xref: /linux/drivers/pci/pci-driver.c (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 /*
2  * drivers/pci/pci-driver.c
3  *
4  * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5  * (C) Copyright 2007 Novell Inc.
6  *
7  * Released under the GPL v2 only.
8  *
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24 
25 struct pci_dynid {
26 	struct list_head node;
27 	struct pci_device_id id;
28 };
29 
30 /**
31  * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32  * @drv: target pci driver
33  * @vendor: PCI vendor ID
34  * @device: PCI device ID
35  * @subvendor: PCI subvendor ID
36  * @subdevice: PCI subdevice ID
37  * @class: PCI class
38  * @class_mask: PCI class mask
39  * @driver_data: private driver data
40  *
41  * Adds a new dynamic pci device ID to this driver and causes the
42  * driver to probe for all devices again.  @drv must have been
43  * registered prior to calling this function.
44  *
45  * CONTEXT:
46  * Does GFP_KERNEL allocation.
47  *
48  * RETURNS:
49  * 0 on success, -errno on failure.
50  */
51 int pci_add_dynid(struct pci_driver *drv,
52 		  unsigned int vendor, unsigned int device,
53 		  unsigned int subvendor, unsigned int subdevice,
54 		  unsigned int class, unsigned int class_mask,
55 		  unsigned long driver_data)
56 {
57 	struct pci_dynid *dynid;
58 
59 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60 	if (!dynid)
61 		return -ENOMEM;
62 
63 	dynid->id.vendor = vendor;
64 	dynid->id.device = device;
65 	dynid->id.subvendor = subvendor;
66 	dynid->id.subdevice = subdevice;
67 	dynid->id.class = class;
68 	dynid->id.class_mask = class_mask;
69 	dynid->id.driver_data = driver_data;
70 
71 	spin_lock(&drv->dynids.lock);
72 	list_add_tail(&dynid->node, &drv->dynids.list);
73 	spin_unlock(&drv->dynids.lock);
74 
75 	return driver_attach(&drv->driver);
76 }
77 EXPORT_SYMBOL_GPL(pci_add_dynid);
78 
79 static void pci_free_dynids(struct pci_driver *drv)
80 {
81 	struct pci_dynid *dynid, *n;
82 
83 	spin_lock(&drv->dynids.lock);
84 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85 		list_del(&dynid->node);
86 		kfree(dynid);
87 	}
88 	spin_unlock(&drv->dynids.lock);
89 }
90 
91 /**
92  * store_new_id - sysfs frontend to pci_add_dynid()
93  * @driver: target device driver
94  * @buf: buffer for scanning device ID data
95  * @count: input size
96  *
97  * Allow PCI IDs to be added to an existing driver via sysfs.
98  */
99 static ssize_t store_new_id(struct device_driver *driver, const char *buf,
100 			    size_t count)
101 {
102 	struct pci_driver *pdrv = to_pci_driver(driver);
103 	const struct pci_device_id *ids = pdrv->id_table;
104 	__u32 vendor, device, subvendor = PCI_ANY_ID,
105 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106 	unsigned long driver_data = 0;
107 	int fields = 0;
108 	int retval = 0;
109 
110 	fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111 			&vendor, &device, &subvendor, &subdevice,
112 			&class, &class_mask, &driver_data);
113 	if (fields < 2)
114 		return -EINVAL;
115 
116 	if (fields != 7) {
117 		struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118 		if (!pdev)
119 			return -ENOMEM;
120 
121 		pdev->vendor = vendor;
122 		pdev->device = device;
123 		pdev->subsystem_vendor = subvendor;
124 		pdev->subsystem_device = subdevice;
125 		pdev->class = class;
126 
127 		if (pci_match_id(pdrv->id_table, pdev))
128 			retval = -EEXIST;
129 
130 		kfree(pdev);
131 
132 		if (retval)
133 			return retval;
134 	}
135 
136 	/* Only accept driver_data values that match an existing id_table
137 	   entry */
138 	if (ids) {
139 		retval = -EINVAL;
140 		while (ids->vendor || ids->subvendor || ids->class_mask) {
141 			if (driver_data == ids->driver_data) {
142 				retval = 0;
143 				break;
144 			}
145 			ids++;
146 		}
147 		if (retval)	/* No match */
148 			return retval;
149 	}
150 
151 	retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152 			       class, class_mask, driver_data);
153 	if (retval)
154 		return retval;
155 	return count;
156 }
157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
158 
159 /**
160  * store_remove_id - remove a PCI device ID from this driver
161  * @driver: target device driver
162  * @buf: buffer for scanning device ID data
163  * @count: input size
164  *
165  * Removes a dynamic pci device ID to this driver.
166  */
167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf,
168 			       size_t count)
169 {
170 	struct pci_dynid *dynid, *n;
171 	struct pci_driver *pdrv = to_pci_driver(driver);
172 	__u32 vendor, device, subvendor = PCI_ANY_ID,
173 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174 	int fields = 0;
175 	size_t retval = -ENODEV;
176 
177 	fields = sscanf(buf, "%x %x %x %x %x %x",
178 			&vendor, &device, &subvendor, &subdevice,
179 			&class, &class_mask);
180 	if (fields < 2)
181 		return -EINVAL;
182 
183 	spin_lock(&pdrv->dynids.lock);
184 	list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185 		struct pci_device_id *id = &dynid->id;
186 		if ((id->vendor == vendor) &&
187 		    (id->device == device) &&
188 		    (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189 		    (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190 		    !((id->class ^ class) & class_mask)) {
191 			list_del(&dynid->node);
192 			kfree(dynid);
193 			retval = count;
194 			break;
195 		}
196 	}
197 	spin_unlock(&pdrv->dynids.lock);
198 
199 	return retval;
200 }
201 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
202 
203 static struct attribute *pci_drv_attrs[] = {
204 	&driver_attr_new_id.attr,
205 	&driver_attr_remove_id.attr,
206 	NULL,
207 };
208 ATTRIBUTE_GROUPS(pci_drv);
209 
210 /**
211  * pci_match_id - See if a pci device matches a given pci_id table
212  * @ids: array of PCI device id structures to search in
213  * @dev: the PCI device structure to match against.
214  *
215  * Used by a driver to check whether a PCI device present in the
216  * system is in its list of supported devices.  Returns the matching
217  * pci_device_id structure or %NULL if there is no match.
218  *
219  * Deprecated, don't use this as it will not catch any dynamic ids
220  * that a driver might want to check for.
221  */
222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
223 					 struct pci_dev *dev)
224 {
225 	if (ids) {
226 		while (ids->vendor || ids->subvendor || ids->class_mask) {
227 			if (pci_match_one_device(ids, dev))
228 				return ids;
229 			ids++;
230 		}
231 	}
232 	return NULL;
233 }
234 EXPORT_SYMBOL(pci_match_id);
235 
236 static const struct pci_device_id pci_device_id_any = {
237 	.vendor = PCI_ANY_ID,
238 	.device = PCI_ANY_ID,
239 	.subvendor = PCI_ANY_ID,
240 	.subdevice = PCI_ANY_ID,
241 };
242 
243 /**
244  * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
245  * @drv: the PCI driver to match against
246  * @dev: the PCI device structure to match against
247  *
248  * Used by a driver to check whether a PCI device present in the
249  * system is in its list of supported devices.  Returns the matching
250  * pci_device_id structure or %NULL if there is no match.
251  */
252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
253 						    struct pci_dev *dev)
254 {
255 	struct pci_dynid *dynid;
256 	const struct pci_device_id *found_id = NULL;
257 
258 	/* When driver_override is set, only bind to the matching driver */
259 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
260 		return NULL;
261 
262 	/* Look at the dynamic ids first, before the static ones */
263 	spin_lock(&drv->dynids.lock);
264 	list_for_each_entry(dynid, &drv->dynids.list, node) {
265 		if (pci_match_one_device(&dynid->id, dev)) {
266 			found_id = &dynid->id;
267 			break;
268 		}
269 	}
270 	spin_unlock(&drv->dynids.lock);
271 
272 	if (!found_id)
273 		found_id = pci_match_id(drv->id_table, dev);
274 
275 	/* driver_override will always match, send a dummy id */
276 	if (!found_id && dev->driver_override)
277 		found_id = &pci_device_id_any;
278 
279 	return found_id;
280 }
281 
282 struct drv_dev_and_id {
283 	struct pci_driver *drv;
284 	struct pci_dev *dev;
285 	const struct pci_device_id *id;
286 };
287 
288 static long local_pci_probe(void *_ddi)
289 {
290 	struct drv_dev_and_id *ddi = _ddi;
291 	struct pci_dev *pci_dev = ddi->dev;
292 	struct pci_driver *pci_drv = ddi->drv;
293 	struct device *dev = &pci_dev->dev;
294 	int rc;
295 
296 	/*
297 	 * Unbound PCI devices are always put in D0, regardless of
298 	 * runtime PM status.  During probe, the device is set to
299 	 * active and the usage count is incremented.  If the driver
300 	 * supports runtime PM, it should call pm_runtime_put_noidle(),
301 	 * or any other runtime PM helper function decrementing the usage
302 	 * count, in its probe routine and pm_runtime_get_noresume() in
303 	 * its remove routine.
304 	 */
305 	pm_runtime_get_sync(dev);
306 	pci_dev->driver = pci_drv;
307 	rc = pci_drv->probe(pci_dev, ddi->id);
308 	if (!rc)
309 		return rc;
310 	if (rc < 0) {
311 		pci_dev->driver = NULL;
312 		pm_runtime_put_sync(dev);
313 		return rc;
314 	}
315 	/*
316 	 * Probe function should return < 0 for failure, 0 for success
317 	 * Treat values > 0 as success, but warn.
318 	 */
319 	dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
320 	return 0;
321 }
322 
323 static bool pci_physfn_is_probed(struct pci_dev *dev)
324 {
325 #ifdef CONFIG_PCI_IOV
326 	return dev->is_virtfn && dev->physfn->is_probed;
327 #else
328 	return false;
329 #endif
330 }
331 
332 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
333 			  const struct pci_device_id *id)
334 {
335 	int error, node, cpu;
336 	struct drv_dev_and_id ddi = { drv, dev, id };
337 
338 	/*
339 	 * Execute driver initialization on node where the device is
340 	 * attached.  This way the driver likely allocates its local memory
341 	 * on the right node.
342 	 */
343 	node = dev_to_node(&dev->dev);
344 	dev->is_probed = 1;
345 
346 	cpu_hotplug_disable();
347 
348 	/*
349 	 * Prevent nesting work_on_cpu() for the case where a Virtual Function
350 	 * device is probed from work_on_cpu() of the Physical device.
351 	 */
352 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node) ||
353 	    pci_physfn_is_probed(dev))
354 		cpu = nr_cpu_ids;
355 	else
356 		cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
357 
358 	if (cpu < nr_cpu_ids)
359 		error = work_on_cpu(cpu, local_pci_probe, &ddi);
360 	else
361 		error = local_pci_probe(&ddi);
362 
363 	dev->is_probed = 0;
364 	cpu_hotplug_enable();
365 	return error;
366 }
367 
368 /**
369  * __pci_device_probe - check if a driver wants to claim a specific PCI device
370  * @drv: driver to call to check if it wants the PCI device
371  * @pci_dev: PCI device being probed
372  *
373  * returns 0 on success, else error.
374  * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
375  */
376 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
377 {
378 	const struct pci_device_id *id;
379 	int error = 0;
380 
381 	if (!pci_dev->driver && drv->probe) {
382 		error = -ENODEV;
383 
384 		id = pci_match_device(drv, pci_dev);
385 		if (id)
386 			error = pci_call_probe(drv, pci_dev, id);
387 	}
388 	return error;
389 }
390 
391 int __weak pcibios_alloc_irq(struct pci_dev *dev)
392 {
393 	return 0;
394 }
395 
396 void __weak pcibios_free_irq(struct pci_dev *dev)
397 {
398 }
399 
400 #ifdef CONFIG_PCI_IOV
401 static inline bool pci_device_can_probe(struct pci_dev *pdev)
402 {
403 	return (!pdev->is_virtfn || pdev->physfn->sriov->drivers_autoprobe);
404 }
405 #else
406 static inline bool pci_device_can_probe(struct pci_dev *pdev)
407 {
408 	return true;
409 }
410 #endif
411 
412 static int pci_device_probe(struct device *dev)
413 {
414 	int error;
415 	struct pci_dev *pci_dev = to_pci_dev(dev);
416 	struct pci_driver *drv = to_pci_driver(dev->driver);
417 
418 	error = pcibios_alloc_irq(pci_dev);
419 	if (error < 0)
420 		return error;
421 
422 	pci_dev_get(pci_dev);
423 	if (pci_device_can_probe(pci_dev)) {
424 		error = __pci_device_probe(drv, pci_dev);
425 		if (error) {
426 			pcibios_free_irq(pci_dev);
427 			pci_dev_put(pci_dev);
428 		}
429 	}
430 
431 	return error;
432 }
433 
434 static int pci_device_remove(struct device *dev)
435 {
436 	struct pci_dev *pci_dev = to_pci_dev(dev);
437 	struct pci_driver *drv = pci_dev->driver;
438 
439 	if (drv) {
440 		if (drv->remove) {
441 			pm_runtime_get_sync(dev);
442 			drv->remove(pci_dev);
443 			pm_runtime_put_noidle(dev);
444 		}
445 		pcibios_free_irq(pci_dev);
446 		pci_dev->driver = NULL;
447 	}
448 
449 	/* Undo the runtime PM settings in local_pci_probe() */
450 	pm_runtime_put_sync(dev);
451 
452 	/*
453 	 * If the device is still on, set the power state as "unknown",
454 	 * since it might change by the next time we load the driver.
455 	 */
456 	if (pci_dev->current_state == PCI_D0)
457 		pci_dev->current_state = PCI_UNKNOWN;
458 
459 	/*
460 	 * We would love to complain here if pci_dev->is_enabled is set, that
461 	 * the driver should have called pci_disable_device(), but the
462 	 * unfortunate fact is there are too many odd BIOS and bridge setups
463 	 * that don't like drivers doing that all of the time.
464 	 * Oh well, we can dream of sane hardware when we sleep, no matter how
465 	 * horrible the crap we have to deal with is when we are awake...
466 	 */
467 
468 	pci_dev_put(pci_dev);
469 	return 0;
470 }
471 
472 static void pci_device_shutdown(struct device *dev)
473 {
474 	struct pci_dev *pci_dev = to_pci_dev(dev);
475 	struct pci_driver *drv = pci_dev->driver;
476 
477 	pm_runtime_resume(dev);
478 
479 	if (drv && drv->shutdown)
480 		drv->shutdown(pci_dev);
481 
482 	/*
483 	 * If this is a kexec reboot, turn off Bus Master bit on the
484 	 * device to tell it to not continue to do DMA. Don't touch
485 	 * devices in D3cold or unknown states.
486 	 * If it is not a kexec reboot, firmware will hit the PCI
487 	 * devices with big hammer and stop their DMA any way.
488 	 */
489 	if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
490 		pci_clear_master(pci_dev);
491 }
492 
493 #ifdef CONFIG_PM
494 
495 /* Auxiliary functions used for system resume and run-time resume. */
496 
497 /**
498  * pci_restore_standard_config - restore standard config registers of PCI device
499  * @pci_dev: PCI device to handle
500  */
501 static int pci_restore_standard_config(struct pci_dev *pci_dev)
502 {
503 	pci_update_current_state(pci_dev, PCI_UNKNOWN);
504 
505 	if (pci_dev->current_state != PCI_D0) {
506 		int error = pci_set_power_state(pci_dev, PCI_D0);
507 		if (error)
508 			return error;
509 	}
510 
511 	pci_restore_state(pci_dev);
512 	return 0;
513 }
514 
515 #endif
516 
517 #ifdef CONFIG_PM_SLEEP
518 
519 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
520 {
521 	pci_power_up(pci_dev);
522 	pci_restore_state(pci_dev);
523 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
524 }
525 
526 /*
527  * Default "suspend" method for devices that have no driver provided suspend,
528  * or not even a driver at all (second part).
529  */
530 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
531 {
532 	/*
533 	 * mark its power state as "unknown", since we don't know if
534 	 * e.g. the BIOS will change its device state when we suspend.
535 	 */
536 	if (pci_dev->current_state == PCI_D0)
537 		pci_dev->current_state = PCI_UNKNOWN;
538 }
539 
540 /*
541  * Default "resume" method for devices that have no driver provided resume,
542  * or not even a driver at all (second part).
543  */
544 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
545 {
546 	int retval;
547 
548 	/* if the device was enabled before suspend, reenable */
549 	retval = pci_reenable_device(pci_dev);
550 	/*
551 	 * if the device was busmaster before the suspend, make it busmaster
552 	 * again
553 	 */
554 	if (pci_dev->is_busmaster)
555 		pci_set_master(pci_dev);
556 
557 	return retval;
558 }
559 
560 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
561 {
562 	struct pci_dev *pci_dev = to_pci_dev(dev);
563 	struct pci_driver *drv = pci_dev->driver;
564 
565 	if (drv && drv->suspend) {
566 		pci_power_t prev = pci_dev->current_state;
567 		int error;
568 
569 		error = drv->suspend(pci_dev, state);
570 		suspend_report_result(drv->suspend, error);
571 		if (error)
572 			return error;
573 
574 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
575 		    && pci_dev->current_state != PCI_UNKNOWN) {
576 			WARN_ONCE(pci_dev->current_state != prev,
577 				"PCI PM: Device state not saved by %pF\n",
578 				drv->suspend);
579 		}
580 	}
581 
582 	pci_fixup_device(pci_fixup_suspend, pci_dev);
583 
584 	return 0;
585 }
586 
587 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
588 {
589 	struct pci_dev *pci_dev = to_pci_dev(dev);
590 	struct pci_driver *drv = pci_dev->driver;
591 
592 	if (drv && drv->suspend_late) {
593 		pci_power_t prev = pci_dev->current_state;
594 		int error;
595 
596 		error = drv->suspend_late(pci_dev, state);
597 		suspend_report_result(drv->suspend_late, error);
598 		if (error)
599 			return error;
600 
601 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
602 		    && pci_dev->current_state != PCI_UNKNOWN) {
603 			WARN_ONCE(pci_dev->current_state != prev,
604 				"PCI PM: Device state not saved by %pF\n",
605 				drv->suspend_late);
606 			goto Fixup;
607 		}
608 	}
609 
610 	if (!pci_dev->state_saved)
611 		pci_save_state(pci_dev);
612 
613 	pci_pm_set_unknown_state(pci_dev);
614 
615 Fixup:
616 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
617 
618 	return 0;
619 }
620 
621 static int pci_legacy_resume_early(struct device *dev)
622 {
623 	struct pci_dev *pci_dev = to_pci_dev(dev);
624 	struct pci_driver *drv = pci_dev->driver;
625 
626 	return drv && drv->resume_early ?
627 			drv->resume_early(pci_dev) : 0;
628 }
629 
630 static int pci_legacy_resume(struct device *dev)
631 {
632 	struct pci_dev *pci_dev = to_pci_dev(dev);
633 	struct pci_driver *drv = pci_dev->driver;
634 
635 	pci_fixup_device(pci_fixup_resume, pci_dev);
636 
637 	return drv && drv->resume ?
638 			drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
639 }
640 
641 /* Auxiliary functions used by the new power management framework */
642 
643 static void pci_pm_default_resume(struct pci_dev *pci_dev)
644 {
645 	pci_fixup_device(pci_fixup_resume, pci_dev);
646 
647 	if (!pci_has_subordinate(pci_dev))
648 		pci_enable_wake(pci_dev, PCI_D0, false);
649 }
650 
651 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
652 {
653 	/* Disable non-bridge devices without PM support */
654 	if (!pci_has_subordinate(pci_dev))
655 		pci_disable_enabled_device(pci_dev);
656 }
657 
658 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
659 {
660 	struct pci_driver *drv = pci_dev->driver;
661 	bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
662 		|| drv->resume_early);
663 
664 	/*
665 	 * Legacy PM support is used by default, so warn if the new framework is
666 	 * supported as well.  Drivers are supposed to support either the
667 	 * former, or the latter, but not both at the same time.
668 	 */
669 	WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
670 		drv->name, pci_dev->vendor, pci_dev->device);
671 
672 	return ret;
673 }
674 
675 /* New power management framework */
676 
677 static int pci_pm_prepare(struct device *dev)
678 {
679 	struct device_driver *drv = dev->driver;
680 
681 	/*
682 	 * Devices having power.ignore_children set may still be necessary for
683 	 * suspending their children in the next phase of device suspend.
684 	 */
685 	if (dev->power.ignore_children)
686 		pm_runtime_resume(dev);
687 
688 	if (drv && drv->pm && drv->pm->prepare) {
689 		int error = drv->pm->prepare(dev);
690 		if (error)
691 			return error;
692 	}
693 	return pci_dev_keep_suspended(to_pci_dev(dev));
694 }
695 
696 static void pci_pm_complete(struct device *dev)
697 {
698 	struct pci_dev *pci_dev = to_pci_dev(dev);
699 
700 	pci_dev_complete_resume(pci_dev);
701 	pm_generic_complete(dev);
702 
703 	/* Resume device if platform firmware has put it in reset-power-on */
704 	if (dev->power.direct_complete && pm_resume_via_firmware()) {
705 		pci_power_t pre_sleep_state = pci_dev->current_state;
706 
707 		pci_update_current_state(pci_dev, pci_dev->current_state);
708 		if (pci_dev->current_state < pre_sleep_state)
709 			pm_request_resume(dev);
710 	}
711 }
712 
713 #else /* !CONFIG_PM_SLEEP */
714 
715 #define pci_pm_prepare	NULL
716 #define pci_pm_complete	NULL
717 
718 #endif /* !CONFIG_PM_SLEEP */
719 
720 #ifdef CONFIG_SUSPEND
721 
722 static int pci_pm_suspend(struct device *dev)
723 {
724 	struct pci_dev *pci_dev = to_pci_dev(dev);
725 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
726 
727 	if (pci_has_legacy_pm_support(pci_dev))
728 		return pci_legacy_suspend(dev, PMSG_SUSPEND);
729 
730 	if (!pm) {
731 		pci_pm_default_suspend(pci_dev);
732 		goto Fixup;
733 	}
734 
735 	/*
736 	 * PCI devices suspended at run time need to be resumed at this point,
737 	 * because in general it is necessary to reconfigure them for system
738 	 * suspend.  Namely, if the device is supposed to wake up the system
739 	 * from the sleep state, we may need to reconfigure it for this purpose.
740 	 * In turn, if the device is not supposed to wake up the system from the
741 	 * sleep state, we'll have to prevent it from signaling wake-up.
742 	 */
743 	pm_runtime_resume(dev);
744 
745 	pci_dev->state_saved = false;
746 	if (pm->suspend) {
747 		pci_power_t prev = pci_dev->current_state;
748 		int error;
749 
750 		error = pm->suspend(dev);
751 		suspend_report_result(pm->suspend, error);
752 		if (error)
753 			return error;
754 
755 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
756 		    && pci_dev->current_state != PCI_UNKNOWN) {
757 			WARN_ONCE(pci_dev->current_state != prev,
758 				"PCI PM: State of device not saved by %pF\n",
759 				pm->suspend);
760 		}
761 	}
762 
763  Fixup:
764 	pci_fixup_device(pci_fixup_suspend, pci_dev);
765 
766 	return 0;
767 }
768 
769 static int pci_pm_suspend_noirq(struct device *dev)
770 {
771 	struct pci_dev *pci_dev = to_pci_dev(dev);
772 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
773 
774 	if (pci_has_legacy_pm_support(pci_dev))
775 		return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
776 
777 	if (!pm) {
778 		pci_save_state(pci_dev);
779 		goto Fixup;
780 	}
781 
782 	if (pm->suspend_noirq) {
783 		pci_power_t prev = pci_dev->current_state;
784 		int error;
785 
786 		error = pm->suspend_noirq(dev);
787 		suspend_report_result(pm->suspend_noirq, error);
788 		if (error)
789 			return error;
790 
791 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
792 		    && pci_dev->current_state != PCI_UNKNOWN) {
793 			WARN_ONCE(pci_dev->current_state != prev,
794 				"PCI PM: State of device not saved by %pF\n",
795 				pm->suspend_noirq);
796 			goto Fixup;
797 		}
798 	}
799 
800 	if (!pci_dev->state_saved) {
801 		pci_save_state(pci_dev);
802 		if (pci_power_manageable(pci_dev))
803 			pci_prepare_to_sleep(pci_dev);
804 	}
805 
806 	pci_pm_set_unknown_state(pci_dev);
807 
808 	/*
809 	 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
810 	 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
811 	 * hasn't been quiesced and tries to turn it off.  If the controller
812 	 * is already in D3, this can hang or cause memory corruption.
813 	 *
814 	 * Since the value of the COMMAND register doesn't matter once the
815 	 * device has been suspended, we can safely set it to 0 here.
816 	 */
817 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
818 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
819 
820 Fixup:
821 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
822 
823 	return 0;
824 }
825 
826 static int pci_pm_resume_noirq(struct device *dev)
827 {
828 	struct pci_dev *pci_dev = to_pci_dev(dev);
829 	struct device_driver *drv = dev->driver;
830 	int error = 0;
831 
832 	pci_pm_default_resume_early(pci_dev);
833 
834 	if (pci_has_legacy_pm_support(pci_dev))
835 		return pci_legacy_resume_early(dev);
836 
837 	if (drv && drv->pm && drv->pm->resume_noirq)
838 		error = drv->pm->resume_noirq(dev);
839 
840 	return error;
841 }
842 
843 static int pci_pm_resume(struct device *dev)
844 {
845 	struct pci_dev *pci_dev = to_pci_dev(dev);
846 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
847 	int error = 0;
848 
849 	/*
850 	 * This is necessary for the suspend error path in which resume is
851 	 * called without restoring the standard config registers of the device.
852 	 */
853 	if (pci_dev->state_saved)
854 		pci_restore_standard_config(pci_dev);
855 
856 	if (pci_has_legacy_pm_support(pci_dev))
857 		return pci_legacy_resume(dev);
858 
859 	pci_pm_default_resume(pci_dev);
860 
861 	if (pm) {
862 		if (pm->resume)
863 			error = pm->resume(dev);
864 	} else {
865 		pci_pm_reenable_device(pci_dev);
866 	}
867 
868 	return error;
869 }
870 
871 #else /* !CONFIG_SUSPEND */
872 
873 #define pci_pm_suspend		NULL
874 #define pci_pm_suspend_noirq	NULL
875 #define pci_pm_resume		NULL
876 #define pci_pm_resume_noirq	NULL
877 
878 #endif /* !CONFIG_SUSPEND */
879 
880 #ifdef CONFIG_HIBERNATE_CALLBACKS
881 
882 
883 /*
884  * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
885  * a hibernate transition
886  */
887 struct dev_pm_ops __weak pcibios_pm_ops;
888 
889 static int pci_pm_freeze(struct device *dev)
890 {
891 	struct pci_dev *pci_dev = to_pci_dev(dev);
892 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
893 
894 	if (pci_has_legacy_pm_support(pci_dev))
895 		return pci_legacy_suspend(dev, PMSG_FREEZE);
896 
897 	if (!pm) {
898 		pci_pm_default_suspend(pci_dev);
899 		return 0;
900 	}
901 
902 	/*
903 	 * This used to be done in pci_pm_prepare() for all devices and some
904 	 * drivers may depend on it, so do it here.  Ideally, runtime-suspended
905 	 * devices should not be touched during freeze/thaw transitions,
906 	 * however.
907 	 */
908 	pm_runtime_resume(dev);
909 
910 	pci_dev->state_saved = false;
911 	if (pm->freeze) {
912 		int error;
913 
914 		error = pm->freeze(dev);
915 		suspend_report_result(pm->freeze, error);
916 		if (error)
917 			return error;
918 	}
919 
920 	if (pcibios_pm_ops.freeze)
921 		return pcibios_pm_ops.freeze(dev);
922 
923 	return 0;
924 }
925 
926 static int pci_pm_freeze_noirq(struct device *dev)
927 {
928 	struct pci_dev *pci_dev = to_pci_dev(dev);
929 	struct device_driver *drv = dev->driver;
930 
931 	if (pci_has_legacy_pm_support(pci_dev))
932 		return pci_legacy_suspend_late(dev, PMSG_FREEZE);
933 
934 	if (drv && drv->pm && drv->pm->freeze_noirq) {
935 		int error;
936 
937 		error = drv->pm->freeze_noirq(dev);
938 		suspend_report_result(drv->pm->freeze_noirq, error);
939 		if (error)
940 			return error;
941 	}
942 
943 	if (!pci_dev->state_saved)
944 		pci_save_state(pci_dev);
945 
946 	pci_pm_set_unknown_state(pci_dev);
947 
948 	if (pcibios_pm_ops.freeze_noirq)
949 		return pcibios_pm_ops.freeze_noirq(dev);
950 
951 	return 0;
952 }
953 
954 static int pci_pm_thaw_noirq(struct device *dev)
955 {
956 	struct pci_dev *pci_dev = to_pci_dev(dev);
957 	struct device_driver *drv = dev->driver;
958 	int error = 0;
959 
960 	if (pcibios_pm_ops.thaw_noirq) {
961 		error = pcibios_pm_ops.thaw_noirq(dev);
962 		if (error)
963 			return error;
964 	}
965 
966 	if (pci_has_legacy_pm_support(pci_dev))
967 		return pci_legacy_resume_early(dev);
968 
969 	pci_update_current_state(pci_dev, PCI_D0);
970 
971 	if (drv && drv->pm && drv->pm->thaw_noirq)
972 		error = drv->pm->thaw_noirq(dev);
973 
974 	return error;
975 }
976 
977 static int pci_pm_thaw(struct device *dev)
978 {
979 	struct pci_dev *pci_dev = to_pci_dev(dev);
980 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
981 	int error = 0;
982 
983 	if (pcibios_pm_ops.thaw) {
984 		error = pcibios_pm_ops.thaw(dev);
985 		if (error)
986 			return error;
987 	}
988 
989 	if (pci_has_legacy_pm_support(pci_dev))
990 		return pci_legacy_resume(dev);
991 
992 	if (pm) {
993 		if (pm->thaw)
994 			error = pm->thaw(dev);
995 	} else {
996 		pci_pm_reenable_device(pci_dev);
997 	}
998 
999 	pci_dev->state_saved = false;
1000 
1001 	return error;
1002 }
1003 
1004 static int pci_pm_poweroff(struct device *dev)
1005 {
1006 	struct pci_dev *pci_dev = to_pci_dev(dev);
1007 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1008 
1009 	if (pci_has_legacy_pm_support(pci_dev))
1010 		return pci_legacy_suspend(dev, PMSG_HIBERNATE);
1011 
1012 	if (!pm) {
1013 		pci_pm_default_suspend(pci_dev);
1014 		goto Fixup;
1015 	}
1016 
1017 	/* The reason to do that is the same as in pci_pm_suspend(). */
1018 	pm_runtime_resume(dev);
1019 
1020 	pci_dev->state_saved = false;
1021 	if (pm->poweroff) {
1022 		int error;
1023 
1024 		error = pm->poweroff(dev);
1025 		suspend_report_result(pm->poweroff, error);
1026 		if (error)
1027 			return error;
1028 	}
1029 
1030  Fixup:
1031 	pci_fixup_device(pci_fixup_suspend, pci_dev);
1032 
1033 	if (pcibios_pm_ops.poweroff)
1034 		return pcibios_pm_ops.poweroff(dev);
1035 
1036 	return 0;
1037 }
1038 
1039 static int pci_pm_poweroff_noirq(struct device *dev)
1040 {
1041 	struct pci_dev *pci_dev = to_pci_dev(dev);
1042 	struct device_driver *drv = dev->driver;
1043 
1044 	if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1045 		return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1046 
1047 	if (!drv || !drv->pm) {
1048 		pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1049 		return 0;
1050 	}
1051 
1052 	if (drv->pm->poweroff_noirq) {
1053 		int error;
1054 
1055 		error = drv->pm->poweroff_noirq(dev);
1056 		suspend_report_result(drv->pm->poweroff_noirq, error);
1057 		if (error)
1058 			return error;
1059 	}
1060 
1061 	if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1062 		pci_prepare_to_sleep(pci_dev);
1063 
1064 	/*
1065 	 * The reason for doing this here is the same as for the analogous code
1066 	 * in pci_pm_suspend_noirq().
1067 	 */
1068 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1069 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1070 
1071 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1072 
1073 	if (pcibios_pm_ops.poweroff_noirq)
1074 		return pcibios_pm_ops.poweroff_noirq(dev);
1075 
1076 	return 0;
1077 }
1078 
1079 static int pci_pm_restore_noirq(struct device *dev)
1080 {
1081 	struct pci_dev *pci_dev = to_pci_dev(dev);
1082 	struct device_driver *drv = dev->driver;
1083 	int error = 0;
1084 
1085 	if (pcibios_pm_ops.restore_noirq) {
1086 		error = pcibios_pm_ops.restore_noirq(dev);
1087 		if (error)
1088 			return error;
1089 	}
1090 
1091 	pci_pm_default_resume_early(pci_dev);
1092 
1093 	if (pci_has_legacy_pm_support(pci_dev))
1094 		return pci_legacy_resume_early(dev);
1095 
1096 	if (drv && drv->pm && drv->pm->restore_noirq)
1097 		error = drv->pm->restore_noirq(dev);
1098 
1099 	return error;
1100 }
1101 
1102 static int pci_pm_restore(struct device *dev)
1103 {
1104 	struct pci_dev *pci_dev = to_pci_dev(dev);
1105 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1106 	int error = 0;
1107 
1108 	if (pcibios_pm_ops.restore) {
1109 		error = pcibios_pm_ops.restore(dev);
1110 		if (error)
1111 			return error;
1112 	}
1113 
1114 	/*
1115 	 * This is necessary for the hibernation error path in which restore is
1116 	 * called without restoring the standard config registers of the device.
1117 	 */
1118 	if (pci_dev->state_saved)
1119 		pci_restore_standard_config(pci_dev);
1120 
1121 	if (pci_has_legacy_pm_support(pci_dev))
1122 		return pci_legacy_resume(dev);
1123 
1124 	pci_pm_default_resume(pci_dev);
1125 
1126 	if (pm) {
1127 		if (pm->restore)
1128 			error = pm->restore(dev);
1129 	} else {
1130 		pci_pm_reenable_device(pci_dev);
1131 	}
1132 
1133 	return error;
1134 }
1135 
1136 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1137 
1138 #define pci_pm_freeze		NULL
1139 #define pci_pm_freeze_noirq	NULL
1140 #define pci_pm_thaw		NULL
1141 #define pci_pm_thaw_noirq	NULL
1142 #define pci_pm_poweroff		NULL
1143 #define pci_pm_poweroff_noirq	NULL
1144 #define pci_pm_restore		NULL
1145 #define pci_pm_restore_noirq	NULL
1146 
1147 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1148 
1149 #ifdef CONFIG_PM
1150 
1151 static int pci_pm_runtime_suspend(struct device *dev)
1152 {
1153 	struct pci_dev *pci_dev = to_pci_dev(dev);
1154 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1155 	pci_power_t prev = pci_dev->current_state;
1156 	int error;
1157 
1158 	/*
1159 	 * If pci_dev->driver is not set (unbound), the device should
1160 	 * always remain in D0 regardless of the runtime PM status
1161 	 */
1162 	if (!pci_dev->driver)
1163 		return 0;
1164 
1165 	if (!pm || !pm->runtime_suspend)
1166 		return -ENOSYS;
1167 
1168 	pci_dev->state_saved = false;
1169 	error = pm->runtime_suspend(dev);
1170 	if (error) {
1171 		/*
1172 		 * -EBUSY and -EAGAIN is used to request the runtime PM core
1173 		 * to schedule a new suspend, so log the event only with debug
1174 		 * log level.
1175 		 */
1176 		if (error == -EBUSY || error == -EAGAIN)
1177 			dev_dbg(dev, "can't suspend now (%pf returned %d)\n",
1178 				pm->runtime_suspend, error);
1179 		else
1180 			dev_err(dev, "can't suspend (%pf returned %d)\n",
1181 				pm->runtime_suspend, error);
1182 
1183 		return error;
1184 	}
1185 
1186 	pci_fixup_device(pci_fixup_suspend, pci_dev);
1187 
1188 	if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1189 	    && pci_dev->current_state != PCI_UNKNOWN) {
1190 		WARN_ONCE(pci_dev->current_state != prev,
1191 			"PCI PM: State of device not saved by %pF\n",
1192 			pm->runtime_suspend);
1193 		return 0;
1194 	}
1195 
1196 	if (!pci_dev->state_saved) {
1197 		pci_save_state(pci_dev);
1198 		pci_finish_runtime_suspend(pci_dev);
1199 	}
1200 
1201 	return 0;
1202 }
1203 
1204 static int pci_pm_runtime_resume(struct device *dev)
1205 {
1206 	int rc;
1207 	struct pci_dev *pci_dev = to_pci_dev(dev);
1208 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1209 
1210 	/*
1211 	 * If pci_dev->driver is not set (unbound), the device should
1212 	 * always remain in D0 regardless of the runtime PM status
1213 	 */
1214 	if (!pci_dev->driver)
1215 		return 0;
1216 
1217 	if (!pm || !pm->runtime_resume)
1218 		return -ENOSYS;
1219 
1220 	pci_restore_standard_config(pci_dev);
1221 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
1222 	__pci_enable_wake(pci_dev, PCI_D0, true, false);
1223 	pci_fixup_device(pci_fixup_resume, pci_dev);
1224 
1225 	rc = pm->runtime_resume(dev);
1226 
1227 	pci_dev->runtime_d3cold = false;
1228 
1229 	return rc;
1230 }
1231 
1232 static int pci_pm_runtime_idle(struct device *dev)
1233 {
1234 	struct pci_dev *pci_dev = to_pci_dev(dev);
1235 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1236 	int ret = 0;
1237 
1238 	/*
1239 	 * If pci_dev->driver is not set (unbound), the device should
1240 	 * always remain in D0 regardless of the runtime PM status
1241 	 */
1242 	if (!pci_dev->driver)
1243 		return 0;
1244 
1245 	if (!pm)
1246 		return -ENOSYS;
1247 
1248 	if (pm->runtime_idle)
1249 		ret = pm->runtime_idle(dev);
1250 
1251 	return ret;
1252 }
1253 
1254 static const struct dev_pm_ops pci_dev_pm_ops = {
1255 	.prepare = pci_pm_prepare,
1256 	.complete = pci_pm_complete,
1257 	.suspend = pci_pm_suspend,
1258 	.resume = pci_pm_resume,
1259 	.freeze = pci_pm_freeze,
1260 	.thaw = pci_pm_thaw,
1261 	.poweroff = pci_pm_poweroff,
1262 	.restore = pci_pm_restore,
1263 	.suspend_noirq = pci_pm_suspend_noirq,
1264 	.resume_noirq = pci_pm_resume_noirq,
1265 	.freeze_noirq = pci_pm_freeze_noirq,
1266 	.thaw_noirq = pci_pm_thaw_noirq,
1267 	.poweroff_noirq = pci_pm_poweroff_noirq,
1268 	.restore_noirq = pci_pm_restore_noirq,
1269 	.runtime_suspend = pci_pm_runtime_suspend,
1270 	.runtime_resume = pci_pm_runtime_resume,
1271 	.runtime_idle = pci_pm_runtime_idle,
1272 };
1273 
1274 #define PCI_PM_OPS_PTR	(&pci_dev_pm_ops)
1275 
1276 #else /* !CONFIG_PM */
1277 
1278 #define pci_pm_runtime_suspend	NULL
1279 #define pci_pm_runtime_resume	NULL
1280 #define pci_pm_runtime_idle	NULL
1281 
1282 #define PCI_PM_OPS_PTR	NULL
1283 
1284 #endif /* !CONFIG_PM */
1285 
1286 /**
1287  * __pci_register_driver - register a new pci driver
1288  * @drv: the driver structure to register
1289  * @owner: owner module of drv
1290  * @mod_name: module name string
1291  *
1292  * Adds the driver structure to the list of registered drivers.
1293  * Returns a negative value on error, otherwise 0.
1294  * If no error occurred, the driver remains registered even if
1295  * no device was claimed during registration.
1296  */
1297 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1298 			  const char *mod_name)
1299 {
1300 	/* initialize common driver fields */
1301 	drv->driver.name = drv->name;
1302 	drv->driver.bus = &pci_bus_type;
1303 	drv->driver.owner = owner;
1304 	drv->driver.mod_name = mod_name;
1305 
1306 	spin_lock_init(&drv->dynids.lock);
1307 	INIT_LIST_HEAD(&drv->dynids.list);
1308 
1309 	/* register with core */
1310 	return driver_register(&drv->driver);
1311 }
1312 EXPORT_SYMBOL(__pci_register_driver);
1313 
1314 /**
1315  * pci_unregister_driver - unregister a pci driver
1316  * @drv: the driver structure to unregister
1317  *
1318  * Deletes the driver structure from the list of registered PCI drivers,
1319  * gives it a chance to clean up by calling its remove() function for
1320  * each device it was responsible for, and marks those devices as
1321  * driverless.
1322  */
1323 
1324 void pci_unregister_driver(struct pci_driver *drv)
1325 {
1326 	driver_unregister(&drv->driver);
1327 	pci_free_dynids(drv);
1328 }
1329 EXPORT_SYMBOL(pci_unregister_driver);
1330 
1331 static struct pci_driver pci_compat_driver = {
1332 	.name = "compat"
1333 };
1334 
1335 /**
1336  * pci_dev_driver - get the pci_driver of a device
1337  * @dev: the device to query
1338  *
1339  * Returns the appropriate pci_driver structure or %NULL if there is no
1340  * registered driver for the device.
1341  */
1342 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1343 {
1344 	if (dev->driver)
1345 		return dev->driver;
1346 	else {
1347 		int i;
1348 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1349 			if (dev->resource[i].flags & IORESOURCE_BUSY)
1350 				return &pci_compat_driver;
1351 	}
1352 	return NULL;
1353 }
1354 EXPORT_SYMBOL(pci_dev_driver);
1355 
1356 /**
1357  * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1358  * @dev: the PCI device structure to match against
1359  * @drv: the device driver to search for matching PCI device id structures
1360  *
1361  * Used by a driver to check whether a PCI device present in the
1362  * system is in its list of supported devices. Returns the matching
1363  * pci_device_id structure or %NULL if there is no match.
1364  */
1365 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1366 {
1367 	struct pci_dev *pci_dev = to_pci_dev(dev);
1368 	struct pci_driver *pci_drv;
1369 	const struct pci_device_id *found_id;
1370 
1371 	if (!pci_dev->match_driver)
1372 		return 0;
1373 
1374 	pci_drv = to_pci_driver(drv);
1375 	found_id = pci_match_device(pci_drv, pci_dev);
1376 	if (found_id)
1377 		return 1;
1378 
1379 	return 0;
1380 }
1381 
1382 /**
1383  * pci_dev_get - increments the reference count of the pci device structure
1384  * @dev: the device being referenced
1385  *
1386  * Each live reference to a device should be refcounted.
1387  *
1388  * Drivers for PCI devices should normally record such references in
1389  * their probe() methods, when they bind to a device, and release
1390  * them by calling pci_dev_put(), in their disconnect() methods.
1391  *
1392  * A pointer to the device with the incremented reference counter is returned.
1393  */
1394 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1395 {
1396 	if (dev)
1397 		get_device(&dev->dev);
1398 	return dev;
1399 }
1400 EXPORT_SYMBOL(pci_dev_get);
1401 
1402 /**
1403  * pci_dev_put - release a use of the pci device structure
1404  * @dev: device that's been disconnected
1405  *
1406  * Must be called when a user of a device is finished with it.  When the last
1407  * user of the device calls this function, the memory of the device is freed.
1408  */
1409 void pci_dev_put(struct pci_dev *dev)
1410 {
1411 	if (dev)
1412 		put_device(&dev->dev);
1413 }
1414 EXPORT_SYMBOL(pci_dev_put);
1415 
1416 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1417 {
1418 	struct pci_dev *pdev;
1419 
1420 	if (!dev)
1421 		return -ENODEV;
1422 
1423 	pdev = to_pci_dev(dev);
1424 
1425 	if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1426 		return -ENOMEM;
1427 
1428 	if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1429 		return -ENOMEM;
1430 
1431 	if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1432 			   pdev->subsystem_device))
1433 		return -ENOMEM;
1434 
1435 	if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1436 		return -ENOMEM;
1437 
1438 	if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1439 			   pdev->vendor, pdev->device,
1440 			   pdev->subsystem_vendor, pdev->subsystem_device,
1441 			   (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1442 			   (u8)(pdev->class)))
1443 		return -ENOMEM;
1444 
1445 	return 0;
1446 }
1447 
1448 static int pci_bus_num_vf(struct device *dev)
1449 {
1450 	return pci_num_vf(to_pci_dev(dev));
1451 }
1452 
1453 struct bus_type pci_bus_type = {
1454 	.name		= "pci",
1455 	.match		= pci_bus_match,
1456 	.uevent		= pci_uevent,
1457 	.probe		= pci_device_probe,
1458 	.remove		= pci_device_remove,
1459 	.shutdown	= pci_device_shutdown,
1460 	.dev_groups	= pci_dev_groups,
1461 	.bus_groups	= pci_bus_groups,
1462 	.drv_groups	= pci_drv_groups,
1463 	.pm		= PCI_PM_OPS_PTR,
1464 	.num_vf		= pci_bus_num_vf,
1465 };
1466 EXPORT_SYMBOL(pci_bus_type);
1467 
1468 static int __init pci_driver_init(void)
1469 {
1470 	return bus_register(&pci_bus_type);
1471 }
1472 postcore_initcall(pci_driver_init);
1473