1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Peer 2 Peer DMA support. 4 * 5 * Copyright (c) 2016-2018, Logan Gunthorpe 6 * Copyright (c) 2016-2017, Microsemi Corporation 7 * Copyright (c) 2017, Christoph Hellwig 8 * Copyright (c) 2018, Eideticom Inc. 9 */ 10 11 #define pr_fmt(fmt) "pci-p2pdma: " fmt 12 #include <linux/ctype.h> 13 #include <linux/pci-p2pdma.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/genalloc.h> 17 #include <linux/memremap.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/random.h> 20 #include <linux/seq_buf.h> 21 #include <linux/xarray.h> 22 23 enum pci_p2pdma_map_type { 24 PCI_P2PDMA_MAP_UNKNOWN = 0, 25 PCI_P2PDMA_MAP_NOT_SUPPORTED, 26 PCI_P2PDMA_MAP_BUS_ADDR, 27 PCI_P2PDMA_MAP_THRU_HOST_BRIDGE, 28 }; 29 30 struct pci_p2pdma { 31 struct gen_pool *pool; 32 bool p2pmem_published; 33 struct xarray map_types; 34 }; 35 36 struct pci_p2pdma_pagemap { 37 struct dev_pagemap pgmap; 38 struct pci_dev *provider; 39 u64 bus_offset; 40 }; 41 42 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap) 43 { 44 return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap); 45 } 46 47 static ssize_t size_show(struct device *dev, struct device_attribute *attr, 48 char *buf) 49 { 50 struct pci_dev *pdev = to_pci_dev(dev); 51 struct pci_p2pdma *p2pdma; 52 size_t size = 0; 53 54 rcu_read_lock(); 55 p2pdma = rcu_dereference(pdev->p2pdma); 56 if (p2pdma && p2pdma->pool) 57 size = gen_pool_size(p2pdma->pool); 58 rcu_read_unlock(); 59 60 return sysfs_emit(buf, "%zd\n", size); 61 } 62 static DEVICE_ATTR_RO(size); 63 64 static ssize_t available_show(struct device *dev, struct device_attribute *attr, 65 char *buf) 66 { 67 struct pci_dev *pdev = to_pci_dev(dev); 68 struct pci_p2pdma *p2pdma; 69 size_t avail = 0; 70 71 rcu_read_lock(); 72 p2pdma = rcu_dereference(pdev->p2pdma); 73 if (p2pdma && p2pdma->pool) 74 avail = gen_pool_avail(p2pdma->pool); 75 rcu_read_unlock(); 76 77 return sysfs_emit(buf, "%zd\n", avail); 78 } 79 static DEVICE_ATTR_RO(available); 80 81 static ssize_t published_show(struct device *dev, struct device_attribute *attr, 82 char *buf) 83 { 84 struct pci_dev *pdev = to_pci_dev(dev); 85 struct pci_p2pdma *p2pdma; 86 bool published = false; 87 88 rcu_read_lock(); 89 p2pdma = rcu_dereference(pdev->p2pdma); 90 if (p2pdma) 91 published = p2pdma->p2pmem_published; 92 rcu_read_unlock(); 93 94 return sysfs_emit(buf, "%d\n", published); 95 } 96 static DEVICE_ATTR_RO(published); 97 98 static struct attribute *p2pmem_attrs[] = { 99 &dev_attr_size.attr, 100 &dev_attr_available.attr, 101 &dev_attr_published.attr, 102 NULL, 103 }; 104 105 static const struct attribute_group p2pmem_group = { 106 .attrs = p2pmem_attrs, 107 .name = "p2pmem", 108 }; 109 110 static void pci_p2pdma_release(void *data) 111 { 112 struct pci_dev *pdev = data; 113 struct pci_p2pdma *p2pdma; 114 115 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 116 if (!p2pdma) 117 return; 118 119 /* Flush and disable pci_alloc_p2p_mem() */ 120 pdev->p2pdma = NULL; 121 synchronize_rcu(); 122 123 gen_pool_destroy(p2pdma->pool); 124 sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group); 125 xa_destroy(&p2pdma->map_types); 126 } 127 128 static int pci_p2pdma_setup(struct pci_dev *pdev) 129 { 130 int error = -ENOMEM; 131 struct pci_p2pdma *p2p; 132 133 p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL); 134 if (!p2p) 135 return -ENOMEM; 136 137 xa_init(&p2p->map_types); 138 139 p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev)); 140 if (!p2p->pool) 141 goto out; 142 143 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev); 144 if (error) 145 goto out_pool_destroy; 146 147 error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group); 148 if (error) 149 goto out_pool_destroy; 150 151 rcu_assign_pointer(pdev->p2pdma, p2p); 152 return 0; 153 154 out_pool_destroy: 155 gen_pool_destroy(p2p->pool); 156 out: 157 devm_kfree(&pdev->dev, p2p); 158 return error; 159 } 160 161 /** 162 * pci_p2pdma_add_resource - add memory for use as p2p memory 163 * @pdev: the device to add the memory to 164 * @bar: PCI BAR to add 165 * @size: size of the memory to add, may be zero to use the whole BAR 166 * @offset: offset into the PCI BAR 167 * 168 * The memory will be given ZONE_DEVICE struct pages so that it may 169 * be used with any DMA request. 170 */ 171 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size, 172 u64 offset) 173 { 174 struct pci_p2pdma_pagemap *p2p_pgmap; 175 struct dev_pagemap *pgmap; 176 struct pci_p2pdma *p2pdma; 177 void *addr; 178 int error; 179 180 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) 181 return -EINVAL; 182 183 if (offset >= pci_resource_len(pdev, bar)) 184 return -EINVAL; 185 186 if (!size) 187 size = pci_resource_len(pdev, bar) - offset; 188 189 if (size + offset > pci_resource_len(pdev, bar)) 190 return -EINVAL; 191 192 if (!pdev->p2pdma) { 193 error = pci_p2pdma_setup(pdev); 194 if (error) 195 return error; 196 } 197 198 p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL); 199 if (!p2p_pgmap) 200 return -ENOMEM; 201 202 pgmap = &p2p_pgmap->pgmap; 203 pgmap->range.start = pci_resource_start(pdev, bar) + offset; 204 pgmap->range.end = pgmap->range.start + size - 1; 205 pgmap->nr_range = 1; 206 pgmap->type = MEMORY_DEVICE_PCI_P2PDMA; 207 208 p2p_pgmap->provider = pdev; 209 p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) - 210 pci_resource_start(pdev, bar); 211 212 addr = devm_memremap_pages(&pdev->dev, pgmap); 213 if (IS_ERR(addr)) { 214 error = PTR_ERR(addr); 215 goto pgmap_free; 216 } 217 218 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 219 error = gen_pool_add_owner(p2pdma->pool, (unsigned long)addr, 220 pci_bus_address(pdev, bar) + offset, 221 range_len(&pgmap->range), dev_to_node(&pdev->dev), 222 &pgmap->ref); 223 if (error) 224 goto pages_free; 225 226 pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n", 227 pgmap->range.start, pgmap->range.end); 228 229 return 0; 230 231 pages_free: 232 devm_memunmap_pages(&pdev->dev, pgmap); 233 pgmap_free: 234 devm_kfree(&pdev->dev, pgmap); 235 return error; 236 } 237 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource); 238 239 /* 240 * Note this function returns the parent PCI device with a 241 * reference taken. It is the caller's responsibility to drop 242 * the reference. 243 */ 244 static struct pci_dev *find_parent_pci_dev(struct device *dev) 245 { 246 struct device *parent; 247 248 dev = get_device(dev); 249 250 while (dev) { 251 if (dev_is_pci(dev)) 252 return to_pci_dev(dev); 253 254 parent = get_device(dev->parent); 255 put_device(dev); 256 dev = parent; 257 } 258 259 return NULL; 260 } 261 262 /* 263 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P 264 * TLPs upstream via ACS. Returns 1 if the packets will be redirected 265 * upstream, 0 otherwise. 266 */ 267 static int pci_bridge_has_acs_redir(struct pci_dev *pdev) 268 { 269 int pos; 270 u16 ctrl; 271 272 pos = pdev->acs_cap; 273 if (!pos) 274 return 0; 275 276 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 277 278 if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)) 279 return 1; 280 281 return 0; 282 } 283 284 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev) 285 { 286 if (!buf) 287 return; 288 289 seq_buf_printf(buf, "%s;", pci_name(pdev)); 290 } 291 292 static bool cpu_supports_p2pdma(void) 293 { 294 #ifdef CONFIG_X86 295 struct cpuinfo_x86 *c = &cpu_data(0); 296 297 /* Any AMD CPU whose family ID is Zen or newer supports p2pdma */ 298 if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17) 299 return true; 300 #endif 301 302 return false; 303 } 304 305 static const struct pci_p2pdma_whitelist_entry { 306 unsigned short vendor; 307 unsigned short device; 308 enum { 309 REQ_SAME_HOST_BRIDGE = 1 << 0, 310 } flags; 311 } pci_p2pdma_whitelist[] = { 312 /* Intel Xeon E5/Core i7 */ 313 {PCI_VENDOR_ID_INTEL, 0x3c00, REQ_SAME_HOST_BRIDGE}, 314 {PCI_VENDOR_ID_INTEL, 0x3c01, REQ_SAME_HOST_BRIDGE}, 315 /* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */ 316 {PCI_VENDOR_ID_INTEL, 0x2f00, REQ_SAME_HOST_BRIDGE}, 317 {PCI_VENDOR_ID_INTEL, 0x2f01, REQ_SAME_HOST_BRIDGE}, 318 /* Intel SkyLake-E */ 319 {PCI_VENDOR_ID_INTEL, 0x2030, 0}, 320 {PCI_VENDOR_ID_INTEL, 0x2031, 0}, 321 {PCI_VENDOR_ID_INTEL, 0x2032, 0}, 322 {PCI_VENDOR_ID_INTEL, 0x2033, 0}, 323 {PCI_VENDOR_ID_INTEL, 0x2020, 0}, 324 {PCI_VENDOR_ID_INTEL, 0x09a2, 0}, 325 {} 326 }; 327 328 /* 329 * This lookup function tries to find the PCI device corresponding to a given 330 * host bridge. 331 * 332 * It assumes the host bridge device is the first PCI device in the 333 * bus->devices list and that the devfn is 00.0. These assumptions should hold 334 * for all the devices in the whitelist above. 335 * 336 * This function is equivalent to pci_get_slot(host->bus, 0), however it does 337 * not take the pci_bus_sem lock seeing __host_bridge_whitelist() must not 338 * sleep. 339 * 340 * For this to be safe, the caller should hold a reference to a device on the 341 * bridge, which should ensure the host_bridge device will not be freed 342 * or removed from the head of the devices list. 343 */ 344 static struct pci_dev *pci_host_bridge_dev(struct pci_host_bridge *host) 345 { 346 struct pci_dev *root; 347 348 root = list_first_entry_or_null(&host->bus->devices, 349 struct pci_dev, bus_list); 350 351 if (!root) 352 return NULL; 353 if (root->devfn != PCI_DEVFN(0, 0)) 354 return NULL; 355 356 return root; 357 } 358 359 static bool __host_bridge_whitelist(struct pci_host_bridge *host, 360 bool same_host_bridge, bool warn) 361 { 362 struct pci_dev *root = pci_host_bridge_dev(host); 363 const struct pci_p2pdma_whitelist_entry *entry; 364 unsigned short vendor, device; 365 366 if (!root) 367 return false; 368 369 vendor = root->vendor; 370 device = root->device; 371 372 for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) { 373 if (vendor != entry->vendor || device != entry->device) 374 continue; 375 if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge) 376 return false; 377 378 return true; 379 } 380 381 if (warn) 382 pci_warn(root, "Host bridge not in P2PDMA whitelist: %04x:%04x\n", 383 vendor, device); 384 385 return false; 386 } 387 388 /* 389 * If we can't find a common upstream bridge take a look at the root 390 * complex and compare it to a whitelist of known good hardware. 391 */ 392 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b, 393 bool warn) 394 { 395 struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus); 396 struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus); 397 398 if (host_a == host_b) 399 return __host_bridge_whitelist(host_a, true, warn); 400 401 if (__host_bridge_whitelist(host_a, false, warn) && 402 __host_bridge_whitelist(host_b, false, warn)) 403 return true; 404 405 return false; 406 } 407 408 static unsigned long map_types_idx(struct pci_dev *client) 409 { 410 return (pci_domain_nr(client->bus) << 16) | 411 (client->bus->number << 8) | client->devfn; 412 } 413 414 /* 415 * Calculate the P2PDMA mapping type and distance between two PCI devices. 416 * 417 * If the two devices are the same PCI function, return 418 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 0. 419 * 420 * If they are two functions of the same device, return 421 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 2 (one hop up to the bridge, 422 * then one hop back down to another function of the same device). 423 * 424 * In the case where two devices are connected to the same PCIe switch, 425 * return a distance of 4. This corresponds to the following PCI tree: 426 * 427 * -+ Root Port 428 * \+ Switch Upstream Port 429 * +-+ Switch Downstream Port 0 430 * + \- Device A 431 * \-+ Switch Downstream Port 1 432 * \- Device B 433 * 434 * The distance is 4 because we traverse from Device A to Downstream Port 0 435 * to the common Switch Upstream Port, back down to Downstream Port 1 and 436 * then to Device B. The mapping type returned depends on the ACS 437 * redirection setting of the ports along the path. 438 * 439 * If ACS redirect is set on any port in the path, traffic between the 440 * devices will go through the host bridge, so return 441 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; otherwise return 442 * PCI_P2PDMA_MAP_BUS_ADDR. 443 * 444 * Any two devices that have a data path that goes through the host bridge 445 * will consult a whitelist. If the host bridge is in the whitelist, return 446 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE with the distance set to the number of 447 * ports per above. If the device is not in the whitelist, return 448 * PCI_P2PDMA_MAP_NOT_SUPPORTED. 449 */ 450 static enum pci_p2pdma_map_type 451 calc_map_type_and_dist(struct pci_dev *provider, struct pci_dev *client, 452 int *dist, bool verbose) 453 { 454 enum pci_p2pdma_map_type map_type = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; 455 struct pci_dev *a = provider, *b = client, *bb; 456 bool acs_redirects = false; 457 struct pci_p2pdma *p2pdma; 458 struct seq_buf acs_list; 459 int acs_cnt = 0; 460 int dist_a = 0; 461 int dist_b = 0; 462 char buf[128]; 463 464 seq_buf_init(&acs_list, buf, sizeof(buf)); 465 466 /* 467 * Note, we don't need to take references to devices returned by 468 * pci_upstream_bridge() seeing we hold a reference to a child 469 * device which will already hold a reference to the upstream bridge. 470 */ 471 while (a) { 472 dist_b = 0; 473 474 if (pci_bridge_has_acs_redir(a)) { 475 seq_buf_print_bus_devfn(&acs_list, a); 476 acs_cnt++; 477 } 478 479 bb = b; 480 481 while (bb) { 482 if (a == bb) 483 goto check_b_path_acs; 484 485 bb = pci_upstream_bridge(bb); 486 dist_b++; 487 } 488 489 a = pci_upstream_bridge(a); 490 dist_a++; 491 } 492 493 *dist = dist_a + dist_b; 494 goto map_through_host_bridge; 495 496 check_b_path_acs: 497 bb = b; 498 499 while (bb) { 500 if (a == bb) 501 break; 502 503 if (pci_bridge_has_acs_redir(bb)) { 504 seq_buf_print_bus_devfn(&acs_list, bb); 505 acs_cnt++; 506 } 507 508 bb = pci_upstream_bridge(bb); 509 } 510 511 *dist = dist_a + dist_b; 512 513 if (!acs_cnt) { 514 map_type = PCI_P2PDMA_MAP_BUS_ADDR; 515 goto done; 516 } 517 518 if (verbose) { 519 acs_list.buffer[acs_list.len-1] = 0; /* drop final semicolon */ 520 pci_warn(client, "ACS redirect is set between the client and provider (%s)\n", 521 pci_name(provider)); 522 pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n", 523 acs_list.buffer); 524 } 525 acs_redirects = true; 526 527 map_through_host_bridge: 528 if (!cpu_supports_p2pdma() && 529 !host_bridge_whitelist(provider, client, acs_redirects)) { 530 if (verbose) 531 pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n", 532 pci_name(provider)); 533 map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED; 534 } 535 done: 536 rcu_read_lock(); 537 p2pdma = rcu_dereference(provider->p2pdma); 538 if (p2pdma) 539 xa_store(&p2pdma->map_types, map_types_idx(client), 540 xa_mk_value(map_type), GFP_KERNEL); 541 rcu_read_unlock(); 542 return map_type; 543 } 544 545 /** 546 * pci_p2pdma_distance_many - Determine the cumulative distance between 547 * a p2pdma provider and the clients in use. 548 * @provider: p2pdma provider to check against the client list 549 * @clients: array of devices to check (NULL-terminated) 550 * @num_clients: number of clients in the array 551 * @verbose: if true, print warnings for devices when we return -1 552 * 553 * Returns -1 if any of the clients are not compatible, otherwise returns a 554 * positive number where a lower number is the preferable choice. (If there's 555 * one client that's the same as the provider it will return 0, which is best 556 * choice). 557 * 558 * "compatible" means the provider and the clients are either all behind 559 * the same PCI root port or the host bridges connected to each of the devices 560 * are listed in the 'pci_p2pdma_whitelist'. 561 */ 562 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients, 563 int num_clients, bool verbose) 564 { 565 enum pci_p2pdma_map_type map; 566 bool not_supported = false; 567 struct pci_dev *pci_client; 568 int total_dist = 0; 569 int i, distance; 570 571 if (num_clients == 0) 572 return -1; 573 574 for (i = 0; i < num_clients; i++) { 575 pci_client = find_parent_pci_dev(clients[i]); 576 if (!pci_client) { 577 if (verbose) 578 dev_warn(clients[i], 579 "cannot be used for peer-to-peer DMA as it is not a PCI device\n"); 580 return -1; 581 } 582 583 map = calc_map_type_and_dist(provider, pci_client, &distance, 584 verbose); 585 586 pci_dev_put(pci_client); 587 588 if (map == PCI_P2PDMA_MAP_NOT_SUPPORTED) 589 not_supported = true; 590 591 if (not_supported && !verbose) 592 break; 593 594 total_dist += distance; 595 } 596 597 if (not_supported) 598 return -1; 599 600 return total_dist; 601 } 602 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many); 603 604 /** 605 * pci_has_p2pmem - check if a given PCI device has published any p2pmem 606 * @pdev: PCI device to check 607 */ 608 bool pci_has_p2pmem(struct pci_dev *pdev) 609 { 610 struct pci_p2pdma *p2pdma; 611 bool res; 612 613 rcu_read_lock(); 614 p2pdma = rcu_dereference(pdev->p2pdma); 615 res = p2pdma && p2pdma->p2pmem_published; 616 rcu_read_unlock(); 617 618 return res; 619 } 620 EXPORT_SYMBOL_GPL(pci_has_p2pmem); 621 622 /** 623 * pci_p2pmem_find_many - find a peer-to-peer DMA memory device compatible with 624 * the specified list of clients and shortest distance (as determined 625 * by pci_p2pmem_dma()) 626 * @clients: array of devices to check (NULL-terminated) 627 * @num_clients: number of client devices in the list 628 * 629 * If multiple devices are behind the same switch, the one "closest" to the 630 * client devices in use will be chosen first. (So if one of the providers is 631 * the same as one of the clients, that provider will be used ahead of any 632 * other providers that are unrelated). If multiple providers are an equal 633 * distance away, one will be chosen at random. 634 * 635 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put 636 * to return the reference) or NULL if no compatible device is found. The 637 * found provider will also be assigned to the client list. 638 */ 639 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients) 640 { 641 struct pci_dev *pdev = NULL; 642 int distance; 643 int closest_distance = INT_MAX; 644 struct pci_dev **closest_pdevs; 645 int dev_cnt = 0; 646 const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs); 647 int i; 648 649 closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL); 650 if (!closest_pdevs) 651 return NULL; 652 653 while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) { 654 if (!pci_has_p2pmem(pdev)) 655 continue; 656 657 distance = pci_p2pdma_distance_many(pdev, clients, 658 num_clients, false); 659 if (distance < 0 || distance > closest_distance) 660 continue; 661 662 if (distance == closest_distance && dev_cnt >= max_devs) 663 continue; 664 665 if (distance < closest_distance) { 666 for (i = 0; i < dev_cnt; i++) 667 pci_dev_put(closest_pdevs[i]); 668 669 dev_cnt = 0; 670 closest_distance = distance; 671 } 672 673 closest_pdevs[dev_cnt++] = pci_dev_get(pdev); 674 } 675 676 if (dev_cnt) 677 pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]); 678 679 for (i = 0; i < dev_cnt; i++) 680 pci_dev_put(closest_pdevs[i]); 681 682 kfree(closest_pdevs); 683 return pdev; 684 } 685 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many); 686 687 /** 688 * pci_alloc_p2pmem - allocate peer-to-peer DMA memory 689 * @pdev: the device to allocate memory from 690 * @size: number of bytes to allocate 691 * 692 * Returns the allocated memory or NULL on error. 693 */ 694 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size) 695 { 696 void *ret = NULL; 697 struct percpu_ref *ref; 698 struct pci_p2pdma *p2pdma; 699 700 /* 701 * Pairs with synchronize_rcu() in pci_p2pdma_release() to 702 * ensure pdev->p2pdma is non-NULL for the duration of the 703 * read-lock. 704 */ 705 rcu_read_lock(); 706 p2pdma = rcu_dereference(pdev->p2pdma); 707 if (unlikely(!p2pdma)) 708 goto out; 709 710 ret = (void *)gen_pool_alloc_owner(p2pdma->pool, size, (void **) &ref); 711 if (!ret) 712 goto out; 713 714 if (unlikely(!percpu_ref_tryget_live_rcu(ref))) { 715 gen_pool_free(p2pdma->pool, (unsigned long) ret, size); 716 ret = NULL; 717 goto out; 718 } 719 out: 720 rcu_read_unlock(); 721 return ret; 722 } 723 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem); 724 725 /** 726 * pci_free_p2pmem - free peer-to-peer DMA memory 727 * @pdev: the device the memory was allocated from 728 * @addr: address of the memory that was allocated 729 * @size: number of bytes that were allocated 730 */ 731 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size) 732 { 733 struct percpu_ref *ref; 734 struct pci_p2pdma *p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 735 736 gen_pool_free_owner(p2pdma->pool, (uintptr_t)addr, size, 737 (void **) &ref); 738 percpu_ref_put(ref); 739 } 740 EXPORT_SYMBOL_GPL(pci_free_p2pmem); 741 742 /** 743 * pci_p2pmem_virt_to_bus - return the PCI bus address for a given virtual 744 * address obtained with pci_alloc_p2pmem() 745 * @pdev: the device the memory was allocated from 746 * @addr: address of the memory that was allocated 747 */ 748 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr) 749 { 750 struct pci_p2pdma *p2pdma; 751 752 if (!addr) 753 return 0; 754 755 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 756 if (!p2pdma) 757 return 0; 758 759 /* 760 * Note: when we added the memory to the pool we used the PCI 761 * bus address as the physical address. So gen_pool_virt_to_phys() 762 * actually returns the bus address despite the misleading name. 763 */ 764 return gen_pool_virt_to_phys(p2pdma->pool, (unsigned long)addr); 765 } 766 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus); 767 768 /** 769 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist 770 * @pdev: the device to allocate memory from 771 * @nents: the number of SG entries in the list 772 * @length: number of bytes to allocate 773 * 774 * Return: %NULL on error or &struct scatterlist pointer and @nents on success 775 */ 776 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev, 777 unsigned int *nents, u32 length) 778 { 779 struct scatterlist *sg; 780 void *addr; 781 782 sg = kmalloc(sizeof(*sg), GFP_KERNEL); 783 if (!sg) 784 return NULL; 785 786 sg_init_table(sg, 1); 787 788 addr = pci_alloc_p2pmem(pdev, length); 789 if (!addr) 790 goto out_free_sg; 791 792 sg_set_buf(sg, addr, length); 793 *nents = 1; 794 return sg; 795 796 out_free_sg: 797 kfree(sg); 798 return NULL; 799 } 800 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl); 801 802 /** 803 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl() 804 * @pdev: the device to allocate memory from 805 * @sgl: the allocated scatterlist 806 */ 807 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl) 808 { 809 struct scatterlist *sg; 810 int count; 811 812 for_each_sg(sgl, sg, INT_MAX, count) { 813 if (!sg) 814 break; 815 816 pci_free_p2pmem(pdev, sg_virt(sg), sg->length); 817 } 818 kfree(sgl); 819 } 820 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl); 821 822 /** 823 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by 824 * other devices with pci_p2pmem_find() 825 * @pdev: the device with peer-to-peer DMA memory to publish 826 * @publish: set to true to publish the memory, false to unpublish it 827 * 828 * Published memory can be used by other PCI device drivers for 829 * peer-2-peer DMA operations. Non-published memory is reserved for 830 * exclusive use of the device driver that registers the peer-to-peer 831 * memory. 832 */ 833 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish) 834 { 835 struct pci_p2pdma *p2pdma; 836 837 rcu_read_lock(); 838 p2pdma = rcu_dereference(pdev->p2pdma); 839 if (p2pdma) 840 p2pdma->p2pmem_published = publish; 841 rcu_read_unlock(); 842 } 843 EXPORT_SYMBOL_GPL(pci_p2pmem_publish); 844 845 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct dev_pagemap *pgmap, 846 struct device *dev) 847 { 848 enum pci_p2pdma_map_type type = PCI_P2PDMA_MAP_NOT_SUPPORTED; 849 struct pci_dev *provider = to_p2p_pgmap(pgmap)->provider; 850 struct pci_dev *client; 851 struct pci_p2pdma *p2pdma; 852 853 if (!provider->p2pdma) 854 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 855 856 if (!dev_is_pci(dev)) 857 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 858 859 client = to_pci_dev(dev); 860 861 rcu_read_lock(); 862 p2pdma = rcu_dereference(provider->p2pdma); 863 864 if (p2pdma) 865 type = xa_to_value(xa_load(&p2pdma->map_types, 866 map_types_idx(client))); 867 rcu_read_unlock(); 868 return type; 869 } 870 871 static int __pci_p2pdma_map_sg(struct pci_p2pdma_pagemap *p2p_pgmap, 872 struct device *dev, struct scatterlist *sg, int nents) 873 { 874 struct scatterlist *s; 875 int i; 876 877 for_each_sg(sg, s, nents, i) { 878 s->dma_address = sg_phys(s) + p2p_pgmap->bus_offset; 879 sg_dma_len(s) = s->length; 880 } 881 882 return nents; 883 } 884 885 /** 886 * pci_p2pdma_map_sg_attrs - map a PCI peer-to-peer scatterlist for DMA 887 * @dev: device doing the DMA request 888 * @sg: scatter list to map 889 * @nents: elements in the scatterlist 890 * @dir: DMA direction 891 * @attrs: DMA attributes passed to dma_map_sg() (if called) 892 * 893 * Scatterlists mapped with this function should be unmapped using 894 * pci_p2pdma_unmap_sg_attrs(). 895 * 896 * Returns the number of SG entries mapped or 0 on error. 897 */ 898 int pci_p2pdma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 899 int nents, enum dma_data_direction dir, unsigned long attrs) 900 { 901 struct pci_p2pdma_pagemap *p2p_pgmap = 902 to_p2p_pgmap(sg_page(sg)->pgmap); 903 904 switch (pci_p2pdma_map_type(sg_page(sg)->pgmap, dev)) { 905 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 906 return dma_map_sg_attrs(dev, sg, nents, dir, attrs); 907 case PCI_P2PDMA_MAP_BUS_ADDR: 908 return __pci_p2pdma_map_sg(p2p_pgmap, dev, sg, nents); 909 default: 910 WARN_ON_ONCE(1); 911 return 0; 912 } 913 } 914 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg_attrs); 915 916 /** 917 * pci_p2pdma_unmap_sg_attrs - unmap a PCI peer-to-peer scatterlist that was 918 * mapped with pci_p2pdma_map_sg() 919 * @dev: device doing the DMA request 920 * @sg: scatter list to map 921 * @nents: number of elements returned by pci_p2pdma_map_sg() 922 * @dir: DMA direction 923 * @attrs: DMA attributes passed to dma_unmap_sg() (if called) 924 */ 925 void pci_p2pdma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 926 int nents, enum dma_data_direction dir, unsigned long attrs) 927 { 928 enum pci_p2pdma_map_type map_type; 929 930 map_type = pci_p2pdma_map_type(sg_page(sg)->pgmap, dev); 931 932 if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE) 933 dma_unmap_sg_attrs(dev, sg, nents, dir, attrs); 934 } 935 EXPORT_SYMBOL_GPL(pci_p2pdma_unmap_sg_attrs); 936 937 /** 938 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store 939 * to enable p2pdma 940 * @page: contents of the value to be stored 941 * @p2p_dev: returns the PCI device that was selected to be used 942 * (if one was specified in the stored value) 943 * @use_p2pdma: returns whether to enable p2pdma or not 944 * 945 * Parses an attribute value to decide whether to enable p2pdma. 946 * The value can select a PCI device (using its full BDF device 947 * name) or a boolean (in any format kstrtobool() accepts). A false 948 * value disables p2pdma, a true value expects the caller 949 * to automatically find a compatible device and specifying a PCI device 950 * expects the caller to use the specific provider. 951 * 952 * pci_p2pdma_enable_show() should be used as the show operation for 953 * the attribute. 954 * 955 * Returns 0 on success 956 */ 957 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev, 958 bool *use_p2pdma) 959 { 960 struct device *dev; 961 962 dev = bus_find_device_by_name(&pci_bus_type, NULL, page); 963 if (dev) { 964 *use_p2pdma = true; 965 *p2p_dev = to_pci_dev(dev); 966 967 if (!pci_has_p2pmem(*p2p_dev)) { 968 pci_err(*p2p_dev, 969 "PCI device has no peer-to-peer memory: %s\n", 970 page); 971 pci_dev_put(*p2p_dev); 972 return -ENODEV; 973 } 974 975 return 0; 976 } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) { 977 /* 978 * If the user enters a PCI device that doesn't exist 979 * like "0000:01:00.1", we don't want kstrtobool to think 980 * it's a '0' when it's clearly not what the user wanted. 981 * So we require 0's and 1's to be exactly one character. 982 */ 983 } else if (!kstrtobool(page, use_p2pdma)) { 984 return 0; 985 } 986 987 pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page); 988 return -ENODEV; 989 } 990 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store); 991 992 /** 993 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating 994 * whether p2pdma is enabled 995 * @page: contents of the stored value 996 * @p2p_dev: the selected p2p device (NULL if no device is selected) 997 * @use_p2pdma: whether p2pdma has been enabled 998 * 999 * Attributes that use pci_p2pdma_enable_store() should use this function 1000 * to show the value of the attribute. 1001 * 1002 * Returns 0 on success 1003 */ 1004 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev, 1005 bool use_p2pdma) 1006 { 1007 if (!use_p2pdma) 1008 return sprintf(page, "0\n"); 1009 1010 if (!p2p_dev) 1011 return sprintf(page, "1\n"); 1012 1013 return sprintf(page, "%s\n", pci_name(p2p_dev)); 1014 } 1015 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show); 1016