xref: /linux/drivers/pci/pci-driver.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  * drivers/pci/pci-driver.c
3  *
4  * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5  * (C) Copyright 2007 Novell Inc.
6  *
7  * Released under the GPL v2 only.
8  *
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24 
25 struct pci_dynid {
26 	struct list_head node;
27 	struct pci_device_id id;
28 };
29 
30 /**
31  * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32  * @drv: target pci driver
33  * @vendor: PCI vendor ID
34  * @device: PCI device ID
35  * @subvendor: PCI subvendor ID
36  * @subdevice: PCI subdevice ID
37  * @class: PCI class
38  * @class_mask: PCI class mask
39  * @driver_data: private driver data
40  *
41  * Adds a new dynamic pci device ID to this driver and causes the
42  * driver to probe for all devices again.  @drv must have been
43  * registered prior to calling this function.
44  *
45  * CONTEXT:
46  * Does GFP_KERNEL allocation.
47  *
48  * RETURNS:
49  * 0 on success, -errno on failure.
50  */
51 int pci_add_dynid(struct pci_driver *drv,
52 		  unsigned int vendor, unsigned int device,
53 		  unsigned int subvendor, unsigned int subdevice,
54 		  unsigned int class, unsigned int class_mask,
55 		  unsigned long driver_data)
56 {
57 	struct pci_dynid *dynid;
58 	int retval;
59 
60 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
61 	if (!dynid)
62 		return -ENOMEM;
63 
64 	dynid->id.vendor = vendor;
65 	dynid->id.device = device;
66 	dynid->id.subvendor = subvendor;
67 	dynid->id.subdevice = subdevice;
68 	dynid->id.class = class;
69 	dynid->id.class_mask = class_mask;
70 	dynid->id.driver_data = driver_data;
71 
72 	spin_lock(&drv->dynids.lock);
73 	list_add_tail(&dynid->node, &drv->dynids.list);
74 	spin_unlock(&drv->dynids.lock);
75 
76 	retval = driver_attach(&drv->driver);
77 
78 	return retval;
79 }
80 EXPORT_SYMBOL_GPL(pci_add_dynid);
81 
82 static void pci_free_dynids(struct pci_driver *drv)
83 {
84 	struct pci_dynid *dynid, *n;
85 
86 	spin_lock(&drv->dynids.lock);
87 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
88 		list_del(&dynid->node);
89 		kfree(dynid);
90 	}
91 	spin_unlock(&drv->dynids.lock);
92 }
93 
94 /**
95  * store_new_id - sysfs frontend to pci_add_dynid()
96  * @driver: target device driver
97  * @buf: buffer for scanning device ID data
98  * @count: input size
99  *
100  * Allow PCI IDs to be added to an existing driver via sysfs.
101  */
102 static ssize_t store_new_id(struct device_driver *driver, const char *buf,
103 			    size_t count)
104 {
105 	struct pci_driver *pdrv = to_pci_driver(driver);
106 	const struct pci_device_id *ids = pdrv->id_table;
107 	__u32 vendor, device, subvendor = PCI_ANY_ID,
108 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
109 	unsigned long driver_data = 0;
110 	int fields = 0;
111 	int retval = 0;
112 
113 	fields = sscanf(buf, "%x %x %x %x %x %x %lx",
114 			&vendor, &device, &subvendor, &subdevice,
115 			&class, &class_mask, &driver_data);
116 	if (fields < 2)
117 		return -EINVAL;
118 
119 	if (fields != 7) {
120 		struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
121 		if (!pdev)
122 			return -ENOMEM;
123 
124 		pdev->vendor = vendor;
125 		pdev->device = device;
126 		pdev->subsystem_vendor = subvendor;
127 		pdev->subsystem_device = subdevice;
128 		pdev->class = class;
129 
130 		if (pci_match_id(pdrv->id_table, pdev))
131 			retval = -EEXIST;
132 
133 		kfree(pdev);
134 
135 		if (retval)
136 			return retval;
137 	}
138 
139 	/* Only accept driver_data values that match an existing id_table
140 	   entry */
141 	if (ids) {
142 		retval = -EINVAL;
143 		while (ids->vendor || ids->subvendor || ids->class_mask) {
144 			if (driver_data == ids->driver_data) {
145 				retval = 0;
146 				break;
147 			}
148 			ids++;
149 		}
150 		if (retval)	/* No match */
151 			return retval;
152 	}
153 
154 	retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
155 			       class, class_mask, driver_data);
156 	if (retval)
157 		return retval;
158 	return count;
159 }
160 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
161 
162 /**
163  * store_remove_id - remove a PCI device ID from this driver
164  * @driver: target device driver
165  * @buf: buffer for scanning device ID data
166  * @count: input size
167  *
168  * Removes a dynamic pci device ID to this driver.
169  */
170 static ssize_t store_remove_id(struct device_driver *driver, const char *buf,
171 			       size_t count)
172 {
173 	struct pci_dynid *dynid, *n;
174 	struct pci_driver *pdrv = to_pci_driver(driver);
175 	__u32 vendor, device, subvendor = PCI_ANY_ID,
176 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
177 	int fields = 0;
178 	int retval = -ENODEV;
179 
180 	fields = sscanf(buf, "%x %x %x %x %x %x",
181 			&vendor, &device, &subvendor, &subdevice,
182 			&class, &class_mask);
183 	if (fields < 2)
184 		return -EINVAL;
185 
186 	spin_lock(&pdrv->dynids.lock);
187 	list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
188 		struct pci_device_id *id = &dynid->id;
189 		if ((id->vendor == vendor) &&
190 		    (id->device == device) &&
191 		    (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
192 		    (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
193 		    !((id->class ^ class) & class_mask)) {
194 			list_del(&dynid->node);
195 			kfree(dynid);
196 			retval = 0;
197 			break;
198 		}
199 	}
200 	spin_unlock(&pdrv->dynids.lock);
201 
202 	if (retval)
203 		return retval;
204 	return count;
205 }
206 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
207 
208 static struct attribute *pci_drv_attrs[] = {
209 	&driver_attr_new_id.attr,
210 	&driver_attr_remove_id.attr,
211 	NULL,
212 };
213 ATTRIBUTE_GROUPS(pci_drv);
214 
215 /**
216  * pci_match_id - See if a pci device matches a given pci_id table
217  * @ids: array of PCI device id structures to search in
218  * @dev: the PCI device structure to match against.
219  *
220  * Used by a driver to check whether a PCI device present in the
221  * system is in its list of supported devices.  Returns the matching
222  * pci_device_id structure or %NULL if there is no match.
223  *
224  * Deprecated, don't use this as it will not catch any dynamic ids
225  * that a driver might want to check for.
226  */
227 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
228 					 struct pci_dev *dev)
229 {
230 	if (ids) {
231 		while (ids->vendor || ids->subvendor || ids->class_mask) {
232 			if (pci_match_one_device(ids, dev))
233 				return ids;
234 			ids++;
235 		}
236 	}
237 	return NULL;
238 }
239 EXPORT_SYMBOL(pci_match_id);
240 
241 static const struct pci_device_id pci_device_id_any = {
242 	.vendor = PCI_ANY_ID,
243 	.device = PCI_ANY_ID,
244 	.subvendor = PCI_ANY_ID,
245 	.subdevice = PCI_ANY_ID,
246 };
247 
248 /**
249  * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
250  * @drv: the PCI driver to match against
251  * @dev: the PCI device structure to match against
252  *
253  * Used by a driver to check whether a PCI device present in the
254  * system is in its list of supported devices.  Returns the matching
255  * pci_device_id structure or %NULL if there is no match.
256  */
257 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
258 						    struct pci_dev *dev)
259 {
260 	struct pci_dynid *dynid;
261 	const struct pci_device_id *found_id = NULL;
262 
263 	/* When driver_override is set, only bind to the matching driver */
264 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
265 		return NULL;
266 
267 	/* Look at the dynamic ids first, before the static ones */
268 	spin_lock(&drv->dynids.lock);
269 	list_for_each_entry(dynid, &drv->dynids.list, node) {
270 		if (pci_match_one_device(&dynid->id, dev)) {
271 			found_id = &dynid->id;
272 			break;
273 		}
274 	}
275 	spin_unlock(&drv->dynids.lock);
276 
277 	if (!found_id)
278 		found_id = pci_match_id(drv->id_table, dev);
279 
280 	/* driver_override will always match, send a dummy id */
281 	if (!found_id && dev->driver_override)
282 		found_id = &pci_device_id_any;
283 
284 	return found_id;
285 }
286 
287 struct drv_dev_and_id {
288 	struct pci_driver *drv;
289 	struct pci_dev *dev;
290 	const struct pci_device_id *id;
291 };
292 
293 static long local_pci_probe(void *_ddi)
294 {
295 	struct drv_dev_and_id *ddi = _ddi;
296 	struct pci_dev *pci_dev = ddi->dev;
297 	struct pci_driver *pci_drv = ddi->drv;
298 	struct device *dev = &pci_dev->dev;
299 	int rc;
300 
301 	/*
302 	 * Unbound PCI devices are always put in D0, regardless of
303 	 * runtime PM status.  During probe, the device is set to
304 	 * active and the usage count is incremented.  If the driver
305 	 * supports runtime PM, it should call pm_runtime_put_noidle()
306 	 * in its probe routine and pm_runtime_get_noresume() in its
307 	 * remove routine.
308 	 */
309 	pm_runtime_get_sync(dev);
310 	pci_dev->driver = pci_drv;
311 	rc = pci_drv->probe(pci_dev, ddi->id);
312 	if (!rc)
313 		return rc;
314 	if (rc < 0) {
315 		pci_dev->driver = NULL;
316 		pm_runtime_put_sync(dev);
317 		return rc;
318 	}
319 	/*
320 	 * Probe function should return < 0 for failure, 0 for success
321 	 * Treat values > 0 as success, but warn.
322 	 */
323 	dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
324 	return 0;
325 }
326 
327 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
328 			  const struct pci_device_id *id)
329 {
330 	int error, node;
331 	struct drv_dev_and_id ddi = { drv, dev, id };
332 
333 	/*
334 	 * Execute driver initialization on node where the device is
335 	 * attached.  This way the driver likely allocates its local memory
336 	 * on the right node.
337 	 */
338 	node = dev_to_node(&dev->dev);
339 
340 	/*
341 	 * On NUMA systems, we are likely to call a PF probe function using
342 	 * work_on_cpu().  If that probe calls pci_enable_sriov() (which
343 	 * adds the VF devices via pci_bus_add_device()), we may re-enter
344 	 * this function to call the VF probe function.  Calling
345 	 * work_on_cpu() again will cause a lockdep warning.  Since VFs are
346 	 * always on the same node as the PF, we can work around this by
347 	 * avoiding work_on_cpu() when we're already on the correct node.
348 	 *
349 	 * Preemption is enabled, so it's theoretically unsafe to use
350 	 * numa_node_id(), but even if we run the probe function on the
351 	 * wrong node, it should be functionally correct.
352 	 */
353 	if (node >= 0 && node != numa_node_id()) {
354 		int cpu;
355 
356 		get_online_cpus();
357 		cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
358 		if (cpu < nr_cpu_ids)
359 			error = work_on_cpu(cpu, local_pci_probe, &ddi);
360 		else
361 			error = local_pci_probe(&ddi);
362 		put_online_cpus();
363 	} else
364 		error = local_pci_probe(&ddi);
365 
366 	return error;
367 }
368 
369 /**
370  * __pci_device_probe - check if a driver wants to claim a specific PCI device
371  * @drv: driver to call to check if it wants the PCI device
372  * @pci_dev: PCI device being probed
373  *
374  * returns 0 on success, else error.
375  * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
376  */
377 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
378 {
379 	const struct pci_device_id *id;
380 	int error = 0;
381 
382 	if (!pci_dev->driver && drv->probe) {
383 		error = -ENODEV;
384 
385 		id = pci_match_device(drv, pci_dev);
386 		if (id)
387 			error = pci_call_probe(drv, pci_dev, id);
388 		if (error >= 0)
389 			error = 0;
390 	}
391 	return error;
392 }
393 
394 static int pci_device_probe(struct device *dev)
395 {
396 	int error = 0;
397 	struct pci_driver *drv;
398 	struct pci_dev *pci_dev;
399 
400 	drv = to_pci_driver(dev->driver);
401 	pci_dev = to_pci_dev(dev);
402 	pci_dev_get(pci_dev);
403 	error = __pci_device_probe(drv, pci_dev);
404 	if (error)
405 		pci_dev_put(pci_dev);
406 
407 	return error;
408 }
409 
410 static int pci_device_remove(struct device *dev)
411 {
412 	struct pci_dev *pci_dev = to_pci_dev(dev);
413 	struct pci_driver *drv = pci_dev->driver;
414 
415 	if (drv) {
416 		if (drv->remove) {
417 			pm_runtime_get_sync(dev);
418 			drv->remove(pci_dev);
419 			pm_runtime_put_noidle(dev);
420 		}
421 		pci_dev->driver = NULL;
422 	}
423 
424 	/* Undo the runtime PM settings in local_pci_probe() */
425 	pm_runtime_put_sync(dev);
426 
427 	/*
428 	 * If the device is still on, set the power state as "unknown",
429 	 * since it might change by the next time we load the driver.
430 	 */
431 	if (pci_dev->current_state == PCI_D0)
432 		pci_dev->current_state = PCI_UNKNOWN;
433 
434 	/*
435 	 * We would love to complain here if pci_dev->is_enabled is set, that
436 	 * the driver should have called pci_disable_device(), but the
437 	 * unfortunate fact is there are too many odd BIOS and bridge setups
438 	 * that don't like drivers doing that all of the time.
439 	 * Oh well, we can dream of sane hardware when we sleep, no matter how
440 	 * horrible the crap we have to deal with is when we are awake...
441 	 */
442 
443 	pci_dev_put(pci_dev);
444 	return 0;
445 }
446 
447 static void pci_device_shutdown(struct device *dev)
448 {
449 	struct pci_dev *pci_dev = to_pci_dev(dev);
450 	struct pci_driver *drv = pci_dev->driver;
451 
452 	pm_runtime_resume(dev);
453 
454 	if (drv && drv->shutdown)
455 		drv->shutdown(pci_dev);
456 	pci_msi_shutdown(pci_dev);
457 	pci_msix_shutdown(pci_dev);
458 
459 #ifdef CONFIG_KEXEC
460 	/*
461 	 * If this is a kexec reboot, turn off Bus Master bit on the
462 	 * device to tell it to not continue to do DMA. Don't touch
463 	 * devices in D3cold or unknown states.
464 	 * If it is not a kexec reboot, firmware will hit the PCI
465 	 * devices with big hammer and stop their DMA any way.
466 	 */
467 	if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
468 		pci_clear_master(pci_dev);
469 #endif
470 }
471 
472 #ifdef CONFIG_PM
473 
474 /* Auxiliary functions used for system resume and run-time resume. */
475 
476 /**
477  * pci_restore_standard_config - restore standard config registers of PCI device
478  * @pci_dev: PCI device to handle
479  */
480 static int pci_restore_standard_config(struct pci_dev *pci_dev)
481 {
482 	pci_update_current_state(pci_dev, PCI_UNKNOWN);
483 
484 	if (pci_dev->current_state != PCI_D0) {
485 		int error = pci_set_power_state(pci_dev, PCI_D0);
486 		if (error)
487 			return error;
488 	}
489 
490 	pci_restore_state(pci_dev);
491 	return 0;
492 }
493 
494 #endif
495 
496 #ifdef CONFIG_PM_SLEEP
497 
498 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
499 {
500 	pci_power_up(pci_dev);
501 	pci_restore_state(pci_dev);
502 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
503 }
504 
505 /*
506  * Default "suspend" method for devices that have no driver provided suspend,
507  * or not even a driver at all (second part).
508  */
509 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
510 {
511 	/*
512 	 * mark its power state as "unknown", since we don't know if
513 	 * e.g. the BIOS will change its device state when we suspend.
514 	 */
515 	if (pci_dev->current_state == PCI_D0)
516 		pci_dev->current_state = PCI_UNKNOWN;
517 }
518 
519 /*
520  * Default "resume" method for devices that have no driver provided resume,
521  * or not even a driver at all (second part).
522  */
523 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
524 {
525 	int retval;
526 
527 	/* if the device was enabled before suspend, reenable */
528 	retval = pci_reenable_device(pci_dev);
529 	/*
530 	 * if the device was busmaster before the suspend, make it busmaster
531 	 * again
532 	 */
533 	if (pci_dev->is_busmaster)
534 		pci_set_master(pci_dev);
535 
536 	return retval;
537 }
538 
539 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
540 {
541 	struct pci_dev *pci_dev = to_pci_dev(dev);
542 	struct pci_driver *drv = pci_dev->driver;
543 
544 	if (drv && drv->suspend) {
545 		pci_power_t prev = pci_dev->current_state;
546 		int error;
547 
548 		error = drv->suspend(pci_dev, state);
549 		suspend_report_result(drv->suspend, error);
550 		if (error)
551 			return error;
552 
553 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
554 		    && pci_dev->current_state != PCI_UNKNOWN) {
555 			WARN_ONCE(pci_dev->current_state != prev,
556 				"PCI PM: Device state not saved by %pF\n",
557 				drv->suspend);
558 		}
559 	}
560 
561 	pci_fixup_device(pci_fixup_suspend, pci_dev);
562 
563 	return 0;
564 }
565 
566 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
567 {
568 	struct pci_dev *pci_dev = to_pci_dev(dev);
569 	struct pci_driver *drv = pci_dev->driver;
570 
571 	if (drv && drv->suspend_late) {
572 		pci_power_t prev = pci_dev->current_state;
573 		int error;
574 
575 		error = drv->suspend_late(pci_dev, state);
576 		suspend_report_result(drv->suspend_late, error);
577 		if (error)
578 			return error;
579 
580 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
581 		    && pci_dev->current_state != PCI_UNKNOWN) {
582 			WARN_ONCE(pci_dev->current_state != prev,
583 				"PCI PM: Device state not saved by %pF\n",
584 				drv->suspend_late);
585 			goto Fixup;
586 		}
587 	}
588 
589 	if (!pci_dev->state_saved)
590 		pci_save_state(pci_dev);
591 
592 	pci_pm_set_unknown_state(pci_dev);
593 
594 Fixup:
595 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
596 
597 	return 0;
598 }
599 
600 static int pci_legacy_resume_early(struct device *dev)
601 {
602 	struct pci_dev *pci_dev = to_pci_dev(dev);
603 	struct pci_driver *drv = pci_dev->driver;
604 
605 	return drv && drv->resume_early ?
606 			drv->resume_early(pci_dev) : 0;
607 }
608 
609 static int pci_legacy_resume(struct device *dev)
610 {
611 	struct pci_dev *pci_dev = to_pci_dev(dev);
612 	struct pci_driver *drv = pci_dev->driver;
613 
614 	pci_fixup_device(pci_fixup_resume, pci_dev);
615 
616 	return drv && drv->resume ?
617 			drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
618 }
619 
620 /* Auxiliary functions used by the new power management framework */
621 
622 static void pci_pm_default_resume(struct pci_dev *pci_dev)
623 {
624 	pci_fixup_device(pci_fixup_resume, pci_dev);
625 
626 	if (!pci_has_subordinate(pci_dev))
627 		pci_enable_wake(pci_dev, PCI_D0, false);
628 }
629 
630 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
631 {
632 	/* Disable non-bridge devices without PM support */
633 	if (!pci_has_subordinate(pci_dev))
634 		pci_disable_enabled_device(pci_dev);
635 }
636 
637 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
638 {
639 	struct pci_driver *drv = pci_dev->driver;
640 	bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
641 		|| drv->resume_early);
642 
643 	/*
644 	 * Legacy PM support is used by default, so warn if the new framework is
645 	 * supported as well.  Drivers are supposed to support either the
646 	 * former, or the latter, but not both at the same time.
647 	 */
648 	WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
649 		drv->name, pci_dev->vendor, pci_dev->device);
650 
651 	return ret;
652 }
653 
654 /* New power management framework */
655 
656 static int pci_pm_prepare(struct device *dev)
657 {
658 	struct device_driver *drv = dev->driver;
659 	int error = 0;
660 
661 	/*
662 	 * Devices having power.ignore_children set may still be necessary for
663 	 * suspending their children in the next phase of device suspend.
664 	 */
665 	if (dev->power.ignore_children)
666 		pm_runtime_resume(dev);
667 
668 	if (drv && drv->pm && drv->pm->prepare)
669 		error = drv->pm->prepare(dev);
670 
671 	return error;
672 }
673 
674 
675 #else /* !CONFIG_PM_SLEEP */
676 
677 #define pci_pm_prepare	NULL
678 
679 #endif /* !CONFIG_PM_SLEEP */
680 
681 #ifdef CONFIG_SUSPEND
682 
683 static int pci_pm_suspend(struct device *dev)
684 {
685 	struct pci_dev *pci_dev = to_pci_dev(dev);
686 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
687 
688 	if (pci_has_legacy_pm_support(pci_dev))
689 		return pci_legacy_suspend(dev, PMSG_SUSPEND);
690 
691 	if (!pm) {
692 		pci_pm_default_suspend(pci_dev);
693 		goto Fixup;
694 	}
695 
696 	/*
697 	 * PCI devices suspended at run time need to be resumed at this point,
698 	 * because in general it is necessary to reconfigure them for system
699 	 * suspend.  Namely, if the device is supposed to wake up the system
700 	 * from the sleep state, we may need to reconfigure it for this purpose.
701 	 * In turn, if the device is not supposed to wake up the system from the
702 	 * sleep state, we'll have to prevent it from signaling wake-up.
703 	 */
704 	pm_runtime_resume(dev);
705 
706 	pci_dev->state_saved = false;
707 	if (pm->suspend) {
708 		pci_power_t prev = pci_dev->current_state;
709 		int error;
710 
711 		error = pm->suspend(dev);
712 		suspend_report_result(pm->suspend, error);
713 		if (error)
714 			return error;
715 
716 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
717 		    && pci_dev->current_state != PCI_UNKNOWN) {
718 			WARN_ONCE(pci_dev->current_state != prev,
719 				"PCI PM: State of device not saved by %pF\n",
720 				pm->suspend);
721 		}
722 	}
723 
724  Fixup:
725 	pci_fixup_device(pci_fixup_suspend, pci_dev);
726 
727 	return 0;
728 }
729 
730 static int pci_pm_suspend_noirq(struct device *dev)
731 {
732 	struct pci_dev *pci_dev = to_pci_dev(dev);
733 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
734 
735 	if (pci_has_legacy_pm_support(pci_dev))
736 		return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
737 
738 	if (!pm) {
739 		pci_save_state(pci_dev);
740 		goto Fixup;
741 	}
742 
743 	if (pm->suspend_noirq) {
744 		pci_power_t prev = pci_dev->current_state;
745 		int error;
746 
747 		error = pm->suspend_noirq(dev);
748 		suspend_report_result(pm->suspend_noirq, error);
749 		if (error)
750 			return error;
751 
752 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
753 		    && pci_dev->current_state != PCI_UNKNOWN) {
754 			WARN_ONCE(pci_dev->current_state != prev,
755 				"PCI PM: State of device not saved by %pF\n",
756 				pm->suspend_noirq);
757 			goto Fixup;
758 		}
759 	}
760 
761 	if (!pci_dev->state_saved) {
762 		pci_save_state(pci_dev);
763 		if (!pci_has_subordinate(pci_dev))
764 			pci_prepare_to_sleep(pci_dev);
765 	}
766 
767 	pci_pm_set_unknown_state(pci_dev);
768 
769 	/*
770 	 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
771 	 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
772 	 * hasn't been quiesced and tries to turn it off.  If the controller
773 	 * is already in D3, this can hang or cause memory corruption.
774 	 *
775 	 * Since the value of the COMMAND register doesn't matter once the
776 	 * device has been suspended, we can safely set it to 0 here.
777 	 */
778 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
779 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
780 
781 Fixup:
782 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
783 
784 	return 0;
785 }
786 
787 static int pci_pm_resume_noirq(struct device *dev)
788 {
789 	struct pci_dev *pci_dev = to_pci_dev(dev);
790 	struct device_driver *drv = dev->driver;
791 	int error = 0;
792 
793 	pci_pm_default_resume_early(pci_dev);
794 
795 	if (pci_has_legacy_pm_support(pci_dev))
796 		return pci_legacy_resume_early(dev);
797 
798 	if (drv && drv->pm && drv->pm->resume_noirq)
799 		error = drv->pm->resume_noirq(dev);
800 
801 	return error;
802 }
803 
804 static int pci_pm_resume(struct device *dev)
805 {
806 	struct pci_dev *pci_dev = to_pci_dev(dev);
807 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
808 	int error = 0;
809 
810 	/*
811 	 * This is necessary for the suspend error path in which resume is
812 	 * called without restoring the standard config registers of the device.
813 	 */
814 	if (pci_dev->state_saved)
815 		pci_restore_standard_config(pci_dev);
816 
817 	if (pci_has_legacy_pm_support(pci_dev))
818 		return pci_legacy_resume(dev);
819 
820 	pci_pm_default_resume(pci_dev);
821 
822 	if (pm) {
823 		if (pm->resume)
824 			error = pm->resume(dev);
825 	} else {
826 		pci_pm_reenable_device(pci_dev);
827 	}
828 
829 	return error;
830 }
831 
832 #else /* !CONFIG_SUSPEND */
833 
834 #define pci_pm_suspend		NULL
835 #define pci_pm_suspend_noirq	NULL
836 #define pci_pm_resume		NULL
837 #define pci_pm_resume_noirq	NULL
838 
839 #endif /* !CONFIG_SUSPEND */
840 
841 #ifdef CONFIG_HIBERNATE_CALLBACKS
842 
843 
844 /*
845  * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
846  * a hibernate transition
847  */
848 struct dev_pm_ops __weak pcibios_pm_ops;
849 
850 static int pci_pm_freeze(struct device *dev)
851 {
852 	struct pci_dev *pci_dev = to_pci_dev(dev);
853 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
854 
855 	if (pci_has_legacy_pm_support(pci_dev))
856 		return pci_legacy_suspend(dev, PMSG_FREEZE);
857 
858 	if (!pm) {
859 		pci_pm_default_suspend(pci_dev);
860 		return 0;
861 	}
862 
863 	/*
864 	 * This used to be done in pci_pm_prepare() for all devices and some
865 	 * drivers may depend on it, so do it here.  Ideally, runtime-suspended
866 	 * devices should not be touched during freeze/thaw transitions,
867 	 * however.
868 	 */
869 	pm_runtime_resume(dev);
870 
871 	pci_dev->state_saved = false;
872 	if (pm->freeze) {
873 		int error;
874 
875 		error = pm->freeze(dev);
876 		suspend_report_result(pm->freeze, error);
877 		if (error)
878 			return error;
879 	}
880 
881 	if (pcibios_pm_ops.freeze)
882 		return pcibios_pm_ops.freeze(dev);
883 
884 	return 0;
885 }
886 
887 static int pci_pm_freeze_noirq(struct device *dev)
888 {
889 	struct pci_dev *pci_dev = to_pci_dev(dev);
890 	struct device_driver *drv = dev->driver;
891 
892 	if (pci_has_legacy_pm_support(pci_dev))
893 		return pci_legacy_suspend_late(dev, PMSG_FREEZE);
894 
895 	if (drv && drv->pm && drv->pm->freeze_noirq) {
896 		int error;
897 
898 		error = drv->pm->freeze_noirq(dev);
899 		suspend_report_result(drv->pm->freeze_noirq, error);
900 		if (error)
901 			return error;
902 	}
903 
904 	if (!pci_dev->state_saved)
905 		pci_save_state(pci_dev);
906 
907 	pci_pm_set_unknown_state(pci_dev);
908 
909 	if (pcibios_pm_ops.freeze_noirq)
910 		return pcibios_pm_ops.freeze_noirq(dev);
911 
912 	return 0;
913 }
914 
915 static int pci_pm_thaw_noirq(struct device *dev)
916 {
917 	struct pci_dev *pci_dev = to_pci_dev(dev);
918 	struct device_driver *drv = dev->driver;
919 	int error = 0;
920 
921 	if (pcibios_pm_ops.thaw_noirq) {
922 		error = pcibios_pm_ops.thaw_noirq(dev);
923 		if (error)
924 			return error;
925 	}
926 
927 	if (pci_has_legacy_pm_support(pci_dev))
928 		return pci_legacy_resume_early(dev);
929 
930 	pci_update_current_state(pci_dev, PCI_D0);
931 
932 	if (drv && drv->pm && drv->pm->thaw_noirq)
933 		error = drv->pm->thaw_noirq(dev);
934 
935 	return error;
936 }
937 
938 static int pci_pm_thaw(struct device *dev)
939 {
940 	struct pci_dev *pci_dev = to_pci_dev(dev);
941 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
942 	int error = 0;
943 
944 	if (pcibios_pm_ops.thaw) {
945 		error = pcibios_pm_ops.thaw(dev);
946 		if (error)
947 			return error;
948 	}
949 
950 	if (pci_has_legacy_pm_support(pci_dev))
951 		return pci_legacy_resume(dev);
952 
953 	if (pm) {
954 		if (pm->thaw)
955 			error = pm->thaw(dev);
956 	} else {
957 		pci_pm_reenable_device(pci_dev);
958 	}
959 
960 	pci_dev->state_saved = false;
961 
962 	return error;
963 }
964 
965 static int pci_pm_poweroff(struct device *dev)
966 {
967 	struct pci_dev *pci_dev = to_pci_dev(dev);
968 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
969 
970 	if (pci_has_legacy_pm_support(pci_dev))
971 		return pci_legacy_suspend(dev, PMSG_HIBERNATE);
972 
973 	if (!pm) {
974 		pci_pm_default_suspend(pci_dev);
975 		goto Fixup;
976 	}
977 
978 	/* The reason to do that is the same as in pci_pm_suspend(). */
979 	pm_runtime_resume(dev);
980 
981 	pci_dev->state_saved = false;
982 	if (pm->poweroff) {
983 		int error;
984 
985 		error = pm->poweroff(dev);
986 		suspend_report_result(pm->poweroff, error);
987 		if (error)
988 			return error;
989 	}
990 
991  Fixup:
992 	pci_fixup_device(pci_fixup_suspend, pci_dev);
993 
994 	if (pcibios_pm_ops.poweroff)
995 		return pcibios_pm_ops.poweroff(dev);
996 
997 	return 0;
998 }
999 
1000 static int pci_pm_poweroff_noirq(struct device *dev)
1001 {
1002 	struct pci_dev *pci_dev = to_pci_dev(dev);
1003 	struct device_driver *drv = dev->driver;
1004 
1005 	if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1006 		return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1007 
1008 	if (!drv || !drv->pm) {
1009 		pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1010 		return 0;
1011 	}
1012 
1013 	if (drv->pm->poweroff_noirq) {
1014 		int error;
1015 
1016 		error = drv->pm->poweroff_noirq(dev);
1017 		suspend_report_result(drv->pm->poweroff_noirq, error);
1018 		if (error)
1019 			return error;
1020 	}
1021 
1022 	if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1023 		pci_prepare_to_sleep(pci_dev);
1024 
1025 	/*
1026 	 * The reason for doing this here is the same as for the analogous code
1027 	 * in pci_pm_suspend_noirq().
1028 	 */
1029 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1030 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1031 
1032 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1033 
1034 	if (pcibios_pm_ops.poweroff_noirq)
1035 		return pcibios_pm_ops.poweroff_noirq(dev);
1036 
1037 	return 0;
1038 }
1039 
1040 static int pci_pm_restore_noirq(struct device *dev)
1041 {
1042 	struct pci_dev *pci_dev = to_pci_dev(dev);
1043 	struct device_driver *drv = dev->driver;
1044 	int error = 0;
1045 
1046 	if (pcibios_pm_ops.restore_noirq) {
1047 		error = pcibios_pm_ops.restore_noirq(dev);
1048 		if (error)
1049 			return error;
1050 	}
1051 
1052 	pci_pm_default_resume_early(pci_dev);
1053 
1054 	if (pci_has_legacy_pm_support(pci_dev))
1055 		return pci_legacy_resume_early(dev);
1056 
1057 	if (drv && drv->pm && drv->pm->restore_noirq)
1058 		error = drv->pm->restore_noirq(dev);
1059 
1060 	return error;
1061 }
1062 
1063 static int pci_pm_restore(struct device *dev)
1064 {
1065 	struct pci_dev *pci_dev = to_pci_dev(dev);
1066 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1067 	int error = 0;
1068 
1069 	if (pcibios_pm_ops.restore) {
1070 		error = pcibios_pm_ops.restore(dev);
1071 		if (error)
1072 			return error;
1073 	}
1074 
1075 	/*
1076 	 * This is necessary for the hibernation error path in which restore is
1077 	 * called without restoring the standard config registers of the device.
1078 	 */
1079 	if (pci_dev->state_saved)
1080 		pci_restore_standard_config(pci_dev);
1081 
1082 	if (pci_has_legacy_pm_support(pci_dev))
1083 		return pci_legacy_resume(dev);
1084 
1085 	pci_pm_default_resume(pci_dev);
1086 
1087 	if (pm) {
1088 		if (pm->restore)
1089 			error = pm->restore(dev);
1090 	} else {
1091 		pci_pm_reenable_device(pci_dev);
1092 	}
1093 
1094 	return error;
1095 }
1096 
1097 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1098 
1099 #define pci_pm_freeze		NULL
1100 #define pci_pm_freeze_noirq	NULL
1101 #define pci_pm_thaw		NULL
1102 #define pci_pm_thaw_noirq	NULL
1103 #define pci_pm_poweroff		NULL
1104 #define pci_pm_poweroff_noirq	NULL
1105 #define pci_pm_restore		NULL
1106 #define pci_pm_restore_noirq	NULL
1107 
1108 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1109 
1110 #ifdef CONFIG_PM_RUNTIME
1111 
1112 static int pci_pm_runtime_suspend(struct device *dev)
1113 {
1114 	struct pci_dev *pci_dev = to_pci_dev(dev);
1115 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1116 	pci_power_t prev = pci_dev->current_state;
1117 	int error;
1118 
1119 	/*
1120 	 * If pci_dev->driver is not set (unbound), the device should
1121 	 * always remain in D0 regardless of the runtime PM status
1122 	 */
1123 	if (!pci_dev->driver)
1124 		return 0;
1125 
1126 	if (!pm || !pm->runtime_suspend)
1127 		return -ENOSYS;
1128 
1129 	pci_dev->state_saved = false;
1130 	pci_dev->no_d3cold = false;
1131 	error = pm->runtime_suspend(dev);
1132 	suspend_report_result(pm->runtime_suspend, error);
1133 	if (error)
1134 		return error;
1135 	if (!pci_dev->d3cold_allowed)
1136 		pci_dev->no_d3cold = true;
1137 
1138 	pci_fixup_device(pci_fixup_suspend, pci_dev);
1139 
1140 	if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1141 	    && pci_dev->current_state != PCI_UNKNOWN) {
1142 		WARN_ONCE(pci_dev->current_state != prev,
1143 			"PCI PM: State of device not saved by %pF\n",
1144 			pm->runtime_suspend);
1145 		return 0;
1146 	}
1147 
1148 	if (!pci_dev->state_saved) {
1149 		pci_save_state(pci_dev);
1150 		pci_finish_runtime_suspend(pci_dev);
1151 	}
1152 
1153 	return 0;
1154 }
1155 
1156 static int pci_pm_runtime_resume(struct device *dev)
1157 {
1158 	int rc;
1159 	struct pci_dev *pci_dev = to_pci_dev(dev);
1160 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1161 
1162 	/*
1163 	 * If pci_dev->driver is not set (unbound), the device should
1164 	 * always remain in D0 regardless of the runtime PM status
1165 	 */
1166 	if (!pci_dev->driver)
1167 		return 0;
1168 
1169 	if (!pm || !pm->runtime_resume)
1170 		return -ENOSYS;
1171 
1172 	pci_restore_standard_config(pci_dev);
1173 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
1174 	__pci_enable_wake(pci_dev, PCI_D0, true, false);
1175 	pci_fixup_device(pci_fixup_resume, pci_dev);
1176 
1177 	rc = pm->runtime_resume(dev);
1178 
1179 	pci_dev->runtime_d3cold = false;
1180 
1181 	return rc;
1182 }
1183 
1184 static int pci_pm_runtime_idle(struct device *dev)
1185 {
1186 	struct pci_dev *pci_dev = to_pci_dev(dev);
1187 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1188 	int ret = 0;
1189 
1190 	/*
1191 	 * If pci_dev->driver is not set (unbound), the device should
1192 	 * always remain in D0 regardless of the runtime PM status
1193 	 */
1194 	if (!pci_dev->driver)
1195 		return 0;
1196 
1197 	if (!pm)
1198 		return -ENOSYS;
1199 
1200 	if (pm->runtime_idle)
1201 		ret = pm->runtime_idle(dev);
1202 
1203 	return ret;
1204 }
1205 
1206 #else /* !CONFIG_PM_RUNTIME */
1207 
1208 #define pci_pm_runtime_suspend	NULL
1209 #define pci_pm_runtime_resume	NULL
1210 #define pci_pm_runtime_idle	NULL
1211 
1212 #endif /* !CONFIG_PM_RUNTIME */
1213 
1214 #ifdef CONFIG_PM
1215 
1216 static const struct dev_pm_ops pci_dev_pm_ops = {
1217 	.prepare = pci_pm_prepare,
1218 	.suspend = pci_pm_suspend,
1219 	.resume = pci_pm_resume,
1220 	.freeze = pci_pm_freeze,
1221 	.thaw = pci_pm_thaw,
1222 	.poweroff = pci_pm_poweroff,
1223 	.restore = pci_pm_restore,
1224 	.suspend_noirq = pci_pm_suspend_noirq,
1225 	.resume_noirq = pci_pm_resume_noirq,
1226 	.freeze_noirq = pci_pm_freeze_noirq,
1227 	.thaw_noirq = pci_pm_thaw_noirq,
1228 	.poweroff_noirq = pci_pm_poweroff_noirq,
1229 	.restore_noirq = pci_pm_restore_noirq,
1230 	.runtime_suspend = pci_pm_runtime_suspend,
1231 	.runtime_resume = pci_pm_runtime_resume,
1232 	.runtime_idle = pci_pm_runtime_idle,
1233 };
1234 
1235 #define PCI_PM_OPS_PTR	(&pci_dev_pm_ops)
1236 
1237 #else /* !COMFIG_PM_OPS */
1238 
1239 #define PCI_PM_OPS_PTR	NULL
1240 
1241 #endif /* !COMFIG_PM_OPS */
1242 
1243 /**
1244  * __pci_register_driver - register a new pci driver
1245  * @drv: the driver structure to register
1246  * @owner: owner module of drv
1247  * @mod_name: module name string
1248  *
1249  * Adds the driver structure to the list of registered drivers.
1250  * Returns a negative value on error, otherwise 0.
1251  * If no error occurred, the driver remains registered even if
1252  * no device was claimed during registration.
1253  */
1254 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1255 			  const char *mod_name)
1256 {
1257 	/* initialize common driver fields */
1258 	drv->driver.name = drv->name;
1259 	drv->driver.bus = &pci_bus_type;
1260 	drv->driver.owner = owner;
1261 	drv->driver.mod_name = mod_name;
1262 
1263 	spin_lock_init(&drv->dynids.lock);
1264 	INIT_LIST_HEAD(&drv->dynids.list);
1265 
1266 	/* register with core */
1267 	return driver_register(&drv->driver);
1268 }
1269 EXPORT_SYMBOL(__pci_register_driver);
1270 
1271 /**
1272  * pci_unregister_driver - unregister a pci driver
1273  * @drv: the driver structure to unregister
1274  *
1275  * Deletes the driver structure from the list of registered PCI drivers,
1276  * gives it a chance to clean up by calling its remove() function for
1277  * each device it was responsible for, and marks those devices as
1278  * driverless.
1279  */
1280 
1281 void pci_unregister_driver(struct pci_driver *drv)
1282 {
1283 	driver_unregister(&drv->driver);
1284 	pci_free_dynids(drv);
1285 }
1286 EXPORT_SYMBOL(pci_unregister_driver);
1287 
1288 static struct pci_driver pci_compat_driver = {
1289 	.name = "compat"
1290 };
1291 
1292 /**
1293  * pci_dev_driver - get the pci_driver of a device
1294  * @dev: the device to query
1295  *
1296  * Returns the appropriate pci_driver structure or %NULL if there is no
1297  * registered driver for the device.
1298  */
1299 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1300 {
1301 	if (dev->driver)
1302 		return dev->driver;
1303 	else {
1304 		int i;
1305 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1306 			if (dev->resource[i].flags & IORESOURCE_BUSY)
1307 				return &pci_compat_driver;
1308 	}
1309 	return NULL;
1310 }
1311 EXPORT_SYMBOL(pci_dev_driver);
1312 
1313 /**
1314  * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1315  * @dev: the PCI device structure to match against
1316  * @drv: the device driver to search for matching PCI device id structures
1317  *
1318  * Used by a driver to check whether a PCI device present in the
1319  * system is in its list of supported devices. Returns the matching
1320  * pci_device_id structure or %NULL if there is no match.
1321  */
1322 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1323 {
1324 	struct pci_dev *pci_dev = to_pci_dev(dev);
1325 	struct pci_driver *pci_drv;
1326 	const struct pci_device_id *found_id;
1327 
1328 	if (!pci_dev->match_driver)
1329 		return 0;
1330 
1331 	pci_drv = to_pci_driver(drv);
1332 	found_id = pci_match_device(pci_drv, pci_dev);
1333 	if (found_id)
1334 		return 1;
1335 
1336 	return 0;
1337 }
1338 
1339 /**
1340  * pci_dev_get - increments the reference count of the pci device structure
1341  * @dev: the device being referenced
1342  *
1343  * Each live reference to a device should be refcounted.
1344  *
1345  * Drivers for PCI devices should normally record such references in
1346  * their probe() methods, when they bind to a device, and release
1347  * them by calling pci_dev_put(), in their disconnect() methods.
1348  *
1349  * A pointer to the device with the incremented reference counter is returned.
1350  */
1351 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1352 {
1353 	if (dev)
1354 		get_device(&dev->dev);
1355 	return dev;
1356 }
1357 EXPORT_SYMBOL(pci_dev_get);
1358 
1359 /**
1360  * pci_dev_put - release a use of the pci device structure
1361  * @dev: device that's been disconnected
1362  *
1363  * Must be called when a user of a device is finished with it.  When the last
1364  * user of the device calls this function, the memory of the device is freed.
1365  */
1366 void pci_dev_put(struct pci_dev *dev)
1367 {
1368 	if (dev)
1369 		put_device(&dev->dev);
1370 }
1371 EXPORT_SYMBOL(pci_dev_put);
1372 
1373 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1374 {
1375 	struct pci_dev *pdev;
1376 
1377 	if (!dev)
1378 		return -ENODEV;
1379 
1380 	pdev = to_pci_dev(dev);
1381 
1382 	if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1383 		return -ENOMEM;
1384 
1385 	if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1386 		return -ENOMEM;
1387 
1388 	if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1389 			   pdev->subsystem_device))
1390 		return -ENOMEM;
1391 
1392 	if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1393 		return -ENOMEM;
1394 
1395 	if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02x",
1396 			   pdev->vendor, pdev->device,
1397 			   pdev->subsystem_vendor, pdev->subsystem_device,
1398 			   (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1399 			   (u8)(pdev->class)))
1400 		return -ENOMEM;
1401 
1402 	return 0;
1403 }
1404 
1405 struct bus_type pci_bus_type = {
1406 	.name		= "pci",
1407 	.match		= pci_bus_match,
1408 	.uevent		= pci_uevent,
1409 	.probe		= pci_device_probe,
1410 	.remove		= pci_device_remove,
1411 	.shutdown	= pci_device_shutdown,
1412 	.dev_groups	= pci_dev_groups,
1413 	.bus_groups	= pci_bus_groups,
1414 	.drv_groups	= pci_drv_groups,
1415 	.pm		= PCI_PM_OPS_PTR,
1416 };
1417 EXPORT_SYMBOL(pci_bus_type);
1418 
1419 static int __init pci_driver_init(void)
1420 {
1421 	return bus_register(&pci_bus_type);
1422 }
1423 postcore_initcall(pci_driver_init);
1424