1 /* 2 * drivers/pci/pci-driver.c 3 * 4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com> 5 * (C) Copyright 2007 Novell Inc. 6 * 7 * Released under the GPL v2 only. 8 * 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/device.h> 15 #include <linux/mempolicy.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/cpu.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/suspend.h> 22 #include <linux/kexec.h> 23 #include "pci.h" 24 25 struct pci_dynid { 26 struct list_head node; 27 struct pci_device_id id; 28 }; 29 30 /** 31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices 32 * @drv: target pci driver 33 * @vendor: PCI vendor ID 34 * @device: PCI device ID 35 * @subvendor: PCI subvendor ID 36 * @subdevice: PCI subdevice ID 37 * @class: PCI class 38 * @class_mask: PCI class mask 39 * @driver_data: private driver data 40 * 41 * Adds a new dynamic pci device ID to this driver and causes the 42 * driver to probe for all devices again. @drv must have been 43 * registered prior to calling this function. 44 * 45 * CONTEXT: 46 * Does GFP_KERNEL allocation. 47 * 48 * RETURNS: 49 * 0 on success, -errno on failure. 50 */ 51 int pci_add_dynid(struct pci_driver *drv, 52 unsigned int vendor, unsigned int device, 53 unsigned int subvendor, unsigned int subdevice, 54 unsigned int class, unsigned int class_mask, 55 unsigned long driver_data) 56 { 57 struct pci_dynid *dynid; 58 59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 60 if (!dynid) 61 return -ENOMEM; 62 63 dynid->id.vendor = vendor; 64 dynid->id.device = device; 65 dynid->id.subvendor = subvendor; 66 dynid->id.subdevice = subdevice; 67 dynid->id.class = class; 68 dynid->id.class_mask = class_mask; 69 dynid->id.driver_data = driver_data; 70 71 spin_lock(&drv->dynids.lock); 72 list_add_tail(&dynid->node, &drv->dynids.list); 73 spin_unlock(&drv->dynids.lock); 74 75 return driver_attach(&drv->driver); 76 } 77 EXPORT_SYMBOL_GPL(pci_add_dynid); 78 79 static void pci_free_dynids(struct pci_driver *drv) 80 { 81 struct pci_dynid *dynid, *n; 82 83 spin_lock(&drv->dynids.lock); 84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 85 list_del(&dynid->node); 86 kfree(dynid); 87 } 88 spin_unlock(&drv->dynids.lock); 89 } 90 91 /** 92 * store_new_id - sysfs frontend to pci_add_dynid() 93 * @driver: target device driver 94 * @buf: buffer for scanning device ID data 95 * @count: input size 96 * 97 * Allow PCI IDs to be added to an existing driver via sysfs. 98 */ 99 static ssize_t store_new_id(struct device_driver *driver, const char *buf, 100 size_t count) 101 { 102 struct pci_driver *pdrv = to_pci_driver(driver); 103 const struct pci_device_id *ids = pdrv->id_table; 104 __u32 vendor, device, subvendor = PCI_ANY_ID, 105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 106 unsigned long driver_data = 0; 107 int fields = 0; 108 int retval = 0; 109 110 fields = sscanf(buf, "%x %x %x %x %x %x %lx", 111 &vendor, &device, &subvendor, &subdevice, 112 &class, &class_mask, &driver_data); 113 if (fields < 2) 114 return -EINVAL; 115 116 if (fields != 7) { 117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); 118 if (!pdev) 119 return -ENOMEM; 120 121 pdev->vendor = vendor; 122 pdev->device = device; 123 pdev->subsystem_vendor = subvendor; 124 pdev->subsystem_device = subdevice; 125 pdev->class = class; 126 127 if (pci_match_id(pdrv->id_table, pdev)) 128 retval = -EEXIST; 129 130 kfree(pdev); 131 132 if (retval) 133 return retval; 134 } 135 136 /* Only accept driver_data values that match an existing id_table 137 entry */ 138 if (ids) { 139 retval = -EINVAL; 140 while (ids->vendor || ids->subvendor || ids->class_mask) { 141 if (driver_data == ids->driver_data) { 142 retval = 0; 143 break; 144 } 145 ids++; 146 } 147 if (retval) /* No match */ 148 return retval; 149 } 150 151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice, 152 class, class_mask, driver_data); 153 if (retval) 154 return retval; 155 return count; 156 } 157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id); 158 159 /** 160 * store_remove_id - remove a PCI device ID from this driver 161 * @driver: target device driver 162 * @buf: buffer for scanning device ID data 163 * @count: input size 164 * 165 * Removes a dynamic pci device ID to this driver. 166 */ 167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf, 168 size_t count) 169 { 170 struct pci_dynid *dynid, *n; 171 struct pci_driver *pdrv = to_pci_driver(driver); 172 __u32 vendor, device, subvendor = PCI_ANY_ID, 173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 174 int fields = 0; 175 size_t retval = -ENODEV; 176 177 fields = sscanf(buf, "%x %x %x %x %x %x", 178 &vendor, &device, &subvendor, &subdevice, 179 &class, &class_mask); 180 if (fields < 2) 181 return -EINVAL; 182 183 spin_lock(&pdrv->dynids.lock); 184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) { 185 struct pci_device_id *id = &dynid->id; 186 if ((id->vendor == vendor) && 187 (id->device == device) && 188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) && 189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) && 190 !((id->class ^ class) & class_mask)) { 191 list_del(&dynid->node); 192 kfree(dynid); 193 retval = count; 194 break; 195 } 196 } 197 spin_unlock(&pdrv->dynids.lock); 198 199 return retval; 200 } 201 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id); 202 203 static struct attribute *pci_drv_attrs[] = { 204 &driver_attr_new_id.attr, 205 &driver_attr_remove_id.attr, 206 NULL, 207 }; 208 ATTRIBUTE_GROUPS(pci_drv); 209 210 /** 211 * pci_match_id - See if a pci device matches a given pci_id table 212 * @ids: array of PCI device id structures to search in 213 * @dev: the PCI device structure to match against. 214 * 215 * Used by a driver to check whether a PCI device present in the 216 * system is in its list of supported devices. Returns the matching 217 * pci_device_id structure or %NULL if there is no match. 218 * 219 * Deprecated, don't use this as it will not catch any dynamic ids 220 * that a driver might want to check for. 221 */ 222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids, 223 struct pci_dev *dev) 224 { 225 if (ids) { 226 while (ids->vendor || ids->subvendor || ids->class_mask) { 227 if (pci_match_one_device(ids, dev)) 228 return ids; 229 ids++; 230 } 231 } 232 return NULL; 233 } 234 EXPORT_SYMBOL(pci_match_id); 235 236 static const struct pci_device_id pci_device_id_any = { 237 .vendor = PCI_ANY_ID, 238 .device = PCI_ANY_ID, 239 .subvendor = PCI_ANY_ID, 240 .subdevice = PCI_ANY_ID, 241 }; 242 243 /** 244 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure 245 * @drv: the PCI driver to match against 246 * @dev: the PCI device structure to match against 247 * 248 * Used by a driver to check whether a PCI device present in the 249 * system is in its list of supported devices. Returns the matching 250 * pci_device_id structure or %NULL if there is no match. 251 */ 252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv, 253 struct pci_dev *dev) 254 { 255 struct pci_dynid *dynid; 256 const struct pci_device_id *found_id = NULL; 257 258 /* When driver_override is set, only bind to the matching driver */ 259 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 260 return NULL; 261 262 /* Look at the dynamic ids first, before the static ones */ 263 spin_lock(&drv->dynids.lock); 264 list_for_each_entry(dynid, &drv->dynids.list, node) { 265 if (pci_match_one_device(&dynid->id, dev)) { 266 found_id = &dynid->id; 267 break; 268 } 269 } 270 spin_unlock(&drv->dynids.lock); 271 272 if (!found_id) 273 found_id = pci_match_id(drv->id_table, dev); 274 275 /* driver_override will always match, send a dummy id */ 276 if (!found_id && dev->driver_override) 277 found_id = &pci_device_id_any; 278 279 return found_id; 280 } 281 282 struct drv_dev_and_id { 283 struct pci_driver *drv; 284 struct pci_dev *dev; 285 const struct pci_device_id *id; 286 }; 287 288 static long local_pci_probe(void *_ddi) 289 { 290 struct drv_dev_and_id *ddi = _ddi; 291 struct pci_dev *pci_dev = ddi->dev; 292 struct pci_driver *pci_drv = ddi->drv; 293 struct device *dev = &pci_dev->dev; 294 int rc; 295 296 /* 297 * Unbound PCI devices are always put in D0, regardless of 298 * runtime PM status. During probe, the device is set to 299 * active and the usage count is incremented. If the driver 300 * supports runtime PM, it should call pm_runtime_put_noidle(), 301 * or any other runtime PM helper function decrementing the usage 302 * count, in its probe routine and pm_runtime_get_noresume() in 303 * its remove routine. 304 */ 305 pm_runtime_get_sync(dev); 306 pci_dev->driver = pci_drv; 307 rc = pci_drv->probe(pci_dev, ddi->id); 308 if (!rc) 309 return rc; 310 if (rc < 0) { 311 pci_dev->driver = NULL; 312 pm_runtime_put_sync(dev); 313 return rc; 314 } 315 /* 316 * Probe function should return < 0 for failure, 0 for success 317 * Treat values > 0 as success, but warn. 318 */ 319 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc); 320 return 0; 321 } 322 323 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev, 324 const struct pci_device_id *id) 325 { 326 int error, node; 327 struct drv_dev_and_id ddi = { drv, dev, id }; 328 329 /* 330 * Execute driver initialization on node where the device is 331 * attached. This way the driver likely allocates its local memory 332 * on the right node. 333 */ 334 node = dev_to_node(&dev->dev); 335 336 /* 337 * On NUMA systems, we are likely to call a PF probe function using 338 * work_on_cpu(). If that probe calls pci_enable_sriov() (which 339 * adds the VF devices via pci_bus_add_device()), we may re-enter 340 * this function to call the VF probe function. Calling 341 * work_on_cpu() again will cause a lockdep warning. Since VFs are 342 * always on the same node as the PF, we can work around this by 343 * avoiding work_on_cpu() when we're already on the correct node. 344 * 345 * Preemption is enabled, so it's theoretically unsafe to use 346 * numa_node_id(), but even if we run the probe function on the 347 * wrong node, it should be functionally correct. 348 */ 349 if (node >= 0 && node != numa_node_id()) { 350 int cpu; 351 352 get_online_cpus(); 353 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 354 if (cpu < nr_cpu_ids) 355 error = work_on_cpu(cpu, local_pci_probe, &ddi); 356 else 357 error = local_pci_probe(&ddi); 358 put_online_cpus(); 359 } else 360 error = local_pci_probe(&ddi); 361 362 return error; 363 } 364 365 /** 366 * __pci_device_probe - check if a driver wants to claim a specific PCI device 367 * @drv: driver to call to check if it wants the PCI device 368 * @pci_dev: PCI device being probed 369 * 370 * returns 0 on success, else error. 371 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev. 372 */ 373 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev) 374 { 375 const struct pci_device_id *id; 376 int error = 0; 377 378 if (!pci_dev->driver && drv->probe) { 379 error = -ENODEV; 380 381 id = pci_match_device(drv, pci_dev); 382 if (id) 383 error = pci_call_probe(drv, pci_dev, id); 384 } 385 return error; 386 } 387 388 int __weak pcibios_alloc_irq(struct pci_dev *dev) 389 { 390 return 0; 391 } 392 393 void __weak pcibios_free_irq(struct pci_dev *dev) 394 { 395 } 396 397 static int pci_device_probe(struct device *dev) 398 { 399 int error; 400 struct pci_dev *pci_dev = to_pci_dev(dev); 401 struct pci_driver *drv = to_pci_driver(dev->driver); 402 403 error = pcibios_alloc_irq(pci_dev); 404 if (error < 0) 405 return error; 406 407 pci_dev_get(pci_dev); 408 error = __pci_device_probe(drv, pci_dev); 409 if (error) { 410 pcibios_free_irq(pci_dev); 411 pci_dev_put(pci_dev); 412 } 413 414 return error; 415 } 416 417 static int pci_device_remove(struct device *dev) 418 { 419 struct pci_dev *pci_dev = to_pci_dev(dev); 420 struct pci_driver *drv = pci_dev->driver; 421 422 if (drv) { 423 if (drv->remove) { 424 pm_runtime_get_sync(dev); 425 drv->remove(pci_dev); 426 pm_runtime_put_noidle(dev); 427 } 428 pcibios_free_irq(pci_dev); 429 pci_dev->driver = NULL; 430 } 431 432 /* Undo the runtime PM settings in local_pci_probe() */ 433 pm_runtime_put_sync(dev); 434 435 /* 436 * If the device is still on, set the power state as "unknown", 437 * since it might change by the next time we load the driver. 438 */ 439 if (pci_dev->current_state == PCI_D0) 440 pci_dev->current_state = PCI_UNKNOWN; 441 442 /* 443 * We would love to complain here if pci_dev->is_enabled is set, that 444 * the driver should have called pci_disable_device(), but the 445 * unfortunate fact is there are too many odd BIOS and bridge setups 446 * that don't like drivers doing that all of the time. 447 * Oh well, we can dream of sane hardware when we sleep, no matter how 448 * horrible the crap we have to deal with is when we are awake... 449 */ 450 451 pci_dev_put(pci_dev); 452 return 0; 453 } 454 455 static void pci_device_shutdown(struct device *dev) 456 { 457 struct pci_dev *pci_dev = to_pci_dev(dev); 458 struct pci_driver *drv = pci_dev->driver; 459 460 pm_runtime_resume(dev); 461 462 if (drv && drv->shutdown) 463 drv->shutdown(pci_dev); 464 pci_msi_shutdown(pci_dev); 465 pci_msix_shutdown(pci_dev); 466 467 /* 468 * If this is a kexec reboot, turn off Bus Master bit on the 469 * device to tell it to not continue to do DMA. Don't touch 470 * devices in D3cold or unknown states. 471 * If it is not a kexec reboot, firmware will hit the PCI 472 * devices with big hammer and stop their DMA any way. 473 */ 474 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot)) 475 pci_clear_master(pci_dev); 476 } 477 478 #ifdef CONFIG_PM 479 480 /* Auxiliary functions used for system resume and run-time resume. */ 481 482 /** 483 * pci_restore_standard_config - restore standard config registers of PCI device 484 * @pci_dev: PCI device to handle 485 */ 486 static int pci_restore_standard_config(struct pci_dev *pci_dev) 487 { 488 pci_update_current_state(pci_dev, PCI_UNKNOWN); 489 490 if (pci_dev->current_state != PCI_D0) { 491 int error = pci_set_power_state(pci_dev, PCI_D0); 492 if (error) 493 return error; 494 } 495 496 pci_restore_state(pci_dev); 497 return 0; 498 } 499 500 #endif 501 502 #ifdef CONFIG_PM_SLEEP 503 504 static void pci_pm_default_resume_early(struct pci_dev *pci_dev) 505 { 506 pci_power_up(pci_dev); 507 pci_restore_state(pci_dev); 508 pci_fixup_device(pci_fixup_resume_early, pci_dev); 509 } 510 511 /* 512 * Default "suspend" method for devices that have no driver provided suspend, 513 * or not even a driver at all (second part). 514 */ 515 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev) 516 { 517 /* 518 * mark its power state as "unknown", since we don't know if 519 * e.g. the BIOS will change its device state when we suspend. 520 */ 521 if (pci_dev->current_state == PCI_D0) 522 pci_dev->current_state = PCI_UNKNOWN; 523 } 524 525 /* 526 * Default "resume" method for devices that have no driver provided resume, 527 * or not even a driver at all (second part). 528 */ 529 static int pci_pm_reenable_device(struct pci_dev *pci_dev) 530 { 531 int retval; 532 533 /* if the device was enabled before suspend, reenable */ 534 retval = pci_reenable_device(pci_dev); 535 /* 536 * if the device was busmaster before the suspend, make it busmaster 537 * again 538 */ 539 if (pci_dev->is_busmaster) 540 pci_set_master(pci_dev); 541 542 return retval; 543 } 544 545 static int pci_legacy_suspend(struct device *dev, pm_message_t state) 546 { 547 struct pci_dev *pci_dev = to_pci_dev(dev); 548 struct pci_driver *drv = pci_dev->driver; 549 550 if (drv && drv->suspend) { 551 pci_power_t prev = pci_dev->current_state; 552 int error; 553 554 error = drv->suspend(pci_dev, state); 555 suspend_report_result(drv->suspend, error); 556 if (error) 557 return error; 558 559 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 560 && pci_dev->current_state != PCI_UNKNOWN) { 561 WARN_ONCE(pci_dev->current_state != prev, 562 "PCI PM: Device state not saved by %pF\n", 563 drv->suspend); 564 } 565 } 566 567 pci_fixup_device(pci_fixup_suspend, pci_dev); 568 569 return 0; 570 } 571 572 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state) 573 { 574 struct pci_dev *pci_dev = to_pci_dev(dev); 575 struct pci_driver *drv = pci_dev->driver; 576 577 if (drv && drv->suspend_late) { 578 pci_power_t prev = pci_dev->current_state; 579 int error; 580 581 error = drv->suspend_late(pci_dev, state); 582 suspend_report_result(drv->suspend_late, error); 583 if (error) 584 return error; 585 586 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 587 && pci_dev->current_state != PCI_UNKNOWN) { 588 WARN_ONCE(pci_dev->current_state != prev, 589 "PCI PM: Device state not saved by %pF\n", 590 drv->suspend_late); 591 goto Fixup; 592 } 593 } 594 595 if (!pci_dev->state_saved) 596 pci_save_state(pci_dev); 597 598 pci_pm_set_unknown_state(pci_dev); 599 600 Fixup: 601 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 602 603 return 0; 604 } 605 606 static int pci_legacy_resume_early(struct device *dev) 607 { 608 struct pci_dev *pci_dev = to_pci_dev(dev); 609 struct pci_driver *drv = pci_dev->driver; 610 611 return drv && drv->resume_early ? 612 drv->resume_early(pci_dev) : 0; 613 } 614 615 static int pci_legacy_resume(struct device *dev) 616 { 617 struct pci_dev *pci_dev = to_pci_dev(dev); 618 struct pci_driver *drv = pci_dev->driver; 619 620 pci_fixup_device(pci_fixup_resume, pci_dev); 621 622 return drv && drv->resume ? 623 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev); 624 } 625 626 /* Auxiliary functions used by the new power management framework */ 627 628 static void pci_pm_default_resume(struct pci_dev *pci_dev) 629 { 630 pci_fixup_device(pci_fixup_resume, pci_dev); 631 632 if (!pci_has_subordinate(pci_dev)) 633 pci_enable_wake(pci_dev, PCI_D0, false); 634 } 635 636 static void pci_pm_default_suspend(struct pci_dev *pci_dev) 637 { 638 /* Disable non-bridge devices without PM support */ 639 if (!pci_has_subordinate(pci_dev)) 640 pci_disable_enabled_device(pci_dev); 641 } 642 643 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev) 644 { 645 struct pci_driver *drv = pci_dev->driver; 646 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume 647 || drv->resume_early); 648 649 /* 650 * Legacy PM support is used by default, so warn if the new framework is 651 * supported as well. Drivers are supposed to support either the 652 * former, or the latter, but not both at the same time. 653 */ 654 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n", 655 drv->name, pci_dev->vendor, pci_dev->device); 656 657 return ret; 658 } 659 660 /* New power management framework */ 661 662 static int pci_pm_prepare(struct device *dev) 663 { 664 struct device_driver *drv = dev->driver; 665 666 /* 667 * Devices having power.ignore_children set may still be necessary for 668 * suspending their children in the next phase of device suspend. 669 */ 670 if (dev->power.ignore_children) 671 pm_runtime_resume(dev); 672 673 if (drv && drv->pm && drv->pm->prepare) { 674 int error = drv->pm->prepare(dev); 675 if (error) 676 return error; 677 } 678 return pci_dev_keep_suspended(to_pci_dev(dev)); 679 } 680 681 static void pci_pm_complete(struct device *dev) 682 { 683 struct pci_dev *pci_dev = to_pci_dev(dev); 684 685 pci_dev_complete_resume(pci_dev); 686 pm_generic_complete(dev); 687 688 /* Resume device if platform firmware has put it in reset-power-on */ 689 if (dev->power.direct_complete && pm_resume_via_firmware()) { 690 pci_power_t pre_sleep_state = pci_dev->current_state; 691 692 pci_update_current_state(pci_dev, pci_dev->current_state); 693 if (pci_dev->current_state < pre_sleep_state) 694 pm_request_resume(dev); 695 } 696 } 697 698 #else /* !CONFIG_PM_SLEEP */ 699 700 #define pci_pm_prepare NULL 701 #define pci_pm_complete NULL 702 703 #endif /* !CONFIG_PM_SLEEP */ 704 705 #ifdef CONFIG_SUSPEND 706 707 static int pci_pm_suspend(struct device *dev) 708 { 709 struct pci_dev *pci_dev = to_pci_dev(dev); 710 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 711 712 if (pci_has_legacy_pm_support(pci_dev)) 713 return pci_legacy_suspend(dev, PMSG_SUSPEND); 714 715 if (!pm) { 716 pci_pm_default_suspend(pci_dev); 717 goto Fixup; 718 } 719 720 /* 721 * PCI devices suspended at run time need to be resumed at this point, 722 * because in general it is necessary to reconfigure them for system 723 * suspend. Namely, if the device is supposed to wake up the system 724 * from the sleep state, we may need to reconfigure it for this purpose. 725 * In turn, if the device is not supposed to wake up the system from the 726 * sleep state, we'll have to prevent it from signaling wake-up. 727 */ 728 pm_runtime_resume(dev); 729 730 pci_dev->state_saved = false; 731 if (pm->suspend) { 732 pci_power_t prev = pci_dev->current_state; 733 int error; 734 735 error = pm->suspend(dev); 736 suspend_report_result(pm->suspend, error); 737 if (error) 738 return error; 739 740 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 741 && pci_dev->current_state != PCI_UNKNOWN) { 742 WARN_ONCE(pci_dev->current_state != prev, 743 "PCI PM: State of device not saved by %pF\n", 744 pm->suspend); 745 } 746 } 747 748 Fixup: 749 pci_fixup_device(pci_fixup_suspend, pci_dev); 750 751 return 0; 752 } 753 754 static int pci_pm_suspend_noirq(struct device *dev) 755 { 756 struct pci_dev *pci_dev = to_pci_dev(dev); 757 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 758 759 if (pci_has_legacy_pm_support(pci_dev)) 760 return pci_legacy_suspend_late(dev, PMSG_SUSPEND); 761 762 if (!pm) { 763 pci_save_state(pci_dev); 764 goto Fixup; 765 } 766 767 if (pm->suspend_noirq) { 768 pci_power_t prev = pci_dev->current_state; 769 int error; 770 771 error = pm->suspend_noirq(dev); 772 suspend_report_result(pm->suspend_noirq, error); 773 if (error) 774 return error; 775 776 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 777 && pci_dev->current_state != PCI_UNKNOWN) { 778 WARN_ONCE(pci_dev->current_state != prev, 779 "PCI PM: State of device not saved by %pF\n", 780 pm->suspend_noirq); 781 goto Fixup; 782 } 783 } 784 785 if (!pci_dev->state_saved) { 786 pci_save_state(pci_dev); 787 if (pci_power_manageable(pci_dev)) 788 pci_prepare_to_sleep(pci_dev); 789 } 790 791 pci_pm_set_unknown_state(pci_dev); 792 793 /* 794 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's 795 * PCI COMMAND register isn't 0, the BIOS assumes that the controller 796 * hasn't been quiesced and tries to turn it off. If the controller 797 * is already in D3, this can hang or cause memory corruption. 798 * 799 * Since the value of the COMMAND register doesn't matter once the 800 * device has been suspended, we can safely set it to 0 here. 801 */ 802 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 803 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 804 805 Fixup: 806 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 807 808 return 0; 809 } 810 811 static int pci_pm_resume_noirq(struct device *dev) 812 { 813 struct pci_dev *pci_dev = to_pci_dev(dev); 814 struct device_driver *drv = dev->driver; 815 int error = 0; 816 817 pci_pm_default_resume_early(pci_dev); 818 819 if (pci_has_legacy_pm_support(pci_dev)) 820 return pci_legacy_resume_early(dev); 821 822 if (drv && drv->pm && drv->pm->resume_noirq) 823 error = drv->pm->resume_noirq(dev); 824 825 return error; 826 } 827 828 static int pci_pm_resume(struct device *dev) 829 { 830 struct pci_dev *pci_dev = to_pci_dev(dev); 831 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 832 int error = 0; 833 834 /* 835 * This is necessary for the suspend error path in which resume is 836 * called without restoring the standard config registers of the device. 837 */ 838 if (pci_dev->state_saved) 839 pci_restore_standard_config(pci_dev); 840 841 if (pci_has_legacy_pm_support(pci_dev)) 842 return pci_legacy_resume(dev); 843 844 pci_pm_default_resume(pci_dev); 845 846 if (pm) { 847 if (pm->resume) 848 error = pm->resume(dev); 849 } else { 850 pci_pm_reenable_device(pci_dev); 851 } 852 853 return error; 854 } 855 856 #else /* !CONFIG_SUSPEND */ 857 858 #define pci_pm_suspend NULL 859 #define pci_pm_suspend_noirq NULL 860 #define pci_pm_resume NULL 861 #define pci_pm_resume_noirq NULL 862 863 #endif /* !CONFIG_SUSPEND */ 864 865 #ifdef CONFIG_HIBERNATE_CALLBACKS 866 867 868 /* 869 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing 870 * a hibernate transition 871 */ 872 struct dev_pm_ops __weak pcibios_pm_ops; 873 874 static int pci_pm_freeze(struct device *dev) 875 { 876 struct pci_dev *pci_dev = to_pci_dev(dev); 877 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 878 879 if (pci_has_legacy_pm_support(pci_dev)) 880 return pci_legacy_suspend(dev, PMSG_FREEZE); 881 882 if (!pm) { 883 pci_pm_default_suspend(pci_dev); 884 return 0; 885 } 886 887 /* 888 * This used to be done in pci_pm_prepare() for all devices and some 889 * drivers may depend on it, so do it here. Ideally, runtime-suspended 890 * devices should not be touched during freeze/thaw transitions, 891 * however. 892 */ 893 pm_runtime_resume(dev); 894 895 pci_dev->state_saved = false; 896 if (pm->freeze) { 897 int error; 898 899 error = pm->freeze(dev); 900 suspend_report_result(pm->freeze, error); 901 if (error) 902 return error; 903 } 904 905 if (pcibios_pm_ops.freeze) 906 return pcibios_pm_ops.freeze(dev); 907 908 return 0; 909 } 910 911 static int pci_pm_freeze_noirq(struct device *dev) 912 { 913 struct pci_dev *pci_dev = to_pci_dev(dev); 914 struct device_driver *drv = dev->driver; 915 916 if (pci_has_legacy_pm_support(pci_dev)) 917 return pci_legacy_suspend_late(dev, PMSG_FREEZE); 918 919 if (drv && drv->pm && drv->pm->freeze_noirq) { 920 int error; 921 922 error = drv->pm->freeze_noirq(dev); 923 suspend_report_result(drv->pm->freeze_noirq, error); 924 if (error) 925 return error; 926 } 927 928 if (!pci_dev->state_saved) 929 pci_save_state(pci_dev); 930 931 pci_pm_set_unknown_state(pci_dev); 932 933 if (pcibios_pm_ops.freeze_noirq) 934 return pcibios_pm_ops.freeze_noirq(dev); 935 936 return 0; 937 } 938 939 static int pci_pm_thaw_noirq(struct device *dev) 940 { 941 struct pci_dev *pci_dev = to_pci_dev(dev); 942 struct device_driver *drv = dev->driver; 943 int error = 0; 944 945 if (pcibios_pm_ops.thaw_noirq) { 946 error = pcibios_pm_ops.thaw_noirq(dev); 947 if (error) 948 return error; 949 } 950 951 if (pci_has_legacy_pm_support(pci_dev)) 952 return pci_legacy_resume_early(dev); 953 954 pci_update_current_state(pci_dev, PCI_D0); 955 956 if (drv && drv->pm && drv->pm->thaw_noirq) 957 error = drv->pm->thaw_noirq(dev); 958 959 return error; 960 } 961 962 static int pci_pm_thaw(struct device *dev) 963 { 964 struct pci_dev *pci_dev = to_pci_dev(dev); 965 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 966 int error = 0; 967 968 if (pcibios_pm_ops.thaw) { 969 error = pcibios_pm_ops.thaw(dev); 970 if (error) 971 return error; 972 } 973 974 if (pci_has_legacy_pm_support(pci_dev)) 975 return pci_legacy_resume(dev); 976 977 if (pm) { 978 if (pm->thaw) 979 error = pm->thaw(dev); 980 } else { 981 pci_pm_reenable_device(pci_dev); 982 } 983 984 pci_dev->state_saved = false; 985 986 return error; 987 } 988 989 static int pci_pm_poweroff(struct device *dev) 990 { 991 struct pci_dev *pci_dev = to_pci_dev(dev); 992 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 993 994 if (pci_has_legacy_pm_support(pci_dev)) 995 return pci_legacy_suspend(dev, PMSG_HIBERNATE); 996 997 if (!pm) { 998 pci_pm_default_suspend(pci_dev); 999 goto Fixup; 1000 } 1001 1002 /* The reason to do that is the same as in pci_pm_suspend(). */ 1003 pm_runtime_resume(dev); 1004 1005 pci_dev->state_saved = false; 1006 if (pm->poweroff) { 1007 int error; 1008 1009 error = pm->poweroff(dev); 1010 suspend_report_result(pm->poweroff, error); 1011 if (error) 1012 return error; 1013 } 1014 1015 Fixup: 1016 pci_fixup_device(pci_fixup_suspend, pci_dev); 1017 1018 if (pcibios_pm_ops.poweroff) 1019 return pcibios_pm_ops.poweroff(dev); 1020 1021 return 0; 1022 } 1023 1024 static int pci_pm_poweroff_noirq(struct device *dev) 1025 { 1026 struct pci_dev *pci_dev = to_pci_dev(dev); 1027 struct device_driver *drv = dev->driver; 1028 1029 if (pci_has_legacy_pm_support(to_pci_dev(dev))) 1030 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE); 1031 1032 if (!drv || !drv->pm) { 1033 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1034 return 0; 1035 } 1036 1037 if (drv->pm->poweroff_noirq) { 1038 int error; 1039 1040 error = drv->pm->poweroff_noirq(dev); 1041 suspend_report_result(drv->pm->poweroff_noirq, error); 1042 if (error) 1043 return error; 1044 } 1045 1046 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev)) 1047 pci_prepare_to_sleep(pci_dev); 1048 1049 /* 1050 * The reason for doing this here is the same as for the analogous code 1051 * in pci_pm_suspend_noirq(). 1052 */ 1053 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 1054 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 1055 1056 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1057 1058 if (pcibios_pm_ops.poweroff_noirq) 1059 return pcibios_pm_ops.poweroff_noirq(dev); 1060 1061 return 0; 1062 } 1063 1064 static int pci_pm_restore_noirq(struct device *dev) 1065 { 1066 struct pci_dev *pci_dev = to_pci_dev(dev); 1067 struct device_driver *drv = dev->driver; 1068 int error = 0; 1069 1070 if (pcibios_pm_ops.restore_noirq) { 1071 error = pcibios_pm_ops.restore_noirq(dev); 1072 if (error) 1073 return error; 1074 } 1075 1076 pci_pm_default_resume_early(pci_dev); 1077 1078 if (pci_has_legacy_pm_support(pci_dev)) 1079 return pci_legacy_resume_early(dev); 1080 1081 if (drv && drv->pm && drv->pm->restore_noirq) 1082 error = drv->pm->restore_noirq(dev); 1083 1084 return error; 1085 } 1086 1087 static int pci_pm_restore(struct device *dev) 1088 { 1089 struct pci_dev *pci_dev = to_pci_dev(dev); 1090 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1091 int error = 0; 1092 1093 if (pcibios_pm_ops.restore) { 1094 error = pcibios_pm_ops.restore(dev); 1095 if (error) 1096 return error; 1097 } 1098 1099 /* 1100 * This is necessary for the hibernation error path in which restore is 1101 * called without restoring the standard config registers of the device. 1102 */ 1103 if (pci_dev->state_saved) 1104 pci_restore_standard_config(pci_dev); 1105 1106 if (pci_has_legacy_pm_support(pci_dev)) 1107 return pci_legacy_resume(dev); 1108 1109 pci_pm_default_resume(pci_dev); 1110 1111 if (pm) { 1112 if (pm->restore) 1113 error = pm->restore(dev); 1114 } else { 1115 pci_pm_reenable_device(pci_dev); 1116 } 1117 1118 return error; 1119 } 1120 1121 #else /* !CONFIG_HIBERNATE_CALLBACKS */ 1122 1123 #define pci_pm_freeze NULL 1124 #define pci_pm_freeze_noirq NULL 1125 #define pci_pm_thaw NULL 1126 #define pci_pm_thaw_noirq NULL 1127 #define pci_pm_poweroff NULL 1128 #define pci_pm_poweroff_noirq NULL 1129 #define pci_pm_restore NULL 1130 #define pci_pm_restore_noirq NULL 1131 1132 #endif /* !CONFIG_HIBERNATE_CALLBACKS */ 1133 1134 #ifdef CONFIG_PM 1135 1136 static int pci_pm_runtime_suspend(struct device *dev) 1137 { 1138 struct pci_dev *pci_dev = to_pci_dev(dev); 1139 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1140 pci_power_t prev = pci_dev->current_state; 1141 int error; 1142 1143 /* 1144 * If pci_dev->driver is not set (unbound), the device should 1145 * always remain in D0 regardless of the runtime PM status 1146 */ 1147 if (!pci_dev->driver) 1148 return 0; 1149 1150 if (!pm || !pm->runtime_suspend) 1151 return -ENOSYS; 1152 1153 pci_dev->state_saved = false; 1154 error = pm->runtime_suspend(dev); 1155 if (error) { 1156 /* 1157 * -EBUSY and -EAGAIN is used to request the runtime PM core 1158 * to schedule a new suspend, so log the event only with debug 1159 * log level. 1160 */ 1161 if (error == -EBUSY || error == -EAGAIN) 1162 dev_dbg(dev, "can't suspend now (%pf returned %d)\n", 1163 pm->runtime_suspend, error); 1164 else 1165 dev_err(dev, "can't suspend (%pf returned %d)\n", 1166 pm->runtime_suspend, error); 1167 1168 return error; 1169 } 1170 1171 pci_fixup_device(pci_fixup_suspend, pci_dev); 1172 1173 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 1174 && pci_dev->current_state != PCI_UNKNOWN) { 1175 WARN_ONCE(pci_dev->current_state != prev, 1176 "PCI PM: State of device not saved by %pF\n", 1177 pm->runtime_suspend); 1178 return 0; 1179 } 1180 1181 if (!pci_dev->state_saved) { 1182 pci_save_state(pci_dev); 1183 pci_finish_runtime_suspend(pci_dev); 1184 } 1185 1186 return 0; 1187 } 1188 1189 static int pci_pm_runtime_resume(struct device *dev) 1190 { 1191 int rc; 1192 struct pci_dev *pci_dev = to_pci_dev(dev); 1193 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1194 1195 /* 1196 * If pci_dev->driver is not set (unbound), the device should 1197 * always remain in D0 regardless of the runtime PM status 1198 */ 1199 if (!pci_dev->driver) 1200 return 0; 1201 1202 if (!pm || !pm->runtime_resume) 1203 return -ENOSYS; 1204 1205 pci_restore_standard_config(pci_dev); 1206 pci_fixup_device(pci_fixup_resume_early, pci_dev); 1207 __pci_enable_wake(pci_dev, PCI_D0, true, false); 1208 pci_fixup_device(pci_fixup_resume, pci_dev); 1209 1210 rc = pm->runtime_resume(dev); 1211 1212 pci_dev->runtime_d3cold = false; 1213 1214 return rc; 1215 } 1216 1217 static int pci_pm_runtime_idle(struct device *dev) 1218 { 1219 struct pci_dev *pci_dev = to_pci_dev(dev); 1220 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1221 int ret = 0; 1222 1223 /* 1224 * If pci_dev->driver is not set (unbound), the device should 1225 * always remain in D0 regardless of the runtime PM status 1226 */ 1227 if (!pci_dev->driver) 1228 return 0; 1229 1230 if (!pm) 1231 return -ENOSYS; 1232 1233 if (pm->runtime_idle) 1234 ret = pm->runtime_idle(dev); 1235 1236 return ret; 1237 } 1238 1239 static const struct dev_pm_ops pci_dev_pm_ops = { 1240 .prepare = pci_pm_prepare, 1241 .complete = pci_pm_complete, 1242 .suspend = pci_pm_suspend, 1243 .resume = pci_pm_resume, 1244 .freeze = pci_pm_freeze, 1245 .thaw = pci_pm_thaw, 1246 .poweroff = pci_pm_poweroff, 1247 .restore = pci_pm_restore, 1248 .suspend_noirq = pci_pm_suspend_noirq, 1249 .resume_noirq = pci_pm_resume_noirq, 1250 .freeze_noirq = pci_pm_freeze_noirq, 1251 .thaw_noirq = pci_pm_thaw_noirq, 1252 .poweroff_noirq = pci_pm_poweroff_noirq, 1253 .restore_noirq = pci_pm_restore_noirq, 1254 .runtime_suspend = pci_pm_runtime_suspend, 1255 .runtime_resume = pci_pm_runtime_resume, 1256 .runtime_idle = pci_pm_runtime_idle, 1257 }; 1258 1259 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops) 1260 1261 #else /* !CONFIG_PM */ 1262 1263 #define pci_pm_runtime_suspend NULL 1264 #define pci_pm_runtime_resume NULL 1265 #define pci_pm_runtime_idle NULL 1266 1267 #define PCI_PM_OPS_PTR NULL 1268 1269 #endif /* !CONFIG_PM */ 1270 1271 /** 1272 * __pci_register_driver - register a new pci driver 1273 * @drv: the driver structure to register 1274 * @owner: owner module of drv 1275 * @mod_name: module name string 1276 * 1277 * Adds the driver structure to the list of registered drivers. 1278 * Returns a negative value on error, otherwise 0. 1279 * If no error occurred, the driver remains registered even if 1280 * no device was claimed during registration. 1281 */ 1282 int __pci_register_driver(struct pci_driver *drv, struct module *owner, 1283 const char *mod_name) 1284 { 1285 /* initialize common driver fields */ 1286 drv->driver.name = drv->name; 1287 drv->driver.bus = &pci_bus_type; 1288 drv->driver.owner = owner; 1289 drv->driver.mod_name = mod_name; 1290 1291 spin_lock_init(&drv->dynids.lock); 1292 INIT_LIST_HEAD(&drv->dynids.list); 1293 1294 /* register with core */ 1295 return driver_register(&drv->driver); 1296 } 1297 EXPORT_SYMBOL(__pci_register_driver); 1298 1299 /** 1300 * pci_unregister_driver - unregister a pci driver 1301 * @drv: the driver structure to unregister 1302 * 1303 * Deletes the driver structure from the list of registered PCI drivers, 1304 * gives it a chance to clean up by calling its remove() function for 1305 * each device it was responsible for, and marks those devices as 1306 * driverless. 1307 */ 1308 1309 void pci_unregister_driver(struct pci_driver *drv) 1310 { 1311 driver_unregister(&drv->driver); 1312 pci_free_dynids(drv); 1313 } 1314 EXPORT_SYMBOL(pci_unregister_driver); 1315 1316 static struct pci_driver pci_compat_driver = { 1317 .name = "compat" 1318 }; 1319 1320 /** 1321 * pci_dev_driver - get the pci_driver of a device 1322 * @dev: the device to query 1323 * 1324 * Returns the appropriate pci_driver structure or %NULL if there is no 1325 * registered driver for the device. 1326 */ 1327 struct pci_driver *pci_dev_driver(const struct pci_dev *dev) 1328 { 1329 if (dev->driver) 1330 return dev->driver; 1331 else { 1332 int i; 1333 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1334 if (dev->resource[i].flags & IORESOURCE_BUSY) 1335 return &pci_compat_driver; 1336 } 1337 return NULL; 1338 } 1339 EXPORT_SYMBOL(pci_dev_driver); 1340 1341 /** 1342 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure 1343 * @dev: the PCI device structure to match against 1344 * @drv: the device driver to search for matching PCI device id structures 1345 * 1346 * Used by a driver to check whether a PCI device present in the 1347 * system is in its list of supported devices. Returns the matching 1348 * pci_device_id structure or %NULL if there is no match. 1349 */ 1350 static int pci_bus_match(struct device *dev, struct device_driver *drv) 1351 { 1352 struct pci_dev *pci_dev = to_pci_dev(dev); 1353 struct pci_driver *pci_drv; 1354 const struct pci_device_id *found_id; 1355 1356 if (!pci_dev->match_driver) 1357 return 0; 1358 1359 pci_drv = to_pci_driver(drv); 1360 found_id = pci_match_device(pci_drv, pci_dev); 1361 if (found_id) 1362 return 1; 1363 1364 return 0; 1365 } 1366 1367 /** 1368 * pci_dev_get - increments the reference count of the pci device structure 1369 * @dev: the device being referenced 1370 * 1371 * Each live reference to a device should be refcounted. 1372 * 1373 * Drivers for PCI devices should normally record such references in 1374 * their probe() methods, when they bind to a device, and release 1375 * them by calling pci_dev_put(), in their disconnect() methods. 1376 * 1377 * A pointer to the device with the incremented reference counter is returned. 1378 */ 1379 struct pci_dev *pci_dev_get(struct pci_dev *dev) 1380 { 1381 if (dev) 1382 get_device(&dev->dev); 1383 return dev; 1384 } 1385 EXPORT_SYMBOL(pci_dev_get); 1386 1387 /** 1388 * pci_dev_put - release a use of the pci device structure 1389 * @dev: device that's been disconnected 1390 * 1391 * Must be called when a user of a device is finished with it. When the last 1392 * user of the device calls this function, the memory of the device is freed. 1393 */ 1394 void pci_dev_put(struct pci_dev *dev) 1395 { 1396 if (dev) 1397 put_device(&dev->dev); 1398 } 1399 EXPORT_SYMBOL(pci_dev_put); 1400 1401 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env) 1402 { 1403 struct pci_dev *pdev; 1404 1405 if (!dev) 1406 return -ENODEV; 1407 1408 pdev = to_pci_dev(dev); 1409 1410 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class)) 1411 return -ENOMEM; 1412 1413 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device)) 1414 return -ENOMEM; 1415 1416 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor, 1417 pdev->subsystem_device)) 1418 return -ENOMEM; 1419 1420 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev))) 1421 return -ENOMEM; 1422 1423 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X", 1424 pdev->vendor, pdev->device, 1425 pdev->subsystem_vendor, pdev->subsystem_device, 1426 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8), 1427 (u8)(pdev->class))) 1428 return -ENOMEM; 1429 1430 return 0; 1431 } 1432 1433 static int pci_bus_num_vf(struct device *dev) 1434 { 1435 return pci_num_vf(to_pci_dev(dev)); 1436 } 1437 1438 struct bus_type pci_bus_type = { 1439 .name = "pci", 1440 .match = pci_bus_match, 1441 .uevent = pci_uevent, 1442 .probe = pci_device_probe, 1443 .remove = pci_device_remove, 1444 .shutdown = pci_device_shutdown, 1445 .dev_groups = pci_dev_groups, 1446 .bus_groups = pci_bus_groups, 1447 .drv_groups = pci_drv_groups, 1448 .pm = PCI_PM_OPS_PTR, 1449 .num_vf = pci_bus_num_vf, 1450 }; 1451 EXPORT_SYMBOL(pci_bus_type); 1452 1453 static int __init pci_driver_init(void) 1454 { 1455 return bus_register(&pci_bus_type); 1456 } 1457 postcore_initcall(pci_driver_init); 1458