1 /* 2 * drivers/pci/pci-driver.c 3 * 4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com> 5 * (C) Copyright 2007 Novell Inc. 6 * 7 * Released under the GPL v2 only. 8 * 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/device.h> 15 #include <linux/mempolicy.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/cpu.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/suspend.h> 22 #include <linux/kexec.h> 23 #include "pci.h" 24 25 struct pci_dynid { 26 struct list_head node; 27 struct pci_device_id id; 28 }; 29 30 /** 31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices 32 * @drv: target pci driver 33 * @vendor: PCI vendor ID 34 * @device: PCI device ID 35 * @subvendor: PCI subvendor ID 36 * @subdevice: PCI subdevice ID 37 * @class: PCI class 38 * @class_mask: PCI class mask 39 * @driver_data: private driver data 40 * 41 * Adds a new dynamic pci device ID to this driver and causes the 42 * driver to probe for all devices again. @drv must have been 43 * registered prior to calling this function. 44 * 45 * CONTEXT: 46 * Does GFP_KERNEL allocation. 47 * 48 * RETURNS: 49 * 0 on success, -errno on failure. 50 */ 51 int pci_add_dynid(struct pci_driver *drv, 52 unsigned int vendor, unsigned int device, 53 unsigned int subvendor, unsigned int subdevice, 54 unsigned int class, unsigned int class_mask, 55 unsigned long driver_data) 56 { 57 struct pci_dynid *dynid; 58 59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 60 if (!dynid) 61 return -ENOMEM; 62 63 dynid->id.vendor = vendor; 64 dynid->id.device = device; 65 dynid->id.subvendor = subvendor; 66 dynid->id.subdevice = subdevice; 67 dynid->id.class = class; 68 dynid->id.class_mask = class_mask; 69 dynid->id.driver_data = driver_data; 70 71 spin_lock(&drv->dynids.lock); 72 list_add_tail(&dynid->node, &drv->dynids.list); 73 spin_unlock(&drv->dynids.lock); 74 75 return driver_attach(&drv->driver); 76 } 77 EXPORT_SYMBOL_GPL(pci_add_dynid); 78 79 static void pci_free_dynids(struct pci_driver *drv) 80 { 81 struct pci_dynid *dynid, *n; 82 83 spin_lock(&drv->dynids.lock); 84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 85 list_del(&dynid->node); 86 kfree(dynid); 87 } 88 spin_unlock(&drv->dynids.lock); 89 } 90 91 /** 92 * store_new_id - sysfs frontend to pci_add_dynid() 93 * @driver: target device driver 94 * @buf: buffer for scanning device ID data 95 * @count: input size 96 * 97 * Allow PCI IDs to be added to an existing driver via sysfs. 98 */ 99 static ssize_t store_new_id(struct device_driver *driver, const char *buf, 100 size_t count) 101 { 102 struct pci_driver *pdrv = to_pci_driver(driver); 103 const struct pci_device_id *ids = pdrv->id_table; 104 __u32 vendor, device, subvendor = PCI_ANY_ID, 105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 106 unsigned long driver_data = 0; 107 int fields = 0; 108 int retval = 0; 109 110 fields = sscanf(buf, "%x %x %x %x %x %x %lx", 111 &vendor, &device, &subvendor, &subdevice, 112 &class, &class_mask, &driver_data); 113 if (fields < 2) 114 return -EINVAL; 115 116 if (fields != 7) { 117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); 118 if (!pdev) 119 return -ENOMEM; 120 121 pdev->vendor = vendor; 122 pdev->device = device; 123 pdev->subsystem_vendor = subvendor; 124 pdev->subsystem_device = subdevice; 125 pdev->class = class; 126 127 if (pci_match_id(pdrv->id_table, pdev)) 128 retval = -EEXIST; 129 130 kfree(pdev); 131 132 if (retval) 133 return retval; 134 } 135 136 /* Only accept driver_data values that match an existing id_table 137 entry */ 138 if (ids) { 139 retval = -EINVAL; 140 while (ids->vendor || ids->subvendor || ids->class_mask) { 141 if (driver_data == ids->driver_data) { 142 retval = 0; 143 break; 144 } 145 ids++; 146 } 147 if (retval) /* No match */ 148 return retval; 149 } 150 151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice, 152 class, class_mask, driver_data); 153 if (retval) 154 return retval; 155 return count; 156 } 157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id); 158 159 /** 160 * store_remove_id - remove a PCI device ID from this driver 161 * @driver: target device driver 162 * @buf: buffer for scanning device ID data 163 * @count: input size 164 * 165 * Removes a dynamic pci device ID to this driver. 166 */ 167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf, 168 size_t count) 169 { 170 struct pci_dynid *dynid, *n; 171 struct pci_driver *pdrv = to_pci_driver(driver); 172 __u32 vendor, device, subvendor = PCI_ANY_ID, 173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 174 int fields = 0; 175 size_t retval = -ENODEV; 176 177 fields = sscanf(buf, "%x %x %x %x %x %x", 178 &vendor, &device, &subvendor, &subdevice, 179 &class, &class_mask); 180 if (fields < 2) 181 return -EINVAL; 182 183 spin_lock(&pdrv->dynids.lock); 184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) { 185 struct pci_device_id *id = &dynid->id; 186 if ((id->vendor == vendor) && 187 (id->device == device) && 188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) && 189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) && 190 !((id->class ^ class) & class_mask)) { 191 list_del(&dynid->node); 192 kfree(dynid); 193 retval = count; 194 break; 195 } 196 } 197 spin_unlock(&pdrv->dynids.lock); 198 199 return retval; 200 } 201 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id); 202 203 static struct attribute *pci_drv_attrs[] = { 204 &driver_attr_new_id.attr, 205 &driver_attr_remove_id.attr, 206 NULL, 207 }; 208 ATTRIBUTE_GROUPS(pci_drv); 209 210 /** 211 * pci_match_id - See if a pci device matches a given pci_id table 212 * @ids: array of PCI device id structures to search in 213 * @dev: the PCI device structure to match against. 214 * 215 * Used by a driver to check whether a PCI device present in the 216 * system is in its list of supported devices. Returns the matching 217 * pci_device_id structure or %NULL if there is no match. 218 * 219 * Deprecated, don't use this as it will not catch any dynamic ids 220 * that a driver might want to check for. 221 */ 222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids, 223 struct pci_dev *dev) 224 { 225 if (ids) { 226 while (ids->vendor || ids->subvendor || ids->class_mask) { 227 if (pci_match_one_device(ids, dev)) 228 return ids; 229 ids++; 230 } 231 } 232 return NULL; 233 } 234 EXPORT_SYMBOL(pci_match_id); 235 236 static const struct pci_device_id pci_device_id_any = { 237 .vendor = PCI_ANY_ID, 238 .device = PCI_ANY_ID, 239 .subvendor = PCI_ANY_ID, 240 .subdevice = PCI_ANY_ID, 241 }; 242 243 /** 244 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure 245 * @drv: the PCI driver to match against 246 * @dev: the PCI device structure to match against 247 * 248 * Used by a driver to check whether a PCI device present in the 249 * system is in its list of supported devices. Returns the matching 250 * pci_device_id structure or %NULL if there is no match. 251 */ 252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv, 253 struct pci_dev *dev) 254 { 255 struct pci_dynid *dynid; 256 const struct pci_device_id *found_id = NULL; 257 258 /* When driver_override is set, only bind to the matching driver */ 259 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 260 return NULL; 261 262 /* Look at the dynamic ids first, before the static ones */ 263 spin_lock(&drv->dynids.lock); 264 list_for_each_entry(dynid, &drv->dynids.list, node) { 265 if (pci_match_one_device(&dynid->id, dev)) { 266 found_id = &dynid->id; 267 break; 268 } 269 } 270 spin_unlock(&drv->dynids.lock); 271 272 if (!found_id) 273 found_id = pci_match_id(drv->id_table, dev); 274 275 /* driver_override will always match, send a dummy id */ 276 if (!found_id && dev->driver_override) 277 found_id = &pci_device_id_any; 278 279 return found_id; 280 } 281 282 struct drv_dev_and_id { 283 struct pci_driver *drv; 284 struct pci_dev *dev; 285 const struct pci_device_id *id; 286 }; 287 288 static long local_pci_probe(void *_ddi) 289 { 290 struct drv_dev_and_id *ddi = _ddi; 291 struct pci_dev *pci_dev = ddi->dev; 292 struct pci_driver *pci_drv = ddi->drv; 293 struct device *dev = &pci_dev->dev; 294 int rc; 295 296 /* 297 * Unbound PCI devices are always put in D0, regardless of 298 * runtime PM status. During probe, the device is set to 299 * active and the usage count is incremented. If the driver 300 * supports runtime PM, it should call pm_runtime_put_noidle(), 301 * or any other runtime PM helper function decrementing the usage 302 * count, in its probe routine and pm_runtime_get_noresume() in 303 * its remove routine. 304 */ 305 pm_runtime_get_sync(dev); 306 pci_dev->driver = pci_drv; 307 rc = pci_drv->probe(pci_dev, ddi->id); 308 if (!rc) 309 return rc; 310 if (rc < 0) { 311 pci_dev->driver = NULL; 312 pm_runtime_put_sync(dev); 313 return rc; 314 } 315 /* 316 * Probe function should return < 0 for failure, 0 for success 317 * Treat values > 0 as success, but warn. 318 */ 319 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc); 320 return 0; 321 } 322 323 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev, 324 const struct pci_device_id *id) 325 { 326 int error, node; 327 struct drv_dev_and_id ddi = { drv, dev, id }; 328 329 /* 330 * Execute driver initialization on node where the device is 331 * attached. This way the driver likely allocates its local memory 332 * on the right node. 333 */ 334 node = dev_to_node(&dev->dev); 335 336 /* 337 * On NUMA systems, we are likely to call a PF probe function using 338 * work_on_cpu(). If that probe calls pci_enable_sriov() (which 339 * adds the VF devices via pci_bus_add_device()), we may re-enter 340 * this function to call the VF probe function. Calling 341 * work_on_cpu() again will cause a lockdep warning. Since VFs are 342 * always on the same node as the PF, we can work around this by 343 * avoiding work_on_cpu() when we're already on the correct node. 344 * 345 * Preemption is enabled, so it's theoretically unsafe to use 346 * numa_node_id(), but even if we run the probe function on the 347 * wrong node, it should be functionally correct. 348 */ 349 if (node >= 0 && node != numa_node_id()) { 350 int cpu; 351 352 get_online_cpus(); 353 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 354 if (cpu < nr_cpu_ids) 355 error = work_on_cpu(cpu, local_pci_probe, &ddi); 356 else 357 error = local_pci_probe(&ddi); 358 put_online_cpus(); 359 } else 360 error = local_pci_probe(&ddi); 361 362 return error; 363 } 364 365 /** 366 * __pci_device_probe - check if a driver wants to claim a specific PCI device 367 * @drv: driver to call to check if it wants the PCI device 368 * @pci_dev: PCI device being probed 369 * 370 * returns 0 on success, else error. 371 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev. 372 */ 373 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev) 374 { 375 const struct pci_device_id *id; 376 int error = 0; 377 378 if (!pci_dev->driver && drv->probe) { 379 error = -ENODEV; 380 381 id = pci_match_device(drv, pci_dev); 382 if (id) 383 error = pci_call_probe(drv, pci_dev, id); 384 if (error >= 0) 385 error = 0; 386 } 387 return error; 388 } 389 390 int __weak pcibios_alloc_irq(struct pci_dev *dev) 391 { 392 return 0; 393 } 394 395 void __weak pcibios_free_irq(struct pci_dev *dev) 396 { 397 } 398 399 static int pci_device_probe(struct device *dev) 400 { 401 int error; 402 struct pci_dev *pci_dev = to_pci_dev(dev); 403 struct pci_driver *drv = to_pci_driver(dev->driver); 404 405 error = pcibios_alloc_irq(pci_dev); 406 if (error < 0) 407 return error; 408 409 pci_dev_get(pci_dev); 410 error = __pci_device_probe(drv, pci_dev); 411 if (error) { 412 pcibios_free_irq(pci_dev); 413 pci_dev_put(pci_dev); 414 } 415 416 return error; 417 } 418 419 static int pci_device_remove(struct device *dev) 420 { 421 struct pci_dev *pci_dev = to_pci_dev(dev); 422 struct pci_driver *drv = pci_dev->driver; 423 424 if (drv) { 425 if (drv->remove) { 426 pm_runtime_get_sync(dev); 427 drv->remove(pci_dev); 428 pm_runtime_put_noidle(dev); 429 } 430 pcibios_free_irq(pci_dev); 431 pci_dev->driver = NULL; 432 } 433 434 /* Undo the runtime PM settings in local_pci_probe() */ 435 pm_runtime_put_sync(dev); 436 437 /* 438 * If the device is still on, set the power state as "unknown", 439 * since it might change by the next time we load the driver. 440 */ 441 if (pci_dev->current_state == PCI_D0) 442 pci_dev->current_state = PCI_UNKNOWN; 443 444 /* 445 * We would love to complain here if pci_dev->is_enabled is set, that 446 * the driver should have called pci_disable_device(), but the 447 * unfortunate fact is there are too many odd BIOS and bridge setups 448 * that don't like drivers doing that all of the time. 449 * Oh well, we can dream of sane hardware when we sleep, no matter how 450 * horrible the crap we have to deal with is when we are awake... 451 */ 452 453 pci_dev_put(pci_dev); 454 return 0; 455 } 456 457 static void pci_device_shutdown(struct device *dev) 458 { 459 struct pci_dev *pci_dev = to_pci_dev(dev); 460 struct pci_driver *drv = pci_dev->driver; 461 462 pm_runtime_resume(dev); 463 464 if (drv && drv->shutdown) 465 drv->shutdown(pci_dev); 466 pci_msi_shutdown(pci_dev); 467 pci_msix_shutdown(pci_dev); 468 469 /* 470 * If this is a kexec reboot, turn off Bus Master bit on the 471 * device to tell it to not continue to do DMA. Don't touch 472 * devices in D3cold or unknown states. 473 * If it is not a kexec reboot, firmware will hit the PCI 474 * devices with big hammer and stop their DMA any way. 475 */ 476 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot)) 477 pci_clear_master(pci_dev); 478 } 479 480 #ifdef CONFIG_PM 481 482 /* Auxiliary functions used for system resume and run-time resume. */ 483 484 /** 485 * pci_restore_standard_config - restore standard config registers of PCI device 486 * @pci_dev: PCI device to handle 487 */ 488 static int pci_restore_standard_config(struct pci_dev *pci_dev) 489 { 490 pci_update_current_state(pci_dev, PCI_UNKNOWN); 491 492 if (pci_dev->current_state != PCI_D0) { 493 int error = pci_set_power_state(pci_dev, PCI_D0); 494 if (error) 495 return error; 496 } 497 498 pci_restore_state(pci_dev); 499 return 0; 500 } 501 502 #endif 503 504 #ifdef CONFIG_PM_SLEEP 505 506 static void pci_pm_default_resume_early(struct pci_dev *pci_dev) 507 { 508 pci_power_up(pci_dev); 509 pci_restore_state(pci_dev); 510 pci_fixup_device(pci_fixup_resume_early, pci_dev); 511 } 512 513 /* 514 * Default "suspend" method for devices that have no driver provided suspend, 515 * or not even a driver at all (second part). 516 */ 517 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev) 518 { 519 /* 520 * mark its power state as "unknown", since we don't know if 521 * e.g. the BIOS will change its device state when we suspend. 522 */ 523 if (pci_dev->current_state == PCI_D0) 524 pci_dev->current_state = PCI_UNKNOWN; 525 } 526 527 /* 528 * Default "resume" method for devices that have no driver provided resume, 529 * or not even a driver at all (second part). 530 */ 531 static int pci_pm_reenable_device(struct pci_dev *pci_dev) 532 { 533 int retval; 534 535 /* if the device was enabled before suspend, reenable */ 536 retval = pci_reenable_device(pci_dev); 537 /* 538 * if the device was busmaster before the suspend, make it busmaster 539 * again 540 */ 541 if (pci_dev->is_busmaster) 542 pci_set_master(pci_dev); 543 544 return retval; 545 } 546 547 static int pci_legacy_suspend(struct device *dev, pm_message_t state) 548 { 549 struct pci_dev *pci_dev = to_pci_dev(dev); 550 struct pci_driver *drv = pci_dev->driver; 551 552 if (drv && drv->suspend) { 553 pci_power_t prev = pci_dev->current_state; 554 int error; 555 556 error = drv->suspend(pci_dev, state); 557 suspend_report_result(drv->suspend, error); 558 if (error) 559 return error; 560 561 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 562 && pci_dev->current_state != PCI_UNKNOWN) { 563 WARN_ONCE(pci_dev->current_state != prev, 564 "PCI PM: Device state not saved by %pF\n", 565 drv->suspend); 566 } 567 } 568 569 pci_fixup_device(pci_fixup_suspend, pci_dev); 570 571 return 0; 572 } 573 574 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state) 575 { 576 struct pci_dev *pci_dev = to_pci_dev(dev); 577 struct pci_driver *drv = pci_dev->driver; 578 579 if (drv && drv->suspend_late) { 580 pci_power_t prev = pci_dev->current_state; 581 int error; 582 583 error = drv->suspend_late(pci_dev, state); 584 suspend_report_result(drv->suspend_late, error); 585 if (error) 586 return error; 587 588 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 589 && pci_dev->current_state != PCI_UNKNOWN) { 590 WARN_ONCE(pci_dev->current_state != prev, 591 "PCI PM: Device state not saved by %pF\n", 592 drv->suspend_late); 593 goto Fixup; 594 } 595 } 596 597 if (!pci_dev->state_saved) 598 pci_save_state(pci_dev); 599 600 pci_pm_set_unknown_state(pci_dev); 601 602 Fixup: 603 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 604 605 return 0; 606 } 607 608 static int pci_legacy_resume_early(struct device *dev) 609 { 610 struct pci_dev *pci_dev = to_pci_dev(dev); 611 struct pci_driver *drv = pci_dev->driver; 612 613 return drv && drv->resume_early ? 614 drv->resume_early(pci_dev) : 0; 615 } 616 617 static int pci_legacy_resume(struct device *dev) 618 { 619 struct pci_dev *pci_dev = to_pci_dev(dev); 620 struct pci_driver *drv = pci_dev->driver; 621 622 pci_fixup_device(pci_fixup_resume, pci_dev); 623 624 return drv && drv->resume ? 625 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev); 626 } 627 628 /* Auxiliary functions used by the new power management framework */ 629 630 static void pci_pm_default_resume(struct pci_dev *pci_dev) 631 { 632 pci_fixup_device(pci_fixup_resume, pci_dev); 633 634 if (!pci_has_subordinate(pci_dev)) 635 pci_enable_wake(pci_dev, PCI_D0, false); 636 } 637 638 static void pci_pm_default_suspend(struct pci_dev *pci_dev) 639 { 640 /* Disable non-bridge devices without PM support */ 641 if (!pci_has_subordinate(pci_dev)) 642 pci_disable_enabled_device(pci_dev); 643 } 644 645 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev) 646 { 647 struct pci_driver *drv = pci_dev->driver; 648 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume 649 || drv->resume_early); 650 651 /* 652 * Legacy PM support is used by default, so warn if the new framework is 653 * supported as well. Drivers are supposed to support either the 654 * former, or the latter, but not both at the same time. 655 */ 656 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n", 657 drv->name, pci_dev->vendor, pci_dev->device); 658 659 return ret; 660 } 661 662 /* New power management framework */ 663 664 static int pci_pm_prepare(struct device *dev) 665 { 666 struct device_driver *drv = dev->driver; 667 668 /* 669 * Devices having power.ignore_children set may still be necessary for 670 * suspending their children in the next phase of device suspend. 671 */ 672 if (dev->power.ignore_children) 673 pm_runtime_resume(dev); 674 675 if (drv && drv->pm && drv->pm->prepare) { 676 int error = drv->pm->prepare(dev); 677 if (error) 678 return error; 679 } 680 return pci_dev_keep_suspended(to_pci_dev(dev)); 681 } 682 683 static void pci_pm_complete(struct device *dev) 684 { 685 struct pci_dev *pci_dev = to_pci_dev(dev); 686 687 pci_dev_complete_resume(pci_dev); 688 pm_generic_complete(dev); 689 690 /* Resume device if platform firmware has put it in reset-power-on */ 691 if (dev->power.direct_complete && pm_resume_via_firmware()) { 692 pci_power_t pre_sleep_state = pci_dev->current_state; 693 694 pci_update_current_state(pci_dev, pci_dev->current_state); 695 if (pci_dev->current_state < pre_sleep_state) 696 pm_request_resume(dev); 697 } 698 } 699 700 #else /* !CONFIG_PM_SLEEP */ 701 702 #define pci_pm_prepare NULL 703 #define pci_pm_complete NULL 704 705 #endif /* !CONFIG_PM_SLEEP */ 706 707 #ifdef CONFIG_SUSPEND 708 709 static int pci_pm_suspend(struct device *dev) 710 { 711 struct pci_dev *pci_dev = to_pci_dev(dev); 712 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 713 714 if (pci_has_legacy_pm_support(pci_dev)) 715 return pci_legacy_suspend(dev, PMSG_SUSPEND); 716 717 if (!pm) { 718 pci_pm_default_suspend(pci_dev); 719 goto Fixup; 720 } 721 722 /* 723 * PCI devices suspended at run time need to be resumed at this point, 724 * because in general it is necessary to reconfigure them for system 725 * suspend. Namely, if the device is supposed to wake up the system 726 * from the sleep state, we may need to reconfigure it for this purpose. 727 * In turn, if the device is not supposed to wake up the system from the 728 * sleep state, we'll have to prevent it from signaling wake-up. 729 */ 730 pm_runtime_resume(dev); 731 732 pci_dev->state_saved = false; 733 if (pm->suspend) { 734 pci_power_t prev = pci_dev->current_state; 735 int error; 736 737 error = pm->suspend(dev); 738 suspend_report_result(pm->suspend, error); 739 if (error) 740 return error; 741 742 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 743 && pci_dev->current_state != PCI_UNKNOWN) { 744 WARN_ONCE(pci_dev->current_state != prev, 745 "PCI PM: State of device not saved by %pF\n", 746 pm->suspend); 747 } 748 } 749 750 Fixup: 751 pci_fixup_device(pci_fixup_suspend, pci_dev); 752 753 return 0; 754 } 755 756 static int pci_pm_suspend_noirq(struct device *dev) 757 { 758 struct pci_dev *pci_dev = to_pci_dev(dev); 759 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 760 761 if (pci_has_legacy_pm_support(pci_dev)) 762 return pci_legacy_suspend_late(dev, PMSG_SUSPEND); 763 764 if (!pm) { 765 pci_save_state(pci_dev); 766 goto Fixup; 767 } 768 769 if (pm->suspend_noirq) { 770 pci_power_t prev = pci_dev->current_state; 771 int error; 772 773 error = pm->suspend_noirq(dev); 774 suspend_report_result(pm->suspend_noirq, error); 775 if (error) 776 return error; 777 778 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 779 && pci_dev->current_state != PCI_UNKNOWN) { 780 WARN_ONCE(pci_dev->current_state != prev, 781 "PCI PM: State of device not saved by %pF\n", 782 pm->suspend_noirq); 783 goto Fixup; 784 } 785 } 786 787 if (!pci_dev->state_saved) { 788 pci_save_state(pci_dev); 789 if (pci_power_manageable(pci_dev)) 790 pci_prepare_to_sleep(pci_dev); 791 } 792 793 pci_pm_set_unknown_state(pci_dev); 794 795 /* 796 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's 797 * PCI COMMAND register isn't 0, the BIOS assumes that the controller 798 * hasn't been quiesced and tries to turn it off. If the controller 799 * is already in D3, this can hang or cause memory corruption. 800 * 801 * Since the value of the COMMAND register doesn't matter once the 802 * device has been suspended, we can safely set it to 0 here. 803 */ 804 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 805 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 806 807 Fixup: 808 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 809 810 return 0; 811 } 812 813 static int pci_pm_resume_noirq(struct device *dev) 814 { 815 struct pci_dev *pci_dev = to_pci_dev(dev); 816 struct device_driver *drv = dev->driver; 817 int error = 0; 818 819 pci_pm_default_resume_early(pci_dev); 820 821 if (pci_has_legacy_pm_support(pci_dev)) 822 return pci_legacy_resume_early(dev); 823 824 if (drv && drv->pm && drv->pm->resume_noirq) 825 error = drv->pm->resume_noirq(dev); 826 827 return error; 828 } 829 830 static int pci_pm_resume(struct device *dev) 831 { 832 struct pci_dev *pci_dev = to_pci_dev(dev); 833 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 834 int error = 0; 835 836 /* 837 * This is necessary for the suspend error path in which resume is 838 * called without restoring the standard config registers of the device. 839 */ 840 if (pci_dev->state_saved) 841 pci_restore_standard_config(pci_dev); 842 843 if (pci_has_legacy_pm_support(pci_dev)) 844 return pci_legacy_resume(dev); 845 846 pci_pm_default_resume(pci_dev); 847 848 if (pm) { 849 if (pm->resume) 850 error = pm->resume(dev); 851 } else { 852 pci_pm_reenable_device(pci_dev); 853 } 854 855 return error; 856 } 857 858 #else /* !CONFIG_SUSPEND */ 859 860 #define pci_pm_suspend NULL 861 #define pci_pm_suspend_noirq NULL 862 #define pci_pm_resume NULL 863 #define pci_pm_resume_noirq NULL 864 865 #endif /* !CONFIG_SUSPEND */ 866 867 #ifdef CONFIG_HIBERNATE_CALLBACKS 868 869 870 /* 871 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing 872 * a hibernate transition 873 */ 874 struct dev_pm_ops __weak pcibios_pm_ops; 875 876 static int pci_pm_freeze(struct device *dev) 877 { 878 struct pci_dev *pci_dev = to_pci_dev(dev); 879 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 880 881 if (pci_has_legacy_pm_support(pci_dev)) 882 return pci_legacy_suspend(dev, PMSG_FREEZE); 883 884 if (!pm) { 885 pci_pm_default_suspend(pci_dev); 886 return 0; 887 } 888 889 /* 890 * This used to be done in pci_pm_prepare() for all devices and some 891 * drivers may depend on it, so do it here. Ideally, runtime-suspended 892 * devices should not be touched during freeze/thaw transitions, 893 * however. 894 */ 895 pm_runtime_resume(dev); 896 897 pci_dev->state_saved = false; 898 if (pm->freeze) { 899 int error; 900 901 error = pm->freeze(dev); 902 suspend_report_result(pm->freeze, error); 903 if (error) 904 return error; 905 } 906 907 if (pcibios_pm_ops.freeze) 908 return pcibios_pm_ops.freeze(dev); 909 910 return 0; 911 } 912 913 static int pci_pm_freeze_noirq(struct device *dev) 914 { 915 struct pci_dev *pci_dev = to_pci_dev(dev); 916 struct device_driver *drv = dev->driver; 917 918 if (pci_has_legacy_pm_support(pci_dev)) 919 return pci_legacy_suspend_late(dev, PMSG_FREEZE); 920 921 if (drv && drv->pm && drv->pm->freeze_noirq) { 922 int error; 923 924 error = drv->pm->freeze_noirq(dev); 925 suspend_report_result(drv->pm->freeze_noirq, error); 926 if (error) 927 return error; 928 } 929 930 if (!pci_dev->state_saved) 931 pci_save_state(pci_dev); 932 933 pci_pm_set_unknown_state(pci_dev); 934 935 if (pcibios_pm_ops.freeze_noirq) 936 return pcibios_pm_ops.freeze_noirq(dev); 937 938 return 0; 939 } 940 941 static int pci_pm_thaw_noirq(struct device *dev) 942 { 943 struct pci_dev *pci_dev = to_pci_dev(dev); 944 struct device_driver *drv = dev->driver; 945 int error = 0; 946 947 if (pcibios_pm_ops.thaw_noirq) { 948 error = pcibios_pm_ops.thaw_noirq(dev); 949 if (error) 950 return error; 951 } 952 953 if (pci_has_legacy_pm_support(pci_dev)) 954 return pci_legacy_resume_early(dev); 955 956 pci_update_current_state(pci_dev, PCI_D0); 957 958 if (drv && drv->pm && drv->pm->thaw_noirq) 959 error = drv->pm->thaw_noirq(dev); 960 961 return error; 962 } 963 964 static int pci_pm_thaw(struct device *dev) 965 { 966 struct pci_dev *pci_dev = to_pci_dev(dev); 967 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 968 int error = 0; 969 970 if (pcibios_pm_ops.thaw) { 971 error = pcibios_pm_ops.thaw(dev); 972 if (error) 973 return error; 974 } 975 976 if (pci_has_legacy_pm_support(pci_dev)) 977 return pci_legacy_resume(dev); 978 979 if (pm) { 980 if (pm->thaw) 981 error = pm->thaw(dev); 982 } else { 983 pci_pm_reenable_device(pci_dev); 984 } 985 986 pci_dev->state_saved = false; 987 988 return error; 989 } 990 991 static int pci_pm_poweroff(struct device *dev) 992 { 993 struct pci_dev *pci_dev = to_pci_dev(dev); 994 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 995 996 if (pci_has_legacy_pm_support(pci_dev)) 997 return pci_legacy_suspend(dev, PMSG_HIBERNATE); 998 999 if (!pm) { 1000 pci_pm_default_suspend(pci_dev); 1001 goto Fixup; 1002 } 1003 1004 /* The reason to do that is the same as in pci_pm_suspend(). */ 1005 pm_runtime_resume(dev); 1006 1007 pci_dev->state_saved = false; 1008 if (pm->poweroff) { 1009 int error; 1010 1011 error = pm->poweroff(dev); 1012 suspend_report_result(pm->poweroff, error); 1013 if (error) 1014 return error; 1015 } 1016 1017 Fixup: 1018 pci_fixup_device(pci_fixup_suspend, pci_dev); 1019 1020 if (pcibios_pm_ops.poweroff) 1021 return pcibios_pm_ops.poweroff(dev); 1022 1023 return 0; 1024 } 1025 1026 static int pci_pm_poweroff_noirq(struct device *dev) 1027 { 1028 struct pci_dev *pci_dev = to_pci_dev(dev); 1029 struct device_driver *drv = dev->driver; 1030 1031 if (pci_has_legacy_pm_support(to_pci_dev(dev))) 1032 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE); 1033 1034 if (!drv || !drv->pm) { 1035 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1036 return 0; 1037 } 1038 1039 if (drv->pm->poweroff_noirq) { 1040 int error; 1041 1042 error = drv->pm->poweroff_noirq(dev); 1043 suspend_report_result(drv->pm->poweroff_noirq, error); 1044 if (error) 1045 return error; 1046 } 1047 1048 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev)) 1049 pci_prepare_to_sleep(pci_dev); 1050 1051 /* 1052 * The reason for doing this here is the same as for the analogous code 1053 * in pci_pm_suspend_noirq(). 1054 */ 1055 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 1056 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 1057 1058 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1059 1060 if (pcibios_pm_ops.poweroff_noirq) 1061 return pcibios_pm_ops.poweroff_noirq(dev); 1062 1063 return 0; 1064 } 1065 1066 static int pci_pm_restore_noirq(struct device *dev) 1067 { 1068 struct pci_dev *pci_dev = to_pci_dev(dev); 1069 struct device_driver *drv = dev->driver; 1070 int error = 0; 1071 1072 if (pcibios_pm_ops.restore_noirq) { 1073 error = pcibios_pm_ops.restore_noirq(dev); 1074 if (error) 1075 return error; 1076 } 1077 1078 pci_pm_default_resume_early(pci_dev); 1079 1080 if (pci_has_legacy_pm_support(pci_dev)) 1081 return pci_legacy_resume_early(dev); 1082 1083 if (drv && drv->pm && drv->pm->restore_noirq) 1084 error = drv->pm->restore_noirq(dev); 1085 1086 return error; 1087 } 1088 1089 static int pci_pm_restore(struct device *dev) 1090 { 1091 struct pci_dev *pci_dev = to_pci_dev(dev); 1092 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1093 int error = 0; 1094 1095 if (pcibios_pm_ops.restore) { 1096 error = pcibios_pm_ops.restore(dev); 1097 if (error) 1098 return error; 1099 } 1100 1101 /* 1102 * This is necessary for the hibernation error path in which restore is 1103 * called without restoring the standard config registers of the device. 1104 */ 1105 if (pci_dev->state_saved) 1106 pci_restore_standard_config(pci_dev); 1107 1108 if (pci_has_legacy_pm_support(pci_dev)) 1109 return pci_legacy_resume(dev); 1110 1111 pci_pm_default_resume(pci_dev); 1112 1113 if (pm) { 1114 if (pm->restore) 1115 error = pm->restore(dev); 1116 } else { 1117 pci_pm_reenable_device(pci_dev); 1118 } 1119 1120 return error; 1121 } 1122 1123 #else /* !CONFIG_HIBERNATE_CALLBACKS */ 1124 1125 #define pci_pm_freeze NULL 1126 #define pci_pm_freeze_noirq NULL 1127 #define pci_pm_thaw NULL 1128 #define pci_pm_thaw_noirq NULL 1129 #define pci_pm_poweroff NULL 1130 #define pci_pm_poweroff_noirq NULL 1131 #define pci_pm_restore NULL 1132 #define pci_pm_restore_noirq NULL 1133 1134 #endif /* !CONFIG_HIBERNATE_CALLBACKS */ 1135 1136 #ifdef CONFIG_PM 1137 1138 static int pci_pm_runtime_suspend(struct device *dev) 1139 { 1140 struct pci_dev *pci_dev = to_pci_dev(dev); 1141 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1142 pci_power_t prev = pci_dev->current_state; 1143 int error; 1144 1145 /* 1146 * If pci_dev->driver is not set (unbound), the device should 1147 * always remain in D0 regardless of the runtime PM status 1148 */ 1149 if (!pci_dev->driver) 1150 return 0; 1151 1152 if (!pm || !pm->runtime_suspend) 1153 return -ENOSYS; 1154 1155 pci_dev->state_saved = false; 1156 error = pm->runtime_suspend(dev); 1157 if (error) { 1158 /* 1159 * -EBUSY and -EAGAIN is used to request the runtime PM core 1160 * to schedule a new suspend, so log the event only with debug 1161 * log level. 1162 */ 1163 if (error == -EBUSY || error == -EAGAIN) 1164 dev_dbg(dev, "can't suspend now (%pf returned %d)\n", 1165 pm->runtime_suspend, error); 1166 else 1167 dev_err(dev, "can't suspend (%pf returned %d)\n", 1168 pm->runtime_suspend, error); 1169 1170 return error; 1171 } 1172 1173 pci_fixup_device(pci_fixup_suspend, pci_dev); 1174 1175 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 1176 && pci_dev->current_state != PCI_UNKNOWN) { 1177 WARN_ONCE(pci_dev->current_state != prev, 1178 "PCI PM: State of device not saved by %pF\n", 1179 pm->runtime_suspend); 1180 return 0; 1181 } 1182 1183 if (!pci_dev->state_saved) { 1184 pci_save_state(pci_dev); 1185 pci_finish_runtime_suspend(pci_dev); 1186 } 1187 1188 return 0; 1189 } 1190 1191 static int pci_pm_runtime_resume(struct device *dev) 1192 { 1193 int rc; 1194 struct pci_dev *pci_dev = to_pci_dev(dev); 1195 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1196 1197 /* 1198 * If pci_dev->driver is not set (unbound), the device should 1199 * always remain in D0 regardless of the runtime PM status 1200 */ 1201 if (!pci_dev->driver) 1202 return 0; 1203 1204 if (!pm || !pm->runtime_resume) 1205 return -ENOSYS; 1206 1207 pci_restore_standard_config(pci_dev); 1208 pci_fixup_device(pci_fixup_resume_early, pci_dev); 1209 __pci_enable_wake(pci_dev, PCI_D0, true, false); 1210 pci_fixup_device(pci_fixup_resume, pci_dev); 1211 1212 rc = pm->runtime_resume(dev); 1213 1214 pci_dev->runtime_d3cold = false; 1215 1216 return rc; 1217 } 1218 1219 static int pci_pm_runtime_idle(struct device *dev) 1220 { 1221 struct pci_dev *pci_dev = to_pci_dev(dev); 1222 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1223 int ret = 0; 1224 1225 /* 1226 * If pci_dev->driver is not set (unbound), the device should 1227 * always remain in D0 regardless of the runtime PM status 1228 */ 1229 if (!pci_dev->driver) 1230 return 0; 1231 1232 if (!pm) 1233 return -ENOSYS; 1234 1235 if (pm->runtime_idle) 1236 ret = pm->runtime_idle(dev); 1237 1238 return ret; 1239 } 1240 1241 static const struct dev_pm_ops pci_dev_pm_ops = { 1242 .prepare = pci_pm_prepare, 1243 .complete = pci_pm_complete, 1244 .suspend = pci_pm_suspend, 1245 .resume = pci_pm_resume, 1246 .freeze = pci_pm_freeze, 1247 .thaw = pci_pm_thaw, 1248 .poweroff = pci_pm_poweroff, 1249 .restore = pci_pm_restore, 1250 .suspend_noirq = pci_pm_suspend_noirq, 1251 .resume_noirq = pci_pm_resume_noirq, 1252 .freeze_noirq = pci_pm_freeze_noirq, 1253 .thaw_noirq = pci_pm_thaw_noirq, 1254 .poweroff_noirq = pci_pm_poweroff_noirq, 1255 .restore_noirq = pci_pm_restore_noirq, 1256 .runtime_suspend = pci_pm_runtime_suspend, 1257 .runtime_resume = pci_pm_runtime_resume, 1258 .runtime_idle = pci_pm_runtime_idle, 1259 }; 1260 1261 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops) 1262 1263 #else /* !CONFIG_PM */ 1264 1265 #define pci_pm_runtime_suspend NULL 1266 #define pci_pm_runtime_resume NULL 1267 #define pci_pm_runtime_idle NULL 1268 1269 #define PCI_PM_OPS_PTR NULL 1270 1271 #endif /* !CONFIG_PM */ 1272 1273 /** 1274 * __pci_register_driver - register a new pci driver 1275 * @drv: the driver structure to register 1276 * @owner: owner module of drv 1277 * @mod_name: module name string 1278 * 1279 * Adds the driver structure to the list of registered drivers. 1280 * Returns a negative value on error, otherwise 0. 1281 * If no error occurred, the driver remains registered even if 1282 * no device was claimed during registration. 1283 */ 1284 int __pci_register_driver(struct pci_driver *drv, struct module *owner, 1285 const char *mod_name) 1286 { 1287 /* initialize common driver fields */ 1288 drv->driver.name = drv->name; 1289 drv->driver.bus = &pci_bus_type; 1290 drv->driver.owner = owner; 1291 drv->driver.mod_name = mod_name; 1292 1293 spin_lock_init(&drv->dynids.lock); 1294 INIT_LIST_HEAD(&drv->dynids.list); 1295 1296 /* register with core */ 1297 return driver_register(&drv->driver); 1298 } 1299 EXPORT_SYMBOL(__pci_register_driver); 1300 1301 /** 1302 * pci_unregister_driver - unregister a pci driver 1303 * @drv: the driver structure to unregister 1304 * 1305 * Deletes the driver structure from the list of registered PCI drivers, 1306 * gives it a chance to clean up by calling its remove() function for 1307 * each device it was responsible for, and marks those devices as 1308 * driverless. 1309 */ 1310 1311 void pci_unregister_driver(struct pci_driver *drv) 1312 { 1313 driver_unregister(&drv->driver); 1314 pci_free_dynids(drv); 1315 } 1316 EXPORT_SYMBOL(pci_unregister_driver); 1317 1318 static struct pci_driver pci_compat_driver = { 1319 .name = "compat" 1320 }; 1321 1322 /** 1323 * pci_dev_driver - get the pci_driver of a device 1324 * @dev: the device to query 1325 * 1326 * Returns the appropriate pci_driver structure or %NULL if there is no 1327 * registered driver for the device. 1328 */ 1329 struct pci_driver *pci_dev_driver(const struct pci_dev *dev) 1330 { 1331 if (dev->driver) 1332 return dev->driver; 1333 else { 1334 int i; 1335 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1336 if (dev->resource[i].flags & IORESOURCE_BUSY) 1337 return &pci_compat_driver; 1338 } 1339 return NULL; 1340 } 1341 EXPORT_SYMBOL(pci_dev_driver); 1342 1343 /** 1344 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure 1345 * @dev: the PCI device structure to match against 1346 * @drv: the device driver to search for matching PCI device id structures 1347 * 1348 * Used by a driver to check whether a PCI device present in the 1349 * system is in its list of supported devices. Returns the matching 1350 * pci_device_id structure or %NULL if there is no match. 1351 */ 1352 static int pci_bus_match(struct device *dev, struct device_driver *drv) 1353 { 1354 struct pci_dev *pci_dev = to_pci_dev(dev); 1355 struct pci_driver *pci_drv; 1356 const struct pci_device_id *found_id; 1357 1358 if (!pci_dev->match_driver) 1359 return 0; 1360 1361 pci_drv = to_pci_driver(drv); 1362 found_id = pci_match_device(pci_drv, pci_dev); 1363 if (found_id) 1364 return 1; 1365 1366 return 0; 1367 } 1368 1369 /** 1370 * pci_dev_get - increments the reference count of the pci device structure 1371 * @dev: the device being referenced 1372 * 1373 * Each live reference to a device should be refcounted. 1374 * 1375 * Drivers for PCI devices should normally record such references in 1376 * their probe() methods, when they bind to a device, and release 1377 * them by calling pci_dev_put(), in their disconnect() methods. 1378 * 1379 * A pointer to the device with the incremented reference counter is returned. 1380 */ 1381 struct pci_dev *pci_dev_get(struct pci_dev *dev) 1382 { 1383 if (dev) 1384 get_device(&dev->dev); 1385 return dev; 1386 } 1387 EXPORT_SYMBOL(pci_dev_get); 1388 1389 /** 1390 * pci_dev_put - release a use of the pci device structure 1391 * @dev: device that's been disconnected 1392 * 1393 * Must be called when a user of a device is finished with it. When the last 1394 * user of the device calls this function, the memory of the device is freed. 1395 */ 1396 void pci_dev_put(struct pci_dev *dev) 1397 { 1398 if (dev) 1399 put_device(&dev->dev); 1400 } 1401 EXPORT_SYMBOL(pci_dev_put); 1402 1403 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env) 1404 { 1405 struct pci_dev *pdev; 1406 1407 if (!dev) 1408 return -ENODEV; 1409 1410 pdev = to_pci_dev(dev); 1411 1412 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class)) 1413 return -ENOMEM; 1414 1415 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device)) 1416 return -ENOMEM; 1417 1418 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor, 1419 pdev->subsystem_device)) 1420 return -ENOMEM; 1421 1422 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev))) 1423 return -ENOMEM; 1424 1425 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X", 1426 pdev->vendor, pdev->device, 1427 pdev->subsystem_vendor, pdev->subsystem_device, 1428 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8), 1429 (u8)(pdev->class))) 1430 return -ENOMEM; 1431 1432 return 0; 1433 } 1434 1435 struct bus_type pci_bus_type = { 1436 .name = "pci", 1437 .match = pci_bus_match, 1438 .uevent = pci_uevent, 1439 .probe = pci_device_probe, 1440 .remove = pci_device_remove, 1441 .shutdown = pci_device_shutdown, 1442 .dev_groups = pci_dev_groups, 1443 .bus_groups = pci_bus_groups, 1444 .drv_groups = pci_drv_groups, 1445 .pm = PCI_PM_OPS_PTR, 1446 }; 1447 EXPORT_SYMBOL(pci_bus_type); 1448 1449 static int __init pci_driver_init(void) 1450 { 1451 return bus_register(&pci_bus_type); 1452 } 1453 postcore_initcall(pci_driver_init); 1454