xref: /linux/drivers/pci/pci-driver.c (revision cc04a46f11ea046ed53e2c832ae29e4790f7e35f)
1 /*
2  * drivers/pci/pci-driver.c
3  *
4  * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5  * (C) Copyright 2007 Novell Inc.
6  *
7  * Released under the GPL v2 only.
8  *
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24 
25 struct pci_dynid {
26 	struct list_head node;
27 	struct pci_device_id id;
28 };
29 
30 /**
31  * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32  * @drv: target pci driver
33  * @vendor: PCI vendor ID
34  * @device: PCI device ID
35  * @subvendor: PCI subvendor ID
36  * @subdevice: PCI subdevice ID
37  * @class: PCI class
38  * @class_mask: PCI class mask
39  * @driver_data: private driver data
40  *
41  * Adds a new dynamic pci device ID to this driver and causes the
42  * driver to probe for all devices again.  @drv must have been
43  * registered prior to calling this function.
44  *
45  * CONTEXT:
46  * Does GFP_KERNEL allocation.
47  *
48  * RETURNS:
49  * 0 on success, -errno on failure.
50  */
51 int pci_add_dynid(struct pci_driver *drv,
52 		  unsigned int vendor, unsigned int device,
53 		  unsigned int subvendor, unsigned int subdevice,
54 		  unsigned int class, unsigned int class_mask,
55 		  unsigned long driver_data)
56 {
57 	struct pci_dynid *dynid;
58 
59 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60 	if (!dynid)
61 		return -ENOMEM;
62 
63 	dynid->id.vendor = vendor;
64 	dynid->id.device = device;
65 	dynid->id.subvendor = subvendor;
66 	dynid->id.subdevice = subdevice;
67 	dynid->id.class = class;
68 	dynid->id.class_mask = class_mask;
69 	dynid->id.driver_data = driver_data;
70 
71 	spin_lock(&drv->dynids.lock);
72 	list_add_tail(&dynid->node, &drv->dynids.list);
73 	spin_unlock(&drv->dynids.lock);
74 
75 	return driver_attach(&drv->driver);
76 }
77 EXPORT_SYMBOL_GPL(pci_add_dynid);
78 
79 static void pci_free_dynids(struct pci_driver *drv)
80 {
81 	struct pci_dynid *dynid, *n;
82 
83 	spin_lock(&drv->dynids.lock);
84 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85 		list_del(&dynid->node);
86 		kfree(dynid);
87 	}
88 	spin_unlock(&drv->dynids.lock);
89 }
90 
91 /**
92  * store_new_id - sysfs frontend to pci_add_dynid()
93  * @driver: target device driver
94  * @buf: buffer for scanning device ID data
95  * @count: input size
96  *
97  * Allow PCI IDs to be added to an existing driver via sysfs.
98  */
99 static ssize_t store_new_id(struct device_driver *driver, const char *buf,
100 			    size_t count)
101 {
102 	struct pci_driver *pdrv = to_pci_driver(driver);
103 	const struct pci_device_id *ids = pdrv->id_table;
104 	__u32 vendor, device, subvendor = PCI_ANY_ID,
105 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106 	unsigned long driver_data = 0;
107 	int fields = 0;
108 	int retval = 0;
109 
110 	fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111 			&vendor, &device, &subvendor, &subdevice,
112 			&class, &class_mask, &driver_data);
113 	if (fields < 2)
114 		return -EINVAL;
115 
116 	if (fields != 7) {
117 		struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118 		if (!pdev)
119 			return -ENOMEM;
120 
121 		pdev->vendor = vendor;
122 		pdev->device = device;
123 		pdev->subsystem_vendor = subvendor;
124 		pdev->subsystem_device = subdevice;
125 		pdev->class = class;
126 
127 		if (pci_match_id(pdrv->id_table, pdev))
128 			retval = -EEXIST;
129 
130 		kfree(pdev);
131 
132 		if (retval)
133 			return retval;
134 	}
135 
136 	/* Only accept driver_data values that match an existing id_table
137 	   entry */
138 	if (ids) {
139 		retval = -EINVAL;
140 		while (ids->vendor || ids->subvendor || ids->class_mask) {
141 			if (driver_data == ids->driver_data) {
142 				retval = 0;
143 				break;
144 			}
145 			ids++;
146 		}
147 		if (retval)	/* No match */
148 			return retval;
149 	}
150 
151 	retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152 			       class, class_mask, driver_data);
153 	if (retval)
154 		return retval;
155 	return count;
156 }
157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
158 
159 /**
160  * store_remove_id - remove a PCI device ID from this driver
161  * @driver: target device driver
162  * @buf: buffer for scanning device ID data
163  * @count: input size
164  *
165  * Removes a dynamic pci device ID to this driver.
166  */
167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf,
168 			       size_t count)
169 {
170 	struct pci_dynid *dynid, *n;
171 	struct pci_driver *pdrv = to_pci_driver(driver);
172 	__u32 vendor, device, subvendor = PCI_ANY_ID,
173 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174 	int fields = 0;
175 	int retval = -ENODEV;
176 
177 	fields = sscanf(buf, "%x %x %x %x %x %x",
178 			&vendor, &device, &subvendor, &subdevice,
179 			&class, &class_mask);
180 	if (fields < 2)
181 		return -EINVAL;
182 
183 	spin_lock(&pdrv->dynids.lock);
184 	list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185 		struct pci_device_id *id = &dynid->id;
186 		if ((id->vendor == vendor) &&
187 		    (id->device == device) &&
188 		    (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189 		    (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190 		    !((id->class ^ class) & class_mask)) {
191 			list_del(&dynid->node);
192 			kfree(dynid);
193 			retval = 0;
194 			break;
195 		}
196 	}
197 	spin_unlock(&pdrv->dynids.lock);
198 
199 	if (retval)
200 		return retval;
201 	return count;
202 }
203 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
204 
205 static struct attribute *pci_drv_attrs[] = {
206 	&driver_attr_new_id.attr,
207 	&driver_attr_remove_id.attr,
208 	NULL,
209 };
210 ATTRIBUTE_GROUPS(pci_drv);
211 
212 /**
213  * pci_match_id - See if a pci device matches a given pci_id table
214  * @ids: array of PCI device id structures to search in
215  * @dev: the PCI device structure to match against.
216  *
217  * Used by a driver to check whether a PCI device present in the
218  * system is in its list of supported devices.  Returns the matching
219  * pci_device_id structure or %NULL if there is no match.
220  *
221  * Deprecated, don't use this as it will not catch any dynamic ids
222  * that a driver might want to check for.
223  */
224 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
225 					 struct pci_dev *dev)
226 {
227 	if (ids) {
228 		while (ids->vendor || ids->subvendor || ids->class_mask) {
229 			if (pci_match_one_device(ids, dev))
230 				return ids;
231 			ids++;
232 		}
233 	}
234 	return NULL;
235 }
236 EXPORT_SYMBOL(pci_match_id);
237 
238 static const struct pci_device_id pci_device_id_any = {
239 	.vendor = PCI_ANY_ID,
240 	.device = PCI_ANY_ID,
241 	.subvendor = PCI_ANY_ID,
242 	.subdevice = PCI_ANY_ID,
243 };
244 
245 /**
246  * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
247  * @drv: the PCI driver to match against
248  * @dev: the PCI device structure to match against
249  *
250  * Used by a driver to check whether a PCI device present in the
251  * system is in its list of supported devices.  Returns the matching
252  * pci_device_id structure or %NULL if there is no match.
253  */
254 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
255 						    struct pci_dev *dev)
256 {
257 	struct pci_dynid *dynid;
258 	const struct pci_device_id *found_id = NULL;
259 
260 	/* When driver_override is set, only bind to the matching driver */
261 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
262 		return NULL;
263 
264 	/* Look at the dynamic ids first, before the static ones */
265 	spin_lock(&drv->dynids.lock);
266 	list_for_each_entry(dynid, &drv->dynids.list, node) {
267 		if (pci_match_one_device(&dynid->id, dev)) {
268 			found_id = &dynid->id;
269 			break;
270 		}
271 	}
272 	spin_unlock(&drv->dynids.lock);
273 
274 	if (!found_id)
275 		found_id = pci_match_id(drv->id_table, dev);
276 
277 	/* driver_override will always match, send a dummy id */
278 	if (!found_id && dev->driver_override)
279 		found_id = &pci_device_id_any;
280 
281 	return found_id;
282 }
283 
284 struct drv_dev_and_id {
285 	struct pci_driver *drv;
286 	struct pci_dev *dev;
287 	const struct pci_device_id *id;
288 };
289 
290 static long local_pci_probe(void *_ddi)
291 {
292 	struct drv_dev_and_id *ddi = _ddi;
293 	struct pci_dev *pci_dev = ddi->dev;
294 	struct pci_driver *pci_drv = ddi->drv;
295 	struct device *dev = &pci_dev->dev;
296 	int rc;
297 
298 	/*
299 	 * Unbound PCI devices are always put in D0, regardless of
300 	 * runtime PM status.  During probe, the device is set to
301 	 * active and the usage count is incremented.  If the driver
302 	 * supports runtime PM, it should call pm_runtime_put_noidle(),
303 	 * or any other runtime PM helper function decrementing the usage
304 	 * count, in its probe routine and pm_runtime_get_noresume() in
305 	 * its remove routine.
306 	 */
307 	pm_runtime_get_sync(dev);
308 	pci_dev->driver = pci_drv;
309 	rc = pci_drv->probe(pci_dev, ddi->id);
310 	if (!rc)
311 		return rc;
312 	if (rc < 0) {
313 		pci_dev->driver = NULL;
314 		pm_runtime_put_sync(dev);
315 		return rc;
316 	}
317 	/*
318 	 * Probe function should return < 0 for failure, 0 for success
319 	 * Treat values > 0 as success, but warn.
320 	 */
321 	dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
322 	return 0;
323 }
324 
325 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
326 			  const struct pci_device_id *id)
327 {
328 	int error, node;
329 	struct drv_dev_and_id ddi = { drv, dev, id };
330 
331 	/*
332 	 * Execute driver initialization on node where the device is
333 	 * attached.  This way the driver likely allocates its local memory
334 	 * on the right node.
335 	 */
336 	node = dev_to_node(&dev->dev);
337 
338 	/*
339 	 * On NUMA systems, we are likely to call a PF probe function using
340 	 * work_on_cpu().  If that probe calls pci_enable_sriov() (which
341 	 * adds the VF devices via pci_bus_add_device()), we may re-enter
342 	 * this function to call the VF probe function.  Calling
343 	 * work_on_cpu() again will cause a lockdep warning.  Since VFs are
344 	 * always on the same node as the PF, we can work around this by
345 	 * avoiding work_on_cpu() when we're already on the correct node.
346 	 *
347 	 * Preemption is enabled, so it's theoretically unsafe to use
348 	 * numa_node_id(), but even if we run the probe function on the
349 	 * wrong node, it should be functionally correct.
350 	 */
351 	if (node >= 0 && node != numa_node_id()) {
352 		int cpu;
353 
354 		get_online_cpus();
355 		cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
356 		if (cpu < nr_cpu_ids)
357 			error = work_on_cpu(cpu, local_pci_probe, &ddi);
358 		else
359 			error = local_pci_probe(&ddi);
360 		put_online_cpus();
361 	} else
362 		error = local_pci_probe(&ddi);
363 
364 	return error;
365 }
366 
367 /**
368  * __pci_device_probe - check if a driver wants to claim a specific PCI device
369  * @drv: driver to call to check if it wants the PCI device
370  * @pci_dev: PCI device being probed
371  *
372  * returns 0 on success, else error.
373  * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
374  */
375 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
376 {
377 	const struct pci_device_id *id;
378 	int error = 0;
379 
380 	if (!pci_dev->driver && drv->probe) {
381 		error = -ENODEV;
382 
383 		id = pci_match_device(drv, pci_dev);
384 		if (id)
385 			error = pci_call_probe(drv, pci_dev, id);
386 		if (error >= 0)
387 			error = 0;
388 	}
389 	return error;
390 }
391 
392 int __weak pcibios_alloc_irq(struct pci_dev *dev)
393 {
394 	return 0;
395 }
396 
397 void __weak pcibios_free_irq(struct pci_dev *dev)
398 {
399 }
400 
401 static int pci_device_probe(struct device *dev)
402 {
403 	int error;
404 	struct pci_dev *pci_dev = to_pci_dev(dev);
405 	struct pci_driver *drv = to_pci_driver(dev->driver);
406 
407 	error = pcibios_alloc_irq(pci_dev);
408 	if (error < 0)
409 		return error;
410 
411 	pci_dev_get(pci_dev);
412 	error = __pci_device_probe(drv, pci_dev);
413 	if (error) {
414 		pcibios_free_irq(pci_dev);
415 		pci_dev_put(pci_dev);
416 	}
417 
418 	return error;
419 }
420 
421 static int pci_device_remove(struct device *dev)
422 {
423 	struct pci_dev *pci_dev = to_pci_dev(dev);
424 	struct pci_driver *drv = pci_dev->driver;
425 
426 	if (drv) {
427 		if (drv->remove) {
428 			pm_runtime_get_sync(dev);
429 			drv->remove(pci_dev);
430 			pm_runtime_put_noidle(dev);
431 		}
432 		pcibios_free_irq(pci_dev);
433 		pci_dev->driver = NULL;
434 	}
435 
436 	/* Undo the runtime PM settings in local_pci_probe() */
437 	pm_runtime_put_sync(dev);
438 
439 	/*
440 	 * If the device is still on, set the power state as "unknown",
441 	 * since it might change by the next time we load the driver.
442 	 */
443 	if (pci_dev->current_state == PCI_D0)
444 		pci_dev->current_state = PCI_UNKNOWN;
445 
446 	/*
447 	 * We would love to complain here if pci_dev->is_enabled is set, that
448 	 * the driver should have called pci_disable_device(), but the
449 	 * unfortunate fact is there are too many odd BIOS and bridge setups
450 	 * that don't like drivers doing that all of the time.
451 	 * Oh well, we can dream of sane hardware when we sleep, no matter how
452 	 * horrible the crap we have to deal with is when we are awake...
453 	 */
454 
455 	pci_dev_put(pci_dev);
456 	return 0;
457 }
458 
459 static void pci_device_shutdown(struct device *dev)
460 {
461 	struct pci_dev *pci_dev = to_pci_dev(dev);
462 	struct pci_driver *drv = pci_dev->driver;
463 
464 	pm_runtime_resume(dev);
465 
466 	if (drv && drv->shutdown)
467 		drv->shutdown(pci_dev);
468 	pci_msi_shutdown(pci_dev);
469 	pci_msix_shutdown(pci_dev);
470 
471 #ifdef CONFIG_KEXEC_CORE
472 	/*
473 	 * If this is a kexec reboot, turn off Bus Master bit on the
474 	 * device to tell it to not continue to do DMA. Don't touch
475 	 * devices in D3cold or unknown states.
476 	 * If it is not a kexec reboot, firmware will hit the PCI
477 	 * devices with big hammer and stop their DMA any way.
478 	 */
479 	if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
480 		pci_clear_master(pci_dev);
481 #endif
482 }
483 
484 #ifdef CONFIG_PM
485 
486 /* Auxiliary functions used for system resume and run-time resume. */
487 
488 /**
489  * pci_restore_standard_config - restore standard config registers of PCI device
490  * @pci_dev: PCI device to handle
491  */
492 static int pci_restore_standard_config(struct pci_dev *pci_dev)
493 {
494 	pci_update_current_state(pci_dev, PCI_UNKNOWN);
495 
496 	if (pci_dev->current_state != PCI_D0) {
497 		int error = pci_set_power_state(pci_dev, PCI_D0);
498 		if (error)
499 			return error;
500 	}
501 
502 	pci_restore_state(pci_dev);
503 	return 0;
504 }
505 
506 #endif
507 
508 #ifdef CONFIG_PM_SLEEP
509 
510 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
511 {
512 	pci_power_up(pci_dev);
513 	pci_restore_state(pci_dev);
514 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
515 }
516 
517 /*
518  * Default "suspend" method for devices that have no driver provided suspend,
519  * or not even a driver at all (second part).
520  */
521 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
522 {
523 	/*
524 	 * mark its power state as "unknown", since we don't know if
525 	 * e.g. the BIOS will change its device state when we suspend.
526 	 */
527 	if (pci_dev->current_state == PCI_D0)
528 		pci_dev->current_state = PCI_UNKNOWN;
529 }
530 
531 /*
532  * Default "resume" method for devices that have no driver provided resume,
533  * or not even a driver at all (second part).
534  */
535 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
536 {
537 	int retval;
538 
539 	/* if the device was enabled before suspend, reenable */
540 	retval = pci_reenable_device(pci_dev);
541 	/*
542 	 * if the device was busmaster before the suspend, make it busmaster
543 	 * again
544 	 */
545 	if (pci_dev->is_busmaster)
546 		pci_set_master(pci_dev);
547 
548 	return retval;
549 }
550 
551 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
552 {
553 	struct pci_dev *pci_dev = to_pci_dev(dev);
554 	struct pci_driver *drv = pci_dev->driver;
555 
556 	if (drv && drv->suspend) {
557 		pci_power_t prev = pci_dev->current_state;
558 		int error;
559 
560 		error = drv->suspend(pci_dev, state);
561 		suspend_report_result(drv->suspend, error);
562 		if (error)
563 			return error;
564 
565 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
566 		    && pci_dev->current_state != PCI_UNKNOWN) {
567 			WARN_ONCE(pci_dev->current_state != prev,
568 				"PCI PM: Device state not saved by %pF\n",
569 				drv->suspend);
570 		}
571 	}
572 
573 	pci_fixup_device(pci_fixup_suspend, pci_dev);
574 
575 	return 0;
576 }
577 
578 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
579 {
580 	struct pci_dev *pci_dev = to_pci_dev(dev);
581 	struct pci_driver *drv = pci_dev->driver;
582 
583 	if (drv && drv->suspend_late) {
584 		pci_power_t prev = pci_dev->current_state;
585 		int error;
586 
587 		error = drv->suspend_late(pci_dev, state);
588 		suspend_report_result(drv->suspend_late, error);
589 		if (error)
590 			return error;
591 
592 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
593 		    && pci_dev->current_state != PCI_UNKNOWN) {
594 			WARN_ONCE(pci_dev->current_state != prev,
595 				"PCI PM: Device state not saved by %pF\n",
596 				drv->suspend_late);
597 			goto Fixup;
598 		}
599 	}
600 
601 	if (!pci_dev->state_saved)
602 		pci_save_state(pci_dev);
603 
604 	pci_pm_set_unknown_state(pci_dev);
605 
606 Fixup:
607 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
608 
609 	return 0;
610 }
611 
612 static int pci_legacy_resume_early(struct device *dev)
613 {
614 	struct pci_dev *pci_dev = to_pci_dev(dev);
615 	struct pci_driver *drv = pci_dev->driver;
616 
617 	return drv && drv->resume_early ?
618 			drv->resume_early(pci_dev) : 0;
619 }
620 
621 static int pci_legacy_resume(struct device *dev)
622 {
623 	struct pci_dev *pci_dev = to_pci_dev(dev);
624 	struct pci_driver *drv = pci_dev->driver;
625 
626 	pci_fixup_device(pci_fixup_resume, pci_dev);
627 
628 	return drv && drv->resume ?
629 			drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
630 }
631 
632 /* Auxiliary functions used by the new power management framework */
633 
634 static void pci_pm_default_resume(struct pci_dev *pci_dev)
635 {
636 	pci_fixup_device(pci_fixup_resume, pci_dev);
637 
638 	if (!pci_has_subordinate(pci_dev))
639 		pci_enable_wake(pci_dev, PCI_D0, false);
640 }
641 
642 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
643 {
644 	/* Disable non-bridge devices without PM support */
645 	if (!pci_has_subordinate(pci_dev))
646 		pci_disable_enabled_device(pci_dev);
647 }
648 
649 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
650 {
651 	struct pci_driver *drv = pci_dev->driver;
652 	bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
653 		|| drv->resume_early);
654 
655 	/*
656 	 * Legacy PM support is used by default, so warn if the new framework is
657 	 * supported as well.  Drivers are supposed to support either the
658 	 * former, or the latter, but not both at the same time.
659 	 */
660 	WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
661 		drv->name, pci_dev->vendor, pci_dev->device);
662 
663 	return ret;
664 }
665 
666 /* New power management framework */
667 
668 static int pci_pm_prepare(struct device *dev)
669 {
670 	struct device_driver *drv = dev->driver;
671 
672 	/*
673 	 * Devices having power.ignore_children set may still be necessary for
674 	 * suspending their children in the next phase of device suspend.
675 	 */
676 	if (dev->power.ignore_children)
677 		pm_runtime_resume(dev);
678 
679 	if (drv && drv->pm && drv->pm->prepare) {
680 		int error = drv->pm->prepare(dev);
681 		if (error)
682 			return error;
683 	}
684 	return pci_dev_keep_suspended(to_pci_dev(dev));
685 }
686 
687 
688 #else /* !CONFIG_PM_SLEEP */
689 
690 #define pci_pm_prepare	NULL
691 
692 #endif /* !CONFIG_PM_SLEEP */
693 
694 #ifdef CONFIG_SUSPEND
695 
696 static int pci_pm_suspend(struct device *dev)
697 {
698 	struct pci_dev *pci_dev = to_pci_dev(dev);
699 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
700 
701 	if (pci_has_legacy_pm_support(pci_dev))
702 		return pci_legacy_suspend(dev, PMSG_SUSPEND);
703 
704 	if (!pm) {
705 		pci_pm_default_suspend(pci_dev);
706 		goto Fixup;
707 	}
708 
709 	/*
710 	 * PCI devices suspended at run time need to be resumed at this point,
711 	 * because in general it is necessary to reconfigure them for system
712 	 * suspend.  Namely, if the device is supposed to wake up the system
713 	 * from the sleep state, we may need to reconfigure it for this purpose.
714 	 * In turn, if the device is not supposed to wake up the system from the
715 	 * sleep state, we'll have to prevent it from signaling wake-up.
716 	 */
717 	pm_runtime_resume(dev);
718 
719 	pci_dev->state_saved = false;
720 	if (pm->suspend) {
721 		pci_power_t prev = pci_dev->current_state;
722 		int error;
723 
724 		error = pm->suspend(dev);
725 		suspend_report_result(pm->suspend, error);
726 		if (error)
727 			return error;
728 
729 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
730 		    && pci_dev->current_state != PCI_UNKNOWN) {
731 			WARN_ONCE(pci_dev->current_state != prev,
732 				"PCI PM: State of device not saved by %pF\n",
733 				pm->suspend);
734 		}
735 	}
736 
737  Fixup:
738 	pci_fixup_device(pci_fixup_suspend, pci_dev);
739 
740 	return 0;
741 }
742 
743 static int pci_pm_suspend_noirq(struct device *dev)
744 {
745 	struct pci_dev *pci_dev = to_pci_dev(dev);
746 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
747 
748 	if (pci_has_legacy_pm_support(pci_dev))
749 		return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
750 
751 	if (!pm) {
752 		pci_save_state(pci_dev);
753 		goto Fixup;
754 	}
755 
756 	if (pm->suspend_noirq) {
757 		pci_power_t prev = pci_dev->current_state;
758 		int error;
759 
760 		error = pm->suspend_noirq(dev);
761 		suspend_report_result(pm->suspend_noirq, error);
762 		if (error)
763 			return error;
764 
765 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
766 		    && pci_dev->current_state != PCI_UNKNOWN) {
767 			WARN_ONCE(pci_dev->current_state != prev,
768 				"PCI PM: State of device not saved by %pF\n",
769 				pm->suspend_noirq);
770 			goto Fixup;
771 		}
772 	}
773 
774 	if (!pci_dev->state_saved) {
775 		pci_save_state(pci_dev);
776 		if (!pci_has_subordinate(pci_dev))
777 			pci_prepare_to_sleep(pci_dev);
778 	}
779 
780 	pci_pm_set_unknown_state(pci_dev);
781 
782 	/*
783 	 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
784 	 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
785 	 * hasn't been quiesced and tries to turn it off.  If the controller
786 	 * is already in D3, this can hang or cause memory corruption.
787 	 *
788 	 * Since the value of the COMMAND register doesn't matter once the
789 	 * device has been suspended, we can safely set it to 0 here.
790 	 */
791 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
792 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
793 
794 Fixup:
795 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
796 
797 	return 0;
798 }
799 
800 static int pci_pm_resume_noirq(struct device *dev)
801 {
802 	struct pci_dev *pci_dev = to_pci_dev(dev);
803 	struct device_driver *drv = dev->driver;
804 	int error = 0;
805 
806 	pci_pm_default_resume_early(pci_dev);
807 
808 	if (pci_has_legacy_pm_support(pci_dev))
809 		return pci_legacy_resume_early(dev);
810 
811 	if (drv && drv->pm && drv->pm->resume_noirq)
812 		error = drv->pm->resume_noirq(dev);
813 
814 	return error;
815 }
816 
817 static int pci_pm_resume(struct device *dev)
818 {
819 	struct pci_dev *pci_dev = to_pci_dev(dev);
820 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
821 	int error = 0;
822 
823 	/*
824 	 * This is necessary for the suspend error path in which resume is
825 	 * called without restoring the standard config registers of the device.
826 	 */
827 	if (pci_dev->state_saved)
828 		pci_restore_standard_config(pci_dev);
829 
830 	if (pci_has_legacy_pm_support(pci_dev))
831 		return pci_legacy_resume(dev);
832 
833 	pci_pm_default_resume(pci_dev);
834 
835 	if (pm) {
836 		if (pm->resume)
837 			error = pm->resume(dev);
838 	} else {
839 		pci_pm_reenable_device(pci_dev);
840 	}
841 
842 	return error;
843 }
844 
845 #else /* !CONFIG_SUSPEND */
846 
847 #define pci_pm_suspend		NULL
848 #define pci_pm_suspend_noirq	NULL
849 #define pci_pm_resume		NULL
850 #define pci_pm_resume_noirq	NULL
851 
852 #endif /* !CONFIG_SUSPEND */
853 
854 #ifdef CONFIG_HIBERNATE_CALLBACKS
855 
856 
857 /*
858  * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
859  * a hibernate transition
860  */
861 struct dev_pm_ops __weak pcibios_pm_ops;
862 
863 static int pci_pm_freeze(struct device *dev)
864 {
865 	struct pci_dev *pci_dev = to_pci_dev(dev);
866 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
867 
868 	if (pci_has_legacy_pm_support(pci_dev))
869 		return pci_legacy_suspend(dev, PMSG_FREEZE);
870 
871 	if (!pm) {
872 		pci_pm_default_suspend(pci_dev);
873 		return 0;
874 	}
875 
876 	/*
877 	 * This used to be done in pci_pm_prepare() for all devices and some
878 	 * drivers may depend on it, so do it here.  Ideally, runtime-suspended
879 	 * devices should not be touched during freeze/thaw transitions,
880 	 * however.
881 	 */
882 	pm_runtime_resume(dev);
883 
884 	pci_dev->state_saved = false;
885 	if (pm->freeze) {
886 		int error;
887 
888 		error = pm->freeze(dev);
889 		suspend_report_result(pm->freeze, error);
890 		if (error)
891 			return error;
892 	}
893 
894 	if (pcibios_pm_ops.freeze)
895 		return pcibios_pm_ops.freeze(dev);
896 
897 	return 0;
898 }
899 
900 static int pci_pm_freeze_noirq(struct device *dev)
901 {
902 	struct pci_dev *pci_dev = to_pci_dev(dev);
903 	struct device_driver *drv = dev->driver;
904 
905 	if (pci_has_legacy_pm_support(pci_dev))
906 		return pci_legacy_suspend_late(dev, PMSG_FREEZE);
907 
908 	if (drv && drv->pm && drv->pm->freeze_noirq) {
909 		int error;
910 
911 		error = drv->pm->freeze_noirq(dev);
912 		suspend_report_result(drv->pm->freeze_noirq, error);
913 		if (error)
914 			return error;
915 	}
916 
917 	if (!pci_dev->state_saved)
918 		pci_save_state(pci_dev);
919 
920 	pci_pm_set_unknown_state(pci_dev);
921 
922 	if (pcibios_pm_ops.freeze_noirq)
923 		return pcibios_pm_ops.freeze_noirq(dev);
924 
925 	return 0;
926 }
927 
928 static int pci_pm_thaw_noirq(struct device *dev)
929 {
930 	struct pci_dev *pci_dev = to_pci_dev(dev);
931 	struct device_driver *drv = dev->driver;
932 	int error = 0;
933 
934 	if (pcibios_pm_ops.thaw_noirq) {
935 		error = pcibios_pm_ops.thaw_noirq(dev);
936 		if (error)
937 			return error;
938 	}
939 
940 	if (pci_has_legacy_pm_support(pci_dev))
941 		return pci_legacy_resume_early(dev);
942 
943 	pci_update_current_state(pci_dev, PCI_D0);
944 
945 	if (drv && drv->pm && drv->pm->thaw_noirq)
946 		error = drv->pm->thaw_noirq(dev);
947 
948 	return error;
949 }
950 
951 static int pci_pm_thaw(struct device *dev)
952 {
953 	struct pci_dev *pci_dev = to_pci_dev(dev);
954 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
955 	int error = 0;
956 
957 	if (pcibios_pm_ops.thaw) {
958 		error = pcibios_pm_ops.thaw(dev);
959 		if (error)
960 			return error;
961 	}
962 
963 	if (pci_has_legacy_pm_support(pci_dev))
964 		return pci_legacy_resume(dev);
965 
966 	if (pm) {
967 		if (pm->thaw)
968 			error = pm->thaw(dev);
969 	} else {
970 		pci_pm_reenable_device(pci_dev);
971 	}
972 
973 	pci_dev->state_saved = false;
974 
975 	return error;
976 }
977 
978 static int pci_pm_poweroff(struct device *dev)
979 {
980 	struct pci_dev *pci_dev = to_pci_dev(dev);
981 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
982 
983 	if (pci_has_legacy_pm_support(pci_dev))
984 		return pci_legacy_suspend(dev, PMSG_HIBERNATE);
985 
986 	if (!pm) {
987 		pci_pm_default_suspend(pci_dev);
988 		goto Fixup;
989 	}
990 
991 	/* The reason to do that is the same as in pci_pm_suspend(). */
992 	pm_runtime_resume(dev);
993 
994 	pci_dev->state_saved = false;
995 	if (pm->poweroff) {
996 		int error;
997 
998 		error = pm->poweroff(dev);
999 		suspend_report_result(pm->poweroff, error);
1000 		if (error)
1001 			return error;
1002 	}
1003 
1004  Fixup:
1005 	pci_fixup_device(pci_fixup_suspend, pci_dev);
1006 
1007 	if (pcibios_pm_ops.poweroff)
1008 		return pcibios_pm_ops.poweroff(dev);
1009 
1010 	return 0;
1011 }
1012 
1013 static int pci_pm_poweroff_noirq(struct device *dev)
1014 {
1015 	struct pci_dev *pci_dev = to_pci_dev(dev);
1016 	struct device_driver *drv = dev->driver;
1017 
1018 	if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1019 		return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1020 
1021 	if (!drv || !drv->pm) {
1022 		pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1023 		return 0;
1024 	}
1025 
1026 	if (drv->pm->poweroff_noirq) {
1027 		int error;
1028 
1029 		error = drv->pm->poweroff_noirq(dev);
1030 		suspend_report_result(drv->pm->poweroff_noirq, error);
1031 		if (error)
1032 			return error;
1033 	}
1034 
1035 	if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1036 		pci_prepare_to_sleep(pci_dev);
1037 
1038 	/*
1039 	 * The reason for doing this here is the same as for the analogous code
1040 	 * in pci_pm_suspend_noirq().
1041 	 */
1042 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1043 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1044 
1045 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1046 
1047 	if (pcibios_pm_ops.poweroff_noirq)
1048 		return pcibios_pm_ops.poweroff_noirq(dev);
1049 
1050 	return 0;
1051 }
1052 
1053 static int pci_pm_restore_noirq(struct device *dev)
1054 {
1055 	struct pci_dev *pci_dev = to_pci_dev(dev);
1056 	struct device_driver *drv = dev->driver;
1057 	int error = 0;
1058 
1059 	if (pcibios_pm_ops.restore_noirq) {
1060 		error = pcibios_pm_ops.restore_noirq(dev);
1061 		if (error)
1062 			return error;
1063 	}
1064 
1065 	pci_pm_default_resume_early(pci_dev);
1066 
1067 	if (pci_has_legacy_pm_support(pci_dev))
1068 		return pci_legacy_resume_early(dev);
1069 
1070 	if (drv && drv->pm && drv->pm->restore_noirq)
1071 		error = drv->pm->restore_noirq(dev);
1072 
1073 	return error;
1074 }
1075 
1076 static int pci_pm_restore(struct device *dev)
1077 {
1078 	struct pci_dev *pci_dev = to_pci_dev(dev);
1079 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1080 	int error = 0;
1081 
1082 	if (pcibios_pm_ops.restore) {
1083 		error = pcibios_pm_ops.restore(dev);
1084 		if (error)
1085 			return error;
1086 	}
1087 
1088 	/*
1089 	 * This is necessary for the hibernation error path in which restore is
1090 	 * called without restoring the standard config registers of the device.
1091 	 */
1092 	if (pci_dev->state_saved)
1093 		pci_restore_standard_config(pci_dev);
1094 
1095 	if (pci_has_legacy_pm_support(pci_dev))
1096 		return pci_legacy_resume(dev);
1097 
1098 	pci_pm_default_resume(pci_dev);
1099 
1100 	if (pm) {
1101 		if (pm->restore)
1102 			error = pm->restore(dev);
1103 	} else {
1104 		pci_pm_reenable_device(pci_dev);
1105 	}
1106 
1107 	return error;
1108 }
1109 
1110 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1111 
1112 #define pci_pm_freeze		NULL
1113 #define pci_pm_freeze_noirq	NULL
1114 #define pci_pm_thaw		NULL
1115 #define pci_pm_thaw_noirq	NULL
1116 #define pci_pm_poweroff		NULL
1117 #define pci_pm_poweroff_noirq	NULL
1118 #define pci_pm_restore		NULL
1119 #define pci_pm_restore_noirq	NULL
1120 
1121 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1122 
1123 #ifdef CONFIG_PM
1124 
1125 static int pci_pm_runtime_suspend(struct device *dev)
1126 {
1127 	struct pci_dev *pci_dev = to_pci_dev(dev);
1128 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1129 	pci_power_t prev = pci_dev->current_state;
1130 	int error;
1131 
1132 	/*
1133 	 * If pci_dev->driver is not set (unbound), the device should
1134 	 * always remain in D0 regardless of the runtime PM status
1135 	 */
1136 	if (!pci_dev->driver)
1137 		return 0;
1138 
1139 	if (!pm || !pm->runtime_suspend)
1140 		return -ENOSYS;
1141 
1142 	pci_dev->state_saved = false;
1143 	pci_dev->no_d3cold = false;
1144 	error = pm->runtime_suspend(dev);
1145 	suspend_report_result(pm->runtime_suspend, error);
1146 	if (error)
1147 		return error;
1148 	if (!pci_dev->d3cold_allowed)
1149 		pci_dev->no_d3cold = true;
1150 
1151 	pci_fixup_device(pci_fixup_suspend, pci_dev);
1152 
1153 	if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1154 	    && pci_dev->current_state != PCI_UNKNOWN) {
1155 		WARN_ONCE(pci_dev->current_state != prev,
1156 			"PCI PM: State of device not saved by %pF\n",
1157 			pm->runtime_suspend);
1158 		return 0;
1159 	}
1160 
1161 	if (!pci_dev->state_saved) {
1162 		pci_save_state(pci_dev);
1163 		pci_finish_runtime_suspend(pci_dev);
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 static int pci_pm_runtime_resume(struct device *dev)
1170 {
1171 	int rc;
1172 	struct pci_dev *pci_dev = to_pci_dev(dev);
1173 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1174 
1175 	/*
1176 	 * If pci_dev->driver is not set (unbound), the device should
1177 	 * always remain in D0 regardless of the runtime PM status
1178 	 */
1179 	if (!pci_dev->driver)
1180 		return 0;
1181 
1182 	if (!pm || !pm->runtime_resume)
1183 		return -ENOSYS;
1184 
1185 	pci_restore_standard_config(pci_dev);
1186 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
1187 	__pci_enable_wake(pci_dev, PCI_D0, true, false);
1188 	pci_fixup_device(pci_fixup_resume, pci_dev);
1189 
1190 	rc = pm->runtime_resume(dev);
1191 
1192 	pci_dev->runtime_d3cold = false;
1193 
1194 	return rc;
1195 }
1196 
1197 static int pci_pm_runtime_idle(struct device *dev)
1198 {
1199 	struct pci_dev *pci_dev = to_pci_dev(dev);
1200 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1201 	int ret = 0;
1202 
1203 	/*
1204 	 * If pci_dev->driver is not set (unbound), the device should
1205 	 * always remain in D0 regardless of the runtime PM status
1206 	 */
1207 	if (!pci_dev->driver)
1208 		return 0;
1209 
1210 	if (!pm)
1211 		return -ENOSYS;
1212 
1213 	if (pm->runtime_idle)
1214 		ret = pm->runtime_idle(dev);
1215 
1216 	return ret;
1217 }
1218 
1219 static const struct dev_pm_ops pci_dev_pm_ops = {
1220 	.prepare = pci_pm_prepare,
1221 	.suspend = pci_pm_suspend,
1222 	.resume = pci_pm_resume,
1223 	.freeze = pci_pm_freeze,
1224 	.thaw = pci_pm_thaw,
1225 	.poweroff = pci_pm_poweroff,
1226 	.restore = pci_pm_restore,
1227 	.suspend_noirq = pci_pm_suspend_noirq,
1228 	.resume_noirq = pci_pm_resume_noirq,
1229 	.freeze_noirq = pci_pm_freeze_noirq,
1230 	.thaw_noirq = pci_pm_thaw_noirq,
1231 	.poweroff_noirq = pci_pm_poweroff_noirq,
1232 	.restore_noirq = pci_pm_restore_noirq,
1233 	.runtime_suspend = pci_pm_runtime_suspend,
1234 	.runtime_resume = pci_pm_runtime_resume,
1235 	.runtime_idle = pci_pm_runtime_idle,
1236 };
1237 
1238 #define PCI_PM_OPS_PTR	(&pci_dev_pm_ops)
1239 
1240 #else /* !CONFIG_PM */
1241 
1242 #define pci_pm_runtime_suspend	NULL
1243 #define pci_pm_runtime_resume	NULL
1244 #define pci_pm_runtime_idle	NULL
1245 
1246 #define PCI_PM_OPS_PTR	NULL
1247 
1248 #endif /* !CONFIG_PM */
1249 
1250 /**
1251  * __pci_register_driver - register a new pci driver
1252  * @drv: the driver structure to register
1253  * @owner: owner module of drv
1254  * @mod_name: module name string
1255  *
1256  * Adds the driver structure to the list of registered drivers.
1257  * Returns a negative value on error, otherwise 0.
1258  * If no error occurred, the driver remains registered even if
1259  * no device was claimed during registration.
1260  */
1261 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1262 			  const char *mod_name)
1263 {
1264 	/* initialize common driver fields */
1265 	drv->driver.name = drv->name;
1266 	drv->driver.bus = &pci_bus_type;
1267 	drv->driver.owner = owner;
1268 	drv->driver.mod_name = mod_name;
1269 
1270 	spin_lock_init(&drv->dynids.lock);
1271 	INIT_LIST_HEAD(&drv->dynids.list);
1272 
1273 	/* register with core */
1274 	return driver_register(&drv->driver);
1275 }
1276 EXPORT_SYMBOL(__pci_register_driver);
1277 
1278 /**
1279  * pci_unregister_driver - unregister a pci driver
1280  * @drv: the driver structure to unregister
1281  *
1282  * Deletes the driver structure from the list of registered PCI drivers,
1283  * gives it a chance to clean up by calling its remove() function for
1284  * each device it was responsible for, and marks those devices as
1285  * driverless.
1286  */
1287 
1288 void pci_unregister_driver(struct pci_driver *drv)
1289 {
1290 	driver_unregister(&drv->driver);
1291 	pci_free_dynids(drv);
1292 }
1293 EXPORT_SYMBOL(pci_unregister_driver);
1294 
1295 static struct pci_driver pci_compat_driver = {
1296 	.name = "compat"
1297 };
1298 
1299 /**
1300  * pci_dev_driver - get the pci_driver of a device
1301  * @dev: the device to query
1302  *
1303  * Returns the appropriate pci_driver structure or %NULL if there is no
1304  * registered driver for the device.
1305  */
1306 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1307 {
1308 	if (dev->driver)
1309 		return dev->driver;
1310 	else {
1311 		int i;
1312 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1313 			if (dev->resource[i].flags & IORESOURCE_BUSY)
1314 				return &pci_compat_driver;
1315 	}
1316 	return NULL;
1317 }
1318 EXPORT_SYMBOL(pci_dev_driver);
1319 
1320 /**
1321  * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1322  * @dev: the PCI device structure to match against
1323  * @drv: the device driver to search for matching PCI device id structures
1324  *
1325  * Used by a driver to check whether a PCI device present in the
1326  * system is in its list of supported devices. Returns the matching
1327  * pci_device_id structure or %NULL if there is no match.
1328  */
1329 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1330 {
1331 	struct pci_dev *pci_dev = to_pci_dev(dev);
1332 	struct pci_driver *pci_drv;
1333 	const struct pci_device_id *found_id;
1334 
1335 	if (!pci_dev->match_driver)
1336 		return 0;
1337 
1338 	pci_drv = to_pci_driver(drv);
1339 	found_id = pci_match_device(pci_drv, pci_dev);
1340 	if (found_id)
1341 		return 1;
1342 
1343 	return 0;
1344 }
1345 
1346 /**
1347  * pci_dev_get - increments the reference count of the pci device structure
1348  * @dev: the device being referenced
1349  *
1350  * Each live reference to a device should be refcounted.
1351  *
1352  * Drivers for PCI devices should normally record such references in
1353  * their probe() methods, when they bind to a device, and release
1354  * them by calling pci_dev_put(), in their disconnect() methods.
1355  *
1356  * A pointer to the device with the incremented reference counter is returned.
1357  */
1358 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1359 {
1360 	if (dev)
1361 		get_device(&dev->dev);
1362 	return dev;
1363 }
1364 EXPORT_SYMBOL(pci_dev_get);
1365 
1366 /**
1367  * pci_dev_put - release a use of the pci device structure
1368  * @dev: device that's been disconnected
1369  *
1370  * Must be called when a user of a device is finished with it.  When the last
1371  * user of the device calls this function, the memory of the device is freed.
1372  */
1373 void pci_dev_put(struct pci_dev *dev)
1374 {
1375 	if (dev)
1376 		put_device(&dev->dev);
1377 }
1378 EXPORT_SYMBOL(pci_dev_put);
1379 
1380 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1381 {
1382 	struct pci_dev *pdev;
1383 
1384 	if (!dev)
1385 		return -ENODEV;
1386 
1387 	pdev = to_pci_dev(dev);
1388 
1389 	if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1390 		return -ENOMEM;
1391 
1392 	if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1393 		return -ENOMEM;
1394 
1395 	if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1396 			   pdev->subsystem_device))
1397 		return -ENOMEM;
1398 
1399 	if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1400 		return -ENOMEM;
1401 
1402 	if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1403 			   pdev->vendor, pdev->device,
1404 			   pdev->subsystem_vendor, pdev->subsystem_device,
1405 			   (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1406 			   (u8)(pdev->class)))
1407 		return -ENOMEM;
1408 
1409 	return 0;
1410 }
1411 
1412 struct bus_type pci_bus_type = {
1413 	.name		= "pci",
1414 	.match		= pci_bus_match,
1415 	.uevent		= pci_uevent,
1416 	.probe		= pci_device_probe,
1417 	.remove		= pci_device_remove,
1418 	.shutdown	= pci_device_shutdown,
1419 	.dev_groups	= pci_dev_groups,
1420 	.bus_groups	= pci_bus_groups,
1421 	.drv_groups	= pci_drv_groups,
1422 	.pm		= PCI_PM_OPS_PTR,
1423 };
1424 EXPORT_SYMBOL(pci_bus_type);
1425 
1426 static int __init pci_driver_init(void)
1427 {
1428 	return bus_register(&pci_bus_type);
1429 }
1430 postcore_initcall(pci_driver_init);
1431