1 /* 2 * drivers/pci/pci-driver.c 3 * 4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com> 5 * (C) Copyright 2007 Novell Inc. 6 * 7 * Released under the GPL v2 only. 8 * 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/device.h> 15 #include <linux/mempolicy.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/cpu.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/suspend.h> 22 #include <linux/kexec.h> 23 #include "pci.h" 24 25 struct pci_dynid { 26 struct list_head node; 27 struct pci_device_id id; 28 }; 29 30 /** 31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices 32 * @drv: target pci driver 33 * @vendor: PCI vendor ID 34 * @device: PCI device ID 35 * @subvendor: PCI subvendor ID 36 * @subdevice: PCI subdevice ID 37 * @class: PCI class 38 * @class_mask: PCI class mask 39 * @driver_data: private driver data 40 * 41 * Adds a new dynamic pci device ID to this driver and causes the 42 * driver to probe for all devices again. @drv must have been 43 * registered prior to calling this function. 44 * 45 * CONTEXT: 46 * Does GFP_KERNEL allocation. 47 * 48 * RETURNS: 49 * 0 on success, -errno on failure. 50 */ 51 int pci_add_dynid(struct pci_driver *drv, 52 unsigned int vendor, unsigned int device, 53 unsigned int subvendor, unsigned int subdevice, 54 unsigned int class, unsigned int class_mask, 55 unsigned long driver_data) 56 { 57 struct pci_dynid *dynid; 58 59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 60 if (!dynid) 61 return -ENOMEM; 62 63 dynid->id.vendor = vendor; 64 dynid->id.device = device; 65 dynid->id.subvendor = subvendor; 66 dynid->id.subdevice = subdevice; 67 dynid->id.class = class; 68 dynid->id.class_mask = class_mask; 69 dynid->id.driver_data = driver_data; 70 71 spin_lock(&drv->dynids.lock); 72 list_add_tail(&dynid->node, &drv->dynids.list); 73 spin_unlock(&drv->dynids.lock); 74 75 return driver_attach(&drv->driver); 76 } 77 EXPORT_SYMBOL_GPL(pci_add_dynid); 78 79 static void pci_free_dynids(struct pci_driver *drv) 80 { 81 struct pci_dynid *dynid, *n; 82 83 spin_lock(&drv->dynids.lock); 84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 85 list_del(&dynid->node); 86 kfree(dynid); 87 } 88 spin_unlock(&drv->dynids.lock); 89 } 90 91 /** 92 * store_new_id - sysfs frontend to pci_add_dynid() 93 * @driver: target device driver 94 * @buf: buffer for scanning device ID data 95 * @count: input size 96 * 97 * Allow PCI IDs to be added to an existing driver via sysfs. 98 */ 99 static ssize_t store_new_id(struct device_driver *driver, const char *buf, 100 size_t count) 101 { 102 struct pci_driver *pdrv = to_pci_driver(driver); 103 const struct pci_device_id *ids = pdrv->id_table; 104 __u32 vendor, device, subvendor = PCI_ANY_ID, 105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 106 unsigned long driver_data = 0; 107 int fields = 0; 108 int retval = 0; 109 110 fields = sscanf(buf, "%x %x %x %x %x %x %lx", 111 &vendor, &device, &subvendor, &subdevice, 112 &class, &class_mask, &driver_data); 113 if (fields < 2) 114 return -EINVAL; 115 116 if (fields != 7) { 117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); 118 if (!pdev) 119 return -ENOMEM; 120 121 pdev->vendor = vendor; 122 pdev->device = device; 123 pdev->subsystem_vendor = subvendor; 124 pdev->subsystem_device = subdevice; 125 pdev->class = class; 126 127 if (pci_match_id(pdrv->id_table, pdev)) 128 retval = -EEXIST; 129 130 kfree(pdev); 131 132 if (retval) 133 return retval; 134 } 135 136 /* Only accept driver_data values that match an existing id_table 137 entry */ 138 if (ids) { 139 retval = -EINVAL; 140 while (ids->vendor || ids->subvendor || ids->class_mask) { 141 if (driver_data == ids->driver_data) { 142 retval = 0; 143 break; 144 } 145 ids++; 146 } 147 if (retval) /* No match */ 148 return retval; 149 } 150 151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice, 152 class, class_mask, driver_data); 153 if (retval) 154 return retval; 155 return count; 156 } 157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id); 158 159 /** 160 * store_remove_id - remove a PCI device ID from this driver 161 * @driver: target device driver 162 * @buf: buffer for scanning device ID data 163 * @count: input size 164 * 165 * Removes a dynamic pci device ID to this driver. 166 */ 167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf, 168 size_t count) 169 { 170 struct pci_dynid *dynid, *n; 171 struct pci_driver *pdrv = to_pci_driver(driver); 172 __u32 vendor, device, subvendor = PCI_ANY_ID, 173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 174 int fields = 0; 175 size_t retval = -ENODEV; 176 177 fields = sscanf(buf, "%x %x %x %x %x %x", 178 &vendor, &device, &subvendor, &subdevice, 179 &class, &class_mask); 180 if (fields < 2) 181 return -EINVAL; 182 183 spin_lock(&pdrv->dynids.lock); 184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) { 185 struct pci_device_id *id = &dynid->id; 186 if ((id->vendor == vendor) && 187 (id->device == device) && 188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) && 189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) && 190 !((id->class ^ class) & class_mask)) { 191 list_del(&dynid->node); 192 kfree(dynid); 193 retval = count; 194 break; 195 } 196 } 197 spin_unlock(&pdrv->dynids.lock); 198 199 return retval; 200 } 201 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id); 202 203 static struct attribute *pci_drv_attrs[] = { 204 &driver_attr_new_id.attr, 205 &driver_attr_remove_id.attr, 206 NULL, 207 }; 208 ATTRIBUTE_GROUPS(pci_drv); 209 210 /** 211 * pci_match_id - See if a pci device matches a given pci_id table 212 * @ids: array of PCI device id structures to search in 213 * @dev: the PCI device structure to match against. 214 * 215 * Used by a driver to check whether a PCI device present in the 216 * system is in its list of supported devices. Returns the matching 217 * pci_device_id structure or %NULL if there is no match. 218 * 219 * Deprecated, don't use this as it will not catch any dynamic ids 220 * that a driver might want to check for. 221 */ 222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids, 223 struct pci_dev *dev) 224 { 225 if (ids) { 226 while (ids->vendor || ids->subvendor || ids->class_mask) { 227 if (pci_match_one_device(ids, dev)) 228 return ids; 229 ids++; 230 } 231 } 232 return NULL; 233 } 234 EXPORT_SYMBOL(pci_match_id); 235 236 static const struct pci_device_id pci_device_id_any = { 237 .vendor = PCI_ANY_ID, 238 .device = PCI_ANY_ID, 239 .subvendor = PCI_ANY_ID, 240 .subdevice = PCI_ANY_ID, 241 }; 242 243 /** 244 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure 245 * @drv: the PCI driver to match against 246 * @dev: the PCI device structure to match against 247 * 248 * Used by a driver to check whether a PCI device present in the 249 * system is in its list of supported devices. Returns the matching 250 * pci_device_id structure or %NULL if there is no match. 251 */ 252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv, 253 struct pci_dev *dev) 254 { 255 struct pci_dynid *dynid; 256 const struct pci_device_id *found_id = NULL; 257 258 /* When driver_override is set, only bind to the matching driver */ 259 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 260 return NULL; 261 262 /* Look at the dynamic ids first, before the static ones */ 263 spin_lock(&drv->dynids.lock); 264 list_for_each_entry(dynid, &drv->dynids.list, node) { 265 if (pci_match_one_device(&dynid->id, dev)) { 266 found_id = &dynid->id; 267 break; 268 } 269 } 270 spin_unlock(&drv->dynids.lock); 271 272 if (!found_id) 273 found_id = pci_match_id(drv->id_table, dev); 274 275 /* driver_override will always match, send a dummy id */ 276 if (!found_id && dev->driver_override) 277 found_id = &pci_device_id_any; 278 279 return found_id; 280 } 281 282 struct drv_dev_and_id { 283 struct pci_driver *drv; 284 struct pci_dev *dev; 285 const struct pci_device_id *id; 286 }; 287 288 static long local_pci_probe(void *_ddi) 289 { 290 struct drv_dev_and_id *ddi = _ddi; 291 struct pci_dev *pci_dev = ddi->dev; 292 struct pci_driver *pci_drv = ddi->drv; 293 struct device *dev = &pci_dev->dev; 294 int rc; 295 296 /* 297 * Unbound PCI devices are always put in D0, regardless of 298 * runtime PM status. During probe, the device is set to 299 * active and the usage count is incremented. If the driver 300 * supports runtime PM, it should call pm_runtime_put_noidle(), 301 * or any other runtime PM helper function decrementing the usage 302 * count, in its probe routine and pm_runtime_get_noresume() in 303 * its remove routine. 304 */ 305 pm_runtime_get_sync(dev); 306 pci_dev->driver = pci_drv; 307 rc = pci_drv->probe(pci_dev, ddi->id); 308 if (!rc) 309 return rc; 310 if (rc < 0) { 311 pci_dev->driver = NULL; 312 pm_runtime_put_sync(dev); 313 return rc; 314 } 315 /* 316 * Probe function should return < 0 for failure, 0 for success 317 * Treat values > 0 as success, but warn. 318 */ 319 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc); 320 return 0; 321 } 322 323 static bool pci_physfn_is_probed(struct pci_dev *dev) 324 { 325 #ifdef CONFIG_PCI_IOV 326 return dev->is_virtfn && dev->physfn->is_probed; 327 #else 328 return false; 329 #endif 330 } 331 332 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev, 333 const struct pci_device_id *id) 334 { 335 int error, node, cpu; 336 struct drv_dev_and_id ddi = { drv, dev, id }; 337 338 /* 339 * Execute driver initialization on node where the device is 340 * attached. This way the driver likely allocates its local memory 341 * on the right node. 342 */ 343 node = dev_to_node(&dev->dev); 344 dev->is_probed = 1; 345 346 cpu_hotplug_disable(); 347 348 /* 349 * Prevent nesting work_on_cpu() for the case where a Virtual Function 350 * device is probed from work_on_cpu() of the Physical device. 351 */ 352 if (node < 0 || node >= MAX_NUMNODES || !node_online(node) || 353 pci_physfn_is_probed(dev)) 354 cpu = nr_cpu_ids; 355 else 356 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 357 358 if (cpu < nr_cpu_ids) 359 error = work_on_cpu(cpu, local_pci_probe, &ddi); 360 else 361 error = local_pci_probe(&ddi); 362 363 dev->is_probed = 0; 364 cpu_hotplug_enable(); 365 return error; 366 } 367 368 /** 369 * __pci_device_probe - check if a driver wants to claim a specific PCI device 370 * @drv: driver to call to check if it wants the PCI device 371 * @pci_dev: PCI device being probed 372 * 373 * returns 0 on success, else error. 374 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev. 375 */ 376 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev) 377 { 378 const struct pci_device_id *id; 379 int error = 0; 380 381 if (!pci_dev->driver && drv->probe) { 382 error = -ENODEV; 383 384 id = pci_match_device(drv, pci_dev); 385 if (id) 386 error = pci_call_probe(drv, pci_dev, id); 387 } 388 return error; 389 } 390 391 int __weak pcibios_alloc_irq(struct pci_dev *dev) 392 { 393 return 0; 394 } 395 396 void __weak pcibios_free_irq(struct pci_dev *dev) 397 { 398 } 399 400 #ifdef CONFIG_PCI_IOV 401 static inline bool pci_device_can_probe(struct pci_dev *pdev) 402 { 403 return (!pdev->is_virtfn || pdev->physfn->sriov->drivers_autoprobe); 404 } 405 #else 406 static inline bool pci_device_can_probe(struct pci_dev *pdev) 407 { 408 return true; 409 } 410 #endif 411 412 static int pci_device_probe(struct device *dev) 413 { 414 int error; 415 struct pci_dev *pci_dev = to_pci_dev(dev); 416 struct pci_driver *drv = to_pci_driver(dev->driver); 417 418 error = pcibios_alloc_irq(pci_dev); 419 if (error < 0) 420 return error; 421 422 pci_dev_get(pci_dev); 423 if (pci_device_can_probe(pci_dev)) { 424 error = __pci_device_probe(drv, pci_dev); 425 if (error) { 426 pcibios_free_irq(pci_dev); 427 pci_dev_put(pci_dev); 428 } 429 } 430 431 return error; 432 } 433 434 static int pci_device_remove(struct device *dev) 435 { 436 struct pci_dev *pci_dev = to_pci_dev(dev); 437 struct pci_driver *drv = pci_dev->driver; 438 439 if (drv) { 440 if (drv->remove) { 441 pm_runtime_get_sync(dev); 442 drv->remove(pci_dev); 443 pm_runtime_put_noidle(dev); 444 } 445 pcibios_free_irq(pci_dev); 446 pci_dev->driver = NULL; 447 } 448 449 /* Undo the runtime PM settings in local_pci_probe() */ 450 pm_runtime_put_sync(dev); 451 452 /* 453 * If the device is still on, set the power state as "unknown", 454 * since it might change by the next time we load the driver. 455 */ 456 if (pci_dev->current_state == PCI_D0) 457 pci_dev->current_state = PCI_UNKNOWN; 458 459 /* 460 * We would love to complain here if pci_dev->is_enabled is set, that 461 * the driver should have called pci_disable_device(), but the 462 * unfortunate fact is there are too many odd BIOS and bridge setups 463 * that don't like drivers doing that all of the time. 464 * Oh well, we can dream of sane hardware when we sleep, no matter how 465 * horrible the crap we have to deal with is when we are awake... 466 */ 467 468 pci_dev_put(pci_dev); 469 return 0; 470 } 471 472 static void pci_device_shutdown(struct device *dev) 473 { 474 struct pci_dev *pci_dev = to_pci_dev(dev); 475 struct pci_driver *drv = pci_dev->driver; 476 477 pm_runtime_resume(dev); 478 479 if (drv && drv->shutdown) 480 drv->shutdown(pci_dev); 481 482 /* 483 * If this is a kexec reboot, turn off Bus Master bit on the 484 * device to tell it to not continue to do DMA. Don't touch 485 * devices in D3cold or unknown states. 486 * If it is not a kexec reboot, firmware will hit the PCI 487 * devices with big hammer and stop their DMA any way. 488 */ 489 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot)) 490 pci_clear_master(pci_dev); 491 } 492 493 #ifdef CONFIG_PM 494 495 /* Auxiliary functions used for system resume and run-time resume. */ 496 497 /** 498 * pci_restore_standard_config - restore standard config registers of PCI device 499 * @pci_dev: PCI device to handle 500 */ 501 static int pci_restore_standard_config(struct pci_dev *pci_dev) 502 { 503 pci_update_current_state(pci_dev, PCI_UNKNOWN); 504 505 if (pci_dev->current_state != PCI_D0) { 506 int error = pci_set_power_state(pci_dev, PCI_D0); 507 if (error) 508 return error; 509 } 510 511 pci_restore_state(pci_dev); 512 return 0; 513 } 514 515 #endif 516 517 #ifdef CONFIG_PM_SLEEP 518 519 static void pci_pm_default_resume_early(struct pci_dev *pci_dev) 520 { 521 pci_power_up(pci_dev); 522 pci_restore_state(pci_dev); 523 pci_fixup_device(pci_fixup_resume_early, pci_dev); 524 } 525 526 /* 527 * Default "suspend" method for devices that have no driver provided suspend, 528 * or not even a driver at all (second part). 529 */ 530 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev) 531 { 532 /* 533 * mark its power state as "unknown", since we don't know if 534 * e.g. the BIOS will change its device state when we suspend. 535 */ 536 if (pci_dev->current_state == PCI_D0) 537 pci_dev->current_state = PCI_UNKNOWN; 538 } 539 540 /* 541 * Default "resume" method for devices that have no driver provided resume, 542 * or not even a driver at all (second part). 543 */ 544 static int pci_pm_reenable_device(struct pci_dev *pci_dev) 545 { 546 int retval; 547 548 /* if the device was enabled before suspend, reenable */ 549 retval = pci_reenable_device(pci_dev); 550 /* 551 * if the device was busmaster before the suspend, make it busmaster 552 * again 553 */ 554 if (pci_dev->is_busmaster) 555 pci_set_master(pci_dev); 556 557 return retval; 558 } 559 560 static int pci_legacy_suspend(struct device *dev, pm_message_t state) 561 { 562 struct pci_dev *pci_dev = to_pci_dev(dev); 563 struct pci_driver *drv = pci_dev->driver; 564 565 if (drv && drv->suspend) { 566 pci_power_t prev = pci_dev->current_state; 567 int error; 568 569 error = drv->suspend(pci_dev, state); 570 suspend_report_result(drv->suspend, error); 571 if (error) 572 return error; 573 574 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 575 && pci_dev->current_state != PCI_UNKNOWN) { 576 WARN_ONCE(pci_dev->current_state != prev, 577 "PCI PM: Device state not saved by %pF\n", 578 drv->suspend); 579 } 580 } 581 582 pci_fixup_device(pci_fixup_suspend, pci_dev); 583 584 return 0; 585 } 586 587 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state) 588 { 589 struct pci_dev *pci_dev = to_pci_dev(dev); 590 struct pci_driver *drv = pci_dev->driver; 591 592 if (drv && drv->suspend_late) { 593 pci_power_t prev = pci_dev->current_state; 594 int error; 595 596 error = drv->suspend_late(pci_dev, state); 597 suspend_report_result(drv->suspend_late, error); 598 if (error) 599 return error; 600 601 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 602 && pci_dev->current_state != PCI_UNKNOWN) { 603 WARN_ONCE(pci_dev->current_state != prev, 604 "PCI PM: Device state not saved by %pF\n", 605 drv->suspend_late); 606 goto Fixup; 607 } 608 } 609 610 if (!pci_dev->state_saved) 611 pci_save_state(pci_dev); 612 613 pci_pm_set_unknown_state(pci_dev); 614 615 Fixup: 616 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 617 618 return 0; 619 } 620 621 static int pci_legacy_resume_early(struct device *dev) 622 { 623 struct pci_dev *pci_dev = to_pci_dev(dev); 624 struct pci_driver *drv = pci_dev->driver; 625 626 return drv && drv->resume_early ? 627 drv->resume_early(pci_dev) : 0; 628 } 629 630 static int pci_legacy_resume(struct device *dev) 631 { 632 struct pci_dev *pci_dev = to_pci_dev(dev); 633 struct pci_driver *drv = pci_dev->driver; 634 635 pci_fixup_device(pci_fixup_resume, pci_dev); 636 637 return drv && drv->resume ? 638 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev); 639 } 640 641 /* Auxiliary functions used by the new power management framework */ 642 643 static void pci_pm_default_resume(struct pci_dev *pci_dev) 644 { 645 pci_fixup_device(pci_fixup_resume, pci_dev); 646 647 if (!pci_has_subordinate(pci_dev)) 648 pci_enable_wake(pci_dev, PCI_D0, false); 649 } 650 651 static void pci_pm_default_suspend(struct pci_dev *pci_dev) 652 { 653 /* Disable non-bridge devices without PM support */ 654 if (!pci_has_subordinate(pci_dev)) 655 pci_disable_enabled_device(pci_dev); 656 } 657 658 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev) 659 { 660 struct pci_driver *drv = pci_dev->driver; 661 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume 662 || drv->resume_early); 663 664 /* 665 * Legacy PM support is used by default, so warn if the new framework is 666 * supported as well. Drivers are supposed to support either the 667 * former, or the latter, but not both at the same time. 668 */ 669 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n", 670 drv->name, pci_dev->vendor, pci_dev->device); 671 672 return ret; 673 } 674 675 /* New power management framework */ 676 677 static int pci_pm_prepare(struct device *dev) 678 { 679 struct device_driver *drv = dev->driver; 680 681 /* 682 * Devices having power.ignore_children set may still be necessary for 683 * suspending their children in the next phase of device suspend. 684 */ 685 if (dev->power.ignore_children) 686 pm_runtime_resume(dev); 687 688 if (drv && drv->pm && drv->pm->prepare) { 689 int error = drv->pm->prepare(dev); 690 if (error) 691 return error; 692 } 693 return pci_dev_keep_suspended(to_pci_dev(dev)); 694 } 695 696 static void pci_pm_complete(struct device *dev) 697 { 698 struct pci_dev *pci_dev = to_pci_dev(dev); 699 700 pci_dev_complete_resume(pci_dev); 701 pm_generic_complete(dev); 702 703 /* Resume device if platform firmware has put it in reset-power-on */ 704 if (dev->power.direct_complete && pm_resume_via_firmware()) { 705 pci_power_t pre_sleep_state = pci_dev->current_state; 706 707 pci_update_current_state(pci_dev, pci_dev->current_state); 708 if (pci_dev->current_state < pre_sleep_state) 709 pm_request_resume(dev); 710 } 711 } 712 713 #else /* !CONFIG_PM_SLEEP */ 714 715 #define pci_pm_prepare NULL 716 #define pci_pm_complete NULL 717 718 #endif /* !CONFIG_PM_SLEEP */ 719 720 #ifdef CONFIG_SUSPEND 721 722 static int pci_pm_suspend(struct device *dev) 723 { 724 struct pci_dev *pci_dev = to_pci_dev(dev); 725 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 726 727 if (pci_has_legacy_pm_support(pci_dev)) 728 return pci_legacy_suspend(dev, PMSG_SUSPEND); 729 730 if (!pm) { 731 pci_pm_default_suspend(pci_dev); 732 goto Fixup; 733 } 734 735 /* 736 * PCI devices suspended at run time need to be resumed at this point, 737 * because in general it is necessary to reconfigure them for system 738 * suspend. Namely, if the device is supposed to wake up the system 739 * from the sleep state, we may need to reconfigure it for this purpose. 740 * In turn, if the device is not supposed to wake up the system from the 741 * sleep state, we'll have to prevent it from signaling wake-up. 742 */ 743 pm_runtime_resume(dev); 744 745 pci_dev->state_saved = false; 746 if (pm->suspend) { 747 pci_power_t prev = pci_dev->current_state; 748 int error; 749 750 error = pm->suspend(dev); 751 suspend_report_result(pm->suspend, error); 752 if (error) 753 return error; 754 755 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 756 && pci_dev->current_state != PCI_UNKNOWN) { 757 WARN_ONCE(pci_dev->current_state != prev, 758 "PCI PM: State of device not saved by %pF\n", 759 pm->suspend); 760 } 761 } 762 763 Fixup: 764 pci_fixup_device(pci_fixup_suspend, pci_dev); 765 766 return 0; 767 } 768 769 static int pci_pm_suspend_noirq(struct device *dev) 770 { 771 struct pci_dev *pci_dev = to_pci_dev(dev); 772 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 773 774 if (pci_has_legacy_pm_support(pci_dev)) 775 return pci_legacy_suspend_late(dev, PMSG_SUSPEND); 776 777 if (!pm) { 778 pci_save_state(pci_dev); 779 goto Fixup; 780 } 781 782 if (pm->suspend_noirq) { 783 pci_power_t prev = pci_dev->current_state; 784 int error; 785 786 error = pm->suspend_noirq(dev); 787 suspend_report_result(pm->suspend_noirq, error); 788 if (error) 789 return error; 790 791 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 792 && pci_dev->current_state != PCI_UNKNOWN) { 793 WARN_ONCE(pci_dev->current_state != prev, 794 "PCI PM: State of device not saved by %pF\n", 795 pm->suspend_noirq); 796 goto Fixup; 797 } 798 } 799 800 if (!pci_dev->state_saved) { 801 pci_save_state(pci_dev); 802 if (pci_power_manageable(pci_dev)) 803 pci_prepare_to_sleep(pci_dev); 804 } 805 806 pci_pm_set_unknown_state(pci_dev); 807 808 /* 809 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's 810 * PCI COMMAND register isn't 0, the BIOS assumes that the controller 811 * hasn't been quiesced and tries to turn it off. If the controller 812 * is already in D3, this can hang or cause memory corruption. 813 * 814 * Since the value of the COMMAND register doesn't matter once the 815 * device has been suspended, we can safely set it to 0 here. 816 */ 817 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 818 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 819 820 Fixup: 821 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 822 823 return 0; 824 } 825 826 static int pci_pm_resume_noirq(struct device *dev) 827 { 828 struct pci_dev *pci_dev = to_pci_dev(dev); 829 struct device_driver *drv = dev->driver; 830 int error = 0; 831 832 pci_pm_default_resume_early(pci_dev); 833 834 if (pci_has_legacy_pm_support(pci_dev)) 835 return pci_legacy_resume_early(dev); 836 837 if (drv && drv->pm && drv->pm->resume_noirq) 838 error = drv->pm->resume_noirq(dev); 839 840 return error; 841 } 842 843 static int pci_pm_resume(struct device *dev) 844 { 845 struct pci_dev *pci_dev = to_pci_dev(dev); 846 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 847 int error = 0; 848 849 /* 850 * This is necessary for the suspend error path in which resume is 851 * called without restoring the standard config registers of the device. 852 */ 853 if (pci_dev->state_saved) 854 pci_restore_standard_config(pci_dev); 855 856 if (pci_has_legacy_pm_support(pci_dev)) 857 return pci_legacy_resume(dev); 858 859 pci_pm_default_resume(pci_dev); 860 861 if (pm) { 862 if (pm->resume) 863 error = pm->resume(dev); 864 } else { 865 pci_pm_reenable_device(pci_dev); 866 } 867 868 return error; 869 } 870 871 #else /* !CONFIG_SUSPEND */ 872 873 #define pci_pm_suspend NULL 874 #define pci_pm_suspend_noirq NULL 875 #define pci_pm_resume NULL 876 #define pci_pm_resume_noirq NULL 877 878 #endif /* !CONFIG_SUSPEND */ 879 880 #ifdef CONFIG_HIBERNATE_CALLBACKS 881 882 883 /* 884 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing 885 * a hibernate transition 886 */ 887 struct dev_pm_ops __weak pcibios_pm_ops; 888 889 static int pci_pm_freeze(struct device *dev) 890 { 891 struct pci_dev *pci_dev = to_pci_dev(dev); 892 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 893 894 if (pci_has_legacy_pm_support(pci_dev)) 895 return pci_legacy_suspend(dev, PMSG_FREEZE); 896 897 if (!pm) { 898 pci_pm_default_suspend(pci_dev); 899 return 0; 900 } 901 902 /* 903 * This used to be done in pci_pm_prepare() for all devices and some 904 * drivers may depend on it, so do it here. Ideally, runtime-suspended 905 * devices should not be touched during freeze/thaw transitions, 906 * however. 907 */ 908 pm_runtime_resume(dev); 909 910 pci_dev->state_saved = false; 911 if (pm->freeze) { 912 int error; 913 914 error = pm->freeze(dev); 915 suspend_report_result(pm->freeze, error); 916 if (error) 917 return error; 918 } 919 920 if (pcibios_pm_ops.freeze) 921 return pcibios_pm_ops.freeze(dev); 922 923 return 0; 924 } 925 926 static int pci_pm_freeze_noirq(struct device *dev) 927 { 928 struct pci_dev *pci_dev = to_pci_dev(dev); 929 struct device_driver *drv = dev->driver; 930 931 if (pci_has_legacy_pm_support(pci_dev)) 932 return pci_legacy_suspend_late(dev, PMSG_FREEZE); 933 934 if (drv && drv->pm && drv->pm->freeze_noirq) { 935 int error; 936 937 error = drv->pm->freeze_noirq(dev); 938 suspend_report_result(drv->pm->freeze_noirq, error); 939 if (error) 940 return error; 941 } 942 943 if (!pci_dev->state_saved) 944 pci_save_state(pci_dev); 945 946 pci_pm_set_unknown_state(pci_dev); 947 948 if (pcibios_pm_ops.freeze_noirq) 949 return pcibios_pm_ops.freeze_noirq(dev); 950 951 return 0; 952 } 953 954 static int pci_pm_thaw_noirq(struct device *dev) 955 { 956 struct pci_dev *pci_dev = to_pci_dev(dev); 957 struct device_driver *drv = dev->driver; 958 int error = 0; 959 960 if (pcibios_pm_ops.thaw_noirq) { 961 error = pcibios_pm_ops.thaw_noirq(dev); 962 if (error) 963 return error; 964 } 965 966 if (pci_has_legacy_pm_support(pci_dev)) 967 return pci_legacy_resume_early(dev); 968 969 pci_update_current_state(pci_dev, PCI_D0); 970 971 if (drv && drv->pm && drv->pm->thaw_noirq) 972 error = drv->pm->thaw_noirq(dev); 973 974 return error; 975 } 976 977 static int pci_pm_thaw(struct device *dev) 978 { 979 struct pci_dev *pci_dev = to_pci_dev(dev); 980 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 981 int error = 0; 982 983 if (pcibios_pm_ops.thaw) { 984 error = pcibios_pm_ops.thaw(dev); 985 if (error) 986 return error; 987 } 988 989 if (pci_has_legacy_pm_support(pci_dev)) 990 return pci_legacy_resume(dev); 991 992 if (pm) { 993 if (pm->thaw) 994 error = pm->thaw(dev); 995 } else { 996 pci_pm_reenable_device(pci_dev); 997 } 998 999 pci_dev->state_saved = false; 1000 1001 return error; 1002 } 1003 1004 static int pci_pm_poweroff(struct device *dev) 1005 { 1006 struct pci_dev *pci_dev = to_pci_dev(dev); 1007 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1008 1009 if (pci_has_legacy_pm_support(pci_dev)) 1010 return pci_legacy_suspend(dev, PMSG_HIBERNATE); 1011 1012 if (!pm) { 1013 pci_pm_default_suspend(pci_dev); 1014 goto Fixup; 1015 } 1016 1017 /* The reason to do that is the same as in pci_pm_suspend(). */ 1018 pm_runtime_resume(dev); 1019 1020 pci_dev->state_saved = false; 1021 if (pm->poweroff) { 1022 int error; 1023 1024 error = pm->poweroff(dev); 1025 suspend_report_result(pm->poweroff, error); 1026 if (error) 1027 return error; 1028 } 1029 1030 Fixup: 1031 pci_fixup_device(pci_fixup_suspend, pci_dev); 1032 1033 if (pcibios_pm_ops.poweroff) 1034 return pcibios_pm_ops.poweroff(dev); 1035 1036 return 0; 1037 } 1038 1039 static int pci_pm_poweroff_noirq(struct device *dev) 1040 { 1041 struct pci_dev *pci_dev = to_pci_dev(dev); 1042 struct device_driver *drv = dev->driver; 1043 1044 if (pci_has_legacy_pm_support(to_pci_dev(dev))) 1045 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE); 1046 1047 if (!drv || !drv->pm) { 1048 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1049 return 0; 1050 } 1051 1052 if (drv->pm->poweroff_noirq) { 1053 int error; 1054 1055 error = drv->pm->poweroff_noirq(dev); 1056 suspend_report_result(drv->pm->poweroff_noirq, error); 1057 if (error) 1058 return error; 1059 } 1060 1061 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev)) 1062 pci_prepare_to_sleep(pci_dev); 1063 1064 /* 1065 * The reason for doing this here is the same as for the analogous code 1066 * in pci_pm_suspend_noirq(). 1067 */ 1068 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 1069 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 1070 1071 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1072 1073 if (pcibios_pm_ops.poweroff_noirq) 1074 return pcibios_pm_ops.poweroff_noirq(dev); 1075 1076 return 0; 1077 } 1078 1079 static int pci_pm_restore_noirq(struct device *dev) 1080 { 1081 struct pci_dev *pci_dev = to_pci_dev(dev); 1082 struct device_driver *drv = dev->driver; 1083 int error = 0; 1084 1085 if (pcibios_pm_ops.restore_noirq) { 1086 error = pcibios_pm_ops.restore_noirq(dev); 1087 if (error) 1088 return error; 1089 } 1090 1091 pci_pm_default_resume_early(pci_dev); 1092 1093 if (pci_has_legacy_pm_support(pci_dev)) 1094 return pci_legacy_resume_early(dev); 1095 1096 if (drv && drv->pm && drv->pm->restore_noirq) 1097 error = drv->pm->restore_noirq(dev); 1098 1099 return error; 1100 } 1101 1102 static int pci_pm_restore(struct device *dev) 1103 { 1104 struct pci_dev *pci_dev = to_pci_dev(dev); 1105 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1106 int error = 0; 1107 1108 if (pcibios_pm_ops.restore) { 1109 error = pcibios_pm_ops.restore(dev); 1110 if (error) 1111 return error; 1112 } 1113 1114 /* 1115 * This is necessary for the hibernation error path in which restore is 1116 * called without restoring the standard config registers of the device. 1117 */ 1118 if (pci_dev->state_saved) 1119 pci_restore_standard_config(pci_dev); 1120 1121 if (pci_has_legacy_pm_support(pci_dev)) 1122 return pci_legacy_resume(dev); 1123 1124 pci_pm_default_resume(pci_dev); 1125 1126 if (pm) { 1127 if (pm->restore) 1128 error = pm->restore(dev); 1129 } else { 1130 pci_pm_reenable_device(pci_dev); 1131 } 1132 1133 return error; 1134 } 1135 1136 #else /* !CONFIG_HIBERNATE_CALLBACKS */ 1137 1138 #define pci_pm_freeze NULL 1139 #define pci_pm_freeze_noirq NULL 1140 #define pci_pm_thaw NULL 1141 #define pci_pm_thaw_noirq NULL 1142 #define pci_pm_poweroff NULL 1143 #define pci_pm_poweroff_noirq NULL 1144 #define pci_pm_restore NULL 1145 #define pci_pm_restore_noirq NULL 1146 1147 #endif /* !CONFIG_HIBERNATE_CALLBACKS */ 1148 1149 #ifdef CONFIG_PM 1150 1151 static int pci_pm_runtime_suspend(struct device *dev) 1152 { 1153 struct pci_dev *pci_dev = to_pci_dev(dev); 1154 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1155 pci_power_t prev = pci_dev->current_state; 1156 int error; 1157 1158 /* 1159 * If pci_dev->driver is not set (unbound), the device should 1160 * always remain in D0 regardless of the runtime PM status 1161 */ 1162 if (!pci_dev->driver) 1163 return 0; 1164 1165 if (!pm || !pm->runtime_suspend) 1166 return -ENOSYS; 1167 1168 pci_dev->state_saved = false; 1169 error = pm->runtime_suspend(dev); 1170 if (error) { 1171 /* 1172 * -EBUSY and -EAGAIN is used to request the runtime PM core 1173 * to schedule a new suspend, so log the event only with debug 1174 * log level. 1175 */ 1176 if (error == -EBUSY || error == -EAGAIN) 1177 dev_dbg(dev, "can't suspend now (%pf returned %d)\n", 1178 pm->runtime_suspend, error); 1179 else 1180 dev_err(dev, "can't suspend (%pf returned %d)\n", 1181 pm->runtime_suspend, error); 1182 1183 return error; 1184 } 1185 1186 pci_fixup_device(pci_fixup_suspend, pci_dev); 1187 1188 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 1189 && pci_dev->current_state != PCI_UNKNOWN) { 1190 WARN_ONCE(pci_dev->current_state != prev, 1191 "PCI PM: State of device not saved by %pF\n", 1192 pm->runtime_suspend); 1193 return 0; 1194 } 1195 1196 if (!pci_dev->state_saved) { 1197 pci_save_state(pci_dev); 1198 pci_finish_runtime_suspend(pci_dev); 1199 } 1200 1201 return 0; 1202 } 1203 1204 static int pci_pm_runtime_resume(struct device *dev) 1205 { 1206 int rc; 1207 struct pci_dev *pci_dev = to_pci_dev(dev); 1208 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1209 1210 /* 1211 * If pci_dev->driver is not set (unbound), the device should 1212 * always remain in D0 regardless of the runtime PM status 1213 */ 1214 if (!pci_dev->driver) 1215 return 0; 1216 1217 if (!pm || !pm->runtime_resume) 1218 return -ENOSYS; 1219 1220 pci_restore_standard_config(pci_dev); 1221 pci_fixup_device(pci_fixup_resume_early, pci_dev); 1222 __pci_enable_wake(pci_dev, PCI_D0, true, false); 1223 pci_fixup_device(pci_fixup_resume, pci_dev); 1224 1225 rc = pm->runtime_resume(dev); 1226 1227 pci_dev->runtime_d3cold = false; 1228 1229 return rc; 1230 } 1231 1232 static int pci_pm_runtime_idle(struct device *dev) 1233 { 1234 struct pci_dev *pci_dev = to_pci_dev(dev); 1235 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1236 int ret = 0; 1237 1238 /* 1239 * If pci_dev->driver is not set (unbound), the device should 1240 * always remain in D0 regardless of the runtime PM status 1241 */ 1242 if (!pci_dev->driver) 1243 return 0; 1244 1245 if (!pm) 1246 return -ENOSYS; 1247 1248 if (pm->runtime_idle) 1249 ret = pm->runtime_idle(dev); 1250 1251 return ret; 1252 } 1253 1254 static const struct dev_pm_ops pci_dev_pm_ops = { 1255 .prepare = pci_pm_prepare, 1256 .complete = pci_pm_complete, 1257 .suspend = pci_pm_suspend, 1258 .resume = pci_pm_resume, 1259 .freeze = pci_pm_freeze, 1260 .thaw = pci_pm_thaw, 1261 .poweroff = pci_pm_poweroff, 1262 .restore = pci_pm_restore, 1263 .suspend_noirq = pci_pm_suspend_noirq, 1264 .resume_noirq = pci_pm_resume_noirq, 1265 .freeze_noirq = pci_pm_freeze_noirq, 1266 .thaw_noirq = pci_pm_thaw_noirq, 1267 .poweroff_noirq = pci_pm_poweroff_noirq, 1268 .restore_noirq = pci_pm_restore_noirq, 1269 .runtime_suspend = pci_pm_runtime_suspend, 1270 .runtime_resume = pci_pm_runtime_resume, 1271 .runtime_idle = pci_pm_runtime_idle, 1272 }; 1273 1274 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops) 1275 1276 #else /* !CONFIG_PM */ 1277 1278 #define pci_pm_runtime_suspend NULL 1279 #define pci_pm_runtime_resume NULL 1280 #define pci_pm_runtime_idle NULL 1281 1282 #define PCI_PM_OPS_PTR NULL 1283 1284 #endif /* !CONFIG_PM */ 1285 1286 /** 1287 * __pci_register_driver - register a new pci driver 1288 * @drv: the driver structure to register 1289 * @owner: owner module of drv 1290 * @mod_name: module name string 1291 * 1292 * Adds the driver structure to the list of registered drivers. 1293 * Returns a negative value on error, otherwise 0. 1294 * If no error occurred, the driver remains registered even if 1295 * no device was claimed during registration. 1296 */ 1297 int __pci_register_driver(struct pci_driver *drv, struct module *owner, 1298 const char *mod_name) 1299 { 1300 /* initialize common driver fields */ 1301 drv->driver.name = drv->name; 1302 drv->driver.bus = &pci_bus_type; 1303 drv->driver.owner = owner; 1304 drv->driver.mod_name = mod_name; 1305 1306 spin_lock_init(&drv->dynids.lock); 1307 INIT_LIST_HEAD(&drv->dynids.list); 1308 1309 /* register with core */ 1310 return driver_register(&drv->driver); 1311 } 1312 EXPORT_SYMBOL(__pci_register_driver); 1313 1314 /** 1315 * pci_unregister_driver - unregister a pci driver 1316 * @drv: the driver structure to unregister 1317 * 1318 * Deletes the driver structure from the list of registered PCI drivers, 1319 * gives it a chance to clean up by calling its remove() function for 1320 * each device it was responsible for, and marks those devices as 1321 * driverless. 1322 */ 1323 1324 void pci_unregister_driver(struct pci_driver *drv) 1325 { 1326 driver_unregister(&drv->driver); 1327 pci_free_dynids(drv); 1328 } 1329 EXPORT_SYMBOL(pci_unregister_driver); 1330 1331 static struct pci_driver pci_compat_driver = { 1332 .name = "compat" 1333 }; 1334 1335 /** 1336 * pci_dev_driver - get the pci_driver of a device 1337 * @dev: the device to query 1338 * 1339 * Returns the appropriate pci_driver structure or %NULL if there is no 1340 * registered driver for the device. 1341 */ 1342 struct pci_driver *pci_dev_driver(const struct pci_dev *dev) 1343 { 1344 if (dev->driver) 1345 return dev->driver; 1346 else { 1347 int i; 1348 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1349 if (dev->resource[i].flags & IORESOURCE_BUSY) 1350 return &pci_compat_driver; 1351 } 1352 return NULL; 1353 } 1354 EXPORT_SYMBOL(pci_dev_driver); 1355 1356 /** 1357 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure 1358 * @dev: the PCI device structure to match against 1359 * @drv: the device driver to search for matching PCI device id structures 1360 * 1361 * Used by a driver to check whether a PCI device present in the 1362 * system is in its list of supported devices. Returns the matching 1363 * pci_device_id structure or %NULL if there is no match. 1364 */ 1365 static int pci_bus_match(struct device *dev, struct device_driver *drv) 1366 { 1367 struct pci_dev *pci_dev = to_pci_dev(dev); 1368 struct pci_driver *pci_drv; 1369 const struct pci_device_id *found_id; 1370 1371 if (!pci_dev->match_driver) 1372 return 0; 1373 1374 pci_drv = to_pci_driver(drv); 1375 found_id = pci_match_device(pci_drv, pci_dev); 1376 if (found_id) 1377 return 1; 1378 1379 return 0; 1380 } 1381 1382 /** 1383 * pci_dev_get - increments the reference count of the pci device structure 1384 * @dev: the device being referenced 1385 * 1386 * Each live reference to a device should be refcounted. 1387 * 1388 * Drivers for PCI devices should normally record such references in 1389 * their probe() methods, when they bind to a device, and release 1390 * them by calling pci_dev_put(), in their disconnect() methods. 1391 * 1392 * A pointer to the device with the incremented reference counter is returned. 1393 */ 1394 struct pci_dev *pci_dev_get(struct pci_dev *dev) 1395 { 1396 if (dev) 1397 get_device(&dev->dev); 1398 return dev; 1399 } 1400 EXPORT_SYMBOL(pci_dev_get); 1401 1402 /** 1403 * pci_dev_put - release a use of the pci device structure 1404 * @dev: device that's been disconnected 1405 * 1406 * Must be called when a user of a device is finished with it. When the last 1407 * user of the device calls this function, the memory of the device is freed. 1408 */ 1409 void pci_dev_put(struct pci_dev *dev) 1410 { 1411 if (dev) 1412 put_device(&dev->dev); 1413 } 1414 EXPORT_SYMBOL(pci_dev_put); 1415 1416 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env) 1417 { 1418 struct pci_dev *pdev; 1419 1420 if (!dev) 1421 return -ENODEV; 1422 1423 pdev = to_pci_dev(dev); 1424 1425 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class)) 1426 return -ENOMEM; 1427 1428 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device)) 1429 return -ENOMEM; 1430 1431 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor, 1432 pdev->subsystem_device)) 1433 return -ENOMEM; 1434 1435 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev))) 1436 return -ENOMEM; 1437 1438 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X", 1439 pdev->vendor, pdev->device, 1440 pdev->subsystem_vendor, pdev->subsystem_device, 1441 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8), 1442 (u8)(pdev->class))) 1443 return -ENOMEM; 1444 1445 return 0; 1446 } 1447 1448 static int pci_bus_num_vf(struct device *dev) 1449 { 1450 return pci_num_vf(to_pci_dev(dev)); 1451 } 1452 1453 struct bus_type pci_bus_type = { 1454 .name = "pci", 1455 .match = pci_bus_match, 1456 .uevent = pci_uevent, 1457 .probe = pci_device_probe, 1458 .remove = pci_device_remove, 1459 .shutdown = pci_device_shutdown, 1460 .dev_groups = pci_dev_groups, 1461 .bus_groups = pci_bus_groups, 1462 .drv_groups = pci_drv_groups, 1463 .pm = PCI_PM_OPS_PTR, 1464 .num_vf = pci_bus_num_vf, 1465 }; 1466 EXPORT_SYMBOL(pci_bus_type); 1467 1468 static int __init pci_driver_init(void) 1469 { 1470 return bus_register(&pci_bus_type); 1471 } 1472 postcore_initcall(pci_driver_init); 1473