1 /* 2 * drivers/pci/pci-driver.c 3 * 4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com> 5 * (C) Copyright 2007 Novell Inc. 6 * 7 * Released under the GPL v2 only. 8 * 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/device.h> 15 #include <linux/mempolicy.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/cpu.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/suspend.h> 22 #include <linux/kexec.h> 23 #include "pci.h" 24 25 struct pci_dynid { 26 struct list_head node; 27 struct pci_device_id id; 28 }; 29 30 /** 31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices 32 * @drv: target pci driver 33 * @vendor: PCI vendor ID 34 * @device: PCI device ID 35 * @subvendor: PCI subvendor ID 36 * @subdevice: PCI subdevice ID 37 * @class: PCI class 38 * @class_mask: PCI class mask 39 * @driver_data: private driver data 40 * 41 * Adds a new dynamic pci device ID to this driver and causes the 42 * driver to probe for all devices again. @drv must have been 43 * registered prior to calling this function. 44 * 45 * CONTEXT: 46 * Does GFP_KERNEL allocation. 47 * 48 * RETURNS: 49 * 0 on success, -errno on failure. 50 */ 51 int pci_add_dynid(struct pci_driver *drv, 52 unsigned int vendor, unsigned int device, 53 unsigned int subvendor, unsigned int subdevice, 54 unsigned int class, unsigned int class_mask, 55 unsigned long driver_data) 56 { 57 struct pci_dynid *dynid; 58 59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 60 if (!dynid) 61 return -ENOMEM; 62 63 dynid->id.vendor = vendor; 64 dynid->id.device = device; 65 dynid->id.subvendor = subvendor; 66 dynid->id.subdevice = subdevice; 67 dynid->id.class = class; 68 dynid->id.class_mask = class_mask; 69 dynid->id.driver_data = driver_data; 70 71 spin_lock(&drv->dynids.lock); 72 list_add_tail(&dynid->node, &drv->dynids.list); 73 spin_unlock(&drv->dynids.lock); 74 75 return driver_attach(&drv->driver); 76 } 77 EXPORT_SYMBOL_GPL(pci_add_dynid); 78 79 static void pci_free_dynids(struct pci_driver *drv) 80 { 81 struct pci_dynid *dynid, *n; 82 83 spin_lock(&drv->dynids.lock); 84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 85 list_del(&dynid->node); 86 kfree(dynid); 87 } 88 spin_unlock(&drv->dynids.lock); 89 } 90 91 /** 92 * store_new_id - sysfs frontend to pci_add_dynid() 93 * @driver: target device driver 94 * @buf: buffer for scanning device ID data 95 * @count: input size 96 * 97 * Allow PCI IDs to be added to an existing driver via sysfs. 98 */ 99 static ssize_t store_new_id(struct device_driver *driver, const char *buf, 100 size_t count) 101 { 102 struct pci_driver *pdrv = to_pci_driver(driver); 103 const struct pci_device_id *ids = pdrv->id_table; 104 __u32 vendor, device, subvendor = PCI_ANY_ID, 105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 106 unsigned long driver_data = 0; 107 int fields = 0; 108 int retval = 0; 109 110 fields = sscanf(buf, "%x %x %x %x %x %x %lx", 111 &vendor, &device, &subvendor, &subdevice, 112 &class, &class_mask, &driver_data); 113 if (fields < 2) 114 return -EINVAL; 115 116 if (fields != 7) { 117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); 118 if (!pdev) 119 return -ENOMEM; 120 121 pdev->vendor = vendor; 122 pdev->device = device; 123 pdev->subsystem_vendor = subvendor; 124 pdev->subsystem_device = subdevice; 125 pdev->class = class; 126 127 if (pci_match_id(pdrv->id_table, pdev)) 128 retval = -EEXIST; 129 130 kfree(pdev); 131 132 if (retval) 133 return retval; 134 } 135 136 /* Only accept driver_data values that match an existing id_table 137 entry */ 138 if (ids) { 139 retval = -EINVAL; 140 while (ids->vendor || ids->subvendor || ids->class_mask) { 141 if (driver_data == ids->driver_data) { 142 retval = 0; 143 break; 144 } 145 ids++; 146 } 147 if (retval) /* No match */ 148 return retval; 149 } 150 151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice, 152 class, class_mask, driver_data); 153 if (retval) 154 return retval; 155 return count; 156 } 157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id); 158 159 /** 160 * store_remove_id - remove a PCI device ID from this driver 161 * @driver: target device driver 162 * @buf: buffer for scanning device ID data 163 * @count: input size 164 * 165 * Removes a dynamic pci device ID to this driver. 166 */ 167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf, 168 size_t count) 169 { 170 struct pci_dynid *dynid, *n; 171 struct pci_driver *pdrv = to_pci_driver(driver); 172 __u32 vendor, device, subvendor = PCI_ANY_ID, 173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 174 int fields = 0; 175 int retval = -ENODEV; 176 177 fields = sscanf(buf, "%x %x %x %x %x %x", 178 &vendor, &device, &subvendor, &subdevice, 179 &class, &class_mask); 180 if (fields < 2) 181 return -EINVAL; 182 183 spin_lock(&pdrv->dynids.lock); 184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) { 185 struct pci_device_id *id = &dynid->id; 186 if ((id->vendor == vendor) && 187 (id->device == device) && 188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) && 189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) && 190 !((id->class ^ class) & class_mask)) { 191 list_del(&dynid->node); 192 kfree(dynid); 193 retval = 0; 194 break; 195 } 196 } 197 spin_unlock(&pdrv->dynids.lock); 198 199 if (retval) 200 return retval; 201 return count; 202 } 203 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id); 204 205 static struct attribute *pci_drv_attrs[] = { 206 &driver_attr_new_id.attr, 207 &driver_attr_remove_id.attr, 208 NULL, 209 }; 210 ATTRIBUTE_GROUPS(pci_drv); 211 212 /** 213 * pci_match_id - See if a pci device matches a given pci_id table 214 * @ids: array of PCI device id structures to search in 215 * @dev: the PCI device structure to match against. 216 * 217 * Used by a driver to check whether a PCI device present in the 218 * system is in its list of supported devices. Returns the matching 219 * pci_device_id structure or %NULL if there is no match. 220 * 221 * Deprecated, don't use this as it will not catch any dynamic ids 222 * that a driver might want to check for. 223 */ 224 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids, 225 struct pci_dev *dev) 226 { 227 if (ids) { 228 while (ids->vendor || ids->subvendor || ids->class_mask) { 229 if (pci_match_one_device(ids, dev)) 230 return ids; 231 ids++; 232 } 233 } 234 return NULL; 235 } 236 EXPORT_SYMBOL(pci_match_id); 237 238 static const struct pci_device_id pci_device_id_any = { 239 .vendor = PCI_ANY_ID, 240 .device = PCI_ANY_ID, 241 .subvendor = PCI_ANY_ID, 242 .subdevice = PCI_ANY_ID, 243 }; 244 245 /** 246 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure 247 * @drv: the PCI driver to match against 248 * @dev: the PCI device structure to match against 249 * 250 * Used by a driver to check whether a PCI device present in the 251 * system is in its list of supported devices. Returns the matching 252 * pci_device_id structure or %NULL if there is no match. 253 */ 254 static const struct pci_device_id *pci_match_device(struct pci_driver *drv, 255 struct pci_dev *dev) 256 { 257 struct pci_dynid *dynid; 258 const struct pci_device_id *found_id = NULL; 259 260 /* When driver_override is set, only bind to the matching driver */ 261 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 262 return NULL; 263 264 /* Look at the dynamic ids first, before the static ones */ 265 spin_lock(&drv->dynids.lock); 266 list_for_each_entry(dynid, &drv->dynids.list, node) { 267 if (pci_match_one_device(&dynid->id, dev)) { 268 found_id = &dynid->id; 269 break; 270 } 271 } 272 spin_unlock(&drv->dynids.lock); 273 274 if (!found_id) 275 found_id = pci_match_id(drv->id_table, dev); 276 277 /* driver_override will always match, send a dummy id */ 278 if (!found_id && dev->driver_override) 279 found_id = &pci_device_id_any; 280 281 return found_id; 282 } 283 284 struct drv_dev_and_id { 285 struct pci_driver *drv; 286 struct pci_dev *dev; 287 const struct pci_device_id *id; 288 }; 289 290 static long local_pci_probe(void *_ddi) 291 { 292 struct drv_dev_and_id *ddi = _ddi; 293 struct pci_dev *pci_dev = ddi->dev; 294 struct pci_driver *pci_drv = ddi->drv; 295 struct device *dev = &pci_dev->dev; 296 int rc; 297 298 /* 299 * Unbound PCI devices are always put in D0, regardless of 300 * runtime PM status. During probe, the device is set to 301 * active and the usage count is incremented. If the driver 302 * supports runtime PM, it should call pm_runtime_put_noidle(), 303 * or any other runtime PM helper function decrementing the usage 304 * count, in its probe routine and pm_runtime_get_noresume() in 305 * its remove routine. 306 */ 307 pm_runtime_get_sync(dev); 308 pci_dev->driver = pci_drv; 309 rc = pci_drv->probe(pci_dev, ddi->id); 310 if (!rc) 311 return rc; 312 if (rc < 0) { 313 pci_dev->driver = NULL; 314 pm_runtime_put_sync(dev); 315 return rc; 316 } 317 /* 318 * Probe function should return < 0 for failure, 0 for success 319 * Treat values > 0 as success, but warn. 320 */ 321 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc); 322 return 0; 323 } 324 325 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev, 326 const struct pci_device_id *id) 327 { 328 int error, node; 329 struct drv_dev_and_id ddi = { drv, dev, id }; 330 331 /* 332 * Execute driver initialization on node where the device is 333 * attached. This way the driver likely allocates its local memory 334 * on the right node. 335 */ 336 node = dev_to_node(&dev->dev); 337 338 /* 339 * On NUMA systems, we are likely to call a PF probe function using 340 * work_on_cpu(). If that probe calls pci_enable_sriov() (which 341 * adds the VF devices via pci_bus_add_device()), we may re-enter 342 * this function to call the VF probe function. Calling 343 * work_on_cpu() again will cause a lockdep warning. Since VFs are 344 * always on the same node as the PF, we can work around this by 345 * avoiding work_on_cpu() when we're already on the correct node. 346 * 347 * Preemption is enabled, so it's theoretically unsafe to use 348 * numa_node_id(), but even if we run the probe function on the 349 * wrong node, it should be functionally correct. 350 */ 351 if (node >= 0 && node != numa_node_id()) { 352 int cpu; 353 354 get_online_cpus(); 355 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 356 if (cpu < nr_cpu_ids) 357 error = work_on_cpu(cpu, local_pci_probe, &ddi); 358 else 359 error = local_pci_probe(&ddi); 360 put_online_cpus(); 361 } else 362 error = local_pci_probe(&ddi); 363 364 return error; 365 } 366 367 /** 368 * __pci_device_probe - check if a driver wants to claim a specific PCI device 369 * @drv: driver to call to check if it wants the PCI device 370 * @pci_dev: PCI device being probed 371 * 372 * returns 0 on success, else error. 373 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev. 374 */ 375 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev) 376 { 377 const struct pci_device_id *id; 378 int error = 0; 379 380 if (!pci_dev->driver && drv->probe) { 381 error = -ENODEV; 382 383 id = pci_match_device(drv, pci_dev); 384 if (id) 385 error = pci_call_probe(drv, pci_dev, id); 386 if (error >= 0) 387 error = 0; 388 } 389 return error; 390 } 391 392 int __weak pcibios_alloc_irq(struct pci_dev *dev) 393 { 394 return 0; 395 } 396 397 void __weak pcibios_free_irq(struct pci_dev *dev) 398 { 399 } 400 401 static int pci_device_probe(struct device *dev) 402 { 403 int error; 404 struct pci_dev *pci_dev = to_pci_dev(dev); 405 struct pci_driver *drv = to_pci_driver(dev->driver); 406 407 error = pcibios_alloc_irq(pci_dev); 408 if (error < 0) 409 return error; 410 411 pci_dev_get(pci_dev); 412 error = __pci_device_probe(drv, pci_dev); 413 if (error) { 414 pcibios_free_irq(pci_dev); 415 pci_dev_put(pci_dev); 416 } 417 418 return error; 419 } 420 421 static int pci_device_remove(struct device *dev) 422 { 423 struct pci_dev *pci_dev = to_pci_dev(dev); 424 struct pci_driver *drv = pci_dev->driver; 425 426 if (drv) { 427 if (drv->remove) { 428 pm_runtime_get_sync(dev); 429 drv->remove(pci_dev); 430 pm_runtime_put_noidle(dev); 431 } 432 pcibios_free_irq(pci_dev); 433 pci_dev->driver = NULL; 434 } 435 436 /* Undo the runtime PM settings in local_pci_probe() */ 437 pm_runtime_put_sync(dev); 438 439 /* 440 * If the device is still on, set the power state as "unknown", 441 * since it might change by the next time we load the driver. 442 */ 443 if (pci_dev->current_state == PCI_D0) 444 pci_dev->current_state = PCI_UNKNOWN; 445 446 /* 447 * We would love to complain here if pci_dev->is_enabled is set, that 448 * the driver should have called pci_disable_device(), but the 449 * unfortunate fact is there are too many odd BIOS and bridge setups 450 * that don't like drivers doing that all of the time. 451 * Oh well, we can dream of sane hardware when we sleep, no matter how 452 * horrible the crap we have to deal with is when we are awake... 453 */ 454 455 pci_dev_put(pci_dev); 456 return 0; 457 } 458 459 static void pci_device_shutdown(struct device *dev) 460 { 461 struct pci_dev *pci_dev = to_pci_dev(dev); 462 struct pci_driver *drv = pci_dev->driver; 463 464 pm_runtime_resume(dev); 465 466 if (drv && drv->shutdown) 467 drv->shutdown(pci_dev); 468 pci_msi_shutdown(pci_dev); 469 pci_msix_shutdown(pci_dev); 470 471 #ifdef CONFIG_KEXEC_CORE 472 /* 473 * If this is a kexec reboot, turn off Bus Master bit on the 474 * device to tell it to not continue to do DMA. Don't touch 475 * devices in D3cold or unknown states. 476 * If it is not a kexec reboot, firmware will hit the PCI 477 * devices with big hammer and stop their DMA any way. 478 */ 479 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot)) 480 pci_clear_master(pci_dev); 481 #endif 482 } 483 484 #ifdef CONFIG_PM 485 486 /* Auxiliary functions used for system resume and run-time resume. */ 487 488 /** 489 * pci_restore_standard_config - restore standard config registers of PCI device 490 * @pci_dev: PCI device to handle 491 */ 492 static int pci_restore_standard_config(struct pci_dev *pci_dev) 493 { 494 pci_update_current_state(pci_dev, PCI_UNKNOWN); 495 496 if (pci_dev->current_state != PCI_D0) { 497 int error = pci_set_power_state(pci_dev, PCI_D0); 498 if (error) 499 return error; 500 } 501 502 pci_restore_state(pci_dev); 503 return 0; 504 } 505 506 #endif 507 508 #ifdef CONFIG_PM_SLEEP 509 510 static void pci_pm_default_resume_early(struct pci_dev *pci_dev) 511 { 512 pci_power_up(pci_dev); 513 pci_restore_state(pci_dev); 514 pci_fixup_device(pci_fixup_resume_early, pci_dev); 515 } 516 517 /* 518 * Default "suspend" method for devices that have no driver provided suspend, 519 * or not even a driver at all (second part). 520 */ 521 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev) 522 { 523 /* 524 * mark its power state as "unknown", since we don't know if 525 * e.g. the BIOS will change its device state when we suspend. 526 */ 527 if (pci_dev->current_state == PCI_D0) 528 pci_dev->current_state = PCI_UNKNOWN; 529 } 530 531 /* 532 * Default "resume" method for devices that have no driver provided resume, 533 * or not even a driver at all (second part). 534 */ 535 static int pci_pm_reenable_device(struct pci_dev *pci_dev) 536 { 537 int retval; 538 539 /* if the device was enabled before suspend, reenable */ 540 retval = pci_reenable_device(pci_dev); 541 /* 542 * if the device was busmaster before the suspend, make it busmaster 543 * again 544 */ 545 if (pci_dev->is_busmaster) 546 pci_set_master(pci_dev); 547 548 return retval; 549 } 550 551 static int pci_legacy_suspend(struct device *dev, pm_message_t state) 552 { 553 struct pci_dev *pci_dev = to_pci_dev(dev); 554 struct pci_driver *drv = pci_dev->driver; 555 556 if (drv && drv->suspend) { 557 pci_power_t prev = pci_dev->current_state; 558 int error; 559 560 error = drv->suspend(pci_dev, state); 561 suspend_report_result(drv->suspend, error); 562 if (error) 563 return error; 564 565 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 566 && pci_dev->current_state != PCI_UNKNOWN) { 567 WARN_ONCE(pci_dev->current_state != prev, 568 "PCI PM: Device state not saved by %pF\n", 569 drv->suspend); 570 } 571 } 572 573 pci_fixup_device(pci_fixup_suspend, pci_dev); 574 575 return 0; 576 } 577 578 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state) 579 { 580 struct pci_dev *pci_dev = to_pci_dev(dev); 581 struct pci_driver *drv = pci_dev->driver; 582 583 if (drv && drv->suspend_late) { 584 pci_power_t prev = pci_dev->current_state; 585 int error; 586 587 error = drv->suspend_late(pci_dev, state); 588 suspend_report_result(drv->suspend_late, error); 589 if (error) 590 return error; 591 592 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 593 && pci_dev->current_state != PCI_UNKNOWN) { 594 WARN_ONCE(pci_dev->current_state != prev, 595 "PCI PM: Device state not saved by %pF\n", 596 drv->suspend_late); 597 goto Fixup; 598 } 599 } 600 601 if (!pci_dev->state_saved) 602 pci_save_state(pci_dev); 603 604 pci_pm_set_unknown_state(pci_dev); 605 606 Fixup: 607 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 608 609 return 0; 610 } 611 612 static int pci_legacy_resume_early(struct device *dev) 613 { 614 struct pci_dev *pci_dev = to_pci_dev(dev); 615 struct pci_driver *drv = pci_dev->driver; 616 617 return drv && drv->resume_early ? 618 drv->resume_early(pci_dev) : 0; 619 } 620 621 static int pci_legacy_resume(struct device *dev) 622 { 623 struct pci_dev *pci_dev = to_pci_dev(dev); 624 struct pci_driver *drv = pci_dev->driver; 625 626 pci_fixup_device(pci_fixup_resume, pci_dev); 627 628 return drv && drv->resume ? 629 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev); 630 } 631 632 /* Auxiliary functions used by the new power management framework */ 633 634 static void pci_pm_default_resume(struct pci_dev *pci_dev) 635 { 636 pci_fixup_device(pci_fixup_resume, pci_dev); 637 638 if (!pci_has_subordinate(pci_dev)) 639 pci_enable_wake(pci_dev, PCI_D0, false); 640 } 641 642 static void pci_pm_default_suspend(struct pci_dev *pci_dev) 643 { 644 /* Disable non-bridge devices without PM support */ 645 if (!pci_has_subordinate(pci_dev)) 646 pci_disable_enabled_device(pci_dev); 647 } 648 649 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev) 650 { 651 struct pci_driver *drv = pci_dev->driver; 652 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume 653 || drv->resume_early); 654 655 /* 656 * Legacy PM support is used by default, so warn if the new framework is 657 * supported as well. Drivers are supposed to support either the 658 * former, or the latter, but not both at the same time. 659 */ 660 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n", 661 drv->name, pci_dev->vendor, pci_dev->device); 662 663 return ret; 664 } 665 666 /* New power management framework */ 667 668 static int pci_pm_prepare(struct device *dev) 669 { 670 struct device_driver *drv = dev->driver; 671 672 /* 673 * Devices having power.ignore_children set may still be necessary for 674 * suspending their children in the next phase of device suspend. 675 */ 676 if (dev->power.ignore_children) 677 pm_runtime_resume(dev); 678 679 if (drv && drv->pm && drv->pm->prepare) { 680 int error = drv->pm->prepare(dev); 681 if (error) 682 return error; 683 } 684 return pci_dev_keep_suspended(to_pci_dev(dev)); 685 } 686 687 688 #else /* !CONFIG_PM_SLEEP */ 689 690 #define pci_pm_prepare NULL 691 692 #endif /* !CONFIG_PM_SLEEP */ 693 694 #ifdef CONFIG_SUSPEND 695 696 static int pci_pm_suspend(struct device *dev) 697 { 698 struct pci_dev *pci_dev = to_pci_dev(dev); 699 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 700 701 if (pci_has_legacy_pm_support(pci_dev)) 702 return pci_legacy_suspend(dev, PMSG_SUSPEND); 703 704 if (!pm) { 705 pci_pm_default_suspend(pci_dev); 706 goto Fixup; 707 } 708 709 /* 710 * PCI devices suspended at run time need to be resumed at this point, 711 * because in general it is necessary to reconfigure them for system 712 * suspend. Namely, if the device is supposed to wake up the system 713 * from the sleep state, we may need to reconfigure it for this purpose. 714 * In turn, if the device is not supposed to wake up the system from the 715 * sleep state, we'll have to prevent it from signaling wake-up. 716 */ 717 pm_runtime_resume(dev); 718 719 pci_dev->state_saved = false; 720 if (pm->suspend) { 721 pci_power_t prev = pci_dev->current_state; 722 int error; 723 724 error = pm->suspend(dev); 725 suspend_report_result(pm->suspend, error); 726 if (error) 727 return error; 728 729 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 730 && pci_dev->current_state != PCI_UNKNOWN) { 731 WARN_ONCE(pci_dev->current_state != prev, 732 "PCI PM: State of device not saved by %pF\n", 733 pm->suspend); 734 } 735 } 736 737 Fixup: 738 pci_fixup_device(pci_fixup_suspend, pci_dev); 739 740 return 0; 741 } 742 743 static int pci_pm_suspend_noirq(struct device *dev) 744 { 745 struct pci_dev *pci_dev = to_pci_dev(dev); 746 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 747 748 if (pci_has_legacy_pm_support(pci_dev)) 749 return pci_legacy_suspend_late(dev, PMSG_SUSPEND); 750 751 if (!pm) { 752 pci_save_state(pci_dev); 753 goto Fixup; 754 } 755 756 if (pm->suspend_noirq) { 757 pci_power_t prev = pci_dev->current_state; 758 int error; 759 760 error = pm->suspend_noirq(dev); 761 suspend_report_result(pm->suspend_noirq, error); 762 if (error) 763 return error; 764 765 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 766 && pci_dev->current_state != PCI_UNKNOWN) { 767 WARN_ONCE(pci_dev->current_state != prev, 768 "PCI PM: State of device not saved by %pF\n", 769 pm->suspend_noirq); 770 goto Fixup; 771 } 772 } 773 774 if (!pci_dev->state_saved) { 775 pci_save_state(pci_dev); 776 if (!pci_has_subordinate(pci_dev)) 777 pci_prepare_to_sleep(pci_dev); 778 } 779 780 pci_pm_set_unknown_state(pci_dev); 781 782 /* 783 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's 784 * PCI COMMAND register isn't 0, the BIOS assumes that the controller 785 * hasn't been quiesced and tries to turn it off. If the controller 786 * is already in D3, this can hang or cause memory corruption. 787 * 788 * Since the value of the COMMAND register doesn't matter once the 789 * device has been suspended, we can safely set it to 0 here. 790 */ 791 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 792 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 793 794 Fixup: 795 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 796 797 return 0; 798 } 799 800 static int pci_pm_resume_noirq(struct device *dev) 801 { 802 struct pci_dev *pci_dev = to_pci_dev(dev); 803 struct device_driver *drv = dev->driver; 804 int error = 0; 805 806 pci_pm_default_resume_early(pci_dev); 807 808 if (pci_has_legacy_pm_support(pci_dev)) 809 return pci_legacy_resume_early(dev); 810 811 if (drv && drv->pm && drv->pm->resume_noirq) 812 error = drv->pm->resume_noirq(dev); 813 814 return error; 815 } 816 817 static int pci_pm_resume(struct device *dev) 818 { 819 struct pci_dev *pci_dev = to_pci_dev(dev); 820 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 821 int error = 0; 822 823 /* 824 * This is necessary for the suspend error path in which resume is 825 * called without restoring the standard config registers of the device. 826 */ 827 if (pci_dev->state_saved) 828 pci_restore_standard_config(pci_dev); 829 830 if (pci_has_legacy_pm_support(pci_dev)) 831 return pci_legacy_resume(dev); 832 833 pci_pm_default_resume(pci_dev); 834 835 if (pm) { 836 if (pm->resume) 837 error = pm->resume(dev); 838 } else { 839 pci_pm_reenable_device(pci_dev); 840 } 841 842 return error; 843 } 844 845 #else /* !CONFIG_SUSPEND */ 846 847 #define pci_pm_suspend NULL 848 #define pci_pm_suspend_noirq NULL 849 #define pci_pm_resume NULL 850 #define pci_pm_resume_noirq NULL 851 852 #endif /* !CONFIG_SUSPEND */ 853 854 #ifdef CONFIG_HIBERNATE_CALLBACKS 855 856 857 /* 858 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing 859 * a hibernate transition 860 */ 861 struct dev_pm_ops __weak pcibios_pm_ops; 862 863 static int pci_pm_freeze(struct device *dev) 864 { 865 struct pci_dev *pci_dev = to_pci_dev(dev); 866 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 867 868 if (pci_has_legacy_pm_support(pci_dev)) 869 return pci_legacy_suspend(dev, PMSG_FREEZE); 870 871 if (!pm) { 872 pci_pm_default_suspend(pci_dev); 873 return 0; 874 } 875 876 /* 877 * This used to be done in pci_pm_prepare() for all devices and some 878 * drivers may depend on it, so do it here. Ideally, runtime-suspended 879 * devices should not be touched during freeze/thaw transitions, 880 * however. 881 */ 882 pm_runtime_resume(dev); 883 884 pci_dev->state_saved = false; 885 if (pm->freeze) { 886 int error; 887 888 error = pm->freeze(dev); 889 suspend_report_result(pm->freeze, error); 890 if (error) 891 return error; 892 } 893 894 if (pcibios_pm_ops.freeze) 895 return pcibios_pm_ops.freeze(dev); 896 897 return 0; 898 } 899 900 static int pci_pm_freeze_noirq(struct device *dev) 901 { 902 struct pci_dev *pci_dev = to_pci_dev(dev); 903 struct device_driver *drv = dev->driver; 904 905 if (pci_has_legacy_pm_support(pci_dev)) 906 return pci_legacy_suspend_late(dev, PMSG_FREEZE); 907 908 if (drv && drv->pm && drv->pm->freeze_noirq) { 909 int error; 910 911 error = drv->pm->freeze_noirq(dev); 912 suspend_report_result(drv->pm->freeze_noirq, error); 913 if (error) 914 return error; 915 } 916 917 if (!pci_dev->state_saved) 918 pci_save_state(pci_dev); 919 920 pci_pm_set_unknown_state(pci_dev); 921 922 if (pcibios_pm_ops.freeze_noirq) 923 return pcibios_pm_ops.freeze_noirq(dev); 924 925 return 0; 926 } 927 928 static int pci_pm_thaw_noirq(struct device *dev) 929 { 930 struct pci_dev *pci_dev = to_pci_dev(dev); 931 struct device_driver *drv = dev->driver; 932 int error = 0; 933 934 if (pcibios_pm_ops.thaw_noirq) { 935 error = pcibios_pm_ops.thaw_noirq(dev); 936 if (error) 937 return error; 938 } 939 940 if (pci_has_legacy_pm_support(pci_dev)) 941 return pci_legacy_resume_early(dev); 942 943 pci_update_current_state(pci_dev, PCI_D0); 944 945 if (drv && drv->pm && drv->pm->thaw_noirq) 946 error = drv->pm->thaw_noirq(dev); 947 948 return error; 949 } 950 951 static int pci_pm_thaw(struct device *dev) 952 { 953 struct pci_dev *pci_dev = to_pci_dev(dev); 954 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 955 int error = 0; 956 957 if (pcibios_pm_ops.thaw) { 958 error = pcibios_pm_ops.thaw(dev); 959 if (error) 960 return error; 961 } 962 963 if (pci_has_legacy_pm_support(pci_dev)) 964 return pci_legacy_resume(dev); 965 966 if (pm) { 967 if (pm->thaw) 968 error = pm->thaw(dev); 969 } else { 970 pci_pm_reenable_device(pci_dev); 971 } 972 973 pci_dev->state_saved = false; 974 975 return error; 976 } 977 978 static int pci_pm_poweroff(struct device *dev) 979 { 980 struct pci_dev *pci_dev = to_pci_dev(dev); 981 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 982 983 if (pci_has_legacy_pm_support(pci_dev)) 984 return pci_legacy_suspend(dev, PMSG_HIBERNATE); 985 986 if (!pm) { 987 pci_pm_default_suspend(pci_dev); 988 goto Fixup; 989 } 990 991 /* The reason to do that is the same as in pci_pm_suspend(). */ 992 pm_runtime_resume(dev); 993 994 pci_dev->state_saved = false; 995 if (pm->poweroff) { 996 int error; 997 998 error = pm->poweroff(dev); 999 suspend_report_result(pm->poweroff, error); 1000 if (error) 1001 return error; 1002 } 1003 1004 Fixup: 1005 pci_fixup_device(pci_fixup_suspend, pci_dev); 1006 1007 if (pcibios_pm_ops.poweroff) 1008 return pcibios_pm_ops.poweroff(dev); 1009 1010 return 0; 1011 } 1012 1013 static int pci_pm_poweroff_noirq(struct device *dev) 1014 { 1015 struct pci_dev *pci_dev = to_pci_dev(dev); 1016 struct device_driver *drv = dev->driver; 1017 1018 if (pci_has_legacy_pm_support(to_pci_dev(dev))) 1019 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE); 1020 1021 if (!drv || !drv->pm) { 1022 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1023 return 0; 1024 } 1025 1026 if (drv->pm->poweroff_noirq) { 1027 int error; 1028 1029 error = drv->pm->poweroff_noirq(dev); 1030 suspend_report_result(drv->pm->poweroff_noirq, error); 1031 if (error) 1032 return error; 1033 } 1034 1035 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev)) 1036 pci_prepare_to_sleep(pci_dev); 1037 1038 /* 1039 * The reason for doing this here is the same as for the analogous code 1040 * in pci_pm_suspend_noirq(). 1041 */ 1042 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 1043 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 1044 1045 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1046 1047 if (pcibios_pm_ops.poweroff_noirq) 1048 return pcibios_pm_ops.poweroff_noirq(dev); 1049 1050 return 0; 1051 } 1052 1053 static int pci_pm_restore_noirq(struct device *dev) 1054 { 1055 struct pci_dev *pci_dev = to_pci_dev(dev); 1056 struct device_driver *drv = dev->driver; 1057 int error = 0; 1058 1059 if (pcibios_pm_ops.restore_noirq) { 1060 error = pcibios_pm_ops.restore_noirq(dev); 1061 if (error) 1062 return error; 1063 } 1064 1065 pci_pm_default_resume_early(pci_dev); 1066 1067 if (pci_has_legacy_pm_support(pci_dev)) 1068 return pci_legacy_resume_early(dev); 1069 1070 if (drv && drv->pm && drv->pm->restore_noirq) 1071 error = drv->pm->restore_noirq(dev); 1072 1073 return error; 1074 } 1075 1076 static int pci_pm_restore(struct device *dev) 1077 { 1078 struct pci_dev *pci_dev = to_pci_dev(dev); 1079 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1080 int error = 0; 1081 1082 if (pcibios_pm_ops.restore) { 1083 error = pcibios_pm_ops.restore(dev); 1084 if (error) 1085 return error; 1086 } 1087 1088 /* 1089 * This is necessary for the hibernation error path in which restore is 1090 * called without restoring the standard config registers of the device. 1091 */ 1092 if (pci_dev->state_saved) 1093 pci_restore_standard_config(pci_dev); 1094 1095 if (pci_has_legacy_pm_support(pci_dev)) 1096 return pci_legacy_resume(dev); 1097 1098 pci_pm_default_resume(pci_dev); 1099 1100 if (pm) { 1101 if (pm->restore) 1102 error = pm->restore(dev); 1103 } else { 1104 pci_pm_reenable_device(pci_dev); 1105 } 1106 1107 return error; 1108 } 1109 1110 #else /* !CONFIG_HIBERNATE_CALLBACKS */ 1111 1112 #define pci_pm_freeze NULL 1113 #define pci_pm_freeze_noirq NULL 1114 #define pci_pm_thaw NULL 1115 #define pci_pm_thaw_noirq NULL 1116 #define pci_pm_poweroff NULL 1117 #define pci_pm_poweroff_noirq NULL 1118 #define pci_pm_restore NULL 1119 #define pci_pm_restore_noirq NULL 1120 1121 #endif /* !CONFIG_HIBERNATE_CALLBACKS */ 1122 1123 #ifdef CONFIG_PM 1124 1125 static int pci_pm_runtime_suspend(struct device *dev) 1126 { 1127 struct pci_dev *pci_dev = to_pci_dev(dev); 1128 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1129 pci_power_t prev = pci_dev->current_state; 1130 int error; 1131 1132 /* 1133 * If pci_dev->driver is not set (unbound), the device should 1134 * always remain in D0 regardless of the runtime PM status 1135 */ 1136 if (!pci_dev->driver) 1137 return 0; 1138 1139 if (!pm || !pm->runtime_suspend) 1140 return -ENOSYS; 1141 1142 pci_dev->state_saved = false; 1143 pci_dev->no_d3cold = false; 1144 error = pm->runtime_suspend(dev); 1145 suspend_report_result(pm->runtime_suspend, error); 1146 if (error) 1147 return error; 1148 if (!pci_dev->d3cold_allowed) 1149 pci_dev->no_d3cold = true; 1150 1151 pci_fixup_device(pci_fixup_suspend, pci_dev); 1152 1153 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 1154 && pci_dev->current_state != PCI_UNKNOWN) { 1155 WARN_ONCE(pci_dev->current_state != prev, 1156 "PCI PM: State of device not saved by %pF\n", 1157 pm->runtime_suspend); 1158 return 0; 1159 } 1160 1161 if (!pci_dev->state_saved) { 1162 pci_save_state(pci_dev); 1163 pci_finish_runtime_suspend(pci_dev); 1164 } 1165 1166 return 0; 1167 } 1168 1169 static int pci_pm_runtime_resume(struct device *dev) 1170 { 1171 int rc; 1172 struct pci_dev *pci_dev = to_pci_dev(dev); 1173 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1174 1175 /* 1176 * If pci_dev->driver is not set (unbound), the device should 1177 * always remain in D0 regardless of the runtime PM status 1178 */ 1179 if (!pci_dev->driver) 1180 return 0; 1181 1182 if (!pm || !pm->runtime_resume) 1183 return -ENOSYS; 1184 1185 pci_restore_standard_config(pci_dev); 1186 pci_fixup_device(pci_fixup_resume_early, pci_dev); 1187 __pci_enable_wake(pci_dev, PCI_D0, true, false); 1188 pci_fixup_device(pci_fixup_resume, pci_dev); 1189 1190 rc = pm->runtime_resume(dev); 1191 1192 pci_dev->runtime_d3cold = false; 1193 1194 return rc; 1195 } 1196 1197 static int pci_pm_runtime_idle(struct device *dev) 1198 { 1199 struct pci_dev *pci_dev = to_pci_dev(dev); 1200 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1201 int ret = 0; 1202 1203 /* 1204 * If pci_dev->driver is not set (unbound), the device should 1205 * always remain in D0 regardless of the runtime PM status 1206 */ 1207 if (!pci_dev->driver) 1208 return 0; 1209 1210 if (!pm) 1211 return -ENOSYS; 1212 1213 if (pm->runtime_idle) 1214 ret = pm->runtime_idle(dev); 1215 1216 return ret; 1217 } 1218 1219 static const struct dev_pm_ops pci_dev_pm_ops = { 1220 .prepare = pci_pm_prepare, 1221 .suspend = pci_pm_suspend, 1222 .resume = pci_pm_resume, 1223 .freeze = pci_pm_freeze, 1224 .thaw = pci_pm_thaw, 1225 .poweroff = pci_pm_poweroff, 1226 .restore = pci_pm_restore, 1227 .suspend_noirq = pci_pm_suspend_noirq, 1228 .resume_noirq = pci_pm_resume_noirq, 1229 .freeze_noirq = pci_pm_freeze_noirq, 1230 .thaw_noirq = pci_pm_thaw_noirq, 1231 .poweroff_noirq = pci_pm_poweroff_noirq, 1232 .restore_noirq = pci_pm_restore_noirq, 1233 .runtime_suspend = pci_pm_runtime_suspend, 1234 .runtime_resume = pci_pm_runtime_resume, 1235 .runtime_idle = pci_pm_runtime_idle, 1236 }; 1237 1238 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops) 1239 1240 #else /* !CONFIG_PM */ 1241 1242 #define pci_pm_runtime_suspend NULL 1243 #define pci_pm_runtime_resume NULL 1244 #define pci_pm_runtime_idle NULL 1245 1246 #define PCI_PM_OPS_PTR NULL 1247 1248 #endif /* !CONFIG_PM */ 1249 1250 /** 1251 * __pci_register_driver - register a new pci driver 1252 * @drv: the driver structure to register 1253 * @owner: owner module of drv 1254 * @mod_name: module name string 1255 * 1256 * Adds the driver structure to the list of registered drivers. 1257 * Returns a negative value on error, otherwise 0. 1258 * If no error occurred, the driver remains registered even if 1259 * no device was claimed during registration. 1260 */ 1261 int __pci_register_driver(struct pci_driver *drv, struct module *owner, 1262 const char *mod_name) 1263 { 1264 /* initialize common driver fields */ 1265 drv->driver.name = drv->name; 1266 drv->driver.bus = &pci_bus_type; 1267 drv->driver.owner = owner; 1268 drv->driver.mod_name = mod_name; 1269 1270 spin_lock_init(&drv->dynids.lock); 1271 INIT_LIST_HEAD(&drv->dynids.list); 1272 1273 /* register with core */ 1274 return driver_register(&drv->driver); 1275 } 1276 EXPORT_SYMBOL(__pci_register_driver); 1277 1278 /** 1279 * pci_unregister_driver - unregister a pci driver 1280 * @drv: the driver structure to unregister 1281 * 1282 * Deletes the driver structure from the list of registered PCI drivers, 1283 * gives it a chance to clean up by calling its remove() function for 1284 * each device it was responsible for, and marks those devices as 1285 * driverless. 1286 */ 1287 1288 void pci_unregister_driver(struct pci_driver *drv) 1289 { 1290 driver_unregister(&drv->driver); 1291 pci_free_dynids(drv); 1292 } 1293 EXPORT_SYMBOL(pci_unregister_driver); 1294 1295 static struct pci_driver pci_compat_driver = { 1296 .name = "compat" 1297 }; 1298 1299 /** 1300 * pci_dev_driver - get the pci_driver of a device 1301 * @dev: the device to query 1302 * 1303 * Returns the appropriate pci_driver structure or %NULL if there is no 1304 * registered driver for the device. 1305 */ 1306 struct pci_driver *pci_dev_driver(const struct pci_dev *dev) 1307 { 1308 if (dev->driver) 1309 return dev->driver; 1310 else { 1311 int i; 1312 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1313 if (dev->resource[i].flags & IORESOURCE_BUSY) 1314 return &pci_compat_driver; 1315 } 1316 return NULL; 1317 } 1318 EXPORT_SYMBOL(pci_dev_driver); 1319 1320 /** 1321 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure 1322 * @dev: the PCI device structure to match against 1323 * @drv: the device driver to search for matching PCI device id structures 1324 * 1325 * Used by a driver to check whether a PCI device present in the 1326 * system is in its list of supported devices. Returns the matching 1327 * pci_device_id structure or %NULL if there is no match. 1328 */ 1329 static int pci_bus_match(struct device *dev, struct device_driver *drv) 1330 { 1331 struct pci_dev *pci_dev = to_pci_dev(dev); 1332 struct pci_driver *pci_drv; 1333 const struct pci_device_id *found_id; 1334 1335 if (!pci_dev->match_driver) 1336 return 0; 1337 1338 pci_drv = to_pci_driver(drv); 1339 found_id = pci_match_device(pci_drv, pci_dev); 1340 if (found_id) 1341 return 1; 1342 1343 return 0; 1344 } 1345 1346 /** 1347 * pci_dev_get - increments the reference count of the pci device structure 1348 * @dev: the device being referenced 1349 * 1350 * Each live reference to a device should be refcounted. 1351 * 1352 * Drivers for PCI devices should normally record such references in 1353 * their probe() methods, when they bind to a device, and release 1354 * them by calling pci_dev_put(), in their disconnect() methods. 1355 * 1356 * A pointer to the device with the incremented reference counter is returned. 1357 */ 1358 struct pci_dev *pci_dev_get(struct pci_dev *dev) 1359 { 1360 if (dev) 1361 get_device(&dev->dev); 1362 return dev; 1363 } 1364 EXPORT_SYMBOL(pci_dev_get); 1365 1366 /** 1367 * pci_dev_put - release a use of the pci device structure 1368 * @dev: device that's been disconnected 1369 * 1370 * Must be called when a user of a device is finished with it. When the last 1371 * user of the device calls this function, the memory of the device is freed. 1372 */ 1373 void pci_dev_put(struct pci_dev *dev) 1374 { 1375 if (dev) 1376 put_device(&dev->dev); 1377 } 1378 EXPORT_SYMBOL(pci_dev_put); 1379 1380 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env) 1381 { 1382 struct pci_dev *pdev; 1383 1384 if (!dev) 1385 return -ENODEV; 1386 1387 pdev = to_pci_dev(dev); 1388 1389 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class)) 1390 return -ENOMEM; 1391 1392 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device)) 1393 return -ENOMEM; 1394 1395 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor, 1396 pdev->subsystem_device)) 1397 return -ENOMEM; 1398 1399 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev))) 1400 return -ENOMEM; 1401 1402 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X", 1403 pdev->vendor, pdev->device, 1404 pdev->subsystem_vendor, pdev->subsystem_device, 1405 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8), 1406 (u8)(pdev->class))) 1407 return -ENOMEM; 1408 1409 return 0; 1410 } 1411 1412 struct bus_type pci_bus_type = { 1413 .name = "pci", 1414 .match = pci_bus_match, 1415 .uevent = pci_uevent, 1416 .probe = pci_device_probe, 1417 .remove = pci_device_remove, 1418 .shutdown = pci_device_shutdown, 1419 .dev_groups = pci_dev_groups, 1420 .bus_groups = pci_bus_groups, 1421 .drv_groups = pci_drv_groups, 1422 .pm = PCI_PM_OPS_PTR, 1423 }; 1424 EXPORT_SYMBOL(pci_bus_type); 1425 1426 static int __init pci_driver_init(void) 1427 { 1428 return bus_register(&pci_bus_type); 1429 } 1430 postcore_initcall(pci_driver_init); 1431