1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com> 4 * (C) Copyright 2007 Novell Inc. 5 */ 6 7 #include <linux/pci.h> 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/device.h> 11 #include <linux/mempolicy.h> 12 #include <linux/string.h> 13 #include <linux/slab.h> 14 #include <linux/sched.h> 15 #include <linux/cpu.h> 16 #include <linux/pm_runtime.h> 17 #include <linux/suspend.h> 18 #include <linux/kexec.h> 19 #include <linux/of_device.h> 20 #include <linux/acpi.h> 21 #include "pci.h" 22 #include "pcie/portdrv.h" 23 24 struct pci_dynid { 25 struct list_head node; 26 struct pci_device_id id; 27 }; 28 29 /** 30 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices 31 * @drv: target pci driver 32 * @vendor: PCI vendor ID 33 * @device: PCI device ID 34 * @subvendor: PCI subvendor ID 35 * @subdevice: PCI subdevice ID 36 * @class: PCI class 37 * @class_mask: PCI class mask 38 * @driver_data: private driver data 39 * 40 * Adds a new dynamic pci device ID to this driver and causes the 41 * driver to probe for all devices again. @drv must have been 42 * registered prior to calling this function. 43 * 44 * CONTEXT: 45 * Does GFP_KERNEL allocation. 46 * 47 * RETURNS: 48 * 0 on success, -errno on failure. 49 */ 50 int pci_add_dynid(struct pci_driver *drv, 51 unsigned int vendor, unsigned int device, 52 unsigned int subvendor, unsigned int subdevice, 53 unsigned int class, unsigned int class_mask, 54 unsigned long driver_data) 55 { 56 struct pci_dynid *dynid; 57 58 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 59 if (!dynid) 60 return -ENOMEM; 61 62 dynid->id.vendor = vendor; 63 dynid->id.device = device; 64 dynid->id.subvendor = subvendor; 65 dynid->id.subdevice = subdevice; 66 dynid->id.class = class; 67 dynid->id.class_mask = class_mask; 68 dynid->id.driver_data = driver_data; 69 70 spin_lock(&drv->dynids.lock); 71 list_add_tail(&dynid->node, &drv->dynids.list); 72 spin_unlock(&drv->dynids.lock); 73 74 return driver_attach(&drv->driver); 75 } 76 EXPORT_SYMBOL_GPL(pci_add_dynid); 77 78 static void pci_free_dynids(struct pci_driver *drv) 79 { 80 struct pci_dynid *dynid, *n; 81 82 spin_lock(&drv->dynids.lock); 83 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 84 list_del(&dynid->node); 85 kfree(dynid); 86 } 87 spin_unlock(&drv->dynids.lock); 88 } 89 90 /** 91 * store_new_id - sysfs frontend to pci_add_dynid() 92 * @driver: target device driver 93 * @buf: buffer for scanning device ID data 94 * @count: input size 95 * 96 * Allow PCI IDs to be added to an existing driver via sysfs. 97 */ 98 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 99 size_t count) 100 { 101 struct pci_driver *pdrv = to_pci_driver(driver); 102 const struct pci_device_id *ids = pdrv->id_table; 103 __u32 vendor, device, subvendor = PCI_ANY_ID, 104 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 105 unsigned long driver_data = 0; 106 int fields = 0; 107 int retval = 0; 108 109 fields = sscanf(buf, "%x %x %x %x %x %x %lx", 110 &vendor, &device, &subvendor, &subdevice, 111 &class, &class_mask, &driver_data); 112 if (fields < 2) 113 return -EINVAL; 114 115 if (fields != 7) { 116 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); 117 if (!pdev) 118 return -ENOMEM; 119 120 pdev->vendor = vendor; 121 pdev->device = device; 122 pdev->subsystem_vendor = subvendor; 123 pdev->subsystem_device = subdevice; 124 pdev->class = class; 125 126 if (pci_match_id(pdrv->id_table, pdev)) 127 retval = -EEXIST; 128 129 kfree(pdev); 130 131 if (retval) 132 return retval; 133 } 134 135 /* Only accept driver_data values that match an existing id_table 136 entry */ 137 if (ids) { 138 retval = -EINVAL; 139 while (ids->vendor || ids->subvendor || ids->class_mask) { 140 if (driver_data == ids->driver_data) { 141 retval = 0; 142 break; 143 } 144 ids++; 145 } 146 if (retval) /* No match */ 147 return retval; 148 } 149 150 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice, 151 class, class_mask, driver_data); 152 if (retval) 153 return retval; 154 return count; 155 } 156 static DRIVER_ATTR_WO(new_id); 157 158 /** 159 * store_remove_id - remove a PCI device ID from this driver 160 * @driver: target device driver 161 * @buf: buffer for scanning device ID data 162 * @count: input size 163 * 164 * Removes a dynamic pci device ID to this driver. 165 */ 166 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 167 size_t count) 168 { 169 struct pci_dynid *dynid, *n; 170 struct pci_driver *pdrv = to_pci_driver(driver); 171 __u32 vendor, device, subvendor = PCI_ANY_ID, 172 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 173 int fields = 0; 174 size_t retval = -ENODEV; 175 176 fields = sscanf(buf, "%x %x %x %x %x %x", 177 &vendor, &device, &subvendor, &subdevice, 178 &class, &class_mask); 179 if (fields < 2) 180 return -EINVAL; 181 182 spin_lock(&pdrv->dynids.lock); 183 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) { 184 struct pci_device_id *id = &dynid->id; 185 if ((id->vendor == vendor) && 186 (id->device == device) && 187 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) && 188 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) && 189 !((id->class ^ class) & class_mask)) { 190 list_del(&dynid->node); 191 kfree(dynid); 192 retval = count; 193 break; 194 } 195 } 196 spin_unlock(&pdrv->dynids.lock); 197 198 return retval; 199 } 200 static DRIVER_ATTR_WO(remove_id); 201 202 static struct attribute *pci_drv_attrs[] = { 203 &driver_attr_new_id.attr, 204 &driver_attr_remove_id.attr, 205 NULL, 206 }; 207 ATTRIBUTE_GROUPS(pci_drv); 208 209 /** 210 * pci_match_id - See if a pci device matches a given pci_id table 211 * @ids: array of PCI device id structures to search in 212 * @dev: the PCI device structure to match against. 213 * 214 * Used by a driver to check whether a PCI device present in the 215 * system is in its list of supported devices. Returns the matching 216 * pci_device_id structure or %NULL if there is no match. 217 * 218 * Deprecated, don't use this as it will not catch any dynamic ids 219 * that a driver might want to check for. 220 */ 221 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids, 222 struct pci_dev *dev) 223 { 224 if (ids) { 225 while (ids->vendor || ids->subvendor || ids->class_mask) { 226 if (pci_match_one_device(ids, dev)) 227 return ids; 228 ids++; 229 } 230 } 231 return NULL; 232 } 233 EXPORT_SYMBOL(pci_match_id); 234 235 static const struct pci_device_id pci_device_id_any = { 236 .vendor = PCI_ANY_ID, 237 .device = PCI_ANY_ID, 238 .subvendor = PCI_ANY_ID, 239 .subdevice = PCI_ANY_ID, 240 }; 241 242 /** 243 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure 244 * @drv: the PCI driver to match against 245 * @dev: the PCI device structure to match against 246 * 247 * Used by a driver to check whether a PCI device present in the 248 * system is in its list of supported devices. Returns the matching 249 * pci_device_id structure or %NULL if there is no match. 250 */ 251 static const struct pci_device_id *pci_match_device(struct pci_driver *drv, 252 struct pci_dev *dev) 253 { 254 struct pci_dynid *dynid; 255 const struct pci_device_id *found_id = NULL; 256 257 /* When driver_override is set, only bind to the matching driver */ 258 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 259 return NULL; 260 261 /* Look at the dynamic ids first, before the static ones */ 262 spin_lock(&drv->dynids.lock); 263 list_for_each_entry(dynid, &drv->dynids.list, node) { 264 if (pci_match_one_device(&dynid->id, dev)) { 265 found_id = &dynid->id; 266 break; 267 } 268 } 269 spin_unlock(&drv->dynids.lock); 270 271 if (!found_id) 272 found_id = pci_match_id(drv->id_table, dev); 273 274 /* driver_override will always match, send a dummy id */ 275 if (!found_id && dev->driver_override) 276 found_id = &pci_device_id_any; 277 278 return found_id; 279 } 280 281 struct drv_dev_and_id { 282 struct pci_driver *drv; 283 struct pci_dev *dev; 284 const struct pci_device_id *id; 285 }; 286 287 static long local_pci_probe(void *_ddi) 288 { 289 struct drv_dev_and_id *ddi = _ddi; 290 struct pci_dev *pci_dev = ddi->dev; 291 struct pci_driver *pci_drv = ddi->drv; 292 struct device *dev = &pci_dev->dev; 293 int rc; 294 295 /* 296 * Unbound PCI devices are always put in D0, regardless of 297 * runtime PM status. During probe, the device is set to 298 * active and the usage count is incremented. If the driver 299 * supports runtime PM, it should call pm_runtime_put_noidle(), 300 * or any other runtime PM helper function decrementing the usage 301 * count, in its probe routine and pm_runtime_get_noresume() in 302 * its remove routine. 303 */ 304 pm_runtime_get_sync(dev); 305 pci_dev->driver = pci_drv; 306 rc = pci_drv->probe(pci_dev, ddi->id); 307 if (!rc) 308 return rc; 309 if (rc < 0) { 310 pci_dev->driver = NULL; 311 pm_runtime_put_sync(dev); 312 return rc; 313 } 314 /* 315 * Probe function should return < 0 for failure, 0 for success 316 * Treat values > 0 as success, but warn. 317 */ 318 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc); 319 return 0; 320 } 321 322 static bool pci_physfn_is_probed(struct pci_dev *dev) 323 { 324 #ifdef CONFIG_PCI_IOV 325 return dev->is_virtfn && dev->physfn->is_probed; 326 #else 327 return false; 328 #endif 329 } 330 331 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev, 332 const struct pci_device_id *id) 333 { 334 int error, node, cpu; 335 struct drv_dev_and_id ddi = { drv, dev, id }; 336 337 /* 338 * Execute driver initialization on node where the device is 339 * attached. This way the driver likely allocates its local memory 340 * on the right node. 341 */ 342 node = dev_to_node(&dev->dev); 343 dev->is_probed = 1; 344 345 cpu_hotplug_disable(); 346 347 /* 348 * Prevent nesting work_on_cpu() for the case where a Virtual Function 349 * device is probed from work_on_cpu() of the Physical device. 350 */ 351 if (node < 0 || node >= MAX_NUMNODES || !node_online(node) || 352 pci_physfn_is_probed(dev)) 353 cpu = nr_cpu_ids; 354 else 355 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 356 357 if (cpu < nr_cpu_ids) 358 error = work_on_cpu(cpu, local_pci_probe, &ddi); 359 else 360 error = local_pci_probe(&ddi); 361 362 dev->is_probed = 0; 363 cpu_hotplug_enable(); 364 return error; 365 } 366 367 /** 368 * __pci_device_probe - check if a driver wants to claim a specific PCI device 369 * @drv: driver to call to check if it wants the PCI device 370 * @pci_dev: PCI device being probed 371 * 372 * returns 0 on success, else error. 373 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev. 374 */ 375 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev) 376 { 377 const struct pci_device_id *id; 378 int error = 0; 379 380 if (!pci_dev->driver && drv->probe) { 381 error = -ENODEV; 382 383 id = pci_match_device(drv, pci_dev); 384 if (id) 385 error = pci_call_probe(drv, pci_dev, id); 386 } 387 return error; 388 } 389 390 int __weak pcibios_alloc_irq(struct pci_dev *dev) 391 { 392 return 0; 393 } 394 395 void __weak pcibios_free_irq(struct pci_dev *dev) 396 { 397 } 398 399 #ifdef CONFIG_PCI_IOV 400 static inline bool pci_device_can_probe(struct pci_dev *pdev) 401 { 402 return (!pdev->is_virtfn || pdev->physfn->sriov->drivers_autoprobe); 403 } 404 #else 405 static inline bool pci_device_can_probe(struct pci_dev *pdev) 406 { 407 return true; 408 } 409 #endif 410 411 static int pci_device_probe(struct device *dev) 412 { 413 int error; 414 struct pci_dev *pci_dev = to_pci_dev(dev); 415 struct pci_driver *drv = to_pci_driver(dev->driver); 416 417 pci_assign_irq(pci_dev); 418 419 error = pcibios_alloc_irq(pci_dev); 420 if (error < 0) 421 return error; 422 423 pci_dev_get(pci_dev); 424 if (pci_device_can_probe(pci_dev)) { 425 error = __pci_device_probe(drv, pci_dev); 426 if (error) { 427 pcibios_free_irq(pci_dev); 428 pci_dev_put(pci_dev); 429 } 430 } 431 432 return error; 433 } 434 435 static int pci_device_remove(struct device *dev) 436 { 437 struct pci_dev *pci_dev = to_pci_dev(dev); 438 struct pci_driver *drv = pci_dev->driver; 439 440 if (drv) { 441 if (drv->remove) { 442 pm_runtime_get_sync(dev); 443 drv->remove(pci_dev); 444 pm_runtime_put_noidle(dev); 445 } 446 pcibios_free_irq(pci_dev); 447 pci_dev->driver = NULL; 448 pci_iov_remove(pci_dev); 449 } 450 451 /* Undo the runtime PM settings in local_pci_probe() */ 452 pm_runtime_put_sync(dev); 453 454 /* 455 * If the device is still on, set the power state as "unknown", 456 * since it might change by the next time we load the driver. 457 */ 458 if (pci_dev->current_state == PCI_D0) 459 pci_dev->current_state = PCI_UNKNOWN; 460 461 /* 462 * We would love to complain here if pci_dev->is_enabled is set, that 463 * the driver should have called pci_disable_device(), but the 464 * unfortunate fact is there are too many odd BIOS and bridge setups 465 * that don't like drivers doing that all of the time. 466 * Oh well, we can dream of sane hardware when we sleep, no matter how 467 * horrible the crap we have to deal with is when we are awake... 468 */ 469 470 pci_dev_put(pci_dev); 471 return 0; 472 } 473 474 static void pci_device_shutdown(struct device *dev) 475 { 476 struct pci_dev *pci_dev = to_pci_dev(dev); 477 struct pci_driver *drv = pci_dev->driver; 478 479 pm_runtime_resume(dev); 480 481 if (drv && drv->shutdown) 482 drv->shutdown(pci_dev); 483 484 /* 485 * If this is a kexec reboot, turn off Bus Master bit on the 486 * device to tell it to not continue to do DMA. Don't touch 487 * devices in D3cold or unknown states. 488 * If it is not a kexec reboot, firmware will hit the PCI 489 * devices with big hammer and stop their DMA any way. 490 */ 491 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot)) 492 pci_clear_master(pci_dev); 493 } 494 495 #ifdef CONFIG_PM 496 497 /* Auxiliary functions used for system resume and run-time resume. */ 498 499 /** 500 * pci_restore_standard_config - restore standard config registers of PCI device 501 * @pci_dev: PCI device to handle 502 */ 503 static int pci_restore_standard_config(struct pci_dev *pci_dev) 504 { 505 pci_update_current_state(pci_dev, PCI_UNKNOWN); 506 507 if (pci_dev->current_state != PCI_D0) { 508 int error = pci_set_power_state(pci_dev, PCI_D0); 509 if (error) 510 return error; 511 } 512 513 pci_restore_state(pci_dev); 514 pci_pme_restore(pci_dev); 515 return 0; 516 } 517 518 #endif 519 520 #ifdef CONFIG_PM_SLEEP 521 522 static void pci_pm_default_resume_early(struct pci_dev *pci_dev) 523 { 524 pci_power_up(pci_dev); 525 pci_restore_state(pci_dev); 526 pci_pme_restore(pci_dev); 527 pci_fixup_device(pci_fixup_resume_early, pci_dev); 528 } 529 530 /* 531 * Default "suspend" method for devices that have no driver provided suspend, 532 * or not even a driver at all (second part). 533 */ 534 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev) 535 { 536 /* 537 * mark its power state as "unknown", since we don't know if 538 * e.g. the BIOS will change its device state when we suspend. 539 */ 540 if (pci_dev->current_state == PCI_D0) 541 pci_dev->current_state = PCI_UNKNOWN; 542 } 543 544 /* 545 * Default "resume" method for devices that have no driver provided resume, 546 * or not even a driver at all (second part). 547 */ 548 static int pci_pm_reenable_device(struct pci_dev *pci_dev) 549 { 550 int retval; 551 552 /* if the device was enabled before suspend, reenable */ 553 retval = pci_reenable_device(pci_dev); 554 /* 555 * if the device was busmaster before the suspend, make it busmaster 556 * again 557 */ 558 if (pci_dev->is_busmaster) 559 pci_set_master(pci_dev); 560 561 return retval; 562 } 563 564 static int pci_legacy_suspend(struct device *dev, pm_message_t state) 565 { 566 struct pci_dev *pci_dev = to_pci_dev(dev); 567 struct pci_driver *drv = pci_dev->driver; 568 569 if (drv && drv->suspend) { 570 pci_power_t prev = pci_dev->current_state; 571 int error; 572 573 error = drv->suspend(pci_dev, state); 574 suspend_report_result(drv->suspend, error); 575 if (error) 576 return error; 577 578 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 579 && pci_dev->current_state != PCI_UNKNOWN) { 580 WARN_ONCE(pci_dev->current_state != prev, 581 "PCI PM: Device state not saved by %pF\n", 582 drv->suspend); 583 } 584 } 585 586 pci_fixup_device(pci_fixup_suspend, pci_dev); 587 588 return 0; 589 } 590 591 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state) 592 { 593 struct pci_dev *pci_dev = to_pci_dev(dev); 594 struct pci_driver *drv = pci_dev->driver; 595 596 if (drv && drv->suspend_late) { 597 pci_power_t prev = pci_dev->current_state; 598 int error; 599 600 error = drv->suspend_late(pci_dev, state); 601 suspend_report_result(drv->suspend_late, error); 602 if (error) 603 return error; 604 605 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 606 && pci_dev->current_state != PCI_UNKNOWN) { 607 WARN_ONCE(pci_dev->current_state != prev, 608 "PCI PM: Device state not saved by %pF\n", 609 drv->suspend_late); 610 goto Fixup; 611 } 612 } 613 614 if (!pci_dev->state_saved) 615 pci_save_state(pci_dev); 616 617 pci_pm_set_unknown_state(pci_dev); 618 619 Fixup: 620 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 621 622 return 0; 623 } 624 625 static int pci_legacy_resume_early(struct device *dev) 626 { 627 struct pci_dev *pci_dev = to_pci_dev(dev); 628 struct pci_driver *drv = pci_dev->driver; 629 630 return drv && drv->resume_early ? 631 drv->resume_early(pci_dev) : 0; 632 } 633 634 static int pci_legacy_resume(struct device *dev) 635 { 636 struct pci_dev *pci_dev = to_pci_dev(dev); 637 struct pci_driver *drv = pci_dev->driver; 638 639 pci_fixup_device(pci_fixup_resume, pci_dev); 640 641 return drv && drv->resume ? 642 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev); 643 } 644 645 /* Auxiliary functions used by the new power management framework */ 646 647 static void pci_pm_default_resume(struct pci_dev *pci_dev) 648 { 649 pci_fixup_device(pci_fixup_resume, pci_dev); 650 pci_enable_wake(pci_dev, PCI_D0, false); 651 } 652 653 static void pci_pm_default_suspend(struct pci_dev *pci_dev) 654 { 655 /* Disable non-bridge devices without PM support */ 656 if (!pci_has_subordinate(pci_dev)) 657 pci_disable_enabled_device(pci_dev); 658 } 659 660 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev) 661 { 662 struct pci_driver *drv = pci_dev->driver; 663 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume 664 || drv->resume_early); 665 666 /* 667 * Legacy PM support is used by default, so warn if the new framework is 668 * supported as well. Drivers are supposed to support either the 669 * former, or the latter, but not both at the same time. 670 */ 671 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n", 672 drv->name, pci_dev->vendor, pci_dev->device); 673 674 return ret; 675 } 676 677 /* New power management framework */ 678 679 static int pci_pm_prepare(struct device *dev) 680 { 681 struct device_driver *drv = dev->driver; 682 683 if (drv && drv->pm && drv->pm->prepare) { 684 int error = drv->pm->prepare(dev); 685 if (error < 0) 686 return error; 687 688 if (!error && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE)) 689 return 0; 690 } 691 return pci_dev_keep_suspended(to_pci_dev(dev)); 692 } 693 694 static void pci_pm_complete(struct device *dev) 695 { 696 struct pci_dev *pci_dev = to_pci_dev(dev); 697 698 pci_dev_complete_resume(pci_dev); 699 pm_generic_complete(dev); 700 701 /* Resume device if platform firmware has put it in reset-power-on */ 702 if (pm_runtime_suspended(dev) && pm_resume_via_firmware()) { 703 pci_power_t pre_sleep_state = pci_dev->current_state; 704 705 pci_update_current_state(pci_dev, pci_dev->current_state); 706 if (pci_dev->current_state < pre_sleep_state) 707 pm_request_resume(dev); 708 } 709 } 710 711 #else /* !CONFIG_PM_SLEEP */ 712 713 #define pci_pm_prepare NULL 714 #define pci_pm_complete NULL 715 716 #endif /* !CONFIG_PM_SLEEP */ 717 718 #ifdef CONFIG_SUSPEND 719 static void pcie_pme_root_status_cleanup(struct pci_dev *pci_dev) 720 { 721 /* 722 * Some BIOSes forget to clear Root PME Status bits after system 723 * wakeup, which breaks ACPI-based runtime wakeup on PCI Express. 724 * Clear those bits now just in case (shouldn't hurt). 725 */ 726 if (pci_is_pcie(pci_dev) && 727 (pci_pcie_type(pci_dev) == PCI_EXP_TYPE_ROOT_PORT || 728 pci_pcie_type(pci_dev) == PCI_EXP_TYPE_RC_EC)) 729 pcie_clear_root_pme_status(pci_dev); 730 } 731 732 static int pci_pm_suspend(struct device *dev) 733 { 734 struct pci_dev *pci_dev = to_pci_dev(dev); 735 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 736 737 if (pci_has_legacy_pm_support(pci_dev)) 738 return pci_legacy_suspend(dev, PMSG_SUSPEND); 739 740 if (!pm) { 741 pci_pm_default_suspend(pci_dev); 742 return 0; 743 } 744 745 /* 746 * PCI devices suspended at run time may need to be resumed at this 747 * point, because in general it may be necessary to reconfigure them for 748 * system suspend. Namely, if the device is expected to wake up the 749 * system from the sleep state, it may have to be reconfigured for this 750 * purpose, or if the device is not expected to wake up the system from 751 * the sleep state, it should be prevented from signaling wakeup events 752 * going forward. 753 * 754 * Also if the driver of the device does not indicate that its system 755 * suspend callbacks can cope with runtime-suspended devices, it is 756 * better to resume the device from runtime suspend here. 757 */ 758 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) || 759 !pci_dev_keep_suspended(pci_dev)) { 760 pm_runtime_resume(dev); 761 pci_dev->state_saved = false; 762 } 763 764 if (pm->suspend) { 765 pci_power_t prev = pci_dev->current_state; 766 int error; 767 768 error = pm->suspend(dev); 769 suspend_report_result(pm->suspend, error); 770 if (error) 771 return error; 772 773 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 774 && pci_dev->current_state != PCI_UNKNOWN) { 775 WARN_ONCE(pci_dev->current_state != prev, 776 "PCI PM: State of device not saved by %pF\n", 777 pm->suspend); 778 } 779 } 780 781 return 0; 782 } 783 784 static int pci_pm_suspend_late(struct device *dev) 785 { 786 if (dev_pm_smart_suspend_and_suspended(dev)) 787 return 0; 788 789 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev)); 790 791 return pm_generic_suspend_late(dev); 792 } 793 794 static int pci_pm_suspend_noirq(struct device *dev) 795 { 796 struct pci_dev *pci_dev = to_pci_dev(dev); 797 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 798 799 if (dev_pm_smart_suspend_and_suspended(dev)) { 800 dev->power.may_skip_resume = true; 801 return 0; 802 } 803 804 if (pci_has_legacy_pm_support(pci_dev)) 805 return pci_legacy_suspend_late(dev, PMSG_SUSPEND); 806 807 if (!pm) { 808 pci_save_state(pci_dev); 809 goto Fixup; 810 } 811 812 if (pm->suspend_noirq) { 813 pci_power_t prev = pci_dev->current_state; 814 int error; 815 816 error = pm->suspend_noirq(dev); 817 suspend_report_result(pm->suspend_noirq, error); 818 if (error) 819 return error; 820 821 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 822 && pci_dev->current_state != PCI_UNKNOWN) { 823 WARN_ONCE(pci_dev->current_state != prev, 824 "PCI PM: State of device not saved by %pF\n", 825 pm->suspend_noirq); 826 goto Fixup; 827 } 828 } 829 830 if (!pci_dev->state_saved) { 831 pci_save_state(pci_dev); 832 if (pci_power_manageable(pci_dev)) 833 pci_prepare_to_sleep(pci_dev); 834 } 835 836 dev_dbg(dev, "PCI PM: Suspend power state: %s\n", 837 pci_power_name(pci_dev->current_state)); 838 839 pci_pm_set_unknown_state(pci_dev); 840 841 /* 842 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's 843 * PCI COMMAND register isn't 0, the BIOS assumes that the controller 844 * hasn't been quiesced and tries to turn it off. If the controller 845 * is already in D3, this can hang or cause memory corruption. 846 * 847 * Since the value of the COMMAND register doesn't matter once the 848 * device has been suspended, we can safely set it to 0 here. 849 */ 850 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 851 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 852 853 Fixup: 854 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 855 856 /* 857 * If the target system sleep state is suspend-to-idle, it is sufficient 858 * to check whether or not the device's wakeup settings are good for 859 * runtime PM. Otherwise, the pm_resume_via_firmware() check will cause 860 * pci_pm_complete() to take care of fixing up the device's state 861 * anyway, if need be. 862 */ 863 dev->power.may_skip_resume = device_may_wakeup(dev) || 864 !device_can_wakeup(dev); 865 866 return 0; 867 } 868 869 static int pci_pm_resume_noirq(struct device *dev) 870 { 871 struct pci_dev *pci_dev = to_pci_dev(dev); 872 struct device_driver *drv = dev->driver; 873 int error = 0; 874 875 if (dev_pm_may_skip_resume(dev)) 876 return 0; 877 878 /* 879 * Devices with DPM_FLAG_SMART_SUSPEND may be left in runtime suspend 880 * during system suspend, so update their runtime PM status to "active" 881 * as they are going to be put into D0 shortly. 882 */ 883 if (dev_pm_smart_suspend_and_suspended(dev)) 884 pm_runtime_set_active(dev); 885 886 pci_pm_default_resume_early(pci_dev); 887 888 if (pci_has_legacy_pm_support(pci_dev)) 889 return pci_legacy_resume_early(dev); 890 891 pcie_pme_root_status_cleanup(pci_dev); 892 893 if (drv && drv->pm && drv->pm->resume_noirq) 894 error = drv->pm->resume_noirq(dev); 895 896 return error; 897 } 898 899 static int pci_pm_resume(struct device *dev) 900 { 901 struct pci_dev *pci_dev = to_pci_dev(dev); 902 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 903 int error = 0; 904 905 /* 906 * This is necessary for the suspend error path in which resume is 907 * called without restoring the standard config registers of the device. 908 */ 909 if (pci_dev->state_saved) 910 pci_restore_standard_config(pci_dev); 911 912 if (pci_has_legacy_pm_support(pci_dev)) 913 return pci_legacy_resume(dev); 914 915 pci_pm_default_resume(pci_dev); 916 917 if (pm) { 918 if (pm->resume) 919 error = pm->resume(dev); 920 } else { 921 pci_pm_reenable_device(pci_dev); 922 } 923 924 return error; 925 } 926 927 #else /* !CONFIG_SUSPEND */ 928 929 #define pci_pm_suspend NULL 930 #define pci_pm_suspend_late NULL 931 #define pci_pm_suspend_noirq NULL 932 #define pci_pm_resume NULL 933 #define pci_pm_resume_noirq NULL 934 935 #endif /* !CONFIG_SUSPEND */ 936 937 #ifdef CONFIG_HIBERNATE_CALLBACKS 938 939 940 /* 941 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing 942 * a hibernate transition 943 */ 944 struct dev_pm_ops __weak pcibios_pm_ops; 945 946 static int pci_pm_freeze(struct device *dev) 947 { 948 struct pci_dev *pci_dev = to_pci_dev(dev); 949 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 950 951 if (pci_has_legacy_pm_support(pci_dev)) 952 return pci_legacy_suspend(dev, PMSG_FREEZE); 953 954 if (!pm) { 955 pci_pm_default_suspend(pci_dev); 956 return 0; 957 } 958 959 /* 960 * This used to be done in pci_pm_prepare() for all devices and some 961 * drivers may depend on it, so do it here. Ideally, runtime-suspended 962 * devices should not be touched during freeze/thaw transitions, 963 * however. 964 */ 965 if (!dev_pm_smart_suspend_and_suspended(dev)) { 966 pm_runtime_resume(dev); 967 pci_dev->state_saved = false; 968 } 969 970 if (pm->freeze) { 971 int error; 972 973 error = pm->freeze(dev); 974 suspend_report_result(pm->freeze, error); 975 if (error) 976 return error; 977 } 978 979 return 0; 980 } 981 982 static int pci_pm_freeze_late(struct device *dev) 983 { 984 if (dev_pm_smart_suspend_and_suspended(dev)) 985 return 0; 986 987 return pm_generic_freeze_late(dev); 988 } 989 990 static int pci_pm_freeze_noirq(struct device *dev) 991 { 992 struct pci_dev *pci_dev = to_pci_dev(dev); 993 struct device_driver *drv = dev->driver; 994 995 if (dev_pm_smart_suspend_and_suspended(dev)) 996 return 0; 997 998 if (pci_has_legacy_pm_support(pci_dev)) 999 return pci_legacy_suspend_late(dev, PMSG_FREEZE); 1000 1001 if (drv && drv->pm && drv->pm->freeze_noirq) { 1002 int error; 1003 1004 error = drv->pm->freeze_noirq(dev); 1005 suspend_report_result(drv->pm->freeze_noirq, error); 1006 if (error) 1007 return error; 1008 } 1009 1010 if (!pci_dev->state_saved) 1011 pci_save_state(pci_dev); 1012 1013 pci_pm_set_unknown_state(pci_dev); 1014 1015 if (pcibios_pm_ops.freeze_noirq) 1016 return pcibios_pm_ops.freeze_noirq(dev); 1017 1018 return 0; 1019 } 1020 1021 static int pci_pm_thaw_noirq(struct device *dev) 1022 { 1023 struct pci_dev *pci_dev = to_pci_dev(dev); 1024 struct device_driver *drv = dev->driver; 1025 int error = 0; 1026 1027 /* 1028 * If the device is in runtime suspend, the code below may not work 1029 * correctly with it, so skip that code and make the PM core skip all of 1030 * the subsequent "thaw" callbacks for the device. 1031 */ 1032 if (dev_pm_smart_suspend_and_suspended(dev)) { 1033 dev_pm_skip_next_resume_phases(dev); 1034 return 0; 1035 } 1036 1037 if (pcibios_pm_ops.thaw_noirq) { 1038 error = pcibios_pm_ops.thaw_noirq(dev); 1039 if (error) 1040 return error; 1041 } 1042 1043 if (pci_has_legacy_pm_support(pci_dev)) 1044 return pci_legacy_resume_early(dev); 1045 1046 /* 1047 * pci_restore_state() requires the device to be in D0 (because of MSI 1048 * restoration among other things), so force it into D0 in case the 1049 * driver's "freeze" callbacks put it into a low-power state directly. 1050 */ 1051 pci_set_power_state(pci_dev, PCI_D0); 1052 pci_restore_state(pci_dev); 1053 1054 if (drv && drv->pm && drv->pm->thaw_noirq) 1055 error = drv->pm->thaw_noirq(dev); 1056 1057 return error; 1058 } 1059 1060 static int pci_pm_thaw(struct device *dev) 1061 { 1062 struct pci_dev *pci_dev = to_pci_dev(dev); 1063 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1064 int error = 0; 1065 1066 if (pci_has_legacy_pm_support(pci_dev)) 1067 return pci_legacy_resume(dev); 1068 1069 if (pm) { 1070 if (pm->thaw) 1071 error = pm->thaw(dev); 1072 } else { 1073 pci_pm_reenable_device(pci_dev); 1074 } 1075 1076 pci_dev->state_saved = false; 1077 1078 return error; 1079 } 1080 1081 static int pci_pm_poweroff(struct device *dev) 1082 { 1083 struct pci_dev *pci_dev = to_pci_dev(dev); 1084 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1085 1086 if (pci_has_legacy_pm_support(pci_dev)) 1087 return pci_legacy_suspend(dev, PMSG_HIBERNATE); 1088 1089 if (!pm) { 1090 pci_pm_default_suspend(pci_dev); 1091 return 0; 1092 } 1093 1094 /* The reason to do that is the same as in pci_pm_suspend(). */ 1095 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) || 1096 !pci_dev_keep_suspended(pci_dev)) 1097 pm_runtime_resume(dev); 1098 1099 pci_dev->state_saved = false; 1100 if (pm->poweroff) { 1101 int error; 1102 1103 error = pm->poweroff(dev); 1104 suspend_report_result(pm->poweroff, error); 1105 if (error) 1106 return error; 1107 } 1108 1109 return 0; 1110 } 1111 1112 static int pci_pm_poweroff_late(struct device *dev) 1113 { 1114 if (dev_pm_smart_suspend_and_suspended(dev)) 1115 return 0; 1116 1117 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev)); 1118 1119 return pm_generic_poweroff_late(dev); 1120 } 1121 1122 static int pci_pm_poweroff_noirq(struct device *dev) 1123 { 1124 struct pci_dev *pci_dev = to_pci_dev(dev); 1125 struct device_driver *drv = dev->driver; 1126 1127 if (dev_pm_smart_suspend_and_suspended(dev)) 1128 return 0; 1129 1130 if (pci_has_legacy_pm_support(to_pci_dev(dev))) 1131 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE); 1132 1133 if (!drv || !drv->pm) { 1134 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1135 return 0; 1136 } 1137 1138 if (drv->pm->poweroff_noirq) { 1139 int error; 1140 1141 error = drv->pm->poweroff_noirq(dev); 1142 suspend_report_result(drv->pm->poweroff_noirq, error); 1143 if (error) 1144 return error; 1145 } 1146 1147 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev)) 1148 pci_prepare_to_sleep(pci_dev); 1149 1150 /* 1151 * The reason for doing this here is the same as for the analogous code 1152 * in pci_pm_suspend_noirq(). 1153 */ 1154 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 1155 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 1156 1157 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1158 1159 if (pcibios_pm_ops.poweroff_noirq) 1160 return pcibios_pm_ops.poweroff_noirq(dev); 1161 1162 return 0; 1163 } 1164 1165 static int pci_pm_restore_noirq(struct device *dev) 1166 { 1167 struct pci_dev *pci_dev = to_pci_dev(dev); 1168 struct device_driver *drv = dev->driver; 1169 int error = 0; 1170 1171 /* This is analogous to the pci_pm_resume_noirq() case. */ 1172 if (dev_pm_smart_suspend_and_suspended(dev)) 1173 pm_runtime_set_active(dev); 1174 1175 if (pcibios_pm_ops.restore_noirq) { 1176 error = pcibios_pm_ops.restore_noirq(dev); 1177 if (error) 1178 return error; 1179 } 1180 1181 pci_pm_default_resume_early(pci_dev); 1182 1183 if (pci_has_legacy_pm_support(pci_dev)) 1184 return pci_legacy_resume_early(dev); 1185 1186 if (drv && drv->pm && drv->pm->restore_noirq) 1187 error = drv->pm->restore_noirq(dev); 1188 1189 return error; 1190 } 1191 1192 static int pci_pm_restore(struct device *dev) 1193 { 1194 struct pci_dev *pci_dev = to_pci_dev(dev); 1195 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1196 int error = 0; 1197 1198 /* 1199 * This is necessary for the hibernation error path in which restore is 1200 * called without restoring the standard config registers of the device. 1201 */ 1202 if (pci_dev->state_saved) 1203 pci_restore_standard_config(pci_dev); 1204 1205 if (pci_has_legacy_pm_support(pci_dev)) 1206 return pci_legacy_resume(dev); 1207 1208 pci_pm_default_resume(pci_dev); 1209 1210 if (pm) { 1211 if (pm->restore) 1212 error = pm->restore(dev); 1213 } else { 1214 pci_pm_reenable_device(pci_dev); 1215 } 1216 1217 return error; 1218 } 1219 1220 #else /* !CONFIG_HIBERNATE_CALLBACKS */ 1221 1222 #define pci_pm_freeze NULL 1223 #define pci_pm_freeze_late NULL 1224 #define pci_pm_freeze_noirq NULL 1225 #define pci_pm_thaw NULL 1226 #define pci_pm_thaw_noirq NULL 1227 #define pci_pm_poweroff NULL 1228 #define pci_pm_poweroff_late NULL 1229 #define pci_pm_poweroff_noirq NULL 1230 #define pci_pm_restore NULL 1231 #define pci_pm_restore_noirq NULL 1232 1233 #endif /* !CONFIG_HIBERNATE_CALLBACKS */ 1234 1235 #ifdef CONFIG_PM 1236 1237 static int pci_pm_runtime_suspend(struct device *dev) 1238 { 1239 struct pci_dev *pci_dev = to_pci_dev(dev); 1240 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1241 pci_power_t prev = pci_dev->current_state; 1242 int error; 1243 1244 /* 1245 * If pci_dev->driver is not set (unbound), we leave the device in D0, 1246 * but it may go to D3cold when the bridge above it runtime suspends. 1247 * Save its config space in case that happens. 1248 */ 1249 if (!pci_dev->driver) { 1250 pci_save_state(pci_dev); 1251 return 0; 1252 } 1253 1254 if (!pm || !pm->runtime_suspend) 1255 return -ENOSYS; 1256 1257 pci_dev->state_saved = false; 1258 error = pm->runtime_suspend(dev); 1259 if (error) { 1260 /* 1261 * -EBUSY and -EAGAIN is used to request the runtime PM core 1262 * to schedule a new suspend, so log the event only with debug 1263 * log level. 1264 */ 1265 if (error == -EBUSY || error == -EAGAIN) 1266 dev_dbg(dev, "can't suspend now (%pf returned %d)\n", 1267 pm->runtime_suspend, error); 1268 else 1269 dev_err(dev, "can't suspend (%pf returned %d)\n", 1270 pm->runtime_suspend, error); 1271 1272 return error; 1273 } 1274 1275 pci_fixup_device(pci_fixup_suspend, pci_dev); 1276 1277 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 1278 && pci_dev->current_state != PCI_UNKNOWN) { 1279 WARN_ONCE(pci_dev->current_state != prev, 1280 "PCI PM: State of device not saved by %pF\n", 1281 pm->runtime_suspend); 1282 return 0; 1283 } 1284 1285 if (!pci_dev->state_saved) { 1286 pci_save_state(pci_dev); 1287 pci_finish_runtime_suspend(pci_dev); 1288 } 1289 1290 return 0; 1291 } 1292 1293 static int pci_pm_runtime_resume(struct device *dev) 1294 { 1295 int rc; 1296 struct pci_dev *pci_dev = to_pci_dev(dev); 1297 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1298 1299 /* 1300 * Restoring config space is necessary even if the device is not bound 1301 * to a driver because although we left it in D0, it may have gone to 1302 * D3cold when the bridge above it runtime suspended. 1303 */ 1304 pci_restore_standard_config(pci_dev); 1305 1306 if (!pci_dev->driver) 1307 return 0; 1308 1309 if (!pm || !pm->runtime_resume) 1310 return -ENOSYS; 1311 1312 pci_fixup_device(pci_fixup_resume_early, pci_dev); 1313 pci_enable_wake(pci_dev, PCI_D0, false); 1314 pci_fixup_device(pci_fixup_resume, pci_dev); 1315 1316 rc = pm->runtime_resume(dev); 1317 1318 pci_dev->runtime_d3cold = false; 1319 1320 return rc; 1321 } 1322 1323 static int pci_pm_runtime_idle(struct device *dev) 1324 { 1325 struct pci_dev *pci_dev = to_pci_dev(dev); 1326 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1327 int ret = 0; 1328 1329 /* 1330 * If pci_dev->driver is not set (unbound), the device should 1331 * always remain in D0 regardless of the runtime PM status 1332 */ 1333 if (!pci_dev->driver) 1334 return 0; 1335 1336 if (!pm) 1337 return -ENOSYS; 1338 1339 if (pm->runtime_idle) 1340 ret = pm->runtime_idle(dev); 1341 1342 return ret; 1343 } 1344 1345 static const struct dev_pm_ops pci_dev_pm_ops = { 1346 .prepare = pci_pm_prepare, 1347 .complete = pci_pm_complete, 1348 .suspend = pci_pm_suspend, 1349 .suspend_late = pci_pm_suspend_late, 1350 .resume = pci_pm_resume, 1351 .freeze = pci_pm_freeze, 1352 .freeze_late = pci_pm_freeze_late, 1353 .thaw = pci_pm_thaw, 1354 .poweroff = pci_pm_poweroff, 1355 .poweroff_late = pci_pm_poweroff_late, 1356 .restore = pci_pm_restore, 1357 .suspend_noirq = pci_pm_suspend_noirq, 1358 .resume_noirq = pci_pm_resume_noirq, 1359 .freeze_noirq = pci_pm_freeze_noirq, 1360 .thaw_noirq = pci_pm_thaw_noirq, 1361 .poweroff_noirq = pci_pm_poweroff_noirq, 1362 .restore_noirq = pci_pm_restore_noirq, 1363 .runtime_suspend = pci_pm_runtime_suspend, 1364 .runtime_resume = pci_pm_runtime_resume, 1365 .runtime_idle = pci_pm_runtime_idle, 1366 }; 1367 1368 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops) 1369 1370 #else /* !CONFIG_PM */ 1371 1372 #define pci_pm_runtime_suspend NULL 1373 #define pci_pm_runtime_resume NULL 1374 #define pci_pm_runtime_idle NULL 1375 1376 #define PCI_PM_OPS_PTR NULL 1377 1378 #endif /* !CONFIG_PM */ 1379 1380 /** 1381 * __pci_register_driver - register a new pci driver 1382 * @drv: the driver structure to register 1383 * @owner: owner module of drv 1384 * @mod_name: module name string 1385 * 1386 * Adds the driver structure to the list of registered drivers. 1387 * Returns a negative value on error, otherwise 0. 1388 * If no error occurred, the driver remains registered even if 1389 * no device was claimed during registration. 1390 */ 1391 int __pci_register_driver(struct pci_driver *drv, struct module *owner, 1392 const char *mod_name) 1393 { 1394 /* initialize common driver fields */ 1395 drv->driver.name = drv->name; 1396 drv->driver.bus = &pci_bus_type; 1397 drv->driver.owner = owner; 1398 drv->driver.mod_name = mod_name; 1399 drv->driver.groups = drv->groups; 1400 1401 spin_lock_init(&drv->dynids.lock); 1402 INIT_LIST_HEAD(&drv->dynids.list); 1403 1404 /* register with core */ 1405 return driver_register(&drv->driver); 1406 } 1407 EXPORT_SYMBOL(__pci_register_driver); 1408 1409 /** 1410 * pci_unregister_driver - unregister a pci driver 1411 * @drv: the driver structure to unregister 1412 * 1413 * Deletes the driver structure from the list of registered PCI drivers, 1414 * gives it a chance to clean up by calling its remove() function for 1415 * each device it was responsible for, and marks those devices as 1416 * driverless. 1417 */ 1418 1419 void pci_unregister_driver(struct pci_driver *drv) 1420 { 1421 driver_unregister(&drv->driver); 1422 pci_free_dynids(drv); 1423 } 1424 EXPORT_SYMBOL(pci_unregister_driver); 1425 1426 static struct pci_driver pci_compat_driver = { 1427 .name = "compat" 1428 }; 1429 1430 /** 1431 * pci_dev_driver - get the pci_driver of a device 1432 * @dev: the device to query 1433 * 1434 * Returns the appropriate pci_driver structure or %NULL if there is no 1435 * registered driver for the device. 1436 */ 1437 struct pci_driver *pci_dev_driver(const struct pci_dev *dev) 1438 { 1439 if (dev->driver) 1440 return dev->driver; 1441 else { 1442 int i; 1443 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1444 if (dev->resource[i].flags & IORESOURCE_BUSY) 1445 return &pci_compat_driver; 1446 } 1447 return NULL; 1448 } 1449 EXPORT_SYMBOL(pci_dev_driver); 1450 1451 /** 1452 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure 1453 * @dev: the PCI device structure to match against 1454 * @drv: the device driver to search for matching PCI device id structures 1455 * 1456 * Used by a driver to check whether a PCI device present in the 1457 * system is in its list of supported devices. Returns the matching 1458 * pci_device_id structure or %NULL if there is no match. 1459 */ 1460 static int pci_bus_match(struct device *dev, struct device_driver *drv) 1461 { 1462 struct pci_dev *pci_dev = to_pci_dev(dev); 1463 struct pci_driver *pci_drv; 1464 const struct pci_device_id *found_id; 1465 1466 if (!pci_dev->match_driver) 1467 return 0; 1468 1469 pci_drv = to_pci_driver(drv); 1470 found_id = pci_match_device(pci_drv, pci_dev); 1471 if (found_id) 1472 return 1; 1473 1474 return 0; 1475 } 1476 1477 /** 1478 * pci_dev_get - increments the reference count of the pci device structure 1479 * @dev: the device being referenced 1480 * 1481 * Each live reference to a device should be refcounted. 1482 * 1483 * Drivers for PCI devices should normally record such references in 1484 * their probe() methods, when they bind to a device, and release 1485 * them by calling pci_dev_put(), in their disconnect() methods. 1486 * 1487 * A pointer to the device with the incremented reference counter is returned. 1488 */ 1489 struct pci_dev *pci_dev_get(struct pci_dev *dev) 1490 { 1491 if (dev) 1492 get_device(&dev->dev); 1493 return dev; 1494 } 1495 EXPORT_SYMBOL(pci_dev_get); 1496 1497 /** 1498 * pci_dev_put - release a use of the pci device structure 1499 * @dev: device that's been disconnected 1500 * 1501 * Must be called when a user of a device is finished with it. When the last 1502 * user of the device calls this function, the memory of the device is freed. 1503 */ 1504 void pci_dev_put(struct pci_dev *dev) 1505 { 1506 if (dev) 1507 put_device(&dev->dev); 1508 } 1509 EXPORT_SYMBOL(pci_dev_put); 1510 1511 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env) 1512 { 1513 struct pci_dev *pdev; 1514 1515 if (!dev) 1516 return -ENODEV; 1517 1518 pdev = to_pci_dev(dev); 1519 1520 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class)) 1521 return -ENOMEM; 1522 1523 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device)) 1524 return -ENOMEM; 1525 1526 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor, 1527 pdev->subsystem_device)) 1528 return -ENOMEM; 1529 1530 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev))) 1531 return -ENOMEM; 1532 1533 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X", 1534 pdev->vendor, pdev->device, 1535 pdev->subsystem_vendor, pdev->subsystem_device, 1536 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8), 1537 (u8)(pdev->class))) 1538 return -ENOMEM; 1539 1540 return 0; 1541 } 1542 1543 #if defined(CONFIG_PCIEPORTBUS) || defined(CONFIG_EEH) 1544 /** 1545 * pci_uevent_ers - emit a uevent during recovery path of PCI device 1546 * @pdev: PCI device undergoing error recovery 1547 * @err_type: type of error event 1548 */ 1549 void pci_uevent_ers(struct pci_dev *pdev, enum pci_ers_result err_type) 1550 { 1551 int idx = 0; 1552 char *envp[3]; 1553 1554 switch (err_type) { 1555 case PCI_ERS_RESULT_NONE: 1556 case PCI_ERS_RESULT_CAN_RECOVER: 1557 envp[idx++] = "ERROR_EVENT=BEGIN_RECOVERY"; 1558 envp[idx++] = "DEVICE_ONLINE=0"; 1559 break; 1560 case PCI_ERS_RESULT_RECOVERED: 1561 envp[idx++] = "ERROR_EVENT=SUCCESSFUL_RECOVERY"; 1562 envp[idx++] = "DEVICE_ONLINE=1"; 1563 break; 1564 case PCI_ERS_RESULT_DISCONNECT: 1565 envp[idx++] = "ERROR_EVENT=FAILED_RECOVERY"; 1566 envp[idx++] = "DEVICE_ONLINE=0"; 1567 break; 1568 default: 1569 break; 1570 } 1571 1572 if (idx > 0) { 1573 envp[idx++] = NULL; 1574 kobject_uevent_env(&pdev->dev.kobj, KOBJ_CHANGE, envp); 1575 } 1576 } 1577 #endif 1578 1579 static int pci_bus_num_vf(struct device *dev) 1580 { 1581 return pci_num_vf(to_pci_dev(dev)); 1582 } 1583 1584 /** 1585 * pci_dma_configure - Setup DMA configuration 1586 * @dev: ptr to dev structure 1587 * 1588 * Function to update PCI devices's DMA configuration using the same 1589 * info from the OF node or ACPI node of host bridge's parent (if any). 1590 */ 1591 static int pci_dma_configure(struct device *dev) 1592 { 1593 struct device *bridge; 1594 int ret = 0; 1595 1596 bridge = pci_get_host_bridge_device(to_pci_dev(dev)); 1597 1598 if (IS_ENABLED(CONFIG_OF) && bridge->parent && 1599 bridge->parent->of_node) { 1600 ret = of_dma_configure(dev, bridge->parent->of_node, true); 1601 } else if (has_acpi_companion(bridge)) { 1602 struct acpi_device *adev = to_acpi_device_node(bridge->fwnode); 1603 enum dev_dma_attr attr = acpi_get_dma_attr(adev); 1604 1605 if (attr != DEV_DMA_NOT_SUPPORTED) 1606 ret = acpi_dma_configure(dev, attr); 1607 } 1608 1609 pci_put_host_bridge_device(bridge); 1610 return ret; 1611 } 1612 1613 struct bus_type pci_bus_type = { 1614 .name = "pci", 1615 .match = pci_bus_match, 1616 .uevent = pci_uevent, 1617 .probe = pci_device_probe, 1618 .remove = pci_device_remove, 1619 .shutdown = pci_device_shutdown, 1620 .dev_groups = pci_dev_groups, 1621 .bus_groups = pci_bus_groups, 1622 .drv_groups = pci_drv_groups, 1623 .pm = PCI_PM_OPS_PTR, 1624 .num_vf = pci_bus_num_vf, 1625 .dma_configure = pci_dma_configure, 1626 }; 1627 EXPORT_SYMBOL(pci_bus_type); 1628 1629 #ifdef CONFIG_PCIEPORTBUS 1630 static int pcie_port_bus_match(struct device *dev, struct device_driver *drv) 1631 { 1632 struct pcie_device *pciedev; 1633 struct pcie_port_service_driver *driver; 1634 1635 if (drv->bus != &pcie_port_bus_type || dev->bus != &pcie_port_bus_type) 1636 return 0; 1637 1638 pciedev = to_pcie_device(dev); 1639 driver = to_service_driver(drv); 1640 1641 if (driver->service != pciedev->service) 1642 return 0; 1643 1644 if (driver->port_type != PCIE_ANY_PORT && 1645 driver->port_type != pci_pcie_type(pciedev->port)) 1646 return 0; 1647 1648 return 1; 1649 } 1650 1651 struct bus_type pcie_port_bus_type = { 1652 .name = "pci_express", 1653 .match = pcie_port_bus_match, 1654 }; 1655 EXPORT_SYMBOL_GPL(pcie_port_bus_type); 1656 #endif 1657 1658 static int __init pci_driver_init(void) 1659 { 1660 int ret; 1661 1662 ret = bus_register(&pci_bus_type); 1663 if (ret) 1664 return ret; 1665 1666 #ifdef CONFIG_PCIEPORTBUS 1667 ret = bus_register(&pcie_port_bus_type); 1668 if (ret) 1669 return ret; 1670 #endif 1671 1672 return 0; 1673 } 1674 postcore_initcall(pci_driver_init); 1675