1 /* 2 * drivers/pci/pci-driver.c 3 * 4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com> 5 * (C) Copyright 2007 Novell Inc. 6 * 7 * Released under the GPL v2 only. 8 * 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/device.h> 15 #include <linux/mempolicy.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/cpu.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/suspend.h> 22 #include <linux/kexec.h> 23 #include "pci.h" 24 25 struct pci_dynid { 26 struct list_head node; 27 struct pci_device_id id; 28 }; 29 30 /** 31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices 32 * @drv: target pci driver 33 * @vendor: PCI vendor ID 34 * @device: PCI device ID 35 * @subvendor: PCI subvendor ID 36 * @subdevice: PCI subdevice ID 37 * @class: PCI class 38 * @class_mask: PCI class mask 39 * @driver_data: private driver data 40 * 41 * Adds a new dynamic pci device ID to this driver and causes the 42 * driver to probe for all devices again. @drv must have been 43 * registered prior to calling this function. 44 * 45 * CONTEXT: 46 * Does GFP_KERNEL allocation. 47 * 48 * RETURNS: 49 * 0 on success, -errno on failure. 50 */ 51 int pci_add_dynid(struct pci_driver *drv, 52 unsigned int vendor, unsigned int device, 53 unsigned int subvendor, unsigned int subdevice, 54 unsigned int class, unsigned int class_mask, 55 unsigned long driver_data) 56 { 57 struct pci_dynid *dynid; 58 59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 60 if (!dynid) 61 return -ENOMEM; 62 63 dynid->id.vendor = vendor; 64 dynid->id.device = device; 65 dynid->id.subvendor = subvendor; 66 dynid->id.subdevice = subdevice; 67 dynid->id.class = class; 68 dynid->id.class_mask = class_mask; 69 dynid->id.driver_data = driver_data; 70 71 spin_lock(&drv->dynids.lock); 72 list_add_tail(&dynid->node, &drv->dynids.list); 73 spin_unlock(&drv->dynids.lock); 74 75 return driver_attach(&drv->driver); 76 } 77 EXPORT_SYMBOL_GPL(pci_add_dynid); 78 79 static void pci_free_dynids(struct pci_driver *drv) 80 { 81 struct pci_dynid *dynid, *n; 82 83 spin_lock(&drv->dynids.lock); 84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 85 list_del(&dynid->node); 86 kfree(dynid); 87 } 88 spin_unlock(&drv->dynids.lock); 89 } 90 91 /** 92 * store_new_id - sysfs frontend to pci_add_dynid() 93 * @driver: target device driver 94 * @buf: buffer for scanning device ID data 95 * @count: input size 96 * 97 * Allow PCI IDs to be added to an existing driver via sysfs. 98 */ 99 static ssize_t store_new_id(struct device_driver *driver, const char *buf, 100 size_t count) 101 { 102 struct pci_driver *pdrv = to_pci_driver(driver); 103 const struct pci_device_id *ids = pdrv->id_table; 104 __u32 vendor, device, subvendor = PCI_ANY_ID, 105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 106 unsigned long driver_data = 0; 107 int fields = 0; 108 int retval = 0; 109 110 fields = sscanf(buf, "%x %x %x %x %x %x %lx", 111 &vendor, &device, &subvendor, &subdevice, 112 &class, &class_mask, &driver_data); 113 if (fields < 2) 114 return -EINVAL; 115 116 if (fields != 7) { 117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); 118 if (!pdev) 119 return -ENOMEM; 120 121 pdev->vendor = vendor; 122 pdev->device = device; 123 pdev->subsystem_vendor = subvendor; 124 pdev->subsystem_device = subdevice; 125 pdev->class = class; 126 127 if (pci_match_id(pdrv->id_table, pdev)) 128 retval = -EEXIST; 129 130 kfree(pdev); 131 132 if (retval) 133 return retval; 134 } 135 136 /* Only accept driver_data values that match an existing id_table 137 entry */ 138 if (ids) { 139 retval = -EINVAL; 140 while (ids->vendor || ids->subvendor || ids->class_mask) { 141 if (driver_data == ids->driver_data) { 142 retval = 0; 143 break; 144 } 145 ids++; 146 } 147 if (retval) /* No match */ 148 return retval; 149 } 150 151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice, 152 class, class_mask, driver_data); 153 if (retval) 154 return retval; 155 return count; 156 } 157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id); 158 159 /** 160 * store_remove_id - remove a PCI device ID from this driver 161 * @driver: target device driver 162 * @buf: buffer for scanning device ID data 163 * @count: input size 164 * 165 * Removes a dynamic pci device ID to this driver. 166 */ 167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf, 168 size_t count) 169 { 170 struct pci_dynid *dynid, *n; 171 struct pci_driver *pdrv = to_pci_driver(driver); 172 __u32 vendor, device, subvendor = PCI_ANY_ID, 173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 174 int fields = 0; 175 size_t retval = -ENODEV; 176 177 fields = sscanf(buf, "%x %x %x %x %x %x", 178 &vendor, &device, &subvendor, &subdevice, 179 &class, &class_mask); 180 if (fields < 2) 181 return -EINVAL; 182 183 spin_lock(&pdrv->dynids.lock); 184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) { 185 struct pci_device_id *id = &dynid->id; 186 if ((id->vendor == vendor) && 187 (id->device == device) && 188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) && 189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) && 190 !((id->class ^ class) & class_mask)) { 191 list_del(&dynid->node); 192 kfree(dynid); 193 retval = count; 194 break; 195 } 196 } 197 spin_unlock(&pdrv->dynids.lock); 198 199 return retval; 200 } 201 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id); 202 203 static struct attribute *pci_drv_attrs[] = { 204 &driver_attr_new_id.attr, 205 &driver_attr_remove_id.attr, 206 NULL, 207 }; 208 ATTRIBUTE_GROUPS(pci_drv); 209 210 /** 211 * pci_match_id - See if a pci device matches a given pci_id table 212 * @ids: array of PCI device id structures to search in 213 * @dev: the PCI device structure to match against. 214 * 215 * Used by a driver to check whether a PCI device present in the 216 * system is in its list of supported devices. Returns the matching 217 * pci_device_id structure or %NULL if there is no match. 218 * 219 * Deprecated, don't use this as it will not catch any dynamic ids 220 * that a driver might want to check for. 221 */ 222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids, 223 struct pci_dev *dev) 224 { 225 if (ids) { 226 while (ids->vendor || ids->subvendor || ids->class_mask) { 227 if (pci_match_one_device(ids, dev)) 228 return ids; 229 ids++; 230 } 231 } 232 return NULL; 233 } 234 EXPORT_SYMBOL(pci_match_id); 235 236 static const struct pci_device_id pci_device_id_any = { 237 .vendor = PCI_ANY_ID, 238 .device = PCI_ANY_ID, 239 .subvendor = PCI_ANY_ID, 240 .subdevice = PCI_ANY_ID, 241 }; 242 243 /** 244 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure 245 * @drv: the PCI driver to match against 246 * @dev: the PCI device structure to match against 247 * 248 * Used by a driver to check whether a PCI device present in the 249 * system is in its list of supported devices. Returns the matching 250 * pci_device_id structure or %NULL if there is no match. 251 */ 252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv, 253 struct pci_dev *dev) 254 { 255 struct pci_dynid *dynid; 256 const struct pci_device_id *found_id = NULL; 257 258 /* When driver_override is set, only bind to the matching driver */ 259 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 260 return NULL; 261 262 /* Look at the dynamic ids first, before the static ones */ 263 spin_lock(&drv->dynids.lock); 264 list_for_each_entry(dynid, &drv->dynids.list, node) { 265 if (pci_match_one_device(&dynid->id, dev)) { 266 found_id = &dynid->id; 267 break; 268 } 269 } 270 spin_unlock(&drv->dynids.lock); 271 272 if (!found_id) 273 found_id = pci_match_id(drv->id_table, dev); 274 275 /* driver_override will always match, send a dummy id */ 276 if (!found_id && dev->driver_override) 277 found_id = &pci_device_id_any; 278 279 return found_id; 280 } 281 282 struct drv_dev_and_id { 283 struct pci_driver *drv; 284 struct pci_dev *dev; 285 const struct pci_device_id *id; 286 }; 287 288 static long local_pci_probe(void *_ddi) 289 { 290 struct drv_dev_and_id *ddi = _ddi; 291 struct pci_dev *pci_dev = ddi->dev; 292 struct pci_driver *pci_drv = ddi->drv; 293 struct device *dev = &pci_dev->dev; 294 int rc; 295 296 /* 297 * Unbound PCI devices are always put in D0, regardless of 298 * runtime PM status. During probe, the device is set to 299 * active and the usage count is incremented. If the driver 300 * supports runtime PM, it should call pm_runtime_put_noidle(), 301 * or any other runtime PM helper function decrementing the usage 302 * count, in its probe routine and pm_runtime_get_noresume() in 303 * its remove routine. 304 */ 305 pm_runtime_get_sync(dev); 306 pci_dev->driver = pci_drv; 307 rc = pci_drv->probe(pci_dev, ddi->id); 308 if (!rc) 309 return rc; 310 if (rc < 0) { 311 pci_dev->driver = NULL; 312 pm_runtime_put_sync(dev); 313 return rc; 314 } 315 /* 316 * Probe function should return < 0 for failure, 0 for success 317 * Treat values > 0 as success, but warn. 318 */ 319 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc); 320 return 0; 321 } 322 323 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev, 324 const struct pci_device_id *id) 325 { 326 int error, node; 327 struct drv_dev_and_id ddi = { drv, dev, id }; 328 329 /* 330 * Execute driver initialization on node where the device is 331 * attached. This way the driver likely allocates its local memory 332 * on the right node. 333 */ 334 node = dev_to_node(&dev->dev); 335 336 /* 337 * On NUMA systems, we are likely to call a PF probe function using 338 * work_on_cpu(). If that probe calls pci_enable_sriov() (which 339 * adds the VF devices via pci_bus_add_device()), we may re-enter 340 * this function to call the VF probe function. Calling 341 * work_on_cpu() again will cause a lockdep warning. Since VFs are 342 * always on the same node as the PF, we can work around this by 343 * avoiding work_on_cpu() when we're already on the correct node. 344 * 345 * Preemption is enabled, so it's theoretically unsafe to use 346 * numa_node_id(), but even if we run the probe function on the 347 * wrong node, it should be functionally correct. 348 */ 349 if (node >= 0 && node != numa_node_id()) { 350 int cpu; 351 352 get_online_cpus(); 353 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 354 if (cpu < nr_cpu_ids) 355 error = work_on_cpu(cpu, local_pci_probe, &ddi); 356 else 357 error = local_pci_probe(&ddi); 358 put_online_cpus(); 359 } else 360 error = local_pci_probe(&ddi); 361 362 return error; 363 } 364 365 /** 366 * __pci_device_probe - check if a driver wants to claim a specific PCI device 367 * @drv: driver to call to check if it wants the PCI device 368 * @pci_dev: PCI device being probed 369 * 370 * returns 0 on success, else error. 371 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev. 372 */ 373 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev) 374 { 375 const struct pci_device_id *id; 376 int error = 0; 377 378 if (!pci_dev->driver && drv->probe) { 379 error = -ENODEV; 380 381 id = pci_match_device(drv, pci_dev); 382 if (id) 383 error = pci_call_probe(drv, pci_dev, id); 384 } 385 return error; 386 } 387 388 int __weak pcibios_alloc_irq(struct pci_dev *dev) 389 { 390 return 0; 391 } 392 393 void __weak pcibios_free_irq(struct pci_dev *dev) 394 { 395 } 396 397 #ifdef CONFIG_PCI_IOV 398 static inline bool pci_device_can_probe(struct pci_dev *pdev) 399 { 400 return (!pdev->is_virtfn || pdev->physfn->sriov->drivers_autoprobe); 401 } 402 #else 403 static inline bool pci_device_can_probe(struct pci_dev *pdev) 404 { 405 return true; 406 } 407 #endif 408 409 static int pci_device_probe(struct device *dev) 410 { 411 int error; 412 struct pci_dev *pci_dev = to_pci_dev(dev); 413 struct pci_driver *drv = to_pci_driver(dev->driver); 414 415 error = pcibios_alloc_irq(pci_dev); 416 if (error < 0) 417 return error; 418 419 pci_dev_get(pci_dev); 420 if (pci_device_can_probe(pci_dev)) { 421 error = __pci_device_probe(drv, pci_dev); 422 if (error) { 423 pcibios_free_irq(pci_dev); 424 pci_dev_put(pci_dev); 425 } 426 } 427 428 return error; 429 } 430 431 static int pci_device_remove(struct device *dev) 432 { 433 struct pci_dev *pci_dev = to_pci_dev(dev); 434 struct pci_driver *drv = pci_dev->driver; 435 436 if (drv) { 437 if (drv->remove) { 438 pm_runtime_get_sync(dev); 439 drv->remove(pci_dev); 440 pm_runtime_put_noidle(dev); 441 } 442 pcibios_free_irq(pci_dev); 443 pci_dev->driver = NULL; 444 } 445 446 /* Undo the runtime PM settings in local_pci_probe() */ 447 pm_runtime_put_sync(dev); 448 449 /* 450 * If the device is still on, set the power state as "unknown", 451 * since it might change by the next time we load the driver. 452 */ 453 if (pci_dev->current_state == PCI_D0) 454 pci_dev->current_state = PCI_UNKNOWN; 455 456 /* 457 * We would love to complain here if pci_dev->is_enabled is set, that 458 * the driver should have called pci_disable_device(), but the 459 * unfortunate fact is there are too many odd BIOS and bridge setups 460 * that don't like drivers doing that all of the time. 461 * Oh well, we can dream of sane hardware when we sleep, no matter how 462 * horrible the crap we have to deal with is when we are awake... 463 */ 464 465 pci_dev_put(pci_dev); 466 return 0; 467 } 468 469 static void pci_device_shutdown(struct device *dev) 470 { 471 struct pci_dev *pci_dev = to_pci_dev(dev); 472 struct pci_driver *drv = pci_dev->driver; 473 474 pm_runtime_resume(dev); 475 476 if (drv && drv->shutdown) 477 drv->shutdown(pci_dev); 478 479 /* 480 * If this is a kexec reboot, turn off Bus Master bit on the 481 * device to tell it to not continue to do DMA. Don't touch 482 * devices in D3cold or unknown states. 483 * If it is not a kexec reboot, firmware will hit the PCI 484 * devices with big hammer and stop their DMA any way. 485 */ 486 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot)) 487 pci_clear_master(pci_dev); 488 } 489 490 #ifdef CONFIG_PM 491 492 /* Auxiliary functions used for system resume and run-time resume. */ 493 494 /** 495 * pci_restore_standard_config - restore standard config registers of PCI device 496 * @pci_dev: PCI device to handle 497 */ 498 static int pci_restore_standard_config(struct pci_dev *pci_dev) 499 { 500 pci_update_current_state(pci_dev, PCI_UNKNOWN); 501 502 if (pci_dev->current_state != PCI_D0) { 503 int error = pci_set_power_state(pci_dev, PCI_D0); 504 if (error) 505 return error; 506 } 507 508 pci_restore_state(pci_dev); 509 return 0; 510 } 511 512 #endif 513 514 #ifdef CONFIG_PM_SLEEP 515 516 static void pci_pm_default_resume_early(struct pci_dev *pci_dev) 517 { 518 pci_power_up(pci_dev); 519 pci_restore_state(pci_dev); 520 pci_fixup_device(pci_fixup_resume_early, pci_dev); 521 } 522 523 /* 524 * Default "suspend" method for devices that have no driver provided suspend, 525 * or not even a driver at all (second part). 526 */ 527 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev) 528 { 529 /* 530 * mark its power state as "unknown", since we don't know if 531 * e.g. the BIOS will change its device state when we suspend. 532 */ 533 if (pci_dev->current_state == PCI_D0) 534 pci_dev->current_state = PCI_UNKNOWN; 535 } 536 537 /* 538 * Default "resume" method for devices that have no driver provided resume, 539 * or not even a driver at all (second part). 540 */ 541 static int pci_pm_reenable_device(struct pci_dev *pci_dev) 542 { 543 int retval; 544 545 /* if the device was enabled before suspend, reenable */ 546 retval = pci_reenable_device(pci_dev); 547 /* 548 * if the device was busmaster before the suspend, make it busmaster 549 * again 550 */ 551 if (pci_dev->is_busmaster) 552 pci_set_master(pci_dev); 553 554 return retval; 555 } 556 557 static int pci_legacy_suspend(struct device *dev, pm_message_t state) 558 { 559 struct pci_dev *pci_dev = to_pci_dev(dev); 560 struct pci_driver *drv = pci_dev->driver; 561 562 if (drv && drv->suspend) { 563 pci_power_t prev = pci_dev->current_state; 564 int error; 565 566 error = drv->suspend(pci_dev, state); 567 suspend_report_result(drv->suspend, error); 568 if (error) 569 return error; 570 571 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 572 && pci_dev->current_state != PCI_UNKNOWN) { 573 WARN_ONCE(pci_dev->current_state != prev, 574 "PCI PM: Device state not saved by %pF\n", 575 drv->suspend); 576 } 577 } 578 579 pci_fixup_device(pci_fixup_suspend, pci_dev); 580 581 return 0; 582 } 583 584 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state) 585 { 586 struct pci_dev *pci_dev = to_pci_dev(dev); 587 struct pci_driver *drv = pci_dev->driver; 588 589 if (drv && drv->suspend_late) { 590 pci_power_t prev = pci_dev->current_state; 591 int error; 592 593 error = drv->suspend_late(pci_dev, state); 594 suspend_report_result(drv->suspend_late, error); 595 if (error) 596 return error; 597 598 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 599 && pci_dev->current_state != PCI_UNKNOWN) { 600 WARN_ONCE(pci_dev->current_state != prev, 601 "PCI PM: Device state not saved by %pF\n", 602 drv->suspend_late); 603 goto Fixup; 604 } 605 } 606 607 if (!pci_dev->state_saved) 608 pci_save_state(pci_dev); 609 610 pci_pm_set_unknown_state(pci_dev); 611 612 Fixup: 613 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 614 615 return 0; 616 } 617 618 static int pci_legacy_resume_early(struct device *dev) 619 { 620 struct pci_dev *pci_dev = to_pci_dev(dev); 621 struct pci_driver *drv = pci_dev->driver; 622 623 return drv && drv->resume_early ? 624 drv->resume_early(pci_dev) : 0; 625 } 626 627 static int pci_legacy_resume(struct device *dev) 628 { 629 struct pci_dev *pci_dev = to_pci_dev(dev); 630 struct pci_driver *drv = pci_dev->driver; 631 632 pci_fixup_device(pci_fixup_resume, pci_dev); 633 634 return drv && drv->resume ? 635 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev); 636 } 637 638 /* Auxiliary functions used by the new power management framework */ 639 640 static void pci_pm_default_resume(struct pci_dev *pci_dev) 641 { 642 pci_fixup_device(pci_fixup_resume, pci_dev); 643 644 if (!pci_has_subordinate(pci_dev)) 645 pci_enable_wake(pci_dev, PCI_D0, false); 646 } 647 648 static void pci_pm_default_suspend(struct pci_dev *pci_dev) 649 { 650 /* Disable non-bridge devices without PM support */ 651 if (!pci_has_subordinate(pci_dev)) 652 pci_disable_enabled_device(pci_dev); 653 } 654 655 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev) 656 { 657 struct pci_driver *drv = pci_dev->driver; 658 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume 659 || drv->resume_early); 660 661 /* 662 * Legacy PM support is used by default, so warn if the new framework is 663 * supported as well. Drivers are supposed to support either the 664 * former, or the latter, but not both at the same time. 665 */ 666 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n", 667 drv->name, pci_dev->vendor, pci_dev->device); 668 669 return ret; 670 } 671 672 /* New power management framework */ 673 674 static int pci_pm_prepare(struct device *dev) 675 { 676 struct device_driver *drv = dev->driver; 677 678 /* 679 * Devices having power.ignore_children set may still be necessary for 680 * suspending their children in the next phase of device suspend. 681 */ 682 if (dev->power.ignore_children) 683 pm_runtime_resume(dev); 684 685 if (drv && drv->pm && drv->pm->prepare) { 686 int error = drv->pm->prepare(dev); 687 if (error) 688 return error; 689 } 690 return pci_dev_keep_suspended(to_pci_dev(dev)); 691 } 692 693 static void pci_pm_complete(struct device *dev) 694 { 695 struct pci_dev *pci_dev = to_pci_dev(dev); 696 697 pci_dev_complete_resume(pci_dev); 698 pm_generic_complete(dev); 699 700 /* Resume device if platform firmware has put it in reset-power-on */ 701 if (dev->power.direct_complete && pm_resume_via_firmware()) { 702 pci_power_t pre_sleep_state = pci_dev->current_state; 703 704 pci_update_current_state(pci_dev, pci_dev->current_state); 705 if (pci_dev->current_state < pre_sleep_state) 706 pm_request_resume(dev); 707 } 708 } 709 710 #else /* !CONFIG_PM_SLEEP */ 711 712 #define pci_pm_prepare NULL 713 #define pci_pm_complete NULL 714 715 #endif /* !CONFIG_PM_SLEEP */ 716 717 #ifdef CONFIG_SUSPEND 718 719 static int pci_pm_suspend(struct device *dev) 720 { 721 struct pci_dev *pci_dev = to_pci_dev(dev); 722 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 723 724 if (pci_has_legacy_pm_support(pci_dev)) 725 return pci_legacy_suspend(dev, PMSG_SUSPEND); 726 727 if (!pm) { 728 pci_pm_default_suspend(pci_dev); 729 goto Fixup; 730 } 731 732 /* 733 * PCI devices suspended at run time need to be resumed at this point, 734 * because in general it is necessary to reconfigure them for system 735 * suspend. Namely, if the device is supposed to wake up the system 736 * from the sleep state, we may need to reconfigure it for this purpose. 737 * In turn, if the device is not supposed to wake up the system from the 738 * sleep state, we'll have to prevent it from signaling wake-up. 739 */ 740 pm_runtime_resume(dev); 741 742 pci_dev->state_saved = false; 743 if (pm->suspend) { 744 pci_power_t prev = pci_dev->current_state; 745 int error; 746 747 error = pm->suspend(dev); 748 suspend_report_result(pm->suspend, error); 749 if (error) 750 return error; 751 752 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 753 && pci_dev->current_state != PCI_UNKNOWN) { 754 WARN_ONCE(pci_dev->current_state != prev, 755 "PCI PM: State of device not saved by %pF\n", 756 pm->suspend); 757 } 758 } 759 760 Fixup: 761 pci_fixup_device(pci_fixup_suspend, pci_dev); 762 763 return 0; 764 } 765 766 static int pci_pm_suspend_noirq(struct device *dev) 767 { 768 struct pci_dev *pci_dev = to_pci_dev(dev); 769 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 770 771 if (pci_has_legacy_pm_support(pci_dev)) 772 return pci_legacy_suspend_late(dev, PMSG_SUSPEND); 773 774 if (!pm) { 775 pci_save_state(pci_dev); 776 goto Fixup; 777 } 778 779 if (pm->suspend_noirq) { 780 pci_power_t prev = pci_dev->current_state; 781 int error; 782 783 error = pm->suspend_noirq(dev); 784 suspend_report_result(pm->suspend_noirq, error); 785 if (error) 786 return error; 787 788 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 789 && pci_dev->current_state != PCI_UNKNOWN) { 790 WARN_ONCE(pci_dev->current_state != prev, 791 "PCI PM: State of device not saved by %pF\n", 792 pm->suspend_noirq); 793 goto Fixup; 794 } 795 } 796 797 if (!pci_dev->state_saved) { 798 pci_save_state(pci_dev); 799 if (pci_power_manageable(pci_dev)) 800 pci_prepare_to_sleep(pci_dev); 801 } 802 803 pci_pm_set_unknown_state(pci_dev); 804 805 /* 806 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's 807 * PCI COMMAND register isn't 0, the BIOS assumes that the controller 808 * hasn't been quiesced and tries to turn it off. If the controller 809 * is already in D3, this can hang or cause memory corruption. 810 * 811 * Since the value of the COMMAND register doesn't matter once the 812 * device has been suspended, we can safely set it to 0 here. 813 */ 814 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 815 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 816 817 Fixup: 818 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 819 820 return 0; 821 } 822 823 static int pci_pm_resume_noirq(struct device *dev) 824 { 825 struct pci_dev *pci_dev = to_pci_dev(dev); 826 struct device_driver *drv = dev->driver; 827 int error = 0; 828 829 pci_pm_default_resume_early(pci_dev); 830 831 if (pci_has_legacy_pm_support(pci_dev)) 832 return pci_legacy_resume_early(dev); 833 834 if (drv && drv->pm && drv->pm->resume_noirq) 835 error = drv->pm->resume_noirq(dev); 836 837 return error; 838 } 839 840 static int pci_pm_resume(struct device *dev) 841 { 842 struct pci_dev *pci_dev = to_pci_dev(dev); 843 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 844 int error = 0; 845 846 /* 847 * This is necessary for the suspend error path in which resume is 848 * called without restoring the standard config registers of the device. 849 */ 850 if (pci_dev->state_saved) 851 pci_restore_standard_config(pci_dev); 852 853 if (pci_has_legacy_pm_support(pci_dev)) 854 return pci_legacy_resume(dev); 855 856 pci_pm_default_resume(pci_dev); 857 858 if (pm) { 859 if (pm->resume) 860 error = pm->resume(dev); 861 } else { 862 pci_pm_reenable_device(pci_dev); 863 } 864 865 return error; 866 } 867 868 #else /* !CONFIG_SUSPEND */ 869 870 #define pci_pm_suspend NULL 871 #define pci_pm_suspend_noirq NULL 872 #define pci_pm_resume NULL 873 #define pci_pm_resume_noirq NULL 874 875 #endif /* !CONFIG_SUSPEND */ 876 877 #ifdef CONFIG_HIBERNATE_CALLBACKS 878 879 880 /* 881 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing 882 * a hibernate transition 883 */ 884 struct dev_pm_ops __weak pcibios_pm_ops; 885 886 static int pci_pm_freeze(struct device *dev) 887 { 888 struct pci_dev *pci_dev = to_pci_dev(dev); 889 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 890 891 if (pci_has_legacy_pm_support(pci_dev)) 892 return pci_legacy_suspend(dev, PMSG_FREEZE); 893 894 if (!pm) { 895 pci_pm_default_suspend(pci_dev); 896 return 0; 897 } 898 899 /* 900 * This used to be done in pci_pm_prepare() for all devices and some 901 * drivers may depend on it, so do it here. Ideally, runtime-suspended 902 * devices should not be touched during freeze/thaw transitions, 903 * however. 904 */ 905 pm_runtime_resume(dev); 906 907 pci_dev->state_saved = false; 908 if (pm->freeze) { 909 int error; 910 911 error = pm->freeze(dev); 912 suspend_report_result(pm->freeze, error); 913 if (error) 914 return error; 915 } 916 917 if (pcibios_pm_ops.freeze) 918 return pcibios_pm_ops.freeze(dev); 919 920 return 0; 921 } 922 923 static int pci_pm_freeze_noirq(struct device *dev) 924 { 925 struct pci_dev *pci_dev = to_pci_dev(dev); 926 struct device_driver *drv = dev->driver; 927 928 if (pci_has_legacy_pm_support(pci_dev)) 929 return pci_legacy_suspend_late(dev, PMSG_FREEZE); 930 931 if (drv && drv->pm && drv->pm->freeze_noirq) { 932 int error; 933 934 error = drv->pm->freeze_noirq(dev); 935 suspend_report_result(drv->pm->freeze_noirq, error); 936 if (error) 937 return error; 938 } 939 940 if (!pci_dev->state_saved) 941 pci_save_state(pci_dev); 942 943 pci_pm_set_unknown_state(pci_dev); 944 945 if (pcibios_pm_ops.freeze_noirq) 946 return pcibios_pm_ops.freeze_noirq(dev); 947 948 return 0; 949 } 950 951 static int pci_pm_thaw_noirq(struct device *dev) 952 { 953 struct pci_dev *pci_dev = to_pci_dev(dev); 954 struct device_driver *drv = dev->driver; 955 int error = 0; 956 957 if (pcibios_pm_ops.thaw_noirq) { 958 error = pcibios_pm_ops.thaw_noirq(dev); 959 if (error) 960 return error; 961 } 962 963 if (pci_has_legacy_pm_support(pci_dev)) 964 return pci_legacy_resume_early(dev); 965 966 pci_update_current_state(pci_dev, PCI_D0); 967 968 if (drv && drv->pm && drv->pm->thaw_noirq) 969 error = drv->pm->thaw_noirq(dev); 970 971 return error; 972 } 973 974 static int pci_pm_thaw(struct device *dev) 975 { 976 struct pci_dev *pci_dev = to_pci_dev(dev); 977 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 978 int error = 0; 979 980 if (pcibios_pm_ops.thaw) { 981 error = pcibios_pm_ops.thaw(dev); 982 if (error) 983 return error; 984 } 985 986 if (pci_has_legacy_pm_support(pci_dev)) 987 return pci_legacy_resume(dev); 988 989 if (pm) { 990 if (pm->thaw) 991 error = pm->thaw(dev); 992 } else { 993 pci_pm_reenable_device(pci_dev); 994 } 995 996 pci_dev->state_saved = false; 997 998 return error; 999 } 1000 1001 static int pci_pm_poweroff(struct device *dev) 1002 { 1003 struct pci_dev *pci_dev = to_pci_dev(dev); 1004 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1005 1006 if (pci_has_legacy_pm_support(pci_dev)) 1007 return pci_legacy_suspend(dev, PMSG_HIBERNATE); 1008 1009 if (!pm) { 1010 pci_pm_default_suspend(pci_dev); 1011 goto Fixup; 1012 } 1013 1014 /* The reason to do that is the same as in pci_pm_suspend(). */ 1015 pm_runtime_resume(dev); 1016 1017 pci_dev->state_saved = false; 1018 if (pm->poweroff) { 1019 int error; 1020 1021 error = pm->poweroff(dev); 1022 suspend_report_result(pm->poweroff, error); 1023 if (error) 1024 return error; 1025 } 1026 1027 Fixup: 1028 pci_fixup_device(pci_fixup_suspend, pci_dev); 1029 1030 if (pcibios_pm_ops.poweroff) 1031 return pcibios_pm_ops.poweroff(dev); 1032 1033 return 0; 1034 } 1035 1036 static int pci_pm_poweroff_noirq(struct device *dev) 1037 { 1038 struct pci_dev *pci_dev = to_pci_dev(dev); 1039 struct device_driver *drv = dev->driver; 1040 1041 if (pci_has_legacy_pm_support(to_pci_dev(dev))) 1042 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE); 1043 1044 if (!drv || !drv->pm) { 1045 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1046 return 0; 1047 } 1048 1049 if (drv->pm->poweroff_noirq) { 1050 int error; 1051 1052 error = drv->pm->poweroff_noirq(dev); 1053 suspend_report_result(drv->pm->poweroff_noirq, error); 1054 if (error) 1055 return error; 1056 } 1057 1058 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev)) 1059 pci_prepare_to_sleep(pci_dev); 1060 1061 /* 1062 * The reason for doing this here is the same as for the analogous code 1063 * in pci_pm_suspend_noirq(). 1064 */ 1065 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 1066 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 1067 1068 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1069 1070 if (pcibios_pm_ops.poweroff_noirq) 1071 return pcibios_pm_ops.poweroff_noirq(dev); 1072 1073 return 0; 1074 } 1075 1076 static int pci_pm_restore_noirq(struct device *dev) 1077 { 1078 struct pci_dev *pci_dev = to_pci_dev(dev); 1079 struct device_driver *drv = dev->driver; 1080 int error = 0; 1081 1082 if (pcibios_pm_ops.restore_noirq) { 1083 error = pcibios_pm_ops.restore_noirq(dev); 1084 if (error) 1085 return error; 1086 } 1087 1088 pci_pm_default_resume_early(pci_dev); 1089 1090 if (pci_has_legacy_pm_support(pci_dev)) 1091 return pci_legacy_resume_early(dev); 1092 1093 if (drv && drv->pm && drv->pm->restore_noirq) 1094 error = drv->pm->restore_noirq(dev); 1095 1096 return error; 1097 } 1098 1099 static int pci_pm_restore(struct device *dev) 1100 { 1101 struct pci_dev *pci_dev = to_pci_dev(dev); 1102 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1103 int error = 0; 1104 1105 if (pcibios_pm_ops.restore) { 1106 error = pcibios_pm_ops.restore(dev); 1107 if (error) 1108 return error; 1109 } 1110 1111 /* 1112 * This is necessary for the hibernation error path in which restore is 1113 * called without restoring the standard config registers of the device. 1114 */ 1115 if (pci_dev->state_saved) 1116 pci_restore_standard_config(pci_dev); 1117 1118 if (pci_has_legacy_pm_support(pci_dev)) 1119 return pci_legacy_resume(dev); 1120 1121 pci_pm_default_resume(pci_dev); 1122 1123 if (pm) { 1124 if (pm->restore) 1125 error = pm->restore(dev); 1126 } else { 1127 pci_pm_reenable_device(pci_dev); 1128 } 1129 1130 return error; 1131 } 1132 1133 #else /* !CONFIG_HIBERNATE_CALLBACKS */ 1134 1135 #define pci_pm_freeze NULL 1136 #define pci_pm_freeze_noirq NULL 1137 #define pci_pm_thaw NULL 1138 #define pci_pm_thaw_noirq NULL 1139 #define pci_pm_poweroff NULL 1140 #define pci_pm_poweroff_noirq NULL 1141 #define pci_pm_restore NULL 1142 #define pci_pm_restore_noirq NULL 1143 1144 #endif /* !CONFIG_HIBERNATE_CALLBACKS */ 1145 1146 #ifdef CONFIG_PM 1147 1148 static int pci_pm_runtime_suspend(struct device *dev) 1149 { 1150 struct pci_dev *pci_dev = to_pci_dev(dev); 1151 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1152 pci_power_t prev = pci_dev->current_state; 1153 int error; 1154 1155 /* 1156 * If pci_dev->driver is not set (unbound), the device should 1157 * always remain in D0 regardless of the runtime PM status 1158 */ 1159 if (!pci_dev->driver) 1160 return 0; 1161 1162 if (!pm || !pm->runtime_suspend) 1163 return -ENOSYS; 1164 1165 pci_dev->state_saved = false; 1166 error = pm->runtime_suspend(dev); 1167 if (error) { 1168 /* 1169 * -EBUSY and -EAGAIN is used to request the runtime PM core 1170 * to schedule a new suspend, so log the event only with debug 1171 * log level. 1172 */ 1173 if (error == -EBUSY || error == -EAGAIN) 1174 dev_dbg(dev, "can't suspend now (%pf returned %d)\n", 1175 pm->runtime_suspend, error); 1176 else 1177 dev_err(dev, "can't suspend (%pf returned %d)\n", 1178 pm->runtime_suspend, error); 1179 1180 return error; 1181 } 1182 1183 pci_fixup_device(pci_fixup_suspend, pci_dev); 1184 1185 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 1186 && pci_dev->current_state != PCI_UNKNOWN) { 1187 WARN_ONCE(pci_dev->current_state != prev, 1188 "PCI PM: State of device not saved by %pF\n", 1189 pm->runtime_suspend); 1190 return 0; 1191 } 1192 1193 if (!pci_dev->state_saved) { 1194 pci_save_state(pci_dev); 1195 pci_finish_runtime_suspend(pci_dev); 1196 } 1197 1198 return 0; 1199 } 1200 1201 static int pci_pm_runtime_resume(struct device *dev) 1202 { 1203 int rc; 1204 struct pci_dev *pci_dev = to_pci_dev(dev); 1205 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1206 1207 /* 1208 * If pci_dev->driver is not set (unbound), the device should 1209 * always remain in D0 regardless of the runtime PM status 1210 */ 1211 if (!pci_dev->driver) 1212 return 0; 1213 1214 if (!pm || !pm->runtime_resume) 1215 return -ENOSYS; 1216 1217 pci_restore_standard_config(pci_dev); 1218 pci_fixup_device(pci_fixup_resume_early, pci_dev); 1219 __pci_enable_wake(pci_dev, PCI_D0, true, false); 1220 pci_fixup_device(pci_fixup_resume, pci_dev); 1221 1222 rc = pm->runtime_resume(dev); 1223 1224 pci_dev->runtime_d3cold = false; 1225 1226 return rc; 1227 } 1228 1229 static int pci_pm_runtime_idle(struct device *dev) 1230 { 1231 struct pci_dev *pci_dev = to_pci_dev(dev); 1232 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1233 int ret = 0; 1234 1235 /* 1236 * If pci_dev->driver is not set (unbound), the device should 1237 * always remain in D0 regardless of the runtime PM status 1238 */ 1239 if (!pci_dev->driver) 1240 return 0; 1241 1242 if (!pm) 1243 return -ENOSYS; 1244 1245 if (pm->runtime_idle) 1246 ret = pm->runtime_idle(dev); 1247 1248 return ret; 1249 } 1250 1251 static const struct dev_pm_ops pci_dev_pm_ops = { 1252 .prepare = pci_pm_prepare, 1253 .complete = pci_pm_complete, 1254 .suspend = pci_pm_suspend, 1255 .resume = pci_pm_resume, 1256 .freeze = pci_pm_freeze, 1257 .thaw = pci_pm_thaw, 1258 .poweroff = pci_pm_poweroff, 1259 .restore = pci_pm_restore, 1260 .suspend_noirq = pci_pm_suspend_noirq, 1261 .resume_noirq = pci_pm_resume_noirq, 1262 .freeze_noirq = pci_pm_freeze_noirq, 1263 .thaw_noirq = pci_pm_thaw_noirq, 1264 .poweroff_noirq = pci_pm_poweroff_noirq, 1265 .restore_noirq = pci_pm_restore_noirq, 1266 .runtime_suspend = pci_pm_runtime_suspend, 1267 .runtime_resume = pci_pm_runtime_resume, 1268 .runtime_idle = pci_pm_runtime_idle, 1269 }; 1270 1271 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops) 1272 1273 #else /* !CONFIG_PM */ 1274 1275 #define pci_pm_runtime_suspend NULL 1276 #define pci_pm_runtime_resume NULL 1277 #define pci_pm_runtime_idle NULL 1278 1279 #define PCI_PM_OPS_PTR NULL 1280 1281 #endif /* !CONFIG_PM */ 1282 1283 /** 1284 * __pci_register_driver - register a new pci driver 1285 * @drv: the driver structure to register 1286 * @owner: owner module of drv 1287 * @mod_name: module name string 1288 * 1289 * Adds the driver structure to the list of registered drivers. 1290 * Returns a negative value on error, otherwise 0. 1291 * If no error occurred, the driver remains registered even if 1292 * no device was claimed during registration. 1293 */ 1294 int __pci_register_driver(struct pci_driver *drv, struct module *owner, 1295 const char *mod_name) 1296 { 1297 /* initialize common driver fields */ 1298 drv->driver.name = drv->name; 1299 drv->driver.bus = &pci_bus_type; 1300 drv->driver.owner = owner; 1301 drv->driver.mod_name = mod_name; 1302 1303 spin_lock_init(&drv->dynids.lock); 1304 INIT_LIST_HEAD(&drv->dynids.list); 1305 1306 /* register with core */ 1307 return driver_register(&drv->driver); 1308 } 1309 EXPORT_SYMBOL(__pci_register_driver); 1310 1311 /** 1312 * pci_unregister_driver - unregister a pci driver 1313 * @drv: the driver structure to unregister 1314 * 1315 * Deletes the driver structure from the list of registered PCI drivers, 1316 * gives it a chance to clean up by calling its remove() function for 1317 * each device it was responsible for, and marks those devices as 1318 * driverless. 1319 */ 1320 1321 void pci_unregister_driver(struct pci_driver *drv) 1322 { 1323 driver_unregister(&drv->driver); 1324 pci_free_dynids(drv); 1325 } 1326 EXPORT_SYMBOL(pci_unregister_driver); 1327 1328 static struct pci_driver pci_compat_driver = { 1329 .name = "compat" 1330 }; 1331 1332 /** 1333 * pci_dev_driver - get the pci_driver of a device 1334 * @dev: the device to query 1335 * 1336 * Returns the appropriate pci_driver structure or %NULL if there is no 1337 * registered driver for the device. 1338 */ 1339 struct pci_driver *pci_dev_driver(const struct pci_dev *dev) 1340 { 1341 if (dev->driver) 1342 return dev->driver; 1343 else { 1344 int i; 1345 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1346 if (dev->resource[i].flags & IORESOURCE_BUSY) 1347 return &pci_compat_driver; 1348 } 1349 return NULL; 1350 } 1351 EXPORT_SYMBOL(pci_dev_driver); 1352 1353 /** 1354 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure 1355 * @dev: the PCI device structure to match against 1356 * @drv: the device driver to search for matching PCI device id structures 1357 * 1358 * Used by a driver to check whether a PCI device present in the 1359 * system is in its list of supported devices. Returns the matching 1360 * pci_device_id structure or %NULL if there is no match. 1361 */ 1362 static int pci_bus_match(struct device *dev, struct device_driver *drv) 1363 { 1364 struct pci_dev *pci_dev = to_pci_dev(dev); 1365 struct pci_driver *pci_drv; 1366 const struct pci_device_id *found_id; 1367 1368 if (!pci_dev->match_driver) 1369 return 0; 1370 1371 pci_drv = to_pci_driver(drv); 1372 found_id = pci_match_device(pci_drv, pci_dev); 1373 if (found_id) 1374 return 1; 1375 1376 return 0; 1377 } 1378 1379 /** 1380 * pci_dev_get - increments the reference count of the pci device structure 1381 * @dev: the device being referenced 1382 * 1383 * Each live reference to a device should be refcounted. 1384 * 1385 * Drivers for PCI devices should normally record such references in 1386 * their probe() methods, when they bind to a device, and release 1387 * them by calling pci_dev_put(), in their disconnect() methods. 1388 * 1389 * A pointer to the device with the incremented reference counter is returned. 1390 */ 1391 struct pci_dev *pci_dev_get(struct pci_dev *dev) 1392 { 1393 if (dev) 1394 get_device(&dev->dev); 1395 return dev; 1396 } 1397 EXPORT_SYMBOL(pci_dev_get); 1398 1399 /** 1400 * pci_dev_put - release a use of the pci device structure 1401 * @dev: device that's been disconnected 1402 * 1403 * Must be called when a user of a device is finished with it. When the last 1404 * user of the device calls this function, the memory of the device is freed. 1405 */ 1406 void pci_dev_put(struct pci_dev *dev) 1407 { 1408 if (dev) 1409 put_device(&dev->dev); 1410 } 1411 EXPORT_SYMBOL(pci_dev_put); 1412 1413 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env) 1414 { 1415 struct pci_dev *pdev; 1416 1417 if (!dev) 1418 return -ENODEV; 1419 1420 pdev = to_pci_dev(dev); 1421 1422 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class)) 1423 return -ENOMEM; 1424 1425 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device)) 1426 return -ENOMEM; 1427 1428 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor, 1429 pdev->subsystem_device)) 1430 return -ENOMEM; 1431 1432 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev))) 1433 return -ENOMEM; 1434 1435 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X", 1436 pdev->vendor, pdev->device, 1437 pdev->subsystem_vendor, pdev->subsystem_device, 1438 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8), 1439 (u8)(pdev->class))) 1440 return -ENOMEM; 1441 1442 return 0; 1443 } 1444 1445 static int pci_bus_num_vf(struct device *dev) 1446 { 1447 return pci_num_vf(to_pci_dev(dev)); 1448 } 1449 1450 struct bus_type pci_bus_type = { 1451 .name = "pci", 1452 .match = pci_bus_match, 1453 .uevent = pci_uevent, 1454 .probe = pci_device_probe, 1455 .remove = pci_device_remove, 1456 .shutdown = pci_device_shutdown, 1457 .dev_groups = pci_dev_groups, 1458 .bus_groups = pci_bus_groups, 1459 .drv_groups = pci_drv_groups, 1460 .pm = PCI_PM_OPS_PTR, 1461 .num_vf = pci_bus_num_vf, 1462 }; 1463 EXPORT_SYMBOL(pci_bus_type); 1464 1465 static int __init pci_driver_init(void) 1466 { 1467 return bus_register(&pci_bus_type); 1468 } 1469 postcore_initcall(pci_driver_init); 1470