xref: /linux/drivers/pci/p2pdma.c (revision 3f0a50f345f78183f6e9b39c2f45ca5dcaa511ca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Peer 2 Peer DMA support.
4  *
5  * Copyright (c) 2016-2018, Logan Gunthorpe
6  * Copyright (c) 2016-2017, Microsemi Corporation
7  * Copyright (c) 2017, Christoph Hellwig
8  * Copyright (c) 2018, Eideticom Inc.
9  */
10 
11 #define pr_fmt(fmt) "pci-p2pdma: " fmt
12 #include <linux/ctype.h>
13 #include <linux/pci-p2pdma.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/genalloc.h>
17 #include <linux/memremap.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/random.h>
20 #include <linux/seq_buf.h>
21 #include <linux/xarray.h>
22 
23 enum pci_p2pdma_map_type {
24 	PCI_P2PDMA_MAP_UNKNOWN = 0,
25 	PCI_P2PDMA_MAP_NOT_SUPPORTED,
26 	PCI_P2PDMA_MAP_BUS_ADDR,
27 	PCI_P2PDMA_MAP_THRU_HOST_BRIDGE,
28 };
29 
30 struct pci_p2pdma {
31 	struct gen_pool *pool;
32 	bool p2pmem_published;
33 	struct xarray map_types;
34 };
35 
36 struct pci_p2pdma_pagemap {
37 	struct dev_pagemap pgmap;
38 	struct pci_dev *provider;
39 	u64 bus_offset;
40 };
41 
42 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap)
43 {
44 	return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap);
45 }
46 
47 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
48 			 char *buf)
49 {
50 	struct pci_dev *pdev = to_pci_dev(dev);
51 	struct pci_p2pdma *p2pdma;
52 	size_t size = 0;
53 
54 	rcu_read_lock();
55 	p2pdma = rcu_dereference(pdev->p2pdma);
56 	if (p2pdma && p2pdma->pool)
57 		size = gen_pool_size(p2pdma->pool);
58 	rcu_read_unlock();
59 
60 	return sysfs_emit(buf, "%zd\n", size);
61 }
62 static DEVICE_ATTR_RO(size);
63 
64 static ssize_t available_show(struct device *dev, struct device_attribute *attr,
65 			      char *buf)
66 {
67 	struct pci_dev *pdev = to_pci_dev(dev);
68 	struct pci_p2pdma *p2pdma;
69 	size_t avail = 0;
70 
71 	rcu_read_lock();
72 	p2pdma = rcu_dereference(pdev->p2pdma);
73 	if (p2pdma && p2pdma->pool)
74 		avail = gen_pool_avail(p2pdma->pool);
75 	rcu_read_unlock();
76 
77 	return sysfs_emit(buf, "%zd\n", avail);
78 }
79 static DEVICE_ATTR_RO(available);
80 
81 static ssize_t published_show(struct device *dev, struct device_attribute *attr,
82 			      char *buf)
83 {
84 	struct pci_dev *pdev = to_pci_dev(dev);
85 	struct pci_p2pdma *p2pdma;
86 	bool published = false;
87 
88 	rcu_read_lock();
89 	p2pdma = rcu_dereference(pdev->p2pdma);
90 	if (p2pdma)
91 		published = p2pdma->p2pmem_published;
92 	rcu_read_unlock();
93 
94 	return sysfs_emit(buf, "%d\n", published);
95 }
96 static DEVICE_ATTR_RO(published);
97 
98 static struct attribute *p2pmem_attrs[] = {
99 	&dev_attr_size.attr,
100 	&dev_attr_available.attr,
101 	&dev_attr_published.attr,
102 	NULL,
103 };
104 
105 static const struct attribute_group p2pmem_group = {
106 	.attrs = p2pmem_attrs,
107 	.name = "p2pmem",
108 };
109 
110 static void pci_p2pdma_release(void *data)
111 {
112 	struct pci_dev *pdev = data;
113 	struct pci_p2pdma *p2pdma;
114 
115 	p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
116 	if (!p2pdma)
117 		return;
118 
119 	/* Flush and disable pci_alloc_p2p_mem() */
120 	pdev->p2pdma = NULL;
121 	synchronize_rcu();
122 
123 	gen_pool_destroy(p2pdma->pool);
124 	sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
125 	xa_destroy(&p2pdma->map_types);
126 }
127 
128 static int pci_p2pdma_setup(struct pci_dev *pdev)
129 {
130 	int error = -ENOMEM;
131 	struct pci_p2pdma *p2p;
132 
133 	p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
134 	if (!p2p)
135 		return -ENOMEM;
136 
137 	xa_init(&p2p->map_types);
138 
139 	p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
140 	if (!p2p->pool)
141 		goto out;
142 
143 	error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
144 	if (error)
145 		goto out_pool_destroy;
146 
147 	error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
148 	if (error)
149 		goto out_pool_destroy;
150 
151 	rcu_assign_pointer(pdev->p2pdma, p2p);
152 	return 0;
153 
154 out_pool_destroy:
155 	gen_pool_destroy(p2p->pool);
156 out:
157 	devm_kfree(&pdev->dev, p2p);
158 	return error;
159 }
160 
161 /**
162  * pci_p2pdma_add_resource - add memory for use as p2p memory
163  * @pdev: the device to add the memory to
164  * @bar: PCI BAR to add
165  * @size: size of the memory to add, may be zero to use the whole BAR
166  * @offset: offset into the PCI BAR
167  *
168  * The memory will be given ZONE_DEVICE struct pages so that it may
169  * be used with any DMA request.
170  */
171 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
172 			    u64 offset)
173 {
174 	struct pci_p2pdma_pagemap *p2p_pgmap;
175 	struct dev_pagemap *pgmap;
176 	struct pci_p2pdma *p2pdma;
177 	void *addr;
178 	int error;
179 
180 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
181 		return -EINVAL;
182 
183 	if (offset >= pci_resource_len(pdev, bar))
184 		return -EINVAL;
185 
186 	if (!size)
187 		size = pci_resource_len(pdev, bar) - offset;
188 
189 	if (size + offset > pci_resource_len(pdev, bar))
190 		return -EINVAL;
191 
192 	if (!pdev->p2pdma) {
193 		error = pci_p2pdma_setup(pdev);
194 		if (error)
195 			return error;
196 	}
197 
198 	p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL);
199 	if (!p2p_pgmap)
200 		return -ENOMEM;
201 
202 	pgmap = &p2p_pgmap->pgmap;
203 	pgmap->range.start = pci_resource_start(pdev, bar) + offset;
204 	pgmap->range.end = pgmap->range.start + size - 1;
205 	pgmap->nr_range = 1;
206 	pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
207 
208 	p2p_pgmap->provider = pdev;
209 	p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) -
210 		pci_resource_start(pdev, bar);
211 
212 	addr = devm_memremap_pages(&pdev->dev, pgmap);
213 	if (IS_ERR(addr)) {
214 		error = PTR_ERR(addr);
215 		goto pgmap_free;
216 	}
217 
218 	p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
219 	error = gen_pool_add_owner(p2pdma->pool, (unsigned long)addr,
220 			pci_bus_address(pdev, bar) + offset,
221 			range_len(&pgmap->range), dev_to_node(&pdev->dev),
222 			&pgmap->ref);
223 	if (error)
224 		goto pages_free;
225 
226 	pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n",
227 		 pgmap->range.start, pgmap->range.end);
228 
229 	return 0;
230 
231 pages_free:
232 	devm_memunmap_pages(&pdev->dev, pgmap);
233 pgmap_free:
234 	devm_kfree(&pdev->dev, pgmap);
235 	return error;
236 }
237 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
238 
239 /*
240  * Note this function returns the parent PCI device with a
241  * reference taken. It is the caller's responsibility to drop
242  * the reference.
243  */
244 static struct pci_dev *find_parent_pci_dev(struct device *dev)
245 {
246 	struct device *parent;
247 
248 	dev = get_device(dev);
249 
250 	while (dev) {
251 		if (dev_is_pci(dev))
252 			return to_pci_dev(dev);
253 
254 		parent = get_device(dev->parent);
255 		put_device(dev);
256 		dev = parent;
257 	}
258 
259 	return NULL;
260 }
261 
262 /*
263  * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
264  * TLPs upstream via ACS. Returns 1 if the packets will be redirected
265  * upstream, 0 otherwise.
266  */
267 static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
268 {
269 	int pos;
270 	u16 ctrl;
271 
272 	pos = pdev->acs_cap;
273 	if (!pos)
274 		return 0;
275 
276 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
277 
278 	if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
279 		return 1;
280 
281 	return 0;
282 }
283 
284 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
285 {
286 	if (!buf)
287 		return;
288 
289 	seq_buf_printf(buf, "%s;", pci_name(pdev));
290 }
291 
292 static bool cpu_supports_p2pdma(void)
293 {
294 #ifdef CONFIG_X86
295 	struct cpuinfo_x86 *c = &cpu_data(0);
296 
297 	/* Any AMD CPU whose family ID is Zen or newer supports p2pdma */
298 	if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17)
299 		return true;
300 #endif
301 
302 	return false;
303 }
304 
305 static const struct pci_p2pdma_whitelist_entry {
306 	unsigned short vendor;
307 	unsigned short device;
308 	enum {
309 		REQ_SAME_HOST_BRIDGE	= 1 << 0,
310 	} flags;
311 } pci_p2pdma_whitelist[] = {
312 	/* Intel Xeon E5/Core i7 */
313 	{PCI_VENDOR_ID_INTEL,	0x3c00, REQ_SAME_HOST_BRIDGE},
314 	{PCI_VENDOR_ID_INTEL,	0x3c01, REQ_SAME_HOST_BRIDGE},
315 	/* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */
316 	{PCI_VENDOR_ID_INTEL,	0x2f00, REQ_SAME_HOST_BRIDGE},
317 	{PCI_VENDOR_ID_INTEL,	0x2f01, REQ_SAME_HOST_BRIDGE},
318 	/* Intel SkyLake-E */
319 	{PCI_VENDOR_ID_INTEL,	0x2030, 0},
320 	{PCI_VENDOR_ID_INTEL,	0x2031, 0},
321 	{PCI_VENDOR_ID_INTEL,	0x2032, 0},
322 	{PCI_VENDOR_ID_INTEL,	0x2033, 0},
323 	{PCI_VENDOR_ID_INTEL,	0x2020, 0},
324 	{PCI_VENDOR_ID_INTEL,	0x09a2, 0},
325 	{}
326 };
327 
328 /*
329  * This lookup function tries to find the PCI device corresponding to a given
330  * host bridge.
331  *
332  * It assumes the host bridge device is the first PCI device in the
333  * bus->devices list and that the devfn is 00.0. These assumptions should hold
334  * for all the devices in the whitelist above.
335  *
336  * This function is equivalent to pci_get_slot(host->bus, 0), however it does
337  * not take the pci_bus_sem lock seeing __host_bridge_whitelist() must not
338  * sleep.
339  *
340  * For this to be safe, the caller should hold a reference to a device on the
341  * bridge, which should ensure the host_bridge device will not be freed
342  * or removed from the head of the devices list.
343  */
344 static struct pci_dev *pci_host_bridge_dev(struct pci_host_bridge *host)
345 {
346 	struct pci_dev *root;
347 
348 	root = list_first_entry_or_null(&host->bus->devices,
349 					struct pci_dev, bus_list);
350 
351 	if (!root)
352 		return NULL;
353 	if (root->devfn != PCI_DEVFN(0, 0))
354 		return NULL;
355 
356 	return root;
357 }
358 
359 static bool __host_bridge_whitelist(struct pci_host_bridge *host,
360 				    bool same_host_bridge, bool warn)
361 {
362 	struct pci_dev *root = pci_host_bridge_dev(host);
363 	const struct pci_p2pdma_whitelist_entry *entry;
364 	unsigned short vendor, device;
365 
366 	if (!root)
367 		return false;
368 
369 	vendor = root->vendor;
370 	device = root->device;
371 
372 	for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) {
373 		if (vendor != entry->vendor || device != entry->device)
374 			continue;
375 		if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge)
376 			return false;
377 
378 		return true;
379 	}
380 
381 	if (warn)
382 		pci_warn(root, "Host bridge not in P2PDMA whitelist: %04x:%04x\n",
383 			 vendor, device);
384 
385 	return false;
386 }
387 
388 /*
389  * If we can't find a common upstream bridge take a look at the root
390  * complex and compare it to a whitelist of known good hardware.
391  */
392 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b,
393 				  bool warn)
394 {
395 	struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus);
396 	struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus);
397 
398 	if (host_a == host_b)
399 		return __host_bridge_whitelist(host_a, true, warn);
400 
401 	if (__host_bridge_whitelist(host_a, false, warn) &&
402 	    __host_bridge_whitelist(host_b, false, warn))
403 		return true;
404 
405 	return false;
406 }
407 
408 static unsigned long map_types_idx(struct pci_dev *client)
409 {
410 	return (pci_domain_nr(client->bus) << 16) |
411 		(client->bus->number << 8) | client->devfn;
412 }
413 
414 /*
415  * Calculate the P2PDMA mapping type and distance between two PCI devices.
416  *
417  * If the two devices are the same PCI function, return
418  * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 0.
419  *
420  * If they are two functions of the same device, return
421  * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 2 (one hop up to the bridge,
422  * then one hop back down to another function of the same device).
423  *
424  * In the case where two devices are connected to the same PCIe switch,
425  * return a distance of 4. This corresponds to the following PCI tree:
426  *
427  *     -+  Root Port
428  *      \+ Switch Upstream Port
429  *       +-+ Switch Downstream Port 0
430  *       + \- Device A
431  *       \-+ Switch Downstream Port 1
432  *         \- Device B
433  *
434  * The distance is 4 because we traverse from Device A to Downstream Port 0
435  * to the common Switch Upstream Port, back down to Downstream Port 1 and
436  * then to Device B. The mapping type returned depends on the ACS
437  * redirection setting of the ports along the path.
438  *
439  * If ACS redirect is set on any port in the path, traffic between the
440  * devices will go through the host bridge, so return
441  * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; otherwise return
442  * PCI_P2PDMA_MAP_BUS_ADDR.
443  *
444  * Any two devices that have a data path that goes through the host bridge
445  * will consult a whitelist. If the host bridge is in the whitelist, return
446  * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE with the distance set to the number of
447  * ports per above. If the device is not in the whitelist, return
448  * PCI_P2PDMA_MAP_NOT_SUPPORTED.
449  */
450 static enum pci_p2pdma_map_type
451 calc_map_type_and_dist(struct pci_dev *provider, struct pci_dev *client,
452 		int *dist, bool verbose)
453 {
454 	enum pci_p2pdma_map_type map_type = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
455 	struct pci_dev *a = provider, *b = client, *bb;
456 	bool acs_redirects = false;
457 	struct pci_p2pdma *p2pdma;
458 	struct seq_buf acs_list;
459 	int acs_cnt = 0;
460 	int dist_a = 0;
461 	int dist_b = 0;
462 	char buf[128];
463 
464 	seq_buf_init(&acs_list, buf, sizeof(buf));
465 
466 	/*
467 	 * Note, we don't need to take references to devices returned by
468 	 * pci_upstream_bridge() seeing we hold a reference to a child
469 	 * device which will already hold a reference to the upstream bridge.
470 	 */
471 	while (a) {
472 		dist_b = 0;
473 
474 		if (pci_bridge_has_acs_redir(a)) {
475 			seq_buf_print_bus_devfn(&acs_list, a);
476 			acs_cnt++;
477 		}
478 
479 		bb = b;
480 
481 		while (bb) {
482 			if (a == bb)
483 				goto check_b_path_acs;
484 
485 			bb = pci_upstream_bridge(bb);
486 			dist_b++;
487 		}
488 
489 		a = pci_upstream_bridge(a);
490 		dist_a++;
491 	}
492 
493 	*dist = dist_a + dist_b;
494 	goto map_through_host_bridge;
495 
496 check_b_path_acs:
497 	bb = b;
498 
499 	while (bb) {
500 		if (a == bb)
501 			break;
502 
503 		if (pci_bridge_has_acs_redir(bb)) {
504 			seq_buf_print_bus_devfn(&acs_list, bb);
505 			acs_cnt++;
506 		}
507 
508 		bb = pci_upstream_bridge(bb);
509 	}
510 
511 	*dist = dist_a + dist_b;
512 
513 	if (!acs_cnt) {
514 		map_type = PCI_P2PDMA_MAP_BUS_ADDR;
515 		goto done;
516 	}
517 
518 	if (verbose) {
519 		acs_list.buffer[acs_list.len-1] = 0; /* drop final semicolon */
520 		pci_warn(client, "ACS redirect is set between the client and provider (%s)\n",
521 			 pci_name(provider));
522 		pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
523 			 acs_list.buffer);
524 	}
525 	acs_redirects = true;
526 
527 map_through_host_bridge:
528 	if (!cpu_supports_p2pdma() &&
529 	    !host_bridge_whitelist(provider, client, acs_redirects)) {
530 		if (verbose)
531 			pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n",
532 				 pci_name(provider));
533 		map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
534 	}
535 done:
536 	rcu_read_lock();
537 	p2pdma = rcu_dereference(provider->p2pdma);
538 	if (p2pdma)
539 		xa_store(&p2pdma->map_types, map_types_idx(client),
540 			 xa_mk_value(map_type), GFP_KERNEL);
541 	rcu_read_unlock();
542 	return map_type;
543 }
544 
545 /**
546  * pci_p2pdma_distance_many - Determine the cumulative distance between
547  *	a p2pdma provider and the clients in use.
548  * @provider: p2pdma provider to check against the client list
549  * @clients: array of devices to check (NULL-terminated)
550  * @num_clients: number of clients in the array
551  * @verbose: if true, print warnings for devices when we return -1
552  *
553  * Returns -1 if any of the clients are not compatible, otherwise returns a
554  * positive number where a lower number is the preferable choice. (If there's
555  * one client that's the same as the provider it will return 0, which is best
556  * choice).
557  *
558  * "compatible" means the provider and the clients are either all behind
559  * the same PCI root port or the host bridges connected to each of the devices
560  * are listed in the 'pci_p2pdma_whitelist'.
561  */
562 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
563 			     int num_clients, bool verbose)
564 {
565 	enum pci_p2pdma_map_type map;
566 	bool not_supported = false;
567 	struct pci_dev *pci_client;
568 	int total_dist = 0;
569 	int i, distance;
570 
571 	if (num_clients == 0)
572 		return -1;
573 
574 	for (i = 0; i < num_clients; i++) {
575 		pci_client = find_parent_pci_dev(clients[i]);
576 		if (!pci_client) {
577 			if (verbose)
578 				dev_warn(clients[i],
579 					 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
580 			return -1;
581 		}
582 
583 		map = calc_map_type_and_dist(provider, pci_client, &distance,
584 					     verbose);
585 
586 		pci_dev_put(pci_client);
587 
588 		if (map == PCI_P2PDMA_MAP_NOT_SUPPORTED)
589 			not_supported = true;
590 
591 		if (not_supported && !verbose)
592 			break;
593 
594 		total_dist += distance;
595 	}
596 
597 	if (not_supported)
598 		return -1;
599 
600 	return total_dist;
601 }
602 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
603 
604 /**
605  * pci_has_p2pmem - check if a given PCI device has published any p2pmem
606  * @pdev: PCI device to check
607  */
608 bool pci_has_p2pmem(struct pci_dev *pdev)
609 {
610 	struct pci_p2pdma *p2pdma;
611 	bool res;
612 
613 	rcu_read_lock();
614 	p2pdma = rcu_dereference(pdev->p2pdma);
615 	res = p2pdma && p2pdma->p2pmem_published;
616 	rcu_read_unlock();
617 
618 	return res;
619 }
620 EXPORT_SYMBOL_GPL(pci_has_p2pmem);
621 
622 /**
623  * pci_p2pmem_find_many - find a peer-to-peer DMA memory device compatible with
624  *	the specified list of clients and shortest distance (as determined
625  *	by pci_p2pmem_dma())
626  * @clients: array of devices to check (NULL-terminated)
627  * @num_clients: number of client devices in the list
628  *
629  * If multiple devices are behind the same switch, the one "closest" to the
630  * client devices in use will be chosen first. (So if one of the providers is
631  * the same as one of the clients, that provider will be used ahead of any
632  * other providers that are unrelated). If multiple providers are an equal
633  * distance away, one will be chosen at random.
634  *
635  * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
636  * to return the reference) or NULL if no compatible device is found. The
637  * found provider will also be assigned to the client list.
638  */
639 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
640 {
641 	struct pci_dev *pdev = NULL;
642 	int distance;
643 	int closest_distance = INT_MAX;
644 	struct pci_dev **closest_pdevs;
645 	int dev_cnt = 0;
646 	const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
647 	int i;
648 
649 	closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
650 	if (!closest_pdevs)
651 		return NULL;
652 
653 	while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
654 		if (!pci_has_p2pmem(pdev))
655 			continue;
656 
657 		distance = pci_p2pdma_distance_many(pdev, clients,
658 						    num_clients, false);
659 		if (distance < 0 || distance > closest_distance)
660 			continue;
661 
662 		if (distance == closest_distance && dev_cnt >= max_devs)
663 			continue;
664 
665 		if (distance < closest_distance) {
666 			for (i = 0; i < dev_cnt; i++)
667 				pci_dev_put(closest_pdevs[i]);
668 
669 			dev_cnt = 0;
670 			closest_distance = distance;
671 		}
672 
673 		closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
674 	}
675 
676 	if (dev_cnt)
677 		pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]);
678 
679 	for (i = 0; i < dev_cnt; i++)
680 		pci_dev_put(closest_pdevs[i]);
681 
682 	kfree(closest_pdevs);
683 	return pdev;
684 }
685 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
686 
687 /**
688  * pci_alloc_p2pmem - allocate peer-to-peer DMA memory
689  * @pdev: the device to allocate memory from
690  * @size: number of bytes to allocate
691  *
692  * Returns the allocated memory or NULL on error.
693  */
694 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
695 {
696 	void *ret = NULL;
697 	struct percpu_ref *ref;
698 	struct pci_p2pdma *p2pdma;
699 
700 	/*
701 	 * Pairs with synchronize_rcu() in pci_p2pdma_release() to
702 	 * ensure pdev->p2pdma is non-NULL for the duration of the
703 	 * read-lock.
704 	 */
705 	rcu_read_lock();
706 	p2pdma = rcu_dereference(pdev->p2pdma);
707 	if (unlikely(!p2pdma))
708 		goto out;
709 
710 	ret = (void *)gen_pool_alloc_owner(p2pdma->pool, size, (void **) &ref);
711 	if (!ret)
712 		goto out;
713 
714 	if (unlikely(!percpu_ref_tryget_live_rcu(ref))) {
715 		gen_pool_free(p2pdma->pool, (unsigned long) ret, size);
716 		ret = NULL;
717 		goto out;
718 	}
719 out:
720 	rcu_read_unlock();
721 	return ret;
722 }
723 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
724 
725 /**
726  * pci_free_p2pmem - free peer-to-peer DMA memory
727  * @pdev: the device the memory was allocated from
728  * @addr: address of the memory that was allocated
729  * @size: number of bytes that were allocated
730  */
731 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
732 {
733 	struct percpu_ref *ref;
734 	struct pci_p2pdma *p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
735 
736 	gen_pool_free_owner(p2pdma->pool, (uintptr_t)addr, size,
737 			(void **) &ref);
738 	percpu_ref_put(ref);
739 }
740 EXPORT_SYMBOL_GPL(pci_free_p2pmem);
741 
742 /**
743  * pci_p2pmem_virt_to_bus - return the PCI bus address for a given virtual
744  *	address obtained with pci_alloc_p2pmem()
745  * @pdev: the device the memory was allocated from
746  * @addr: address of the memory that was allocated
747  */
748 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
749 {
750 	struct pci_p2pdma *p2pdma;
751 
752 	if (!addr)
753 		return 0;
754 
755 	p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
756 	if (!p2pdma)
757 		return 0;
758 
759 	/*
760 	 * Note: when we added the memory to the pool we used the PCI
761 	 * bus address as the physical address. So gen_pool_virt_to_phys()
762 	 * actually returns the bus address despite the misleading name.
763 	 */
764 	return gen_pool_virt_to_phys(p2pdma->pool, (unsigned long)addr);
765 }
766 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
767 
768 /**
769  * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
770  * @pdev: the device to allocate memory from
771  * @nents: the number of SG entries in the list
772  * @length: number of bytes to allocate
773  *
774  * Return: %NULL on error or &struct scatterlist pointer and @nents on success
775  */
776 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
777 					 unsigned int *nents, u32 length)
778 {
779 	struct scatterlist *sg;
780 	void *addr;
781 
782 	sg = kmalloc(sizeof(*sg), GFP_KERNEL);
783 	if (!sg)
784 		return NULL;
785 
786 	sg_init_table(sg, 1);
787 
788 	addr = pci_alloc_p2pmem(pdev, length);
789 	if (!addr)
790 		goto out_free_sg;
791 
792 	sg_set_buf(sg, addr, length);
793 	*nents = 1;
794 	return sg;
795 
796 out_free_sg:
797 	kfree(sg);
798 	return NULL;
799 }
800 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
801 
802 /**
803  * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
804  * @pdev: the device to allocate memory from
805  * @sgl: the allocated scatterlist
806  */
807 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
808 {
809 	struct scatterlist *sg;
810 	int count;
811 
812 	for_each_sg(sgl, sg, INT_MAX, count) {
813 		if (!sg)
814 			break;
815 
816 		pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
817 	}
818 	kfree(sgl);
819 }
820 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
821 
822 /**
823  * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
824  *	other devices with pci_p2pmem_find()
825  * @pdev: the device with peer-to-peer DMA memory to publish
826  * @publish: set to true to publish the memory, false to unpublish it
827  *
828  * Published memory can be used by other PCI device drivers for
829  * peer-2-peer DMA operations. Non-published memory is reserved for
830  * exclusive use of the device driver that registers the peer-to-peer
831  * memory.
832  */
833 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
834 {
835 	struct pci_p2pdma *p2pdma;
836 
837 	rcu_read_lock();
838 	p2pdma = rcu_dereference(pdev->p2pdma);
839 	if (p2pdma)
840 		p2pdma->p2pmem_published = publish;
841 	rcu_read_unlock();
842 }
843 EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
844 
845 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct dev_pagemap *pgmap,
846 						    struct device *dev)
847 {
848 	enum pci_p2pdma_map_type type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
849 	struct pci_dev *provider = to_p2p_pgmap(pgmap)->provider;
850 	struct pci_dev *client;
851 	struct pci_p2pdma *p2pdma;
852 
853 	if (!provider->p2pdma)
854 		return PCI_P2PDMA_MAP_NOT_SUPPORTED;
855 
856 	if (!dev_is_pci(dev))
857 		return PCI_P2PDMA_MAP_NOT_SUPPORTED;
858 
859 	client = to_pci_dev(dev);
860 
861 	rcu_read_lock();
862 	p2pdma = rcu_dereference(provider->p2pdma);
863 
864 	if (p2pdma)
865 		type = xa_to_value(xa_load(&p2pdma->map_types,
866 					   map_types_idx(client)));
867 	rcu_read_unlock();
868 	return type;
869 }
870 
871 static int __pci_p2pdma_map_sg(struct pci_p2pdma_pagemap *p2p_pgmap,
872 		struct device *dev, struct scatterlist *sg, int nents)
873 {
874 	struct scatterlist *s;
875 	int i;
876 
877 	for_each_sg(sg, s, nents, i) {
878 		s->dma_address = sg_phys(s) + p2p_pgmap->bus_offset;
879 		sg_dma_len(s) = s->length;
880 	}
881 
882 	return nents;
883 }
884 
885 /**
886  * pci_p2pdma_map_sg_attrs - map a PCI peer-to-peer scatterlist for DMA
887  * @dev: device doing the DMA request
888  * @sg: scatter list to map
889  * @nents: elements in the scatterlist
890  * @dir: DMA direction
891  * @attrs: DMA attributes passed to dma_map_sg() (if called)
892  *
893  * Scatterlists mapped with this function should be unmapped using
894  * pci_p2pdma_unmap_sg_attrs().
895  *
896  * Returns the number of SG entries mapped or 0 on error.
897  */
898 int pci_p2pdma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
899 		int nents, enum dma_data_direction dir, unsigned long attrs)
900 {
901 	struct pci_p2pdma_pagemap *p2p_pgmap =
902 		to_p2p_pgmap(sg_page(sg)->pgmap);
903 
904 	switch (pci_p2pdma_map_type(sg_page(sg)->pgmap, dev)) {
905 	case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
906 		return dma_map_sg_attrs(dev, sg, nents, dir, attrs);
907 	case PCI_P2PDMA_MAP_BUS_ADDR:
908 		return __pci_p2pdma_map_sg(p2p_pgmap, dev, sg, nents);
909 	default:
910 		WARN_ON_ONCE(1);
911 		return 0;
912 	}
913 }
914 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg_attrs);
915 
916 /**
917  * pci_p2pdma_unmap_sg_attrs - unmap a PCI peer-to-peer scatterlist that was
918  *	mapped with pci_p2pdma_map_sg()
919  * @dev: device doing the DMA request
920  * @sg: scatter list to map
921  * @nents: number of elements returned by pci_p2pdma_map_sg()
922  * @dir: DMA direction
923  * @attrs: DMA attributes passed to dma_unmap_sg() (if called)
924  */
925 void pci_p2pdma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
926 		int nents, enum dma_data_direction dir, unsigned long attrs)
927 {
928 	enum pci_p2pdma_map_type map_type;
929 
930 	map_type = pci_p2pdma_map_type(sg_page(sg)->pgmap, dev);
931 
932 	if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE)
933 		dma_unmap_sg_attrs(dev, sg, nents, dir, attrs);
934 }
935 EXPORT_SYMBOL_GPL(pci_p2pdma_unmap_sg_attrs);
936 
937 /**
938  * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
939  *		to enable p2pdma
940  * @page: contents of the value to be stored
941  * @p2p_dev: returns the PCI device that was selected to be used
942  *		(if one was specified in the stored value)
943  * @use_p2pdma: returns whether to enable p2pdma or not
944  *
945  * Parses an attribute value to decide whether to enable p2pdma.
946  * The value can select a PCI device (using its full BDF device
947  * name) or a boolean (in any format kstrtobool() accepts). A false
948  * value disables p2pdma, a true value expects the caller
949  * to automatically find a compatible device and specifying a PCI device
950  * expects the caller to use the specific provider.
951  *
952  * pci_p2pdma_enable_show() should be used as the show operation for
953  * the attribute.
954  *
955  * Returns 0 on success
956  */
957 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
958 			    bool *use_p2pdma)
959 {
960 	struct device *dev;
961 
962 	dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
963 	if (dev) {
964 		*use_p2pdma = true;
965 		*p2p_dev = to_pci_dev(dev);
966 
967 		if (!pci_has_p2pmem(*p2p_dev)) {
968 			pci_err(*p2p_dev,
969 				"PCI device has no peer-to-peer memory: %s\n",
970 				page);
971 			pci_dev_put(*p2p_dev);
972 			return -ENODEV;
973 		}
974 
975 		return 0;
976 	} else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
977 		/*
978 		 * If the user enters a PCI device that  doesn't exist
979 		 * like "0000:01:00.1", we don't want kstrtobool to think
980 		 * it's a '0' when it's clearly not what the user wanted.
981 		 * So we require 0's and 1's to be exactly one character.
982 		 */
983 	} else if (!kstrtobool(page, use_p2pdma)) {
984 		return 0;
985 	}
986 
987 	pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
988 	return -ENODEV;
989 }
990 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
991 
992 /**
993  * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
994  *		whether p2pdma is enabled
995  * @page: contents of the stored value
996  * @p2p_dev: the selected p2p device (NULL if no device is selected)
997  * @use_p2pdma: whether p2pdma has been enabled
998  *
999  * Attributes that use pci_p2pdma_enable_store() should use this function
1000  * to show the value of the attribute.
1001  *
1002  * Returns 0 on success
1003  */
1004 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
1005 			       bool use_p2pdma)
1006 {
1007 	if (!use_p2pdma)
1008 		return sprintf(page, "0\n");
1009 
1010 	if (!p2p_dev)
1011 		return sprintf(page, "1\n");
1012 
1013 	return sprintf(page, "%s\n", pci_name(p2p_dev));
1014 }
1015 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);
1016