xref: /linux/drivers/pci/p2pdma.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Peer 2 Peer DMA support.
4  *
5  * Copyright (c) 2016-2018, Logan Gunthorpe
6  * Copyright (c) 2016-2017, Microsemi Corporation
7  * Copyright (c) 2017, Christoph Hellwig
8  * Copyright (c) 2018, Eideticom Inc.
9  */
10 
11 #define pr_fmt(fmt) "pci-p2pdma: " fmt
12 #include <linux/ctype.h>
13 #include <linux/pci-p2pdma.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/genalloc.h>
17 #include <linux/memremap.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/random.h>
20 #include <linux/seq_buf.h>
21 #include <linux/iommu.h>
22 
23 struct pci_p2pdma {
24 	struct gen_pool *pool;
25 	bool p2pmem_published;
26 };
27 
28 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
29 			 char *buf)
30 {
31 	struct pci_dev *pdev = to_pci_dev(dev);
32 	size_t size = 0;
33 
34 	if (pdev->p2pdma->pool)
35 		size = gen_pool_size(pdev->p2pdma->pool);
36 
37 	return snprintf(buf, PAGE_SIZE, "%zd\n", size);
38 }
39 static DEVICE_ATTR_RO(size);
40 
41 static ssize_t available_show(struct device *dev, struct device_attribute *attr,
42 			      char *buf)
43 {
44 	struct pci_dev *pdev = to_pci_dev(dev);
45 	size_t avail = 0;
46 
47 	if (pdev->p2pdma->pool)
48 		avail = gen_pool_avail(pdev->p2pdma->pool);
49 
50 	return snprintf(buf, PAGE_SIZE, "%zd\n", avail);
51 }
52 static DEVICE_ATTR_RO(available);
53 
54 static ssize_t published_show(struct device *dev, struct device_attribute *attr,
55 			      char *buf)
56 {
57 	struct pci_dev *pdev = to_pci_dev(dev);
58 
59 	return snprintf(buf, PAGE_SIZE, "%d\n",
60 			pdev->p2pdma->p2pmem_published);
61 }
62 static DEVICE_ATTR_RO(published);
63 
64 static struct attribute *p2pmem_attrs[] = {
65 	&dev_attr_size.attr,
66 	&dev_attr_available.attr,
67 	&dev_attr_published.attr,
68 	NULL,
69 };
70 
71 static const struct attribute_group p2pmem_group = {
72 	.attrs = p2pmem_attrs,
73 	.name = "p2pmem",
74 };
75 
76 static void pci_p2pdma_release(void *data)
77 {
78 	struct pci_dev *pdev = data;
79 	struct pci_p2pdma *p2pdma = pdev->p2pdma;
80 
81 	if (!p2pdma)
82 		return;
83 
84 	/* Flush and disable pci_alloc_p2p_mem() */
85 	pdev->p2pdma = NULL;
86 	synchronize_rcu();
87 
88 	gen_pool_destroy(p2pdma->pool);
89 	sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
90 }
91 
92 static int pci_p2pdma_setup(struct pci_dev *pdev)
93 {
94 	int error = -ENOMEM;
95 	struct pci_p2pdma *p2p;
96 
97 	p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
98 	if (!p2p)
99 		return -ENOMEM;
100 
101 	p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
102 	if (!p2p->pool)
103 		goto out;
104 
105 	error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
106 	if (error)
107 		goto out_pool_destroy;
108 
109 	pdev->p2pdma = p2p;
110 
111 	error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
112 	if (error)
113 		goto out_pool_destroy;
114 
115 	return 0;
116 
117 out_pool_destroy:
118 	pdev->p2pdma = NULL;
119 	gen_pool_destroy(p2p->pool);
120 out:
121 	devm_kfree(&pdev->dev, p2p);
122 	return error;
123 }
124 
125 /**
126  * pci_p2pdma_add_resource - add memory for use as p2p memory
127  * @pdev: the device to add the memory to
128  * @bar: PCI BAR to add
129  * @size: size of the memory to add, may be zero to use the whole BAR
130  * @offset: offset into the PCI BAR
131  *
132  * The memory will be given ZONE_DEVICE struct pages so that it may
133  * be used with any DMA request.
134  */
135 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
136 			    u64 offset)
137 {
138 	struct dev_pagemap *pgmap;
139 	void *addr;
140 	int error;
141 
142 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
143 		return -EINVAL;
144 
145 	if (offset >= pci_resource_len(pdev, bar))
146 		return -EINVAL;
147 
148 	if (!size)
149 		size = pci_resource_len(pdev, bar) - offset;
150 
151 	if (size + offset > pci_resource_len(pdev, bar))
152 		return -EINVAL;
153 
154 	if (!pdev->p2pdma) {
155 		error = pci_p2pdma_setup(pdev);
156 		if (error)
157 			return error;
158 	}
159 
160 	pgmap = devm_kzalloc(&pdev->dev, sizeof(*pgmap), GFP_KERNEL);
161 	if (!pgmap)
162 		return -ENOMEM;
163 	pgmap->res.start = pci_resource_start(pdev, bar) + offset;
164 	pgmap->res.end = pgmap->res.start + size - 1;
165 	pgmap->res.flags = pci_resource_flags(pdev, bar);
166 	pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
167 	pgmap->pci_p2pdma_bus_offset = pci_bus_address(pdev, bar) -
168 		pci_resource_start(pdev, bar);
169 
170 	addr = devm_memremap_pages(&pdev->dev, pgmap);
171 	if (IS_ERR(addr)) {
172 		error = PTR_ERR(addr);
173 		goto pgmap_free;
174 	}
175 
176 	error = gen_pool_add_owner(pdev->p2pdma->pool, (unsigned long)addr,
177 			pci_bus_address(pdev, bar) + offset,
178 			resource_size(&pgmap->res), dev_to_node(&pdev->dev),
179 			pgmap->ref);
180 	if (error)
181 		goto pages_free;
182 
183 	pci_info(pdev, "added peer-to-peer DMA memory %pR\n",
184 		 &pgmap->res);
185 
186 	return 0;
187 
188 pages_free:
189 	devm_memunmap_pages(&pdev->dev, pgmap);
190 pgmap_free:
191 	devm_kfree(&pdev->dev, pgmap);
192 	return error;
193 }
194 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
195 
196 /*
197  * Note this function returns the parent PCI device with a
198  * reference taken. It is the caller's responsibility to drop
199  * the reference.
200  */
201 static struct pci_dev *find_parent_pci_dev(struct device *dev)
202 {
203 	struct device *parent;
204 
205 	dev = get_device(dev);
206 
207 	while (dev) {
208 		if (dev_is_pci(dev))
209 			return to_pci_dev(dev);
210 
211 		parent = get_device(dev->parent);
212 		put_device(dev);
213 		dev = parent;
214 	}
215 
216 	return NULL;
217 }
218 
219 /*
220  * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
221  * TLPs upstream via ACS. Returns 1 if the packets will be redirected
222  * upstream, 0 otherwise.
223  */
224 static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
225 {
226 	int pos;
227 	u16 ctrl;
228 
229 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
230 	if (!pos)
231 		return 0;
232 
233 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
234 
235 	if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
236 		return 1;
237 
238 	return 0;
239 }
240 
241 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
242 {
243 	if (!buf)
244 		return;
245 
246 	seq_buf_printf(buf, "%s;", pci_name(pdev));
247 }
248 
249 /*
250  * If we can't find a common upstream bridge take a look at the root
251  * complex and compare it to a whitelist of known good hardware.
252  */
253 static bool root_complex_whitelist(struct pci_dev *dev)
254 {
255 	struct pci_host_bridge *host = pci_find_host_bridge(dev->bus);
256 	struct pci_dev *root = pci_get_slot(host->bus, PCI_DEVFN(0, 0));
257 	unsigned short vendor, device;
258 
259 	if (iommu_present(dev->dev.bus))
260 		return false;
261 
262 	if (!root)
263 		return false;
264 
265 	vendor = root->vendor;
266 	device = root->device;
267 	pci_dev_put(root);
268 
269 	/* AMD ZEN host bridges can do peer to peer */
270 	if (vendor == PCI_VENDOR_ID_AMD && device == 0x1450)
271 		return true;
272 
273 	return false;
274 }
275 
276 /*
277  * Find the distance through the nearest common upstream bridge between
278  * two PCI devices.
279  *
280  * If the two devices are the same device then 0 will be returned.
281  *
282  * If there are two virtual functions of the same device behind the same
283  * bridge port then 2 will be returned (one step down to the PCIe switch,
284  * then one step back to the same device).
285  *
286  * In the case where two devices are connected to the same PCIe switch, the
287  * value 4 will be returned. This corresponds to the following PCI tree:
288  *
289  *     -+  Root Port
290  *      \+ Switch Upstream Port
291  *       +-+ Switch Downstream Port
292  *       + \- Device A
293  *       \-+ Switch Downstream Port
294  *         \- Device B
295  *
296  * The distance is 4 because we traverse from Device A through the downstream
297  * port of the switch, to the common upstream port, back up to the second
298  * downstream port and then to Device B.
299  *
300  * Any two devices that don't have a common upstream bridge will return -1.
301  * In this way devices on separate PCIe root ports will be rejected, which
302  * is what we want for peer-to-peer seeing each PCIe root port defines a
303  * separate hierarchy domain and there's no way to determine whether the root
304  * complex supports forwarding between them.
305  *
306  * In the case where two devices are connected to different PCIe switches,
307  * this function will still return a positive distance as long as both
308  * switches eventually have a common upstream bridge. Note this covers
309  * the case of using multiple PCIe switches to achieve a desired level of
310  * fan-out from a root port. The exact distance will be a function of the
311  * number of switches between Device A and Device B.
312  *
313  * If a bridge which has any ACS redirection bits set is in the path
314  * then this functions will return -2. This is so we reject any
315  * cases where the TLPs are forwarded up into the root complex.
316  * In this case, a list of all infringing bridge addresses will be
317  * populated in acs_list (assuming it's non-null) for printk purposes.
318  */
319 static int upstream_bridge_distance(struct pci_dev *provider,
320 				    struct pci_dev *client,
321 				    struct seq_buf *acs_list)
322 {
323 	struct pci_dev *a = provider, *b = client, *bb;
324 	int dist_a = 0;
325 	int dist_b = 0;
326 	int acs_cnt = 0;
327 
328 	/*
329 	 * Note, we don't need to take references to devices returned by
330 	 * pci_upstream_bridge() seeing we hold a reference to a child
331 	 * device which will already hold a reference to the upstream bridge.
332 	 */
333 
334 	while (a) {
335 		dist_b = 0;
336 
337 		if (pci_bridge_has_acs_redir(a)) {
338 			seq_buf_print_bus_devfn(acs_list, a);
339 			acs_cnt++;
340 		}
341 
342 		bb = b;
343 
344 		while (bb) {
345 			if (a == bb)
346 				goto check_b_path_acs;
347 
348 			bb = pci_upstream_bridge(bb);
349 			dist_b++;
350 		}
351 
352 		a = pci_upstream_bridge(a);
353 		dist_a++;
354 	}
355 
356 	/*
357 	 * Allow the connection if both devices are on a whitelisted root
358 	 * complex, but add an arbitrary large value to the distance.
359 	 */
360 	if (root_complex_whitelist(provider) &&
361 	    root_complex_whitelist(client))
362 		return 0x1000 + dist_a + dist_b;
363 
364 	return -1;
365 
366 check_b_path_acs:
367 	bb = b;
368 
369 	while (bb) {
370 		if (a == bb)
371 			break;
372 
373 		if (pci_bridge_has_acs_redir(bb)) {
374 			seq_buf_print_bus_devfn(acs_list, bb);
375 			acs_cnt++;
376 		}
377 
378 		bb = pci_upstream_bridge(bb);
379 	}
380 
381 	if (acs_cnt)
382 		return -2;
383 
384 	return dist_a + dist_b;
385 }
386 
387 static int upstream_bridge_distance_warn(struct pci_dev *provider,
388 					 struct pci_dev *client)
389 {
390 	struct seq_buf acs_list;
391 	int ret;
392 
393 	seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
394 	if (!acs_list.buffer)
395 		return -ENOMEM;
396 
397 	ret = upstream_bridge_distance(provider, client, &acs_list);
398 	if (ret == -2) {
399 		pci_warn(client, "cannot be used for peer-to-peer DMA as ACS redirect is set between the client and provider (%s)\n",
400 			 pci_name(provider));
401 		/* Drop final semicolon */
402 		acs_list.buffer[acs_list.len-1] = 0;
403 		pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
404 			 acs_list.buffer);
405 
406 	} else if (ret < 0) {
407 		pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge\n",
408 			 pci_name(provider));
409 	}
410 
411 	kfree(acs_list.buffer);
412 
413 	return ret;
414 }
415 
416 /**
417  * pci_p2pdma_distance_many - Determine the cumulative distance between
418  *	a p2pdma provider and the clients in use.
419  * @provider: p2pdma provider to check against the client list
420  * @clients: array of devices to check (NULL-terminated)
421  * @num_clients: number of clients in the array
422  * @verbose: if true, print warnings for devices when we return -1
423  *
424  * Returns -1 if any of the clients are not compatible (behind the same
425  * root port as the provider), otherwise returns a positive number where
426  * a lower number is the preferable choice. (If there's one client
427  * that's the same as the provider it will return 0, which is best choice).
428  *
429  * For now, "compatible" means the provider and the clients are all behind
430  * the same PCI root port. This cuts out cases that may work but is safest
431  * for the user. Future work can expand this to white-list root complexes that
432  * can safely forward between each ports.
433  */
434 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
435 			     int num_clients, bool verbose)
436 {
437 	bool not_supported = false;
438 	struct pci_dev *pci_client;
439 	int distance = 0;
440 	int i, ret;
441 
442 	if (num_clients == 0)
443 		return -1;
444 
445 	for (i = 0; i < num_clients; i++) {
446 		if (IS_ENABLED(CONFIG_DMA_VIRT_OPS) &&
447 		    clients[i]->dma_ops == &dma_virt_ops) {
448 			if (verbose)
449 				dev_warn(clients[i],
450 					 "cannot be used for peer-to-peer DMA because the driver makes use of dma_virt_ops\n");
451 			return -1;
452 		}
453 
454 		pci_client = find_parent_pci_dev(clients[i]);
455 		if (!pci_client) {
456 			if (verbose)
457 				dev_warn(clients[i],
458 					 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
459 			return -1;
460 		}
461 
462 		if (verbose)
463 			ret = upstream_bridge_distance_warn(provider,
464 							    pci_client);
465 		else
466 			ret = upstream_bridge_distance(provider, pci_client,
467 						       NULL);
468 
469 		pci_dev_put(pci_client);
470 
471 		if (ret < 0)
472 			not_supported = true;
473 
474 		if (not_supported && !verbose)
475 			break;
476 
477 		distance += ret;
478 	}
479 
480 	if (not_supported)
481 		return -1;
482 
483 	return distance;
484 }
485 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
486 
487 /**
488  * pci_has_p2pmem - check if a given PCI device has published any p2pmem
489  * @pdev: PCI device to check
490  */
491 bool pci_has_p2pmem(struct pci_dev *pdev)
492 {
493 	return pdev->p2pdma && pdev->p2pdma->p2pmem_published;
494 }
495 EXPORT_SYMBOL_GPL(pci_has_p2pmem);
496 
497 /**
498  * pci_p2pmem_find - find a peer-to-peer DMA memory device compatible with
499  *	the specified list of clients and shortest distance (as determined
500  *	by pci_p2pmem_dma())
501  * @clients: array of devices to check (NULL-terminated)
502  * @num_clients: number of client devices in the list
503  *
504  * If multiple devices are behind the same switch, the one "closest" to the
505  * client devices in use will be chosen first. (So if one of the providers is
506  * the same as one of the clients, that provider will be used ahead of any
507  * other providers that are unrelated). If multiple providers are an equal
508  * distance away, one will be chosen at random.
509  *
510  * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
511  * to return the reference) or NULL if no compatible device is found. The
512  * found provider will also be assigned to the client list.
513  */
514 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
515 {
516 	struct pci_dev *pdev = NULL;
517 	int distance;
518 	int closest_distance = INT_MAX;
519 	struct pci_dev **closest_pdevs;
520 	int dev_cnt = 0;
521 	const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
522 	int i;
523 
524 	closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
525 	if (!closest_pdevs)
526 		return NULL;
527 
528 	while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
529 		if (!pci_has_p2pmem(pdev))
530 			continue;
531 
532 		distance = pci_p2pdma_distance_many(pdev, clients,
533 						    num_clients, false);
534 		if (distance < 0 || distance > closest_distance)
535 			continue;
536 
537 		if (distance == closest_distance && dev_cnt >= max_devs)
538 			continue;
539 
540 		if (distance < closest_distance) {
541 			for (i = 0; i < dev_cnt; i++)
542 				pci_dev_put(closest_pdevs[i]);
543 
544 			dev_cnt = 0;
545 			closest_distance = distance;
546 		}
547 
548 		closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
549 	}
550 
551 	if (dev_cnt)
552 		pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]);
553 
554 	for (i = 0; i < dev_cnt; i++)
555 		pci_dev_put(closest_pdevs[i]);
556 
557 	kfree(closest_pdevs);
558 	return pdev;
559 }
560 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
561 
562 /**
563  * pci_alloc_p2p_mem - allocate peer-to-peer DMA memory
564  * @pdev: the device to allocate memory from
565  * @size: number of bytes to allocate
566  *
567  * Returns the allocated memory or NULL on error.
568  */
569 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
570 {
571 	void *ret = NULL;
572 	struct percpu_ref *ref;
573 
574 	/*
575 	 * Pairs with synchronize_rcu() in pci_p2pdma_release() to
576 	 * ensure pdev->p2pdma is non-NULL for the duration of the
577 	 * read-lock.
578 	 */
579 	rcu_read_lock();
580 	if (unlikely(!pdev->p2pdma))
581 		goto out;
582 
583 	ret = (void *)gen_pool_alloc_owner(pdev->p2pdma->pool, size,
584 			(void **) &ref);
585 	if (!ret)
586 		goto out;
587 
588 	if (unlikely(!percpu_ref_tryget_live(ref))) {
589 		gen_pool_free(pdev->p2pdma->pool, (unsigned long) ret, size);
590 		ret = NULL;
591 		goto out;
592 	}
593 out:
594 	rcu_read_unlock();
595 	return ret;
596 }
597 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
598 
599 /**
600  * pci_free_p2pmem - free peer-to-peer DMA memory
601  * @pdev: the device the memory was allocated from
602  * @addr: address of the memory that was allocated
603  * @size: number of bytes that were allocated
604  */
605 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
606 {
607 	struct percpu_ref *ref;
608 
609 	gen_pool_free_owner(pdev->p2pdma->pool, (uintptr_t)addr, size,
610 			(void **) &ref);
611 	percpu_ref_put(ref);
612 }
613 EXPORT_SYMBOL_GPL(pci_free_p2pmem);
614 
615 /**
616  * pci_virt_to_bus - return the PCI bus address for a given virtual
617  *	address obtained with pci_alloc_p2pmem()
618  * @pdev: the device the memory was allocated from
619  * @addr: address of the memory that was allocated
620  */
621 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
622 {
623 	if (!addr)
624 		return 0;
625 	if (!pdev->p2pdma)
626 		return 0;
627 
628 	/*
629 	 * Note: when we added the memory to the pool we used the PCI
630 	 * bus address as the physical address. So gen_pool_virt_to_phys()
631 	 * actually returns the bus address despite the misleading name.
632 	 */
633 	return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr);
634 }
635 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
636 
637 /**
638  * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
639  * @pdev: the device to allocate memory from
640  * @nents: the number of SG entries in the list
641  * @length: number of bytes to allocate
642  *
643  * Return: %NULL on error or &struct scatterlist pointer and @nents on success
644  */
645 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
646 					 unsigned int *nents, u32 length)
647 {
648 	struct scatterlist *sg;
649 	void *addr;
650 
651 	sg = kzalloc(sizeof(*sg), GFP_KERNEL);
652 	if (!sg)
653 		return NULL;
654 
655 	sg_init_table(sg, 1);
656 
657 	addr = pci_alloc_p2pmem(pdev, length);
658 	if (!addr)
659 		goto out_free_sg;
660 
661 	sg_set_buf(sg, addr, length);
662 	*nents = 1;
663 	return sg;
664 
665 out_free_sg:
666 	kfree(sg);
667 	return NULL;
668 }
669 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
670 
671 /**
672  * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
673  * @pdev: the device to allocate memory from
674  * @sgl: the allocated scatterlist
675  */
676 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
677 {
678 	struct scatterlist *sg;
679 	int count;
680 
681 	for_each_sg(sgl, sg, INT_MAX, count) {
682 		if (!sg)
683 			break;
684 
685 		pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
686 	}
687 	kfree(sgl);
688 }
689 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
690 
691 /**
692  * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
693  *	other devices with pci_p2pmem_find()
694  * @pdev: the device with peer-to-peer DMA memory to publish
695  * @publish: set to true to publish the memory, false to unpublish it
696  *
697  * Published memory can be used by other PCI device drivers for
698  * peer-2-peer DMA operations. Non-published memory is reserved for
699  * exclusive use of the device driver that registers the peer-to-peer
700  * memory.
701  */
702 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
703 {
704 	if (pdev->p2pdma)
705 		pdev->p2pdma->p2pmem_published = publish;
706 }
707 EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
708 
709 /**
710  * pci_p2pdma_map_sg - map a PCI peer-to-peer scatterlist for DMA
711  * @dev: device doing the DMA request
712  * @sg: scatter list to map
713  * @nents: elements in the scatterlist
714  * @dir: DMA direction
715  *
716  * Scatterlists mapped with this function should not be unmapped in any way.
717  *
718  * Returns the number of SG entries mapped or 0 on error.
719  */
720 int pci_p2pdma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
721 		      enum dma_data_direction dir)
722 {
723 	struct dev_pagemap *pgmap;
724 	struct scatterlist *s;
725 	phys_addr_t paddr;
726 	int i;
727 
728 	/*
729 	 * p2pdma mappings are not compatible with devices that use
730 	 * dma_virt_ops. If the upper layers do the right thing
731 	 * this should never happen because it will be prevented
732 	 * by the check in pci_p2pdma_distance_many()
733 	 */
734 	if (WARN_ON_ONCE(IS_ENABLED(CONFIG_DMA_VIRT_OPS) &&
735 			 dev->dma_ops == &dma_virt_ops))
736 		return 0;
737 
738 	for_each_sg(sg, s, nents, i) {
739 		pgmap = sg_page(s)->pgmap;
740 		paddr = sg_phys(s);
741 
742 		s->dma_address = paddr - pgmap->pci_p2pdma_bus_offset;
743 		sg_dma_len(s) = s->length;
744 	}
745 
746 	return nents;
747 }
748 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg);
749 
750 /**
751  * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
752  *		to enable p2pdma
753  * @page: contents of the value to be stored
754  * @p2p_dev: returns the PCI device that was selected to be used
755  *		(if one was specified in the stored value)
756  * @use_p2pdma: returns whether to enable p2pdma or not
757  *
758  * Parses an attribute value to decide whether to enable p2pdma.
759  * The value can select a PCI device (using its full BDF device
760  * name) or a boolean (in any format strtobool() accepts). A false
761  * value disables p2pdma, a true value expects the caller
762  * to automatically find a compatible device and specifying a PCI device
763  * expects the caller to use the specific provider.
764  *
765  * pci_p2pdma_enable_show() should be used as the show operation for
766  * the attribute.
767  *
768  * Returns 0 on success
769  */
770 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
771 			    bool *use_p2pdma)
772 {
773 	struct device *dev;
774 
775 	dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
776 	if (dev) {
777 		*use_p2pdma = true;
778 		*p2p_dev = to_pci_dev(dev);
779 
780 		if (!pci_has_p2pmem(*p2p_dev)) {
781 			pci_err(*p2p_dev,
782 				"PCI device has no peer-to-peer memory: %s\n",
783 				page);
784 			pci_dev_put(*p2p_dev);
785 			return -ENODEV;
786 		}
787 
788 		return 0;
789 	} else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
790 		/*
791 		 * If the user enters a PCI device that  doesn't exist
792 		 * like "0000:01:00.1", we don't want strtobool to think
793 		 * it's a '0' when it's clearly not what the user wanted.
794 		 * So we require 0's and 1's to be exactly one character.
795 		 */
796 	} else if (!strtobool(page, use_p2pdma)) {
797 		return 0;
798 	}
799 
800 	pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
801 	return -ENODEV;
802 }
803 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
804 
805 /**
806  * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
807  *		whether p2pdma is enabled
808  * @page: contents of the stored value
809  * @p2p_dev: the selected p2p device (NULL if no device is selected)
810  * @use_p2pdma: whether p2pdma has been enabled
811  *
812  * Attributes that use pci_p2pdma_enable_store() should use this function
813  * to show the value of the attribute.
814  *
815  * Returns 0 on success
816  */
817 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
818 			       bool use_p2pdma)
819 {
820 	if (!use_p2pdma)
821 		return sprintf(page, "0\n");
822 
823 	if (!p2p_dev)
824 		return sprintf(page, "1\n");
825 
826 	return sprintf(page, "%s\n", pci_name(p2p_dev));
827 }
828 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);
829