xref: /linux/drivers/pci/p2pdma.c (revision a4574f63edc6f76fb46dcd65d3eb4d5a8e23ba38)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Peer 2 Peer DMA support.
4  *
5  * Copyright (c) 2016-2018, Logan Gunthorpe
6  * Copyright (c) 2016-2017, Microsemi Corporation
7  * Copyright (c) 2017, Christoph Hellwig
8  * Copyright (c) 2018, Eideticom Inc.
9  */
10 
11 #define pr_fmt(fmt) "pci-p2pdma: " fmt
12 #include <linux/ctype.h>
13 #include <linux/pci-p2pdma.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/genalloc.h>
17 #include <linux/memremap.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/random.h>
20 #include <linux/seq_buf.h>
21 #include <linux/xarray.h>
22 
23 enum pci_p2pdma_map_type {
24 	PCI_P2PDMA_MAP_UNKNOWN = 0,
25 	PCI_P2PDMA_MAP_NOT_SUPPORTED,
26 	PCI_P2PDMA_MAP_BUS_ADDR,
27 	PCI_P2PDMA_MAP_THRU_HOST_BRIDGE,
28 };
29 
30 struct pci_p2pdma {
31 	struct gen_pool *pool;
32 	bool p2pmem_published;
33 	struct xarray map_types;
34 };
35 
36 struct pci_p2pdma_pagemap {
37 	struct dev_pagemap pgmap;
38 	struct pci_dev *provider;
39 	u64 bus_offset;
40 };
41 
42 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap)
43 {
44 	return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap);
45 }
46 
47 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
48 			 char *buf)
49 {
50 	struct pci_dev *pdev = to_pci_dev(dev);
51 	size_t size = 0;
52 
53 	if (pdev->p2pdma->pool)
54 		size = gen_pool_size(pdev->p2pdma->pool);
55 
56 	return snprintf(buf, PAGE_SIZE, "%zd\n", size);
57 }
58 static DEVICE_ATTR_RO(size);
59 
60 static ssize_t available_show(struct device *dev, struct device_attribute *attr,
61 			      char *buf)
62 {
63 	struct pci_dev *pdev = to_pci_dev(dev);
64 	size_t avail = 0;
65 
66 	if (pdev->p2pdma->pool)
67 		avail = gen_pool_avail(pdev->p2pdma->pool);
68 
69 	return snprintf(buf, PAGE_SIZE, "%zd\n", avail);
70 }
71 static DEVICE_ATTR_RO(available);
72 
73 static ssize_t published_show(struct device *dev, struct device_attribute *attr,
74 			      char *buf)
75 {
76 	struct pci_dev *pdev = to_pci_dev(dev);
77 
78 	return snprintf(buf, PAGE_SIZE, "%d\n",
79 			pdev->p2pdma->p2pmem_published);
80 }
81 static DEVICE_ATTR_RO(published);
82 
83 static struct attribute *p2pmem_attrs[] = {
84 	&dev_attr_size.attr,
85 	&dev_attr_available.attr,
86 	&dev_attr_published.attr,
87 	NULL,
88 };
89 
90 static const struct attribute_group p2pmem_group = {
91 	.attrs = p2pmem_attrs,
92 	.name = "p2pmem",
93 };
94 
95 static void pci_p2pdma_release(void *data)
96 {
97 	struct pci_dev *pdev = data;
98 	struct pci_p2pdma *p2pdma = pdev->p2pdma;
99 
100 	if (!p2pdma)
101 		return;
102 
103 	/* Flush and disable pci_alloc_p2p_mem() */
104 	pdev->p2pdma = NULL;
105 	synchronize_rcu();
106 
107 	gen_pool_destroy(p2pdma->pool);
108 	sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
109 	xa_destroy(&p2pdma->map_types);
110 }
111 
112 static int pci_p2pdma_setup(struct pci_dev *pdev)
113 {
114 	int error = -ENOMEM;
115 	struct pci_p2pdma *p2p;
116 
117 	p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
118 	if (!p2p)
119 		return -ENOMEM;
120 
121 	xa_init(&p2p->map_types);
122 
123 	p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
124 	if (!p2p->pool)
125 		goto out;
126 
127 	error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
128 	if (error)
129 		goto out_pool_destroy;
130 
131 	pdev->p2pdma = p2p;
132 
133 	error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
134 	if (error)
135 		goto out_pool_destroy;
136 
137 	return 0;
138 
139 out_pool_destroy:
140 	pdev->p2pdma = NULL;
141 	gen_pool_destroy(p2p->pool);
142 out:
143 	devm_kfree(&pdev->dev, p2p);
144 	return error;
145 }
146 
147 /**
148  * pci_p2pdma_add_resource - add memory for use as p2p memory
149  * @pdev: the device to add the memory to
150  * @bar: PCI BAR to add
151  * @size: size of the memory to add, may be zero to use the whole BAR
152  * @offset: offset into the PCI BAR
153  *
154  * The memory will be given ZONE_DEVICE struct pages so that it may
155  * be used with any DMA request.
156  */
157 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
158 			    u64 offset)
159 {
160 	struct pci_p2pdma_pagemap *p2p_pgmap;
161 	struct dev_pagemap *pgmap;
162 	void *addr;
163 	int error;
164 
165 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
166 		return -EINVAL;
167 
168 	if (offset >= pci_resource_len(pdev, bar))
169 		return -EINVAL;
170 
171 	if (!size)
172 		size = pci_resource_len(pdev, bar) - offset;
173 
174 	if (size + offset > pci_resource_len(pdev, bar))
175 		return -EINVAL;
176 
177 	if (!pdev->p2pdma) {
178 		error = pci_p2pdma_setup(pdev);
179 		if (error)
180 			return error;
181 	}
182 
183 	p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL);
184 	if (!p2p_pgmap)
185 		return -ENOMEM;
186 
187 	pgmap = &p2p_pgmap->pgmap;
188 	pgmap->range.start = pci_resource_start(pdev, bar) + offset;
189 	pgmap->range.end = pgmap->range.start + size - 1;
190 	pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
191 
192 	p2p_pgmap->provider = pdev;
193 	p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) -
194 		pci_resource_start(pdev, bar);
195 
196 	addr = devm_memremap_pages(&pdev->dev, pgmap);
197 	if (IS_ERR(addr)) {
198 		error = PTR_ERR(addr);
199 		goto pgmap_free;
200 	}
201 
202 	error = gen_pool_add_owner(pdev->p2pdma->pool, (unsigned long)addr,
203 			pci_bus_address(pdev, bar) + offset,
204 			range_len(&pgmap->range), dev_to_node(&pdev->dev),
205 			pgmap->ref);
206 	if (error)
207 		goto pages_free;
208 
209 	pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n",
210 		 pgmap->range.start, pgmap->range.end);
211 
212 	return 0;
213 
214 pages_free:
215 	devm_memunmap_pages(&pdev->dev, pgmap);
216 pgmap_free:
217 	devm_kfree(&pdev->dev, pgmap);
218 	return error;
219 }
220 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
221 
222 /*
223  * Note this function returns the parent PCI device with a
224  * reference taken. It is the caller's responsibility to drop
225  * the reference.
226  */
227 static struct pci_dev *find_parent_pci_dev(struct device *dev)
228 {
229 	struct device *parent;
230 
231 	dev = get_device(dev);
232 
233 	while (dev) {
234 		if (dev_is_pci(dev))
235 			return to_pci_dev(dev);
236 
237 		parent = get_device(dev->parent);
238 		put_device(dev);
239 		dev = parent;
240 	}
241 
242 	return NULL;
243 }
244 
245 /*
246  * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
247  * TLPs upstream via ACS. Returns 1 if the packets will be redirected
248  * upstream, 0 otherwise.
249  */
250 static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
251 {
252 	int pos;
253 	u16 ctrl;
254 
255 	pos = pdev->acs_cap;
256 	if (!pos)
257 		return 0;
258 
259 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
260 
261 	if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
262 		return 1;
263 
264 	return 0;
265 }
266 
267 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
268 {
269 	if (!buf)
270 		return;
271 
272 	seq_buf_printf(buf, "%s;", pci_name(pdev));
273 }
274 
275 static bool cpu_supports_p2pdma(void)
276 {
277 #ifdef CONFIG_X86
278 	struct cpuinfo_x86 *c = &cpu_data(0);
279 
280 	/* Any AMD CPU whose family ID is Zen or newer supports p2pdma */
281 	if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17)
282 		return true;
283 #endif
284 
285 	return false;
286 }
287 
288 static const struct pci_p2pdma_whitelist_entry {
289 	unsigned short vendor;
290 	unsigned short device;
291 	enum {
292 		REQ_SAME_HOST_BRIDGE	= 1 << 0,
293 	} flags;
294 } pci_p2pdma_whitelist[] = {
295 	/* Intel Xeon E5/Core i7 */
296 	{PCI_VENDOR_ID_INTEL,	0x3c00, REQ_SAME_HOST_BRIDGE},
297 	{PCI_VENDOR_ID_INTEL,	0x3c01, REQ_SAME_HOST_BRIDGE},
298 	/* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */
299 	{PCI_VENDOR_ID_INTEL,	0x2f00, REQ_SAME_HOST_BRIDGE},
300 	{PCI_VENDOR_ID_INTEL,	0x2f01, REQ_SAME_HOST_BRIDGE},
301 	/* Intel SkyLake-E */
302 	{PCI_VENDOR_ID_INTEL,	0x2030, 0},
303 	{PCI_VENDOR_ID_INTEL,	0x2031, 0},
304 	{PCI_VENDOR_ID_INTEL,	0x2032, 0},
305 	{PCI_VENDOR_ID_INTEL,	0x2033, 0},
306 	{PCI_VENDOR_ID_INTEL,	0x2020, 0},
307 	{}
308 };
309 
310 static bool __host_bridge_whitelist(struct pci_host_bridge *host,
311 				    bool same_host_bridge)
312 {
313 	struct pci_dev *root = pci_get_slot(host->bus, PCI_DEVFN(0, 0));
314 	const struct pci_p2pdma_whitelist_entry *entry;
315 	unsigned short vendor, device;
316 
317 	if (!root)
318 		return false;
319 
320 	vendor = root->vendor;
321 	device = root->device;
322 	pci_dev_put(root);
323 
324 	for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) {
325 		if (vendor != entry->vendor || device != entry->device)
326 			continue;
327 		if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge)
328 			return false;
329 
330 		return true;
331 	}
332 
333 	return false;
334 }
335 
336 /*
337  * If we can't find a common upstream bridge take a look at the root
338  * complex and compare it to a whitelist of known good hardware.
339  */
340 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b)
341 {
342 	struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus);
343 	struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus);
344 
345 	if (host_a == host_b)
346 		return __host_bridge_whitelist(host_a, true);
347 
348 	if (__host_bridge_whitelist(host_a, false) &&
349 	    __host_bridge_whitelist(host_b, false))
350 		return true;
351 
352 	return false;
353 }
354 
355 static enum pci_p2pdma_map_type
356 __upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client,
357 		int *dist, bool *acs_redirects, struct seq_buf *acs_list)
358 {
359 	struct pci_dev *a = provider, *b = client, *bb;
360 	int dist_a = 0;
361 	int dist_b = 0;
362 	int acs_cnt = 0;
363 
364 	if (acs_redirects)
365 		*acs_redirects = false;
366 
367 	/*
368 	 * Note, we don't need to take references to devices returned by
369 	 * pci_upstream_bridge() seeing we hold a reference to a child
370 	 * device which will already hold a reference to the upstream bridge.
371 	 */
372 
373 	while (a) {
374 		dist_b = 0;
375 
376 		if (pci_bridge_has_acs_redir(a)) {
377 			seq_buf_print_bus_devfn(acs_list, a);
378 			acs_cnt++;
379 		}
380 
381 		bb = b;
382 
383 		while (bb) {
384 			if (a == bb)
385 				goto check_b_path_acs;
386 
387 			bb = pci_upstream_bridge(bb);
388 			dist_b++;
389 		}
390 
391 		a = pci_upstream_bridge(a);
392 		dist_a++;
393 	}
394 
395 	if (dist)
396 		*dist = dist_a + dist_b;
397 
398 	return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
399 
400 check_b_path_acs:
401 	bb = b;
402 
403 	while (bb) {
404 		if (a == bb)
405 			break;
406 
407 		if (pci_bridge_has_acs_redir(bb)) {
408 			seq_buf_print_bus_devfn(acs_list, bb);
409 			acs_cnt++;
410 		}
411 
412 		bb = pci_upstream_bridge(bb);
413 	}
414 
415 	if (dist)
416 		*dist = dist_a + dist_b;
417 
418 	if (acs_cnt) {
419 		if (acs_redirects)
420 			*acs_redirects = true;
421 
422 		return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
423 	}
424 
425 	return PCI_P2PDMA_MAP_BUS_ADDR;
426 }
427 
428 static unsigned long map_types_idx(struct pci_dev *client)
429 {
430 	return (pci_domain_nr(client->bus) << 16) |
431 		(client->bus->number << 8) | client->devfn;
432 }
433 
434 /*
435  * Find the distance through the nearest common upstream bridge between
436  * two PCI devices.
437  *
438  * If the two devices are the same device then 0 will be returned.
439  *
440  * If there are two virtual functions of the same device behind the same
441  * bridge port then 2 will be returned (one step down to the PCIe switch,
442  * then one step back to the same device).
443  *
444  * In the case where two devices are connected to the same PCIe switch, the
445  * value 4 will be returned. This corresponds to the following PCI tree:
446  *
447  *     -+  Root Port
448  *      \+ Switch Upstream Port
449  *       +-+ Switch Downstream Port
450  *       + \- Device A
451  *       \-+ Switch Downstream Port
452  *         \- Device B
453  *
454  * The distance is 4 because we traverse from Device A through the downstream
455  * port of the switch, to the common upstream port, back up to the second
456  * downstream port and then to Device B.
457  *
458  * Any two devices that cannot communicate using p2pdma will return
459  * PCI_P2PDMA_MAP_NOT_SUPPORTED.
460  *
461  * Any two devices that have a data path that goes through the host bridge
462  * will consult a whitelist. If the host bridges are on the whitelist,
463  * this function will return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE.
464  *
465  * If either bridge is not on the whitelist this function returns
466  * PCI_P2PDMA_MAP_NOT_SUPPORTED.
467  *
468  * If a bridge which has any ACS redirection bits set is in the path,
469  * acs_redirects will be set to true. In this case, a list of all infringing
470  * bridge addresses will be populated in acs_list (assuming it's non-null)
471  * for printk purposes.
472  */
473 static enum pci_p2pdma_map_type
474 upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client,
475 		int *dist, bool *acs_redirects, struct seq_buf *acs_list)
476 {
477 	enum pci_p2pdma_map_type map_type;
478 
479 	map_type = __upstream_bridge_distance(provider, client, dist,
480 					      acs_redirects, acs_list);
481 
482 	if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE) {
483 		if (!cpu_supports_p2pdma() &&
484 		    !host_bridge_whitelist(provider, client))
485 			map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
486 	}
487 
488 	if (provider->p2pdma)
489 		xa_store(&provider->p2pdma->map_types, map_types_idx(client),
490 			 xa_mk_value(map_type), GFP_KERNEL);
491 
492 	return map_type;
493 }
494 
495 static enum pci_p2pdma_map_type
496 upstream_bridge_distance_warn(struct pci_dev *provider, struct pci_dev *client,
497 			      int *dist)
498 {
499 	struct seq_buf acs_list;
500 	bool acs_redirects;
501 	int ret;
502 
503 	seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
504 	if (!acs_list.buffer)
505 		return -ENOMEM;
506 
507 	ret = upstream_bridge_distance(provider, client, dist, &acs_redirects,
508 				       &acs_list);
509 	if (acs_redirects) {
510 		pci_warn(client, "ACS redirect is set between the client and provider (%s)\n",
511 			 pci_name(provider));
512 		/* Drop final semicolon */
513 		acs_list.buffer[acs_list.len-1] = 0;
514 		pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
515 			 acs_list.buffer);
516 	}
517 
518 	if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED) {
519 		pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n",
520 			 pci_name(provider));
521 	}
522 
523 	kfree(acs_list.buffer);
524 
525 	return ret;
526 }
527 
528 /**
529  * pci_p2pdma_distance_many - Determine the cumulative distance between
530  *	a p2pdma provider and the clients in use.
531  * @provider: p2pdma provider to check against the client list
532  * @clients: array of devices to check (NULL-terminated)
533  * @num_clients: number of clients in the array
534  * @verbose: if true, print warnings for devices when we return -1
535  *
536  * Returns -1 if any of the clients are not compatible, otherwise returns a
537  * positive number where a lower number is the preferable choice. (If there's
538  * one client that's the same as the provider it will return 0, which is best
539  * choice).
540  *
541  * "compatible" means the provider and the clients are either all behind
542  * the same PCI root port or the host bridges connected to each of the devices
543  * are listed in the 'pci_p2pdma_whitelist'.
544  */
545 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
546 			     int num_clients, bool verbose)
547 {
548 	bool not_supported = false;
549 	struct pci_dev *pci_client;
550 	int total_dist = 0;
551 	int distance;
552 	int i, ret;
553 
554 	if (num_clients == 0)
555 		return -1;
556 
557 	for (i = 0; i < num_clients; i++) {
558 #ifdef CONFIG_DMA_VIRT_OPS
559 		if (clients[i]->dma_ops == &dma_virt_ops) {
560 			if (verbose)
561 				dev_warn(clients[i],
562 					 "cannot be used for peer-to-peer DMA because the driver makes use of dma_virt_ops\n");
563 			return -1;
564 		}
565 #endif
566 
567 		pci_client = find_parent_pci_dev(clients[i]);
568 		if (!pci_client) {
569 			if (verbose)
570 				dev_warn(clients[i],
571 					 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
572 			return -1;
573 		}
574 
575 		if (verbose)
576 			ret = upstream_bridge_distance_warn(provider,
577 					pci_client, &distance);
578 		else
579 			ret = upstream_bridge_distance(provider, pci_client,
580 						       &distance, NULL, NULL);
581 
582 		pci_dev_put(pci_client);
583 
584 		if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED)
585 			not_supported = true;
586 
587 		if (not_supported && !verbose)
588 			break;
589 
590 		total_dist += distance;
591 	}
592 
593 	if (not_supported)
594 		return -1;
595 
596 	return total_dist;
597 }
598 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
599 
600 /**
601  * pci_has_p2pmem - check if a given PCI device has published any p2pmem
602  * @pdev: PCI device to check
603  */
604 bool pci_has_p2pmem(struct pci_dev *pdev)
605 {
606 	return pdev->p2pdma && pdev->p2pdma->p2pmem_published;
607 }
608 EXPORT_SYMBOL_GPL(pci_has_p2pmem);
609 
610 /**
611  * pci_p2pmem_find - find a peer-to-peer DMA memory device compatible with
612  *	the specified list of clients and shortest distance (as determined
613  *	by pci_p2pmem_dma())
614  * @clients: array of devices to check (NULL-terminated)
615  * @num_clients: number of client devices in the list
616  *
617  * If multiple devices are behind the same switch, the one "closest" to the
618  * client devices in use will be chosen first. (So if one of the providers is
619  * the same as one of the clients, that provider will be used ahead of any
620  * other providers that are unrelated). If multiple providers are an equal
621  * distance away, one will be chosen at random.
622  *
623  * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
624  * to return the reference) or NULL if no compatible device is found. The
625  * found provider will also be assigned to the client list.
626  */
627 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
628 {
629 	struct pci_dev *pdev = NULL;
630 	int distance;
631 	int closest_distance = INT_MAX;
632 	struct pci_dev **closest_pdevs;
633 	int dev_cnt = 0;
634 	const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
635 	int i;
636 
637 	closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
638 	if (!closest_pdevs)
639 		return NULL;
640 
641 	while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
642 		if (!pci_has_p2pmem(pdev))
643 			continue;
644 
645 		distance = pci_p2pdma_distance_many(pdev, clients,
646 						    num_clients, false);
647 		if (distance < 0 || distance > closest_distance)
648 			continue;
649 
650 		if (distance == closest_distance && dev_cnt >= max_devs)
651 			continue;
652 
653 		if (distance < closest_distance) {
654 			for (i = 0; i < dev_cnt; i++)
655 				pci_dev_put(closest_pdevs[i]);
656 
657 			dev_cnt = 0;
658 			closest_distance = distance;
659 		}
660 
661 		closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
662 	}
663 
664 	if (dev_cnt)
665 		pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]);
666 
667 	for (i = 0; i < dev_cnt; i++)
668 		pci_dev_put(closest_pdevs[i]);
669 
670 	kfree(closest_pdevs);
671 	return pdev;
672 }
673 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
674 
675 /**
676  * pci_alloc_p2p_mem - allocate peer-to-peer DMA memory
677  * @pdev: the device to allocate memory from
678  * @size: number of bytes to allocate
679  *
680  * Returns the allocated memory or NULL on error.
681  */
682 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
683 {
684 	void *ret = NULL;
685 	struct percpu_ref *ref;
686 
687 	/*
688 	 * Pairs with synchronize_rcu() in pci_p2pdma_release() to
689 	 * ensure pdev->p2pdma is non-NULL for the duration of the
690 	 * read-lock.
691 	 */
692 	rcu_read_lock();
693 	if (unlikely(!pdev->p2pdma))
694 		goto out;
695 
696 	ret = (void *)gen_pool_alloc_owner(pdev->p2pdma->pool, size,
697 			(void **) &ref);
698 	if (!ret)
699 		goto out;
700 
701 	if (unlikely(!percpu_ref_tryget_live(ref))) {
702 		gen_pool_free(pdev->p2pdma->pool, (unsigned long) ret, size);
703 		ret = NULL;
704 		goto out;
705 	}
706 out:
707 	rcu_read_unlock();
708 	return ret;
709 }
710 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
711 
712 /**
713  * pci_free_p2pmem - free peer-to-peer DMA memory
714  * @pdev: the device the memory was allocated from
715  * @addr: address of the memory that was allocated
716  * @size: number of bytes that were allocated
717  */
718 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
719 {
720 	struct percpu_ref *ref;
721 
722 	gen_pool_free_owner(pdev->p2pdma->pool, (uintptr_t)addr, size,
723 			(void **) &ref);
724 	percpu_ref_put(ref);
725 }
726 EXPORT_SYMBOL_GPL(pci_free_p2pmem);
727 
728 /**
729  * pci_virt_to_bus - return the PCI bus address for a given virtual
730  *	address obtained with pci_alloc_p2pmem()
731  * @pdev: the device the memory was allocated from
732  * @addr: address of the memory that was allocated
733  */
734 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
735 {
736 	if (!addr)
737 		return 0;
738 	if (!pdev->p2pdma)
739 		return 0;
740 
741 	/*
742 	 * Note: when we added the memory to the pool we used the PCI
743 	 * bus address as the physical address. So gen_pool_virt_to_phys()
744 	 * actually returns the bus address despite the misleading name.
745 	 */
746 	return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr);
747 }
748 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
749 
750 /**
751  * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
752  * @pdev: the device to allocate memory from
753  * @nents: the number of SG entries in the list
754  * @length: number of bytes to allocate
755  *
756  * Return: %NULL on error or &struct scatterlist pointer and @nents on success
757  */
758 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
759 					 unsigned int *nents, u32 length)
760 {
761 	struct scatterlist *sg;
762 	void *addr;
763 
764 	sg = kzalloc(sizeof(*sg), GFP_KERNEL);
765 	if (!sg)
766 		return NULL;
767 
768 	sg_init_table(sg, 1);
769 
770 	addr = pci_alloc_p2pmem(pdev, length);
771 	if (!addr)
772 		goto out_free_sg;
773 
774 	sg_set_buf(sg, addr, length);
775 	*nents = 1;
776 	return sg;
777 
778 out_free_sg:
779 	kfree(sg);
780 	return NULL;
781 }
782 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
783 
784 /**
785  * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
786  * @pdev: the device to allocate memory from
787  * @sgl: the allocated scatterlist
788  */
789 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
790 {
791 	struct scatterlist *sg;
792 	int count;
793 
794 	for_each_sg(sgl, sg, INT_MAX, count) {
795 		if (!sg)
796 			break;
797 
798 		pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
799 	}
800 	kfree(sgl);
801 }
802 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
803 
804 /**
805  * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
806  *	other devices with pci_p2pmem_find()
807  * @pdev: the device with peer-to-peer DMA memory to publish
808  * @publish: set to true to publish the memory, false to unpublish it
809  *
810  * Published memory can be used by other PCI device drivers for
811  * peer-2-peer DMA operations. Non-published memory is reserved for
812  * exclusive use of the device driver that registers the peer-to-peer
813  * memory.
814  */
815 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
816 {
817 	if (pdev->p2pdma)
818 		pdev->p2pdma->p2pmem_published = publish;
819 }
820 EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
821 
822 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct pci_dev *provider,
823 						    struct pci_dev *client)
824 {
825 	if (!provider->p2pdma)
826 		return PCI_P2PDMA_MAP_NOT_SUPPORTED;
827 
828 	return xa_to_value(xa_load(&provider->p2pdma->map_types,
829 				   map_types_idx(client)));
830 }
831 
832 static int __pci_p2pdma_map_sg(struct pci_p2pdma_pagemap *p2p_pgmap,
833 		struct device *dev, struct scatterlist *sg, int nents)
834 {
835 	struct scatterlist *s;
836 	phys_addr_t paddr;
837 	int i;
838 
839 	/*
840 	 * p2pdma mappings are not compatible with devices that use
841 	 * dma_virt_ops. If the upper layers do the right thing
842 	 * this should never happen because it will be prevented
843 	 * by the check in pci_p2pdma_distance_many()
844 	 */
845 #ifdef CONFIG_DMA_VIRT_OPS
846 	if (WARN_ON_ONCE(dev->dma_ops == &dma_virt_ops))
847 		return 0;
848 #endif
849 
850 	for_each_sg(sg, s, nents, i) {
851 		paddr = sg_phys(s);
852 
853 		s->dma_address = paddr - p2p_pgmap->bus_offset;
854 		sg_dma_len(s) = s->length;
855 	}
856 
857 	return nents;
858 }
859 
860 /**
861  * pci_p2pdma_map_sg - map a PCI peer-to-peer scatterlist for DMA
862  * @dev: device doing the DMA request
863  * @sg: scatter list to map
864  * @nents: elements in the scatterlist
865  * @dir: DMA direction
866  * @attrs: DMA attributes passed to dma_map_sg() (if called)
867  *
868  * Scatterlists mapped with this function should be unmapped using
869  * pci_p2pdma_unmap_sg_attrs().
870  *
871  * Returns the number of SG entries mapped or 0 on error.
872  */
873 int pci_p2pdma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
874 		int nents, enum dma_data_direction dir, unsigned long attrs)
875 {
876 	struct pci_p2pdma_pagemap *p2p_pgmap =
877 		to_p2p_pgmap(sg_page(sg)->pgmap);
878 	struct pci_dev *client;
879 
880 	if (WARN_ON_ONCE(!dev_is_pci(dev)))
881 		return 0;
882 
883 	client = to_pci_dev(dev);
884 
885 	switch (pci_p2pdma_map_type(p2p_pgmap->provider, client)) {
886 	case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
887 		return dma_map_sg_attrs(dev, sg, nents, dir, attrs);
888 	case PCI_P2PDMA_MAP_BUS_ADDR:
889 		return __pci_p2pdma_map_sg(p2p_pgmap, dev, sg, nents);
890 	default:
891 		WARN_ON_ONCE(1);
892 		return 0;
893 	}
894 }
895 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg_attrs);
896 
897 /**
898  * pci_p2pdma_unmap_sg - unmap a PCI peer-to-peer scatterlist that was
899  *	mapped with pci_p2pdma_map_sg()
900  * @dev: device doing the DMA request
901  * @sg: scatter list to map
902  * @nents: number of elements returned by pci_p2pdma_map_sg()
903  * @dir: DMA direction
904  * @attrs: DMA attributes passed to dma_unmap_sg() (if called)
905  */
906 void pci_p2pdma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
907 		int nents, enum dma_data_direction dir, unsigned long attrs)
908 {
909 	struct pci_p2pdma_pagemap *p2p_pgmap =
910 		to_p2p_pgmap(sg_page(sg)->pgmap);
911 	enum pci_p2pdma_map_type map_type;
912 	struct pci_dev *client;
913 
914 	if (WARN_ON_ONCE(!dev_is_pci(dev)))
915 		return;
916 
917 	client = to_pci_dev(dev);
918 
919 	map_type = pci_p2pdma_map_type(p2p_pgmap->provider, client);
920 
921 	if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE)
922 		dma_unmap_sg_attrs(dev, sg, nents, dir, attrs);
923 }
924 EXPORT_SYMBOL_GPL(pci_p2pdma_unmap_sg_attrs);
925 
926 /**
927  * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
928  *		to enable p2pdma
929  * @page: contents of the value to be stored
930  * @p2p_dev: returns the PCI device that was selected to be used
931  *		(if one was specified in the stored value)
932  * @use_p2pdma: returns whether to enable p2pdma or not
933  *
934  * Parses an attribute value to decide whether to enable p2pdma.
935  * The value can select a PCI device (using its full BDF device
936  * name) or a boolean (in any format strtobool() accepts). A false
937  * value disables p2pdma, a true value expects the caller
938  * to automatically find a compatible device and specifying a PCI device
939  * expects the caller to use the specific provider.
940  *
941  * pci_p2pdma_enable_show() should be used as the show operation for
942  * the attribute.
943  *
944  * Returns 0 on success
945  */
946 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
947 			    bool *use_p2pdma)
948 {
949 	struct device *dev;
950 
951 	dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
952 	if (dev) {
953 		*use_p2pdma = true;
954 		*p2p_dev = to_pci_dev(dev);
955 
956 		if (!pci_has_p2pmem(*p2p_dev)) {
957 			pci_err(*p2p_dev,
958 				"PCI device has no peer-to-peer memory: %s\n",
959 				page);
960 			pci_dev_put(*p2p_dev);
961 			return -ENODEV;
962 		}
963 
964 		return 0;
965 	} else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
966 		/*
967 		 * If the user enters a PCI device that  doesn't exist
968 		 * like "0000:01:00.1", we don't want strtobool to think
969 		 * it's a '0' when it's clearly not what the user wanted.
970 		 * So we require 0's and 1's to be exactly one character.
971 		 */
972 	} else if (!strtobool(page, use_p2pdma)) {
973 		return 0;
974 	}
975 
976 	pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
977 	return -ENODEV;
978 }
979 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
980 
981 /**
982  * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
983  *		whether p2pdma is enabled
984  * @page: contents of the stored value
985  * @p2p_dev: the selected p2p device (NULL if no device is selected)
986  * @use_p2pdma: whether p2pdma has been enabled
987  *
988  * Attributes that use pci_p2pdma_enable_store() should use this function
989  * to show the value of the attribute.
990  *
991  * Returns 0 on success
992  */
993 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
994 			       bool use_p2pdma)
995 {
996 	if (!use_p2pdma)
997 		return sprintf(page, "0\n");
998 
999 	if (!p2p_dev)
1000 		return sprintf(page, "1\n");
1001 
1002 	return sprintf(page, "%s\n", pci_name(p2p_dev));
1003 }
1004 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);
1005