1 /* 2 * drivers/pci/pci-driver.c 3 * 4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com> 5 * (C) Copyright 2007 Novell Inc. 6 * 7 * Released under the GPL v2 only. 8 * 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/device.h> 15 #include <linux/mempolicy.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/cpu.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/suspend.h> 22 #include <linux/kexec.h> 23 #include "pci.h" 24 25 struct pci_dynid { 26 struct list_head node; 27 struct pci_device_id id; 28 }; 29 30 /** 31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices 32 * @drv: target pci driver 33 * @vendor: PCI vendor ID 34 * @device: PCI device ID 35 * @subvendor: PCI subvendor ID 36 * @subdevice: PCI subdevice ID 37 * @class: PCI class 38 * @class_mask: PCI class mask 39 * @driver_data: private driver data 40 * 41 * Adds a new dynamic pci device ID to this driver and causes the 42 * driver to probe for all devices again. @drv must have been 43 * registered prior to calling this function. 44 * 45 * CONTEXT: 46 * Does GFP_KERNEL allocation. 47 * 48 * RETURNS: 49 * 0 on success, -errno on failure. 50 */ 51 int pci_add_dynid(struct pci_driver *drv, 52 unsigned int vendor, unsigned int device, 53 unsigned int subvendor, unsigned int subdevice, 54 unsigned int class, unsigned int class_mask, 55 unsigned long driver_data) 56 { 57 struct pci_dynid *dynid; 58 59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 60 if (!dynid) 61 return -ENOMEM; 62 63 dynid->id.vendor = vendor; 64 dynid->id.device = device; 65 dynid->id.subvendor = subvendor; 66 dynid->id.subdevice = subdevice; 67 dynid->id.class = class; 68 dynid->id.class_mask = class_mask; 69 dynid->id.driver_data = driver_data; 70 71 spin_lock(&drv->dynids.lock); 72 list_add_tail(&dynid->node, &drv->dynids.list); 73 spin_unlock(&drv->dynids.lock); 74 75 return driver_attach(&drv->driver); 76 } 77 EXPORT_SYMBOL_GPL(pci_add_dynid); 78 79 static void pci_free_dynids(struct pci_driver *drv) 80 { 81 struct pci_dynid *dynid, *n; 82 83 spin_lock(&drv->dynids.lock); 84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 85 list_del(&dynid->node); 86 kfree(dynid); 87 } 88 spin_unlock(&drv->dynids.lock); 89 } 90 91 /** 92 * store_new_id - sysfs frontend to pci_add_dynid() 93 * @driver: target device driver 94 * @buf: buffer for scanning device ID data 95 * @count: input size 96 * 97 * Allow PCI IDs to be added to an existing driver via sysfs. 98 */ 99 static ssize_t store_new_id(struct device_driver *driver, const char *buf, 100 size_t count) 101 { 102 struct pci_driver *pdrv = to_pci_driver(driver); 103 const struct pci_device_id *ids = pdrv->id_table; 104 __u32 vendor, device, subvendor = PCI_ANY_ID, 105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 106 unsigned long driver_data = 0; 107 int fields = 0; 108 int retval = 0; 109 110 fields = sscanf(buf, "%x %x %x %x %x %x %lx", 111 &vendor, &device, &subvendor, &subdevice, 112 &class, &class_mask, &driver_data); 113 if (fields < 2) 114 return -EINVAL; 115 116 if (fields != 7) { 117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); 118 if (!pdev) 119 return -ENOMEM; 120 121 pdev->vendor = vendor; 122 pdev->device = device; 123 pdev->subsystem_vendor = subvendor; 124 pdev->subsystem_device = subdevice; 125 pdev->class = class; 126 127 if (pci_match_id(pdrv->id_table, pdev)) 128 retval = -EEXIST; 129 130 kfree(pdev); 131 132 if (retval) 133 return retval; 134 } 135 136 /* Only accept driver_data values that match an existing id_table 137 entry */ 138 if (ids) { 139 retval = -EINVAL; 140 while (ids->vendor || ids->subvendor || ids->class_mask) { 141 if (driver_data == ids->driver_data) { 142 retval = 0; 143 break; 144 } 145 ids++; 146 } 147 if (retval) /* No match */ 148 return retval; 149 } 150 151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice, 152 class, class_mask, driver_data); 153 if (retval) 154 return retval; 155 return count; 156 } 157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id); 158 159 /** 160 * store_remove_id - remove a PCI device ID from this driver 161 * @driver: target device driver 162 * @buf: buffer for scanning device ID data 163 * @count: input size 164 * 165 * Removes a dynamic pci device ID to this driver. 166 */ 167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf, 168 size_t count) 169 { 170 struct pci_dynid *dynid, *n; 171 struct pci_driver *pdrv = to_pci_driver(driver); 172 __u32 vendor, device, subvendor = PCI_ANY_ID, 173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 174 int fields = 0; 175 int retval = -ENODEV; 176 177 fields = sscanf(buf, "%x %x %x %x %x %x", 178 &vendor, &device, &subvendor, &subdevice, 179 &class, &class_mask); 180 if (fields < 2) 181 return -EINVAL; 182 183 spin_lock(&pdrv->dynids.lock); 184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) { 185 struct pci_device_id *id = &dynid->id; 186 if ((id->vendor == vendor) && 187 (id->device == device) && 188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) && 189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) && 190 !((id->class ^ class) & class_mask)) { 191 list_del(&dynid->node); 192 kfree(dynid); 193 retval = 0; 194 break; 195 } 196 } 197 spin_unlock(&pdrv->dynids.lock); 198 199 if (retval) 200 return retval; 201 return count; 202 } 203 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id); 204 205 static struct attribute *pci_drv_attrs[] = { 206 &driver_attr_new_id.attr, 207 &driver_attr_remove_id.attr, 208 NULL, 209 }; 210 ATTRIBUTE_GROUPS(pci_drv); 211 212 /** 213 * pci_match_id - See if a pci device matches a given pci_id table 214 * @ids: array of PCI device id structures to search in 215 * @dev: the PCI device structure to match against. 216 * 217 * Used by a driver to check whether a PCI device present in the 218 * system is in its list of supported devices. Returns the matching 219 * pci_device_id structure or %NULL if there is no match. 220 * 221 * Deprecated, don't use this as it will not catch any dynamic ids 222 * that a driver might want to check for. 223 */ 224 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids, 225 struct pci_dev *dev) 226 { 227 if (ids) { 228 while (ids->vendor || ids->subvendor || ids->class_mask) { 229 if (pci_match_one_device(ids, dev)) 230 return ids; 231 ids++; 232 } 233 } 234 return NULL; 235 } 236 EXPORT_SYMBOL(pci_match_id); 237 238 static const struct pci_device_id pci_device_id_any = { 239 .vendor = PCI_ANY_ID, 240 .device = PCI_ANY_ID, 241 .subvendor = PCI_ANY_ID, 242 .subdevice = PCI_ANY_ID, 243 }; 244 245 /** 246 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure 247 * @drv: the PCI driver to match against 248 * @dev: the PCI device structure to match against 249 * 250 * Used by a driver to check whether a PCI device present in the 251 * system is in its list of supported devices. Returns the matching 252 * pci_device_id structure or %NULL if there is no match. 253 */ 254 static const struct pci_device_id *pci_match_device(struct pci_driver *drv, 255 struct pci_dev *dev) 256 { 257 struct pci_dynid *dynid; 258 const struct pci_device_id *found_id = NULL; 259 260 /* When driver_override is set, only bind to the matching driver */ 261 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 262 return NULL; 263 264 /* Look at the dynamic ids first, before the static ones */ 265 spin_lock(&drv->dynids.lock); 266 list_for_each_entry(dynid, &drv->dynids.list, node) { 267 if (pci_match_one_device(&dynid->id, dev)) { 268 found_id = &dynid->id; 269 break; 270 } 271 } 272 spin_unlock(&drv->dynids.lock); 273 274 if (!found_id) 275 found_id = pci_match_id(drv->id_table, dev); 276 277 /* driver_override will always match, send a dummy id */ 278 if (!found_id && dev->driver_override) 279 found_id = &pci_device_id_any; 280 281 return found_id; 282 } 283 284 struct drv_dev_and_id { 285 struct pci_driver *drv; 286 struct pci_dev *dev; 287 const struct pci_device_id *id; 288 }; 289 290 static long local_pci_probe(void *_ddi) 291 { 292 struct drv_dev_and_id *ddi = _ddi; 293 struct pci_dev *pci_dev = ddi->dev; 294 struct pci_driver *pci_drv = ddi->drv; 295 struct device *dev = &pci_dev->dev; 296 int rc; 297 298 /* 299 * Unbound PCI devices are always put in D0, regardless of 300 * runtime PM status. During probe, the device is set to 301 * active and the usage count is incremented. If the driver 302 * supports runtime PM, it should call pm_runtime_put_noidle() 303 * in its probe routine and pm_runtime_get_noresume() in its 304 * remove routine. 305 */ 306 pm_runtime_get_sync(dev); 307 pci_dev->driver = pci_drv; 308 rc = pci_drv->probe(pci_dev, ddi->id); 309 if (!rc) 310 return rc; 311 if (rc < 0) { 312 pci_dev->driver = NULL; 313 pm_runtime_put_sync(dev); 314 return rc; 315 } 316 /* 317 * Probe function should return < 0 for failure, 0 for success 318 * Treat values > 0 as success, but warn. 319 */ 320 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc); 321 return 0; 322 } 323 324 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev, 325 const struct pci_device_id *id) 326 { 327 int error, node; 328 struct drv_dev_and_id ddi = { drv, dev, id }; 329 330 /* 331 * Execute driver initialization on node where the device is 332 * attached. This way the driver likely allocates its local memory 333 * on the right node. 334 */ 335 node = dev_to_node(&dev->dev); 336 337 /* 338 * On NUMA systems, we are likely to call a PF probe function using 339 * work_on_cpu(). If that probe calls pci_enable_sriov() (which 340 * adds the VF devices via pci_bus_add_device()), we may re-enter 341 * this function to call the VF probe function. Calling 342 * work_on_cpu() again will cause a lockdep warning. Since VFs are 343 * always on the same node as the PF, we can work around this by 344 * avoiding work_on_cpu() when we're already on the correct node. 345 * 346 * Preemption is enabled, so it's theoretically unsafe to use 347 * numa_node_id(), but even if we run the probe function on the 348 * wrong node, it should be functionally correct. 349 */ 350 if (node >= 0 && node != numa_node_id()) { 351 int cpu; 352 353 get_online_cpus(); 354 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 355 if (cpu < nr_cpu_ids) 356 error = work_on_cpu(cpu, local_pci_probe, &ddi); 357 else 358 error = local_pci_probe(&ddi); 359 put_online_cpus(); 360 } else 361 error = local_pci_probe(&ddi); 362 363 return error; 364 } 365 366 /** 367 * __pci_device_probe - check if a driver wants to claim a specific PCI device 368 * @drv: driver to call to check if it wants the PCI device 369 * @pci_dev: PCI device being probed 370 * 371 * returns 0 on success, else error. 372 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev. 373 */ 374 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev) 375 { 376 const struct pci_device_id *id; 377 int error = 0; 378 379 if (!pci_dev->driver && drv->probe) { 380 error = -ENODEV; 381 382 id = pci_match_device(drv, pci_dev); 383 if (id) 384 error = pci_call_probe(drv, pci_dev, id); 385 if (error >= 0) 386 error = 0; 387 } 388 return error; 389 } 390 391 static int pci_device_probe(struct device *dev) 392 { 393 int error = 0; 394 struct pci_driver *drv; 395 struct pci_dev *pci_dev; 396 397 drv = to_pci_driver(dev->driver); 398 pci_dev = to_pci_dev(dev); 399 pci_dev_get(pci_dev); 400 error = __pci_device_probe(drv, pci_dev); 401 if (error) 402 pci_dev_put(pci_dev); 403 404 return error; 405 } 406 407 static int pci_device_remove(struct device *dev) 408 { 409 struct pci_dev *pci_dev = to_pci_dev(dev); 410 struct pci_driver *drv = pci_dev->driver; 411 412 if (drv) { 413 if (drv->remove) { 414 pm_runtime_get_sync(dev); 415 drv->remove(pci_dev); 416 pm_runtime_put_noidle(dev); 417 } 418 pci_dev->driver = NULL; 419 } 420 421 /* Undo the runtime PM settings in local_pci_probe() */ 422 pm_runtime_put_sync(dev); 423 424 /* 425 * If the device is still on, set the power state as "unknown", 426 * since it might change by the next time we load the driver. 427 */ 428 if (pci_dev->current_state == PCI_D0) 429 pci_dev->current_state = PCI_UNKNOWN; 430 431 /* 432 * We would love to complain here if pci_dev->is_enabled is set, that 433 * the driver should have called pci_disable_device(), but the 434 * unfortunate fact is there are too many odd BIOS and bridge setups 435 * that don't like drivers doing that all of the time. 436 * Oh well, we can dream of sane hardware when we sleep, no matter how 437 * horrible the crap we have to deal with is when we are awake... 438 */ 439 440 pci_dev_put(pci_dev); 441 return 0; 442 } 443 444 static void pci_device_shutdown(struct device *dev) 445 { 446 struct pci_dev *pci_dev = to_pci_dev(dev); 447 struct pci_driver *drv = pci_dev->driver; 448 449 pm_runtime_resume(dev); 450 451 if (drv && drv->shutdown) 452 drv->shutdown(pci_dev); 453 pci_msi_shutdown(pci_dev); 454 pci_msix_shutdown(pci_dev); 455 456 #ifdef CONFIG_KEXEC 457 /* 458 * If this is a kexec reboot, turn off Bus Master bit on the 459 * device to tell it to not continue to do DMA. Don't touch 460 * devices in D3cold or unknown states. 461 * If it is not a kexec reboot, firmware will hit the PCI 462 * devices with big hammer and stop their DMA any way. 463 */ 464 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot)) 465 pci_clear_master(pci_dev); 466 #endif 467 } 468 469 #ifdef CONFIG_PM 470 471 /* Auxiliary functions used for system resume and run-time resume. */ 472 473 /** 474 * pci_restore_standard_config - restore standard config registers of PCI device 475 * @pci_dev: PCI device to handle 476 */ 477 static int pci_restore_standard_config(struct pci_dev *pci_dev) 478 { 479 pci_update_current_state(pci_dev, PCI_UNKNOWN); 480 481 if (pci_dev->current_state != PCI_D0) { 482 int error = pci_set_power_state(pci_dev, PCI_D0); 483 if (error) 484 return error; 485 } 486 487 pci_restore_state(pci_dev); 488 return 0; 489 } 490 491 #endif 492 493 #ifdef CONFIG_PM_SLEEP 494 495 static void pci_pm_default_resume_early(struct pci_dev *pci_dev) 496 { 497 pci_power_up(pci_dev); 498 pci_restore_state(pci_dev); 499 pci_fixup_device(pci_fixup_resume_early, pci_dev); 500 } 501 502 /* 503 * Default "suspend" method for devices that have no driver provided suspend, 504 * or not even a driver at all (second part). 505 */ 506 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev) 507 { 508 /* 509 * mark its power state as "unknown", since we don't know if 510 * e.g. the BIOS will change its device state when we suspend. 511 */ 512 if (pci_dev->current_state == PCI_D0) 513 pci_dev->current_state = PCI_UNKNOWN; 514 } 515 516 /* 517 * Default "resume" method for devices that have no driver provided resume, 518 * or not even a driver at all (second part). 519 */ 520 static int pci_pm_reenable_device(struct pci_dev *pci_dev) 521 { 522 int retval; 523 524 /* if the device was enabled before suspend, reenable */ 525 retval = pci_reenable_device(pci_dev); 526 /* 527 * if the device was busmaster before the suspend, make it busmaster 528 * again 529 */ 530 if (pci_dev->is_busmaster) 531 pci_set_master(pci_dev); 532 533 return retval; 534 } 535 536 static int pci_legacy_suspend(struct device *dev, pm_message_t state) 537 { 538 struct pci_dev *pci_dev = to_pci_dev(dev); 539 struct pci_driver *drv = pci_dev->driver; 540 541 if (drv && drv->suspend) { 542 pci_power_t prev = pci_dev->current_state; 543 int error; 544 545 error = drv->suspend(pci_dev, state); 546 suspend_report_result(drv->suspend, error); 547 if (error) 548 return error; 549 550 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 551 && pci_dev->current_state != PCI_UNKNOWN) { 552 WARN_ONCE(pci_dev->current_state != prev, 553 "PCI PM: Device state not saved by %pF\n", 554 drv->suspend); 555 } 556 } 557 558 pci_fixup_device(pci_fixup_suspend, pci_dev); 559 560 return 0; 561 } 562 563 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state) 564 { 565 struct pci_dev *pci_dev = to_pci_dev(dev); 566 struct pci_driver *drv = pci_dev->driver; 567 568 if (drv && drv->suspend_late) { 569 pci_power_t prev = pci_dev->current_state; 570 int error; 571 572 error = drv->suspend_late(pci_dev, state); 573 suspend_report_result(drv->suspend_late, error); 574 if (error) 575 return error; 576 577 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 578 && pci_dev->current_state != PCI_UNKNOWN) { 579 WARN_ONCE(pci_dev->current_state != prev, 580 "PCI PM: Device state not saved by %pF\n", 581 drv->suspend_late); 582 goto Fixup; 583 } 584 } 585 586 if (!pci_dev->state_saved) 587 pci_save_state(pci_dev); 588 589 pci_pm_set_unknown_state(pci_dev); 590 591 Fixup: 592 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 593 594 return 0; 595 } 596 597 static int pci_legacy_resume_early(struct device *dev) 598 { 599 struct pci_dev *pci_dev = to_pci_dev(dev); 600 struct pci_driver *drv = pci_dev->driver; 601 602 return drv && drv->resume_early ? 603 drv->resume_early(pci_dev) : 0; 604 } 605 606 static int pci_legacy_resume(struct device *dev) 607 { 608 struct pci_dev *pci_dev = to_pci_dev(dev); 609 struct pci_driver *drv = pci_dev->driver; 610 611 pci_fixup_device(pci_fixup_resume, pci_dev); 612 613 return drv && drv->resume ? 614 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev); 615 } 616 617 /* Auxiliary functions used by the new power management framework */ 618 619 static void pci_pm_default_resume(struct pci_dev *pci_dev) 620 { 621 pci_fixup_device(pci_fixup_resume, pci_dev); 622 623 if (!pci_has_subordinate(pci_dev)) 624 pci_enable_wake(pci_dev, PCI_D0, false); 625 } 626 627 static void pci_pm_default_suspend(struct pci_dev *pci_dev) 628 { 629 /* Disable non-bridge devices without PM support */ 630 if (!pci_has_subordinate(pci_dev)) 631 pci_disable_enabled_device(pci_dev); 632 } 633 634 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev) 635 { 636 struct pci_driver *drv = pci_dev->driver; 637 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume 638 || drv->resume_early); 639 640 /* 641 * Legacy PM support is used by default, so warn if the new framework is 642 * supported as well. Drivers are supposed to support either the 643 * former, or the latter, but not both at the same time. 644 */ 645 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n", 646 drv->name, pci_dev->vendor, pci_dev->device); 647 648 return ret; 649 } 650 651 /* New power management framework */ 652 653 static int pci_pm_prepare(struct device *dev) 654 { 655 struct device_driver *drv = dev->driver; 656 657 /* 658 * Devices having power.ignore_children set may still be necessary for 659 * suspending their children in the next phase of device suspend. 660 */ 661 if (dev->power.ignore_children) 662 pm_runtime_resume(dev); 663 664 if (drv && drv->pm && drv->pm->prepare) { 665 int error = drv->pm->prepare(dev); 666 if (error) 667 return error; 668 } 669 return pci_dev_keep_suspended(to_pci_dev(dev)); 670 } 671 672 673 #else /* !CONFIG_PM_SLEEP */ 674 675 #define pci_pm_prepare NULL 676 677 #endif /* !CONFIG_PM_SLEEP */ 678 679 #ifdef CONFIG_SUSPEND 680 681 static int pci_pm_suspend(struct device *dev) 682 { 683 struct pci_dev *pci_dev = to_pci_dev(dev); 684 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 685 686 if (pci_has_legacy_pm_support(pci_dev)) 687 return pci_legacy_suspend(dev, PMSG_SUSPEND); 688 689 if (!pm) { 690 pci_pm_default_suspend(pci_dev); 691 goto Fixup; 692 } 693 694 /* 695 * PCI devices suspended at run time need to be resumed at this point, 696 * because in general it is necessary to reconfigure them for system 697 * suspend. Namely, if the device is supposed to wake up the system 698 * from the sleep state, we may need to reconfigure it for this purpose. 699 * In turn, if the device is not supposed to wake up the system from the 700 * sleep state, we'll have to prevent it from signaling wake-up. 701 */ 702 pm_runtime_resume(dev); 703 704 pci_dev->state_saved = false; 705 if (pm->suspend) { 706 pci_power_t prev = pci_dev->current_state; 707 int error; 708 709 error = pm->suspend(dev); 710 suspend_report_result(pm->suspend, error); 711 if (error) 712 return error; 713 714 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 715 && pci_dev->current_state != PCI_UNKNOWN) { 716 WARN_ONCE(pci_dev->current_state != prev, 717 "PCI PM: State of device not saved by %pF\n", 718 pm->suspend); 719 } 720 } 721 722 Fixup: 723 pci_fixup_device(pci_fixup_suspend, pci_dev); 724 725 return 0; 726 } 727 728 static int pci_pm_suspend_noirq(struct device *dev) 729 { 730 struct pci_dev *pci_dev = to_pci_dev(dev); 731 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 732 733 if (pci_has_legacy_pm_support(pci_dev)) 734 return pci_legacy_suspend_late(dev, PMSG_SUSPEND); 735 736 if (!pm) { 737 pci_save_state(pci_dev); 738 goto Fixup; 739 } 740 741 if (pm->suspend_noirq) { 742 pci_power_t prev = pci_dev->current_state; 743 int error; 744 745 error = pm->suspend_noirq(dev); 746 suspend_report_result(pm->suspend_noirq, error); 747 if (error) 748 return error; 749 750 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 751 && pci_dev->current_state != PCI_UNKNOWN) { 752 WARN_ONCE(pci_dev->current_state != prev, 753 "PCI PM: State of device not saved by %pF\n", 754 pm->suspend_noirq); 755 goto Fixup; 756 } 757 } 758 759 if (!pci_dev->state_saved) { 760 pci_save_state(pci_dev); 761 if (!pci_has_subordinate(pci_dev)) 762 pci_prepare_to_sleep(pci_dev); 763 } 764 765 pci_pm_set_unknown_state(pci_dev); 766 767 /* 768 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's 769 * PCI COMMAND register isn't 0, the BIOS assumes that the controller 770 * hasn't been quiesced and tries to turn it off. If the controller 771 * is already in D3, this can hang or cause memory corruption. 772 * 773 * Since the value of the COMMAND register doesn't matter once the 774 * device has been suspended, we can safely set it to 0 here. 775 */ 776 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 777 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 778 779 Fixup: 780 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 781 782 return 0; 783 } 784 785 static int pci_pm_resume_noirq(struct device *dev) 786 { 787 struct pci_dev *pci_dev = to_pci_dev(dev); 788 struct device_driver *drv = dev->driver; 789 int error = 0; 790 791 pci_pm_default_resume_early(pci_dev); 792 793 if (pci_has_legacy_pm_support(pci_dev)) 794 return pci_legacy_resume_early(dev); 795 796 if (drv && drv->pm && drv->pm->resume_noirq) 797 error = drv->pm->resume_noirq(dev); 798 799 return error; 800 } 801 802 static int pci_pm_resume(struct device *dev) 803 { 804 struct pci_dev *pci_dev = to_pci_dev(dev); 805 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 806 int error = 0; 807 808 /* 809 * This is necessary for the suspend error path in which resume is 810 * called without restoring the standard config registers of the device. 811 */ 812 if (pci_dev->state_saved) 813 pci_restore_standard_config(pci_dev); 814 815 if (pci_has_legacy_pm_support(pci_dev)) 816 return pci_legacy_resume(dev); 817 818 pci_pm_default_resume(pci_dev); 819 820 if (pm) { 821 if (pm->resume) 822 error = pm->resume(dev); 823 } else { 824 pci_pm_reenable_device(pci_dev); 825 } 826 827 return error; 828 } 829 830 #else /* !CONFIG_SUSPEND */ 831 832 #define pci_pm_suspend NULL 833 #define pci_pm_suspend_noirq NULL 834 #define pci_pm_resume NULL 835 #define pci_pm_resume_noirq NULL 836 837 #endif /* !CONFIG_SUSPEND */ 838 839 #ifdef CONFIG_HIBERNATE_CALLBACKS 840 841 842 /* 843 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing 844 * a hibernate transition 845 */ 846 struct dev_pm_ops __weak pcibios_pm_ops; 847 848 static int pci_pm_freeze(struct device *dev) 849 { 850 struct pci_dev *pci_dev = to_pci_dev(dev); 851 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 852 853 if (pci_has_legacy_pm_support(pci_dev)) 854 return pci_legacy_suspend(dev, PMSG_FREEZE); 855 856 if (!pm) { 857 pci_pm_default_suspend(pci_dev); 858 return 0; 859 } 860 861 /* 862 * This used to be done in pci_pm_prepare() for all devices and some 863 * drivers may depend on it, so do it here. Ideally, runtime-suspended 864 * devices should not be touched during freeze/thaw transitions, 865 * however. 866 */ 867 pm_runtime_resume(dev); 868 869 pci_dev->state_saved = false; 870 if (pm->freeze) { 871 int error; 872 873 error = pm->freeze(dev); 874 suspend_report_result(pm->freeze, error); 875 if (error) 876 return error; 877 } 878 879 if (pcibios_pm_ops.freeze) 880 return pcibios_pm_ops.freeze(dev); 881 882 return 0; 883 } 884 885 static int pci_pm_freeze_noirq(struct device *dev) 886 { 887 struct pci_dev *pci_dev = to_pci_dev(dev); 888 struct device_driver *drv = dev->driver; 889 890 if (pci_has_legacy_pm_support(pci_dev)) 891 return pci_legacy_suspend_late(dev, PMSG_FREEZE); 892 893 if (drv && drv->pm && drv->pm->freeze_noirq) { 894 int error; 895 896 error = drv->pm->freeze_noirq(dev); 897 suspend_report_result(drv->pm->freeze_noirq, error); 898 if (error) 899 return error; 900 } 901 902 if (!pci_dev->state_saved) 903 pci_save_state(pci_dev); 904 905 pci_pm_set_unknown_state(pci_dev); 906 907 if (pcibios_pm_ops.freeze_noirq) 908 return pcibios_pm_ops.freeze_noirq(dev); 909 910 return 0; 911 } 912 913 static int pci_pm_thaw_noirq(struct device *dev) 914 { 915 struct pci_dev *pci_dev = to_pci_dev(dev); 916 struct device_driver *drv = dev->driver; 917 int error = 0; 918 919 if (pcibios_pm_ops.thaw_noirq) { 920 error = pcibios_pm_ops.thaw_noirq(dev); 921 if (error) 922 return error; 923 } 924 925 if (pci_has_legacy_pm_support(pci_dev)) 926 return pci_legacy_resume_early(dev); 927 928 pci_update_current_state(pci_dev, PCI_D0); 929 930 if (drv && drv->pm && drv->pm->thaw_noirq) 931 error = drv->pm->thaw_noirq(dev); 932 933 return error; 934 } 935 936 static int pci_pm_thaw(struct device *dev) 937 { 938 struct pci_dev *pci_dev = to_pci_dev(dev); 939 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 940 int error = 0; 941 942 if (pcibios_pm_ops.thaw) { 943 error = pcibios_pm_ops.thaw(dev); 944 if (error) 945 return error; 946 } 947 948 if (pci_has_legacy_pm_support(pci_dev)) 949 return pci_legacy_resume(dev); 950 951 if (pm) { 952 if (pm->thaw) 953 error = pm->thaw(dev); 954 } else { 955 pci_pm_reenable_device(pci_dev); 956 } 957 958 pci_dev->state_saved = false; 959 960 return error; 961 } 962 963 static int pci_pm_poweroff(struct device *dev) 964 { 965 struct pci_dev *pci_dev = to_pci_dev(dev); 966 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 967 968 if (pci_has_legacy_pm_support(pci_dev)) 969 return pci_legacy_suspend(dev, PMSG_HIBERNATE); 970 971 if (!pm) { 972 pci_pm_default_suspend(pci_dev); 973 goto Fixup; 974 } 975 976 /* The reason to do that is the same as in pci_pm_suspend(). */ 977 pm_runtime_resume(dev); 978 979 pci_dev->state_saved = false; 980 if (pm->poweroff) { 981 int error; 982 983 error = pm->poweroff(dev); 984 suspend_report_result(pm->poweroff, error); 985 if (error) 986 return error; 987 } 988 989 Fixup: 990 pci_fixup_device(pci_fixup_suspend, pci_dev); 991 992 if (pcibios_pm_ops.poweroff) 993 return pcibios_pm_ops.poweroff(dev); 994 995 return 0; 996 } 997 998 static int pci_pm_poweroff_noirq(struct device *dev) 999 { 1000 struct pci_dev *pci_dev = to_pci_dev(dev); 1001 struct device_driver *drv = dev->driver; 1002 1003 if (pci_has_legacy_pm_support(to_pci_dev(dev))) 1004 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE); 1005 1006 if (!drv || !drv->pm) { 1007 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1008 return 0; 1009 } 1010 1011 if (drv->pm->poweroff_noirq) { 1012 int error; 1013 1014 error = drv->pm->poweroff_noirq(dev); 1015 suspend_report_result(drv->pm->poweroff_noirq, error); 1016 if (error) 1017 return error; 1018 } 1019 1020 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev)) 1021 pci_prepare_to_sleep(pci_dev); 1022 1023 /* 1024 * The reason for doing this here is the same as for the analogous code 1025 * in pci_pm_suspend_noirq(). 1026 */ 1027 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 1028 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 1029 1030 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1031 1032 if (pcibios_pm_ops.poweroff_noirq) 1033 return pcibios_pm_ops.poweroff_noirq(dev); 1034 1035 return 0; 1036 } 1037 1038 static int pci_pm_restore_noirq(struct device *dev) 1039 { 1040 struct pci_dev *pci_dev = to_pci_dev(dev); 1041 struct device_driver *drv = dev->driver; 1042 int error = 0; 1043 1044 if (pcibios_pm_ops.restore_noirq) { 1045 error = pcibios_pm_ops.restore_noirq(dev); 1046 if (error) 1047 return error; 1048 } 1049 1050 pci_pm_default_resume_early(pci_dev); 1051 1052 if (pci_has_legacy_pm_support(pci_dev)) 1053 return pci_legacy_resume_early(dev); 1054 1055 if (drv && drv->pm && drv->pm->restore_noirq) 1056 error = drv->pm->restore_noirq(dev); 1057 1058 return error; 1059 } 1060 1061 static int pci_pm_restore(struct device *dev) 1062 { 1063 struct pci_dev *pci_dev = to_pci_dev(dev); 1064 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1065 int error = 0; 1066 1067 if (pcibios_pm_ops.restore) { 1068 error = pcibios_pm_ops.restore(dev); 1069 if (error) 1070 return error; 1071 } 1072 1073 /* 1074 * This is necessary for the hibernation error path in which restore is 1075 * called without restoring the standard config registers of the device. 1076 */ 1077 if (pci_dev->state_saved) 1078 pci_restore_standard_config(pci_dev); 1079 1080 if (pci_has_legacy_pm_support(pci_dev)) 1081 return pci_legacy_resume(dev); 1082 1083 pci_pm_default_resume(pci_dev); 1084 1085 if (pm) { 1086 if (pm->restore) 1087 error = pm->restore(dev); 1088 } else { 1089 pci_pm_reenable_device(pci_dev); 1090 } 1091 1092 return error; 1093 } 1094 1095 #else /* !CONFIG_HIBERNATE_CALLBACKS */ 1096 1097 #define pci_pm_freeze NULL 1098 #define pci_pm_freeze_noirq NULL 1099 #define pci_pm_thaw NULL 1100 #define pci_pm_thaw_noirq NULL 1101 #define pci_pm_poweroff NULL 1102 #define pci_pm_poweroff_noirq NULL 1103 #define pci_pm_restore NULL 1104 #define pci_pm_restore_noirq NULL 1105 1106 #endif /* !CONFIG_HIBERNATE_CALLBACKS */ 1107 1108 #ifdef CONFIG_PM 1109 1110 static int pci_pm_runtime_suspend(struct device *dev) 1111 { 1112 struct pci_dev *pci_dev = to_pci_dev(dev); 1113 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1114 pci_power_t prev = pci_dev->current_state; 1115 int error; 1116 1117 /* 1118 * If pci_dev->driver is not set (unbound), the device should 1119 * always remain in D0 regardless of the runtime PM status 1120 */ 1121 if (!pci_dev->driver) 1122 return 0; 1123 1124 if (!pm || !pm->runtime_suspend) 1125 return -ENOSYS; 1126 1127 pci_dev->state_saved = false; 1128 pci_dev->no_d3cold = false; 1129 error = pm->runtime_suspend(dev); 1130 suspend_report_result(pm->runtime_suspend, error); 1131 if (error) 1132 return error; 1133 if (!pci_dev->d3cold_allowed) 1134 pci_dev->no_d3cold = true; 1135 1136 pci_fixup_device(pci_fixup_suspend, pci_dev); 1137 1138 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 1139 && pci_dev->current_state != PCI_UNKNOWN) { 1140 WARN_ONCE(pci_dev->current_state != prev, 1141 "PCI PM: State of device not saved by %pF\n", 1142 pm->runtime_suspend); 1143 return 0; 1144 } 1145 1146 if (!pci_dev->state_saved) { 1147 pci_save_state(pci_dev); 1148 pci_finish_runtime_suspend(pci_dev); 1149 } 1150 1151 return 0; 1152 } 1153 1154 static int pci_pm_runtime_resume(struct device *dev) 1155 { 1156 int rc; 1157 struct pci_dev *pci_dev = to_pci_dev(dev); 1158 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1159 1160 /* 1161 * If pci_dev->driver is not set (unbound), the device should 1162 * always remain in D0 regardless of the runtime PM status 1163 */ 1164 if (!pci_dev->driver) 1165 return 0; 1166 1167 if (!pm || !pm->runtime_resume) 1168 return -ENOSYS; 1169 1170 pci_restore_standard_config(pci_dev); 1171 pci_fixup_device(pci_fixup_resume_early, pci_dev); 1172 __pci_enable_wake(pci_dev, PCI_D0, true, false); 1173 pci_fixup_device(pci_fixup_resume, pci_dev); 1174 1175 rc = pm->runtime_resume(dev); 1176 1177 pci_dev->runtime_d3cold = false; 1178 1179 return rc; 1180 } 1181 1182 static int pci_pm_runtime_idle(struct device *dev) 1183 { 1184 struct pci_dev *pci_dev = to_pci_dev(dev); 1185 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1186 int ret = 0; 1187 1188 /* 1189 * If pci_dev->driver is not set (unbound), the device should 1190 * always remain in D0 regardless of the runtime PM status 1191 */ 1192 if (!pci_dev->driver) 1193 return 0; 1194 1195 if (!pm) 1196 return -ENOSYS; 1197 1198 if (pm->runtime_idle) 1199 ret = pm->runtime_idle(dev); 1200 1201 return ret; 1202 } 1203 1204 static const struct dev_pm_ops pci_dev_pm_ops = { 1205 .prepare = pci_pm_prepare, 1206 .suspend = pci_pm_suspend, 1207 .resume = pci_pm_resume, 1208 .freeze = pci_pm_freeze, 1209 .thaw = pci_pm_thaw, 1210 .poweroff = pci_pm_poweroff, 1211 .restore = pci_pm_restore, 1212 .suspend_noirq = pci_pm_suspend_noirq, 1213 .resume_noirq = pci_pm_resume_noirq, 1214 .freeze_noirq = pci_pm_freeze_noirq, 1215 .thaw_noirq = pci_pm_thaw_noirq, 1216 .poweroff_noirq = pci_pm_poweroff_noirq, 1217 .restore_noirq = pci_pm_restore_noirq, 1218 .runtime_suspend = pci_pm_runtime_suspend, 1219 .runtime_resume = pci_pm_runtime_resume, 1220 .runtime_idle = pci_pm_runtime_idle, 1221 }; 1222 1223 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops) 1224 1225 #else /* !CONFIG_PM */ 1226 1227 #define pci_pm_runtime_suspend NULL 1228 #define pci_pm_runtime_resume NULL 1229 #define pci_pm_runtime_idle NULL 1230 1231 #define PCI_PM_OPS_PTR NULL 1232 1233 #endif /* !CONFIG_PM */ 1234 1235 /** 1236 * __pci_register_driver - register a new pci driver 1237 * @drv: the driver structure to register 1238 * @owner: owner module of drv 1239 * @mod_name: module name string 1240 * 1241 * Adds the driver structure to the list of registered drivers. 1242 * Returns a negative value on error, otherwise 0. 1243 * If no error occurred, the driver remains registered even if 1244 * no device was claimed during registration. 1245 */ 1246 int __pci_register_driver(struct pci_driver *drv, struct module *owner, 1247 const char *mod_name) 1248 { 1249 /* initialize common driver fields */ 1250 drv->driver.name = drv->name; 1251 drv->driver.bus = &pci_bus_type; 1252 drv->driver.owner = owner; 1253 drv->driver.mod_name = mod_name; 1254 1255 spin_lock_init(&drv->dynids.lock); 1256 INIT_LIST_HEAD(&drv->dynids.list); 1257 1258 /* register with core */ 1259 return driver_register(&drv->driver); 1260 } 1261 EXPORT_SYMBOL(__pci_register_driver); 1262 1263 /** 1264 * pci_unregister_driver - unregister a pci driver 1265 * @drv: the driver structure to unregister 1266 * 1267 * Deletes the driver structure from the list of registered PCI drivers, 1268 * gives it a chance to clean up by calling its remove() function for 1269 * each device it was responsible for, and marks those devices as 1270 * driverless. 1271 */ 1272 1273 void pci_unregister_driver(struct pci_driver *drv) 1274 { 1275 driver_unregister(&drv->driver); 1276 pci_free_dynids(drv); 1277 } 1278 EXPORT_SYMBOL(pci_unregister_driver); 1279 1280 static struct pci_driver pci_compat_driver = { 1281 .name = "compat" 1282 }; 1283 1284 /** 1285 * pci_dev_driver - get the pci_driver of a device 1286 * @dev: the device to query 1287 * 1288 * Returns the appropriate pci_driver structure or %NULL if there is no 1289 * registered driver for the device. 1290 */ 1291 struct pci_driver *pci_dev_driver(const struct pci_dev *dev) 1292 { 1293 if (dev->driver) 1294 return dev->driver; 1295 else { 1296 int i; 1297 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1298 if (dev->resource[i].flags & IORESOURCE_BUSY) 1299 return &pci_compat_driver; 1300 } 1301 return NULL; 1302 } 1303 EXPORT_SYMBOL(pci_dev_driver); 1304 1305 /** 1306 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure 1307 * @dev: the PCI device structure to match against 1308 * @drv: the device driver to search for matching PCI device id structures 1309 * 1310 * Used by a driver to check whether a PCI device present in the 1311 * system is in its list of supported devices. Returns the matching 1312 * pci_device_id structure or %NULL if there is no match. 1313 */ 1314 static int pci_bus_match(struct device *dev, struct device_driver *drv) 1315 { 1316 struct pci_dev *pci_dev = to_pci_dev(dev); 1317 struct pci_driver *pci_drv; 1318 const struct pci_device_id *found_id; 1319 1320 if (!pci_dev->match_driver) 1321 return 0; 1322 1323 pci_drv = to_pci_driver(drv); 1324 found_id = pci_match_device(pci_drv, pci_dev); 1325 if (found_id) 1326 return 1; 1327 1328 return 0; 1329 } 1330 1331 /** 1332 * pci_dev_get - increments the reference count of the pci device structure 1333 * @dev: the device being referenced 1334 * 1335 * Each live reference to a device should be refcounted. 1336 * 1337 * Drivers for PCI devices should normally record such references in 1338 * their probe() methods, when they bind to a device, and release 1339 * them by calling pci_dev_put(), in their disconnect() methods. 1340 * 1341 * A pointer to the device with the incremented reference counter is returned. 1342 */ 1343 struct pci_dev *pci_dev_get(struct pci_dev *dev) 1344 { 1345 if (dev) 1346 get_device(&dev->dev); 1347 return dev; 1348 } 1349 EXPORT_SYMBOL(pci_dev_get); 1350 1351 /** 1352 * pci_dev_put - release a use of the pci device structure 1353 * @dev: device that's been disconnected 1354 * 1355 * Must be called when a user of a device is finished with it. When the last 1356 * user of the device calls this function, the memory of the device is freed. 1357 */ 1358 void pci_dev_put(struct pci_dev *dev) 1359 { 1360 if (dev) 1361 put_device(&dev->dev); 1362 } 1363 EXPORT_SYMBOL(pci_dev_put); 1364 1365 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env) 1366 { 1367 struct pci_dev *pdev; 1368 1369 if (!dev) 1370 return -ENODEV; 1371 1372 pdev = to_pci_dev(dev); 1373 1374 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class)) 1375 return -ENOMEM; 1376 1377 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device)) 1378 return -ENOMEM; 1379 1380 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor, 1381 pdev->subsystem_device)) 1382 return -ENOMEM; 1383 1384 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev))) 1385 return -ENOMEM; 1386 1387 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X", 1388 pdev->vendor, pdev->device, 1389 pdev->subsystem_vendor, pdev->subsystem_device, 1390 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8), 1391 (u8)(pdev->class))) 1392 return -ENOMEM; 1393 1394 return 0; 1395 } 1396 1397 struct bus_type pci_bus_type = { 1398 .name = "pci", 1399 .match = pci_bus_match, 1400 .uevent = pci_uevent, 1401 .probe = pci_device_probe, 1402 .remove = pci_device_remove, 1403 .shutdown = pci_device_shutdown, 1404 .dev_groups = pci_dev_groups, 1405 .bus_groups = pci_bus_groups, 1406 .drv_groups = pci_drv_groups, 1407 .pm = PCI_PM_OPS_PTR, 1408 }; 1409 EXPORT_SYMBOL(pci_bus_type); 1410 1411 static int __init pci_driver_init(void) 1412 { 1413 return bus_register(&pci_bus_type); 1414 } 1415 postcore_initcall(pci_driver_init); 1416