1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Peer 2 Peer DMA support. 4 * 5 * Copyright (c) 2016-2018, Logan Gunthorpe 6 * Copyright (c) 2016-2017, Microsemi Corporation 7 * Copyright (c) 2017, Christoph Hellwig 8 * Copyright (c) 2018, Eideticom Inc. 9 */ 10 11 #define pr_fmt(fmt) "pci-p2pdma: " fmt 12 #include <linux/ctype.h> 13 #include <linux/dma-map-ops.h> 14 #include <linux/pci-p2pdma.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/genalloc.h> 18 #include <linux/memremap.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/random.h> 21 #include <linux/seq_buf.h> 22 #include <linux/xarray.h> 23 24 struct pci_p2pdma { 25 struct gen_pool *pool; 26 bool p2pmem_published; 27 struct xarray map_types; 28 struct p2pdma_provider mem[PCI_STD_NUM_BARS]; 29 }; 30 31 struct pci_p2pdma_pagemap { 32 struct dev_pagemap pgmap; 33 struct p2pdma_provider *mem; 34 }; 35 36 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap) 37 { 38 return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap); 39 } 40 41 static ssize_t size_show(struct device *dev, struct device_attribute *attr, 42 char *buf) 43 { 44 struct pci_dev *pdev = to_pci_dev(dev); 45 struct pci_p2pdma *p2pdma; 46 size_t size = 0; 47 48 rcu_read_lock(); 49 p2pdma = rcu_dereference(pdev->p2pdma); 50 if (p2pdma && p2pdma->pool) 51 size = gen_pool_size(p2pdma->pool); 52 rcu_read_unlock(); 53 54 return sysfs_emit(buf, "%zd\n", size); 55 } 56 static DEVICE_ATTR_RO(size); 57 58 static ssize_t available_show(struct device *dev, struct device_attribute *attr, 59 char *buf) 60 { 61 struct pci_dev *pdev = to_pci_dev(dev); 62 struct pci_p2pdma *p2pdma; 63 size_t avail = 0; 64 65 rcu_read_lock(); 66 p2pdma = rcu_dereference(pdev->p2pdma); 67 if (p2pdma && p2pdma->pool) 68 avail = gen_pool_avail(p2pdma->pool); 69 rcu_read_unlock(); 70 71 return sysfs_emit(buf, "%zd\n", avail); 72 } 73 static DEVICE_ATTR_RO(available); 74 75 static ssize_t published_show(struct device *dev, struct device_attribute *attr, 76 char *buf) 77 { 78 struct pci_dev *pdev = to_pci_dev(dev); 79 struct pci_p2pdma *p2pdma; 80 bool published = false; 81 82 rcu_read_lock(); 83 p2pdma = rcu_dereference(pdev->p2pdma); 84 if (p2pdma) 85 published = p2pdma->p2pmem_published; 86 rcu_read_unlock(); 87 88 return sysfs_emit(buf, "%d\n", published); 89 } 90 static DEVICE_ATTR_RO(published); 91 92 static int p2pmem_alloc_mmap(struct file *filp, struct kobject *kobj, 93 const struct bin_attribute *attr, struct vm_area_struct *vma) 94 { 95 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 96 size_t len = vma->vm_end - vma->vm_start; 97 struct pci_p2pdma *p2pdma; 98 struct percpu_ref *ref; 99 unsigned long vaddr; 100 void *kaddr; 101 int ret; 102 103 /* prevent private mappings from being established */ 104 if ((vma->vm_flags & VM_MAYSHARE) != VM_MAYSHARE) { 105 pci_info_ratelimited(pdev, 106 "%s: fail, attempted private mapping\n", 107 current->comm); 108 return -EINVAL; 109 } 110 111 if (vma->vm_pgoff) { 112 pci_info_ratelimited(pdev, 113 "%s: fail, attempted mapping with non-zero offset\n", 114 current->comm); 115 return -EINVAL; 116 } 117 118 rcu_read_lock(); 119 p2pdma = rcu_dereference(pdev->p2pdma); 120 if (!p2pdma) { 121 ret = -ENODEV; 122 goto out; 123 } 124 125 kaddr = (void *)gen_pool_alloc_owner(p2pdma->pool, len, (void **)&ref); 126 if (!kaddr) { 127 ret = -ENOMEM; 128 goto out; 129 } 130 131 /* 132 * vm_insert_page() can sleep, so a reference is taken to mapping 133 * such that rcu_read_unlock() can be done before inserting the 134 * pages 135 */ 136 if (unlikely(!percpu_ref_tryget_live_rcu(ref))) { 137 ret = -ENODEV; 138 goto out_free_mem; 139 } 140 rcu_read_unlock(); 141 142 for (vaddr = vma->vm_start; vaddr < vma->vm_end; vaddr += PAGE_SIZE) { 143 struct page *page = virt_to_page(kaddr); 144 145 /* 146 * Initialise the refcount for the freshly allocated page. As 147 * we have just allocated the page no one else should be 148 * using it. 149 */ 150 VM_WARN_ON_ONCE_PAGE(!page_ref_count(page), page); 151 set_page_count(page, 1); 152 ret = vm_insert_page(vma, vaddr, page); 153 if (ret) { 154 gen_pool_free(p2pdma->pool, (uintptr_t)kaddr, len); 155 return ret; 156 } 157 percpu_ref_get(ref); 158 put_page(page); 159 kaddr += PAGE_SIZE; 160 len -= PAGE_SIZE; 161 } 162 163 percpu_ref_put(ref); 164 165 return 0; 166 out_free_mem: 167 gen_pool_free(p2pdma->pool, (uintptr_t)kaddr, len); 168 out: 169 rcu_read_unlock(); 170 return ret; 171 } 172 173 static const struct bin_attribute p2pmem_alloc_attr = { 174 .attr = { .name = "allocate", .mode = 0660 }, 175 .mmap = p2pmem_alloc_mmap, 176 /* 177 * Some places where we want to call mmap (ie. python) will check 178 * that the file size is greater than the mmap size before allowing 179 * the mmap to continue. To work around this, just set the size 180 * to be very large. 181 */ 182 .size = SZ_1T, 183 }; 184 185 static struct attribute *p2pmem_attrs[] = { 186 &dev_attr_size.attr, 187 &dev_attr_available.attr, 188 &dev_attr_published.attr, 189 NULL, 190 }; 191 192 static const struct bin_attribute *const p2pmem_bin_attrs[] = { 193 &p2pmem_alloc_attr, 194 NULL, 195 }; 196 197 static const struct attribute_group p2pmem_group = { 198 .attrs = p2pmem_attrs, 199 .bin_attrs = p2pmem_bin_attrs, 200 .name = "p2pmem", 201 }; 202 203 static void p2pdma_page_free(struct page *page) 204 { 205 struct pci_p2pdma_pagemap *pgmap = to_p2p_pgmap(page_pgmap(page)); 206 /* safe to dereference while a reference is held to the percpu ref */ 207 struct pci_p2pdma *p2pdma = rcu_dereference_protected( 208 to_pci_dev(pgmap->mem->owner)->p2pdma, 1); 209 struct percpu_ref *ref; 210 211 gen_pool_free_owner(p2pdma->pool, (uintptr_t)page_to_virt(page), 212 PAGE_SIZE, (void **)&ref); 213 percpu_ref_put(ref); 214 } 215 216 static const struct dev_pagemap_ops p2pdma_pgmap_ops = { 217 .page_free = p2pdma_page_free, 218 }; 219 220 static void pci_p2pdma_release(void *data) 221 { 222 struct pci_dev *pdev = data; 223 struct pci_p2pdma *p2pdma; 224 225 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 226 if (!p2pdma) 227 return; 228 229 /* Flush and disable pci_alloc_p2p_mem() */ 230 pdev->p2pdma = NULL; 231 if (p2pdma->pool) 232 synchronize_rcu(); 233 xa_destroy(&p2pdma->map_types); 234 235 if (!p2pdma->pool) 236 return; 237 238 gen_pool_destroy(p2pdma->pool); 239 sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group); 240 } 241 242 /** 243 * pcim_p2pdma_init - Initialise peer-to-peer DMA providers 244 * @pdev: The PCI device to enable P2PDMA for 245 * 246 * This function initializes the peer-to-peer DMA infrastructure 247 * for a PCI device. It allocates and sets up the necessary data 248 * structures to support P2PDMA operations, including mapping type 249 * tracking. 250 */ 251 int pcim_p2pdma_init(struct pci_dev *pdev) 252 { 253 struct pci_p2pdma *p2p; 254 int i, ret; 255 256 p2p = rcu_dereference_protected(pdev->p2pdma, 1); 257 if (p2p) 258 return 0; 259 260 p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL); 261 if (!p2p) 262 return -ENOMEM; 263 264 xa_init(&p2p->map_types); 265 /* 266 * Iterate over all standard PCI BARs and record only those that 267 * correspond to MMIO regions. Skip non-memory resources (e.g. I/O 268 * port BARs) since they cannot be used for peer-to-peer (P2P) 269 * transactions. 270 */ 271 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 272 if (!(pci_resource_flags(pdev, i) & IORESOURCE_MEM)) 273 continue; 274 275 p2p->mem[i].owner = &pdev->dev; 276 p2p->mem[i].bus_offset = 277 pci_bus_address(pdev, i) - pci_resource_start(pdev, i); 278 } 279 280 ret = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev); 281 if (ret) 282 goto out_p2p; 283 284 rcu_assign_pointer(pdev->p2pdma, p2p); 285 return 0; 286 287 out_p2p: 288 devm_kfree(&pdev->dev, p2p); 289 return ret; 290 } 291 EXPORT_SYMBOL_GPL(pcim_p2pdma_init); 292 293 /** 294 * pcim_p2pdma_provider - Get peer-to-peer DMA provider 295 * @pdev: The PCI device to enable P2PDMA for 296 * @bar: BAR index to get provider 297 * 298 * This function gets peer-to-peer DMA provider for a PCI device. The lifetime 299 * of the provider (and of course the MMIO) is bound to the lifetime of the 300 * driver. A driver calling this function must ensure that all references to the 301 * provider, and any DMA mappings created for any MMIO, are all cleaned up 302 * before the driver remove() completes. 303 * 304 * Since P2P is almost always shared with a second driver this means some system 305 * to notify, invalidate and revoke the MMIO's DMA must be in place to use this 306 * function. For example a revoke can be built using DMABUF. 307 */ 308 struct p2pdma_provider *pcim_p2pdma_provider(struct pci_dev *pdev, int bar) 309 { 310 struct pci_p2pdma *p2p; 311 312 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) 313 return NULL; 314 315 p2p = rcu_dereference_protected(pdev->p2pdma, 1); 316 if (WARN_ON(!p2p)) 317 /* Someone forgot to call to pcim_p2pdma_init() before */ 318 return NULL; 319 320 return &p2p->mem[bar]; 321 } 322 EXPORT_SYMBOL_GPL(pcim_p2pdma_provider); 323 324 static int pci_p2pdma_setup_pool(struct pci_dev *pdev) 325 { 326 struct pci_p2pdma *p2pdma; 327 int ret; 328 329 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 330 if (p2pdma->pool) 331 /* We already setup pools, do nothing, */ 332 return 0; 333 334 p2pdma->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev)); 335 if (!p2pdma->pool) 336 return -ENOMEM; 337 338 ret = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group); 339 if (ret) 340 goto out_pool_destroy; 341 342 return 0; 343 344 out_pool_destroy: 345 gen_pool_destroy(p2pdma->pool); 346 p2pdma->pool = NULL; 347 return ret; 348 } 349 350 static void pci_p2pdma_unmap_mappings(void *data) 351 { 352 struct pci_p2pdma_pagemap *p2p_pgmap = data; 353 354 /* 355 * Removing the alloc attribute from sysfs will call 356 * unmap_mapping_range() on the inode, teardown any existing userspace 357 * mappings and prevent new ones from being created. 358 */ 359 sysfs_remove_file_from_group(&p2p_pgmap->mem->owner->kobj, 360 &p2pmem_alloc_attr.attr, 361 p2pmem_group.name); 362 } 363 364 /** 365 * pci_p2pdma_add_resource - add memory for use as p2p memory 366 * @pdev: the device to add the memory to 367 * @bar: PCI BAR to add 368 * @size: size of the memory to add, may be zero to use the whole BAR 369 * @offset: offset into the PCI BAR 370 * 371 * The memory will be given ZONE_DEVICE struct pages so that it may 372 * be used with any DMA request. 373 */ 374 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size, 375 u64 offset) 376 { 377 struct pci_p2pdma_pagemap *p2p_pgmap; 378 struct p2pdma_provider *mem; 379 struct dev_pagemap *pgmap; 380 struct pci_p2pdma *p2pdma; 381 void *addr; 382 int error; 383 384 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) 385 return -EINVAL; 386 387 if (offset >= pci_resource_len(pdev, bar)) 388 return -EINVAL; 389 390 if (!size) 391 size = pci_resource_len(pdev, bar) - offset; 392 393 if (size + offset > pci_resource_len(pdev, bar)) 394 return -EINVAL; 395 396 error = pcim_p2pdma_init(pdev); 397 if (error) 398 return error; 399 400 error = pci_p2pdma_setup_pool(pdev); 401 if (error) 402 return error; 403 404 mem = pcim_p2pdma_provider(pdev, bar); 405 /* 406 * We checked validity of BAR prior to call 407 * to pcim_p2pdma_provider. It should never return NULL. 408 */ 409 if (WARN_ON(!mem)) 410 return -EINVAL; 411 412 p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL); 413 if (!p2p_pgmap) 414 return -ENOMEM; 415 416 pgmap = &p2p_pgmap->pgmap; 417 pgmap->range.start = pci_resource_start(pdev, bar) + offset; 418 pgmap->range.end = pgmap->range.start + size - 1; 419 pgmap->nr_range = 1; 420 pgmap->type = MEMORY_DEVICE_PCI_P2PDMA; 421 pgmap->ops = &p2pdma_pgmap_ops; 422 p2p_pgmap->mem = mem; 423 424 addr = devm_memremap_pages(&pdev->dev, pgmap); 425 if (IS_ERR(addr)) { 426 error = PTR_ERR(addr); 427 goto pgmap_free; 428 } 429 430 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_unmap_mappings, 431 p2p_pgmap); 432 if (error) 433 goto pages_free; 434 435 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 436 error = gen_pool_add_owner(p2pdma->pool, (unsigned long)addr, 437 pci_bus_address(pdev, bar) + offset, 438 range_len(&pgmap->range), dev_to_node(&pdev->dev), 439 &pgmap->ref); 440 if (error) 441 goto pages_free; 442 443 pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n", 444 pgmap->range.start, pgmap->range.end); 445 446 return 0; 447 448 pages_free: 449 devm_memunmap_pages(&pdev->dev, pgmap); 450 pgmap_free: 451 devm_kfree(&pdev->dev, p2p_pgmap); 452 return error; 453 } 454 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource); 455 456 /* 457 * Note this function returns the parent PCI device with a 458 * reference taken. It is the caller's responsibility to drop 459 * the reference. 460 */ 461 static struct pci_dev *find_parent_pci_dev(struct device *dev) 462 { 463 struct device *parent; 464 465 dev = get_device(dev); 466 467 while (dev) { 468 if (dev_is_pci(dev)) 469 return to_pci_dev(dev); 470 471 parent = get_device(dev->parent); 472 put_device(dev); 473 dev = parent; 474 } 475 476 return NULL; 477 } 478 479 /* 480 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P 481 * TLPs upstream via ACS. Returns 1 if the packets will be redirected 482 * upstream, 0 otherwise. 483 */ 484 static int pci_bridge_has_acs_redir(struct pci_dev *pdev) 485 { 486 int pos; 487 u16 ctrl; 488 489 pos = pdev->acs_cap; 490 if (!pos) 491 return 0; 492 493 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 494 495 if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)) 496 return 1; 497 498 return 0; 499 } 500 501 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev) 502 { 503 if (!buf) 504 return; 505 506 seq_buf_printf(buf, "%s;", pci_name(pdev)); 507 } 508 509 static bool cpu_supports_p2pdma(void) 510 { 511 #ifdef CONFIG_X86 512 struct cpuinfo_x86 *c = &cpu_data(0); 513 514 /* Any AMD CPU whose family ID is Zen or newer supports p2pdma */ 515 if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17) 516 return true; 517 #endif 518 519 return false; 520 } 521 522 static const struct pci_p2pdma_whitelist_entry { 523 unsigned short vendor; 524 unsigned short device; 525 enum { 526 REQ_SAME_HOST_BRIDGE = 1 << 0, 527 } flags; 528 } pci_p2pdma_whitelist[] = { 529 /* Intel Xeon E5/Core i7 */ 530 {PCI_VENDOR_ID_INTEL, 0x3c00, REQ_SAME_HOST_BRIDGE}, 531 {PCI_VENDOR_ID_INTEL, 0x3c01, REQ_SAME_HOST_BRIDGE}, 532 /* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */ 533 {PCI_VENDOR_ID_INTEL, 0x2f00, REQ_SAME_HOST_BRIDGE}, 534 {PCI_VENDOR_ID_INTEL, 0x2f01, REQ_SAME_HOST_BRIDGE}, 535 /* Intel Skylake-E */ 536 {PCI_VENDOR_ID_INTEL, 0x2030, 0}, 537 {PCI_VENDOR_ID_INTEL, 0x2031, 0}, 538 {PCI_VENDOR_ID_INTEL, 0x2032, 0}, 539 {PCI_VENDOR_ID_INTEL, 0x2033, 0}, 540 {PCI_VENDOR_ID_INTEL, 0x2020, 0}, 541 {PCI_VENDOR_ID_INTEL, 0x09a2, 0}, 542 {} 543 }; 544 545 /* 546 * If the first device on host's root bus is either devfn 00.0 or a PCIe 547 * Root Port, return it. Otherwise return NULL. 548 * 549 * We often use a devfn 00.0 "host bridge" in the pci_p2pdma_whitelist[] 550 * (though there is no PCI/PCIe requirement for such a device). On some 551 * platforms, e.g., Intel Skylake, there is no such host bridge device, and 552 * pci_p2pdma_whitelist[] may contain a Root Port at any devfn. 553 * 554 * This function is similar to pci_get_slot(host->bus, 0), but it does 555 * not take the pci_bus_sem lock since __host_bridge_whitelist() must not 556 * sleep. 557 * 558 * For this to be safe, the caller should hold a reference to a device on the 559 * bridge, which should ensure the host_bridge device will not be freed 560 * or removed from the head of the devices list. 561 */ 562 static struct pci_dev *pci_host_bridge_dev(struct pci_host_bridge *host) 563 { 564 struct pci_dev *root; 565 566 root = list_first_entry_or_null(&host->bus->devices, 567 struct pci_dev, bus_list); 568 569 if (!root) 570 return NULL; 571 572 if (root->devfn == PCI_DEVFN(0, 0)) 573 return root; 574 575 if (pci_pcie_type(root) == PCI_EXP_TYPE_ROOT_PORT) 576 return root; 577 578 return NULL; 579 } 580 581 static bool __host_bridge_whitelist(struct pci_host_bridge *host, 582 bool same_host_bridge, bool warn) 583 { 584 struct pci_dev *root = pci_host_bridge_dev(host); 585 const struct pci_p2pdma_whitelist_entry *entry; 586 unsigned short vendor, device; 587 588 if (!root) 589 return false; 590 591 vendor = root->vendor; 592 device = root->device; 593 594 for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) { 595 if (vendor != entry->vendor || device != entry->device) 596 continue; 597 if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge) 598 return false; 599 600 return true; 601 } 602 603 if (warn) 604 pci_warn(root, "Host bridge not in P2PDMA whitelist: %04x:%04x\n", 605 vendor, device); 606 607 return false; 608 } 609 610 /* 611 * If we can't find a common upstream bridge take a look at the root 612 * complex and compare it to a whitelist of known good hardware. 613 */ 614 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b, 615 bool warn) 616 { 617 struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus); 618 struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus); 619 620 if (host_a == host_b) 621 return __host_bridge_whitelist(host_a, true, warn); 622 623 if (__host_bridge_whitelist(host_a, false, warn) && 624 __host_bridge_whitelist(host_b, false, warn)) 625 return true; 626 627 return false; 628 } 629 630 static unsigned long map_types_idx(struct pci_dev *client) 631 { 632 return (pci_domain_nr(client->bus) << 16) | pci_dev_id(client); 633 } 634 635 /* 636 * Calculate the P2PDMA mapping type and distance between two PCI devices. 637 * 638 * If the two devices are the same PCI function, return 639 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 0. 640 * 641 * If they are two functions of the same device, return 642 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 2 (one hop up to the bridge, 643 * then one hop back down to another function of the same device). 644 * 645 * In the case where two devices are connected to the same PCIe switch, 646 * return a distance of 4. This corresponds to the following PCI tree: 647 * 648 * -+ Root Port 649 * \+ Switch Upstream Port 650 * +-+ Switch Downstream Port 0 651 * + \- Device A 652 * \-+ Switch Downstream Port 1 653 * \- Device B 654 * 655 * The distance is 4 because we traverse from Device A to Downstream Port 0 656 * to the common Switch Upstream Port, back down to Downstream Port 1 and 657 * then to Device B. The mapping type returned depends on the ACS 658 * redirection setting of the ports along the path. 659 * 660 * If ACS redirect is set on any port in the path, traffic between the 661 * devices will go through the host bridge, so return 662 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; otherwise return 663 * PCI_P2PDMA_MAP_BUS_ADDR. 664 * 665 * Any two devices that have a data path that goes through the host bridge 666 * will consult a whitelist. If the host bridge is in the whitelist, return 667 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE with the distance set to the number of 668 * ports per above. If the device is not in the whitelist, return 669 * PCI_P2PDMA_MAP_NOT_SUPPORTED. 670 */ 671 static enum pci_p2pdma_map_type 672 calc_map_type_and_dist(struct pci_dev *provider, struct pci_dev *client, 673 int *dist, bool verbose) 674 { 675 enum pci_p2pdma_map_type map_type = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; 676 struct pci_dev *a = provider, *b = client, *bb; 677 bool acs_redirects = false; 678 struct pci_p2pdma *p2pdma; 679 struct seq_buf acs_list; 680 int acs_cnt = 0; 681 int dist_a = 0; 682 int dist_b = 0; 683 char buf[128]; 684 685 seq_buf_init(&acs_list, buf, sizeof(buf)); 686 687 /* 688 * Note, we don't need to take references to devices returned by 689 * pci_upstream_bridge() seeing we hold a reference to a child 690 * device which will already hold a reference to the upstream bridge. 691 */ 692 while (a) { 693 dist_b = 0; 694 695 if (pci_bridge_has_acs_redir(a)) { 696 seq_buf_print_bus_devfn(&acs_list, a); 697 acs_cnt++; 698 } 699 700 bb = b; 701 702 while (bb) { 703 if (a == bb) 704 goto check_b_path_acs; 705 706 bb = pci_upstream_bridge(bb); 707 dist_b++; 708 } 709 710 a = pci_upstream_bridge(a); 711 dist_a++; 712 } 713 714 *dist = dist_a + dist_b; 715 goto map_through_host_bridge; 716 717 check_b_path_acs: 718 bb = b; 719 720 while (bb) { 721 if (a == bb) 722 break; 723 724 if (pci_bridge_has_acs_redir(bb)) { 725 seq_buf_print_bus_devfn(&acs_list, bb); 726 acs_cnt++; 727 } 728 729 bb = pci_upstream_bridge(bb); 730 } 731 732 *dist = dist_a + dist_b; 733 734 if (!acs_cnt) { 735 map_type = PCI_P2PDMA_MAP_BUS_ADDR; 736 goto done; 737 } 738 739 if (verbose) { 740 acs_list.buffer[acs_list.len-1] = 0; /* drop final semicolon */ 741 pci_warn(client, "ACS redirect is set between the client and provider (%s)\n", 742 pci_name(provider)); 743 pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n", 744 acs_list.buffer); 745 } 746 acs_redirects = true; 747 748 map_through_host_bridge: 749 if (!cpu_supports_p2pdma() && 750 !host_bridge_whitelist(provider, client, acs_redirects)) { 751 if (verbose) 752 pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n", 753 pci_name(provider)); 754 map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED; 755 } 756 done: 757 rcu_read_lock(); 758 p2pdma = rcu_dereference(provider->p2pdma); 759 if (p2pdma) 760 xa_store(&p2pdma->map_types, map_types_idx(client), 761 xa_mk_value(map_type), GFP_ATOMIC); 762 rcu_read_unlock(); 763 return map_type; 764 } 765 766 /** 767 * pci_p2pdma_distance_many - Determine the cumulative distance between 768 * a p2pdma provider and the clients in use. 769 * @provider: p2pdma provider to check against the client list 770 * @clients: array of devices to check (NULL-terminated) 771 * @num_clients: number of clients in the array 772 * @verbose: if true, print warnings for devices when we return -1 773 * 774 * Returns -1 if any of the clients are not compatible, otherwise returns a 775 * positive number where a lower number is the preferable choice. (If there's 776 * one client that's the same as the provider it will return 0, which is best 777 * choice). 778 * 779 * "compatible" means the provider and the clients are either all behind 780 * the same PCI root port or the host bridges connected to each of the devices 781 * are listed in the 'pci_p2pdma_whitelist'. 782 */ 783 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients, 784 int num_clients, bool verbose) 785 { 786 enum pci_p2pdma_map_type map; 787 bool not_supported = false; 788 struct pci_dev *pci_client; 789 int total_dist = 0; 790 int i, distance; 791 792 if (num_clients == 0) 793 return -1; 794 795 for (i = 0; i < num_clients; i++) { 796 pci_client = find_parent_pci_dev(clients[i]); 797 if (!pci_client) { 798 if (verbose) 799 dev_warn(clients[i], 800 "cannot be used for peer-to-peer DMA as it is not a PCI device\n"); 801 return -1; 802 } 803 804 map = calc_map_type_and_dist(provider, pci_client, &distance, 805 verbose); 806 807 pci_dev_put(pci_client); 808 809 if (map == PCI_P2PDMA_MAP_NOT_SUPPORTED) 810 not_supported = true; 811 812 if (not_supported && !verbose) 813 break; 814 815 total_dist += distance; 816 } 817 818 if (not_supported) 819 return -1; 820 821 return total_dist; 822 } 823 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many); 824 825 /** 826 * pci_has_p2pmem - check if a given PCI device has published any p2pmem 827 * @pdev: PCI device to check 828 */ 829 static bool pci_has_p2pmem(struct pci_dev *pdev) 830 { 831 struct pci_p2pdma *p2pdma; 832 bool res; 833 834 rcu_read_lock(); 835 p2pdma = rcu_dereference(pdev->p2pdma); 836 res = p2pdma && p2pdma->p2pmem_published; 837 rcu_read_unlock(); 838 839 return res; 840 } 841 842 /** 843 * pci_p2pmem_find_many - find a peer-to-peer DMA memory device compatible with 844 * the specified list of clients and shortest distance 845 * @clients: array of devices to check (NULL-terminated) 846 * @num_clients: number of client devices in the list 847 * 848 * If multiple devices are behind the same switch, the one "closest" to the 849 * client devices in use will be chosen first. (So if one of the providers is 850 * the same as one of the clients, that provider will be used ahead of any 851 * other providers that are unrelated). If multiple providers are an equal 852 * distance away, one will be chosen at random. 853 * 854 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put 855 * to return the reference) or NULL if no compatible device is found. The 856 * found provider will also be assigned to the client list. 857 */ 858 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients) 859 { 860 struct pci_dev *pdev = NULL; 861 int distance; 862 int closest_distance = INT_MAX; 863 struct pci_dev **closest_pdevs; 864 int dev_cnt = 0; 865 const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs); 866 int i; 867 868 closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL); 869 if (!closest_pdevs) 870 return NULL; 871 872 for_each_pci_dev(pdev) { 873 if (!pci_has_p2pmem(pdev)) 874 continue; 875 876 distance = pci_p2pdma_distance_many(pdev, clients, 877 num_clients, false); 878 if (distance < 0 || distance > closest_distance) 879 continue; 880 881 if (distance == closest_distance && dev_cnt >= max_devs) 882 continue; 883 884 if (distance < closest_distance) { 885 for (i = 0; i < dev_cnt; i++) 886 pci_dev_put(closest_pdevs[i]); 887 888 dev_cnt = 0; 889 closest_distance = distance; 890 } 891 892 closest_pdevs[dev_cnt++] = pci_dev_get(pdev); 893 } 894 895 if (dev_cnt) 896 pdev = pci_dev_get(closest_pdevs[get_random_u32_below(dev_cnt)]); 897 898 for (i = 0; i < dev_cnt; i++) 899 pci_dev_put(closest_pdevs[i]); 900 901 kfree(closest_pdevs); 902 return pdev; 903 } 904 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many); 905 906 /** 907 * pci_alloc_p2pmem - allocate peer-to-peer DMA memory 908 * @pdev: the device to allocate memory from 909 * @size: number of bytes to allocate 910 * 911 * Returns the allocated memory or NULL on error. 912 */ 913 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size) 914 { 915 void *ret = NULL; 916 struct percpu_ref *ref; 917 struct pci_p2pdma *p2pdma; 918 919 /* 920 * Pairs with synchronize_rcu() in pci_p2pdma_release() to 921 * ensure pdev->p2pdma is non-NULL for the duration of the 922 * read-lock. 923 */ 924 rcu_read_lock(); 925 p2pdma = rcu_dereference(pdev->p2pdma); 926 if (unlikely(!p2pdma)) 927 goto out; 928 929 ret = (void *)gen_pool_alloc_owner(p2pdma->pool, size, (void **) &ref); 930 if (!ret) 931 goto out; 932 933 if (unlikely(!percpu_ref_tryget_live_rcu(ref))) { 934 gen_pool_free(p2pdma->pool, (unsigned long) ret, size); 935 ret = NULL; 936 } 937 out: 938 rcu_read_unlock(); 939 return ret; 940 } 941 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem); 942 943 /** 944 * pci_free_p2pmem - free peer-to-peer DMA memory 945 * @pdev: the device the memory was allocated from 946 * @addr: address of the memory that was allocated 947 * @size: number of bytes that were allocated 948 */ 949 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size) 950 { 951 struct percpu_ref *ref; 952 struct pci_p2pdma *p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 953 954 gen_pool_free_owner(p2pdma->pool, (uintptr_t)addr, size, 955 (void **) &ref); 956 percpu_ref_put(ref); 957 } 958 EXPORT_SYMBOL_GPL(pci_free_p2pmem); 959 960 /** 961 * pci_p2pmem_virt_to_bus - return the PCI bus address for a given virtual 962 * address obtained with pci_alloc_p2pmem() 963 * @pdev: the device the memory was allocated from 964 * @addr: address of the memory that was allocated 965 */ 966 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr) 967 { 968 struct pci_p2pdma *p2pdma; 969 970 if (!addr) 971 return 0; 972 973 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 974 if (!p2pdma) 975 return 0; 976 977 /* 978 * Note: when we added the memory to the pool we used the PCI 979 * bus address as the physical address. So gen_pool_virt_to_phys() 980 * actually returns the bus address despite the misleading name. 981 */ 982 return gen_pool_virt_to_phys(p2pdma->pool, (unsigned long)addr); 983 } 984 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus); 985 986 /** 987 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist 988 * @pdev: the device to allocate memory from 989 * @nents: the number of SG entries in the list 990 * @length: number of bytes to allocate 991 * 992 * Return: %NULL on error or &struct scatterlist pointer and @nents on success 993 */ 994 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev, 995 unsigned int *nents, u32 length) 996 { 997 struct scatterlist *sg; 998 void *addr; 999 1000 sg = kmalloc(sizeof(*sg), GFP_KERNEL); 1001 if (!sg) 1002 return NULL; 1003 1004 sg_init_table(sg, 1); 1005 1006 addr = pci_alloc_p2pmem(pdev, length); 1007 if (!addr) 1008 goto out_free_sg; 1009 1010 sg_set_buf(sg, addr, length); 1011 *nents = 1; 1012 return sg; 1013 1014 out_free_sg: 1015 kfree(sg); 1016 return NULL; 1017 } 1018 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl); 1019 1020 /** 1021 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl() 1022 * @pdev: the device to allocate memory from 1023 * @sgl: the allocated scatterlist 1024 */ 1025 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl) 1026 { 1027 struct scatterlist *sg; 1028 int count; 1029 1030 for_each_sg(sgl, sg, INT_MAX, count) { 1031 if (!sg) 1032 break; 1033 1034 pci_free_p2pmem(pdev, sg_virt(sg), sg->length); 1035 } 1036 kfree(sgl); 1037 } 1038 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl); 1039 1040 /** 1041 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by 1042 * other devices with pci_p2pmem_find() 1043 * @pdev: the device with peer-to-peer DMA memory to publish 1044 * @publish: set to true to publish the memory, false to unpublish it 1045 * 1046 * Published memory can be used by other PCI device drivers for 1047 * peer-2-peer DMA operations. Non-published memory is reserved for 1048 * exclusive use of the device driver that registers the peer-to-peer 1049 * memory. 1050 */ 1051 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish) 1052 { 1053 struct pci_p2pdma *p2pdma; 1054 1055 rcu_read_lock(); 1056 p2pdma = rcu_dereference(pdev->p2pdma); 1057 if (p2pdma) 1058 p2pdma->p2pmem_published = publish; 1059 rcu_read_unlock(); 1060 } 1061 EXPORT_SYMBOL_GPL(pci_p2pmem_publish); 1062 1063 /** 1064 * pci_p2pdma_map_type - Determine the mapping type for P2PDMA transfers 1065 * @provider: P2PDMA provider structure 1066 * @dev: Target device for the transfer 1067 * 1068 * Determines how peer-to-peer DMA transfers should be mapped between 1069 * the provider and the target device. The mapping type indicates whether 1070 * the transfer can be done directly through PCI switches or must go 1071 * through the host bridge. 1072 */ 1073 enum pci_p2pdma_map_type pci_p2pdma_map_type(struct p2pdma_provider *provider, 1074 struct device *dev) 1075 { 1076 enum pci_p2pdma_map_type type = PCI_P2PDMA_MAP_NOT_SUPPORTED; 1077 struct pci_dev *pdev = to_pci_dev(provider->owner); 1078 struct pci_dev *client; 1079 struct pci_p2pdma *p2pdma; 1080 int dist; 1081 1082 if (!pdev->p2pdma) 1083 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 1084 1085 if (!dev_is_pci(dev)) 1086 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 1087 1088 client = to_pci_dev(dev); 1089 1090 rcu_read_lock(); 1091 p2pdma = rcu_dereference(pdev->p2pdma); 1092 1093 if (p2pdma) 1094 type = xa_to_value(xa_load(&p2pdma->map_types, 1095 map_types_idx(client))); 1096 rcu_read_unlock(); 1097 1098 if (type == PCI_P2PDMA_MAP_UNKNOWN) 1099 return calc_map_type_and_dist(pdev, client, &dist, true); 1100 1101 return type; 1102 } 1103 1104 void __pci_p2pdma_update_state(struct pci_p2pdma_map_state *state, 1105 struct device *dev, struct page *page) 1106 { 1107 struct pci_p2pdma_pagemap *p2p_pgmap = to_p2p_pgmap(page_pgmap(page)); 1108 1109 if (state->mem == p2p_pgmap->mem) 1110 return; 1111 1112 state->mem = p2p_pgmap->mem; 1113 state->map = pci_p2pdma_map_type(p2p_pgmap->mem, dev); 1114 } 1115 1116 /** 1117 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store 1118 * to enable p2pdma 1119 * @page: contents of the value to be stored 1120 * @p2p_dev: returns the PCI device that was selected to be used 1121 * (if one was specified in the stored value) 1122 * @use_p2pdma: returns whether to enable p2pdma or not 1123 * 1124 * Parses an attribute value to decide whether to enable p2pdma. 1125 * The value can select a PCI device (using its full BDF device 1126 * name) or a boolean (in any format kstrtobool() accepts). A false 1127 * value disables p2pdma, a true value expects the caller 1128 * to automatically find a compatible device and specifying a PCI device 1129 * expects the caller to use the specific provider. 1130 * 1131 * pci_p2pdma_enable_show() should be used as the show operation for 1132 * the attribute. 1133 * 1134 * Returns 0 on success 1135 */ 1136 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev, 1137 bool *use_p2pdma) 1138 { 1139 struct device *dev; 1140 1141 dev = bus_find_device_by_name(&pci_bus_type, NULL, page); 1142 if (dev) { 1143 *use_p2pdma = true; 1144 *p2p_dev = to_pci_dev(dev); 1145 1146 if (!pci_has_p2pmem(*p2p_dev)) { 1147 pci_err(*p2p_dev, 1148 "PCI device has no peer-to-peer memory: %s\n", 1149 page); 1150 pci_dev_put(*p2p_dev); 1151 return -ENODEV; 1152 } 1153 1154 return 0; 1155 } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) { 1156 /* 1157 * If the user enters a PCI device that doesn't exist 1158 * like "0000:01:00.1", we don't want kstrtobool to think 1159 * it's a '0' when it's clearly not what the user wanted. 1160 * So we require 0's and 1's to be exactly one character. 1161 */ 1162 } else if (!kstrtobool(page, use_p2pdma)) { 1163 return 0; 1164 } 1165 1166 pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page); 1167 return -ENODEV; 1168 } 1169 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store); 1170 1171 /** 1172 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating 1173 * whether p2pdma is enabled 1174 * @page: contents of the stored value 1175 * @p2p_dev: the selected p2p device (NULL if no device is selected) 1176 * @use_p2pdma: whether p2pdma has been enabled 1177 * 1178 * Attributes that use pci_p2pdma_enable_store() should use this function 1179 * to show the value of the attribute. 1180 * 1181 * Returns 0 on success 1182 */ 1183 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev, 1184 bool use_p2pdma) 1185 { 1186 if (!use_p2pdma) 1187 return sprintf(page, "0\n"); 1188 1189 if (!p2p_dev) 1190 return sprintf(page, "1\n"); 1191 1192 return sprintf(page, "%s\n", pci_name(p2p_dev)); 1193 } 1194 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show); 1195