1 /* 2 * drivers/pci/pci-driver.c 3 * 4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com> 5 * (C) Copyright 2007 Novell Inc. 6 * 7 * Released under the GPL v2 only. 8 * 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/device.h> 15 #include <linux/mempolicy.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/cpu.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/suspend.h> 22 #include <linux/kexec.h> 23 #include "pci.h" 24 25 struct pci_dynid { 26 struct list_head node; 27 struct pci_device_id id; 28 }; 29 30 /** 31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices 32 * @drv: target pci driver 33 * @vendor: PCI vendor ID 34 * @device: PCI device ID 35 * @subvendor: PCI subvendor ID 36 * @subdevice: PCI subdevice ID 37 * @class: PCI class 38 * @class_mask: PCI class mask 39 * @driver_data: private driver data 40 * 41 * Adds a new dynamic pci device ID to this driver and causes the 42 * driver to probe for all devices again. @drv must have been 43 * registered prior to calling this function. 44 * 45 * CONTEXT: 46 * Does GFP_KERNEL allocation. 47 * 48 * RETURNS: 49 * 0 on success, -errno on failure. 50 */ 51 int pci_add_dynid(struct pci_driver *drv, 52 unsigned int vendor, unsigned int device, 53 unsigned int subvendor, unsigned int subdevice, 54 unsigned int class, unsigned int class_mask, 55 unsigned long driver_data) 56 { 57 struct pci_dynid *dynid; 58 int retval; 59 60 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 61 if (!dynid) 62 return -ENOMEM; 63 64 dynid->id.vendor = vendor; 65 dynid->id.device = device; 66 dynid->id.subvendor = subvendor; 67 dynid->id.subdevice = subdevice; 68 dynid->id.class = class; 69 dynid->id.class_mask = class_mask; 70 dynid->id.driver_data = driver_data; 71 72 spin_lock(&drv->dynids.lock); 73 list_add_tail(&dynid->node, &drv->dynids.list); 74 spin_unlock(&drv->dynids.lock); 75 76 retval = driver_attach(&drv->driver); 77 78 return retval; 79 } 80 EXPORT_SYMBOL_GPL(pci_add_dynid); 81 82 static void pci_free_dynids(struct pci_driver *drv) 83 { 84 struct pci_dynid *dynid, *n; 85 86 spin_lock(&drv->dynids.lock); 87 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 88 list_del(&dynid->node); 89 kfree(dynid); 90 } 91 spin_unlock(&drv->dynids.lock); 92 } 93 94 /** 95 * store_new_id - sysfs frontend to pci_add_dynid() 96 * @driver: target device driver 97 * @buf: buffer for scanning device ID data 98 * @count: input size 99 * 100 * Allow PCI IDs to be added to an existing driver via sysfs. 101 */ 102 static ssize_t store_new_id(struct device_driver *driver, const char *buf, 103 size_t count) 104 { 105 struct pci_driver *pdrv = to_pci_driver(driver); 106 const struct pci_device_id *ids = pdrv->id_table; 107 __u32 vendor, device, subvendor = PCI_ANY_ID, 108 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 109 unsigned long driver_data = 0; 110 int fields = 0; 111 int retval = 0; 112 113 fields = sscanf(buf, "%x %x %x %x %x %x %lx", 114 &vendor, &device, &subvendor, &subdevice, 115 &class, &class_mask, &driver_data); 116 if (fields < 2) 117 return -EINVAL; 118 119 if (fields != 7) { 120 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); 121 if (!pdev) 122 return -ENOMEM; 123 124 pdev->vendor = vendor; 125 pdev->device = device; 126 pdev->subsystem_vendor = subvendor; 127 pdev->subsystem_device = subdevice; 128 pdev->class = class; 129 130 if (pci_match_id(pdrv->id_table, pdev)) 131 retval = -EEXIST; 132 133 kfree(pdev); 134 135 if (retval) 136 return retval; 137 } 138 139 /* Only accept driver_data values that match an existing id_table 140 entry */ 141 if (ids) { 142 retval = -EINVAL; 143 while (ids->vendor || ids->subvendor || ids->class_mask) { 144 if (driver_data == ids->driver_data) { 145 retval = 0; 146 break; 147 } 148 ids++; 149 } 150 if (retval) /* No match */ 151 return retval; 152 } 153 154 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice, 155 class, class_mask, driver_data); 156 if (retval) 157 return retval; 158 return count; 159 } 160 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id); 161 162 /** 163 * store_remove_id - remove a PCI device ID from this driver 164 * @driver: target device driver 165 * @buf: buffer for scanning device ID data 166 * @count: input size 167 * 168 * Removes a dynamic pci device ID to this driver. 169 */ 170 static ssize_t store_remove_id(struct device_driver *driver, const char *buf, 171 size_t count) 172 { 173 struct pci_dynid *dynid, *n; 174 struct pci_driver *pdrv = to_pci_driver(driver); 175 __u32 vendor, device, subvendor = PCI_ANY_ID, 176 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 177 int fields = 0; 178 int retval = -ENODEV; 179 180 fields = sscanf(buf, "%x %x %x %x %x %x", 181 &vendor, &device, &subvendor, &subdevice, 182 &class, &class_mask); 183 if (fields < 2) 184 return -EINVAL; 185 186 spin_lock(&pdrv->dynids.lock); 187 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) { 188 struct pci_device_id *id = &dynid->id; 189 if ((id->vendor == vendor) && 190 (id->device == device) && 191 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) && 192 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) && 193 !((id->class ^ class) & class_mask)) { 194 list_del(&dynid->node); 195 kfree(dynid); 196 retval = 0; 197 break; 198 } 199 } 200 spin_unlock(&pdrv->dynids.lock); 201 202 if (retval) 203 return retval; 204 return count; 205 } 206 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id); 207 208 static struct attribute *pci_drv_attrs[] = { 209 &driver_attr_new_id.attr, 210 &driver_attr_remove_id.attr, 211 NULL, 212 }; 213 ATTRIBUTE_GROUPS(pci_drv); 214 215 /** 216 * pci_match_id - See if a pci device matches a given pci_id table 217 * @ids: array of PCI device id structures to search in 218 * @dev: the PCI device structure to match against. 219 * 220 * Used by a driver to check whether a PCI device present in the 221 * system is in its list of supported devices. Returns the matching 222 * pci_device_id structure or %NULL if there is no match. 223 * 224 * Deprecated, don't use this as it will not catch any dynamic ids 225 * that a driver might want to check for. 226 */ 227 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids, 228 struct pci_dev *dev) 229 { 230 if (ids) { 231 while (ids->vendor || ids->subvendor || ids->class_mask) { 232 if (pci_match_one_device(ids, dev)) 233 return ids; 234 ids++; 235 } 236 } 237 return NULL; 238 } 239 EXPORT_SYMBOL(pci_match_id); 240 241 static const struct pci_device_id pci_device_id_any = { 242 .vendor = PCI_ANY_ID, 243 .device = PCI_ANY_ID, 244 .subvendor = PCI_ANY_ID, 245 .subdevice = PCI_ANY_ID, 246 }; 247 248 /** 249 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure 250 * @drv: the PCI driver to match against 251 * @dev: the PCI device structure to match against 252 * 253 * Used by a driver to check whether a PCI device present in the 254 * system is in its list of supported devices. Returns the matching 255 * pci_device_id structure or %NULL if there is no match. 256 */ 257 static const struct pci_device_id *pci_match_device(struct pci_driver *drv, 258 struct pci_dev *dev) 259 { 260 struct pci_dynid *dynid; 261 const struct pci_device_id *found_id = NULL; 262 263 /* When driver_override is set, only bind to the matching driver */ 264 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 265 return NULL; 266 267 /* Look at the dynamic ids first, before the static ones */ 268 spin_lock(&drv->dynids.lock); 269 list_for_each_entry(dynid, &drv->dynids.list, node) { 270 if (pci_match_one_device(&dynid->id, dev)) { 271 found_id = &dynid->id; 272 break; 273 } 274 } 275 spin_unlock(&drv->dynids.lock); 276 277 if (!found_id) 278 found_id = pci_match_id(drv->id_table, dev); 279 280 /* driver_override will always match, send a dummy id */ 281 if (!found_id && dev->driver_override) 282 found_id = &pci_device_id_any; 283 284 return found_id; 285 } 286 287 struct drv_dev_and_id { 288 struct pci_driver *drv; 289 struct pci_dev *dev; 290 const struct pci_device_id *id; 291 }; 292 293 static long local_pci_probe(void *_ddi) 294 { 295 struct drv_dev_and_id *ddi = _ddi; 296 struct pci_dev *pci_dev = ddi->dev; 297 struct pci_driver *pci_drv = ddi->drv; 298 struct device *dev = &pci_dev->dev; 299 int rc; 300 301 /* 302 * Unbound PCI devices are always put in D0, regardless of 303 * runtime PM status. During probe, the device is set to 304 * active and the usage count is incremented. If the driver 305 * supports runtime PM, it should call pm_runtime_put_noidle() 306 * in its probe routine and pm_runtime_get_noresume() in its 307 * remove routine. 308 */ 309 pm_runtime_get_sync(dev); 310 pci_dev->driver = pci_drv; 311 rc = pci_drv->probe(pci_dev, ddi->id); 312 if (!rc) 313 return rc; 314 if (rc < 0) { 315 pci_dev->driver = NULL; 316 pm_runtime_put_sync(dev); 317 return rc; 318 } 319 /* 320 * Probe function should return < 0 for failure, 0 for success 321 * Treat values > 0 as success, but warn. 322 */ 323 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc); 324 return 0; 325 } 326 327 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev, 328 const struct pci_device_id *id) 329 { 330 int error, node; 331 struct drv_dev_and_id ddi = { drv, dev, id }; 332 333 /* 334 * Execute driver initialization on node where the device is 335 * attached. This way the driver likely allocates its local memory 336 * on the right node. 337 */ 338 node = dev_to_node(&dev->dev); 339 340 /* 341 * On NUMA systems, we are likely to call a PF probe function using 342 * work_on_cpu(). If that probe calls pci_enable_sriov() (which 343 * adds the VF devices via pci_bus_add_device()), we may re-enter 344 * this function to call the VF probe function. Calling 345 * work_on_cpu() again will cause a lockdep warning. Since VFs are 346 * always on the same node as the PF, we can work around this by 347 * avoiding work_on_cpu() when we're already on the correct node. 348 * 349 * Preemption is enabled, so it's theoretically unsafe to use 350 * numa_node_id(), but even if we run the probe function on the 351 * wrong node, it should be functionally correct. 352 */ 353 if (node >= 0 && node != numa_node_id()) { 354 int cpu; 355 356 get_online_cpus(); 357 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 358 if (cpu < nr_cpu_ids) 359 error = work_on_cpu(cpu, local_pci_probe, &ddi); 360 else 361 error = local_pci_probe(&ddi); 362 put_online_cpus(); 363 } else 364 error = local_pci_probe(&ddi); 365 366 return error; 367 } 368 369 /** 370 * __pci_device_probe - check if a driver wants to claim a specific PCI device 371 * @drv: driver to call to check if it wants the PCI device 372 * @pci_dev: PCI device being probed 373 * 374 * returns 0 on success, else error. 375 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev. 376 */ 377 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev) 378 { 379 const struct pci_device_id *id; 380 int error = 0; 381 382 if (!pci_dev->driver && drv->probe) { 383 error = -ENODEV; 384 385 id = pci_match_device(drv, pci_dev); 386 if (id) 387 error = pci_call_probe(drv, pci_dev, id); 388 if (error >= 0) 389 error = 0; 390 } 391 return error; 392 } 393 394 static int pci_device_probe(struct device *dev) 395 { 396 int error = 0; 397 struct pci_driver *drv; 398 struct pci_dev *pci_dev; 399 400 drv = to_pci_driver(dev->driver); 401 pci_dev = to_pci_dev(dev); 402 pci_dev_get(pci_dev); 403 error = __pci_device_probe(drv, pci_dev); 404 if (error) 405 pci_dev_put(pci_dev); 406 407 return error; 408 } 409 410 static int pci_device_remove(struct device *dev) 411 { 412 struct pci_dev *pci_dev = to_pci_dev(dev); 413 struct pci_driver *drv = pci_dev->driver; 414 415 if (drv) { 416 if (drv->remove) { 417 pm_runtime_get_sync(dev); 418 drv->remove(pci_dev); 419 pm_runtime_put_noidle(dev); 420 } 421 pci_dev->driver = NULL; 422 } 423 424 /* Undo the runtime PM settings in local_pci_probe() */ 425 pm_runtime_put_sync(dev); 426 427 /* 428 * If the device is still on, set the power state as "unknown", 429 * since it might change by the next time we load the driver. 430 */ 431 if (pci_dev->current_state == PCI_D0) 432 pci_dev->current_state = PCI_UNKNOWN; 433 434 /* 435 * We would love to complain here if pci_dev->is_enabled is set, that 436 * the driver should have called pci_disable_device(), but the 437 * unfortunate fact is there are too many odd BIOS and bridge setups 438 * that don't like drivers doing that all of the time. 439 * Oh well, we can dream of sane hardware when we sleep, no matter how 440 * horrible the crap we have to deal with is when we are awake... 441 */ 442 443 pci_dev_put(pci_dev); 444 return 0; 445 } 446 447 static void pci_device_shutdown(struct device *dev) 448 { 449 struct pci_dev *pci_dev = to_pci_dev(dev); 450 struct pci_driver *drv = pci_dev->driver; 451 452 pm_runtime_resume(dev); 453 454 if (drv && drv->shutdown) 455 drv->shutdown(pci_dev); 456 pci_msi_shutdown(pci_dev); 457 pci_msix_shutdown(pci_dev); 458 459 #ifdef CONFIG_KEXEC 460 /* 461 * If this is a kexec reboot, turn off Bus Master bit on the 462 * device to tell it to not continue to do DMA. Don't touch 463 * devices in D3cold or unknown states. 464 * If it is not a kexec reboot, firmware will hit the PCI 465 * devices with big hammer and stop their DMA any way. 466 */ 467 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot)) 468 pci_clear_master(pci_dev); 469 #endif 470 } 471 472 #ifdef CONFIG_PM 473 474 /* Auxiliary functions used for system resume and run-time resume. */ 475 476 /** 477 * pci_restore_standard_config - restore standard config registers of PCI device 478 * @pci_dev: PCI device to handle 479 */ 480 static int pci_restore_standard_config(struct pci_dev *pci_dev) 481 { 482 pci_update_current_state(pci_dev, PCI_UNKNOWN); 483 484 if (pci_dev->current_state != PCI_D0) { 485 int error = pci_set_power_state(pci_dev, PCI_D0); 486 if (error) 487 return error; 488 } 489 490 pci_restore_state(pci_dev); 491 return 0; 492 } 493 494 #endif 495 496 #ifdef CONFIG_PM_SLEEP 497 498 static void pci_pm_default_resume_early(struct pci_dev *pci_dev) 499 { 500 pci_power_up(pci_dev); 501 pci_restore_state(pci_dev); 502 pci_fixup_device(pci_fixup_resume_early, pci_dev); 503 } 504 505 /* 506 * Default "suspend" method for devices that have no driver provided suspend, 507 * or not even a driver at all (second part). 508 */ 509 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev) 510 { 511 /* 512 * mark its power state as "unknown", since we don't know if 513 * e.g. the BIOS will change its device state when we suspend. 514 */ 515 if (pci_dev->current_state == PCI_D0) 516 pci_dev->current_state = PCI_UNKNOWN; 517 } 518 519 /* 520 * Default "resume" method for devices that have no driver provided resume, 521 * or not even a driver at all (second part). 522 */ 523 static int pci_pm_reenable_device(struct pci_dev *pci_dev) 524 { 525 int retval; 526 527 /* if the device was enabled before suspend, reenable */ 528 retval = pci_reenable_device(pci_dev); 529 /* 530 * if the device was busmaster before the suspend, make it busmaster 531 * again 532 */ 533 if (pci_dev->is_busmaster) 534 pci_set_master(pci_dev); 535 536 return retval; 537 } 538 539 static int pci_legacy_suspend(struct device *dev, pm_message_t state) 540 { 541 struct pci_dev *pci_dev = to_pci_dev(dev); 542 struct pci_driver *drv = pci_dev->driver; 543 544 if (drv && drv->suspend) { 545 pci_power_t prev = pci_dev->current_state; 546 int error; 547 548 error = drv->suspend(pci_dev, state); 549 suspend_report_result(drv->suspend, error); 550 if (error) 551 return error; 552 553 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 554 && pci_dev->current_state != PCI_UNKNOWN) { 555 WARN_ONCE(pci_dev->current_state != prev, 556 "PCI PM: Device state not saved by %pF\n", 557 drv->suspend); 558 } 559 } 560 561 pci_fixup_device(pci_fixup_suspend, pci_dev); 562 563 return 0; 564 } 565 566 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state) 567 { 568 struct pci_dev *pci_dev = to_pci_dev(dev); 569 struct pci_driver *drv = pci_dev->driver; 570 571 if (drv && drv->suspend_late) { 572 pci_power_t prev = pci_dev->current_state; 573 int error; 574 575 error = drv->suspend_late(pci_dev, state); 576 suspend_report_result(drv->suspend_late, error); 577 if (error) 578 return error; 579 580 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 581 && pci_dev->current_state != PCI_UNKNOWN) { 582 WARN_ONCE(pci_dev->current_state != prev, 583 "PCI PM: Device state not saved by %pF\n", 584 drv->suspend_late); 585 goto Fixup; 586 } 587 } 588 589 if (!pci_dev->state_saved) 590 pci_save_state(pci_dev); 591 592 pci_pm_set_unknown_state(pci_dev); 593 594 Fixup: 595 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 596 597 return 0; 598 } 599 600 static int pci_legacy_resume_early(struct device *dev) 601 { 602 struct pci_dev *pci_dev = to_pci_dev(dev); 603 struct pci_driver *drv = pci_dev->driver; 604 605 return drv && drv->resume_early ? 606 drv->resume_early(pci_dev) : 0; 607 } 608 609 static int pci_legacy_resume(struct device *dev) 610 { 611 struct pci_dev *pci_dev = to_pci_dev(dev); 612 struct pci_driver *drv = pci_dev->driver; 613 614 pci_fixup_device(pci_fixup_resume, pci_dev); 615 616 return drv && drv->resume ? 617 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev); 618 } 619 620 /* Auxiliary functions used by the new power management framework */ 621 622 static void pci_pm_default_resume(struct pci_dev *pci_dev) 623 { 624 pci_fixup_device(pci_fixup_resume, pci_dev); 625 626 if (!pci_has_subordinate(pci_dev)) 627 pci_enable_wake(pci_dev, PCI_D0, false); 628 } 629 630 static void pci_pm_default_suspend(struct pci_dev *pci_dev) 631 { 632 /* Disable non-bridge devices without PM support */ 633 if (!pci_has_subordinate(pci_dev)) 634 pci_disable_enabled_device(pci_dev); 635 } 636 637 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev) 638 { 639 struct pci_driver *drv = pci_dev->driver; 640 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume 641 || drv->resume_early); 642 643 /* 644 * Legacy PM support is used by default, so warn if the new framework is 645 * supported as well. Drivers are supposed to support either the 646 * former, or the latter, but not both at the same time. 647 */ 648 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n", 649 drv->name, pci_dev->vendor, pci_dev->device); 650 651 return ret; 652 } 653 654 /* New power management framework */ 655 656 static int pci_pm_prepare(struct device *dev) 657 { 658 struct device_driver *drv = dev->driver; 659 int error = 0; 660 661 /* 662 * Devices having power.ignore_children set may still be necessary for 663 * suspending their children in the next phase of device suspend. 664 */ 665 if (dev->power.ignore_children) 666 pm_runtime_resume(dev); 667 668 if (drv && drv->pm && drv->pm->prepare) 669 error = drv->pm->prepare(dev); 670 671 return error; 672 } 673 674 675 #else /* !CONFIG_PM_SLEEP */ 676 677 #define pci_pm_prepare NULL 678 679 #endif /* !CONFIG_PM_SLEEP */ 680 681 #ifdef CONFIG_SUSPEND 682 683 static int pci_pm_suspend(struct device *dev) 684 { 685 struct pci_dev *pci_dev = to_pci_dev(dev); 686 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 687 688 if (pci_has_legacy_pm_support(pci_dev)) 689 return pci_legacy_suspend(dev, PMSG_SUSPEND); 690 691 if (!pm) { 692 pci_pm_default_suspend(pci_dev); 693 goto Fixup; 694 } 695 696 /* 697 * PCI devices suspended at run time need to be resumed at this point, 698 * because in general it is necessary to reconfigure them for system 699 * suspend. Namely, if the device is supposed to wake up the system 700 * from the sleep state, we may need to reconfigure it for this purpose. 701 * In turn, if the device is not supposed to wake up the system from the 702 * sleep state, we'll have to prevent it from signaling wake-up. 703 */ 704 pm_runtime_resume(dev); 705 706 pci_dev->state_saved = false; 707 if (pm->suspend) { 708 pci_power_t prev = pci_dev->current_state; 709 int error; 710 711 error = pm->suspend(dev); 712 suspend_report_result(pm->suspend, error); 713 if (error) 714 return error; 715 716 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 717 && pci_dev->current_state != PCI_UNKNOWN) { 718 WARN_ONCE(pci_dev->current_state != prev, 719 "PCI PM: State of device not saved by %pF\n", 720 pm->suspend); 721 } 722 } 723 724 Fixup: 725 pci_fixup_device(pci_fixup_suspend, pci_dev); 726 727 return 0; 728 } 729 730 static int pci_pm_suspend_noirq(struct device *dev) 731 { 732 struct pci_dev *pci_dev = to_pci_dev(dev); 733 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 734 735 if (pci_has_legacy_pm_support(pci_dev)) 736 return pci_legacy_suspend_late(dev, PMSG_SUSPEND); 737 738 if (!pm) { 739 pci_save_state(pci_dev); 740 goto Fixup; 741 } 742 743 if (pm->suspend_noirq) { 744 pci_power_t prev = pci_dev->current_state; 745 int error; 746 747 error = pm->suspend_noirq(dev); 748 suspend_report_result(pm->suspend_noirq, error); 749 if (error) 750 return error; 751 752 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 753 && pci_dev->current_state != PCI_UNKNOWN) { 754 WARN_ONCE(pci_dev->current_state != prev, 755 "PCI PM: State of device not saved by %pF\n", 756 pm->suspend_noirq); 757 goto Fixup; 758 } 759 } 760 761 if (!pci_dev->state_saved) { 762 pci_save_state(pci_dev); 763 if (!pci_has_subordinate(pci_dev)) 764 pci_prepare_to_sleep(pci_dev); 765 } 766 767 pci_pm_set_unknown_state(pci_dev); 768 769 /* 770 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's 771 * PCI COMMAND register isn't 0, the BIOS assumes that the controller 772 * hasn't been quiesced and tries to turn it off. If the controller 773 * is already in D3, this can hang or cause memory corruption. 774 * 775 * Since the value of the COMMAND register doesn't matter once the 776 * device has been suspended, we can safely set it to 0 here. 777 */ 778 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 779 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 780 781 Fixup: 782 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 783 784 return 0; 785 } 786 787 static int pci_pm_resume_noirq(struct device *dev) 788 { 789 struct pci_dev *pci_dev = to_pci_dev(dev); 790 struct device_driver *drv = dev->driver; 791 int error = 0; 792 793 pci_pm_default_resume_early(pci_dev); 794 795 if (pci_has_legacy_pm_support(pci_dev)) 796 return pci_legacy_resume_early(dev); 797 798 if (drv && drv->pm && drv->pm->resume_noirq) 799 error = drv->pm->resume_noirq(dev); 800 801 return error; 802 } 803 804 static int pci_pm_resume(struct device *dev) 805 { 806 struct pci_dev *pci_dev = to_pci_dev(dev); 807 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 808 int error = 0; 809 810 /* 811 * This is necessary for the suspend error path in which resume is 812 * called without restoring the standard config registers of the device. 813 */ 814 if (pci_dev->state_saved) 815 pci_restore_standard_config(pci_dev); 816 817 if (pci_has_legacy_pm_support(pci_dev)) 818 return pci_legacy_resume(dev); 819 820 pci_pm_default_resume(pci_dev); 821 822 if (pm) { 823 if (pm->resume) 824 error = pm->resume(dev); 825 } else { 826 pci_pm_reenable_device(pci_dev); 827 } 828 829 return error; 830 } 831 832 #else /* !CONFIG_SUSPEND */ 833 834 #define pci_pm_suspend NULL 835 #define pci_pm_suspend_noirq NULL 836 #define pci_pm_resume NULL 837 #define pci_pm_resume_noirq NULL 838 839 #endif /* !CONFIG_SUSPEND */ 840 841 #ifdef CONFIG_HIBERNATE_CALLBACKS 842 843 844 /* 845 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing 846 * a hibernate transition 847 */ 848 struct dev_pm_ops __weak pcibios_pm_ops; 849 850 static int pci_pm_freeze(struct device *dev) 851 { 852 struct pci_dev *pci_dev = to_pci_dev(dev); 853 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 854 855 if (pci_has_legacy_pm_support(pci_dev)) 856 return pci_legacy_suspend(dev, PMSG_FREEZE); 857 858 if (!pm) { 859 pci_pm_default_suspend(pci_dev); 860 return 0; 861 } 862 863 /* 864 * This used to be done in pci_pm_prepare() for all devices and some 865 * drivers may depend on it, so do it here. Ideally, runtime-suspended 866 * devices should not be touched during freeze/thaw transitions, 867 * however. 868 */ 869 pm_runtime_resume(dev); 870 871 pci_dev->state_saved = false; 872 if (pm->freeze) { 873 int error; 874 875 error = pm->freeze(dev); 876 suspend_report_result(pm->freeze, error); 877 if (error) 878 return error; 879 } 880 881 if (pcibios_pm_ops.freeze) 882 return pcibios_pm_ops.freeze(dev); 883 884 return 0; 885 } 886 887 static int pci_pm_freeze_noirq(struct device *dev) 888 { 889 struct pci_dev *pci_dev = to_pci_dev(dev); 890 struct device_driver *drv = dev->driver; 891 892 if (pci_has_legacy_pm_support(pci_dev)) 893 return pci_legacy_suspend_late(dev, PMSG_FREEZE); 894 895 if (drv && drv->pm && drv->pm->freeze_noirq) { 896 int error; 897 898 error = drv->pm->freeze_noirq(dev); 899 suspend_report_result(drv->pm->freeze_noirq, error); 900 if (error) 901 return error; 902 } 903 904 if (!pci_dev->state_saved) 905 pci_save_state(pci_dev); 906 907 pci_pm_set_unknown_state(pci_dev); 908 909 if (pcibios_pm_ops.freeze_noirq) 910 return pcibios_pm_ops.freeze_noirq(dev); 911 912 return 0; 913 } 914 915 static int pci_pm_thaw_noirq(struct device *dev) 916 { 917 struct pci_dev *pci_dev = to_pci_dev(dev); 918 struct device_driver *drv = dev->driver; 919 int error = 0; 920 921 if (pcibios_pm_ops.thaw_noirq) { 922 error = pcibios_pm_ops.thaw_noirq(dev); 923 if (error) 924 return error; 925 } 926 927 if (pci_has_legacy_pm_support(pci_dev)) 928 return pci_legacy_resume_early(dev); 929 930 pci_update_current_state(pci_dev, PCI_D0); 931 932 if (drv && drv->pm && drv->pm->thaw_noirq) 933 error = drv->pm->thaw_noirq(dev); 934 935 return error; 936 } 937 938 static int pci_pm_thaw(struct device *dev) 939 { 940 struct pci_dev *pci_dev = to_pci_dev(dev); 941 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 942 int error = 0; 943 944 if (pcibios_pm_ops.thaw) { 945 error = pcibios_pm_ops.thaw(dev); 946 if (error) 947 return error; 948 } 949 950 if (pci_has_legacy_pm_support(pci_dev)) 951 return pci_legacy_resume(dev); 952 953 if (pm) { 954 if (pm->thaw) 955 error = pm->thaw(dev); 956 } else { 957 pci_pm_reenable_device(pci_dev); 958 } 959 960 pci_dev->state_saved = false; 961 962 return error; 963 } 964 965 static int pci_pm_poweroff(struct device *dev) 966 { 967 struct pci_dev *pci_dev = to_pci_dev(dev); 968 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 969 970 if (pci_has_legacy_pm_support(pci_dev)) 971 return pci_legacy_suspend(dev, PMSG_HIBERNATE); 972 973 if (!pm) { 974 pci_pm_default_suspend(pci_dev); 975 goto Fixup; 976 } 977 978 /* The reason to do that is the same as in pci_pm_suspend(). */ 979 pm_runtime_resume(dev); 980 981 pci_dev->state_saved = false; 982 if (pm->poweroff) { 983 int error; 984 985 error = pm->poweroff(dev); 986 suspend_report_result(pm->poweroff, error); 987 if (error) 988 return error; 989 } 990 991 Fixup: 992 pci_fixup_device(pci_fixup_suspend, pci_dev); 993 994 if (pcibios_pm_ops.poweroff) 995 return pcibios_pm_ops.poweroff(dev); 996 997 return 0; 998 } 999 1000 static int pci_pm_poweroff_noirq(struct device *dev) 1001 { 1002 struct pci_dev *pci_dev = to_pci_dev(dev); 1003 struct device_driver *drv = dev->driver; 1004 1005 if (pci_has_legacy_pm_support(to_pci_dev(dev))) 1006 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE); 1007 1008 if (!drv || !drv->pm) { 1009 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1010 return 0; 1011 } 1012 1013 if (drv->pm->poweroff_noirq) { 1014 int error; 1015 1016 error = drv->pm->poweroff_noirq(dev); 1017 suspend_report_result(drv->pm->poweroff_noirq, error); 1018 if (error) 1019 return error; 1020 } 1021 1022 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev)) 1023 pci_prepare_to_sleep(pci_dev); 1024 1025 /* 1026 * The reason for doing this here is the same as for the analogous code 1027 * in pci_pm_suspend_noirq(). 1028 */ 1029 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 1030 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 1031 1032 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1033 1034 if (pcibios_pm_ops.poweroff_noirq) 1035 return pcibios_pm_ops.poweroff_noirq(dev); 1036 1037 return 0; 1038 } 1039 1040 static int pci_pm_restore_noirq(struct device *dev) 1041 { 1042 struct pci_dev *pci_dev = to_pci_dev(dev); 1043 struct device_driver *drv = dev->driver; 1044 int error = 0; 1045 1046 if (pcibios_pm_ops.restore_noirq) { 1047 error = pcibios_pm_ops.restore_noirq(dev); 1048 if (error) 1049 return error; 1050 } 1051 1052 pci_pm_default_resume_early(pci_dev); 1053 1054 if (pci_has_legacy_pm_support(pci_dev)) 1055 return pci_legacy_resume_early(dev); 1056 1057 if (drv && drv->pm && drv->pm->restore_noirq) 1058 error = drv->pm->restore_noirq(dev); 1059 1060 return error; 1061 } 1062 1063 static int pci_pm_restore(struct device *dev) 1064 { 1065 struct pci_dev *pci_dev = to_pci_dev(dev); 1066 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1067 int error = 0; 1068 1069 if (pcibios_pm_ops.restore) { 1070 error = pcibios_pm_ops.restore(dev); 1071 if (error) 1072 return error; 1073 } 1074 1075 /* 1076 * This is necessary for the hibernation error path in which restore is 1077 * called without restoring the standard config registers of the device. 1078 */ 1079 if (pci_dev->state_saved) 1080 pci_restore_standard_config(pci_dev); 1081 1082 if (pci_has_legacy_pm_support(pci_dev)) 1083 return pci_legacy_resume(dev); 1084 1085 pci_pm_default_resume(pci_dev); 1086 1087 if (pm) { 1088 if (pm->restore) 1089 error = pm->restore(dev); 1090 } else { 1091 pci_pm_reenable_device(pci_dev); 1092 } 1093 1094 return error; 1095 } 1096 1097 #else /* !CONFIG_HIBERNATE_CALLBACKS */ 1098 1099 #define pci_pm_freeze NULL 1100 #define pci_pm_freeze_noirq NULL 1101 #define pci_pm_thaw NULL 1102 #define pci_pm_thaw_noirq NULL 1103 #define pci_pm_poweroff NULL 1104 #define pci_pm_poweroff_noirq NULL 1105 #define pci_pm_restore NULL 1106 #define pci_pm_restore_noirq NULL 1107 1108 #endif /* !CONFIG_HIBERNATE_CALLBACKS */ 1109 1110 #ifdef CONFIG_PM_RUNTIME 1111 1112 static int pci_pm_runtime_suspend(struct device *dev) 1113 { 1114 struct pci_dev *pci_dev = to_pci_dev(dev); 1115 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1116 pci_power_t prev = pci_dev->current_state; 1117 int error; 1118 1119 /* 1120 * If pci_dev->driver is not set (unbound), the device should 1121 * always remain in D0 regardless of the runtime PM status 1122 */ 1123 if (!pci_dev->driver) 1124 return 0; 1125 1126 if (!pm || !pm->runtime_suspend) 1127 return -ENOSYS; 1128 1129 pci_dev->state_saved = false; 1130 pci_dev->no_d3cold = false; 1131 error = pm->runtime_suspend(dev); 1132 suspend_report_result(pm->runtime_suspend, error); 1133 if (error) 1134 return error; 1135 if (!pci_dev->d3cold_allowed) 1136 pci_dev->no_d3cold = true; 1137 1138 pci_fixup_device(pci_fixup_suspend, pci_dev); 1139 1140 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 1141 && pci_dev->current_state != PCI_UNKNOWN) { 1142 WARN_ONCE(pci_dev->current_state != prev, 1143 "PCI PM: State of device not saved by %pF\n", 1144 pm->runtime_suspend); 1145 return 0; 1146 } 1147 1148 if (!pci_dev->state_saved) { 1149 pci_save_state(pci_dev); 1150 pci_finish_runtime_suspend(pci_dev); 1151 } 1152 1153 return 0; 1154 } 1155 1156 static int pci_pm_runtime_resume(struct device *dev) 1157 { 1158 int rc; 1159 struct pci_dev *pci_dev = to_pci_dev(dev); 1160 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1161 1162 /* 1163 * If pci_dev->driver is not set (unbound), the device should 1164 * always remain in D0 regardless of the runtime PM status 1165 */ 1166 if (!pci_dev->driver) 1167 return 0; 1168 1169 if (!pm || !pm->runtime_resume) 1170 return -ENOSYS; 1171 1172 pci_restore_standard_config(pci_dev); 1173 pci_fixup_device(pci_fixup_resume_early, pci_dev); 1174 __pci_enable_wake(pci_dev, PCI_D0, true, false); 1175 pci_fixup_device(pci_fixup_resume, pci_dev); 1176 1177 rc = pm->runtime_resume(dev); 1178 1179 pci_dev->runtime_d3cold = false; 1180 1181 return rc; 1182 } 1183 1184 static int pci_pm_runtime_idle(struct device *dev) 1185 { 1186 struct pci_dev *pci_dev = to_pci_dev(dev); 1187 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1188 int ret = 0; 1189 1190 /* 1191 * If pci_dev->driver is not set (unbound), the device should 1192 * always remain in D0 regardless of the runtime PM status 1193 */ 1194 if (!pci_dev->driver) 1195 return 0; 1196 1197 if (!pm) 1198 return -ENOSYS; 1199 1200 if (pm->runtime_idle) 1201 ret = pm->runtime_idle(dev); 1202 1203 return ret; 1204 } 1205 1206 #else /* !CONFIG_PM_RUNTIME */ 1207 1208 #define pci_pm_runtime_suspend NULL 1209 #define pci_pm_runtime_resume NULL 1210 #define pci_pm_runtime_idle NULL 1211 1212 #endif /* !CONFIG_PM_RUNTIME */ 1213 1214 #ifdef CONFIG_PM 1215 1216 static const struct dev_pm_ops pci_dev_pm_ops = { 1217 .prepare = pci_pm_prepare, 1218 .suspend = pci_pm_suspend, 1219 .resume = pci_pm_resume, 1220 .freeze = pci_pm_freeze, 1221 .thaw = pci_pm_thaw, 1222 .poweroff = pci_pm_poweroff, 1223 .restore = pci_pm_restore, 1224 .suspend_noirq = pci_pm_suspend_noirq, 1225 .resume_noirq = pci_pm_resume_noirq, 1226 .freeze_noirq = pci_pm_freeze_noirq, 1227 .thaw_noirq = pci_pm_thaw_noirq, 1228 .poweroff_noirq = pci_pm_poweroff_noirq, 1229 .restore_noirq = pci_pm_restore_noirq, 1230 .runtime_suspend = pci_pm_runtime_suspend, 1231 .runtime_resume = pci_pm_runtime_resume, 1232 .runtime_idle = pci_pm_runtime_idle, 1233 }; 1234 1235 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops) 1236 1237 #else /* !COMFIG_PM_OPS */ 1238 1239 #define PCI_PM_OPS_PTR NULL 1240 1241 #endif /* !COMFIG_PM_OPS */ 1242 1243 /** 1244 * __pci_register_driver - register a new pci driver 1245 * @drv: the driver structure to register 1246 * @owner: owner module of drv 1247 * @mod_name: module name string 1248 * 1249 * Adds the driver structure to the list of registered drivers. 1250 * Returns a negative value on error, otherwise 0. 1251 * If no error occurred, the driver remains registered even if 1252 * no device was claimed during registration. 1253 */ 1254 int __pci_register_driver(struct pci_driver *drv, struct module *owner, 1255 const char *mod_name) 1256 { 1257 /* initialize common driver fields */ 1258 drv->driver.name = drv->name; 1259 drv->driver.bus = &pci_bus_type; 1260 drv->driver.owner = owner; 1261 drv->driver.mod_name = mod_name; 1262 1263 spin_lock_init(&drv->dynids.lock); 1264 INIT_LIST_HEAD(&drv->dynids.list); 1265 1266 /* register with core */ 1267 return driver_register(&drv->driver); 1268 } 1269 EXPORT_SYMBOL(__pci_register_driver); 1270 1271 /** 1272 * pci_unregister_driver - unregister a pci driver 1273 * @drv: the driver structure to unregister 1274 * 1275 * Deletes the driver structure from the list of registered PCI drivers, 1276 * gives it a chance to clean up by calling its remove() function for 1277 * each device it was responsible for, and marks those devices as 1278 * driverless. 1279 */ 1280 1281 void pci_unregister_driver(struct pci_driver *drv) 1282 { 1283 driver_unregister(&drv->driver); 1284 pci_free_dynids(drv); 1285 } 1286 EXPORT_SYMBOL(pci_unregister_driver); 1287 1288 static struct pci_driver pci_compat_driver = { 1289 .name = "compat" 1290 }; 1291 1292 /** 1293 * pci_dev_driver - get the pci_driver of a device 1294 * @dev: the device to query 1295 * 1296 * Returns the appropriate pci_driver structure or %NULL if there is no 1297 * registered driver for the device. 1298 */ 1299 struct pci_driver *pci_dev_driver(const struct pci_dev *dev) 1300 { 1301 if (dev->driver) 1302 return dev->driver; 1303 else { 1304 int i; 1305 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1306 if (dev->resource[i].flags & IORESOURCE_BUSY) 1307 return &pci_compat_driver; 1308 } 1309 return NULL; 1310 } 1311 EXPORT_SYMBOL(pci_dev_driver); 1312 1313 /** 1314 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure 1315 * @dev: the PCI device structure to match against 1316 * @drv: the device driver to search for matching PCI device id structures 1317 * 1318 * Used by a driver to check whether a PCI device present in the 1319 * system is in its list of supported devices. Returns the matching 1320 * pci_device_id structure or %NULL if there is no match. 1321 */ 1322 static int pci_bus_match(struct device *dev, struct device_driver *drv) 1323 { 1324 struct pci_dev *pci_dev = to_pci_dev(dev); 1325 struct pci_driver *pci_drv; 1326 const struct pci_device_id *found_id; 1327 1328 if (!pci_dev->match_driver) 1329 return 0; 1330 1331 pci_drv = to_pci_driver(drv); 1332 found_id = pci_match_device(pci_drv, pci_dev); 1333 if (found_id) 1334 return 1; 1335 1336 return 0; 1337 } 1338 1339 /** 1340 * pci_dev_get - increments the reference count of the pci device structure 1341 * @dev: the device being referenced 1342 * 1343 * Each live reference to a device should be refcounted. 1344 * 1345 * Drivers for PCI devices should normally record such references in 1346 * their probe() methods, when they bind to a device, and release 1347 * them by calling pci_dev_put(), in their disconnect() methods. 1348 * 1349 * A pointer to the device with the incremented reference counter is returned. 1350 */ 1351 struct pci_dev *pci_dev_get(struct pci_dev *dev) 1352 { 1353 if (dev) 1354 get_device(&dev->dev); 1355 return dev; 1356 } 1357 EXPORT_SYMBOL(pci_dev_get); 1358 1359 /** 1360 * pci_dev_put - release a use of the pci device structure 1361 * @dev: device that's been disconnected 1362 * 1363 * Must be called when a user of a device is finished with it. When the last 1364 * user of the device calls this function, the memory of the device is freed. 1365 */ 1366 void pci_dev_put(struct pci_dev *dev) 1367 { 1368 if (dev) 1369 put_device(&dev->dev); 1370 } 1371 EXPORT_SYMBOL(pci_dev_put); 1372 1373 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env) 1374 { 1375 struct pci_dev *pdev; 1376 1377 if (!dev) 1378 return -ENODEV; 1379 1380 pdev = to_pci_dev(dev); 1381 1382 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class)) 1383 return -ENOMEM; 1384 1385 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device)) 1386 return -ENOMEM; 1387 1388 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor, 1389 pdev->subsystem_device)) 1390 return -ENOMEM; 1391 1392 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev))) 1393 return -ENOMEM; 1394 1395 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02x", 1396 pdev->vendor, pdev->device, 1397 pdev->subsystem_vendor, pdev->subsystem_device, 1398 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8), 1399 (u8)(pdev->class))) 1400 return -ENOMEM; 1401 1402 return 0; 1403 } 1404 1405 struct bus_type pci_bus_type = { 1406 .name = "pci", 1407 .match = pci_bus_match, 1408 .uevent = pci_uevent, 1409 .probe = pci_device_probe, 1410 .remove = pci_device_remove, 1411 .shutdown = pci_device_shutdown, 1412 .dev_groups = pci_dev_groups, 1413 .bus_groups = pci_bus_groups, 1414 .drv_groups = pci_drv_groups, 1415 .pm = PCI_PM_OPS_PTR, 1416 }; 1417 EXPORT_SYMBOL(pci_bus_type); 1418 1419 static int __init pci_driver_init(void) 1420 { 1421 return bus_register(&pci_bus_type); 1422 } 1423 postcore_initcall(pci_driver_init); 1424