xref: /linux/drivers/pci/pci-driver.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * drivers/pci/pci-driver.c
3  *
4  * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5  * (C) Copyright 2007 Novell Inc.
6  *
7  * Released under the GPL v2 only.
8  *
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24 
25 struct pci_dynid {
26 	struct list_head node;
27 	struct pci_device_id id;
28 };
29 
30 /**
31  * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32  * @drv: target pci driver
33  * @vendor: PCI vendor ID
34  * @device: PCI device ID
35  * @subvendor: PCI subvendor ID
36  * @subdevice: PCI subdevice ID
37  * @class: PCI class
38  * @class_mask: PCI class mask
39  * @driver_data: private driver data
40  *
41  * Adds a new dynamic pci device ID to this driver and causes the
42  * driver to probe for all devices again.  @drv must have been
43  * registered prior to calling this function.
44  *
45  * CONTEXT:
46  * Does GFP_KERNEL allocation.
47  *
48  * RETURNS:
49  * 0 on success, -errno on failure.
50  */
51 int pci_add_dynid(struct pci_driver *drv,
52 		  unsigned int vendor, unsigned int device,
53 		  unsigned int subvendor, unsigned int subdevice,
54 		  unsigned int class, unsigned int class_mask,
55 		  unsigned long driver_data)
56 {
57 	struct pci_dynid *dynid;
58 
59 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60 	if (!dynid)
61 		return -ENOMEM;
62 
63 	dynid->id.vendor = vendor;
64 	dynid->id.device = device;
65 	dynid->id.subvendor = subvendor;
66 	dynid->id.subdevice = subdevice;
67 	dynid->id.class = class;
68 	dynid->id.class_mask = class_mask;
69 	dynid->id.driver_data = driver_data;
70 
71 	spin_lock(&drv->dynids.lock);
72 	list_add_tail(&dynid->node, &drv->dynids.list);
73 	spin_unlock(&drv->dynids.lock);
74 
75 	return driver_attach(&drv->driver);
76 }
77 EXPORT_SYMBOL_GPL(pci_add_dynid);
78 
79 static void pci_free_dynids(struct pci_driver *drv)
80 {
81 	struct pci_dynid *dynid, *n;
82 
83 	spin_lock(&drv->dynids.lock);
84 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85 		list_del(&dynid->node);
86 		kfree(dynid);
87 	}
88 	spin_unlock(&drv->dynids.lock);
89 }
90 
91 /**
92  * store_new_id - sysfs frontend to pci_add_dynid()
93  * @driver: target device driver
94  * @buf: buffer for scanning device ID data
95  * @count: input size
96  *
97  * Allow PCI IDs to be added to an existing driver via sysfs.
98  */
99 static ssize_t store_new_id(struct device_driver *driver, const char *buf,
100 			    size_t count)
101 {
102 	struct pci_driver *pdrv = to_pci_driver(driver);
103 	const struct pci_device_id *ids = pdrv->id_table;
104 	__u32 vendor, device, subvendor = PCI_ANY_ID,
105 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106 	unsigned long driver_data = 0;
107 	int fields = 0;
108 	int retval = 0;
109 
110 	fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111 			&vendor, &device, &subvendor, &subdevice,
112 			&class, &class_mask, &driver_data);
113 	if (fields < 2)
114 		return -EINVAL;
115 
116 	if (fields != 7) {
117 		struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118 		if (!pdev)
119 			return -ENOMEM;
120 
121 		pdev->vendor = vendor;
122 		pdev->device = device;
123 		pdev->subsystem_vendor = subvendor;
124 		pdev->subsystem_device = subdevice;
125 		pdev->class = class;
126 
127 		if (pci_match_id(pdrv->id_table, pdev))
128 			retval = -EEXIST;
129 
130 		kfree(pdev);
131 
132 		if (retval)
133 			return retval;
134 	}
135 
136 	/* Only accept driver_data values that match an existing id_table
137 	   entry */
138 	if (ids) {
139 		retval = -EINVAL;
140 		while (ids->vendor || ids->subvendor || ids->class_mask) {
141 			if (driver_data == ids->driver_data) {
142 				retval = 0;
143 				break;
144 			}
145 			ids++;
146 		}
147 		if (retval)	/* No match */
148 			return retval;
149 	}
150 
151 	retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152 			       class, class_mask, driver_data);
153 	if (retval)
154 		return retval;
155 	return count;
156 }
157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
158 
159 /**
160  * store_remove_id - remove a PCI device ID from this driver
161  * @driver: target device driver
162  * @buf: buffer for scanning device ID data
163  * @count: input size
164  *
165  * Removes a dynamic pci device ID to this driver.
166  */
167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf,
168 			       size_t count)
169 {
170 	struct pci_dynid *dynid, *n;
171 	struct pci_driver *pdrv = to_pci_driver(driver);
172 	__u32 vendor, device, subvendor = PCI_ANY_ID,
173 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174 	int fields = 0;
175 	size_t retval = -ENODEV;
176 
177 	fields = sscanf(buf, "%x %x %x %x %x %x",
178 			&vendor, &device, &subvendor, &subdevice,
179 			&class, &class_mask);
180 	if (fields < 2)
181 		return -EINVAL;
182 
183 	spin_lock(&pdrv->dynids.lock);
184 	list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185 		struct pci_device_id *id = &dynid->id;
186 		if ((id->vendor == vendor) &&
187 		    (id->device == device) &&
188 		    (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189 		    (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190 		    !((id->class ^ class) & class_mask)) {
191 			list_del(&dynid->node);
192 			kfree(dynid);
193 			retval = count;
194 			break;
195 		}
196 	}
197 	spin_unlock(&pdrv->dynids.lock);
198 
199 	return retval;
200 }
201 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
202 
203 static struct attribute *pci_drv_attrs[] = {
204 	&driver_attr_new_id.attr,
205 	&driver_attr_remove_id.attr,
206 	NULL,
207 };
208 ATTRIBUTE_GROUPS(pci_drv);
209 
210 /**
211  * pci_match_id - See if a pci device matches a given pci_id table
212  * @ids: array of PCI device id structures to search in
213  * @dev: the PCI device structure to match against.
214  *
215  * Used by a driver to check whether a PCI device present in the
216  * system is in its list of supported devices.  Returns the matching
217  * pci_device_id structure or %NULL if there is no match.
218  *
219  * Deprecated, don't use this as it will not catch any dynamic ids
220  * that a driver might want to check for.
221  */
222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
223 					 struct pci_dev *dev)
224 {
225 	if (ids) {
226 		while (ids->vendor || ids->subvendor || ids->class_mask) {
227 			if (pci_match_one_device(ids, dev))
228 				return ids;
229 			ids++;
230 		}
231 	}
232 	return NULL;
233 }
234 EXPORT_SYMBOL(pci_match_id);
235 
236 static const struct pci_device_id pci_device_id_any = {
237 	.vendor = PCI_ANY_ID,
238 	.device = PCI_ANY_ID,
239 	.subvendor = PCI_ANY_ID,
240 	.subdevice = PCI_ANY_ID,
241 };
242 
243 /**
244  * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
245  * @drv: the PCI driver to match against
246  * @dev: the PCI device structure to match against
247  *
248  * Used by a driver to check whether a PCI device present in the
249  * system is in its list of supported devices.  Returns the matching
250  * pci_device_id structure or %NULL if there is no match.
251  */
252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
253 						    struct pci_dev *dev)
254 {
255 	struct pci_dynid *dynid;
256 	const struct pci_device_id *found_id = NULL;
257 
258 	/* When driver_override is set, only bind to the matching driver */
259 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
260 		return NULL;
261 
262 	/* Look at the dynamic ids first, before the static ones */
263 	spin_lock(&drv->dynids.lock);
264 	list_for_each_entry(dynid, &drv->dynids.list, node) {
265 		if (pci_match_one_device(&dynid->id, dev)) {
266 			found_id = &dynid->id;
267 			break;
268 		}
269 	}
270 	spin_unlock(&drv->dynids.lock);
271 
272 	if (!found_id)
273 		found_id = pci_match_id(drv->id_table, dev);
274 
275 	/* driver_override will always match, send a dummy id */
276 	if (!found_id && dev->driver_override)
277 		found_id = &pci_device_id_any;
278 
279 	return found_id;
280 }
281 
282 struct drv_dev_and_id {
283 	struct pci_driver *drv;
284 	struct pci_dev *dev;
285 	const struct pci_device_id *id;
286 };
287 
288 static long local_pci_probe(void *_ddi)
289 {
290 	struct drv_dev_and_id *ddi = _ddi;
291 	struct pci_dev *pci_dev = ddi->dev;
292 	struct pci_driver *pci_drv = ddi->drv;
293 	struct device *dev = &pci_dev->dev;
294 	int rc;
295 
296 	/*
297 	 * Unbound PCI devices are always put in D0, regardless of
298 	 * runtime PM status.  During probe, the device is set to
299 	 * active and the usage count is incremented.  If the driver
300 	 * supports runtime PM, it should call pm_runtime_put_noidle(),
301 	 * or any other runtime PM helper function decrementing the usage
302 	 * count, in its probe routine and pm_runtime_get_noresume() in
303 	 * its remove routine.
304 	 */
305 	pm_runtime_get_sync(dev);
306 	pci_dev->driver = pci_drv;
307 	rc = pci_drv->probe(pci_dev, ddi->id);
308 	if (!rc)
309 		return rc;
310 	if (rc < 0) {
311 		pci_dev->driver = NULL;
312 		pm_runtime_put_sync(dev);
313 		return rc;
314 	}
315 	/*
316 	 * Probe function should return < 0 for failure, 0 for success
317 	 * Treat values > 0 as success, but warn.
318 	 */
319 	dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
320 	return 0;
321 }
322 
323 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
324 			  const struct pci_device_id *id)
325 {
326 	int error, node;
327 	struct drv_dev_and_id ddi = { drv, dev, id };
328 
329 	/*
330 	 * Execute driver initialization on node where the device is
331 	 * attached.  This way the driver likely allocates its local memory
332 	 * on the right node.
333 	 */
334 	node = dev_to_node(&dev->dev);
335 
336 	/*
337 	 * On NUMA systems, we are likely to call a PF probe function using
338 	 * work_on_cpu().  If that probe calls pci_enable_sriov() (which
339 	 * adds the VF devices via pci_bus_add_device()), we may re-enter
340 	 * this function to call the VF probe function.  Calling
341 	 * work_on_cpu() again will cause a lockdep warning.  Since VFs are
342 	 * always on the same node as the PF, we can work around this by
343 	 * avoiding work_on_cpu() when we're already on the correct node.
344 	 *
345 	 * Preemption is enabled, so it's theoretically unsafe to use
346 	 * numa_node_id(), but even if we run the probe function on the
347 	 * wrong node, it should be functionally correct.
348 	 */
349 	if (node >= 0 && node != numa_node_id()) {
350 		int cpu;
351 
352 		get_online_cpus();
353 		cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
354 		if (cpu < nr_cpu_ids)
355 			error = work_on_cpu(cpu, local_pci_probe, &ddi);
356 		else
357 			error = local_pci_probe(&ddi);
358 		put_online_cpus();
359 	} else
360 		error = local_pci_probe(&ddi);
361 
362 	return error;
363 }
364 
365 /**
366  * __pci_device_probe - check if a driver wants to claim a specific PCI device
367  * @drv: driver to call to check if it wants the PCI device
368  * @pci_dev: PCI device being probed
369  *
370  * returns 0 on success, else error.
371  * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
372  */
373 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
374 {
375 	const struct pci_device_id *id;
376 	int error = 0;
377 
378 	if (!pci_dev->driver && drv->probe) {
379 		error = -ENODEV;
380 
381 		id = pci_match_device(drv, pci_dev);
382 		if (id)
383 			error = pci_call_probe(drv, pci_dev, id);
384 		if (error >= 0)
385 			error = 0;
386 	}
387 	return error;
388 }
389 
390 int __weak pcibios_alloc_irq(struct pci_dev *dev)
391 {
392 	return 0;
393 }
394 
395 void __weak pcibios_free_irq(struct pci_dev *dev)
396 {
397 }
398 
399 static int pci_device_probe(struct device *dev)
400 {
401 	int error;
402 	struct pci_dev *pci_dev = to_pci_dev(dev);
403 	struct pci_driver *drv = to_pci_driver(dev->driver);
404 
405 	error = pcibios_alloc_irq(pci_dev);
406 	if (error < 0)
407 		return error;
408 
409 	pci_dev_get(pci_dev);
410 	error = __pci_device_probe(drv, pci_dev);
411 	if (error) {
412 		pcibios_free_irq(pci_dev);
413 		pci_dev_put(pci_dev);
414 	}
415 
416 	return error;
417 }
418 
419 static int pci_device_remove(struct device *dev)
420 {
421 	struct pci_dev *pci_dev = to_pci_dev(dev);
422 	struct pci_driver *drv = pci_dev->driver;
423 
424 	if (drv) {
425 		if (drv->remove) {
426 			pm_runtime_get_sync(dev);
427 			drv->remove(pci_dev);
428 			pm_runtime_put_noidle(dev);
429 		}
430 		pcibios_free_irq(pci_dev);
431 		pci_dev->driver = NULL;
432 	}
433 
434 	/* Undo the runtime PM settings in local_pci_probe() */
435 	pm_runtime_put_sync(dev);
436 
437 	/*
438 	 * If the device is still on, set the power state as "unknown",
439 	 * since it might change by the next time we load the driver.
440 	 */
441 	if (pci_dev->current_state == PCI_D0)
442 		pci_dev->current_state = PCI_UNKNOWN;
443 
444 	/*
445 	 * We would love to complain here if pci_dev->is_enabled is set, that
446 	 * the driver should have called pci_disable_device(), but the
447 	 * unfortunate fact is there are too many odd BIOS and bridge setups
448 	 * that don't like drivers doing that all of the time.
449 	 * Oh well, we can dream of sane hardware when we sleep, no matter how
450 	 * horrible the crap we have to deal with is when we are awake...
451 	 */
452 
453 	pci_dev_put(pci_dev);
454 	return 0;
455 }
456 
457 static void pci_device_shutdown(struct device *dev)
458 {
459 	struct pci_dev *pci_dev = to_pci_dev(dev);
460 	struct pci_driver *drv = pci_dev->driver;
461 
462 	pm_runtime_resume(dev);
463 
464 	if (drv && drv->shutdown)
465 		drv->shutdown(pci_dev);
466 	pci_msi_shutdown(pci_dev);
467 	pci_msix_shutdown(pci_dev);
468 
469 #ifdef CONFIG_KEXEC_CORE
470 	/*
471 	 * If this is a kexec reboot, turn off Bus Master bit on the
472 	 * device to tell it to not continue to do DMA. Don't touch
473 	 * devices in D3cold or unknown states.
474 	 * If it is not a kexec reboot, firmware will hit the PCI
475 	 * devices with big hammer and stop their DMA any way.
476 	 */
477 	if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
478 		pci_clear_master(pci_dev);
479 #endif
480 }
481 
482 #ifdef CONFIG_PM
483 
484 /* Auxiliary functions used for system resume and run-time resume. */
485 
486 /**
487  * pci_restore_standard_config - restore standard config registers of PCI device
488  * @pci_dev: PCI device to handle
489  */
490 static int pci_restore_standard_config(struct pci_dev *pci_dev)
491 {
492 	pci_update_current_state(pci_dev, PCI_UNKNOWN);
493 
494 	if (pci_dev->current_state != PCI_D0) {
495 		int error = pci_set_power_state(pci_dev, PCI_D0);
496 		if (error)
497 			return error;
498 	}
499 
500 	pci_restore_state(pci_dev);
501 	return 0;
502 }
503 
504 #endif
505 
506 #ifdef CONFIG_PM_SLEEP
507 
508 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
509 {
510 	pci_power_up(pci_dev);
511 	pci_restore_state(pci_dev);
512 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
513 }
514 
515 /*
516  * Default "suspend" method for devices that have no driver provided suspend,
517  * or not even a driver at all (second part).
518  */
519 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
520 {
521 	/*
522 	 * mark its power state as "unknown", since we don't know if
523 	 * e.g. the BIOS will change its device state when we suspend.
524 	 */
525 	if (pci_dev->current_state == PCI_D0)
526 		pci_dev->current_state = PCI_UNKNOWN;
527 }
528 
529 /*
530  * Default "resume" method for devices that have no driver provided resume,
531  * or not even a driver at all (second part).
532  */
533 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
534 {
535 	int retval;
536 
537 	/* if the device was enabled before suspend, reenable */
538 	retval = pci_reenable_device(pci_dev);
539 	/*
540 	 * if the device was busmaster before the suspend, make it busmaster
541 	 * again
542 	 */
543 	if (pci_dev->is_busmaster)
544 		pci_set_master(pci_dev);
545 
546 	return retval;
547 }
548 
549 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
550 {
551 	struct pci_dev *pci_dev = to_pci_dev(dev);
552 	struct pci_driver *drv = pci_dev->driver;
553 
554 	if (drv && drv->suspend) {
555 		pci_power_t prev = pci_dev->current_state;
556 		int error;
557 
558 		error = drv->suspend(pci_dev, state);
559 		suspend_report_result(drv->suspend, error);
560 		if (error)
561 			return error;
562 
563 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
564 		    && pci_dev->current_state != PCI_UNKNOWN) {
565 			WARN_ONCE(pci_dev->current_state != prev,
566 				"PCI PM: Device state not saved by %pF\n",
567 				drv->suspend);
568 		}
569 	}
570 
571 	pci_fixup_device(pci_fixup_suspend, pci_dev);
572 
573 	return 0;
574 }
575 
576 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
577 {
578 	struct pci_dev *pci_dev = to_pci_dev(dev);
579 	struct pci_driver *drv = pci_dev->driver;
580 
581 	if (drv && drv->suspend_late) {
582 		pci_power_t prev = pci_dev->current_state;
583 		int error;
584 
585 		error = drv->suspend_late(pci_dev, state);
586 		suspend_report_result(drv->suspend_late, error);
587 		if (error)
588 			return error;
589 
590 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
591 		    && pci_dev->current_state != PCI_UNKNOWN) {
592 			WARN_ONCE(pci_dev->current_state != prev,
593 				"PCI PM: Device state not saved by %pF\n",
594 				drv->suspend_late);
595 			goto Fixup;
596 		}
597 	}
598 
599 	if (!pci_dev->state_saved)
600 		pci_save_state(pci_dev);
601 
602 	pci_pm_set_unknown_state(pci_dev);
603 
604 Fixup:
605 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
606 
607 	return 0;
608 }
609 
610 static int pci_legacy_resume_early(struct device *dev)
611 {
612 	struct pci_dev *pci_dev = to_pci_dev(dev);
613 	struct pci_driver *drv = pci_dev->driver;
614 
615 	return drv && drv->resume_early ?
616 			drv->resume_early(pci_dev) : 0;
617 }
618 
619 static int pci_legacy_resume(struct device *dev)
620 {
621 	struct pci_dev *pci_dev = to_pci_dev(dev);
622 	struct pci_driver *drv = pci_dev->driver;
623 
624 	pci_fixup_device(pci_fixup_resume, pci_dev);
625 
626 	return drv && drv->resume ?
627 			drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
628 }
629 
630 /* Auxiliary functions used by the new power management framework */
631 
632 static void pci_pm_default_resume(struct pci_dev *pci_dev)
633 {
634 	pci_fixup_device(pci_fixup_resume, pci_dev);
635 
636 	if (!pci_has_subordinate(pci_dev))
637 		pci_enable_wake(pci_dev, PCI_D0, false);
638 }
639 
640 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
641 {
642 	/* Disable non-bridge devices without PM support */
643 	if (!pci_has_subordinate(pci_dev))
644 		pci_disable_enabled_device(pci_dev);
645 }
646 
647 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
648 {
649 	struct pci_driver *drv = pci_dev->driver;
650 	bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
651 		|| drv->resume_early);
652 
653 	/*
654 	 * Legacy PM support is used by default, so warn if the new framework is
655 	 * supported as well.  Drivers are supposed to support either the
656 	 * former, or the latter, but not both at the same time.
657 	 */
658 	WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
659 		drv->name, pci_dev->vendor, pci_dev->device);
660 
661 	return ret;
662 }
663 
664 /* New power management framework */
665 
666 static int pci_pm_prepare(struct device *dev)
667 {
668 	struct device_driver *drv = dev->driver;
669 
670 	/*
671 	 * Devices having power.ignore_children set may still be necessary for
672 	 * suspending their children in the next phase of device suspend.
673 	 */
674 	if (dev->power.ignore_children)
675 		pm_runtime_resume(dev);
676 
677 	if (drv && drv->pm && drv->pm->prepare) {
678 		int error = drv->pm->prepare(dev);
679 		if (error)
680 			return error;
681 	}
682 	return pci_dev_keep_suspended(to_pci_dev(dev));
683 }
684 
685 static void pci_pm_complete(struct device *dev)
686 {
687 	pci_dev_complete_resume(to_pci_dev(dev));
688 	pm_complete_with_resume_check(dev);
689 }
690 
691 #else /* !CONFIG_PM_SLEEP */
692 
693 #define pci_pm_prepare	NULL
694 #define pci_pm_complete	NULL
695 
696 #endif /* !CONFIG_PM_SLEEP */
697 
698 #ifdef CONFIG_SUSPEND
699 
700 static int pci_pm_suspend(struct device *dev)
701 {
702 	struct pci_dev *pci_dev = to_pci_dev(dev);
703 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
704 
705 	if (pci_has_legacy_pm_support(pci_dev))
706 		return pci_legacy_suspend(dev, PMSG_SUSPEND);
707 
708 	if (!pm) {
709 		pci_pm_default_suspend(pci_dev);
710 		goto Fixup;
711 	}
712 
713 	/*
714 	 * PCI devices suspended at run time need to be resumed at this point,
715 	 * because in general it is necessary to reconfigure them for system
716 	 * suspend.  Namely, if the device is supposed to wake up the system
717 	 * from the sleep state, we may need to reconfigure it for this purpose.
718 	 * In turn, if the device is not supposed to wake up the system from the
719 	 * sleep state, we'll have to prevent it from signaling wake-up.
720 	 */
721 	pm_runtime_resume(dev);
722 
723 	pci_dev->state_saved = false;
724 	if (pm->suspend) {
725 		pci_power_t prev = pci_dev->current_state;
726 		int error;
727 
728 		error = pm->suspend(dev);
729 		suspend_report_result(pm->suspend, error);
730 		if (error)
731 			return error;
732 
733 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
734 		    && pci_dev->current_state != PCI_UNKNOWN) {
735 			WARN_ONCE(pci_dev->current_state != prev,
736 				"PCI PM: State of device not saved by %pF\n",
737 				pm->suspend);
738 		}
739 	}
740 
741  Fixup:
742 	pci_fixup_device(pci_fixup_suspend, pci_dev);
743 
744 	return 0;
745 }
746 
747 static int pci_pm_suspend_noirq(struct device *dev)
748 {
749 	struct pci_dev *pci_dev = to_pci_dev(dev);
750 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
751 
752 	if (pci_has_legacy_pm_support(pci_dev))
753 		return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
754 
755 	if (!pm) {
756 		pci_save_state(pci_dev);
757 		goto Fixup;
758 	}
759 
760 	if (pm->suspend_noirq) {
761 		pci_power_t prev = pci_dev->current_state;
762 		int error;
763 
764 		error = pm->suspend_noirq(dev);
765 		suspend_report_result(pm->suspend_noirq, error);
766 		if (error)
767 			return error;
768 
769 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
770 		    && pci_dev->current_state != PCI_UNKNOWN) {
771 			WARN_ONCE(pci_dev->current_state != prev,
772 				"PCI PM: State of device not saved by %pF\n",
773 				pm->suspend_noirq);
774 			goto Fixup;
775 		}
776 	}
777 
778 	if (!pci_dev->state_saved) {
779 		pci_save_state(pci_dev);
780 		if (!pci_has_subordinate(pci_dev))
781 			pci_prepare_to_sleep(pci_dev);
782 	}
783 
784 	pci_pm_set_unknown_state(pci_dev);
785 
786 	/*
787 	 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
788 	 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
789 	 * hasn't been quiesced and tries to turn it off.  If the controller
790 	 * is already in D3, this can hang or cause memory corruption.
791 	 *
792 	 * Since the value of the COMMAND register doesn't matter once the
793 	 * device has been suspended, we can safely set it to 0 here.
794 	 */
795 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
796 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
797 
798 Fixup:
799 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
800 
801 	return 0;
802 }
803 
804 static int pci_pm_resume_noirq(struct device *dev)
805 {
806 	struct pci_dev *pci_dev = to_pci_dev(dev);
807 	struct device_driver *drv = dev->driver;
808 	int error = 0;
809 
810 	pci_pm_default_resume_early(pci_dev);
811 
812 	if (pci_has_legacy_pm_support(pci_dev))
813 		return pci_legacy_resume_early(dev);
814 
815 	if (drv && drv->pm && drv->pm->resume_noirq)
816 		error = drv->pm->resume_noirq(dev);
817 
818 	return error;
819 }
820 
821 static int pci_pm_resume(struct device *dev)
822 {
823 	struct pci_dev *pci_dev = to_pci_dev(dev);
824 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
825 	int error = 0;
826 
827 	/*
828 	 * This is necessary for the suspend error path in which resume is
829 	 * called without restoring the standard config registers of the device.
830 	 */
831 	if (pci_dev->state_saved)
832 		pci_restore_standard_config(pci_dev);
833 
834 	if (pci_has_legacy_pm_support(pci_dev))
835 		return pci_legacy_resume(dev);
836 
837 	pci_pm_default_resume(pci_dev);
838 
839 	if (pm) {
840 		if (pm->resume)
841 			error = pm->resume(dev);
842 	} else {
843 		pci_pm_reenable_device(pci_dev);
844 	}
845 
846 	return error;
847 }
848 
849 #else /* !CONFIG_SUSPEND */
850 
851 #define pci_pm_suspend		NULL
852 #define pci_pm_suspend_noirq	NULL
853 #define pci_pm_resume		NULL
854 #define pci_pm_resume_noirq	NULL
855 
856 #endif /* !CONFIG_SUSPEND */
857 
858 #ifdef CONFIG_HIBERNATE_CALLBACKS
859 
860 
861 /*
862  * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
863  * a hibernate transition
864  */
865 struct dev_pm_ops __weak pcibios_pm_ops;
866 
867 static int pci_pm_freeze(struct device *dev)
868 {
869 	struct pci_dev *pci_dev = to_pci_dev(dev);
870 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
871 
872 	if (pci_has_legacy_pm_support(pci_dev))
873 		return pci_legacy_suspend(dev, PMSG_FREEZE);
874 
875 	if (!pm) {
876 		pci_pm_default_suspend(pci_dev);
877 		return 0;
878 	}
879 
880 	/*
881 	 * This used to be done in pci_pm_prepare() for all devices and some
882 	 * drivers may depend on it, so do it here.  Ideally, runtime-suspended
883 	 * devices should not be touched during freeze/thaw transitions,
884 	 * however.
885 	 */
886 	pm_runtime_resume(dev);
887 
888 	pci_dev->state_saved = false;
889 	if (pm->freeze) {
890 		int error;
891 
892 		error = pm->freeze(dev);
893 		suspend_report_result(pm->freeze, error);
894 		if (error)
895 			return error;
896 	}
897 
898 	if (pcibios_pm_ops.freeze)
899 		return pcibios_pm_ops.freeze(dev);
900 
901 	return 0;
902 }
903 
904 static int pci_pm_freeze_noirq(struct device *dev)
905 {
906 	struct pci_dev *pci_dev = to_pci_dev(dev);
907 	struct device_driver *drv = dev->driver;
908 
909 	if (pci_has_legacy_pm_support(pci_dev))
910 		return pci_legacy_suspend_late(dev, PMSG_FREEZE);
911 
912 	if (drv && drv->pm && drv->pm->freeze_noirq) {
913 		int error;
914 
915 		error = drv->pm->freeze_noirq(dev);
916 		suspend_report_result(drv->pm->freeze_noirq, error);
917 		if (error)
918 			return error;
919 	}
920 
921 	if (!pci_dev->state_saved)
922 		pci_save_state(pci_dev);
923 
924 	pci_pm_set_unknown_state(pci_dev);
925 
926 	if (pcibios_pm_ops.freeze_noirq)
927 		return pcibios_pm_ops.freeze_noirq(dev);
928 
929 	return 0;
930 }
931 
932 static int pci_pm_thaw_noirq(struct device *dev)
933 {
934 	struct pci_dev *pci_dev = to_pci_dev(dev);
935 	struct device_driver *drv = dev->driver;
936 	int error = 0;
937 
938 	if (pcibios_pm_ops.thaw_noirq) {
939 		error = pcibios_pm_ops.thaw_noirq(dev);
940 		if (error)
941 			return error;
942 	}
943 
944 	if (pci_has_legacy_pm_support(pci_dev))
945 		return pci_legacy_resume_early(dev);
946 
947 	pci_update_current_state(pci_dev, PCI_D0);
948 
949 	if (drv && drv->pm && drv->pm->thaw_noirq)
950 		error = drv->pm->thaw_noirq(dev);
951 
952 	return error;
953 }
954 
955 static int pci_pm_thaw(struct device *dev)
956 {
957 	struct pci_dev *pci_dev = to_pci_dev(dev);
958 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
959 	int error = 0;
960 
961 	if (pcibios_pm_ops.thaw) {
962 		error = pcibios_pm_ops.thaw(dev);
963 		if (error)
964 			return error;
965 	}
966 
967 	if (pci_has_legacy_pm_support(pci_dev))
968 		return pci_legacy_resume(dev);
969 
970 	if (pm) {
971 		if (pm->thaw)
972 			error = pm->thaw(dev);
973 	} else {
974 		pci_pm_reenable_device(pci_dev);
975 	}
976 
977 	pci_dev->state_saved = false;
978 
979 	return error;
980 }
981 
982 static int pci_pm_poweroff(struct device *dev)
983 {
984 	struct pci_dev *pci_dev = to_pci_dev(dev);
985 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
986 
987 	if (pci_has_legacy_pm_support(pci_dev))
988 		return pci_legacy_suspend(dev, PMSG_HIBERNATE);
989 
990 	if (!pm) {
991 		pci_pm_default_suspend(pci_dev);
992 		goto Fixup;
993 	}
994 
995 	/* The reason to do that is the same as in pci_pm_suspend(). */
996 	pm_runtime_resume(dev);
997 
998 	pci_dev->state_saved = false;
999 	if (pm->poweroff) {
1000 		int error;
1001 
1002 		error = pm->poweroff(dev);
1003 		suspend_report_result(pm->poweroff, error);
1004 		if (error)
1005 			return error;
1006 	}
1007 
1008  Fixup:
1009 	pci_fixup_device(pci_fixup_suspend, pci_dev);
1010 
1011 	if (pcibios_pm_ops.poweroff)
1012 		return pcibios_pm_ops.poweroff(dev);
1013 
1014 	return 0;
1015 }
1016 
1017 static int pci_pm_poweroff_noirq(struct device *dev)
1018 {
1019 	struct pci_dev *pci_dev = to_pci_dev(dev);
1020 	struct device_driver *drv = dev->driver;
1021 
1022 	if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1023 		return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1024 
1025 	if (!drv || !drv->pm) {
1026 		pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1027 		return 0;
1028 	}
1029 
1030 	if (drv->pm->poweroff_noirq) {
1031 		int error;
1032 
1033 		error = drv->pm->poweroff_noirq(dev);
1034 		suspend_report_result(drv->pm->poweroff_noirq, error);
1035 		if (error)
1036 			return error;
1037 	}
1038 
1039 	if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1040 		pci_prepare_to_sleep(pci_dev);
1041 
1042 	/*
1043 	 * The reason for doing this here is the same as for the analogous code
1044 	 * in pci_pm_suspend_noirq().
1045 	 */
1046 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1047 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1048 
1049 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1050 
1051 	if (pcibios_pm_ops.poweroff_noirq)
1052 		return pcibios_pm_ops.poweroff_noirq(dev);
1053 
1054 	return 0;
1055 }
1056 
1057 static int pci_pm_restore_noirq(struct device *dev)
1058 {
1059 	struct pci_dev *pci_dev = to_pci_dev(dev);
1060 	struct device_driver *drv = dev->driver;
1061 	int error = 0;
1062 
1063 	if (pcibios_pm_ops.restore_noirq) {
1064 		error = pcibios_pm_ops.restore_noirq(dev);
1065 		if (error)
1066 			return error;
1067 	}
1068 
1069 	pci_pm_default_resume_early(pci_dev);
1070 
1071 	if (pci_has_legacy_pm_support(pci_dev))
1072 		return pci_legacy_resume_early(dev);
1073 
1074 	if (drv && drv->pm && drv->pm->restore_noirq)
1075 		error = drv->pm->restore_noirq(dev);
1076 
1077 	return error;
1078 }
1079 
1080 static int pci_pm_restore(struct device *dev)
1081 {
1082 	struct pci_dev *pci_dev = to_pci_dev(dev);
1083 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1084 	int error = 0;
1085 
1086 	if (pcibios_pm_ops.restore) {
1087 		error = pcibios_pm_ops.restore(dev);
1088 		if (error)
1089 			return error;
1090 	}
1091 
1092 	/*
1093 	 * This is necessary for the hibernation error path in which restore is
1094 	 * called without restoring the standard config registers of the device.
1095 	 */
1096 	if (pci_dev->state_saved)
1097 		pci_restore_standard_config(pci_dev);
1098 
1099 	if (pci_has_legacy_pm_support(pci_dev))
1100 		return pci_legacy_resume(dev);
1101 
1102 	pci_pm_default_resume(pci_dev);
1103 
1104 	if (pm) {
1105 		if (pm->restore)
1106 			error = pm->restore(dev);
1107 	} else {
1108 		pci_pm_reenable_device(pci_dev);
1109 	}
1110 
1111 	return error;
1112 }
1113 
1114 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1115 
1116 #define pci_pm_freeze		NULL
1117 #define pci_pm_freeze_noirq	NULL
1118 #define pci_pm_thaw		NULL
1119 #define pci_pm_thaw_noirq	NULL
1120 #define pci_pm_poweroff		NULL
1121 #define pci_pm_poweroff_noirq	NULL
1122 #define pci_pm_restore		NULL
1123 #define pci_pm_restore_noirq	NULL
1124 
1125 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1126 
1127 #ifdef CONFIG_PM
1128 
1129 static int pci_pm_runtime_suspend(struct device *dev)
1130 {
1131 	struct pci_dev *pci_dev = to_pci_dev(dev);
1132 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1133 	pci_power_t prev = pci_dev->current_state;
1134 	int error;
1135 
1136 	/*
1137 	 * If pci_dev->driver is not set (unbound), the device should
1138 	 * always remain in D0 regardless of the runtime PM status
1139 	 */
1140 	if (!pci_dev->driver)
1141 		return 0;
1142 
1143 	if (!pm || !pm->runtime_suspend)
1144 		return -ENOSYS;
1145 
1146 	pci_dev->state_saved = false;
1147 	pci_dev->no_d3cold = false;
1148 	error = pm->runtime_suspend(dev);
1149 	if (error) {
1150 		/*
1151 		 * -EBUSY and -EAGAIN is used to request the runtime PM core
1152 		 * to schedule a new suspend, so log the event only with debug
1153 		 * log level.
1154 		 */
1155 		if (error == -EBUSY || error == -EAGAIN)
1156 			dev_dbg(dev, "can't suspend now (%pf returned %d)\n",
1157 				pm->runtime_suspend, error);
1158 		else
1159 			dev_err(dev, "can't suspend (%pf returned %d)\n",
1160 				pm->runtime_suspend, error);
1161 
1162 		return error;
1163 	}
1164 	if (!pci_dev->d3cold_allowed)
1165 		pci_dev->no_d3cold = true;
1166 
1167 	pci_fixup_device(pci_fixup_suspend, pci_dev);
1168 
1169 	if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1170 	    && pci_dev->current_state != PCI_UNKNOWN) {
1171 		WARN_ONCE(pci_dev->current_state != prev,
1172 			"PCI PM: State of device not saved by %pF\n",
1173 			pm->runtime_suspend);
1174 		return 0;
1175 	}
1176 
1177 	if (!pci_dev->state_saved) {
1178 		pci_save_state(pci_dev);
1179 		pci_finish_runtime_suspend(pci_dev);
1180 	}
1181 
1182 	return 0;
1183 }
1184 
1185 static int pci_pm_runtime_resume(struct device *dev)
1186 {
1187 	int rc;
1188 	struct pci_dev *pci_dev = to_pci_dev(dev);
1189 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1190 
1191 	/*
1192 	 * If pci_dev->driver is not set (unbound), the device should
1193 	 * always remain in D0 regardless of the runtime PM status
1194 	 */
1195 	if (!pci_dev->driver)
1196 		return 0;
1197 
1198 	if (!pm || !pm->runtime_resume)
1199 		return -ENOSYS;
1200 
1201 	pci_restore_standard_config(pci_dev);
1202 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
1203 	__pci_enable_wake(pci_dev, PCI_D0, true, false);
1204 	pci_fixup_device(pci_fixup_resume, pci_dev);
1205 
1206 	rc = pm->runtime_resume(dev);
1207 
1208 	pci_dev->runtime_d3cold = false;
1209 
1210 	return rc;
1211 }
1212 
1213 static int pci_pm_runtime_idle(struct device *dev)
1214 {
1215 	struct pci_dev *pci_dev = to_pci_dev(dev);
1216 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1217 	int ret = 0;
1218 
1219 	/*
1220 	 * If pci_dev->driver is not set (unbound), the device should
1221 	 * always remain in D0 regardless of the runtime PM status
1222 	 */
1223 	if (!pci_dev->driver)
1224 		return 0;
1225 
1226 	if (!pm)
1227 		return -ENOSYS;
1228 
1229 	if (pm->runtime_idle)
1230 		ret = pm->runtime_idle(dev);
1231 
1232 	return ret;
1233 }
1234 
1235 static const struct dev_pm_ops pci_dev_pm_ops = {
1236 	.prepare = pci_pm_prepare,
1237 	.complete = pci_pm_complete,
1238 	.suspend = pci_pm_suspend,
1239 	.resume = pci_pm_resume,
1240 	.freeze = pci_pm_freeze,
1241 	.thaw = pci_pm_thaw,
1242 	.poweroff = pci_pm_poweroff,
1243 	.restore = pci_pm_restore,
1244 	.suspend_noirq = pci_pm_suspend_noirq,
1245 	.resume_noirq = pci_pm_resume_noirq,
1246 	.freeze_noirq = pci_pm_freeze_noirq,
1247 	.thaw_noirq = pci_pm_thaw_noirq,
1248 	.poweroff_noirq = pci_pm_poweroff_noirq,
1249 	.restore_noirq = pci_pm_restore_noirq,
1250 	.runtime_suspend = pci_pm_runtime_suspend,
1251 	.runtime_resume = pci_pm_runtime_resume,
1252 	.runtime_idle = pci_pm_runtime_idle,
1253 };
1254 
1255 #define PCI_PM_OPS_PTR	(&pci_dev_pm_ops)
1256 
1257 #else /* !CONFIG_PM */
1258 
1259 #define pci_pm_runtime_suspend	NULL
1260 #define pci_pm_runtime_resume	NULL
1261 #define pci_pm_runtime_idle	NULL
1262 
1263 #define PCI_PM_OPS_PTR	NULL
1264 
1265 #endif /* !CONFIG_PM */
1266 
1267 /**
1268  * __pci_register_driver - register a new pci driver
1269  * @drv: the driver structure to register
1270  * @owner: owner module of drv
1271  * @mod_name: module name string
1272  *
1273  * Adds the driver structure to the list of registered drivers.
1274  * Returns a negative value on error, otherwise 0.
1275  * If no error occurred, the driver remains registered even if
1276  * no device was claimed during registration.
1277  */
1278 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1279 			  const char *mod_name)
1280 {
1281 	/* initialize common driver fields */
1282 	drv->driver.name = drv->name;
1283 	drv->driver.bus = &pci_bus_type;
1284 	drv->driver.owner = owner;
1285 	drv->driver.mod_name = mod_name;
1286 
1287 	spin_lock_init(&drv->dynids.lock);
1288 	INIT_LIST_HEAD(&drv->dynids.list);
1289 
1290 	/* register with core */
1291 	return driver_register(&drv->driver);
1292 }
1293 EXPORT_SYMBOL(__pci_register_driver);
1294 
1295 /**
1296  * pci_unregister_driver - unregister a pci driver
1297  * @drv: the driver structure to unregister
1298  *
1299  * Deletes the driver structure from the list of registered PCI drivers,
1300  * gives it a chance to clean up by calling its remove() function for
1301  * each device it was responsible for, and marks those devices as
1302  * driverless.
1303  */
1304 
1305 void pci_unregister_driver(struct pci_driver *drv)
1306 {
1307 	driver_unregister(&drv->driver);
1308 	pci_free_dynids(drv);
1309 }
1310 EXPORT_SYMBOL(pci_unregister_driver);
1311 
1312 static struct pci_driver pci_compat_driver = {
1313 	.name = "compat"
1314 };
1315 
1316 /**
1317  * pci_dev_driver - get the pci_driver of a device
1318  * @dev: the device to query
1319  *
1320  * Returns the appropriate pci_driver structure or %NULL if there is no
1321  * registered driver for the device.
1322  */
1323 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1324 {
1325 	if (dev->driver)
1326 		return dev->driver;
1327 	else {
1328 		int i;
1329 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1330 			if (dev->resource[i].flags & IORESOURCE_BUSY)
1331 				return &pci_compat_driver;
1332 	}
1333 	return NULL;
1334 }
1335 EXPORT_SYMBOL(pci_dev_driver);
1336 
1337 /**
1338  * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1339  * @dev: the PCI device structure to match against
1340  * @drv: the device driver to search for matching PCI device id structures
1341  *
1342  * Used by a driver to check whether a PCI device present in the
1343  * system is in its list of supported devices. Returns the matching
1344  * pci_device_id structure or %NULL if there is no match.
1345  */
1346 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1347 {
1348 	struct pci_dev *pci_dev = to_pci_dev(dev);
1349 	struct pci_driver *pci_drv;
1350 	const struct pci_device_id *found_id;
1351 
1352 	if (!pci_dev->match_driver)
1353 		return 0;
1354 
1355 	pci_drv = to_pci_driver(drv);
1356 	found_id = pci_match_device(pci_drv, pci_dev);
1357 	if (found_id)
1358 		return 1;
1359 
1360 	return 0;
1361 }
1362 
1363 /**
1364  * pci_dev_get - increments the reference count of the pci device structure
1365  * @dev: the device being referenced
1366  *
1367  * Each live reference to a device should be refcounted.
1368  *
1369  * Drivers for PCI devices should normally record such references in
1370  * their probe() methods, when they bind to a device, and release
1371  * them by calling pci_dev_put(), in their disconnect() methods.
1372  *
1373  * A pointer to the device with the incremented reference counter is returned.
1374  */
1375 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1376 {
1377 	if (dev)
1378 		get_device(&dev->dev);
1379 	return dev;
1380 }
1381 EXPORT_SYMBOL(pci_dev_get);
1382 
1383 /**
1384  * pci_dev_put - release a use of the pci device structure
1385  * @dev: device that's been disconnected
1386  *
1387  * Must be called when a user of a device is finished with it.  When the last
1388  * user of the device calls this function, the memory of the device is freed.
1389  */
1390 void pci_dev_put(struct pci_dev *dev)
1391 {
1392 	if (dev)
1393 		put_device(&dev->dev);
1394 }
1395 EXPORT_SYMBOL(pci_dev_put);
1396 
1397 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1398 {
1399 	struct pci_dev *pdev;
1400 
1401 	if (!dev)
1402 		return -ENODEV;
1403 
1404 	pdev = to_pci_dev(dev);
1405 
1406 	if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1407 		return -ENOMEM;
1408 
1409 	if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1410 		return -ENOMEM;
1411 
1412 	if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1413 			   pdev->subsystem_device))
1414 		return -ENOMEM;
1415 
1416 	if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1417 		return -ENOMEM;
1418 
1419 	if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1420 			   pdev->vendor, pdev->device,
1421 			   pdev->subsystem_vendor, pdev->subsystem_device,
1422 			   (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1423 			   (u8)(pdev->class)))
1424 		return -ENOMEM;
1425 
1426 	return 0;
1427 }
1428 
1429 struct bus_type pci_bus_type = {
1430 	.name		= "pci",
1431 	.match		= pci_bus_match,
1432 	.uevent		= pci_uevent,
1433 	.probe		= pci_device_probe,
1434 	.remove		= pci_device_remove,
1435 	.shutdown	= pci_device_shutdown,
1436 	.dev_groups	= pci_dev_groups,
1437 	.bus_groups	= pci_bus_groups,
1438 	.drv_groups	= pci_drv_groups,
1439 	.pm		= PCI_PM_OPS_PTR,
1440 };
1441 EXPORT_SYMBOL(pci_bus_type);
1442 
1443 static int __init pci_driver_init(void)
1444 {
1445 	return bus_register(&pci_bus_type);
1446 }
1447 postcore_initcall(pci_driver_init);
1448