xref: /linux/drivers/pci/p2pdma.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Peer 2 Peer DMA support.
4  *
5  * Copyright (c) 2016-2018, Logan Gunthorpe
6  * Copyright (c) 2016-2017, Microsemi Corporation
7  * Copyright (c) 2017, Christoph Hellwig
8  * Copyright (c) 2018, Eideticom Inc.
9  */
10 
11 #define pr_fmt(fmt) "pci-p2pdma: " fmt
12 #include <linux/ctype.h>
13 #include <linux/pci-p2pdma.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/genalloc.h>
17 #include <linux/memremap.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/random.h>
20 #include <linux/seq_buf.h>
21 
22 struct pci_p2pdma {
23 	struct gen_pool *pool;
24 	bool p2pmem_published;
25 };
26 
27 struct p2pdma_pagemap {
28 	struct dev_pagemap pgmap;
29 	struct percpu_ref ref;
30 	struct completion ref_done;
31 };
32 
33 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
34 			 char *buf)
35 {
36 	struct pci_dev *pdev = to_pci_dev(dev);
37 	size_t size = 0;
38 
39 	if (pdev->p2pdma->pool)
40 		size = gen_pool_size(pdev->p2pdma->pool);
41 
42 	return snprintf(buf, PAGE_SIZE, "%zd\n", size);
43 }
44 static DEVICE_ATTR_RO(size);
45 
46 static ssize_t available_show(struct device *dev, struct device_attribute *attr,
47 			      char *buf)
48 {
49 	struct pci_dev *pdev = to_pci_dev(dev);
50 	size_t avail = 0;
51 
52 	if (pdev->p2pdma->pool)
53 		avail = gen_pool_avail(pdev->p2pdma->pool);
54 
55 	return snprintf(buf, PAGE_SIZE, "%zd\n", avail);
56 }
57 static DEVICE_ATTR_RO(available);
58 
59 static ssize_t published_show(struct device *dev, struct device_attribute *attr,
60 			      char *buf)
61 {
62 	struct pci_dev *pdev = to_pci_dev(dev);
63 
64 	return snprintf(buf, PAGE_SIZE, "%d\n",
65 			pdev->p2pdma->p2pmem_published);
66 }
67 static DEVICE_ATTR_RO(published);
68 
69 static struct attribute *p2pmem_attrs[] = {
70 	&dev_attr_size.attr,
71 	&dev_attr_available.attr,
72 	&dev_attr_published.attr,
73 	NULL,
74 };
75 
76 static const struct attribute_group p2pmem_group = {
77 	.attrs = p2pmem_attrs,
78 	.name = "p2pmem",
79 };
80 
81 static struct p2pdma_pagemap *to_p2p_pgmap(struct percpu_ref *ref)
82 {
83 	return container_of(ref, struct p2pdma_pagemap, ref);
84 }
85 
86 static void pci_p2pdma_percpu_release(struct percpu_ref *ref)
87 {
88 	struct p2pdma_pagemap *p2p_pgmap = to_p2p_pgmap(ref);
89 
90 	complete(&p2p_pgmap->ref_done);
91 }
92 
93 static void pci_p2pdma_percpu_kill(struct percpu_ref *ref)
94 {
95 	percpu_ref_kill(ref);
96 }
97 
98 static void pci_p2pdma_percpu_cleanup(struct percpu_ref *ref)
99 {
100 	struct p2pdma_pagemap *p2p_pgmap = to_p2p_pgmap(ref);
101 
102 	wait_for_completion(&p2p_pgmap->ref_done);
103 	percpu_ref_exit(&p2p_pgmap->ref);
104 }
105 
106 static void pci_p2pdma_release(void *data)
107 {
108 	struct pci_dev *pdev = data;
109 	struct pci_p2pdma *p2pdma = pdev->p2pdma;
110 
111 	if (!p2pdma)
112 		return;
113 
114 	/* Flush and disable pci_alloc_p2p_mem() */
115 	pdev->p2pdma = NULL;
116 	synchronize_rcu();
117 
118 	gen_pool_destroy(p2pdma->pool);
119 	sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
120 }
121 
122 static int pci_p2pdma_setup(struct pci_dev *pdev)
123 {
124 	int error = -ENOMEM;
125 	struct pci_p2pdma *p2p;
126 
127 	p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
128 	if (!p2p)
129 		return -ENOMEM;
130 
131 	p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
132 	if (!p2p->pool)
133 		goto out;
134 
135 	error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
136 	if (error)
137 		goto out_pool_destroy;
138 
139 	pdev->p2pdma = p2p;
140 
141 	error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
142 	if (error)
143 		goto out_pool_destroy;
144 
145 	return 0;
146 
147 out_pool_destroy:
148 	pdev->p2pdma = NULL;
149 	gen_pool_destroy(p2p->pool);
150 out:
151 	devm_kfree(&pdev->dev, p2p);
152 	return error;
153 }
154 
155 /**
156  * pci_p2pdma_add_resource - add memory for use as p2p memory
157  * @pdev: the device to add the memory to
158  * @bar: PCI BAR to add
159  * @size: size of the memory to add, may be zero to use the whole BAR
160  * @offset: offset into the PCI BAR
161  *
162  * The memory will be given ZONE_DEVICE struct pages so that it may
163  * be used with any DMA request.
164  */
165 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
166 			    u64 offset)
167 {
168 	struct p2pdma_pagemap *p2p_pgmap;
169 	struct dev_pagemap *pgmap;
170 	void *addr;
171 	int error;
172 
173 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
174 		return -EINVAL;
175 
176 	if (offset >= pci_resource_len(pdev, bar))
177 		return -EINVAL;
178 
179 	if (!size)
180 		size = pci_resource_len(pdev, bar) - offset;
181 
182 	if (size + offset > pci_resource_len(pdev, bar))
183 		return -EINVAL;
184 
185 	if (!pdev->p2pdma) {
186 		error = pci_p2pdma_setup(pdev);
187 		if (error)
188 			return error;
189 	}
190 
191 	p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL);
192 	if (!p2p_pgmap)
193 		return -ENOMEM;
194 
195 	init_completion(&p2p_pgmap->ref_done);
196 	error = percpu_ref_init(&p2p_pgmap->ref,
197 			pci_p2pdma_percpu_release, 0, GFP_KERNEL);
198 	if (error)
199 		goto pgmap_free;
200 
201 	pgmap = &p2p_pgmap->pgmap;
202 
203 	pgmap->res.start = pci_resource_start(pdev, bar) + offset;
204 	pgmap->res.end = pgmap->res.start + size - 1;
205 	pgmap->res.flags = pci_resource_flags(pdev, bar);
206 	pgmap->ref = &p2p_pgmap->ref;
207 	pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
208 	pgmap->pci_p2pdma_bus_offset = pci_bus_address(pdev, bar) -
209 		pci_resource_start(pdev, bar);
210 	pgmap->kill = pci_p2pdma_percpu_kill;
211 	pgmap->cleanup = pci_p2pdma_percpu_cleanup;
212 
213 	addr = devm_memremap_pages(&pdev->dev, pgmap);
214 	if (IS_ERR(addr)) {
215 		error = PTR_ERR(addr);
216 		goto pgmap_free;
217 	}
218 
219 	error = gen_pool_add_owner(pdev->p2pdma->pool, (unsigned long)addr,
220 			pci_bus_address(pdev, bar) + offset,
221 			resource_size(&pgmap->res), dev_to_node(&pdev->dev),
222 			&p2p_pgmap->ref);
223 	if (error)
224 		goto pages_free;
225 
226 	pci_info(pdev, "added peer-to-peer DMA memory %pR\n",
227 		 &pgmap->res);
228 
229 	return 0;
230 
231 pages_free:
232 	devm_memunmap_pages(&pdev->dev, pgmap);
233 pgmap_free:
234 	devm_kfree(&pdev->dev, p2p_pgmap);
235 	return error;
236 }
237 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
238 
239 /*
240  * Note this function returns the parent PCI device with a
241  * reference taken. It is the caller's responsibily to drop
242  * the reference.
243  */
244 static struct pci_dev *find_parent_pci_dev(struct device *dev)
245 {
246 	struct device *parent;
247 
248 	dev = get_device(dev);
249 
250 	while (dev) {
251 		if (dev_is_pci(dev))
252 			return to_pci_dev(dev);
253 
254 		parent = get_device(dev->parent);
255 		put_device(dev);
256 		dev = parent;
257 	}
258 
259 	return NULL;
260 }
261 
262 /*
263  * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
264  * TLPs upstream via ACS. Returns 1 if the packets will be redirected
265  * upstream, 0 otherwise.
266  */
267 static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
268 {
269 	int pos;
270 	u16 ctrl;
271 
272 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
273 	if (!pos)
274 		return 0;
275 
276 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
277 
278 	if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
279 		return 1;
280 
281 	return 0;
282 }
283 
284 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
285 {
286 	if (!buf)
287 		return;
288 
289 	seq_buf_printf(buf, "%s;", pci_name(pdev));
290 }
291 
292 /*
293  * If we can't find a common upstream bridge take a look at the root
294  * complex and compare it to a whitelist of known good hardware.
295  */
296 static bool root_complex_whitelist(struct pci_dev *dev)
297 {
298 	struct pci_host_bridge *host = pci_find_host_bridge(dev->bus);
299 	struct pci_dev *root = pci_get_slot(host->bus, PCI_DEVFN(0, 0));
300 	unsigned short vendor, device;
301 
302 	if (!root)
303 		return false;
304 
305 	vendor = root->vendor;
306 	device = root->device;
307 	pci_dev_put(root);
308 
309 	/* AMD ZEN host bridges can do peer to peer */
310 	if (vendor == PCI_VENDOR_ID_AMD && device == 0x1450)
311 		return true;
312 
313 	return false;
314 }
315 
316 /*
317  * Find the distance through the nearest common upstream bridge between
318  * two PCI devices.
319  *
320  * If the two devices are the same device then 0 will be returned.
321  *
322  * If there are two virtual functions of the same device behind the same
323  * bridge port then 2 will be returned (one step down to the PCIe switch,
324  * then one step back to the same device).
325  *
326  * In the case where two devices are connected to the same PCIe switch, the
327  * value 4 will be returned. This corresponds to the following PCI tree:
328  *
329  *     -+  Root Port
330  *      \+ Switch Upstream Port
331  *       +-+ Switch Downstream Port
332  *       + \- Device A
333  *       \-+ Switch Downstream Port
334  *         \- Device B
335  *
336  * The distance is 4 because we traverse from Device A through the downstream
337  * port of the switch, to the common upstream port, back up to the second
338  * downstream port and then to Device B.
339  *
340  * Any two devices that don't have a common upstream bridge will return -1.
341  * In this way devices on separate PCIe root ports will be rejected, which
342  * is what we want for peer-to-peer seeing each PCIe root port defines a
343  * separate hierarchy domain and there's no way to determine whether the root
344  * complex supports forwarding between them.
345  *
346  * In the case where two devices are connected to different PCIe switches,
347  * this function will still return a positive distance as long as both
348  * switches eventually have a common upstream bridge. Note this covers
349  * the case of using multiple PCIe switches to achieve a desired level of
350  * fan-out from a root port. The exact distance will be a function of the
351  * number of switches between Device A and Device B.
352  *
353  * If a bridge which has any ACS redirection bits set is in the path
354  * then this functions will return -2. This is so we reject any
355  * cases where the TLPs are forwarded up into the root complex.
356  * In this case, a list of all infringing bridge addresses will be
357  * populated in acs_list (assuming it's non-null) for printk purposes.
358  */
359 static int upstream_bridge_distance(struct pci_dev *provider,
360 				    struct pci_dev *client,
361 				    struct seq_buf *acs_list)
362 {
363 	struct pci_dev *a = provider, *b = client, *bb;
364 	int dist_a = 0;
365 	int dist_b = 0;
366 	int acs_cnt = 0;
367 
368 	/*
369 	 * Note, we don't need to take references to devices returned by
370 	 * pci_upstream_bridge() seeing we hold a reference to a child
371 	 * device which will already hold a reference to the upstream bridge.
372 	 */
373 
374 	while (a) {
375 		dist_b = 0;
376 
377 		if (pci_bridge_has_acs_redir(a)) {
378 			seq_buf_print_bus_devfn(acs_list, a);
379 			acs_cnt++;
380 		}
381 
382 		bb = b;
383 
384 		while (bb) {
385 			if (a == bb)
386 				goto check_b_path_acs;
387 
388 			bb = pci_upstream_bridge(bb);
389 			dist_b++;
390 		}
391 
392 		a = pci_upstream_bridge(a);
393 		dist_a++;
394 	}
395 
396 	/*
397 	 * Allow the connection if both devices are on a whitelisted root
398 	 * complex, but add an arbitary large value to the distance.
399 	 */
400 	if (root_complex_whitelist(provider) &&
401 	    root_complex_whitelist(client))
402 		return 0x1000 + dist_a + dist_b;
403 
404 	return -1;
405 
406 check_b_path_acs:
407 	bb = b;
408 
409 	while (bb) {
410 		if (a == bb)
411 			break;
412 
413 		if (pci_bridge_has_acs_redir(bb)) {
414 			seq_buf_print_bus_devfn(acs_list, bb);
415 			acs_cnt++;
416 		}
417 
418 		bb = pci_upstream_bridge(bb);
419 	}
420 
421 	if (acs_cnt)
422 		return -2;
423 
424 	return dist_a + dist_b;
425 }
426 
427 static int upstream_bridge_distance_warn(struct pci_dev *provider,
428 					 struct pci_dev *client)
429 {
430 	struct seq_buf acs_list;
431 	int ret;
432 
433 	seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
434 	if (!acs_list.buffer)
435 		return -ENOMEM;
436 
437 	ret = upstream_bridge_distance(provider, client, &acs_list);
438 	if (ret == -2) {
439 		pci_warn(client, "cannot be used for peer-to-peer DMA as ACS redirect is set between the client and provider (%s)\n",
440 			 pci_name(provider));
441 		/* Drop final semicolon */
442 		acs_list.buffer[acs_list.len-1] = 0;
443 		pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
444 			 acs_list.buffer);
445 
446 	} else if (ret < 0) {
447 		pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge\n",
448 			 pci_name(provider));
449 	}
450 
451 	kfree(acs_list.buffer);
452 
453 	return ret;
454 }
455 
456 /**
457  * pci_p2pdma_distance_many - Determive the cumulative distance between
458  *	a p2pdma provider and the clients in use.
459  * @provider: p2pdma provider to check against the client list
460  * @clients: array of devices to check (NULL-terminated)
461  * @num_clients: number of clients in the array
462  * @verbose: if true, print warnings for devices when we return -1
463  *
464  * Returns -1 if any of the clients are not compatible (behind the same
465  * root port as the provider), otherwise returns a positive number where
466  * a lower number is the preferable choice. (If there's one client
467  * that's the same as the provider it will return 0, which is best choice).
468  *
469  * For now, "compatible" means the provider and the clients are all behind
470  * the same PCI root port. This cuts out cases that may work but is safest
471  * for the user. Future work can expand this to white-list root complexes that
472  * can safely forward between each ports.
473  */
474 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
475 			     int num_clients, bool verbose)
476 {
477 	bool not_supported = false;
478 	struct pci_dev *pci_client;
479 	int distance = 0;
480 	int i, ret;
481 
482 	if (num_clients == 0)
483 		return -1;
484 
485 	for (i = 0; i < num_clients; i++) {
486 		pci_client = find_parent_pci_dev(clients[i]);
487 		if (!pci_client) {
488 			if (verbose)
489 				dev_warn(clients[i],
490 					 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
491 			return -1;
492 		}
493 
494 		if (verbose)
495 			ret = upstream_bridge_distance_warn(provider,
496 							    pci_client);
497 		else
498 			ret = upstream_bridge_distance(provider, pci_client,
499 						       NULL);
500 
501 		pci_dev_put(pci_client);
502 
503 		if (ret < 0)
504 			not_supported = true;
505 
506 		if (not_supported && !verbose)
507 			break;
508 
509 		distance += ret;
510 	}
511 
512 	if (not_supported)
513 		return -1;
514 
515 	return distance;
516 }
517 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
518 
519 /**
520  * pci_has_p2pmem - check if a given PCI device has published any p2pmem
521  * @pdev: PCI device to check
522  */
523 bool pci_has_p2pmem(struct pci_dev *pdev)
524 {
525 	return pdev->p2pdma && pdev->p2pdma->p2pmem_published;
526 }
527 EXPORT_SYMBOL_GPL(pci_has_p2pmem);
528 
529 /**
530  * pci_p2pmem_find - find a peer-to-peer DMA memory device compatible with
531  *	the specified list of clients and shortest distance (as determined
532  *	by pci_p2pmem_dma())
533  * @clients: array of devices to check (NULL-terminated)
534  * @num_clients: number of client devices in the list
535  *
536  * If multiple devices are behind the same switch, the one "closest" to the
537  * client devices in use will be chosen first. (So if one of the providers is
538  * the same as one of the clients, that provider will be used ahead of any
539  * other providers that are unrelated). If multiple providers are an equal
540  * distance away, one will be chosen at random.
541  *
542  * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
543  * to return the reference) or NULL if no compatible device is found. The
544  * found provider will also be assigned to the client list.
545  */
546 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
547 {
548 	struct pci_dev *pdev = NULL;
549 	int distance;
550 	int closest_distance = INT_MAX;
551 	struct pci_dev **closest_pdevs;
552 	int dev_cnt = 0;
553 	const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
554 	int i;
555 
556 	closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
557 	if (!closest_pdevs)
558 		return NULL;
559 
560 	while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
561 		if (!pci_has_p2pmem(pdev))
562 			continue;
563 
564 		distance = pci_p2pdma_distance_many(pdev, clients,
565 						    num_clients, false);
566 		if (distance < 0 || distance > closest_distance)
567 			continue;
568 
569 		if (distance == closest_distance && dev_cnt >= max_devs)
570 			continue;
571 
572 		if (distance < closest_distance) {
573 			for (i = 0; i < dev_cnt; i++)
574 				pci_dev_put(closest_pdevs[i]);
575 
576 			dev_cnt = 0;
577 			closest_distance = distance;
578 		}
579 
580 		closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
581 	}
582 
583 	if (dev_cnt)
584 		pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]);
585 
586 	for (i = 0; i < dev_cnt; i++)
587 		pci_dev_put(closest_pdevs[i]);
588 
589 	kfree(closest_pdevs);
590 	return pdev;
591 }
592 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
593 
594 /**
595  * pci_alloc_p2p_mem - allocate peer-to-peer DMA memory
596  * @pdev: the device to allocate memory from
597  * @size: number of bytes to allocate
598  *
599  * Returns the allocated memory or NULL on error.
600  */
601 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
602 {
603 	void *ret = NULL;
604 	struct percpu_ref *ref;
605 
606 	/*
607 	 * Pairs with synchronize_rcu() in pci_p2pdma_release() to
608 	 * ensure pdev->p2pdma is non-NULL for the duration of the
609 	 * read-lock.
610 	 */
611 	rcu_read_lock();
612 	if (unlikely(!pdev->p2pdma))
613 		goto out;
614 
615 	ret = (void *)gen_pool_alloc_owner(pdev->p2pdma->pool, size,
616 			(void **) &ref);
617 	if (!ret)
618 		goto out;
619 
620 	if (unlikely(!percpu_ref_tryget_live(ref))) {
621 		gen_pool_free(pdev->p2pdma->pool, (unsigned long) ret, size);
622 		ret = NULL;
623 		goto out;
624 	}
625 out:
626 	rcu_read_unlock();
627 	return ret;
628 }
629 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
630 
631 /**
632  * pci_free_p2pmem - free peer-to-peer DMA memory
633  * @pdev: the device the memory was allocated from
634  * @addr: address of the memory that was allocated
635  * @size: number of bytes that were allocated
636  */
637 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
638 {
639 	struct percpu_ref *ref;
640 
641 	gen_pool_free_owner(pdev->p2pdma->pool, (uintptr_t)addr, size,
642 			(void **) &ref);
643 	percpu_ref_put(ref);
644 }
645 EXPORT_SYMBOL_GPL(pci_free_p2pmem);
646 
647 /**
648  * pci_virt_to_bus - return the PCI bus address for a given virtual
649  *	address obtained with pci_alloc_p2pmem()
650  * @pdev: the device the memory was allocated from
651  * @addr: address of the memory that was allocated
652  */
653 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
654 {
655 	if (!addr)
656 		return 0;
657 	if (!pdev->p2pdma)
658 		return 0;
659 
660 	/*
661 	 * Note: when we added the memory to the pool we used the PCI
662 	 * bus address as the physical address. So gen_pool_virt_to_phys()
663 	 * actually returns the bus address despite the misleading name.
664 	 */
665 	return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr);
666 }
667 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
668 
669 /**
670  * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
671  * @pdev: the device to allocate memory from
672  * @nents: the number of SG entries in the list
673  * @length: number of bytes to allocate
674  *
675  * Return: %NULL on error or &struct scatterlist pointer and @nents on success
676  */
677 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
678 					 unsigned int *nents, u32 length)
679 {
680 	struct scatterlist *sg;
681 	void *addr;
682 
683 	sg = kzalloc(sizeof(*sg), GFP_KERNEL);
684 	if (!sg)
685 		return NULL;
686 
687 	sg_init_table(sg, 1);
688 
689 	addr = pci_alloc_p2pmem(pdev, length);
690 	if (!addr)
691 		goto out_free_sg;
692 
693 	sg_set_buf(sg, addr, length);
694 	*nents = 1;
695 	return sg;
696 
697 out_free_sg:
698 	kfree(sg);
699 	return NULL;
700 }
701 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
702 
703 /**
704  * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
705  * @pdev: the device to allocate memory from
706  * @sgl: the allocated scatterlist
707  */
708 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
709 {
710 	struct scatterlist *sg;
711 	int count;
712 
713 	for_each_sg(sgl, sg, INT_MAX, count) {
714 		if (!sg)
715 			break;
716 
717 		pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
718 	}
719 	kfree(sgl);
720 }
721 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
722 
723 /**
724  * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
725  *	other devices with pci_p2pmem_find()
726  * @pdev: the device with peer-to-peer DMA memory to publish
727  * @publish: set to true to publish the memory, false to unpublish it
728  *
729  * Published memory can be used by other PCI device drivers for
730  * peer-2-peer DMA operations. Non-published memory is reserved for
731  * exclusive use of the device driver that registers the peer-to-peer
732  * memory.
733  */
734 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
735 {
736 	if (pdev->p2pdma)
737 		pdev->p2pdma->p2pmem_published = publish;
738 }
739 EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
740 
741 /**
742  * pci_p2pdma_map_sg - map a PCI peer-to-peer scatterlist for DMA
743  * @dev: device doing the DMA request
744  * @sg: scatter list to map
745  * @nents: elements in the scatterlist
746  * @dir: DMA direction
747  *
748  * Scatterlists mapped with this function should not be unmapped in any way.
749  *
750  * Returns the number of SG entries mapped or 0 on error.
751  */
752 int pci_p2pdma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
753 		      enum dma_data_direction dir)
754 {
755 	struct dev_pagemap *pgmap;
756 	struct scatterlist *s;
757 	phys_addr_t paddr;
758 	int i;
759 
760 	/*
761 	 * p2pdma mappings are not compatible with devices that use
762 	 * dma_virt_ops. If the upper layers do the right thing
763 	 * this should never happen because it will be prevented
764 	 * by the check in pci_p2pdma_add_client()
765 	 */
766 	if (WARN_ON_ONCE(IS_ENABLED(CONFIG_DMA_VIRT_OPS) &&
767 			 dev->dma_ops == &dma_virt_ops))
768 		return 0;
769 
770 	for_each_sg(sg, s, nents, i) {
771 		pgmap = sg_page(s)->pgmap;
772 		paddr = sg_phys(s);
773 
774 		s->dma_address = paddr - pgmap->pci_p2pdma_bus_offset;
775 		sg_dma_len(s) = s->length;
776 	}
777 
778 	return nents;
779 }
780 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg);
781 
782 /**
783  * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
784  *		to enable p2pdma
785  * @page: contents of the value to be stored
786  * @p2p_dev: returns the PCI device that was selected to be used
787  *		(if one was specified in the stored value)
788  * @use_p2pdma: returns whether to enable p2pdma or not
789  *
790  * Parses an attribute value to decide whether to enable p2pdma.
791  * The value can select a PCI device (using its full BDF device
792  * name) or a boolean (in any format strtobool() accepts). A false
793  * value disables p2pdma, a true value expects the caller
794  * to automatically find a compatible device and specifying a PCI device
795  * expects the caller to use the specific provider.
796  *
797  * pci_p2pdma_enable_show() should be used as the show operation for
798  * the attribute.
799  *
800  * Returns 0 on success
801  */
802 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
803 			    bool *use_p2pdma)
804 {
805 	struct device *dev;
806 
807 	dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
808 	if (dev) {
809 		*use_p2pdma = true;
810 		*p2p_dev = to_pci_dev(dev);
811 
812 		if (!pci_has_p2pmem(*p2p_dev)) {
813 			pci_err(*p2p_dev,
814 				"PCI device has no peer-to-peer memory: %s\n",
815 				page);
816 			pci_dev_put(*p2p_dev);
817 			return -ENODEV;
818 		}
819 
820 		return 0;
821 	} else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
822 		/*
823 		 * If the user enters a PCI device that  doesn't exist
824 		 * like "0000:01:00.1", we don't want strtobool to think
825 		 * it's a '0' when it's clearly not what the user wanted.
826 		 * So we require 0's and 1's to be exactly one character.
827 		 */
828 	} else if (!strtobool(page, use_p2pdma)) {
829 		return 0;
830 	}
831 
832 	pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
833 	return -ENODEV;
834 }
835 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
836 
837 /**
838  * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
839  *		whether p2pdma is enabled
840  * @page: contents of the stored value
841  * @p2p_dev: the selected p2p device (NULL if no device is selected)
842  * @use_p2pdma: whether p2pdma has been enabled
843  *
844  * Attributes that use pci_p2pdma_enable_store() should use this function
845  * to show the value of the attribute.
846  *
847  * Returns 0 on success
848  */
849 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
850 			       bool use_p2pdma)
851 {
852 	if (!use_p2pdma)
853 		return sprintf(page, "0\n");
854 
855 	if (!p2p_dev)
856 		return sprintf(page, "1\n");
857 
858 	return sprintf(page, "%s\n", pci_name(p2p_dev));
859 }
860 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);
861