCI device whose resources were previously reserved by 4100 * pci_request_regions() 4101 * 4102 * Releases all PCI I/O and memory resources previously reserved by a 4103 * successful call to pci_request_regions(). Call this function only 4104 * after all use of the PCI regions has ceased. 4105 */ 4106 void pci_release_regions(struct pci_dev *pdev) 4107 { 4108 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4109 } 4110 EXPORT_SYMBOL(pci_release_regions); 4111 4112 /** 4113 * pci_request_regions - Reserve PCI I/O and memory resources 4114 * @pdev: PCI device whose resources are to be reserved 4115 * @name: name of the driver requesting the resources 4116 * 4117 * Mark all PCI regions associated with PCI device @pdev as being reserved by 4118 * owner @name. Do not access any address inside the PCI regions unless this 4119 * call returns successfully. 4120 * 4121 * Returns 0 on success, or %EBUSY on error. A warning 4122 * message is also printed on failure. 4123 */ 4124 int pci_request_regions(struct pci_dev *pdev, const char *name) 4125 { 4126 return pci_request_selected_regions(pdev, 4127 ((1 << PCI_STD_NUM_BARS) - 1), name); 4128 } 4129 EXPORT_SYMBOL(pci_request_regions); 4130 4131 /** 4132 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4133 * @pdev: PCI device whose resources are to be reserved 4134 * @name: name of the driver requesting the resources 4135 * 4136 * Returns: 0 on success, negative error code on failure. 4137 * 4138 * Mark all PCI regions associated with PCI device @pdev as being reserved 4139 * by owner @name. Do not access any address inside the PCI regions 4140 * unless this call returns successfully. 4141 * 4142 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4143 * and the sysfs MMIO access will not be allowed. 4144 * 4145 * Returns 0 on success, or %EBUSY on error. A warning message is also 4146 * printed on failure. 4147 */ 4148 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *name) 4149 { 4150 return pci_request_selected_regions_exclusive(pdev, 4151 ((1 << PCI_STD_NUM_BARS) - 1), name); 4152 } 4153 EXPORT_SYMBOL(pci_request_regions_exclusive); 4154 4155 /* 4156 * Record the PCI IO range (expressed as CPU physical address + size). 4157 * Return a negative value if an error has occurred, zero otherwise 4158 */ 4159 int pci_register_io_range(const struct fwnode_handle *fwnode, phys_addr_t addr, 4160 resource_size_t size) 4161 { 4162 int ret = 0; 4163 #ifdef PCI_IOBASE 4164 struct logic_pio_hwaddr *range; 4165 4166 if (!size || addr + size < addr) 4167 return -EINVAL; 4168 4169 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4170 if (!range) 4171 return -ENOMEM; 4172 4173 range->fwnode = fwnode; 4174 range->size = size; 4175 range->hw_start = addr; 4176 range->flags = LOGIC_PIO_CPU_MMIO; 4177 4178 ret = logic_pio_register_range(range); 4179 if (ret) 4180 kfree(range); 4181 4182 /* Ignore duplicates due to deferred probing */ 4183 if (ret == -EEXIST) 4184 ret = 0; 4185 #endif 4186 4187 return ret; 4188 } 4189 4190 phys_addr_t pci_pio_to_address(unsigned long pio) 4191 { 4192 #ifdef PCI_IOBASE 4193 if (pio < MMIO_UPPER_LIMIT) 4194 return logic_pio_to_hwaddr(pio); 4195 #endif 4196 4197 return (phys_addr_t) OF_BAD_ADDR; 4198 } 4199 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4200 4201 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4202 { 4203 #ifdef PCI_IOBASE 4204 return logic_pio_trans_cpuaddr(address); 4205 #else 4206 if (address > IO_SPACE_LIMIT) 4207 return (unsigned long)-1; 4208 4209 return (unsigned long) address; 4210 #endif 4211 } 4212 4213 /** 4214 * pci_remap_iospace - Remap the memory mapped I/O space 4215 * @res: Resource describing the I/O space 4216 * @phys_addr: physical address of range to be mapped 4217 * 4218 * Remap the memory mapped I/O space described by the @res and the CPU 4219 * physical address @phys_addr into virtual address space. Only 4220 * architectures that have memory mapped IO functions defined (and the 4221 * PCI_IOBASE value defined) should call this function. 4222 */ 4223 #ifndef pci_remap_iospace 4224 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4225 { 4226 #if defined(PCI_IOBASE) 4227 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4228 4229 if (!(res->flags & IORESOURCE_IO)) 4230 return -EINVAL; 4231 4232 if (res->end > IO_SPACE_LIMIT) 4233 return -EINVAL; 4234 4235 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4236 pgprot_device(PAGE_KERNEL)); 4237 #else 4238 /* 4239 * This architecture does not have memory mapped I/O space, 4240 * so this function should never be called 4241 */ 4242 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4243 return -ENODEV; 4244 #endif 4245 } 4246 EXPORT_SYMBOL(pci_remap_iospace); 4247 #endif 4248 4249 /** 4250 * pci_unmap_iospace - Unmap the memory mapped I/O space 4251 * @res: resource to be unmapped 4252 * 4253 * Unmap the CPU virtual address @res from virtual address space. Only 4254 * architectures that have memory mapped IO functions defined (and the 4255 * PCI_IOBASE value defined) should call this function. 4256 */ 4257 void pci_unmap_iospace(struct resource *res) 4258 { 4259 #if defined(PCI_IOBASE) 4260 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4261 4262 vunmap_range(vaddr, vaddr + resource_size(res)); 4263 #endif 4264 } 4265 EXPORT_SYMBOL(pci_unmap_iospace); 4266 4267 static void __pci_set_master(struct pci_dev *dev, bool enable) 4268 { 4269 u16 old_cmd, cmd; 4270 4271 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4272 if (enable) 4273 cmd = old_cmd | PCI_COMMAND_MASTER; 4274 else 4275 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4276 if (cmd != old_cmd) { 4277 pci_dbg(dev, "%s bus mastering\n", 4278 enable ? "enabling" : "disabling"); 4279 pci_write_config_word(dev, PCI_COMMAND, cmd); 4280 } 4281 dev->is_busmaster = enable; 4282 } 4283 4284 /** 4285 * pcibios_setup - process "pci=" kernel boot arguments 4286 * @str: string used to pass in "pci=" kernel boot arguments 4287 * 4288 * Process kernel boot arguments. This is the default implementation. 4289 * Architecture specific implementations can override this as necessary. 4290 */ 4291 char * __weak __init pcibios_setup(char *str) 4292 { 4293 return str; 4294 } 4295 4296 /** 4297 * pcibios_set_master - enable PCI bus-mastering for device dev 4298 * @dev: the PCI device to enable 4299 * 4300 * Enables PCI bus-mastering for the device. This is the default 4301 * implementation. Architecture specific implementations can override 4302 * this if necessary. 4303 */ 4304 void __weak pcibios_set_master(struct pci_dev *dev) 4305 { 4306 u8 lat; 4307 4308 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4309 if (pci_is_pcie(dev)) 4310 return; 4311 4312 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4313 if (lat < 16) 4314 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4315 else if (lat > pcibios_max_latency) 4316 lat = pcibios_max_latency; 4317 else 4318 return; 4319 4320 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4321 } 4322 4323 /** 4324 * pci_set_master - enables bus-mastering for device dev 4325 * @dev: the PCI device to enable 4326 * 4327 * Enables bus-mastering on the device and calls pcibios_set_master() 4328 * to do the needed arch specific settings. 4329 */ 4330 void pci_set_master(struct pci_dev *dev) 4331 { 4332 __pci_set_master(dev, true); 4333 pcibios_set_master(dev); 4334 } 4335 EXPORT_SYMBOL(pci_set_master); 4336 4337 /** 4338 * pci_clear_master - disables bus-mastering for device dev 4339 * @dev: the PCI device to disable 4340 */ 4341 void pci_clear_master(struct pci_dev *dev) 4342 { 4343 __pci_set_master(dev, false); 4344 } 4345 EXPORT_SYMBOL(pci_clear_master); 4346 4347 /** 4348 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4349 * @dev: the PCI device for which MWI is to be enabled 4350 * 4351 * Helper function for pci_set_mwi. 4352 * Originally copied from drivers/net/acenic.c. 4353 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4354 * 4355 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4356 */ 4357 int pci_set_cacheline_size(struct pci_dev *dev) 4358 { 4359 u8 cacheline_size; 4360 4361 if (!pci_cache_line_size) 4362 return -EINVAL; 4363 4364 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4365 equal to or multiple of the right value. */ 4366 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4367 if (cacheline_size >= pci_cache_line_size && 4368 (cacheline_size % pci_cache_line_size) == 0) 4369 return 0; 4370 4371 /* Write the correct value. */ 4372 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4373 /* Read it back. */ 4374 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4375 if (cacheline_size == pci_cache_line_size) 4376 return 0; 4377 4378 pci_dbg(dev, "cache line size of %d is not supported\n", 4379 pci_cache_line_size << 2); 4380 4381 return -EINVAL; 4382 } 4383 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4384 4385 /** 4386 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4387 * @dev: the PCI device for which MWI is enabled 4388 * 4389 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4390 * 4391 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4392 */ 4393 int pci_set_mwi(struct pci_dev *dev) 4394 { 4395 #ifdef PCI_DISABLE_MWI 4396 return 0; 4397 #else 4398 int rc; 4399 u16 cmd; 4400 4401 rc = pci_set_cacheline_size(dev); 4402 if (rc) 4403 return rc; 4404 4405 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4406 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4407 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4408 cmd |= PCI_COMMAND_INVALIDATE; 4409 pci_write_config_word(dev, PCI_COMMAND, cmd); 4410 } 4411 return 0; 4412 #endif 4413 } 4414 EXPORT_SYMBOL(pci_set_mwi); 4415 4416 /** 4417 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4418 * @dev: the PCI device for which MWI is enabled 4419 * 4420 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4421 * Callers are not required to check the return value. 4422 * 4423 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4424 */ 4425 int pci_try_set_mwi(struct pci_dev *dev) 4426 { 4427 #ifdef PCI_DISABLE_MWI 4428 return 0; 4429 #else 4430 return pci_set_mwi(dev); 4431 #endif 4432 } 4433 EXPORT_SYMBOL(pci_try_set_mwi); 4434 4435 /** 4436 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4437 * @dev: the PCI device to disable 4438 * 4439 * Disables PCI Memory-Write-Invalidate transaction on the device 4440 */ 4441 void pci_clear_mwi(struct pci_dev *dev) 4442 { 4443 #ifndef PCI_DISABLE_MWI 4444 u16 cmd; 4445 4446 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4447 if (cmd & PCI_COMMAND_INVALIDATE) { 4448 cmd &= ~PCI_COMMAND_INVALIDATE; 4449 pci_write_config_word(dev, PCI_COMMAND, cmd); 4450 } 4451 #endif 4452 } 4453 EXPORT_SYMBOL(pci_clear_mwi); 4454 4455 /** 4456 * pci_disable_parity - disable parity checking for device 4457 * @dev: the PCI device to operate on 4458 * 4459 * Disable parity checking for device @dev 4460 */ 4461 void pci_disable_parity(struct pci_dev *dev) 4462 { 4463 u16 cmd; 4464 4465 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4466 if (cmd & PCI_COMMAND_PARITY) { 4467 cmd &= ~PCI_COMMAND_PARITY; 4468 pci_write_config_word(dev, PCI_COMMAND, cmd); 4469 } 4470 } 4471 4472 /** 4473 * pci_intx - enables/disables PCI INTx for device dev 4474 * @pdev: the PCI device to operate on 4475 * @enable: boolean: whether to enable or disable PCI INTx 4476 * 4477 * Enables/disables PCI INTx for device @pdev 4478 */ 4479 void pci_intx(struct pci_dev *pdev, int enable) 4480 { 4481 u16 pci_command, new; 4482 4483 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4484 4485 if (enable) 4486 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4487 else 4488 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4489 4490 if (new == pci_command) 4491 return; 4492 4493 pci_write_config_word(pdev, PCI_COMMAND, new); 4494 } 4495 EXPORT_SYMBOL_GPL(pci_intx); 4496 4497 /** 4498 * pci_wait_for_pending_transaction - wait for pending transaction 4499 * @dev: the PCI device to operate on 4500 * 4501 * Return 0 if transaction is pending 1 otherwise. 4502 */ 4503 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4504 { 4505 if (!pci_is_pcie(dev)) 4506 return 1; 4507 4508 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4509 PCI_EXP_DEVSTA_TRPND); 4510 } 4511 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4512 4513 /** 4514 * pcie_flr - initiate a PCIe function level reset 4515 * @dev: device to reset 4516 * 4517 * Initiate a function level reset unconditionally on @dev without 4518 * checking any flags and DEVCAP 4519 */ 4520 int pcie_flr(struct pci_dev *dev) 4521 { 4522 if (!pci_wait_for_pending_transaction(dev)) 4523 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4524 4525 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4526 4527 if (dev->imm_ready) 4528 return 0; 4529 4530 /* 4531 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4532 * 100ms, but may silently discard requests while the FLR is in 4533 * progress. Wait 100ms before trying to access the device. 4534 */ 4535 msleep(100); 4536 4537 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4538 } 4539 EXPORT_SYMBOL_GPL(pcie_flr); 4540 4541 /** 4542 * pcie_reset_flr - initiate a PCIe function level reset 4543 * @dev: device to reset 4544 * @probe: if true, return 0 if device can be reset this way 4545 * 4546 * Initiate a function level reset on @dev. 4547 */ 4548 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4549 { 4550 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4551 return -ENOTTY; 4552 4553 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4554 return -ENOTTY; 4555 4556 if (probe) 4557 return 0; 4558 4559 return pcie_flr(dev); 4560 } 4561 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4562 4563 static int pci_af_flr(struct pci_dev *dev, bool probe) 4564 { 4565 int pos; 4566 u8 cap; 4567 4568 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4569 if (!pos) 4570 return -ENOTTY; 4571 4572 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4573 return -ENOTTY; 4574 4575 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4576 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4577 return -ENOTTY; 4578 4579 if (probe) 4580 return 0; 4581 4582 /* 4583 * Wait for Transaction Pending bit to clear. A word-aligned test 4584 * is used, so we use the control offset rather than status and shift 4585 * the test bit to match. 4586 */ 4587 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4588 PCI_AF_STATUS_TP << 8)) 4589 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4590 4591 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4592 4593 if (dev->imm_ready) 4594 return 0; 4595 4596 /* 4597 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4598 * updated 27 July 2006; a device must complete an FLR within 4599 * 100ms, but may silently discard requests while the FLR is in 4600 * progress. Wait 100ms before trying to access the device. 4601 */ 4602 msleep(100); 4603 4604 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4605 } 4606 4607 /** 4608 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4609 * @dev: Device to reset. 4610 * @probe: if true, return 0 if the device can be reset this way. 4611 * 4612 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4613 * unset, it will be reinitialized internally when going from PCI_D3hot to 4614 * PCI_D0. If that's the case and the device is not in a low-power state 4615 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4616 * 4617 * NOTE: This causes the caller to sleep for twice the device power transition 4618 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4619 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4620 * Moreover, only devices in D0 can be reset by this function. 4621 */ 4622 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4623 { 4624 u16 csr; 4625 4626 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4627 return -ENOTTY; 4628 4629 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4630 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4631 return -ENOTTY; 4632 4633 if (probe) 4634 return 0; 4635 4636 if (dev->current_state != PCI_D0) 4637 return -EINVAL; 4638 4639 csr &= ~PCI_PM_CTRL_STATE_MASK; 4640 csr |= PCI_D3hot; 4641 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4642 pci_dev_d3_sleep(dev); 4643 4644 csr &= ~PCI_PM_CTRL_STATE_MASK; 4645 csr |= PCI_D0; 4646 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4647 pci_dev_d3_sleep(dev); 4648 4649 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4650 } 4651 4652 /** 4653 * pcie_wait_for_link_status - Wait for link status change 4654 * @pdev: Device whose link to wait for. 4655 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4656 * @active: Waiting for active or inactive? 4657 * 4658 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4659 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4660 */ 4661 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4662 bool use_lt, bool active) 4663 { 4664 u16 lnksta_mask, lnksta_match; 4665 unsigned long end_jiffies; 4666 u16 lnksta; 4667 4668 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4669 lnksta_match = active ? lnksta_mask : 0; 4670 4671 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4672 do { 4673 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4674 if ((lnksta & lnksta_mask) == lnksta_match) 4675 return 0; 4676 msleep(1); 4677 } while (time_before(jiffies, end_jiffies)); 4678 4679 return -ETIMEDOUT; 4680 } 4681 4682 /** 4683 * pcie_retrain_link - Request a link retrain and wait for it to complete 4684 * @pdev: Device whose link to retrain. 4685 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 4686 * 4687 * Trigger retraining of the PCIe Link and wait for the completion of the 4688 * retraining. As link retraining is known to asserts LBMS and may change 4689 * the Link Speed, LBMS is cleared after the retraining and the Link Speed 4690 * of the subordinate bus is updated. 4691 * 4692 * Retrain completion status is retrieved from the Link Status Register 4693 * according to @use_lt. It is not verified whether the use of the DLLLA 4694 * bit is valid. 4695 * 4696 * Return 0 if successful, or -ETIMEDOUT if training has not completed 4697 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4698 */ 4699 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 4700 { 4701 int rc; 4702 4703 /* 4704 * Ensure the updated LNKCTL parameters are used during link 4705 * training by checking that there is no ongoing link training that 4706 * may have started before link parameters were changed, so as to 4707 * avoid LTSSM race as recommended in Implementation Note at the end 4708 * of PCIe r6.1 sec 7.5.3.7. 4709 */ 4710 rc = pcie_wait_for_link_status(pdev, true, false); 4711 if (rc) 4712 return rc; 4713 4714 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4715 if (pdev->clear_retrain_link) { 4716 /* 4717 * Due to an erratum in some devices the Retrain Link bit 4718 * needs to be cleared again manually to allow the link 4719 * training to succeed. 4720 */ 4721 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4722 } 4723 4724 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4725 4726 /* 4727 * Clear LBMS after a manual retrain so that the bit can be used 4728 * to track link speed or width changes made by hardware itself 4729 * in attempt to correct unreliable link operation. 4730 */ 4731 pcie_reset_lbms(pdev); 4732 4733 /* 4734 * Ensure the Link Speed updates after retraining in case the Link 4735 * Speed was changed because of the retraining. While the bwctrl's 4736 * IRQ handler normally picks up the new Link Speed, clearing LBMS 4737 * races with the IRQ handler reading the Link Status register and 4738 * can result in the handler returning early without updating the 4739 * Link Speed. 4740 */ 4741 if (pdev->subordinate) 4742 pcie_update_link_speed(pdev->subordinate); 4743 4744 return rc; 4745 } 4746 4747 /** 4748 * pcie_wait_for_link_delay - Wait until link is active or inactive 4749 * @pdev: Bridge device 4750 * @active: waiting for active or inactive? 4751 * @delay: Delay to wait after link has become active (in ms) 4752 * 4753 * Use this to wait till link becomes active or inactive. 4754 */ 4755 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4756 int delay) 4757 { 4758 int rc; 4759 4760 /* 4761 * Some controllers might not implement link active reporting. In this 4762 * case, we wait for 1000 ms + any delay requested by the caller. 4763 */ 4764 if (!pdev->link_active_reporting) { 4765 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 4766 return true; 4767 } 4768 4769 /* 4770 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4771 * after which we should expect the link to be active if the reset was 4772 * successful. If so, software must wait a minimum 100ms before sending 4773 * configuration requests to devices downstream this port. 4774 * 4775 * If the link fails to activate, either the device was physically 4776 * removed or the link is permanently failed. 4777 */ 4778 if (active) 4779 msleep(20); 4780 rc = pcie_wait_for_link_status(pdev, false, active); 4781 if (active) { 4782 if (rc) 4783 rc = pcie_failed_link_retrain(pdev); 4784 if (rc) 4785 return false; 4786 4787 msleep(delay); 4788 return true; 4789 } 4790 4791 if (rc) 4792 return false; 4793 4794 return true; 4795 } 4796 4797 /** 4798 * pcie_wait_for_link - Wait until link is active or inactive 4799 * @pdev: Bridge device 4800 * @active: waiting for active or inactive? 4801 * 4802 * Use this to wait till link becomes active or inactive. 4803 */ 4804 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4805 { 4806 return pcie_wait_for_link_delay(pdev, active, 100); 4807 } 4808 4809 /* 4810 * Find maximum D3cold delay required by all the devices on the bus. The 4811 * spec says 100 ms, but firmware can lower it and we allow drivers to 4812 * increase it as well. 4813 * 4814 * Called with @pci_bus_sem locked for reading. 4815 */ 4816 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4817 { 4818 const struct pci_dev *pdev; 4819 int min_delay = 100; 4820 int max_delay = 0; 4821 4822 list_for_each_entry(pdev, &bus->devices, bus_list) { 4823 if (pdev->d3cold_delay < min_delay) 4824 min_delay = pdev->d3cold_delay; 4825 if (pdev->d3cold_delay > max_delay) 4826 max_delay = pdev->d3cold_delay; 4827 } 4828 4829 return max(min_delay, max_delay); 4830 } 4831 4832 /** 4833 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4834 * @dev: PCI bridge 4835 * @reset_type: reset type in human-readable form 4836 * 4837 * Handle necessary delays before access to the devices on the secondary 4838 * side of the bridge are permitted after D3cold to D0 transition 4839 * or Conventional Reset. 4840 * 4841 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4842 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4843 * 4.3.2. 4844 * 4845 * Return 0 on success or -ENOTTY if the first device on the secondary bus 4846 * failed to become accessible. 4847 */ 4848 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 4849 { 4850 struct pci_dev *child __free(pci_dev_put) = NULL; 4851 int delay; 4852 4853 if (pci_dev_is_disconnected(dev)) 4854 return 0; 4855 4856 if (!pci_is_bridge(dev)) 4857 return 0; 4858 4859 down_read(&pci_bus_sem); 4860 4861 /* 4862 * We only deal with devices that are present currently on the bus. 4863 * For any hot-added devices the access delay is handled in pciehp 4864 * board_added(). In case of ACPI hotplug the firmware is expected 4865 * to configure the devices before OS is notified. 4866 */ 4867 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4868 up_read(&pci_bus_sem); 4869 return 0; 4870 } 4871 4872 /* Take d3cold_delay requirements into account */ 4873 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4874 if (!delay) { 4875 up_read(&pci_bus_sem); 4876 return 0; 4877 } 4878 4879 child = pci_dev_get(list_first_entry(&dev->subordinate->devices, 4880 struct pci_dev, bus_list)); 4881 up_read(&pci_bus_sem); 4882 4883 /* 4884 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4885 * accessing the device after reset (that is 1000 ms + 100 ms). 4886 */ 4887 if (!pci_is_pcie(dev)) { 4888 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4889 msleep(1000 + delay); 4890 return 0; 4891 } 4892 4893 /* 4894 * For PCIe downstream and root ports that do not support speeds 4895 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4896 * speeds (gen3) we need to wait first for the data link layer to 4897 * become active. 4898 * 4899 * However, 100 ms is the minimum and the PCIe spec says the 4900 * software must allow at least 1s before it can determine that the 4901 * device that did not respond is a broken device. Also device can 4902 * take longer than that to respond if it indicates so through Request 4903 * Retry Status completions. 4904 * 4905 * Therefore we wait for 100 ms and check for the device presence 4906 * until the timeout expires. 4907 */ 4908 if (!pcie_downstream_port(dev)) 4909 return 0; 4910 4911 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4912 u16 status; 4913 4914 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4915 msleep(delay); 4916 4917 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 4918 return 0; 4919 4920 /* 4921 * If the port supports active link reporting we now check 4922 * whether the link is active and if not bail out early with 4923 * the assumption that the device is not present anymore. 4924 */ 4925 if (!dev->link_active_reporting) 4926 return -ENOTTY; 4927 4928 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 4929 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 4930 return -ENOTTY; 4931 4932 return pci_dev_wait(child, reset_type, 4933 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 4934 } 4935 4936 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4937 delay); 4938 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4939 /* Did not train, no need to wait any further */ 4940 pci_info(dev, "Data Link Layer Link Active not set in %d msec\n", delay); 4941 return -ENOTTY; 4942 } 4943 4944 return pci_dev_wait(child, reset_type, 4945 PCIE_RESET_READY_POLL_MS - delay); 4946 } 4947 4948 void pci_reset_secondary_bus(struct pci_dev *dev) 4949 { 4950 u16 ctrl; 4951 4952 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4953 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4954 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4955 4956 /* 4957 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4958 * this to 2ms to ensure that we meet the minimum requirement. 4959 */ 4960 msleep(2); 4961 4962 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4963 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4964 } 4965 4966 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4967 { 4968 pci_reset_secondary_bus(dev); 4969 } 4970 4971 /** 4972 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4973 * @dev: Bridge device 4974 * 4975 * Use the bridge control register to assert reset on the secondary bus. 4976 * Devices on the secondary bus are left in power-on state. 4977 */ 4978 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4979 { 4980 if (!dev->block_cfg_access) 4981 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n", 4982 __builtin_return_address(0)); 4983 pcibios_reset_secondary_bus(dev); 4984 4985 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 4986 } 4987 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4988 4989 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 4990 { 4991 struct pci_dev *pdev; 4992 4993 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4994 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4995 return -ENOTTY; 4996 4997 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4998 if (pdev != dev) 4999 return -ENOTTY; 5000 5001 if (probe) 5002 return 0; 5003 5004 return pci_bridge_secondary_bus_reset(dev->bus->self); 5005 } 5006 5007 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5008 { 5009 int rc = -ENOTTY; 5010 5011 if (!hotplug || !try_module_get(hotplug->owner)) 5012 return rc; 5013 5014 if (hotplug->ops->reset_slot) 5015 rc = hotplug->ops->reset_slot(hotplug, probe); 5016 5017 module_put(hotplug->owner); 5018 5019 return rc; 5020 } 5021 5022 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5023 { 5024 if (dev->multifunction || dev->subordinate || !dev->slot || 5025 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5026 return -ENOTTY; 5027 5028 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5029 } 5030 5031 static u16 cxl_port_dvsec(struct pci_dev *dev) 5032 { 5033 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL, 5034 PCI_DVSEC_CXL_PORT); 5035 } 5036 5037 static bool cxl_sbr_masked(struct pci_dev *dev) 5038 { 5039 u16 dvsec, reg; 5040 int rc; 5041 5042 dvsec = cxl_port_dvsec(dev); 5043 if (!dvsec) 5044 return false; 5045 5046 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®); 5047 if (rc || PCI_POSSIBLE_ERROR(reg)) 5048 return false; 5049 5050 /* 5051 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR 5052 * bit in Bridge Control has no effect. When 1, the Port generates 5053 * hot reset when the SBR bit is set to 1. 5054 */ 5055 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) 5056 return false; 5057 5058 return true; 5059 } 5060 5061 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5062 { 5063 struct pci_dev *bridge = pci_upstream_bridge(dev); 5064 int rc; 5065 5066 /* 5067 * If "dev" is below a CXL port that has SBR control masked, SBR 5068 * won't do anything, so return error. 5069 */ 5070 if (bridge && cxl_sbr_masked(bridge)) { 5071 if (probe) 5072 return 0; 5073 5074 return -ENOTTY; 5075 } 5076 5077 rc = pci_dev_reset_slot_function(dev, probe); 5078 if (rc != -ENOTTY) 5079 return rc; 5080 return pci_parent_bus_reset(dev, probe); 5081 } 5082 5083 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe) 5084 { 5085 struct pci_dev *bridge; 5086 u16 dvsec, reg, val; 5087 int rc; 5088 5089 bridge = pci_upstream_bridge(dev); 5090 if (!bridge) 5091 return -ENOTTY; 5092 5093 dvsec = cxl_port_dvsec(bridge); 5094 if (!dvsec) 5095 return -ENOTTY; 5096 5097 if (probe) 5098 return 0; 5099 5100 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®); 5101 if (rc) 5102 return -ENOTTY; 5103 5104 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) { 5105 val = reg; 5106 } else { 5107 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR; 5108 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, 5109 val); 5110 } 5111 5112 rc = pci_reset_bus_function(dev, probe); 5113 5114 if (reg != val) 5115 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, 5116 reg); 5117 5118 return rc; 5119 } 5120 5121 void pci_dev_lock(struct pci_dev *dev) 5122 { 5123 /* block PM suspend, driver probe, etc. */ 5124 device_lock(&dev->dev); 5125 pci_cfg_access_lock(dev); 5126 } 5127 EXPORT_SYMBOL_GPL(pci_dev_lock); 5128 5129 /* Return 1 on successful lock, 0 on contention */ 5130 int pci_dev_trylock(struct pci_dev *dev) 5131 { 5132 if (device_trylock(&dev->dev)) { 5133 if (pci_cfg_access_trylock(dev)) 5134 return 1; 5135 device_unlock(&dev->dev); 5136 } 5137 5138 return 0; 5139 } 5140 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5141 5142 void pci_dev_unlock(struct pci_dev *dev) 5143 { 5144 pci_cfg_access_unlock(dev); 5145 device_unlock(&dev->dev); 5146 } 5147 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5148 5149 static void pci_dev_save_and_disable(struct pci_dev *dev) 5150 { 5151 const struct pci_error_handlers *err_handler = 5152 dev->driver ? dev->driver->err_handler : NULL; 5153 5154 /* 5155 * dev->driver->err_handler->reset_prepare() is protected against 5156 * races with ->remove() by the device lock, which must be held by 5157 * the caller. 5158 */ 5159 if (err_handler && err_handler->reset_prepare) 5160 err_handler->reset_prepare(dev); 5161 else if (dev->driver) 5162 pci_warn(dev, "resetting"); 5163 5164 /* 5165 * Wake-up device prior to save. PM registers default to D0 after 5166 * reset and a simple register restore doesn't reliably return 5167 * to a non-D0 state anyway. 5168 */ 5169 pci_set_power_state(dev, PCI_D0); 5170 5171 pci_save_state(dev); 5172 /* 5173 * Disable the device by clearing the Command register, except for 5174 * INTx-disable which is set. This not only disables MMIO and I/O port 5175 * BARs, but also prevents the device from being Bus Master, preventing 5176 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5177 * compliant devices, INTx-disable prevents legacy interrupts. 5178 */ 5179 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5180 } 5181 5182 static void pci_dev_restore(struct pci_dev *dev) 5183 { 5184 const struct pci_error_handlers *err_handler = 5185 dev->driver ? dev->driver->err_handler : NULL; 5186 5187 pci_restore_state(dev); 5188 5189 /* 5190 * dev->driver->err_handler->reset_done() is protected against 5191 * races with ->remove() by the device lock, which must be held by 5192 * the caller. 5193 */ 5194 if (err_handler && err_handler->reset_done) 5195 err_handler->reset_done(dev); 5196 else if (dev->driver) 5197 pci_warn(dev, "reset done"); 5198 } 5199 5200 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5201 const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5202 { }, 5203 { pci_dev_specific_reset, .name = "device_specific" }, 5204 { pci_dev_acpi_reset, .name = "acpi" }, 5205 { pcie_reset_flr, .name = "flr" }, 5206 { pci_af_flr, .name = "af_flr" }, 5207 { pci_pm_reset, .name = "pm" }, 5208 { pci_reset_bus_function, .name = "bus" }, 5209 { cxl_reset_bus_function, .name = "cxl_bus" }, 5210 }; 5211 5212 /** 5213 * __pci_reset_function_locked - reset a PCI device function while holding 5214 * the @dev mutex lock. 5215 * @dev: PCI device to reset 5216 * 5217 * Some devices allow an individual function to be reset without affecting 5218 * other functions in the same device. The PCI device must be responsive 5219 * to PCI config space in order to use this function. 5220 * 5221 * The device function is presumed to be unused and the caller is holding 5222 * the device mutex lock when this function is called. 5223 * 5224 * Resetting the device will make the contents of PCI configuration space 5225 * random, so any caller of this must be prepared to reinitialise the 5226 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5227 * etc. 5228 * 5229 * Returns 0 if the device function was successfully reset or negative if the 5230 * device doesn't support resetting a single function. 5231 */ 5232 int __pci_reset_function_locked(struct pci_dev *dev) 5233 { 5234 int i, m, rc; 5235 const struct pci_reset_fn_method *method; 5236 5237 might_sleep(); 5238 5239 /* 5240 * A reset method returns -ENOTTY if it doesn't support this device and 5241 * we should try the next method. 5242 * 5243 * If it returns 0 (success), we're finished. If it returns any other 5244 * error, we're also finished: this indicates that further reset 5245 * mechanisms might be broken on the device. 5246 */ 5247 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5248 m = dev->reset_methods[i]; 5249 if (!m) 5250 return -ENOTTY; 5251 5252 method = &pci_reset_fn_methods[m]; 5253 pci_dbg(dev, "reset via %s\n", method->name); 5254 rc = method->reset_fn(dev, PCI_RESET_DO_RESET); 5255 if (!rc) 5256 return 0; 5257 5258 pci_dbg(dev, "%s failed with %d\n", method->name, rc); 5259 if (rc != -ENOTTY) 5260 return rc; 5261 } 5262 5263 return -ENOTTY; 5264 } 5265 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5266 5267 /** 5268 * pci_init_reset_methods - check whether device can be safely reset 5269 * and store supported reset mechanisms. 5270 * @dev: PCI device to check for reset mechanisms 5271 * 5272 * Some devices allow an individual function to be reset without affecting 5273 * other functions in the same device. The PCI device must be in D0-D3hot 5274 * state. 5275 * 5276 * Stores reset mechanisms supported by device in reset_methods byte array 5277 * which is a member of struct pci_dev. 5278 */ 5279 void pci_init_reset_methods(struct pci_dev *dev) 5280 { 5281 int m, i, rc; 5282 5283 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5284 5285 might_sleep(); 5286 5287 i = 0; 5288 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5289 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5290 if (!rc) 5291 dev->reset_methods[i++] = m; 5292 else if (rc != -ENOTTY) 5293 break; 5294 } 5295 5296 dev->reset_methods[i] = 0; 5297 } 5298 5299 /** 5300 * pci_reset_function - quiesce and reset a PCI device function 5301 * @dev: PCI device to reset 5302 * 5303 * Some devices allow an individual function to be reset without affecting 5304 * other functions in the same device. The PCI device must be responsive 5305 * to PCI config space in order to use this function. 5306 * 5307 * This function does not just reset the PCI portion of a device, but 5308 * clears all the state associated with the device. This function differs 5309 * from __pci_reset_function_locked() in that it saves and restores device state 5310 * over the reset and takes the PCI device lock. 5311 * 5312 * Returns 0 if the device function was successfully reset or negative if the 5313 * device doesn't support resetting a single function. 5314 */ 5315 int pci_reset_function(struct pci_dev *dev) 5316 { 5317 struct pci_dev *bridge; 5318 int rc; 5319 5320 if (!pci_reset_supported(dev)) 5321 return -ENOTTY; 5322 5323 /* 5324 * If there's no upstream bridge, no locking is needed since there is 5325 * no upstream bridge configuration to hold consistent. 5326 */ 5327 bridge = pci_upstream_bridge(dev); 5328 if (bridge) 5329 pci_dev_lock(bridge); 5330 5331 pci_dev_lock(dev); 5332 pci_dev_save_and_disable(dev); 5333 5334 rc = __pci_reset_function_locked(dev); 5335 5336 pci_dev_restore(dev); 5337 pci_dev_unlock(dev); 5338 5339 if (bridge) 5340 pci_dev_unlock(bridge); 5341 5342 return rc; 5343 } 5344 EXPORT_SYMBOL_GPL(pci_reset_function); 5345 5346 /** 5347 * pci_reset_function_locked - quiesce and reset a PCI device function 5348 * @dev: PCI device to reset 5349 * 5350 * Some devices allow an individual function to be reset without affecting 5351 * other functions in the same device. The PCI device must be responsive 5352 * to PCI config space in order to use this function. 5353 * 5354 * This function does not just reset the PCI portion of a device, but 5355 * clears all the state associated with the device. This function differs 5356 * from __pci_reset_function_locked() in that it saves and restores device state 5357 * over the reset. It also differs from pci_reset_function() in that it 5358 * requires the PCI device lock to be held. 5359 * 5360 * Returns 0 if the device function was successfully reset or negative if the 5361 * device doesn't support resetting a single function. 5362 */ 5363 int pci_reset_function_locked(struct pci_dev *dev) 5364 { 5365 int rc; 5366 5367 if (!pci_reset_supported(dev)) 5368 return -ENOTTY; 5369 5370 pci_dev_save_and_disable(dev); 5371 5372 rc = __pci_reset_function_locked(dev); 5373 5374 pci_dev_restore(dev); 5375 5376 return rc; 5377 } 5378 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5379 5380 /** 5381 * pci_try_reset_function - quiesce and reset a PCI device function 5382 * @dev: PCI device to reset 5383 * 5384 * Same as above, except return -EAGAIN if unable to lock device. 5385 */ 5386 int pci_try_reset_function(struct pci_dev *dev) 5387 { 5388 int rc; 5389 5390 if (!pci_reset_supported(dev)) 5391 return -ENOTTY; 5392 5393 if (!pci_dev_trylock(dev)) 5394 return -EAGAIN; 5395 5396 pci_dev_save_and_disable(dev); 5397 rc = __pci_reset_function_locked(dev); 5398 pci_dev_restore(dev); 5399 pci_dev_unlock(dev); 5400 5401 return rc; 5402 } 5403 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5404 5405 /* Do any devices on or below this bus prevent a bus reset? */ 5406 static bool pci_bus_resettable(struct pci_bus *bus) 5407 { 5408 struct pci_dev *dev; 5409 5410 5411 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5412 return false; 5413 5414 list_for_each_entry(dev, &bus->devices, bus_list) { 5415 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5416 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5417 return false; 5418 } 5419 5420 return true; 5421 } 5422 5423 /* Lock devices from the top of the tree down */ 5424 static void pci_bus_lock(struct pci_bus *bus) 5425 { 5426 struct pci_dev *dev; 5427 5428 pci_dev_lock(bus->self); 5429 list_for_each_entry(dev, &bus->devices, bus_list) { 5430 if (dev->subordinate) 5431 pci_bus_lock(dev->subordinate); 5432 else 5433 pci_dev_lock(dev); 5434 } 5435 } 5436 5437 /* Unlock devices from the bottom of the tree up */ 5438 static void pci_bus_unlock(struct pci_bus *bus) 5439 { 5440 struct pci_dev *dev; 5441 5442 list_for_each_entry(dev, &bus->devices, bus_list) { 5443 if (dev->subordinate) 5444 pci_bus_unlock(dev->subordinate); 5445 else 5446 pci_dev_unlock(dev); 5447 } 5448 pci_dev_unlock(bus->self); 5449 } 5450 5451 /* Return 1 on successful lock, 0 on contention */ 5452 static int pci_bus_trylock(struct pci_bus *bus) 5453 { 5454 struct pci_dev *dev; 5455 5456 if (!pci_dev_trylock(bus->self)) 5457 return 0; 5458 5459 list_for_each_entry(dev, &bus->devices, bus_list) { 5460 if (dev->subordinate) { 5461 if (!pci_bus_trylock(dev->subordinate)) 5462 goto unlock; 5463 } else if (!pci_dev_trylock(dev)) 5464 goto unlock; 5465 } 5466 return 1; 5467 5468 unlock: 5469 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5470 if (dev->subordinate) 5471 pci_bus_unlock(dev->subordinate); 5472 else 5473 pci_dev_unlock(dev); 5474 } 5475 pci_dev_unlock(bus->self); 5476 return 0; 5477 } 5478 5479 /* Do any devices on or below this slot prevent a bus reset? */ 5480 static bool pci_slot_resettable(struct pci_slot *slot) 5481 { 5482 struct pci_dev *dev; 5483 5484 if (slot->bus->self && 5485 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5486 return false; 5487 5488 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5489 if (!dev->slot || dev->slot != slot) 5490 continue; 5491 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5492 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5493 return false; 5494 } 5495 5496 return true; 5497 } 5498 5499 /* Lock devices from the top of the tree down */ 5500 static void pci_slot_lock(struct pci_slot *slot) 5501 { 5502 struct pci_dev *dev; 5503 5504 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5505 if (!dev->slot || dev->slot != slot) 5506 continue; 5507 if (dev->subordinate) 5508 pci_bus_lock(dev->subordinate); 5509 else 5510 pci_dev_lock(dev); 5511 } 5512 } 5513 5514 /* Unlock devices from the bottom of the tree up */ 5515 static void pci_slot_unlock(struct pci_slot *slot) 5516 { 5517 struct pci_dev *dev; 5518 5519 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5520 if (!dev->slot || dev->slot != slot) 5521 continue; 5522 if (dev->subordinate) 5523 pci_bus_unlock(dev->subordinate); 5524 else 5525 pci_dev_unlock(dev); 5526 } 5527 } 5528 5529 /* Return 1 on successful lock, 0 on contention */ 5530 static int pci_slot_trylock(struct pci_slot *slot) 5531 { 5532 struct pci_dev *dev; 5533 5534 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5535 if (!dev->slot || dev->slot != slot) 5536 continue; 5537 if (dev->subordinate) { 5538 if (!pci_bus_trylock(dev->subordinate)) { 5539 pci_dev_unlock(dev); 5540 goto unlock; 5541 } 5542 } else if (!pci_dev_trylock(dev)) 5543 goto unlock; 5544 } 5545 return 1; 5546 5547 unlock: 5548 list_for_each_entry_continue_reverse(dev, 5549 &slot->bus->devices, bus_list) { 5550 if (!dev->slot || dev->slot != slot) 5551 continue; 5552 if (dev->subordinate) 5553 pci_bus_unlock(dev->subordinate); 5554 else 5555 pci_dev_unlock(dev); 5556 } 5557 return 0; 5558 } 5559 5560 /* 5561 * Save and disable devices from the top of the tree down while holding 5562 * the @dev mutex lock for the entire tree. 5563 */ 5564 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5565 { 5566 struct pci_dev *dev; 5567 5568 list_for_each_entry(dev, &bus->devices, bus_list) { 5569 pci_dev_save_and_disable(dev); 5570 if (dev->subordinate) 5571 pci_bus_save_and_disable_locked(dev->subordinate); 5572 } 5573 } 5574 5575 /* 5576 * Restore devices from top of the tree down while holding @dev mutex lock 5577 * for the entire tree. Parent bridges need to be restored before we can 5578 * get to subordinate devices. 5579 */ 5580 static void pci_bus_restore_locked(struct pci_bus *bus) 5581 { 5582 struct pci_dev *dev; 5583 5584 list_for_each_entry(dev, &bus->devices, bus_list) { 5585 pci_dev_restore(dev); 5586 if (dev->subordinate) { 5587 pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5588 pci_bus_restore_locked(dev->subordinate); 5589 } 5590 } 5591 } 5592 5593 /* 5594 * Save and disable devices from the top of the tree down while holding 5595 * the @dev mutex lock for the entire tree. 5596 */ 5597 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5598 { 5599 struct pci_dev *dev; 5600 5601 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5602 if (!dev->slot || dev->slot != slot) 5603 continue; 5604 pci_dev_save_and_disable(dev); 5605 if (dev->subordinate) 5606 pci_bus_save_and_disable_locked(dev->subordinate); 5607 } 5608 } 5609 5610 /* 5611 * Restore devices from top of the tree down while holding @dev mutex lock 5612 * for the entire tree. Parent bridges need to be restored before we can 5613 * get to subordinate devices. 5614 */ 5615 static void pci_slot_restore_locked(struct pci_slot *slot) 5616 { 5617 struct pci_dev *dev; 5618 5619 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5620 if (!dev->slot || dev->slot != slot) 5621 continue; 5622 pci_dev_restore(dev); 5623 if (dev->subordinate) { 5624 pci_bridge_wait_for_secondary_bus(dev, "slot reset"); 5625 pci_bus_restore_locked(dev->subordinate); 5626 } 5627 } 5628 } 5629 5630 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5631 { 5632 int rc; 5633 5634 if (!slot || !pci_slot_resettable(slot)) 5635 return -ENOTTY; 5636 5637 if (!probe) 5638 pci_slot_lock(slot); 5639 5640 might_sleep(); 5641 5642 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5643 5644 if (!probe) 5645 pci_slot_unlock(slot); 5646 5647 return rc; 5648 } 5649 5650 /** 5651 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5652 * @slot: PCI slot to probe 5653 * 5654 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5655 */ 5656 int pci_probe_reset_slot(struct pci_slot *slot) 5657 { 5658 return pci_slot_reset(slot, PCI_RESET_PROBE); 5659 } 5660 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5661 5662 /** 5663 * __pci_reset_slot - Try to reset a PCI slot 5664 * @slot: PCI slot to reset 5665 * 5666 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5667 * independent of other slots. For instance, some slots may support slot power 5668 * control. In the case of a 1:1 bus to slot architecture, this function may 5669 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5670 * Generally a slot reset should be attempted before a bus reset. All of the 5671 * function of the slot and any subordinate buses behind the slot are reset 5672 * through this function. PCI config space of all devices in the slot and 5673 * behind the slot is saved before and restored after reset. 5674 * 5675 * Same as above except return -EAGAIN if the slot cannot be locked 5676 */ 5677 static int __pci_reset_slot(struct pci_slot *slot) 5678 { 5679 int rc; 5680 5681 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5682 if (rc) 5683 return rc; 5684 5685 if (pci_slot_trylock(slot)) { 5686 pci_slot_save_and_disable_locked(slot); 5687 might_sleep(); 5688 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5689 pci_slot_restore_locked(slot); 5690 pci_slot_unlock(slot); 5691 } else 5692 rc = -EAGAIN; 5693 5694 return rc; 5695 } 5696 5697 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5698 { 5699 int ret; 5700 5701 if (!bus->self || !pci_bus_resettable(bus)) 5702 return -ENOTTY; 5703 5704 if (probe) 5705 return 0; 5706 5707 pci_bus_lock(bus); 5708 5709 might_sleep(); 5710 5711 ret = pci_bridge_secondary_bus_reset(bus->self); 5712 5713 pci_bus_unlock(bus); 5714 5715 return ret; 5716 } 5717 5718 /** 5719 * pci_bus_error_reset - reset the bridge's subordinate bus 5720 * @bridge: The parent device that connects to the bus to reset 5721 * 5722 * This function will first try to reset the slots on this bus if the method is 5723 * available. If slot reset fails or is not available, this will fall back to a 5724 * secondary bus reset. 5725 */ 5726 int pci_bus_error_reset(struct pci_dev *bridge) 5727 { 5728 struct pci_bus *bus = bridge->subordinate; 5729 struct pci_slot *slot; 5730 5731 if (!bus) 5732 return -ENOTTY; 5733 5734 mutex_lock(&pci_slot_mutex); 5735 if (list_empty(&bus->slots)) 5736 goto bus_reset; 5737 5738 list_for_each_entry(slot, &bus->slots, list) 5739 if (pci_probe_reset_slot(slot)) 5740 goto bus_reset; 5741 5742 list_for_each_entry(slot, &bus->slots, list) 5743 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5744 goto bus_reset; 5745 5746 mutex_unlock(&pci_slot_mutex); 5747 return 0; 5748 bus_reset: 5749 mutex_unlock(&pci_slot_mutex); 5750 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5751 } 5752 5753 /** 5754 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5755 * @bus: PCI bus to probe 5756 * 5757 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5758 */ 5759 int pci_probe_reset_bus(struct pci_bus *bus) 5760 { 5761 return pci_bus_reset(bus, PCI_RESET_PROBE); 5762 } 5763 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5764 5765 /** 5766 * __pci_reset_bus - Try to reset a PCI bus 5767 * @bus: top level PCI bus to reset 5768 * 5769 * Same as above except return -EAGAIN if the bus cannot be locked 5770 */ 5771 int __pci_reset_bus(struct pci_bus *bus) 5772 { 5773 int rc; 5774 5775 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5776 if (rc) 5777 return rc; 5778 5779 if (pci_bus_trylock(bus)) { 5780 pci_bus_save_and_disable_locked(bus); 5781 might_sleep(); 5782 rc = pci_bridge_secondary_bus_reset(bus->self); 5783 pci_bus_restore_locked(bus); 5784 pci_bus_unlock(bus); 5785 } else 5786 rc = -EAGAIN; 5787 5788 return rc; 5789 } 5790 5791 /** 5792 * pci_reset_bus - Try to reset a PCI bus 5793 * @pdev: top level PCI device to reset via slot/bus 5794 * 5795 * Same as above except return -EAGAIN if the bus cannot be locked 5796 */ 5797 int pci_reset_bus(struct pci_dev *pdev) 5798 { 5799 return (!pci_probe_reset_slot(pdev->slot)) ? 5800 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5801 } 5802 EXPORT_SYMBOL_GPL(pci_reset_bus); 5803 5804 /** 5805 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5806 * @dev: PCI device to query 5807 * 5808 * Returns mmrbc: maximum designed memory read count in bytes or 5809 * appropriate error value. 5810 */ 5811 int pcix_get_max_mmrbc(struct pci_dev *dev) 5812 { 5813 int cap; 5814 u32 stat; 5815 5816 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5817 if (!cap) 5818 return -EINVAL; 5819 5820 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5821 return -EINVAL; 5822 5823 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat); 5824 } 5825 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5826 5827 /** 5828 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5829 * @dev: PCI device to query 5830 * 5831 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5832 * value. 5833 */ 5834 int pcix_get_mmrbc(struct pci_dev *dev) 5835 { 5836 int cap; 5837 u16 cmd; 5838 5839 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5840 if (!cap) 5841 return -EINVAL; 5842 5843 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5844 return -EINVAL; 5845 5846 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 5847 } 5848 EXPORT_SYMBOL(pcix_get_mmrbc); 5849 5850 /** 5851 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5852 * @dev: PCI device to query 5853 * @mmrbc: maximum memory read count in bytes 5854 * valid values are 512, 1024, 2048, 4096 5855 * 5856 * If possible sets maximum memory read byte count, some bridges have errata 5857 * that prevent this. 5858 */ 5859 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5860 { 5861 int cap; 5862 u32 stat, v, o; 5863 u16 cmd; 5864 5865 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5866 return -EINVAL; 5867 5868 v = ffs(mmrbc) - 10; 5869 5870 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5871 if (!cap) 5872 return -EINVAL; 5873 5874 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5875 return -EINVAL; 5876 5877 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat)) 5878 return -E2BIG; 5879 5880 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5881 return -EINVAL; 5882 5883 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 5884 if (o != v) { 5885 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5886 return -EIO; 5887 5888 cmd &= ~PCI_X_CMD_MAX_READ; 5889 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v); 5890 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5891 return -EIO; 5892 } 5893 return 0; 5894 } 5895 EXPORT_SYMBOL(pcix_set_mmrbc); 5896 5897 /** 5898 * pcie_get_readrq - get PCI Express read request size 5899 * @dev: PCI device to query 5900 * 5901 * Returns maximum memory read request in bytes or appropriate error value. 5902 */ 5903 int pcie_get_readrq(struct pci_dev *dev) 5904 { 5905 u16 ctl; 5906 5907 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5908 5909 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl); 5910 } 5911 EXPORT_SYMBOL(pcie_get_readrq); 5912 5913 /** 5914 * pcie_set_readrq - set PCI Express maximum memory read request 5915 * @dev: PCI device to query 5916 * @rq: maximum memory read count in bytes 5917 * valid values are 128, 256, 512, 1024, 2048, 4096 5918 * 5919 * If possible sets maximum memory read request in bytes 5920 */ 5921 int pcie_set_readrq(struct pci_dev *dev, int rq) 5922 { 5923 u16 v; 5924 int ret; 5925 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 5926 5927 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5928 return -EINVAL; 5929 5930 /* 5931 * If using the "performance" PCIe config, we clamp the read rq 5932 * size to the max packet size to keep the host bridge from 5933 * generating requests larger than we can cope with. 5934 */ 5935 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5936 int mps = pcie_get_mps(dev); 5937 5938 if (mps < rq) 5939 rq = mps; 5940 } 5941 5942 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8); 5943 5944 if (bridge->no_inc_mrrs) { 5945 int max_mrrs = pcie_get_readrq(dev); 5946 5947 if (rq > max_mrrs) { 5948 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 5949 return -EINVAL; 5950 } 5951 } 5952 5953 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5954 PCI_EXP_DEVCTL_READRQ, v); 5955 5956 return pcibios_err_to_errno(ret); 5957 } 5958 EXPORT_SYMBOL(pcie_set_readrq); 5959 5960 /** 5961 * pcie_get_mps - get PCI Express maximum payload size 5962 * @dev: PCI device to query 5963 * 5964 * Returns maximum payload size in bytes 5965 */ 5966 int pcie_get_mps(struct pci_dev *dev) 5967 { 5968 u16 ctl; 5969 5970 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5971 5972 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl); 5973 } 5974 EXPORT_SYMBOL(pcie_get_mps); 5975 5976 /** 5977 * pcie_set_mps - set PCI Express maximum payload size 5978 * @dev: PCI device to query 5979 * @mps: maximum payload size in bytes 5980 * valid values are 128, 256, 512, 1024, 2048, 4096 5981 * 5982 * If possible sets maximum payload size 5983 */ 5984 int pcie_set_mps(struct pci_dev *dev, int mps) 5985 { 5986 u16 v; 5987 int ret; 5988 5989 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5990 return -EINVAL; 5991 5992 v = ffs(mps) - 8; 5993 if (v > dev->pcie_mpss) 5994 return -EINVAL; 5995 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v); 5996 5997 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5998 PCI_EXP_DEVCTL_PAYLOAD, v); 5999 6000 return pcibios_err_to_errno(ret); 6001 } 6002 EXPORT_SYMBOL(pcie_set_mps); 6003 6004 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta) 6005 { 6006 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)]; 6007 } 6008 6009 int pcie_link_speed_mbps(struct pci_dev *pdev) 6010 { 6011 u16 lnksta; 6012 int err; 6013 6014 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 6015 if (err) 6016 return err; 6017 6018 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta)); 6019 } 6020 EXPORT_SYMBOL(pcie_link_speed_mbps); 6021 6022 /** 6023 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6024 * device and its bandwidth limitation 6025 * @dev: PCI device to query 6026 * @limiting_dev: storage for device causing the bandwidth limitation 6027 * @speed: storage for speed of limiting device 6028 * @width: storage for width of limiting device 6029 * 6030 * Walk up the PCI device chain and find the point where the minimum 6031 * bandwidth is available. Return the bandwidth available there and (if 6032 * limiting_dev, speed, and width pointers are supplied) information about 6033 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6034 * raw bandwidth. 6035 */ 6036 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6037 enum pci_bus_speed *speed, 6038 enum pcie_link_width *width) 6039 { 6040 u16 lnksta; 6041 enum pci_bus_speed next_speed; 6042 enum pcie_link_width next_width; 6043 u32 bw, next_bw; 6044 6045 if (speed) 6046 *speed = PCI_SPEED_UNKNOWN; 6047 if (width) 6048 *width = PCIE_LNK_WIDTH_UNKNOWN; 6049 6050 bw = 0; 6051 6052 while (dev) { 6053 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6054 6055 next_speed = to_pcie_link_speed(lnksta); 6056 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6057 6058 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6059 6060 /* Check if current device limits the total bandwidth */ 6061 if (!bw || next_bw <= bw) { 6062 bw = next_bw; 6063 6064 if (limiting_dev) 6065 *limiting_dev = dev; 6066 if (speed) 6067 *speed = next_speed; 6068 if (width) 6069 *width = next_width; 6070 } 6071 6072 dev = pci_upstream_bridge(dev); 6073 } 6074 6075 return bw; 6076 } 6077 EXPORT_SYMBOL(pcie_bandwidth_available); 6078 6079 /** 6080 * pcie_get_supported_speeds - query Supported Link Speed Vector 6081 * @dev: PCI device to query 6082 * 6083 * Query @dev supported link speeds. 6084 * 6085 * Implementation Note in PCIe r6.0 sec 7.5.3.18 recommends determining 6086 * supported link speeds using the Supported Link Speeds Vector in the Link 6087 * Capabilities 2 Register (when available). 6088 * 6089 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. 6090 * 6091 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, Supported Link 6092 * Speeds field in Link Capabilities is used and only 2.5 GT/s and 5.0 GT/s 6093 * speeds were defined. 6094 * 6095 * For @dev without Supported Link Speed Vector, the field is synthesized 6096 * from the Max Link Speed field in the Link Capabilities Register. 6097 * 6098 * Return: Supported Link Speeds Vector (+ reserved 0 at LSB). 6099 */ 6100 u8 pcie_get_supported_speeds(struct pci_dev *dev) 6101 { 6102 u32 lnkcap2, lnkcap; 6103 u8 speeds; 6104 6105 /* 6106 * Speeds retain the reserved 0 at LSB before PCIe Supported Link 6107 * Speeds Vector to allow using SLS Vector bit defines directly. 6108 */ 6109 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6110 speeds = lnkcap2 & PCI_EXP_LNKCAP2_SLS; 6111 6112 /* Ignore speeds higher than Max Link Speed */ 6113 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6114 speeds &= GENMASK(lnkcap & PCI_EXP_LNKCAP_SLS, 0); 6115 6116 /* PCIe r3.0-compliant */ 6117 if (speeds) 6118 return speeds; 6119 6120 /* Synthesize from the Max Link Speed field */ 6121 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6122 speeds = PCI_EXP_LNKCAP2_SLS_5_0GB | PCI_EXP_LNKCAP2_SLS_2_5GB; 6123 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6124 speeds = PCI_EXP_LNKCAP2_SLS_2_5GB; 6125 6126 return speeds; 6127 } 6128 6129 /** 6130 * pcie_get_speed_cap - query for the PCI device's link speed capability 6131 * @dev: PCI device to query 6132 * 6133 * Query the PCI device speed capability. 6134 * 6135 * Return: the maximum link speed supported by the device. 6136 */ 6137 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6138 { 6139 return PCIE_LNKCAP2_SLS2SPEED(dev->supported_speeds); 6140 } 6141 EXPORT_SYMBOL(pcie_get_speed_cap); 6142 6143 /** 6144 * pcie_get_width_cap - query for the PCI device's link width capability 6145 * @dev: PCI device to query 6146 * 6147 * Query the PCI device width capability. Return the maximum link width 6148 * supported by the device. 6149 */ 6150 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6151 { 6152 u32 lnkcap; 6153 6154 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6155 if (lnkcap) 6156 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6157 6158 return PCIE_LNK_WIDTH_UNKNOWN; 6159 } 6160 EXPORT_SYMBOL(pcie_get_width_cap); 6161 6162 /** 6163 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6164 * @dev: PCI device 6165 * @speed: storage for link speed 6166 * @width: storage for link width 6167 * 6168 * Calculate a PCI device's link bandwidth by querying for its link speed 6169 * and width, multiplying them, and applying encoding overhead. The result 6170 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6171 */ 6172 static u32 pcie_bandwidth_capable(struct pci_dev *dev, 6173 enum pci_bus_speed *speed, 6174 enum pcie_link_width *width) 6175 { 6176 *speed = pcie_get_speed_cap(dev); 6177 *width = pcie_get_width_cap(dev); 6178 6179 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6180 return 0; 6181 6182 return *width * PCIE_SPEED2MBS_ENC(*speed); 6183 } 6184 6185 /** 6186 * __pcie_print_link_status - Report the PCI device's link speed and width 6187 * @dev: PCI device to query 6188 * @verbose: Print info even when enough bandwidth is available 6189 * 6190 * If the available bandwidth at the device is less than the device is 6191 * capable of, report the device's maximum possible bandwidth and the 6192 * upstream link that limits its performance. If @verbose, always print 6193 * the available bandwidth, even if the device isn't constrained. 6194 */ 6195 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6196 { 6197 enum pcie_link_width width, width_cap; 6198 enum pci_bus_speed speed, speed_cap; 6199 struct pci_dev *limiting_dev = NULL; 6200 u32 bw_avail, bw_cap; 6201 char *flit_mode = ""; 6202 6203 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6204 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6205 6206 if (dev->bus && dev->bus->flit_mode) 6207 flit_mode = ", in Flit mode"; 6208 6209 if (bw_avail >= bw_cap && verbose) 6210 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)%s\n", 6211 bw_cap / 1000, bw_cap % 1000, 6212 pci_speed_string(speed_cap), width_cap, flit_mode); 6213 else if (bw_avail < bw_cap) 6214 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)%s\n", 6215 bw_avail / 1000, bw_avail % 1000, 6216 pci_speed_string(speed), width, 6217 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6218 bw_cap / 1000, bw_cap % 1000, 6219 pci_speed_string(speed_cap), width_cap, flit_mode); 6220 } 6221 6222 /** 6223 * pcie_print_link_status - Report the PCI device's link speed and width 6224 * @dev: PCI device to query 6225 * 6226 * Report the available bandwidth at the device. 6227 */ 6228 void pcie_print_link_status(struct pci_dev *dev) 6229 { 6230 __pcie_print_link_status(dev, true); 6231 } 6232 EXPORT_SYMBOL(pcie_print_link_status); 6233 6234 /** 6235 * pci_select_bars - Make BAR mask from the type of resource 6236 * @dev: the PCI device for which BAR mask is made 6237 * @flags: resource type mask to be selected 6238 * 6239 * This helper routine makes bar mask from the type of resource. 6240 */ 6241 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6242 { 6243 int i, bars = 0; 6244 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6245 if (pci_resource_flags(dev, i) & flags) 6246 bars |= (1 << i); 6247 return bars; 6248 } 6249 EXPORT_SYMBOL(pci_select_bars); 6250 6251 /* Some architectures require additional programming to enable VGA */ 6252 static arch_set_vga_state_t arch_set_vga_state; 6253 6254 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6255 { 6256 arch_set_vga_state = func; /* NULL disables */ 6257 } 6258 6259 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6260 unsigned int command_bits, u32 flags) 6261 { 6262 if (arch_set_vga_state) 6263 return arch_set_vga_state(dev, decode, command_bits, 6264 flags); 6265 return 0; 6266 } 6267 6268 /** 6269 * pci_set_vga_state - set VGA decode state on device and parents if requested 6270 * @dev: the PCI device 6271 * @decode: true = enable decoding, false = disable decoding 6272 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6273 * @flags: traverse ancestors and change bridges 6274 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6275 */ 6276 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6277 unsigned int command_bits, u32 flags) 6278 { 6279 struct pci_bus *bus; 6280 struct pci_dev *bridge; 6281 u16 cmd; 6282 int rc; 6283 6284 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6285 6286 /* ARCH specific VGA enables */ 6287 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6288 if (rc) 6289 return rc; 6290 6291 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6292 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6293 if (decode) 6294 cmd |= command_bits; 6295 else 6296 cmd &= ~command_bits; 6297 pci_write_config_word(dev, PCI_COMMAND, cmd); 6298 } 6299 6300 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6301 return 0; 6302 6303 bus = dev->bus; 6304 while (bus) { 6305 bridge = bus->self; 6306 if (bridge) { 6307 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6308 &cmd); 6309 if (decode) 6310 cmd |= PCI_BRIDGE_CTL_VGA; 6311 else 6312 cmd &= ~PCI_BRIDGE_CTL_VGA; 6313 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6314 cmd); 6315 } 6316 bus = bus->parent; 6317 } 6318 return 0; 6319 } 6320 6321 #ifdef CONFIG_ACPI 6322 bool pci_pr3_present(struct pci_dev *pdev) 6323 { 6324 struct acpi_device *adev; 6325 6326 if (acpi_disabled) 6327 return false; 6328 6329 adev = ACPI_COMPANION(&pdev->dev); 6330 if (!adev) 6331 return false; 6332 6333 return adev->power.flags.power_resources && 6334 acpi_has_method(adev->handle, "_PR3"); 6335 } 6336 EXPORT_SYMBOL_GPL(pci_pr3_present); 6337 #endif 6338 6339 /** 6340 * pci_add_dma_alias - Add a DMA devfn alias for a device 6341 * @dev: the PCI device for which alias is added 6342 * @devfn_from: alias slot and function 6343 * @nr_devfns: number of subsequent devfns to alias 6344 * 6345 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6346 * which is used to program permissible bus-devfn source addresses for DMA 6347 * requests in an IOMMU. These aliases factor into IOMMU group creation 6348 * and are useful for devices generating DMA requests beyond or different 6349 * from their logical bus-devfn. Examples include device quirks where the 6350 * device simply uses the wrong devfn, as well as non-transparent bridges 6351 * where the alias may be a proxy for devices in another domain. 6352 * 6353 * IOMMU group creation is performed during device discovery or addition, 6354 * prior to any potential DMA mapping and therefore prior to driver probing 6355 * (especially for userspace assigned devices where IOMMU group definition 6356 * cannot be left as a userspace activity). DMA aliases should therefore 6357 * be configured via quirks, such as the PCI fixup header quirk. 6358 */ 6359 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6360 unsigned int nr_devfns) 6361 { 6362 int devfn_to; 6363 6364 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6365 devfn_to = devfn_from + nr_devfns - 1; 6366 6367 if (!dev->dma_alias_mask) 6368 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6369 if (!dev->dma_alias_mask) { 6370 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6371 return; 6372 } 6373 6374 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6375 6376 if (nr_devfns == 1) 6377 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6378 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6379 else if (nr_devfns > 1) 6380 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6381 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6382 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6383 } 6384 6385 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6386 { 6387 return (dev1->dma_alias_mask && 6388 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6389 (dev2->dma_alias_mask && 6390 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6391 pci_real_dma_dev(dev1) == dev2 || 6392 pci_real_dma_dev(dev2) == dev1; 6393 } 6394 6395 bool pci_device_is_present(struct pci_dev *pdev) 6396 { 6397 u32 v; 6398 6399 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6400 pdev = pci_physfn(pdev); 6401 if (pci_dev_is_disconnected(pdev)) 6402 return false; 6403 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6404 } 6405 EXPORT_SYMBOL_GPL(pci_device_is_present); 6406 6407 void pci_ignore_hotplug(struct pci_dev *dev) 6408 { 6409 struct pci_dev *bridge = dev->bus->self; 6410 6411 dev->ignore_hotplug = 1; 6412 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6413 if (bridge) 6414 bridge->ignore_hotplug = 1; 6415 } 6416 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6417 6418 /** 6419 * pci_real_dma_dev - Get PCI DMA device for PCI device 6420 * @dev: the PCI device that may have a PCI DMA alias 6421 * 6422 * Permits the platform to provide architecture-specific functionality to 6423 * devices needing to alias DMA to another PCI device on another PCI bus. If 6424 * the PCI device is on the same bus, it is recommended to use 6425 * pci_add_dma_alias(). This is the default implementation. Architecture 6426 * implementations can override this. 6427 */ 6428 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6429 { 6430 return dev; 6431 } 6432 6433 resource_size_t __weak pcibios_default_alignment(void) 6434 { 6435 return 0; 6436 } 6437 6438 /* 6439 * Arches that don't want to expose struct resource to userland as-is in 6440 * sysfs and /proc can implement their own pci_resource_to_user(). 6441 */ 6442 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6443 const struct resource *rsrc, 6444 resource_size_t *start, resource_size_t *end) 6445 { 6446 *start = rsrc->start; 6447 *end = rsrc->end; 6448 } 6449 6450 static char *resource_alignment_param; 6451 static DEFINE_SPINLOCK(resource_alignment_lock); 6452 6453 /** 6454 * pci_specified_resource_alignment - get resource alignment specified by user. 6455 * @dev: the PCI device to get 6456 * @resize: whether or not to change resources' size when reassigning alignment 6457 * 6458 * RETURNS: Resource alignment if it is specified. 6459 * Zero if it is not specified. 6460 */ 6461 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6462 bool *resize) 6463 { 6464 int align_order, count; 6465 resource_size_t align = pcibios_default_alignment(); 6466 const char *p; 6467 int ret; 6468 6469 spin_lock(&resource_alignment_lock); 6470 p = resource_alignment_param; 6471 if (!p || !*p) 6472 goto out; 6473 if (pci_has_flag(PCI_PROBE_ONLY)) { 6474 align = 0; 6475 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6476 goto out; 6477 } 6478 6479 while (*p) { 6480 count = 0; 6481 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6482 p[count] == '@') { 6483 p += count + 1; 6484 if (align_order > 63) { 6485 pr_err("PCI: Invalid requested alignment (order %d)\n", 6486 align_order); 6487 align_order = PAGE_SHIFT; 6488 } 6489 } else { 6490 align_order = PAGE_SHIFT; 6491 } 6492 6493 ret = pci_dev_str_match(dev, p, &p); 6494 if (ret == 1) { 6495 *resize = true; 6496 align = 1ULL << align_order; 6497 break; 6498 } else if (ret < 0) { 6499 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6500 p); 6501 break; 6502 } 6503 6504 if (*p != ';' && *p != ',') { 6505 /* End of param or invalid format */ 6506 break; 6507 } 6508 p++; 6509 } 6510 out: 6511 spin_unlock(&resource_alignment_lock); 6512 return align; 6513 } 6514 6515 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6516 resource_size_t align, bool resize) 6517 { 6518 struct resource *r = &dev->resource[bar]; 6519 const char *r_name = pci_resource_name(dev, bar); 6520 resource_size_t size; 6521 6522 if (!(r->flags & IORESOURCE_MEM)) 6523 return; 6524 6525 if (r->flags & IORESOURCE_PCI_FIXED) { 6526 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n", 6527 r_name, r, (unsigned long long)align); 6528 return; 6529 } 6530 6531 size = resource_size(r); 6532 if (size >= align) 6533 return; 6534 6535 /* 6536 * Increase the alignment of the resource. There are two ways we 6537 * can do this: 6538 * 6539 * 1) Increase the size of the resource. BARs are aligned on their 6540 * size, so when we reallocate space for this resource, we'll 6541 * allocate it with the larger alignment. This also prevents 6542 * assignment of any other BARs inside the alignment region, so 6543 * if we're requesting page alignment, this means no other BARs 6544 * will share the page. 6545 * 6546 * The disadvantage is that this makes the resource larger than 6547 * the hardware BAR, which may break drivers that compute things 6548 * based on the resource size, e.g., to find registers at a 6549 * fixed offset before the end of the BAR. 6550 * 6551 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6552 * set r->start to the desired alignment. By itself this 6553 * doesn't prevent other BARs being put inside the alignment 6554 * region, but if we realign *every* resource of every device in 6555 * the system, none of them will share an alignment region. 6556 * 6557 * When the user has requested alignment for only some devices via 6558 * the "pci=resource_alignment" argument, "resize" is true and we 6559 * use the first method. Otherwise we assume we're aligning all 6560 * devices and we use the second. 6561 */ 6562 6563 pci_info(dev, "%s %pR: requesting alignment to %#llx\n", 6564 r_name, r, (unsigned long long)align); 6565 6566 if (resize) { 6567 r->start = 0; 6568 r->end = align - 1; 6569 } else { 6570 r->flags &= ~IORESOURCE_SIZEALIGN; 6571 r->flags |= IORESOURCE_STARTALIGN; 6572 resource_set_range(r, align, size); 6573 } 6574 r->flags |= IORESOURCE_UNSET; 6575 } 6576 6577 /* 6578 * This function disables memory decoding and releases memory resources 6579 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6580 * It also rounds up size to specified alignment. 6581 * Later on, the kernel will assign page-aligned memory resource back 6582 * to the device. 6583 */ 6584 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6585 { 6586 int i; 6587 struct resource *r; 6588 resource_size_t align; 6589 u16 command; 6590 bool resize = false; 6591 6592 /* 6593 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6594 * 3.4.1.11. Their resources are allocated from the space 6595 * described by the VF BARx register in the PF's SR-IOV capability. 6596 * We can't influence their alignment here. 6597 */ 6598 if (dev->is_virtfn) 6599 return; 6600 6601 /* check if specified PCI is target device to reassign */ 6602 align = pci_specified_resource_alignment(dev, &resize); 6603 if (!align) 6604 return; 6605 6606 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6607 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6608 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6609 return; 6610 } 6611 6612 pci_read_config_word(dev, PCI_COMMAND, &command); 6613 command &= ~PCI_COMMAND_MEMORY; 6614 pci_write_config_word(dev, PCI_COMMAND, command); 6615 6616 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6617 pci_request_resource_alignment(dev, i, align, resize); 6618 6619 /* 6620 * Need to disable bridge's resource window, 6621 * to enable the kernel to reassign new resource 6622 * window later on. 6623 */ 6624 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6625 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6626 r = &dev->resource[i]; 6627 if (!(r->flags & IORESOURCE_MEM)) 6628 continue; 6629 r->flags |= IORESOURCE_UNSET; 6630 r->end = resource_size(r) - 1; 6631 r->start = 0; 6632 } 6633 pci_disable_bridge_window(dev); 6634 } 6635 } 6636 6637 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6638 { 6639 size_t count = 0; 6640 6641 spin_lock(&resource_alignment_lock); 6642 if (resource_alignment_param) 6643 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6644 spin_unlock(&resource_alignment_lock); 6645 6646 return count; 6647 } 6648 6649 static ssize_t resource_alignment_store(const struct bus_type *bus, 6650 const char *buf, size_t count) 6651 { 6652 char *param, *old, *end; 6653 6654 if (count >= (PAGE_SIZE - 1)) 6655 return -EINVAL; 6656 6657 param = kstrndup(buf, count, GFP_KERNEL); 6658 if (!param) 6659 return -ENOMEM; 6660 6661 end = strchr(param, '\n'); 6662 if (end) 6663 *end = '\0'; 6664 6665 spin_lock(&resource_alignment_lock); 6666 old = resource_alignment_param; 6667 if (strlen(param)) { 6668 resource_alignment_param = param; 6669 } else { 6670 kfree(param); 6671 resource_alignment_param = NULL; 6672 } 6673 spin_unlock(&resource_alignment_lock); 6674 6675 kfree(old); 6676 6677 return count; 6678 } 6679 6680 static BUS_ATTR_RW(resource_alignment); 6681 6682 static int __init pci_resource_alignment_sysfs_init(void) 6683 { 6684 return bus_create_file(&pci_bus_type, 6685 &bus_attr_resource_alignment); 6686 } 6687 late_initcall(pci_resource_alignment_sysfs_init); 6688 6689 static void pci_no_domains(void) 6690 { 6691 #ifdef CONFIG_PCI_DOMAINS 6692 pci_domains_supported = 0; 6693 #endif 6694 } 6695 6696 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6697 static DEFINE_IDA(pci_domain_nr_static_ida); 6698 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6699 6700 static void of_pci_reserve_static_domain_nr(void) 6701 { 6702 struct device_node *np; 6703 int domain_nr; 6704 6705 for_each_node_by_type(np, "pci") { 6706 domain_nr = of_get_pci_domain_nr(np); 6707 if (domain_nr < 0) 6708 continue; 6709 /* 6710 * Permanently allocate domain_nr in dynamic_ida 6711 * to prevent it from dynamic allocation. 6712 */ 6713 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6714 domain_nr, domain_nr, GFP_KERNEL); 6715 } 6716 } 6717 6718 static int of_pci_bus_find_domain_nr(struct device *parent) 6719 { 6720 static bool static_domains_reserved = false; 6721 int domain_nr; 6722 6723 /* On the first call scan device tree for static allocations. */ 6724 if (!static_domains_reserved) { 6725 of_pci_reserve_static_domain_nr(); 6726 static_domains_reserved = true; 6727 } 6728 6729 if (parent) { 6730 /* 6731 * If domain is in DT, allocate it in static IDA. This 6732 * prevents duplicate static allocations in case of errors 6733 * in DT. 6734 */ 6735 domain_nr = of_get_pci_domain_nr(parent->of_node); 6736 if (domain_nr >= 0) 6737 return ida_alloc_range(&pci_domain_nr_static_ida, 6738 domain_nr, domain_nr, 6739 GFP_KERNEL); 6740 } 6741 6742 /* 6743 * If domain was not specified in DT, choose a free ID from dynamic 6744 * allocations. All domain numbers from DT are permanently in 6745 * dynamic allocations to prevent assigning them to other DT nodes 6746 * without static domain. 6747 */ 6748 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6749 } 6750 6751 static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr) 6752 { 6753 if (domain_nr < 0) 6754 return; 6755 6756 /* Release domain from IDA where it was allocated. */ 6757 if (of_get_pci_domain_nr(parent->of_node) == domain_nr) 6758 ida_free(&pci_domain_nr_static_ida, domain_nr); 6759 else 6760 ida_free(&pci_domain_nr_dynamic_ida, domain_nr); 6761 } 6762 6763 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6764 { 6765 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6766 acpi_pci_bus_find_domain_nr(bus); 6767 } 6768 6769 void pci_bus_release_domain_nr(struct device *parent, int domain_nr) 6770 { 6771 if (!acpi_disabled) 6772 return; 6773 of_pci_bus_release_domain_nr(parent, domain_nr); 6774 } 6775 #endif 6776 6777 /** 6778 * pci_ext_cfg_avail - can we access extended PCI config space? 6779 * 6780 * Returns 1 if we can access PCI extended config space (offsets 6781 * greater than 0xff). This is the default implementation. Architecture 6782 * implementations can override this. 6783 */ 6784 int __weak pci_ext_cfg_avail(void) 6785 { 6786 return 1; 6787 } 6788 6789 static int __init pci_setup(char *str) 6790 { 6791 while (str) { 6792 char *k = strchr(str, ','); 6793 if (k) 6794 *k++ = 0; 6795 if (*str && (str = pcibios_setup(str)) && *str) { 6796 if (!strcmp(str, "nomsi")) { 6797 pci_no_msi(); 6798 } else if (!strncmp(str, "noats", 5)) { 6799 pr_info("PCIe: ATS is disabled\n"); 6800 pcie_ats_disabled = true; 6801 } else if (!strcmp(str, "noaer")) { 6802 pci_no_aer(); 6803 } else if (!strcmp(str, "earlydump")) { 6804 pci_early_dump = true; 6805 } else if (!strncmp(str, "realloc=", 8)) { 6806 pci_realloc_get_opt(str + 8); 6807 } else if (!strncmp(str, "realloc", 7)) { 6808 pci_realloc_get_opt("on"); 6809 } else if (!strcmp(str, "nodomains")) { 6810 pci_no_domains(); 6811 } else if (!strncmp(str, "noari", 5)) { 6812 pcie_ari_disabled = true; 6813 } else if (!strncmp(str, "notph", 5)) { 6814 pci_no_tph(); 6815 } else if (!strncmp(str, "cbiosize=", 9)) { 6816 pci_cardbus_io_size = memparse(str + 9, &str); 6817 } else if (!strncmp(str, "cbmemsize=", 10)) { 6818 pci_cardbus_mem_size = memparse(str + 10, &str); 6819 } else if (!strncmp(str, "resource_alignment=", 19)) { 6820 resource_alignment_param = str + 19; 6821 } else if (!strncmp(str, "ecrc=", 5)) { 6822 pcie_ecrc_get_policy(str + 5); 6823 } else if (!strncmp(str, "hpiosize=", 9)) { 6824 pci_hotplug_io_size = memparse(str + 9, &str); 6825 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6826 pci_hotplug_mmio_size = memparse(str + 11, &str); 6827 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6828 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6829 } else if (!strncmp(str, "hpmemsize=", 10)) { 6830 pci_hotplug_mmio_size = memparse(str + 10, &str); 6831 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6832 } else if (!strncmp(str, "hpbussize=", 10)) { 6833 pci_hotplug_bus_size = 6834 simple_strtoul(str + 10, &str, 0); 6835 if (pci_hotplug_bus_size > 0xff) 6836 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6837 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6838 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6839 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6840 pcie_bus_config = PCIE_BUS_SAFE; 6841 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6842 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6843 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6844 pcie_bus_config = PCIE_BUS_PEER2PEER; 6845 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6846 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6847 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6848 disable_acs_redir_param = str + 18; 6849 } else if (!strncmp(str, "config_acs=", 11)) { 6850 config_acs_param = str + 11; 6851 } else { 6852 pr_err("PCI: Unknown option `%s'\n", str); 6853 } 6854 } 6855 str = k; 6856 } 6857 return 0; 6858 } 6859 early_param("pci", pci_setup); 6860 6861 /* 6862 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6863 * in pci_setup(), above, to point to data in the __initdata section which 6864 * will be freed after the init sequence is complete. We can't allocate memory 6865 * in pci_setup() because some architectures do not have any memory allocation 6866 * service available during an early_param() call. So we allocate memory and 6867 * copy the variable here before the init section is freed. 6868 * 6869 */ 6870 static int __init pci_realloc_setup_params(void) 6871 { 6872 resource_alignment_param = kstrdup(resource_alignment_param, 6873 GFP_KERNEL); 6874 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6875 config_acs_param = kstrdup(config_acs_param, GFP_KERNEL); 6876 6877 return 0; 6878 } 6879 pure_initcall(pci_realloc_setup_params); 6880