xref: /linux/drivers/pci/pci-driver.c (revision a3a4a816b4b194c45d0217e8b9e08b2639802cda)
1 /*
2  * drivers/pci/pci-driver.c
3  *
4  * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5  * (C) Copyright 2007 Novell Inc.
6  *
7  * Released under the GPL v2 only.
8  *
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24 
25 struct pci_dynid {
26 	struct list_head node;
27 	struct pci_device_id id;
28 };
29 
30 /**
31  * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32  * @drv: target pci driver
33  * @vendor: PCI vendor ID
34  * @device: PCI device ID
35  * @subvendor: PCI subvendor ID
36  * @subdevice: PCI subdevice ID
37  * @class: PCI class
38  * @class_mask: PCI class mask
39  * @driver_data: private driver data
40  *
41  * Adds a new dynamic pci device ID to this driver and causes the
42  * driver to probe for all devices again.  @drv must have been
43  * registered prior to calling this function.
44  *
45  * CONTEXT:
46  * Does GFP_KERNEL allocation.
47  *
48  * RETURNS:
49  * 0 on success, -errno on failure.
50  */
51 int pci_add_dynid(struct pci_driver *drv,
52 		  unsigned int vendor, unsigned int device,
53 		  unsigned int subvendor, unsigned int subdevice,
54 		  unsigned int class, unsigned int class_mask,
55 		  unsigned long driver_data)
56 {
57 	struct pci_dynid *dynid;
58 
59 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60 	if (!dynid)
61 		return -ENOMEM;
62 
63 	dynid->id.vendor = vendor;
64 	dynid->id.device = device;
65 	dynid->id.subvendor = subvendor;
66 	dynid->id.subdevice = subdevice;
67 	dynid->id.class = class;
68 	dynid->id.class_mask = class_mask;
69 	dynid->id.driver_data = driver_data;
70 
71 	spin_lock(&drv->dynids.lock);
72 	list_add_tail(&dynid->node, &drv->dynids.list);
73 	spin_unlock(&drv->dynids.lock);
74 
75 	return driver_attach(&drv->driver);
76 }
77 EXPORT_SYMBOL_GPL(pci_add_dynid);
78 
79 static void pci_free_dynids(struct pci_driver *drv)
80 {
81 	struct pci_dynid *dynid, *n;
82 
83 	spin_lock(&drv->dynids.lock);
84 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85 		list_del(&dynid->node);
86 		kfree(dynid);
87 	}
88 	spin_unlock(&drv->dynids.lock);
89 }
90 
91 /**
92  * store_new_id - sysfs frontend to pci_add_dynid()
93  * @driver: target device driver
94  * @buf: buffer for scanning device ID data
95  * @count: input size
96  *
97  * Allow PCI IDs to be added to an existing driver via sysfs.
98  */
99 static ssize_t store_new_id(struct device_driver *driver, const char *buf,
100 			    size_t count)
101 {
102 	struct pci_driver *pdrv = to_pci_driver(driver);
103 	const struct pci_device_id *ids = pdrv->id_table;
104 	__u32 vendor, device, subvendor = PCI_ANY_ID,
105 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106 	unsigned long driver_data = 0;
107 	int fields = 0;
108 	int retval = 0;
109 
110 	fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111 			&vendor, &device, &subvendor, &subdevice,
112 			&class, &class_mask, &driver_data);
113 	if (fields < 2)
114 		return -EINVAL;
115 
116 	if (fields != 7) {
117 		struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118 		if (!pdev)
119 			return -ENOMEM;
120 
121 		pdev->vendor = vendor;
122 		pdev->device = device;
123 		pdev->subsystem_vendor = subvendor;
124 		pdev->subsystem_device = subdevice;
125 		pdev->class = class;
126 
127 		if (pci_match_id(pdrv->id_table, pdev))
128 			retval = -EEXIST;
129 
130 		kfree(pdev);
131 
132 		if (retval)
133 			return retval;
134 	}
135 
136 	/* Only accept driver_data values that match an existing id_table
137 	   entry */
138 	if (ids) {
139 		retval = -EINVAL;
140 		while (ids->vendor || ids->subvendor || ids->class_mask) {
141 			if (driver_data == ids->driver_data) {
142 				retval = 0;
143 				break;
144 			}
145 			ids++;
146 		}
147 		if (retval)	/* No match */
148 			return retval;
149 	}
150 
151 	retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152 			       class, class_mask, driver_data);
153 	if (retval)
154 		return retval;
155 	return count;
156 }
157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
158 
159 /**
160  * store_remove_id - remove a PCI device ID from this driver
161  * @driver: target device driver
162  * @buf: buffer for scanning device ID data
163  * @count: input size
164  *
165  * Removes a dynamic pci device ID to this driver.
166  */
167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf,
168 			       size_t count)
169 {
170 	struct pci_dynid *dynid, *n;
171 	struct pci_driver *pdrv = to_pci_driver(driver);
172 	__u32 vendor, device, subvendor = PCI_ANY_ID,
173 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174 	int fields = 0;
175 	size_t retval = -ENODEV;
176 
177 	fields = sscanf(buf, "%x %x %x %x %x %x",
178 			&vendor, &device, &subvendor, &subdevice,
179 			&class, &class_mask);
180 	if (fields < 2)
181 		return -EINVAL;
182 
183 	spin_lock(&pdrv->dynids.lock);
184 	list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185 		struct pci_device_id *id = &dynid->id;
186 		if ((id->vendor == vendor) &&
187 		    (id->device == device) &&
188 		    (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189 		    (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190 		    !((id->class ^ class) & class_mask)) {
191 			list_del(&dynid->node);
192 			kfree(dynid);
193 			retval = count;
194 			break;
195 		}
196 	}
197 	spin_unlock(&pdrv->dynids.lock);
198 
199 	return retval;
200 }
201 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
202 
203 static struct attribute *pci_drv_attrs[] = {
204 	&driver_attr_new_id.attr,
205 	&driver_attr_remove_id.attr,
206 	NULL,
207 };
208 ATTRIBUTE_GROUPS(pci_drv);
209 
210 /**
211  * pci_match_id - See if a pci device matches a given pci_id table
212  * @ids: array of PCI device id structures to search in
213  * @dev: the PCI device structure to match against.
214  *
215  * Used by a driver to check whether a PCI device present in the
216  * system is in its list of supported devices.  Returns the matching
217  * pci_device_id structure or %NULL if there is no match.
218  *
219  * Deprecated, don't use this as it will not catch any dynamic ids
220  * that a driver might want to check for.
221  */
222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
223 					 struct pci_dev *dev)
224 {
225 	if (ids) {
226 		while (ids->vendor || ids->subvendor || ids->class_mask) {
227 			if (pci_match_one_device(ids, dev))
228 				return ids;
229 			ids++;
230 		}
231 	}
232 	return NULL;
233 }
234 EXPORT_SYMBOL(pci_match_id);
235 
236 static const struct pci_device_id pci_device_id_any = {
237 	.vendor = PCI_ANY_ID,
238 	.device = PCI_ANY_ID,
239 	.subvendor = PCI_ANY_ID,
240 	.subdevice = PCI_ANY_ID,
241 };
242 
243 /**
244  * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
245  * @drv: the PCI driver to match against
246  * @dev: the PCI device structure to match against
247  *
248  * Used by a driver to check whether a PCI device present in the
249  * system is in its list of supported devices.  Returns the matching
250  * pci_device_id structure or %NULL if there is no match.
251  */
252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
253 						    struct pci_dev *dev)
254 {
255 	struct pci_dynid *dynid;
256 	const struct pci_device_id *found_id = NULL;
257 
258 	/* When driver_override is set, only bind to the matching driver */
259 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
260 		return NULL;
261 
262 	/* Look at the dynamic ids first, before the static ones */
263 	spin_lock(&drv->dynids.lock);
264 	list_for_each_entry(dynid, &drv->dynids.list, node) {
265 		if (pci_match_one_device(&dynid->id, dev)) {
266 			found_id = &dynid->id;
267 			break;
268 		}
269 	}
270 	spin_unlock(&drv->dynids.lock);
271 
272 	if (!found_id)
273 		found_id = pci_match_id(drv->id_table, dev);
274 
275 	/* driver_override will always match, send a dummy id */
276 	if (!found_id && dev->driver_override)
277 		found_id = &pci_device_id_any;
278 
279 	return found_id;
280 }
281 
282 struct drv_dev_and_id {
283 	struct pci_driver *drv;
284 	struct pci_dev *dev;
285 	const struct pci_device_id *id;
286 };
287 
288 static long local_pci_probe(void *_ddi)
289 {
290 	struct drv_dev_and_id *ddi = _ddi;
291 	struct pci_dev *pci_dev = ddi->dev;
292 	struct pci_driver *pci_drv = ddi->drv;
293 	struct device *dev = &pci_dev->dev;
294 	int rc;
295 
296 	/*
297 	 * Unbound PCI devices are always put in D0, regardless of
298 	 * runtime PM status.  During probe, the device is set to
299 	 * active and the usage count is incremented.  If the driver
300 	 * supports runtime PM, it should call pm_runtime_put_noidle(),
301 	 * or any other runtime PM helper function decrementing the usage
302 	 * count, in its probe routine and pm_runtime_get_noresume() in
303 	 * its remove routine.
304 	 */
305 	pm_runtime_get_sync(dev);
306 	pci_dev->driver = pci_drv;
307 	rc = pci_drv->probe(pci_dev, ddi->id);
308 	if (!rc)
309 		return rc;
310 	if (rc < 0) {
311 		pci_dev->driver = NULL;
312 		pm_runtime_put_sync(dev);
313 		return rc;
314 	}
315 	/*
316 	 * Probe function should return < 0 for failure, 0 for success
317 	 * Treat values > 0 as success, but warn.
318 	 */
319 	dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
320 	return 0;
321 }
322 
323 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
324 			  const struct pci_device_id *id)
325 {
326 	int error, node;
327 	struct drv_dev_and_id ddi = { drv, dev, id };
328 
329 	/*
330 	 * Execute driver initialization on node where the device is
331 	 * attached.  This way the driver likely allocates its local memory
332 	 * on the right node.
333 	 */
334 	node = dev_to_node(&dev->dev);
335 
336 	/*
337 	 * On NUMA systems, we are likely to call a PF probe function using
338 	 * work_on_cpu().  If that probe calls pci_enable_sriov() (which
339 	 * adds the VF devices via pci_bus_add_device()), we may re-enter
340 	 * this function to call the VF probe function.  Calling
341 	 * work_on_cpu() again will cause a lockdep warning.  Since VFs are
342 	 * always on the same node as the PF, we can work around this by
343 	 * avoiding work_on_cpu() when we're already on the correct node.
344 	 *
345 	 * Preemption is enabled, so it's theoretically unsafe to use
346 	 * numa_node_id(), but even if we run the probe function on the
347 	 * wrong node, it should be functionally correct.
348 	 */
349 	if (node >= 0 && node != numa_node_id()) {
350 		int cpu;
351 
352 		get_online_cpus();
353 		cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
354 		if (cpu < nr_cpu_ids)
355 			error = work_on_cpu(cpu, local_pci_probe, &ddi);
356 		else
357 			error = local_pci_probe(&ddi);
358 		put_online_cpus();
359 	} else
360 		error = local_pci_probe(&ddi);
361 
362 	return error;
363 }
364 
365 /**
366  * __pci_device_probe - check if a driver wants to claim a specific PCI device
367  * @drv: driver to call to check if it wants the PCI device
368  * @pci_dev: PCI device being probed
369  *
370  * returns 0 on success, else error.
371  * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
372  */
373 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
374 {
375 	const struct pci_device_id *id;
376 	int error = 0;
377 
378 	if (!pci_dev->driver && drv->probe) {
379 		error = -ENODEV;
380 
381 		id = pci_match_device(drv, pci_dev);
382 		if (id)
383 			error = pci_call_probe(drv, pci_dev, id);
384 	}
385 	return error;
386 }
387 
388 int __weak pcibios_alloc_irq(struct pci_dev *dev)
389 {
390 	return 0;
391 }
392 
393 void __weak pcibios_free_irq(struct pci_dev *dev)
394 {
395 }
396 
397 static int pci_device_probe(struct device *dev)
398 {
399 	int error;
400 	struct pci_dev *pci_dev = to_pci_dev(dev);
401 	struct pci_driver *drv = to_pci_driver(dev->driver);
402 
403 	error = pcibios_alloc_irq(pci_dev);
404 	if (error < 0)
405 		return error;
406 
407 	pci_dev_get(pci_dev);
408 	error = __pci_device_probe(drv, pci_dev);
409 	if (error) {
410 		pcibios_free_irq(pci_dev);
411 		pci_dev_put(pci_dev);
412 	}
413 
414 	return error;
415 }
416 
417 static int pci_device_remove(struct device *dev)
418 {
419 	struct pci_dev *pci_dev = to_pci_dev(dev);
420 	struct pci_driver *drv = pci_dev->driver;
421 
422 	if (drv) {
423 		if (drv->remove) {
424 			pm_runtime_get_sync(dev);
425 			drv->remove(pci_dev);
426 			pm_runtime_put_noidle(dev);
427 		}
428 		pcibios_free_irq(pci_dev);
429 		pci_dev->driver = NULL;
430 	}
431 
432 	/* Undo the runtime PM settings in local_pci_probe() */
433 	pm_runtime_put_sync(dev);
434 
435 	/*
436 	 * If the device is still on, set the power state as "unknown",
437 	 * since it might change by the next time we load the driver.
438 	 */
439 	if (pci_dev->current_state == PCI_D0)
440 		pci_dev->current_state = PCI_UNKNOWN;
441 
442 	/*
443 	 * We would love to complain here if pci_dev->is_enabled is set, that
444 	 * the driver should have called pci_disable_device(), but the
445 	 * unfortunate fact is there are too many odd BIOS and bridge setups
446 	 * that don't like drivers doing that all of the time.
447 	 * Oh well, we can dream of sane hardware when we sleep, no matter how
448 	 * horrible the crap we have to deal with is when we are awake...
449 	 */
450 
451 	pci_dev_put(pci_dev);
452 	return 0;
453 }
454 
455 static void pci_device_shutdown(struct device *dev)
456 {
457 	struct pci_dev *pci_dev = to_pci_dev(dev);
458 	struct pci_driver *drv = pci_dev->driver;
459 
460 	pm_runtime_resume(dev);
461 
462 	if (drv && drv->shutdown)
463 		drv->shutdown(pci_dev);
464 	pci_msi_shutdown(pci_dev);
465 	pci_msix_shutdown(pci_dev);
466 
467 	/*
468 	 * If this is a kexec reboot, turn off Bus Master bit on the
469 	 * device to tell it to not continue to do DMA. Don't touch
470 	 * devices in D3cold or unknown states.
471 	 * If it is not a kexec reboot, firmware will hit the PCI
472 	 * devices with big hammer and stop their DMA any way.
473 	 */
474 	if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
475 		pci_clear_master(pci_dev);
476 }
477 
478 #ifdef CONFIG_PM
479 
480 /* Auxiliary functions used for system resume and run-time resume. */
481 
482 /**
483  * pci_restore_standard_config - restore standard config registers of PCI device
484  * @pci_dev: PCI device to handle
485  */
486 static int pci_restore_standard_config(struct pci_dev *pci_dev)
487 {
488 	pci_update_current_state(pci_dev, PCI_UNKNOWN);
489 
490 	if (pci_dev->current_state != PCI_D0) {
491 		int error = pci_set_power_state(pci_dev, PCI_D0);
492 		if (error)
493 			return error;
494 	}
495 
496 	pci_restore_state(pci_dev);
497 	return 0;
498 }
499 
500 #endif
501 
502 #ifdef CONFIG_PM_SLEEP
503 
504 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
505 {
506 	pci_power_up(pci_dev);
507 	pci_restore_state(pci_dev);
508 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
509 }
510 
511 /*
512  * Default "suspend" method for devices that have no driver provided suspend,
513  * or not even a driver at all (second part).
514  */
515 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
516 {
517 	/*
518 	 * mark its power state as "unknown", since we don't know if
519 	 * e.g. the BIOS will change its device state when we suspend.
520 	 */
521 	if (pci_dev->current_state == PCI_D0)
522 		pci_dev->current_state = PCI_UNKNOWN;
523 }
524 
525 /*
526  * Default "resume" method for devices that have no driver provided resume,
527  * or not even a driver at all (second part).
528  */
529 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
530 {
531 	int retval;
532 
533 	/* if the device was enabled before suspend, reenable */
534 	retval = pci_reenable_device(pci_dev);
535 	/*
536 	 * if the device was busmaster before the suspend, make it busmaster
537 	 * again
538 	 */
539 	if (pci_dev->is_busmaster)
540 		pci_set_master(pci_dev);
541 
542 	return retval;
543 }
544 
545 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
546 {
547 	struct pci_dev *pci_dev = to_pci_dev(dev);
548 	struct pci_driver *drv = pci_dev->driver;
549 
550 	if (drv && drv->suspend) {
551 		pci_power_t prev = pci_dev->current_state;
552 		int error;
553 
554 		error = drv->suspend(pci_dev, state);
555 		suspend_report_result(drv->suspend, error);
556 		if (error)
557 			return error;
558 
559 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
560 		    && pci_dev->current_state != PCI_UNKNOWN) {
561 			WARN_ONCE(pci_dev->current_state != prev,
562 				"PCI PM: Device state not saved by %pF\n",
563 				drv->suspend);
564 		}
565 	}
566 
567 	pci_fixup_device(pci_fixup_suspend, pci_dev);
568 
569 	return 0;
570 }
571 
572 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
573 {
574 	struct pci_dev *pci_dev = to_pci_dev(dev);
575 	struct pci_driver *drv = pci_dev->driver;
576 
577 	if (drv && drv->suspend_late) {
578 		pci_power_t prev = pci_dev->current_state;
579 		int error;
580 
581 		error = drv->suspend_late(pci_dev, state);
582 		suspend_report_result(drv->suspend_late, error);
583 		if (error)
584 			return error;
585 
586 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
587 		    && pci_dev->current_state != PCI_UNKNOWN) {
588 			WARN_ONCE(pci_dev->current_state != prev,
589 				"PCI PM: Device state not saved by %pF\n",
590 				drv->suspend_late);
591 			goto Fixup;
592 		}
593 	}
594 
595 	if (!pci_dev->state_saved)
596 		pci_save_state(pci_dev);
597 
598 	pci_pm_set_unknown_state(pci_dev);
599 
600 Fixup:
601 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
602 
603 	return 0;
604 }
605 
606 static int pci_legacy_resume_early(struct device *dev)
607 {
608 	struct pci_dev *pci_dev = to_pci_dev(dev);
609 	struct pci_driver *drv = pci_dev->driver;
610 
611 	return drv && drv->resume_early ?
612 			drv->resume_early(pci_dev) : 0;
613 }
614 
615 static int pci_legacy_resume(struct device *dev)
616 {
617 	struct pci_dev *pci_dev = to_pci_dev(dev);
618 	struct pci_driver *drv = pci_dev->driver;
619 
620 	pci_fixup_device(pci_fixup_resume, pci_dev);
621 
622 	return drv && drv->resume ?
623 			drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
624 }
625 
626 /* Auxiliary functions used by the new power management framework */
627 
628 static void pci_pm_default_resume(struct pci_dev *pci_dev)
629 {
630 	pci_fixup_device(pci_fixup_resume, pci_dev);
631 
632 	if (!pci_has_subordinate(pci_dev))
633 		pci_enable_wake(pci_dev, PCI_D0, false);
634 }
635 
636 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
637 {
638 	/* Disable non-bridge devices without PM support */
639 	if (!pci_has_subordinate(pci_dev))
640 		pci_disable_enabled_device(pci_dev);
641 }
642 
643 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
644 {
645 	struct pci_driver *drv = pci_dev->driver;
646 	bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
647 		|| drv->resume_early);
648 
649 	/*
650 	 * Legacy PM support is used by default, so warn if the new framework is
651 	 * supported as well.  Drivers are supposed to support either the
652 	 * former, or the latter, but not both at the same time.
653 	 */
654 	WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
655 		drv->name, pci_dev->vendor, pci_dev->device);
656 
657 	return ret;
658 }
659 
660 /* New power management framework */
661 
662 static int pci_pm_prepare(struct device *dev)
663 {
664 	struct device_driver *drv = dev->driver;
665 
666 	/*
667 	 * Devices having power.ignore_children set may still be necessary for
668 	 * suspending their children in the next phase of device suspend.
669 	 */
670 	if (dev->power.ignore_children)
671 		pm_runtime_resume(dev);
672 
673 	if (drv && drv->pm && drv->pm->prepare) {
674 		int error = drv->pm->prepare(dev);
675 		if (error)
676 			return error;
677 	}
678 	return pci_dev_keep_suspended(to_pci_dev(dev));
679 }
680 
681 static void pci_pm_complete(struct device *dev)
682 {
683 	struct pci_dev *pci_dev = to_pci_dev(dev);
684 
685 	pci_dev_complete_resume(pci_dev);
686 	pm_generic_complete(dev);
687 
688 	/* Resume device if platform firmware has put it in reset-power-on */
689 	if (dev->power.direct_complete && pm_resume_via_firmware()) {
690 		pci_power_t pre_sleep_state = pci_dev->current_state;
691 
692 		pci_update_current_state(pci_dev, pci_dev->current_state);
693 		if (pci_dev->current_state < pre_sleep_state)
694 			pm_request_resume(dev);
695 	}
696 }
697 
698 #else /* !CONFIG_PM_SLEEP */
699 
700 #define pci_pm_prepare	NULL
701 #define pci_pm_complete	NULL
702 
703 #endif /* !CONFIG_PM_SLEEP */
704 
705 #ifdef CONFIG_SUSPEND
706 
707 static int pci_pm_suspend(struct device *dev)
708 {
709 	struct pci_dev *pci_dev = to_pci_dev(dev);
710 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
711 
712 	if (pci_has_legacy_pm_support(pci_dev))
713 		return pci_legacy_suspend(dev, PMSG_SUSPEND);
714 
715 	if (!pm) {
716 		pci_pm_default_suspend(pci_dev);
717 		goto Fixup;
718 	}
719 
720 	/*
721 	 * PCI devices suspended at run time need to be resumed at this point,
722 	 * because in general it is necessary to reconfigure them for system
723 	 * suspend.  Namely, if the device is supposed to wake up the system
724 	 * from the sleep state, we may need to reconfigure it for this purpose.
725 	 * In turn, if the device is not supposed to wake up the system from the
726 	 * sleep state, we'll have to prevent it from signaling wake-up.
727 	 */
728 	pm_runtime_resume(dev);
729 
730 	pci_dev->state_saved = false;
731 	if (pm->suspend) {
732 		pci_power_t prev = pci_dev->current_state;
733 		int error;
734 
735 		error = pm->suspend(dev);
736 		suspend_report_result(pm->suspend, error);
737 		if (error)
738 			return error;
739 
740 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
741 		    && pci_dev->current_state != PCI_UNKNOWN) {
742 			WARN_ONCE(pci_dev->current_state != prev,
743 				"PCI PM: State of device not saved by %pF\n",
744 				pm->suspend);
745 		}
746 	}
747 
748  Fixup:
749 	pci_fixup_device(pci_fixup_suspend, pci_dev);
750 
751 	return 0;
752 }
753 
754 static int pci_pm_suspend_noirq(struct device *dev)
755 {
756 	struct pci_dev *pci_dev = to_pci_dev(dev);
757 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
758 
759 	if (pci_has_legacy_pm_support(pci_dev))
760 		return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
761 
762 	if (!pm) {
763 		pci_save_state(pci_dev);
764 		goto Fixup;
765 	}
766 
767 	if (pm->suspend_noirq) {
768 		pci_power_t prev = pci_dev->current_state;
769 		int error;
770 
771 		error = pm->suspend_noirq(dev);
772 		suspend_report_result(pm->suspend_noirq, error);
773 		if (error)
774 			return error;
775 
776 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
777 		    && pci_dev->current_state != PCI_UNKNOWN) {
778 			WARN_ONCE(pci_dev->current_state != prev,
779 				"PCI PM: State of device not saved by %pF\n",
780 				pm->suspend_noirq);
781 			goto Fixup;
782 		}
783 	}
784 
785 	if (!pci_dev->state_saved) {
786 		pci_save_state(pci_dev);
787 		if (pci_power_manageable(pci_dev))
788 			pci_prepare_to_sleep(pci_dev);
789 	}
790 
791 	pci_pm_set_unknown_state(pci_dev);
792 
793 	/*
794 	 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
795 	 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
796 	 * hasn't been quiesced and tries to turn it off.  If the controller
797 	 * is already in D3, this can hang or cause memory corruption.
798 	 *
799 	 * Since the value of the COMMAND register doesn't matter once the
800 	 * device has been suspended, we can safely set it to 0 here.
801 	 */
802 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
803 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
804 
805 Fixup:
806 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
807 
808 	return 0;
809 }
810 
811 static int pci_pm_resume_noirq(struct device *dev)
812 {
813 	struct pci_dev *pci_dev = to_pci_dev(dev);
814 	struct device_driver *drv = dev->driver;
815 	int error = 0;
816 
817 	pci_pm_default_resume_early(pci_dev);
818 
819 	if (pci_has_legacy_pm_support(pci_dev))
820 		return pci_legacy_resume_early(dev);
821 
822 	if (drv && drv->pm && drv->pm->resume_noirq)
823 		error = drv->pm->resume_noirq(dev);
824 
825 	return error;
826 }
827 
828 static int pci_pm_resume(struct device *dev)
829 {
830 	struct pci_dev *pci_dev = to_pci_dev(dev);
831 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
832 	int error = 0;
833 
834 	/*
835 	 * This is necessary for the suspend error path in which resume is
836 	 * called without restoring the standard config registers of the device.
837 	 */
838 	if (pci_dev->state_saved)
839 		pci_restore_standard_config(pci_dev);
840 
841 	if (pci_has_legacy_pm_support(pci_dev))
842 		return pci_legacy_resume(dev);
843 
844 	pci_pm_default_resume(pci_dev);
845 
846 	if (pm) {
847 		if (pm->resume)
848 			error = pm->resume(dev);
849 	} else {
850 		pci_pm_reenable_device(pci_dev);
851 	}
852 
853 	return error;
854 }
855 
856 #else /* !CONFIG_SUSPEND */
857 
858 #define pci_pm_suspend		NULL
859 #define pci_pm_suspend_noirq	NULL
860 #define pci_pm_resume		NULL
861 #define pci_pm_resume_noirq	NULL
862 
863 #endif /* !CONFIG_SUSPEND */
864 
865 #ifdef CONFIG_HIBERNATE_CALLBACKS
866 
867 
868 /*
869  * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
870  * a hibernate transition
871  */
872 struct dev_pm_ops __weak pcibios_pm_ops;
873 
874 static int pci_pm_freeze(struct device *dev)
875 {
876 	struct pci_dev *pci_dev = to_pci_dev(dev);
877 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
878 
879 	if (pci_has_legacy_pm_support(pci_dev))
880 		return pci_legacy_suspend(dev, PMSG_FREEZE);
881 
882 	if (!pm) {
883 		pci_pm_default_suspend(pci_dev);
884 		return 0;
885 	}
886 
887 	/*
888 	 * This used to be done in pci_pm_prepare() for all devices and some
889 	 * drivers may depend on it, so do it here.  Ideally, runtime-suspended
890 	 * devices should not be touched during freeze/thaw transitions,
891 	 * however.
892 	 */
893 	pm_runtime_resume(dev);
894 
895 	pci_dev->state_saved = false;
896 	if (pm->freeze) {
897 		int error;
898 
899 		error = pm->freeze(dev);
900 		suspend_report_result(pm->freeze, error);
901 		if (error)
902 			return error;
903 	}
904 
905 	if (pcibios_pm_ops.freeze)
906 		return pcibios_pm_ops.freeze(dev);
907 
908 	return 0;
909 }
910 
911 static int pci_pm_freeze_noirq(struct device *dev)
912 {
913 	struct pci_dev *pci_dev = to_pci_dev(dev);
914 	struct device_driver *drv = dev->driver;
915 
916 	if (pci_has_legacy_pm_support(pci_dev))
917 		return pci_legacy_suspend_late(dev, PMSG_FREEZE);
918 
919 	if (drv && drv->pm && drv->pm->freeze_noirq) {
920 		int error;
921 
922 		error = drv->pm->freeze_noirq(dev);
923 		suspend_report_result(drv->pm->freeze_noirq, error);
924 		if (error)
925 			return error;
926 	}
927 
928 	if (!pci_dev->state_saved)
929 		pci_save_state(pci_dev);
930 
931 	pci_pm_set_unknown_state(pci_dev);
932 
933 	if (pcibios_pm_ops.freeze_noirq)
934 		return pcibios_pm_ops.freeze_noirq(dev);
935 
936 	return 0;
937 }
938 
939 static int pci_pm_thaw_noirq(struct device *dev)
940 {
941 	struct pci_dev *pci_dev = to_pci_dev(dev);
942 	struct device_driver *drv = dev->driver;
943 	int error = 0;
944 
945 	if (pcibios_pm_ops.thaw_noirq) {
946 		error = pcibios_pm_ops.thaw_noirq(dev);
947 		if (error)
948 			return error;
949 	}
950 
951 	if (pci_has_legacy_pm_support(pci_dev))
952 		return pci_legacy_resume_early(dev);
953 
954 	pci_update_current_state(pci_dev, PCI_D0);
955 
956 	if (drv && drv->pm && drv->pm->thaw_noirq)
957 		error = drv->pm->thaw_noirq(dev);
958 
959 	return error;
960 }
961 
962 static int pci_pm_thaw(struct device *dev)
963 {
964 	struct pci_dev *pci_dev = to_pci_dev(dev);
965 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
966 	int error = 0;
967 
968 	if (pcibios_pm_ops.thaw) {
969 		error = pcibios_pm_ops.thaw(dev);
970 		if (error)
971 			return error;
972 	}
973 
974 	if (pci_has_legacy_pm_support(pci_dev))
975 		return pci_legacy_resume(dev);
976 
977 	if (pm) {
978 		if (pm->thaw)
979 			error = pm->thaw(dev);
980 	} else {
981 		pci_pm_reenable_device(pci_dev);
982 	}
983 
984 	pci_dev->state_saved = false;
985 
986 	return error;
987 }
988 
989 static int pci_pm_poweroff(struct device *dev)
990 {
991 	struct pci_dev *pci_dev = to_pci_dev(dev);
992 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
993 
994 	if (pci_has_legacy_pm_support(pci_dev))
995 		return pci_legacy_suspend(dev, PMSG_HIBERNATE);
996 
997 	if (!pm) {
998 		pci_pm_default_suspend(pci_dev);
999 		goto Fixup;
1000 	}
1001 
1002 	/* The reason to do that is the same as in pci_pm_suspend(). */
1003 	pm_runtime_resume(dev);
1004 
1005 	pci_dev->state_saved = false;
1006 	if (pm->poweroff) {
1007 		int error;
1008 
1009 		error = pm->poweroff(dev);
1010 		suspend_report_result(pm->poweroff, error);
1011 		if (error)
1012 			return error;
1013 	}
1014 
1015  Fixup:
1016 	pci_fixup_device(pci_fixup_suspend, pci_dev);
1017 
1018 	if (pcibios_pm_ops.poweroff)
1019 		return pcibios_pm_ops.poweroff(dev);
1020 
1021 	return 0;
1022 }
1023 
1024 static int pci_pm_poweroff_noirq(struct device *dev)
1025 {
1026 	struct pci_dev *pci_dev = to_pci_dev(dev);
1027 	struct device_driver *drv = dev->driver;
1028 
1029 	if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1030 		return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1031 
1032 	if (!drv || !drv->pm) {
1033 		pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1034 		return 0;
1035 	}
1036 
1037 	if (drv->pm->poweroff_noirq) {
1038 		int error;
1039 
1040 		error = drv->pm->poweroff_noirq(dev);
1041 		suspend_report_result(drv->pm->poweroff_noirq, error);
1042 		if (error)
1043 			return error;
1044 	}
1045 
1046 	if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1047 		pci_prepare_to_sleep(pci_dev);
1048 
1049 	/*
1050 	 * The reason for doing this here is the same as for the analogous code
1051 	 * in pci_pm_suspend_noirq().
1052 	 */
1053 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1054 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1055 
1056 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1057 
1058 	if (pcibios_pm_ops.poweroff_noirq)
1059 		return pcibios_pm_ops.poweroff_noirq(dev);
1060 
1061 	return 0;
1062 }
1063 
1064 static int pci_pm_restore_noirq(struct device *dev)
1065 {
1066 	struct pci_dev *pci_dev = to_pci_dev(dev);
1067 	struct device_driver *drv = dev->driver;
1068 	int error = 0;
1069 
1070 	if (pcibios_pm_ops.restore_noirq) {
1071 		error = pcibios_pm_ops.restore_noirq(dev);
1072 		if (error)
1073 			return error;
1074 	}
1075 
1076 	pci_pm_default_resume_early(pci_dev);
1077 
1078 	if (pci_has_legacy_pm_support(pci_dev))
1079 		return pci_legacy_resume_early(dev);
1080 
1081 	if (drv && drv->pm && drv->pm->restore_noirq)
1082 		error = drv->pm->restore_noirq(dev);
1083 
1084 	return error;
1085 }
1086 
1087 static int pci_pm_restore(struct device *dev)
1088 {
1089 	struct pci_dev *pci_dev = to_pci_dev(dev);
1090 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1091 	int error = 0;
1092 
1093 	if (pcibios_pm_ops.restore) {
1094 		error = pcibios_pm_ops.restore(dev);
1095 		if (error)
1096 			return error;
1097 	}
1098 
1099 	/*
1100 	 * This is necessary for the hibernation error path in which restore is
1101 	 * called without restoring the standard config registers of the device.
1102 	 */
1103 	if (pci_dev->state_saved)
1104 		pci_restore_standard_config(pci_dev);
1105 
1106 	if (pci_has_legacy_pm_support(pci_dev))
1107 		return pci_legacy_resume(dev);
1108 
1109 	pci_pm_default_resume(pci_dev);
1110 
1111 	if (pm) {
1112 		if (pm->restore)
1113 			error = pm->restore(dev);
1114 	} else {
1115 		pci_pm_reenable_device(pci_dev);
1116 	}
1117 
1118 	return error;
1119 }
1120 
1121 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1122 
1123 #define pci_pm_freeze		NULL
1124 #define pci_pm_freeze_noirq	NULL
1125 #define pci_pm_thaw		NULL
1126 #define pci_pm_thaw_noirq	NULL
1127 #define pci_pm_poweroff		NULL
1128 #define pci_pm_poweroff_noirq	NULL
1129 #define pci_pm_restore		NULL
1130 #define pci_pm_restore_noirq	NULL
1131 
1132 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1133 
1134 #ifdef CONFIG_PM
1135 
1136 static int pci_pm_runtime_suspend(struct device *dev)
1137 {
1138 	struct pci_dev *pci_dev = to_pci_dev(dev);
1139 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1140 	pci_power_t prev = pci_dev->current_state;
1141 	int error;
1142 
1143 	/*
1144 	 * If pci_dev->driver is not set (unbound), the device should
1145 	 * always remain in D0 regardless of the runtime PM status
1146 	 */
1147 	if (!pci_dev->driver)
1148 		return 0;
1149 
1150 	if (!pm || !pm->runtime_suspend)
1151 		return -ENOSYS;
1152 
1153 	pci_dev->state_saved = false;
1154 	error = pm->runtime_suspend(dev);
1155 	if (error) {
1156 		/*
1157 		 * -EBUSY and -EAGAIN is used to request the runtime PM core
1158 		 * to schedule a new suspend, so log the event only with debug
1159 		 * log level.
1160 		 */
1161 		if (error == -EBUSY || error == -EAGAIN)
1162 			dev_dbg(dev, "can't suspend now (%pf returned %d)\n",
1163 				pm->runtime_suspend, error);
1164 		else
1165 			dev_err(dev, "can't suspend (%pf returned %d)\n",
1166 				pm->runtime_suspend, error);
1167 
1168 		return error;
1169 	}
1170 
1171 	pci_fixup_device(pci_fixup_suspend, pci_dev);
1172 
1173 	if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1174 	    && pci_dev->current_state != PCI_UNKNOWN) {
1175 		WARN_ONCE(pci_dev->current_state != prev,
1176 			"PCI PM: State of device not saved by %pF\n",
1177 			pm->runtime_suspend);
1178 		return 0;
1179 	}
1180 
1181 	if (!pci_dev->state_saved) {
1182 		pci_save_state(pci_dev);
1183 		pci_finish_runtime_suspend(pci_dev);
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 static int pci_pm_runtime_resume(struct device *dev)
1190 {
1191 	int rc;
1192 	struct pci_dev *pci_dev = to_pci_dev(dev);
1193 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1194 
1195 	/*
1196 	 * If pci_dev->driver is not set (unbound), the device should
1197 	 * always remain in D0 regardless of the runtime PM status
1198 	 */
1199 	if (!pci_dev->driver)
1200 		return 0;
1201 
1202 	if (!pm || !pm->runtime_resume)
1203 		return -ENOSYS;
1204 
1205 	pci_restore_standard_config(pci_dev);
1206 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
1207 	__pci_enable_wake(pci_dev, PCI_D0, true, false);
1208 	pci_fixup_device(pci_fixup_resume, pci_dev);
1209 
1210 	rc = pm->runtime_resume(dev);
1211 
1212 	pci_dev->runtime_d3cold = false;
1213 
1214 	return rc;
1215 }
1216 
1217 static int pci_pm_runtime_idle(struct device *dev)
1218 {
1219 	struct pci_dev *pci_dev = to_pci_dev(dev);
1220 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1221 	int ret = 0;
1222 
1223 	/*
1224 	 * If pci_dev->driver is not set (unbound), the device should
1225 	 * always remain in D0 regardless of the runtime PM status
1226 	 */
1227 	if (!pci_dev->driver)
1228 		return 0;
1229 
1230 	if (!pm)
1231 		return -ENOSYS;
1232 
1233 	if (pm->runtime_idle)
1234 		ret = pm->runtime_idle(dev);
1235 
1236 	return ret;
1237 }
1238 
1239 static const struct dev_pm_ops pci_dev_pm_ops = {
1240 	.prepare = pci_pm_prepare,
1241 	.complete = pci_pm_complete,
1242 	.suspend = pci_pm_suspend,
1243 	.resume = pci_pm_resume,
1244 	.freeze = pci_pm_freeze,
1245 	.thaw = pci_pm_thaw,
1246 	.poweroff = pci_pm_poweroff,
1247 	.restore = pci_pm_restore,
1248 	.suspend_noirq = pci_pm_suspend_noirq,
1249 	.resume_noirq = pci_pm_resume_noirq,
1250 	.freeze_noirq = pci_pm_freeze_noirq,
1251 	.thaw_noirq = pci_pm_thaw_noirq,
1252 	.poweroff_noirq = pci_pm_poweroff_noirq,
1253 	.restore_noirq = pci_pm_restore_noirq,
1254 	.runtime_suspend = pci_pm_runtime_suspend,
1255 	.runtime_resume = pci_pm_runtime_resume,
1256 	.runtime_idle = pci_pm_runtime_idle,
1257 };
1258 
1259 #define PCI_PM_OPS_PTR	(&pci_dev_pm_ops)
1260 
1261 #else /* !CONFIG_PM */
1262 
1263 #define pci_pm_runtime_suspend	NULL
1264 #define pci_pm_runtime_resume	NULL
1265 #define pci_pm_runtime_idle	NULL
1266 
1267 #define PCI_PM_OPS_PTR	NULL
1268 
1269 #endif /* !CONFIG_PM */
1270 
1271 /**
1272  * __pci_register_driver - register a new pci driver
1273  * @drv: the driver structure to register
1274  * @owner: owner module of drv
1275  * @mod_name: module name string
1276  *
1277  * Adds the driver structure to the list of registered drivers.
1278  * Returns a negative value on error, otherwise 0.
1279  * If no error occurred, the driver remains registered even if
1280  * no device was claimed during registration.
1281  */
1282 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1283 			  const char *mod_name)
1284 {
1285 	/* initialize common driver fields */
1286 	drv->driver.name = drv->name;
1287 	drv->driver.bus = &pci_bus_type;
1288 	drv->driver.owner = owner;
1289 	drv->driver.mod_name = mod_name;
1290 
1291 	spin_lock_init(&drv->dynids.lock);
1292 	INIT_LIST_HEAD(&drv->dynids.list);
1293 
1294 	/* register with core */
1295 	return driver_register(&drv->driver);
1296 }
1297 EXPORT_SYMBOL(__pci_register_driver);
1298 
1299 /**
1300  * pci_unregister_driver - unregister a pci driver
1301  * @drv: the driver structure to unregister
1302  *
1303  * Deletes the driver structure from the list of registered PCI drivers,
1304  * gives it a chance to clean up by calling its remove() function for
1305  * each device it was responsible for, and marks those devices as
1306  * driverless.
1307  */
1308 
1309 void pci_unregister_driver(struct pci_driver *drv)
1310 {
1311 	driver_unregister(&drv->driver);
1312 	pci_free_dynids(drv);
1313 }
1314 EXPORT_SYMBOL(pci_unregister_driver);
1315 
1316 static struct pci_driver pci_compat_driver = {
1317 	.name = "compat"
1318 };
1319 
1320 /**
1321  * pci_dev_driver - get the pci_driver of a device
1322  * @dev: the device to query
1323  *
1324  * Returns the appropriate pci_driver structure or %NULL if there is no
1325  * registered driver for the device.
1326  */
1327 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1328 {
1329 	if (dev->driver)
1330 		return dev->driver;
1331 	else {
1332 		int i;
1333 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1334 			if (dev->resource[i].flags & IORESOURCE_BUSY)
1335 				return &pci_compat_driver;
1336 	}
1337 	return NULL;
1338 }
1339 EXPORT_SYMBOL(pci_dev_driver);
1340 
1341 /**
1342  * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1343  * @dev: the PCI device structure to match against
1344  * @drv: the device driver to search for matching PCI device id structures
1345  *
1346  * Used by a driver to check whether a PCI device present in the
1347  * system is in its list of supported devices. Returns the matching
1348  * pci_device_id structure or %NULL if there is no match.
1349  */
1350 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1351 {
1352 	struct pci_dev *pci_dev = to_pci_dev(dev);
1353 	struct pci_driver *pci_drv;
1354 	const struct pci_device_id *found_id;
1355 
1356 	if (!pci_dev->match_driver)
1357 		return 0;
1358 
1359 	pci_drv = to_pci_driver(drv);
1360 	found_id = pci_match_device(pci_drv, pci_dev);
1361 	if (found_id)
1362 		return 1;
1363 
1364 	return 0;
1365 }
1366 
1367 /**
1368  * pci_dev_get - increments the reference count of the pci device structure
1369  * @dev: the device being referenced
1370  *
1371  * Each live reference to a device should be refcounted.
1372  *
1373  * Drivers for PCI devices should normally record such references in
1374  * their probe() methods, when they bind to a device, and release
1375  * them by calling pci_dev_put(), in their disconnect() methods.
1376  *
1377  * A pointer to the device with the incremented reference counter is returned.
1378  */
1379 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1380 {
1381 	if (dev)
1382 		get_device(&dev->dev);
1383 	return dev;
1384 }
1385 EXPORT_SYMBOL(pci_dev_get);
1386 
1387 /**
1388  * pci_dev_put - release a use of the pci device structure
1389  * @dev: device that's been disconnected
1390  *
1391  * Must be called when a user of a device is finished with it.  When the last
1392  * user of the device calls this function, the memory of the device is freed.
1393  */
1394 void pci_dev_put(struct pci_dev *dev)
1395 {
1396 	if (dev)
1397 		put_device(&dev->dev);
1398 }
1399 EXPORT_SYMBOL(pci_dev_put);
1400 
1401 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1402 {
1403 	struct pci_dev *pdev;
1404 
1405 	if (!dev)
1406 		return -ENODEV;
1407 
1408 	pdev = to_pci_dev(dev);
1409 
1410 	if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1411 		return -ENOMEM;
1412 
1413 	if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1414 		return -ENOMEM;
1415 
1416 	if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1417 			   pdev->subsystem_device))
1418 		return -ENOMEM;
1419 
1420 	if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1421 		return -ENOMEM;
1422 
1423 	if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1424 			   pdev->vendor, pdev->device,
1425 			   pdev->subsystem_vendor, pdev->subsystem_device,
1426 			   (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1427 			   (u8)(pdev->class)))
1428 		return -ENOMEM;
1429 
1430 	return 0;
1431 }
1432 
1433 static int pci_bus_num_vf(struct device *dev)
1434 {
1435 	return pci_num_vf(to_pci_dev(dev));
1436 }
1437 
1438 struct bus_type pci_bus_type = {
1439 	.name		= "pci",
1440 	.match		= pci_bus_match,
1441 	.uevent		= pci_uevent,
1442 	.probe		= pci_device_probe,
1443 	.remove		= pci_device_remove,
1444 	.shutdown	= pci_device_shutdown,
1445 	.dev_groups	= pci_dev_groups,
1446 	.bus_groups	= pci_bus_groups,
1447 	.drv_groups	= pci_drv_groups,
1448 	.pm		= PCI_PM_OPS_PTR,
1449 	.num_vf		= pci_bus_num_vf,
1450 };
1451 EXPORT_SYMBOL(pci_bus_type);
1452 
1453 static int __init pci_driver_init(void)
1454 {
1455 	return bus_register(&pci_bus_type);
1456 }
1457 postcore_initcall(pci_driver_init);
1458