xref: /linux/drivers/pci/pci-driver.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  * drivers/pci/pci-driver.c
3  *
4  * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5  * (C) Copyright 2007 Novell Inc.
6  *
7  * Released under the GPL v2 only.
8  *
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24 
25 struct pci_dynid {
26 	struct list_head node;
27 	struct pci_device_id id;
28 };
29 
30 /**
31  * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32  * @drv: target pci driver
33  * @vendor: PCI vendor ID
34  * @device: PCI device ID
35  * @subvendor: PCI subvendor ID
36  * @subdevice: PCI subdevice ID
37  * @class: PCI class
38  * @class_mask: PCI class mask
39  * @driver_data: private driver data
40  *
41  * Adds a new dynamic pci device ID to this driver and causes the
42  * driver to probe for all devices again.  @drv must have been
43  * registered prior to calling this function.
44  *
45  * CONTEXT:
46  * Does GFP_KERNEL allocation.
47  *
48  * RETURNS:
49  * 0 on success, -errno on failure.
50  */
51 int pci_add_dynid(struct pci_driver *drv,
52 		  unsigned int vendor, unsigned int device,
53 		  unsigned int subvendor, unsigned int subdevice,
54 		  unsigned int class, unsigned int class_mask,
55 		  unsigned long driver_data)
56 {
57 	struct pci_dynid *dynid;
58 
59 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60 	if (!dynid)
61 		return -ENOMEM;
62 
63 	dynid->id.vendor = vendor;
64 	dynid->id.device = device;
65 	dynid->id.subvendor = subvendor;
66 	dynid->id.subdevice = subdevice;
67 	dynid->id.class = class;
68 	dynid->id.class_mask = class_mask;
69 	dynid->id.driver_data = driver_data;
70 
71 	spin_lock(&drv->dynids.lock);
72 	list_add_tail(&dynid->node, &drv->dynids.list);
73 	spin_unlock(&drv->dynids.lock);
74 
75 	return driver_attach(&drv->driver);
76 }
77 EXPORT_SYMBOL_GPL(pci_add_dynid);
78 
79 static void pci_free_dynids(struct pci_driver *drv)
80 {
81 	struct pci_dynid *dynid, *n;
82 
83 	spin_lock(&drv->dynids.lock);
84 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85 		list_del(&dynid->node);
86 		kfree(dynid);
87 	}
88 	spin_unlock(&drv->dynids.lock);
89 }
90 
91 /**
92  * store_new_id - sysfs frontend to pci_add_dynid()
93  * @driver: target device driver
94  * @buf: buffer for scanning device ID data
95  * @count: input size
96  *
97  * Allow PCI IDs to be added to an existing driver via sysfs.
98  */
99 static ssize_t store_new_id(struct device_driver *driver, const char *buf,
100 			    size_t count)
101 {
102 	struct pci_driver *pdrv = to_pci_driver(driver);
103 	const struct pci_device_id *ids = pdrv->id_table;
104 	__u32 vendor, device, subvendor = PCI_ANY_ID,
105 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106 	unsigned long driver_data = 0;
107 	int fields = 0;
108 	int retval = 0;
109 
110 	fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111 			&vendor, &device, &subvendor, &subdevice,
112 			&class, &class_mask, &driver_data);
113 	if (fields < 2)
114 		return -EINVAL;
115 
116 	if (fields != 7) {
117 		struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118 		if (!pdev)
119 			return -ENOMEM;
120 
121 		pdev->vendor = vendor;
122 		pdev->device = device;
123 		pdev->subsystem_vendor = subvendor;
124 		pdev->subsystem_device = subdevice;
125 		pdev->class = class;
126 
127 		if (pci_match_id(pdrv->id_table, pdev))
128 			retval = -EEXIST;
129 
130 		kfree(pdev);
131 
132 		if (retval)
133 			return retval;
134 	}
135 
136 	/* Only accept driver_data values that match an existing id_table
137 	   entry */
138 	if (ids) {
139 		retval = -EINVAL;
140 		while (ids->vendor || ids->subvendor || ids->class_mask) {
141 			if (driver_data == ids->driver_data) {
142 				retval = 0;
143 				break;
144 			}
145 			ids++;
146 		}
147 		if (retval)	/* No match */
148 			return retval;
149 	}
150 
151 	retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152 			       class, class_mask, driver_data);
153 	if (retval)
154 		return retval;
155 	return count;
156 }
157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
158 
159 /**
160  * store_remove_id - remove a PCI device ID from this driver
161  * @driver: target device driver
162  * @buf: buffer for scanning device ID data
163  * @count: input size
164  *
165  * Removes a dynamic pci device ID to this driver.
166  */
167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf,
168 			       size_t count)
169 {
170 	struct pci_dynid *dynid, *n;
171 	struct pci_driver *pdrv = to_pci_driver(driver);
172 	__u32 vendor, device, subvendor = PCI_ANY_ID,
173 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174 	int fields = 0;
175 	size_t retval = -ENODEV;
176 
177 	fields = sscanf(buf, "%x %x %x %x %x %x",
178 			&vendor, &device, &subvendor, &subdevice,
179 			&class, &class_mask);
180 	if (fields < 2)
181 		return -EINVAL;
182 
183 	spin_lock(&pdrv->dynids.lock);
184 	list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185 		struct pci_device_id *id = &dynid->id;
186 		if ((id->vendor == vendor) &&
187 		    (id->device == device) &&
188 		    (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189 		    (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190 		    !((id->class ^ class) & class_mask)) {
191 			list_del(&dynid->node);
192 			kfree(dynid);
193 			retval = count;
194 			break;
195 		}
196 	}
197 	spin_unlock(&pdrv->dynids.lock);
198 
199 	return retval;
200 }
201 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
202 
203 static struct attribute *pci_drv_attrs[] = {
204 	&driver_attr_new_id.attr,
205 	&driver_attr_remove_id.attr,
206 	NULL,
207 };
208 ATTRIBUTE_GROUPS(pci_drv);
209 
210 /**
211  * pci_match_id - See if a pci device matches a given pci_id table
212  * @ids: array of PCI device id structures to search in
213  * @dev: the PCI device structure to match against.
214  *
215  * Used by a driver to check whether a PCI device present in the
216  * system is in its list of supported devices.  Returns the matching
217  * pci_device_id structure or %NULL if there is no match.
218  *
219  * Deprecated, don't use this as it will not catch any dynamic ids
220  * that a driver might want to check for.
221  */
222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
223 					 struct pci_dev *dev)
224 {
225 	if (ids) {
226 		while (ids->vendor || ids->subvendor || ids->class_mask) {
227 			if (pci_match_one_device(ids, dev))
228 				return ids;
229 			ids++;
230 		}
231 	}
232 	return NULL;
233 }
234 EXPORT_SYMBOL(pci_match_id);
235 
236 static const struct pci_device_id pci_device_id_any = {
237 	.vendor = PCI_ANY_ID,
238 	.device = PCI_ANY_ID,
239 	.subvendor = PCI_ANY_ID,
240 	.subdevice = PCI_ANY_ID,
241 };
242 
243 /**
244  * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
245  * @drv: the PCI driver to match against
246  * @dev: the PCI device structure to match against
247  *
248  * Used by a driver to check whether a PCI device present in the
249  * system is in its list of supported devices.  Returns the matching
250  * pci_device_id structure or %NULL if there is no match.
251  */
252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
253 						    struct pci_dev *dev)
254 {
255 	struct pci_dynid *dynid;
256 	const struct pci_device_id *found_id = NULL;
257 
258 	/* When driver_override is set, only bind to the matching driver */
259 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
260 		return NULL;
261 
262 	/* Look at the dynamic ids first, before the static ones */
263 	spin_lock(&drv->dynids.lock);
264 	list_for_each_entry(dynid, &drv->dynids.list, node) {
265 		if (pci_match_one_device(&dynid->id, dev)) {
266 			found_id = &dynid->id;
267 			break;
268 		}
269 	}
270 	spin_unlock(&drv->dynids.lock);
271 
272 	if (!found_id)
273 		found_id = pci_match_id(drv->id_table, dev);
274 
275 	/* driver_override will always match, send a dummy id */
276 	if (!found_id && dev->driver_override)
277 		found_id = &pci_device_id_any;
278 
279 	return found_id;
280 }
281 
282 struct drv_dev_and_id {
283 	struct pci_driver *drv;
284 	struct pci_dev *dev;
285 	const struct pci_device_id *id;
286 };
287 
288 static long local_pci_probe(void *_ddi)
289 {
290 	struct drv_dev_and_id *ddi = _ddi;
291 	struct pci_dev *pci_dev = ddi->dev;
292 	struct pci_driver *pci_drv = ddi->drv;
293 	struct device *dev = &pci_dev->dev;
294 	int rc;
295 
296 	/*
297 	 * Unbound PCI devices are always put in D0, regardless of
298 	 * runtime PM status.  During probe, the device is set to
299 	 * active and the usage count is incremented.  If the driver
300 	 * supports runtime PM, it should call pm_runtime_put_noidle(),
301 	 * or any other runtime PM helper function decrementing the usage
302 	 * count, in its probe routine and pm_runtime_get_noresume() in
303 	 * its remove routine.
304 	 */
305 	pm_runtime_get_sync(dev);
306 	pci_dev->driver = pci_drv;
307 	rc = pci_drv->probe(pci_dev, ddi->id);
308 	if (!rc)
309 		return rc;
310 	if (rc < 0) {
311 		pci_dev->driver = NULL;
312 		pm_runtime_put_sync(dev);
313 		return rc;
314 	}
315 	/*
316 	 * Probe function should return < 0 for failure, 0 for success
317 	 * Treat values > 0 as success, but warn.
318 	 */
319 	dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
320 	return 0;
321 }
322 
323 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
324 			  const struct pci_device_id *id)
325 {
326 	int error, node;
327 	struct drv_dev_and_id ddi = { drv, dev, id };
328 
329 	/*
330 	 * Execute driver initialization on node where the device is
331 	 * attached.  This way the driver likely allocates its local memory
332 	 * on the right node.
333 	 */
334 	node = dev_to_node(&dev->dev);
335 
336 	/*
337 	 * On NUMA systems, we are likely to call a PF probe function using
338 	 * work_on_cpu().  If that probe calls pci_enable_sriov() (which
339 	 * adds the VF devices via pci_bus_add_device()), we may re-enter
340 	 * this function to call the VF probe function.  Calling
341 	 * work_on_cpu() again will cause a lockdep warning.  Since VFs are
342 	 * always on the same node as the PF, we can work around this by
343 	 * avoiding work_on_cpu() when we're already on the correct node.
344 	 *
345 	 * Preemption is enabled, so it's theoretically unsafe to use
346 	 * numa_node_id(), but even if we run the probe function on the
347 	 * wrong node, it should be functionally correct.
348 	 */
349 	if (node >= 0 && node != numa_node_id()) {
350 		int cpu;
351 
352 		get_online_cpus();
353 		cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
354 		if (cpu < nr_cpu_ids)
355 			error = work_on_cpu(cpu, local_pci_probe, &ddi);
356 		else
357 			error = local_pci_probe(&ddi);
358 		put_online_cpus();
359 	} else
360 		error = local_pci_probe(&ddi);
361 
362 	return error;
363 }
364 
365 /**
366  * __pci_device_probe - check if a driver wants to claim a specific PCI device
367  * @drv: driver to call to check if it wants the PCI device
368  * @pci_dev: PCI device being probed
369  *
370  * returns 0 on success, else error.
371  * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
372  */
373 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
374 {
375 	const struct pci_device_id *id;
376 	int error = 0;
377 
378 	if (!pci_dev->driver && drv->probe) {
379 		error = -ENODEV;
380 
381 		id = pci_match_device(drv, pci_dev);
382 		if (id)
383 			error = pci_call_probe(drv, pci_dev, id);
384 		if (error >= 0)
385 			error = 0;
386 	}
387 	return error;
388 }
389 
390 int __weak pcibios_alloc_irq(struct pci_dev *dev)
391 {
392 	return 0;
393 }
394 
395 void __weak pcibios_free_irq(struct pci_dev *dev)
396 {
397 }
398 
399 static int pci_device_probe(struct device *dev)
400 {
401 	int error;
402 	struct pci_dev *pci_dev = to_pci_dev(dev);
403 	struct pci_driver *drv = to_pci_driver(dev->driver);
404 
405 	error = pcibios_alloc_irq(pci_dev);
406 	if (error < 0)
407 		return error;
408 
409 	pci_dev_get(pci_dev);
410 	error = __pci_device_probe(drv, pci_dev);
411 	if (error) {
412 		pcibios_free_irq(pci_dev);
413 		pci_dev_put(pci_dev);
414 	}
415 
416 	return error;
417 }
418 
419 static int pci_device_remove(struct device *dev)
420 {
421 	struct pci_dev *pci_dev = to_pci_dev(dev);
422 	struct pci_driver *drv = pci_dev->driver;
423 
424 	if (drv) {
425 		if (drv->remove) {
426 			pm_runtime_get_sync(dev);
427 			drv->remove(pci_dev);
428 			pm_runtime_put_noidle(dev);
429 		}
430 		pcibios_free_irq(pci_dev);
431 		pci_dev->driver = NULL;
432 	}
433 
434 	/* Undo the runtime PM settings in local_pci_probe() */
435 	pm_runtime_put_sync(dev);
436 
437 	/*
438 	 * If the device is still on, set the power state as "unknown",
439 	 * since it might change by the next time we load the driver.
440 	 */
441 	if (pci_dev->current_state == PCI_D0)
442 		pci_dev->current_state = PCI_UNKNOWN;
443 
444 	/*
445 	 * We would love to complain here if pci_dev->is_enabled is set, that
446 	 * the driver should have called pci_disable_device(), but the
447 	 * unfortunate fact is there are too many odd BIOS and bridge setups
448 	 * that don't like drivers doing that all of the time.
449 	 * Oh well, we can dream of sane hardware when we sleep, no matter how
450 	 * horrible the crap we have to deal with is when we are awake...
451 	 */
452 
453 	pci_dev_put(pci_dev);
454 	return 0;
455 }
456 
457 static void pci_device_shutdown(struct device *dev)
458 {
459 	struct pci_dev *pci_dev = to_pci_dev(dev);
460 	struct pci_driver *drv = pci_dev->driver;
461 
462 	pm_runtime_resume(dev);
463 
464 	if (drv && drv->shutdown)
465 		drv->shutdown(pci_dev);
466 	pci_msi_shutdown(pci_dev);
467 	pci_msix_shutdown(pci_dev);
468 
469 	/*
470 	 * If this is a kexec reboot, turn off Bus Master bit on the
471 	 * device to tell it to not continue to do DMA. Don't touch
472 	 * devices in D3cold or unknown states.
473 	 * If it is not a kexec reboot, firmware will hit the PCI
474 	 * devices with big hammer and stop their DMA any way.
475 	 */
476 	if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
477 		pci_clear_master(pci_dev);
478 }
479 
480 #ifdef CONFIG_PM
481 
482 /* Auxiliary functions used for system resume and run-time resume. */
483 
484 /**
485  * pci_restore_standard_config - restore standard config registers of PCI device
486  * @pci_dev: PCI device to handle
487  */
488 static int pci_restore_standard_config(struct pci_dev *pci_dev)
489 {
490 	pci_update_current_state(pci_dev, PCI_UNKNOWN);
491 
492 	if (pci_dev->current_state != PCI_D0) {
493 		int error = pci_set_power_state(pci_dev, PCI_D0);
494 		if (error)
495 			return error;
496 	}
497 
498 	pci_restore_state(pci_dev);
499 	return 0;
500 }
501 
502 #endif
503 
504 #ifdef CONFIG_PM_SLEEP
505 
506 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
507 {
508 	pci_power_up(pci_dev);
509 	pci_restore_state(pci_dev);
510 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
511 }
512 
513 /*
514  * Default "suspend" method for devices that have no driver provided suspend,
515  * or not even a driver at all (second part).
516  */
517 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
518 {
519 	/*
520 	 * mark its power state as "unknown", since we don't know if
521 	 * e.g. the BIOS will change its device state when we suspend.
522 	 */
523 	if (pci_dev->current_state == PCI_D0)
524 		pci_dev->current_state = PCI_UNKNOWN;
525 }
526 
527 /*
528  * Default "resume" method for devices that have no driver provided resume,
529  * or not even a driver at all (second part).
530  */
531 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
532 {
533 	int retval;
534 
535 	/* if the device was enabled before suspend, reenable */
536 	retval = pci_reenable_device(pci_dev);
537 	/*
538 	 * if the device was busmaster before the suspend, make it busmaster
539 	 * again
540 	 */
541 	if (pci_dev->is_busmaster)
542 		pci_set_master(pci_dev);
543 
544 	return retval;
545 }
546 
547 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
548 {
549 	struct pci_dev *pci_dev = to_pci_dev(dev);
550 	struct pci_driver *drv = pci_dev->driver;
551 
552 	if (drv && drv->suspend) {
553 		pci_power_t prev = pci_dev->current_state;
554 		int error;
555 
556 		error = drv->suspend(pci_dev, state);
557 		suspend_report_result(drv->suspend, error);
558 		if (error)
559 			return error;
560 
561 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
562 		    && pci_dev->current_state != PCI_UNKNOWN) {
563 			WARN_ONCE(pci_dev->current_state != prev,
564 				"PCI PM: Device state not saved by %pF\n",
565 				drv->suspend);
566 		}
567 	}
568 
569 	pci_fixup_device(pci_fixup_suspend, pci_dev);
570 
571 	return 0;
572 }
573 
574 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
575 {
576 	struct pci_dev *pci_dev = to_pci_dev(dev);
577 	struct pci_driver *drv = pci_dev->driver;
578 
579 	if (drv && drv->suspend_late) {
580 		pci_power_t prev = pci_dev->current_state;
581 		int error;
582 
583 		error = drv->suspend_late(pci_dev, state);
584 		suspend_report_result(drv->suspend_late, error);
585 		if (error)
586 			return error;
587 
588 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
589 		    && pci_dev->current_state != PCI_UNKNOWN) {
590 			WARN_ONCE(pci_dev->current_state != prev,
591 				"PCI PM: Device state not saved by %pF\n",
592 				drv->suspend_late);
593 			goto Fixup;
594 		}
595 	}
596 
597 	if (!pci_dev->state_saved)
598 		pci_save_state(pci_dev);
599 
600 	pci_pm_set_unknown_state(pci_dev);
601 
602 Fixup:
603 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
604 
605 	return 0;
606 }
607 
608 static int pci_legacy_resume_early(struct device *dev)
609 {
610 	struct pci_dev *pci_dev = to_pci_dev(dev);
611 	struct pci_driver *drv = pci_dev->driver;
612 
613 	return drv && drv->resume_early ?
614 			drv->resume_early(pci_dev) : 0;
615 }
616 
617 static int pci_legacy_resume(struct device *dev)
618 {
619 	struct pci_dev *pci_dev = to_pci_dev(dev);
620 	struct pci_driver *drv = pci_dev->driver;
621 
622 	pci_fixup_device(pci_fixup_resume, pci_dev);
623 
624 	return drv && drv->resume ?
625 			drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
626 }
627 
628 /* Auxiliary functions used by the new power management framework */
629 
630 static void pci_pm_default_resume(struct pci_dev *pci_dev)
631 {
632 	pci_fixup_device(pci_fixup_resume, pci_dev);
633 
634 	if (!pci_has_subordinate(pci_dev))
635 		pci_enable_wake(pci_dev, PCI_D0, false);
636 }
637 
638 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
639 {
640 	/* Disable non-bridge devices without PM support */
641 	if (!pci_has_subordinate(pci_dev))
642 		pci_disable_enabled_device(pci_dev);
643 }
644 
645 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
646 {
647 	struct pci_driver *drv = pci_dev->driver;
648 	bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
649 		|| drv->resume_early);
650 
651 	/*
652 	 * Legacy PM support is used by default, so warn if the new framework is
653 	 * supported as well.  Drivers are supposed to support either the
654 	 * former, or the latter, but not both at the same time.
655 	 */
656 	WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
657 		drv->name, pci_dev->vendor, pci_dev->device);
658 
659 	return ret;
660 }
661 
662 /* New power management framework */
663 
664 static int pci_pm_prepare(struct device *dev)
665 {
666 	struct device_driver *drv = dev->driver;
667 
668 	/*
669 	 * Devices having power.ignore_children set may still be necessary for
670 	 * suspending their children in the next phase of device suspend.
671 	 */
672 	if (dev->power.ignore_children)
673 		pm_runtime_resume(dev);
674 
675 	if (drv && drv->pm && drv->pm->prepare) {
676 		int error = drv->pm->prepare(dev);
677 		if (error)
678 			return error;
679 	}
680 	return pci_dev_keep_suspended(to_pci_dev(dev));
681 }
682 
683 static void pci_pm_complete(struct device *dev)
684 {
685 	struct pci_dev *pci_dev = to_pci_dev(dev);
686 
687 	pci_dev_complete_resume(pci_dev);
688 	pm_generic_complete(dev);
689 
690 	/* Resume device if platform firmware has put it in reset-power-on */
691 	if (dev->power.direct_complete && pm_resume_via_firmware()) {
692 		pci_power_t pre_sleep_state = pci_dev->current_state;
693 
694 		pci_update_current_state(pci_dev, pci_dev->current_state);
695 		if (pci_dev->current_state < pre_sleep_state)
696 			pm_request_resume(dev);
697 	}
698 }
699 
700 #else /* !CONFIG_PM_SLEEP */
701 
702 #define pci_pm_prepare	NULL
703 #define pci_pm_complete	NULL
704 
705 #endif /* !CONFIG_PM_SLEEP */
706 
707 #ifdef CONFIG_SUSPEND
708 
709 static int pci_pm_suspend(struct device *dev)
710 {
711 	struct pci_dev *pci_dev = to_pci_dev(dev);
712 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
713 
714 	if (pci_has_legacy_pm_support(pci_dev))
715 		return pci_legacy_suspend(dev, PMSG_SUSPEND);
716 
717 	if (!pm) {
718 		pci_pm_default_suspend(pci_dev);
719 		goto Fixup;
720 	}
721 
722 	/*
723 	 * PCI devices suspended at run time need to be resumed at this point,
724 	 * because in general it is necessary to reconfigure them for system
725 	 * suspend.  Namely, if the device is supposed to wake up the system
726 	 * from the sleep state, we may need to reconfigure it for this purpose.
727 	 * In turn, if the device is not supposed to wake up the system from the
728 	 * sleep state, we'll have to prevent it from signaling wake-up.
729 	 */
730 	pm_runtime_resume(dev);
731 
732 	pci_dev->state_saved = false;
733 	if (pm->suspend) {
734 		pci_power_t prev = pci_dev->current_state;
735 		int error;
736 
737 		error = pm->suspend(dev);
738 		suspend_report_result(pm->suspend, error);
739 		if (error)
740 			return error;
741 
742 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
743 		    && pci_dev->current_state != PCI_UNKNOWN) {
744 			WARN_ONCE(pci_dev->current_state != prev,
745 				"PCI PM: State of device not saved by %pF\n",
746 				pm->suspend);
747 		}
748 	}
749 
750  Fixup:
751 	pci_fixup_device(pci_fixup_suspend, pci_dev);
752 
753 	return 0;
754 }
755 
756 static int pci_pm_suspend_noirq(struct device *dev)
757 {
758 	struct pci_dev *pci_dev = to_pci_dev(dev);
759 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
760 
761 	if (pci_has_legacy_pm_support(pci_dev))
762 		return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
763 
764 	if (!pm) {
765 		pci_save_state(pci_dev);
766 		goto Fixup;
767 	}
768 
769 	if (pm->suspend_noirq) {
770 		pci_power_t prev = pci_dev->current_state;
771 		int error;
772 
773 		error = pm->suspend_noirq(dev);
774 		suspend_report_result(pm->suspend_noirq, error);
775 		if (error)
776 			return error;
777 
778 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
779 		    && pci_dev->current_state != PCI_UNKNOWN) {
780 			WARN_ONCE(pci_dev->current_state != prev,
781 				"PCI PM: State of device not saved by %pF\n",
782 				pm->suspend_noirq);
783 			goto Fixup;
784 		}
785 	}
786 
787 	if (!pci_dev->state_saved) {
788 		pci_save_state(pci_dev);
789 		if (pci_power_manageable(pci_dev))
790 			pci_prepare_to_sleep(pci_dev);
791 	}
792 
793 	pci_pm_set_unknown_state(pci_dev);
794 
795 	/*
796 	 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
797 	 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
798 	 * hasn't been quiesced and tries to turn it off.  If the controller
799 	 * is already in D3, this can hang or cause memory corruption.
800 	 *
801 	 * Since the value of the COMMAND register doesn't matter once the
802 	 * device has been suspended, we can safely set it to 0 here.
803 	 */
804 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
805 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
806 
807 Fixup:
808 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
809 
810 	return 0;
811 }
812 
813 static int pci_pm_resume_noirq(struct device *dev)
814 {
815 	struct pci_dev *pci_dev = to_pci_dev(dev);
816 	struct device_driver *drv = dev->driver;
817 	int error = 0;
818 
819 	pci_pm_default_resume_early(pci_dev);
820 
821 	if (pci_has_legacy_pm_support(pci_dev))
822 		return pci_legacy_resume_early(dev);
823 
824 	if (drv && drv->pm && drv->pm->resume_noirq)
825 		error = drv->pm->resume_noirq(dev);
826 
827 	return error;
828 }
829 
830 static int pci_pm_resume(struct device *dev)
831 {
832 	struct pci_dev *pci_dev = to_pci_dev(dev);
833 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
834 	int error = 0;
835 
836 	/*
837 	 * This is necessary for the suspend error path in which resume is
838 	 * called without restoring the standard config registers of the device.
839 	 */
840 	if (pci_dev->state_saved)
841 		pci_restore_standard_config(pci_dev);
842 
843 	if (pci_has_legacy_pm_support(pci_dev))
844 		return pci_legacy_resume(dev);
845 
846 	pci_pm_default_resume(pci_dev);
847 
848 	if (pm) {
849 		if (pm->resume)
850 			error = pm->resume(dev);
851 	} else {
852 		pci_pm_reenable_device(pci_dev);
853 	}
854 
855 	return error;
856 }
857 
858 #else /* !CONFIG_SUSPEND */
859 
860 #define pci_pm_suspend		NULL
861 #define pci_pm_suspend_noirq	NULL
862 #define pci_pm_resume		NULL
863 #define pci_pm_resume_noirq	NULL
864 
865 #endif /* !CONFIG_SUSPEND */
866 
867 #ifdef CONFIG_HIBERNATE_CALLBACKS
868 
869 
870 /*
871  * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
872  * a hibernate transition
873  */
874 struct dev_pm_ops __weak pcibios_pm_ops;
875 
876 static int pci_pm_freeze(struct device *dev)
877 {
878 	struct pci_dev *pci_dev = to_pci_dev(dev);
879 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
880 
881 	if (pci_has_legacy_pm_support(pci_dev))
882 		return pci_legacy_suspend(dev, PMSG_FREEZE);
883 
884 	if (!pm) {
885 		pci_pm_default_suspend(pci_dev);
886 		return 0;
887 	}
888 
889 	/*
890 	 * This used to be done in pci_pm_prepare() for all devices and some
891 	 * drivers may depend on it, so do it here.  Ideally, runtime-suspended
892 	 * devices should not be touched during freeze/thaw transitions,
893 	 * however.
894 	 */
895 	pm_runtime_resume(dev);
896 
897 	pci_dev->state_saved = false;
898 	if (pm->freeze) {
899 		int error;
900 
901 		error = pm->freeze(dev);
902 		suspend_report_result(pm->freeze, error);
903 		if (error)
904 			return error;
905 	}
906 
907 	if (pcibios_pm_ops.freeze)
908 		return pcibios_pm_ops.freeze(dev);
909 
910 	return 0;
911 }
912 
913 static int pci_pm_freeze_noirq(struct device *dev)
914 {
915 	struct pci_dev *pci_dev = to_pci_dev(dev);
916 	struct device_driver *drv = dev->driver;
917 
918 	if (pci_has_legacy_pm_support(pci_dev))
919 		return pci_legacy_suspend_late(dev, PMSG_FREEZE);
920 
921 	if (drv && drv->pm && drv->pm->freeze_noirq) {
922 		int error;
923 
924 		error = drv->pm->freeze_noirq(dev);
925 		suspend_report_result(drv->pm->freeze_noirq, error);
926 		if (error)
927 			return error;
928 	}
929 
930 	if (!pci_dev->state_saved)
931 		pci_save_state(pci_dev);
932 
933 	pci_pm_set_unknown_state(pci_dev);
934 
935 	if (pcibios_pm_ops.freeze_noirq)
936 		return pcibios_pm_ops.freeze_noirq(dev);
937 
938 	return 0;
939 }
940 
941 static int pci_pm_thaw_noirq(struct device *dev)
942 {
943 	struct pci_dev *pci_dev = to_pci_dev(dev);
944 	struct device_driver *drv = dev->driver;
945 	int error = 0;
946 
947 	if (pcibios_pm_ops.thaw_noirq) {
948 		error = pcibios_pm_ops.thaw_noirq(dev);
949 		if (error)
950 			return error;
951 	}
952 
953 	if (pci_has_legacy_pm_support(pci_dev))
954 		return pci_legacy_resume_early(dev);
955 
956 	pci_update_current_state(pci_dev, PCI_D0);
957 
958 	if (drv && drv->pm && drv->pm->thaw_noirq)
959 		error = drv->pm->thaw_noirq(dev);
960 
961 	return error;
962 }
963 
964 static int pci_pm_thaw(struct device *dev)
965 {
966 	struct pci_dev *pci_dev = to_pci_dev(dev);
967 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
968 	int error = 0;
969 
970 	if (pcibios_pm_ops.thaw) {
971 		error = pcibios_pm_ops.thaw(dev);
972 		if (error)
973 			return error;
974 	}
975 
976 	if (pci_has_legacy_pm_support(pci_dev))
977 		return pci_legacy_resume(dev);
978 
979 	if (pm) {
980 		if (pm->thaw)
981 			error = pm->thaw(dev);
982 	} else {
983 		pci_pm_reenable_device(pci_dev);
984 	}
985 
986 	pci_dev->state_saved = false;
987 
988 	return error;
989 }
990 
991 static int pci_pm_poweroff(struct device *dev)
992 {
993 	struct pci_dev *pci_dev = to_pci_dev(dev);
994 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
995 
996 	if (pci_has_legacy_pm_support(pci_dev))
997 		return pci_legacy_suspend(dev, PMSG_HIBERNATE);
998 
999 	if (!pm) {
1000 		pci_pm_default_suspend(pci_dev);
1001 		goto Fixup;
1002 	}
1003 
1004 	/* The reason to do that is the same as in pci_pm_suspend(). */
1005 	pm_runtime_resume(dev);
1006 
1007 	pci_dev->state_saved = false;
1008 	if (pm->poweroff) {
1009 		int error;
1010 
1011 		error = pm->poweroff(dev);
1012 		suspend_report_result(pm->poweroff, error);
1013 		if (error)
1014 			return error;
1015 	}
1016 
1017  Fixup:
1018 	pci_fixup_device(pci_fixup_suspend, pci_dev);
1019 
1020 	if (pcibios_pm_ops.poweroff)
1021 		return pcibios_pm_ops.poweroff(dev);
1022 
1023 	return 0;
1024 }
1025 
1026 static int pci_pm_poweroff_noirq(struct device *dev)
1027 {
1028 	struct pci_dev *pci_dev = to_pci_dev(dev);
1029 	struct device_driver *drv = dev->driver;
1030 
1031 	if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1032 		return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1033 
1034 	if (!drv || !drv->pm) {
1035 		pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1036 		return 0;
1037 	}
1038 
1039 	if (drv->pm->poweroff_noirq) {
1040 		int error;
1041 
1042 		error = drv->pm->poweroff_noirq(dev);
1043 		suspend_report_result(drv->pm->poweroff_noirq, error);
1044 		if (error)
1045 			return error;
1046 	}
1047 
1048 	if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1049 		pci_prepare_to_sleep(pci_dev);
1050 
1051 	/*
1052 	 * The reason for doing this here is the same as for the analogous code
1053 	 * in pci_pm_suspend_noirq().
1054 	 */
1055 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1056 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1057 
1058 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1059 
1060 	if (pcibios_pm_ops.poweroff_noirq)
1061 		return pcibios_pm_ops.poweroff_noirq(dev);
1062 
1063 	return 0;
1064 }
1065 
1066 static int pci_pm_restore_noirq(struct device *dev)
1067 {
1068 	struct pci_dev *pci_dev = to_pci_dev(dev);
1069 	struct device_driver *drv = dev->driver;
1070 	int error = 0;
1071 
1072 	if (pcibios_pm_ops.restore_noirq) {
1073 		error = pcibios_pm_ops.restore_noirq(dev);
1074 		if (error)
1075 			return error;
1076 	}
1077 
1078 	pci_pm_default_resume_early(pci_dev);
1079 
1080 	if (pci_has_legacy_pm_support(pci_dev))
1081 		return pci_legacy_resume_early(dev);
1082 
1083 	if (drv && drv->pm && drv->pm->restore_noirq)
1084 		error = drv->pm->restore_noirq(dev);
1085 
1086 	return error;
1087 }
1088 
1089 static int pci_pm_restore(struct device *dev)
1090 {
1091 	struct pci_dev *pci_dev = to_pci_dev(dev);
1092 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1093 	int error = 0;
1094 
1095 	if (pcibios_pm_ops.restore) {
1096 		error = pcibios_pm_ops.restore(dev);
1097 		if (error)
1098 			return error;
1099 	}
1100 
1101 	/*
1102 	 * This is necessary for the hibernation error path in which restore is
1103 	 * called without restoring the standard config registers of the device.
1104 	 */
1105 	if (pci_dev->state_saved)
1106 		pci_restore_standard_config(pci_dev);
1107 
1108 	if (pci_has_legacy_pm_support(pci_dev))
1109 		return pci_legacy_resume(dev);
1110 
1111 	pci_pm_default_resume(pci_dev);
1112 
1113 	if (pm) {
1114 		if (pm->restore)
1115 			error = pm->restore(dev);
1116 	} else {
1117 		pci_pm_reenable_device(pci_dev);
1118 	}
1119 
1120 	return error;
1121 }
1122 
1123 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1124 
1125 #define pci_pm_freeze		NULL
1126 #define pci_pm_freeze_noirq	NULL
1127 #define pci_pm_thaw		NULL
1128 #define pci_pm_thaw_noirq	NULL
1129 #define pci_pm_poweroff		NULL
1130 #define pci_pm_poweroff_noirq	NULL
1131 #define pci_pm_restore		NULL
1132 #define pci_pm_restore_noirq	NULL
1133 
1134 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1135 
1136 #ifdef CONFIG_PM
1137 
1138 static int pci_pm_runtime_suspend(struct device *dev)
1139 {
1140 	struct pci_dev *pci_dev = to_pci_dev(dev);
1141 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1142 	pci_power_t prev = pci_dev->current_state;
1143 	int error;
1144 
1145 	/*
1146 	 * If pci_dev->driver is not set (unbound), the device should
1147 	 * always remain in D0 regardless of the runtime PM status
1148 	 */
1149 	if (!pci_dev->driver)
1150 		return 0;
1151 
1152 	if (!pm || !pm->runtime_suspend)
1153 		return -ENOSYS;
1154 
1155 	pci_dev->state_saved = false;
1156 	error = pm->runtime_suspend(dev);
1157 	if (error) {
1158 		/*
1159 		 * -EBUSY and -EAGAIN is used to request the runtime PM core
1160 		 * to schedule a new suspend, so log the event only with debug
1161 		 * log level.
1162 		 */
1163 		if (error == -EBUSY || error == -EAGAIN)
1164 			dev_dbg(dev, "can't suspend now (%pf returned %d)\n",
1165 				pm->runtime_suspend, error);
1166 		else
1167 			dev_err(dev, "can't suspend (%pf returned %d)\n",
1168 				pm->runtime_suspend, error);
1169 
1170 		return error;
1171 	}
1172 
1173 	pci_fixup_device(pci_fixup_suspend, pci_dev);
1174 
1175 	if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1176 	    && pci_dev->current_state != PCI_UNKNOWN) {
1177 		WARN_ONCE(pci_dev->current_state != prev,
1178 			"PCI PM: State of device not saved by %pF\n",
1179 			pm->runtime_suspend);
1180 		return 0;
1181 	}
1182 
1183 	if (!pci_dev->state_saved) {
1184 		pci_save_state(pci_dev);
1185 		pci_finish_runtime_suspend(pci_dev);
1186 	}
1187 
1188 	return 0;
1189 }
1190 
1191 static int pci_pm_runtime_resume(struct device *dev)
1192 {
1193 	int rc;
1194 	struct pci_dev *pci_dev = to_pci_dev(dev);
1195 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1196 
1197 	/*
1198 	 * If pci_dev->driver is not set (unbound), the device should
1199 	 * always remain in D0 regardless of the runtime PM status
1200 	 */
1201 	if (!pci_dev->driver)
1202 		return 0;
1203 
1204 	if (!pm || !pm->runtime_resume)
1205 		return -ENOSYS;
1206 
1207 	pci_restore_standard_config(pci_dev);
1208 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
1209 	__pci_enable_wake(pci_dev, PCI_D0, true, false);
1210 	pci_fixup_device(pci_fixup_resume, pci_dev);
1211 
1212 	rc = pm->runtime_resume(dev);
1213 
1214 	pci_dev->runtime_d3cold = false;
1215 
1216 	return rc;
1217 }
1218 
1219 static int pci_pm_runtime_idle(struct device *dev)
1220 {
1221 	struct pci_dev *pci_dev = to_pci_dev(dev);
1222 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1223 	int ret = 0;
1224 
1225 	/*
1226 	 * If pci_dev->driver is not set (unbound), the device should
1227 	 * always remain in D0 regardless of the runtime PM status
1228 	 */
1229 	if (!pci_dev->driver)
1230 		return 0;
1231 
1232 	if (!pm)
1233 		return -ENOSYS;
1234 
1235 	if (pm->runtime_idle)
1236 		ret = pm->runtime_idle(dev);
1237 
1238 	return ret;
1239 }
1240 
1241 static const struct dev_pm_ops pci_dev_pm_ops = {
1242 	.prepare = pci_pm_prepare,
1243 	.complete = pci_pm_complete,
1244 	.suspend = pci_pm_suspend,
1245 	.resume = pci_pm_resume,
1246 	.freeze = pci_pm_freeze,
1247 	.thaw = pci_pm_thaw,
1248 	.poweroff = pci_pm_poweroff,
1249 	.restore = pci_pm_restore,
1250 	.suspend_noirq = pci_pm_suspend_noirq,
1251 	.resume_noirq = pci_pm_resume_noirq,
1252 	.freeze_noirq = pci_pm_freeze_noirq,
1253 	.thaw_noirq = pci_pm_thaw_noirq,
1254 	.poweroff_noirq = pci_pm_poweroff_noirq,
1255 	.restore_noirq = pci_pm_restore_noirq,
1256 	.runtime_suspend = pci_pm_runtime_suspend,
1257 	.runtime_resume = pci_pm_runtime_resume,
1258 	.runtime_idle = pci_pm_runtime_idle,
1259 };
1260 
1261 #define PCI_PM_OPS_PTR	(&pci_dev_pm_ops)
1262 
1263 #else /* !CONFIG_PM */
1264 
1265 #define pci_pm_runtime_suspend	NULL
1266 #define pci_pm_runtime_resume	NULL
1267 #define pci_pm_runtime_idle	NULL
1268 
1269 #define PCI_PM_OPS_PTR	NULL
1270 
1271 #endif /* !CONFIG_PM */
1272 
1273 /**
1274  * __pci_register_driver - register a new pci driver
1275  * @drv: the driver structure to register
1276  * @owner: owner module of drv
1277  * @mod_name: module name string
1278  *
1279  * Adds the driver structure to the list of registered drivers.
1280  * Returns a negative value on error, otherwise 0.
1281  * If no error occurred, the driver remains registered even if
1282  * no device was claimed during registration.
1283  */
1284 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1285 			  const char *mod_name)
1286 {
1287 	/* initialize common driver fields */
1288 	drv->driver.name = drv->name;
1289 	drv->driver.bus = &pci_bus_type;
1290 	drv->driver.owner = owner;
1291 	drv->driver.mod_name = mod_name;
1292 
1293 	spin_lock_init(&drv->dynids.lock);
1294 	INIT_LIST_HEAD(&drv->dynids.list);
1295 
1296 	/* register with core */
1297 	return driver_register(&drv->driver);
1298 }
1299 EXPORT_SYMBOL(__pci_register_driver);
1300 
1301 /**
1302  * pci_unregister_driver - unregister a pci driver
1303  * @drv: the driver structure to unregister
1304  *
1305  * Deletes the driver structure from the list of registered PCI drivers,
1306  * gives it a chance to clean up by calling its remove() function for
1307  * each device it was responsible for, and marks those devices as
1308  * driverless.
1309  */
1310 
1311 void pci_unregister_driver(struct pci_driver *drv)
1312 {
1313 	driver_unregister(&drv->driver);
1314 	pci_free_dynids(drv);
1315 }
1316 EXPORT_SYMBOL(pci_unregister_driver);
1317 
1318 static struct pci_driver pci_compat_driver = {
1319 	.name = "compat"
1320 };
1321 
1322 /**
1323  * pci_dev_driver - get the pci_driver of a device
1324  * @dev: the device to query
1325  *
1326  * Returns the appropriate pci_driver structure or %NULL if there is no
1327  * registered driver for the device.
1328  */
1329 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1330 {
1331 	if (dev->driver)
1332 		return dev->driver;
1333 	else {
1334 		int i;
1335 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1336 			if (dev->resource[i].flags & IORESOURCE_BUSY)
1337 				return &pci_compat_driver;
1338 	}
1339 	return NULL;
1340 }
1341 EXPORT_SYMBOL(pci_dev_driver);
1342 
1343 /**
1344  * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1345  * @dev: the PCI device structure to match against
1346  * @drv: the device driver to search for matching PCI device id structures
1347  *
1348  * Used by a driver to check whether a PCI device present in the
1349  * system is in its list of supported devices. Returns the matching
1350  * pci_device_id structure or %NULL if there is no match.
1351  */
1352 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1353 {
1354 	struct pci_dev *pci_dev = to_pci_dev(dev);
1355 	struct pci_driver *pci_drv;
1356 	const struct pci_device_id *found_id;
1357 
1358 	if (!pci_dev->match_driver)
1359 		return 0;
1360 
1361 	pci_drv = to_pci_driver(drv);
1362 	found_id = pci_match_device(pci_drv, pci_dev);
1363 	if (found_id)
1364 		return 1;
1365 
1366 	return 0;
1367 }
1368 
1369 /**
1370  * pci_dev_get - increments the reference count of the pci device structure
1371  * @dev: the device being referenced
1372  *
1373  * Each live reference to a device should be refcounted.
1374  *
1375  * Drivers for PCI devices should normally record such references in
1376  * their probe() methods, when they bind to a device, and release
1377  * them by calling pci_dev_put(), in their disconnect() methods.
1378  *
1379  * A pointer to the device with the incremented reference counter is returned.
1380  */
1381 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1382 {
1383 	if (dev)
1384 		get_device(&dev->dev);
1385 	return dev;
1386 }
1387 EXPORT_SYMBOL(pci_dev_get);
1388 
1389 /**
1390  * pci_dev_put - release a use of the pci device structure
1391  * @dev: device that's been disconnected
1392  *
1393  * Must be called when a user of a device is finished with it.  When the last
1394  * user of the device calls this function, the memory of the device is freed.
1395  */
1396 void pci_dev_put(struct pci_dev *dev)
1397 {
1398 	if (dev)
1399 		put_device(&dev->dev);
1400 }
1401 EXPORT_SYMBOL(pci_dev_put);
1402 
1403 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1404 {
1405 	struct pci_dev *pdev;
1406 
1407 	if (!dev)
1408 		return -ENODEV;
1409 
1410 	pdev = to_pci_dev(dev);
1411 
1412 	if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1413 		return -ENOMEM;
1414 
1415 	if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1416 		return -ENOMEM;
1417 
1418 	if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1419 			   pdev->subsystem_device))
1420 		return -ENOMEM;
1421 
1422 	if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1423 		return -ENOMEM;
1424 
1425 	if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1426 			   pdev->vendor, pdev->device,
1427 			   pdev->subsystem_vendor, pdev->subsystem_device,
1428 			   (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1429 			   (u8)(pdev->class)))
1430 		return -ENOMEM;
1431 
1432 	return 0;
1433 }
1434 
1435 struct bus_type pci_bus_type = {
1436 	.name		= "pci",
1437 	.match		= pci_bus_match,
1438 	.uevent		= pci_uevent,
1439 	.probe		= pci_device_probe,
1440 	.remove		= pci_device_remove,
1441 	.shutdown	= pci_device_shutdown,
1442 	.dev_groups	= pci_dev_groups,
1443 	.bus_groups	= pci_bus_groups,
1444 	.drv_groups	= pci_drv_groups,
1445 	.pm		= PCI_PM_OPS_PTR,
1446 };
1447 EXPORT_SYMBOL(pci_bus_type);
1448 
1449 static int __init pci_driver_init(void)
1450 {
1451 	return bus_register(&pci_bus_type);
1452 }
1453 postcore_initcall(pci_driver_init);
1454