xref: /linux/drivers/pci/pci-driver.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * drivers/pci/pci-driver.c
3  *
4  * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5  * (C) Copyright 2007 Novell Inc.
6  *
7  * Released under the GPL v2 only.
8  *
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24 
25 struct pci_dynid {
26 	struct list_head node;
27 	struct pci_device_id id;
28 };
29 
30 /**
31  * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32  * @drv: target pci driver
33  * @vendor: PCI vendor ID
34  * @device: PCI device ID
35  * @subvendor: PCI subvendor ID
36  * @subdevice: PCI subdevice ID
37  * @class: PCI class
38  * @class_mask: PCI class mask
39  * @driver_data: private driver data
40  *
41  * Adds a new dynamic pci device ID to this driver and causes the
42  * driver to probe for all devices again.  @drv must have been
43  * registered prior to calling this function.
44  *
45  * CONTEXT:
46  * Does GFP_KERNEL allocation.
47  *
48  * RETURNS:
49  * 0 on success, -errno on failure.
50  */
51 int pci_add_dynid(struct pci_driver *drv,
52 		  unsigned int vendor, unsigned int device,
53 		  unsigned int subvendor, unsigned int subdevice,
54 		  unsigned int class, unsigned int class_mask,
55 		  unsigned long driver_data)
56 {
57 	struct pci_dynid *dynid;
58 
59 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60 	if (!dynid)
61 		return -ENOMEM;
62 
63 	dynid->id.vendor = vendor;
64 	dynid->id.device = device;
65 	dynid->id.subvendor = subvendor;
66 	dynid->id.subdevice = subdevice;
67 	dynid->id.class = class;
68 	dynid->id.class_mask = class_mask;
69 	dynid->id.driver_data = driver_data;
70 
71 	spin_lock(&drv->dynids.lock);
72 	list_add_tail(&dynid->node, &drv->dynids.list);
73 	spin_unlock(&drv->dynids.lock);
74 
75 	return driver_attach(&drv->driver);
76 }
77 EXPORT_SYMBOL_GPL(pci_add_dynid);
78 
79 static void pci_free_dynids(struct pci_driver *drv)
80 {
81 	struct pci_dynid *dynid, *n;
82 
83 	spin_lock(&drv->dynids.lock);
84 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85 		list_del(&dynid->node);
86 		kfree(dynid);
87 	}
88 	spin_unlock(&drv->dynids.lock);
89 }
90 
91 /**
92  * store_new_id - sysfs frontend to pci_add_dynid()
93  * @driver: target device driver
94  * @buf: buffer for scanning device ID data
95  * @count: input size
96  *
97  * Allow PCI IDs to be added to an existing driver via sysfs.
98  */
99 static ssize_t store_new_id(struct device_driver *driver, const char *buf,
100 			    size_t count)
101 {
102 	struct pci_driver *pdrv = to_pci_driver(driver);
103 	const struct pci_device_id *ids = pdrv->id_table;
104 	__u32 vendor, device, subvendor = PCI_ANY_ID,
105 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106 	unsigned long driver_data = 0;
107 	int fields = 0;
108 	int retval = 0;
109 
110 	fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111 			&vendor, &device, &subvendor, &subdevice,
112 			&class, &class_mask, &driver_data);
113 	if (fields < 2)
114 		return -EINVAL;
115 
116 	if (fields != 7) {
117 		struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118 		if (!pdev)
119 			return -ENOMEM;
120 
121 		pdev->vendor = vendor;
122 		pdev->device = device;
123 		pdev->subsystem_vendor = subvendor;
124 		pdev->subsystem_device = subdevice;
125 		pdev->class = class;
126 
127 		if (pci_match_id(pdrv->id_table, pdev))
128 			retval = -EEXIST;
129 
130 		kfree(pdev);
131 
132 		if (retval)
133 			return retval;
134 	}
135 
136 	/* Only accept driver_data values that match an existing id_table
137 	   entry */
138 	if (ids) {
139 		retval = -EINVAL;
140 		while (ids->vendor || ids->subvendor || ids->class_mask) {
141 			if (driver_data == ids->driver_data) {
142 				retval = 0;
143 				break;
144 			}
145 			ids++;
146 		}
147 		if (retval)	/* No match */
148 			return retval;
149 	}
150 
151 	retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152 			       class, class_mask, driver_data);
153 	if (retval)
154 		return retval;
155 	return count;
156 }
157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
158 
159 /**
160  * store_remove_id - remove a PCI device ID from this driver
161  * @driver: target device driver
162  * @buf: buffer for scanning device ID data
163  * @count: input size
164  *
165  * Removes a dynamic pci device ID to this driver.
166  */
167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf,
168 			       size_t count)
169 {
170 	struct pci_dynid *dynid, *n;
171 	struct pci_driver *pdrv = to_pci_driver(driver);
172 	__u32 vendor, device, subvendor = PCI_ANY_ID,
173 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174 	int fields = 0;
175 	size_t retval = -ENODEV;
176 
177 	fields = sscanf(buf, "%x %x %x %x %x %x",
178 			&vendor, &device, &subvendor, &subdevice,
179 			&class, &class_mask);
180 	if (fields < 2)
181 		return -EINVAL;
182 
183 	spin_lock(&pdrv->dynids.lock);
184 	list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185 		struct pci_device_id *id = &dynid->id;
186 		if ((id->vendor == vendor) &&
187 		    (id->device == device) &&
188 		    (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189 		    (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190 		    !((id->class ^ class) & class_mask)) {
191 			list_del(&dynid->node);
192 			kfree(dynid);
193 			retval = count;
194 			break;
195 		}
196 	}
197 	spin_unlock(&pdrv->dynids.lock);
198 
199 	return retval;
200 }
201 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
202 
203 static struct attribute *pci_drv_attrs[] = {
204 	&driver_attr_new_id.attr,
205 	&driver_attr_remove_id.attr,
206 	NULL,
207 };
208 ATTRIBUTE_GROUPS(pci_drv);
209 
210 /**
211  * pci_match_id - See if a pci device matches a given pci_id table
212  * @ids: array of PCI device id structures to search in
213  * @dev: the PCI device structure to match against.
214  *
215  * Used by a driver to check whether a PCI device present in the
216  * system is in its list of supported devices.  Returns the matching
217  * pci_device_id structure or %NULL if there is no match.
218  *
219  * Deprecated, don't use this as it will not catch any dynamic ids
220  * that a driver might want to check for.
221  */
222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
223 					 struct pci_dev *dev)
224 {
225 	if (ids) {
226 		while (ids->vendor || ids->subvendor || ids->class_mask) {
227 			if (pci_match_one_device(ids, dev))
228 				return ids;
229 			ids++;
230 		}
231 	}
232 	return NULL;
233 }
234 EXPORT_SYMBOL(pci_match_id);
235 
236 static const struct pci_device_id pci_device_id_any = {
237 	.vendor = PCI_ANY_ID,
238 	.device = PCI_ANY_ID,
239 	.subvendor = PCI_ANY_ID,
240 	.subdevice = PCI_ANY_ID,
241 };
242 
243 /**
244  * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
245  * @drv: the PCI driver to match against
246  * @dev: the PCI device structure to match against
247  *
248  * Used by a driver to check whether a PCI device present in the
249  * system is in its list of supported devices.  Returns the matching
250  * pci_device_id structure or %NULL if there is no match.
251  */
252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
253 						    struct pci_dev *dev)
254 {
255 	struct pci_dynid *dynid;
256 	const struct pci_device_id *found_id = NULL;
257 
258 	/* When driver_override is set, only bind to the matching driver */
259 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
260 		return NULL;
261 
262 	/* Look at the dynamic ids first, before the static ones */
263 	spin_lock(&drv->dynids.lock);
264 	list_for_each_entry(dynid, &drv->dynids.list, node) {
265 		if (pci_match_one_device(&dynid->id, dev)) {
266 			found_id = &dynid->id;
267 			break;
268 		}
269 	}
270 	spin_unlock(&drv->dynids.lock);
271 
272 	if (!found_id)
273 		found_id = pci_match_id(drv->id_table, dev);
274 
275 	/* driver_override will always match, send a dummy id */
276 	if (!found_id && dev->driver_override)
277 		found_id = &pci_device_id_any;
278 
279 	return found_id;
280 }
281 
282 struct drv_dev_and_id {
283 	struct pci_driver *drv;
284 	struct pci_dev *dev;
285 	const struct pci_device_id *id;
286 };
287 
288 static long local_pci_probe(void *_ddi)
289 {
290 	struct drv_dev_and_id *ddi = _ddi;
291 	struct pci_dev *pci_dev = ddi->dev;
292 	struct pci_driver *pci_drv = ddi->drv;
293 	struct device *dev = &pci_dev->dev;
294 	int rc;
295 
296 	/*
297 	 * Unbound PCI devices are always put in D0, regardless of
298 	 * runtime PM status.  During probe, the device is set to
299 	 * active and the usage count is incremented.  If the driver
300 	 * supports runtime PM, it should call pm_runtime_put_noidle(),
301 	 * or any other runtime PM helper function decrementing the usage
302 	 * count, in its probe routine and pm_runtime_get_noresume() in
303 	 * its remove routine.
304 	 */
305 	pm_runtime_get_sync(dev);
306 	pci_dev->driver = pci_drv;
307 	rc = pci_drv->probe(pci_dev, ddi->id);
308 	if (!rc)
309 		return rc;
310 	if (rc < 0) {
311 		pci_dev->driver = NULL;
312 		pm_runtime_put_sync(dev);
313 		return rc;
314 	}
315 	/*
316 	 * Probe function should return < 0 for failure, 0 for success
317 	 * Treat values > 0 as success, but warn.
318 	 */
319 	dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
320 	return 0;
321 }
322 
323 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
324 			  const struct pci_device_id *id)
325 {
326 	int error, node;
327 	struct drv_dev_and_id ddi = { drv, dev, id };
328 
329 	/*
330 	 * Execute driver initialization on node where the device is
331 	 * attached.  This way the driver likely allocates its local memory
332 	 * on the right node.
333 	 */
334 	node = dev_to_node(&dev->dev);
335 
336 	/*
337 	 * On NUMA systems, we are likely to call a PF probe function using
338 	 * work_on_cpu().  If that probe calls pci_enable_sriov() (which
339 	 * adds the VF devices via pci_bus_add_device()), we may re-enter
340 	 * this function to call the VF probe function.  Calling
341 	 * work_on_cpu() again will cause a lockdep warning.  Since VFs are
342 	 * always on the same node as the PF, we can work around this by
343 	 * avoiding work_on_cpu() when we're already on the correct node.
344 	 *
345 	 * Preemption is enabled, so it's theoretically unsafe to use
346 	 * numa_node_id(), but even if we run the probe function on the
347 	 * wrong node, it should be functionally correct.
348 	 */
349 	if (node >= 0 && node != numa_node_id()) {
350 		int cpu;
351 
352 		get_online_cpus();
353 		cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
354 		if (cpu < nr_cpu_ids)
355 			error = work_on_cpu(cpu, local_pci_probe, &ddi);
356 		else
357 			error = local_pci_probe(&ddi);
358 		put_online_cpus();
359 	} else
360 		error = local_pci_probe(&ddi);
361 
362 	return error;
363 }
364 
365 /**
366  * __pci_device_probe - check if a driver wants to claim a specific PCI device
367  * @drv: driver to call to check if it wants the PCI device
368  * @pci_dev: PCI device being probed
369  *
370  * returns 0 on success, else error.
371  * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
372  */
373 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
374 {
375 	const struct pci_device_id *id;
376 	int error = 0;
377 
378 	if (!pci_dev->driver && drv->probe) {
379 		error = -ENODEV;
380 
381 		id = pci_match_device(drv, pci_dev);
382 		if (id)
383 			error = pci_call_probe(drv, pci_dev, id);
384 	}
385 	return error;
386 }
387 
388 int __weak pcibios_alloc_irq(struct pci_dev *dev)
389 {
390 	return 0;
391 }
392 
393 void __weak pcibios_free_irq(struct pci_dev *dev)
394 {
395 }
396 
397 #ifdef CONFIG_PCI_IOV
398 static inline bool pci_device_can_probe(struct pci_dev *pdev)
399 {
400 	return (!pdev->is_virtfn || pdev->physfn->sriov->drivers_autoprobe);
401 }
402 #else
403 static inline bool pci_device_can_probe(struct pci_dev *pdev)
404 {
405 	return true;
406 }
407 #endif
408 
409 static int pci_device_probe(struct device *dev)
410 {
411 	int error;
412 	struct pci_dev *pci_dev = to_pci_dev(dev);
413 	struct pci_driver *drv = to_pci_driver(dev->driver);
414 
415 	error = pcibios_alloc_irq(pci_dev);
416 	if (error < 0)
417 		return error;
418 
419 	pci_dev_get(pci_dev);
420 	if (pci_device_can_probe(pci_dev)) {
421 		error = __pci_device_probe(drv, pci_dev);
422 		if (error) {
423 			pcibios_free_irq(pci_dev);
424 			pci_dev_put(pci_dev);
425 		}
426 	}
427 
428 	return error;
429 }
430 
431 static int pci_device_remove(struct device *dev)
432 {
433 	struct pci_dev *pci_dev = to_pci_dev(dev);
434 	struct pci_driver *drv = pci_dev->driver;
435 
436 	if (drv) {
437 		if (drv->remove) {
438 			pm_runtime_get_sync(dev);
439 			drv->remove(pci_dev);
440 			pm_runtime_put_noidle(dev);
441 		}
442 		pcibios_free_irq(pci_dev);
443 		pci_dev->driver = NULL;
444 	}
445 
446 	/* Undo the runtime PM settings in local_pci_probe() */
447 	pm_runtime_put_sync(dev);
448 
449 	/*
450 	 * If the device is still on, set the power state as "unknown",
451 	 * since it might change by the next time we load the driver.
452 	 */
453 	if (pci_dev->current_state == PCI_D0)
454 		pci_dev->current_state = PCI_UNKNOWN;
455 
456 	/*
457 	 * We would love to complain here if pci_dev->is_enabled is set, that
458 	 * the driver should have called pci_disable_device(), but the
459 	 * unfortunate fact is there are too many odd BIOS and bridge setups
460 	 * that don't like drivers doing that all of the time.
461 	 * Oh well, we can dream of sane hardware when we sleep, no matter how
462 	 * horrible the crap we have to deal with is when we are awake...
463 	 */
464 
465 	pci_dev_put(pci_dev);
466 	return 0;
467 }
468 
469 static void pci_device_shutdown(struct device *dev)
470 {
471 	struct pci_dev *pci_dev = to_pci_dev(dev);
472 	struct pci_driver *drv = pci_dev->driver;
473 
474 	pm_runtime_resume(dev);
475 
476 	if (drv && drv->shutdown)
477 		drv->shutdown(pci_dev);
478 
479 	/*
480 	 * If this is a kexec reboot, turn off Bus Master bit on the
481 	 * device to tell it to not continue to do DMA. Don't touch
482 	 * devices in D3cold or unknown states.
483 	 * If it is not a kexec reboot, firmware will hit the PCI
484 	 * devices with big hammer and stop their DMA any way.
485 	 */
486 	if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
487 		pci_clear_master(pci_dev);
488 }
489 
490 #ifdef CONFIG_PM
491 
492 /* Auxiliary functions used for system resume and run-time resume. */
493 
494 /**
495  * pci_restore_standard_config - restore standard config registers of PCI device
496  * @pci_dev: PCI device to handle
497  */
498 static int pci_restore_standard_config(struct pci_dev *pci_dev)
499 {
500 	pci_update_current_state(pci_dev, PCI_UNKNOWN);
501 
502 	if (pci_dev->current_state != PCI_D0) {
503 		int error = pci_set_power_state(pci_dev, PCI_D0);
504 		if (error)
505 			return error;
506 	}
507 
508 	pci_restore_state(pci_dev);
509 	return 0;
510 }
511 
512 #endif
513 
514 #ifdef CONFIG_PM_SLEEP
515 
516 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
517 {
518 	pci_power_up(pci_dev);
519 	pci_restore_state(pci_dev);
520 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
521 }
522 
523 /*
524  * Default "suspend" method for devices that have no driver provided suspend,
525  * or not even a driver at all (second part).
526  */
527 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
528 {
529 	/*
530 	 * mark its power state as "unknown", since we don't know if
531 	 * e.g. the BIOS will change its device state when we suspend.
532 	 */
533 	if (pci_dev->current_state == PCI_D0)
534 		pci_dev->current_state = PCI_UNKNOWN;
535 }
536 
537 /*
538  * Default "resume" method for devices that have no driver provided resume,
539  * or not even a driver at all (second part).
540  */
541 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
542 {
543 	int retval;
544 
545 	/* if the device was enabled before suspend, reenable */
546 	retval = pci_reenable_device(pci_dev);
547 	/*
548 	 * if the device was busmaster before the suspend, make it busmaster
549 	 * again
550 	 */
551 	if (pci_dev->is_busmaster)
552 		pci_set_master(pci_dev);
553 
554 	return retval;
555 }
556 
557 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
558 {
559 	struct pci_dev *pci_dev = to_pci_dev(dev);
560 	struct pci_driver *drv = pci_dev->driver;
561 
562 	if (drv && drv->suspend) {
563 		pci_power_t prev = pci_dev->current_state;
564 		int error;
565 
566 		error = drv->suspend(pci_dev, state);
567 		suspend_report_result(drv->suspend, error);
568 		if (error)
569 			return error;
570 
571 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
572 		    && pci_dev->current_state != PCI_UNKNOWN) {
573 			WARN_ONCE(pci_dev->current_state != prev,
574 				"PCI PM: Device state not saved by %pF\n",
575 				drv->suspend);
576 		}
577 	}
578 
579 	pci_fixup_device(pci_fixup_suspend, pci_dev);
580 
581 	return 0;
582 }
583 
584 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
585 {
586 	struct pci_dev *pci_dev = to_pci_dev(dev);
587 	struct pci_driver *drv = pci_dev->driver;
588 
589 	if (drv && drv->suspend_late) {
590 		pci_power_t prev = pci_dev->current_state;
591 		int error;
592 
593 		error = drv->suspend_late(pci_dev, state);
594 		suspend_report_result(drv->suspend_late, error);
595 		if (error)
596 			return error;
597 
598 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
599 		    && pci_dev->current_state != PCI_UNKNOWN) {
600 			WARN_ONCE(pci_dev->current_state != prev,
601 				"PCI PM: Device state not saved by %pF\n",
602 				drv->suspend_late);
603 			goto Fixup;
604 		}
605 	}
606 
607 	if (!pci_dev->state_saved)
608 		pci_save_state(pci_dev);
609 
610 	pci_pm_set_unknown_state(pci_dev);
611 
612 Fixup:
613 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
614 
615 	return 0;
616 }
617 
618 static int pci_legacy_resume_early(struct device *dev)
619 {
620 	struct pci_dev *pci_dev = to_pci_dev(dev);
621 	struct pci_driver *drv = pci_dev->driver;
622 
623 	return drv && drv->resume_early ?
624 			drv->resume_early(pci_dev) : 0;
625 }
626 
627 static int pci_legacy_resume(struct device *dev)
628 {
629 	struct pci_dev *pci_dev = to_pci_dev(dev);
630 	struct pci_driver *drv = pci_dev->driver;
631 
632 	pci_fixup_device(pci_fixup_resume, pci_dev);
633 
634 	return drv && drv->resume ?
635 			drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
636 }
637 
638 /* Auxiliary functions used by the new power management framework */
639 
640 static void pci_pm_default_resume(struct pci_dev *pci_dev)
641 {
642 	pci_fixup_device(pci_fixup_resume, pci_dev);
643 
644 	if (!pci_has_subordinate(pci_dev))
645 		pci_enable_wake(pci_dev, PCI_D0, false);
646 }
647 
648 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
649 {
650 	/* Disable non-bridge devices without PM support */
651 	if (!pci_has_subordinate(pci_dev))
652 		pci_disable_enabled_device(pci_dev);
653 }
654 
655 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
656 {
657 	struct pci_driver *drv = pci_dev->driver;
658 	bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
659 		|| drv->resume_early);
660 
661 	/*
662 	 * Legacy PM support is used by default, so warn if the new framework is
663 	 * supported as well.  Drivers are supposed to support either the
664 	 * former, or the latter, but not both at the same time.
665 	 */
666 	WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
667 		drv->name, pci_dev->vendor, pci_dev->device);
668 
669 	return ret;
670 }
671 
672 /* New power management framework */
673 
674 static int pci_pm_prepare(struct device *dev)
675 {
676 	struct device_driver *drv = dev->driver;
677 
678 	/*
679 	 * Devices having power.ignore_children set may still be necessary for
680 	 * suspending their children in the next phase of device suspend.
681 	 */
682 	if (dev->power.ignore_children)
683 		pm_runtime_resume(dev);
684 
685 	if (drv && drv->pm && drv->pm->prepare) {
686 		int error = drv->pm->prepare(dev);
687 		if (error)
688 			return error;
689 	}
690 	return pci_dev_keep_suspended(to_pci_dev(dev));
691 }
692 
693 static void pci_pm_complete(struct device *dev)
694 {
695 	struct pci_dev *pci_dev = to_pci_dev(dev);
696 
697 	pci_dev_complete_resume(pci_dev);
698 	pm_generic_complete(dev);
699 
700 	/* Resume device if platform firmware has put it in reset-power-on */
701 	if (dev->power.direct_complete && pm_resume_via_firmware()) {
702 		pci_power_t pre_sleep_state = pci_dev->current_state;
703 
704 		pci_update_current_state(pci_dev, pci_dev->current_state);
705 		if (pci_dev->current_state < pre_sleep_state)
706 			pm_request_resume(dev);
707 	}
708 }
709 
710 #else /* !CONFIG_PM_SLEEP */
711 
712 #define pci_pm_prepare	NULL
713 #define pci_pm_complete	NULL
714 
715 #endif /* !CONFIG_PM_SLEEP */
716 
717 #ifdef CONFIG_SUSPEND
718 
719 static int pci_pm_suspend(struct device *dev)
720 {
721 	struct pci_dev *pci_dev = to_pci_dev(dev);
722 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
723 
724 	if (pci_has_legacy_pm_support(pci_dev))
725 		return pci_legacy_suspend(dev, PMSG_SUSPEND);
726 
727 	if (!pm) {
728 		pci_pm_default_suspend(pci_dev);
729 		goto Fixup;
730 	}
731 
732 	/*
733 	 * PCI devices suspended at run time need to be resumed at this point,
734 	 * because in general it is necessary to reconfigure them for system
735 	 * suspend.  Namely, if the device is supposed to wake up the system
736 	 * from the sleep state, we may need to reconfigure it for this purpose.
737 	 * In turn, if the device is not supposed to wake up the system from the
738 	 * sleep state, we'll have to prevent it from signaling wake-up.
739 	 */
740 	pm_runtime_resume(dev);
741 
742 	pci_dev->state_saved = false;
743 	if (pm->suspend) {
744 		pci_power_t prev = pci_dev->current_state;
745 		int error;
746 
747 		error = pm->suspend(dev);
748 		suspend_report_result(pm->suspend, error);
749 		if (error)
750 			return error;
751 
752 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
753 		    && pci_dev->current_state != PCI_UNKNOWN) {
754 			WARN_ONCE(pci_dev->current_state != prev,
755 				"PCI PM: State of device not saved by %pF\n",
756 				pm->suspend);
757 		}
758 	}
759 
760  Fixup:
761 	pci_fixup_device(pci_fixup_suspend, pci_dev);
762 
763 	return 0;
764 }
765 
766 static int pci_pm_suspend_noirq(struct device *dev)
767 {
768 	struct pci_dev *pci_dev = to_pci_dev(dev);
769 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
770 
771 	if (pci_has_legacy_pm_support(pci_dev))
772 		return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
773 
774 	if (!pm) {
775 		pci_save_state(pci_dev);
776 		goto Fixup;
777 	}
778 
779 	if (pm->suspend_noirq) {
780 		pci_power_t prev = pci_dev->current_state;
781 		int error;
782 
783 		error = pm->suspend_noirq(dev);
784 		suspend_report_result(pm->suspend_noirq, error);
785 		if (error)
786 			return error;
787 
788 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
789 		    && pci_dev->current_state != PCI_UNKNOWN) {
790 			WARN_ONCE(pci_dev->current_state != prev,
791 				"PCI PM: State of device not saved by %pF\n",
792 				pm->suspend_noirq);
793 			goto Fixup;
794 		}
795 	}
796 
797 	if (!pci_dev->state_saved) {
798 		pci_save_state(pci_dev);
799 		if (pci_power_manageable(pci_dev))
800 			pci_prepare_to_sleep(pci_dev);
801 	}
802 
803 	pci_pm_set_unknown_state(pci_dev);
804 
805 	/*
806 	 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
807 	 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
808 	 * hasn't been quiesced and tries to turn it off.  If the controller
809 	 * is already in D3, this can hang or cause memory corruption.
810 	 *
811 	 * Since the value of the COMMAND register doesn't matter once the
812 	 * device has been suspended, we can safely set it to 0 here.
813 	 */
814 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
815 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
816 
817 Fixup:
818 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
819 
820 	return 0;
821 }
822 
823 static int pci_pm_resume_noirq(struct device *dev)
824 {
825 	struct pci_dev *pci_dev = to_pci_dev(dev);
826 	struct device_driver *drv = dev->driver;
827 	int error = 0;
828 
829 	pci_pm_default_resume_early(pci_dev);
830 
831 	if (pci_has_legacy_pm_support(pci_dev))
832 		return pci_legacy_resume_early(dev);
833 
834 	if (drv && drv->pm && drv->pm->resume_noirq)
835 		error = drv->pm->resume_noirq(dev);
836 
837 	return error;
838 }
839 
840 static int pci_pm_resume(struct device *dev)
841 {
842 	struct pci_dev *pci_dev = to_pci_dev(dev);
843 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
844 	int error = 0;
845 
846 	/*
847 	 * This is necessary for the suspend error path in which resume is
848 	 * called without restoring the standard config registers of the device.
849 	 */
850 	if (pci_dev->state_saved)
851 		pci_restore_standard_config(pci_dev);
852 
853 	if (pci_has_legacy_pm_support(pci_dev))
854 		return pci_legacy_resume(dev);
855 
856 	pci_pm_default_resume(pci_dev);
857 
858 	if (pm) {
859 		if (pm->resume)
860 			error = pm->resume(dev);
861 	} else {
862 		pci_pm_reenable_device(pci_dev);
863 	}
864 
865 	return error;
866 }
867 
868 #else /* !CONFIG_SUSPEND */
869 
870 #define pci_pm_suspend		NULL
871 #define pci_pm_suspend_noirq	NULL
872 #define pci_pm_resume		NULL
873 #define pci_pm_resume_noirq	NULL
874 
875 #endif /* !CONFIG_SUSPEND */
876 
877 #ifdef CONFIG_HIBERNATE_CALLBACKS
878 
879 
880 /*
881  * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
882  * a hibernate transition
883  */
884 struct dev_pm_ops __weak pcibios_pm_ops;
885 
886 static int pci_pm_freeze(struct device *dev)
887 {
888 	struct pci_dev *pci_dev = to_pci_dev(dev);
889 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
890 
891 	if (pci_has_legacy_pm_support(pci_dev))
892 		return pci_legacy_suspend(dev, PMSG_FREEZE);
893 
894 	if (!pm) {
895 		pci_pm_default_suspend(pci_dev);
896 		return 0;
897 	}
898 
899 	/*
900 	 * This used to be done in pci_pm_prepare() for all devices and some
901 	 * drivers may depend on it, so do it here.  Ideally, runtime-suspended
902 	 * devices should not be touched during freeze/thaw transitions,
903 	 * however.
904 	 */
905 	pm_runtime_resume(dev);
906 
907 	pci_dev->state_saved = false;
908 	if (pm->freeze) {
909 		int error;
910 
911 		error = pm->freeze(dev);
912 		suspend_report_result(pm->freeze, error);
913 		if (error)
914 			return error;
915 	}
916 
917 	if (pcibios_pm_ops.freeze)
918 		return pcibios_pm_ops.freeze(dev);
919 
920 	return 0;
921 }
922 
923 static int pci_pm_freeze_noirq(struct device *dev)
924 {
925 	struct pci_dev *pci_dev = to_pci_dev(dev);
926 	struct device_driver *drv = dev->driver;
927 
928 	if (pci_has_legacy_pm_support(pci_dev))
929 		return pci_legacy_suspend_late(dev, PMSG_FREEZE);
930 
931 	if (drv && drv->pm && drv->pm->freeze_noirq) {
932 		int error;
933 
934 		error = drv->pm->freeze_noirq(dev);
935 		suspend_report_result(drv->pm->freeze_noirq, error);
936 		if (error)
937 			return error;
938 	}
939 
940 	if (!pci_dev->state_saved)
941 		pci_save_state(pci_dev);
942 
943 	pci_pm_set_unknown_state(pci_dev);
944 
945 	if (pcibios_pm_ops.freeze_noirq)
946 		return pcibios_pm_ops.freeze_noirq(dev);
947 
948 	return 0;
949 }
950 
951 static int pci_pm_thaw_noirq(struct device *dev)
952 {
953 	struct pci_dev *pci_dev = to_pci_dev(dev);
954 	struct device_driver *drv = dev->driver;
955 	int error = 0;
956 
957 	if (pcibios_pm_ops.thaw_noirq) {
958 		error = pcibios_pm_ops.thaw_noirq(dev);
959 		if (error)
960 			return error;
961 	}
962 
963 	if (pci_has_legacy_pm_support(pci_dev))
964 		return pci_legacy_resume_early(dev);
965 
966 	pci_update_current_state(pci_dev, PCI_D0);
967 
968 	if (drv && drv->pm && drv->pm->thaw_noirq)
969 		error = drv->pm->thaw_noirq(dev);
970 
971 	return error;
972 }
973 
974 static int pci_pm_thaw(struct device *dev)
975 {
976 	struct pci_dev *pci_dev = to_pci_dev(dev);
977 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
978 	int error = 0;
979 
980 	if (pcibios_pm_ops.thaw) {
981 		error = pcibios_pm_ops.thaw(dev);
982 		if (error)
983 			return error;
984 	}
985 
986 	if (pci_has_legacy_pm_support(pci_dev))
987 		return pci_legacy_resume(dev);
988 
989 	if (pm) {
990 		if (pm->thaw)
991 			error = pm->thaw(dev);
992 	} else {
993 		pci_pm_reenable_device(pci_dev);
994 	}
995 
996 	pci_dev->state_saved = false;
997 
998 	return error;
999 }
1000 
1001 static int pci_pm_poweroff(struct device *dev)
1002 {
1003 	struct pci_dev *pci_dev = to_pci_dev(dev);
1004 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1005 
1006 	if (pci_has_legacy_pm_support(pci_dev))
1007 		return pci_legacy_suspend(dev, PMSG_HIBERNATE);
1008 
1009 	if (!pm) {
1010 		pci_pm_default_suspend(pci_dev);
1011 		goto Fixup;
1012 	}
1013 
1014 	/* The reason to do that is the same as in pci_pm_suspend(). */
1015 	pm_runtime_resume(dev);
1016 
1017 	pci_dev->state_saved = false;
1018 	if (pm->poweroff) {
1019 		int error;
1020 
1021 		error = pm->poweroff(dev);
1022 		suspend_report_result(pm->poweroff, error);
1023 		if (error)
1024 			return error;
1025 	}
1026 
1027  Fixup:
1028 	pci_fixup_device(pci_fixup_suspend, pci_dev);
1029 
1030 	if (pcibios_pm_ops.poweroff)
1031 		return pcibios_pm_ops.poweroff(dev);
1032 
1033 	return 0;
1034 }
1035 
1036 static int pci_pm_poweroff_noirq(struct device *dev)
1037 {
1038 	struct pci_dev *pci_dev = to_pci_dev(dev);
1039 	struct device_driver *drv = dev->driver;
1040 
1041 	if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1042 		return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1043 
1044 	if (!drv || !drv->pm) {
1045 		pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1046 		return 0;
1047 	}
1048 
1049 	if (drv->pm->poweroff_noirq) {
1050 		int error;
1051 
1052 		error = drv->pm->poweroff_noirq(dev);
1053 		suspend_report_result(drv->pm->poweroff_noirq, error);
1054 		if (error)
1055 			return error;
1056 	}
1057 
1058 	if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1059 		pci_prepare_to_sleep(pci_dev);
1060 
1061 	/*
1062 	 * The reason for doing this here is the same as for the analogous code
1063 	 * in pci_pm_suspend_noirq().
1064 	 */
1065 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1066 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1067 
1068 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1069 
1070 	if (pcibios_pm_ops.poweroff_noirq)
1071 		return pcibios_pm_ops.poweroff_noirq(dev);
1072 
1073 	return 0;
1074 }
1075 
1076 static int pci_pm_restore_noirq(struct device *dev)
1077 {
1078 	struct pci_dev *pci_dev = to_pci_dev(dev);
1079 	struct device_driver *drv = dev->driver;
1080 	int error = 0;
1081 
1082 	if (pcibios_pm_ops.restore_noirq) {
1083 		error = pcibios_pm_ops.restore_noirq(dev);
1084 		if (error)
1085 			return error;
1086 	}
1087 
1088 	pci_pm_default_resume_early(pci_dev);
1089 
1090 	if (pci_has_legacy_pm_support(pci_dev))
1091 		return pci_legacy_resume_early(dev);
1092 
1093 	if (drv && drv->pm && drv->pm->restore_noirq)
1094 		error = drv->pm->restore_noirq(dev);
1095 
1096 	return error;
1097 }
1098 
1099 static int pci_pm_restore(struct device *dev)
1100 {
1101 	struct pci_dev *pci_dev = to_pci_dev(dev);
1102 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1103 	int error = 0;
1104 
1105 	if (pcibios_pm_ops.restore) {
1106 		error = pcibios_pm_ops.restore(dev);
1107 		if (error)
1108 			return error;
1109 	}
1110 
1111 	/*
1112 	 * This is necessary for the hibernation error path in which restore is
1113 	 * called without restoring the standard config registers of the device.
1114 	 */
1115 	if (pci_dev->state_saved)
1116 		pci_restore_standard_config(pci_dev);
1117 
1118 	if (pci_has_legacy_pm_support(pci_dev))
1119 		return pci_legacy_resume(dev);
1120 
1121 	pci_pm_default_resume(pci_dev);
1122 
1123 	if (pm) {
1124 		if (pm->restore)
1125 			error = pm->restore(dev);
1126 	} else {
1127 		pci_pm_reenable_device(pci_dev);
1128 	}
1129 
1130 	return error;
1131 }
1132 
1133 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1134 
1135 #define pci_pm_freeze		NULL
1136 #define pci_pm_freeze_noirq	NULL
1137 #define pci_pm_thaw		NULL
1138 #define pci_pm_thaw_noirq	NULL
1139 #define pci_pm_poweroff		NULL
1140 #define pci_pm_poweroff_noirq	NULL
1141 #define pci_pm_restore		NULL
1142 #define pci_pm_restore_noirq	NULL
1143 
1144 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1145 
1146 #ifdef CONFIG_PM
1147 
1148 static int pci_pm_runtime_suspend(struct device *dev)
1149 {
1150 	struct pci_dev *pci_dev = to_pci_dev(dev);
1151 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1152 	pci_power_t prev = pci_dev->current_state;
1153 	int error;
1154 
1155 	/*
1156 	 * If pci_dev->driver is not set (unbound), the device should
1157 	 * always remain in D0 regardless of the runtime PM status
1158 	 */
1159 	if (!pci_dev->driver)
1160 		return 0;
1161 
1162 	if (!pm || !pm->runtime_suspend)
1163 		return -ENOSYS;
1164 
1165 	pci_dev->state_saved = false;
1166 	error = pm->runtime_suspend(dev);
1167 	if (error) {
1168 		/*
1169 		 * -EBUSY and -EAGAIN is used to request the runtime PM core
1170 		 * to schedule a new suspend, so log the event only with debug
1171 		 * log level.
1172 		 */
1173 		if (error == -EBUSY || error == -EAGAIN)
1174 			dev_dbg(dev, "can't suspend now (%pf returned %d)\n",
1175 				pm->runtime_suspend, error);
1176 		else
1177 			dev_err(dev, "can't suspend (%pf returned %d)\n",
1178 				pm->runtime_suspend, error);
1179 
1180 		return error;
1181 	}
1182 
1183 	pci_fixup_device(pci_fixup_suspend, pci_dev);
1184 
1185 	if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1186 	    && pci_dev->current_state != PCI_UNKNOWN) {
1187 		WARN_ONCE(pci_dev->current_state != prev,
1188 			"PCI PM: State of device not saved by %pF\n",
1189 			pm->runtime_suspend);
1190 		return 0;
1191 	}
1192 
1193 	if (!pci_dev->state_saved) {
1194 		pci_save_state(pci_dev);
1195 		pci_finish_runtime_suspend(pci_dev);
1196 	}
1197 
1198 	return 0;
1199 }
1200 
1201 static int pci_pm_runtime_resume(struct device *dev)
1202 {
1203 	int rc;
1204 	struct pci_dev *pci_dev = to_pci_dev(dev);
1205 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1206 
1207 	/*
1208 	 * If pci_dev->driver is not set (unbound), the device should
1209 	 * always remain in D0 regardless of the runtime PM status
1210 	 */
1211 	if (!pci_dev->driver)
1212 		return 0;
1213 
1214 	if (!pm || !pm->runtime_resume)
1215 		return -ENOSYS;
1216 
1217 	pci_restore_standard_config(pci_dev);
1218 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
1219 	__pci_enable_wake(pci_dev, PCI_D0, true, false);
1220 	pci_fixup_device(pci_fixup_resume, pci_dev);
1221 
1222 	rc = pm->runtime_resume(dev);
1223 
1224 	pci_dev->runtime_d3cold = false;
1225 
1226 	return rc;
1227 }
1228 
1229 static int pci_pm_runtime_idle(struct device *dev)
1230 {
1231 	struct pci_dev *pci_dev = to_pci_dev(dev);
1232 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1233 	int ret = 0;
1234 
1235 	/*
1236 	 * If pci_dev->driver is not set (unbound), the device should
1237 	 * always remain in D0 regardless of the runtime PM status
1238 	 */
1239 	if (!pci_dev->driver)
1240 		return 0;
1241 
1242 	if (!pm)
1243 		return -ENOSYS;
1244 
1245 	if (pm->runtime_idle)
1246 		ret = pm->runtime_idle(dev);
1247 
1248 	return ret;
1249 }
1250 
1251 static const struct dev_pm_ops pci_dev_pm_ops = {
1252 	.prepare = pci_pm_prepare,
1253 	.complete = pci_pm_complete,
1254 	.suspend = pci_pm_suspend,
1255 	.resume = pci_pm_resume,
1256 	.freeze = pci_pm_freeze,
1257 	.thaw = pci_pm_thaw,
1258 	.poweroff = pci_pm_poweroff,
1259 	.restore = pci_pm_restore,
1260 	.suspend_noirq = pci_pm_suspend_noirq,
1261 	.resume_noirq = pci_pm_resume_noirq,
1262 	.freeze_noirq = pci_pm_freeze_noirq,
1263 	.thaw_noirq = pci_pm_thaw_noirq,
1264 	.poweroff_noirq = pci_pm_poweroff_noirq,
1265 	.restore_noirq = pci_pm_restore_noirq,
1266 	.runtime_suspend = pci_pm_runtime_suspend,
1267 	.runtime_resume = pci_pm_runtime_resume,
1268 	.runtime_idle = pci_pm_runtime_idle,
1269 };
1270 
1271 #define PCI_PM_OPS_PTR	(&pci_dev_pm_ops)
1272 
1273 #else /* !CONFIG_PM */
1274 
1275 #define pci_pm_runtime_suspend	NULL
1276 #define pci_pm_runtime_resume	NULL
1277 #define pci_pm_runtime_idle	NULL
1278 
1279 #define PCI_PM_OPS_PTR	NULL
1280 
1281 #endif /* !CONFIG_PM */
1282 
1283 /**
1284  * __pci_register_driver - register a new pci driver
1285  * @drv: the driver structure to register
1286  * @owner: owner module of drv
1287  * @mod_name: module name string
1288  *
1289  * Adds the driver structure to the list of registered drivers.
1290  * Returns a negative value on error, otherwise 0.
1291  * If no error occurred, the driver remains registered even if
1292  * no device was claimed during registration.
1293  */
1294 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1295 			  const char *mod_name)
1296 {
1297 	/* initialize common driver fields */
1298 	drv->driver.name = drv->name;
1299 	drv->driver.bus = &pci_bus_type;
1300 	drv->driver.owner = owner;
1301 	drv->driver.mod_name = mod_name;
1302 
1303 	spin_lock_init(&drv->dynids.lock);
1304 	INIT_LIST_HEAD(&drv->dynids.list);
1305 
1306 	/* register with core */
1307 	return driver_register(&drv->driver);
1308 }
1309 EXPORT_SYMBOL(__pci_register_driver);
1310 
1311 /**
1312  * pci_unregister_driver - unregister a pci driver
1313  * @drv: the driver structure to unregister
1314  *
1315  * Deletes the driver structure from the list of registered PCI drivers,
1316  * gives it a chance to clean up by calling its remove() function for
1317  * each device it was responsible for, and marks those devices as
1318  * driverless.
1319  */
1320 
1321 void pci_unregister_driver(struct pci_driver *drv)
1322 {
1323 	driver_unregister(&drv->driver);
1324 	pci_free_dynids(drv);
1325 }
1326 EXPORT_SYMBOL(pci_unregister_driver);
1327 
1328 static struct pci_driver pci_compat_driver = {
1329 	.name = "compat"
1330 };
1331 
1332 /**
1333  * pci_dev_driver - get the pci_driver of a device
1334  * @dev: the device to query
1335  *
1336  * Returns the appropriate pci_driver structure or %NULL if there is no
1337  * registered driver for the device.
1338  */
1339 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1340 {
1341 	if (dev->driver)
1342 		return dev->driver;
1343 	else {
1344 		int i;
1345 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1346 			if (dev->resource[i].flags & IORESOURCE_BUSY)
1347 				return &pci_compat_driver;
1348 	}
1349 	return NULL;
1350 }
1351 EXPORT_SYMBOL(pci_dev_driver);
1352 
1353 /**
1354  * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1355  * @dev: the PCI device structure to match against
1356  * @drv: the device driver to search for matching PCI device id structures
1357  *
1358  * Used by a driver to check whether a PCI device present in the
1359  * system is in its list of supported devices. Returns the matching
1360  * pci_device_id structure or %NULL if there is no match.
1361  */
1362 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1363 {
1364 	struct pci_dev *pci_dev = to_pci_dev(dev);
1365 	struct pci_driver *pci_drv;
1366 	const struct pci_device_id *found_id;
1367 
1368 	if (!pci_dev->match_driver)
1369 		return 0;
1370 
1371 	pci_drv = to_pci_driver(drv);
1372 	found_id = pci_match_device(pci_drv, pci_dev);
1373 	if (found_id)
1374 		return 1;
1375 
1376 	return 0;
1377 }
1378 
1379 /**
1380  * pci_dev_get - increments the reference count of the pci device structure
1381  * @dev: the device being referenced
1382  *
1383  * Each live reference to a device should be refcounted.
1384  *
1385  * Drivers for PCI devices should normally record such references in
1386  * their probe() methods, when they bind to a device, and release
1387  * them by calling pci_dev_put(), in their disconnect() methods.
1388  *
1389  * A pointer to the device with the incremented reference counter is returned.
1390  */
1391 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1392 {
1393 	if (dev)
1394 		get_device(&dev->dev);
1395 	return dev;
1396 }
1397 EXPORT_SYMBOL(pci_dev_get);
1398 
1399 /**
1400  * pci_dev_put - release a use of the pci device structure
1401  * @dev: device that's been disconnected
1402  *
1403  * Must be called when a user of a device is finished with it.  When the last
1404  * user of the device calls this function, the memory of the device is freed.
1405  */
1406 void pci_dev_put(struct pci_dev *dev)
1407 {
1408 	if (dev)
1409 		put_device(&dev->dev);
1410 }
1411 EXPORT_SYMBOL(pci_dev_put);
1412 
1413 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1414 {
1415 	struct pci_dev *pdev;
1416 
1417 	if (!dev)
1418 		return -ENODEV;
1419 
1420 	pdev = to_pci_dev(dev);
1421 
1422 	if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1423 		return -ENOMEM;
1424 
1425 	if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1426 		return -ENOMEM;
1427 
1428 	if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1429 			   pdev->subsystem_device))
1430 		return -ENOMEM;
1431 
1432 	if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1433 		return -ENOMEM;
1434 
1435 	if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1436 			   pdev->vendor, pdev->device,
1437 			   pdev->subsystem_vendor, pdev->subsystem_device,
1438 			   (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1439 			   (u8)(pdev->class)))
1440 		return -ENOMEM;
1441 
1442 	return 0;
1443 }
1444 
1445 static int pci_bus_num_vf(struct device *dev)
1446 {
1447 	return pci_num_vf(to_pci_dev(dev));
1448 }
1449 
1450 struct bus_type pci_bus_type = {
1451 	.name		= "pci",
1452 	.match		= pci_bus_match,
1453 	.uevent		= pci_uevent,
1454 	.probe		= pci_device_probe,
1455 	.remove		= pci_device_remove,
1456 	.shutdown	= pci_device_shutdown,
1457 	.dev_groups	= pci_dev_groups,
1458 	.bus_groups	= pci_bus_groups,
1459 	.drv_groups	= pci_drv_groups,
1460 	.pm		= PCI_PM_OPS_PTR,
1461 	.num_vf		= pci_bus_num_vf,
1462 };
1463 EXPORT_SYMBOL(pci_bus_type);
1464 
1465 static int __init pci_driver_init(void)
1466 {
1467 	return bus_register(&pci_bus_type);
1468 }
1469 postcore_initcall(pci_driver_init);
1470