1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * PCI <-> OF mapping helpers 4 * 5 * Copyright 2011 IBM Corp. 6 */ 7 #define pr_fmt(fmt) "PCI: OF: " fmt 8 9 #include <linux/cleanup.h> 10 #include <linux/irqdomain.h> 11 #include <linux/kernel.h> 12 #include <linux/pci.h> 13 #include <linux/of.h> 14 #include <linux/of_irq.h> 15 #include <linux/of_address.h> 16 #include <linux/of_pci.h> 17 #include <linux/platform_device.h> 18 #include "pci.h" 19 20 #ifdef CONFIG_PCI 21 /** 22 * pci_set_of_node - Find and set device's DT device_node 23 * @dev: the PCI device structure to fill 24 * 25 * Returns 0 on success with of_node set or when no device is described in the 26 * DT. Returns -ENODEV if the device is present, but disabled in the DT. 27 */ 28 int pci_set_of_node(struct pci_dev *dev) 29 { 30 if (!dev->bus->dev.of_node) 31 return 0; 32 33 struct device_node *node __free(device_node) = 34 of_pci_find_child_device(dev->bus->dev.of_node, dev->devfn); 35 if (!node) 36 return 0; 37 38 struct device *pdev __free(put_device) = 39 bus_find_device_by_of_node(&platform_bus_type, node); 40 if (pdev) 41 dev->bus->dev.of_node_reused = true; 42 43 device_set_node(&dev->dev, of_fwnode_handle(no_free_ptr(node))); 44 return 0; 45 } 46 47 void pci_release_of_node(struct pci_dev *dev) 48 { 49 of_node_put(dev->dev.of_node); 50 device_set_node(&dev->dev, NULL); 51 } 52 53 void pci_set_bus_of_node(struct pci_bus *bus) 54 { 55 struct device_node *node; 56 57 if (bus->self == NULL) { 58 node = pcibios_get_phb_of_node(bus); 59 } else { 60 node = of_node_get(bus->self->dev.of_node); 61 if (node && of_property_read_bool(node, "external-facing")) 62 bus->self->external_facing = true; 63 } 64 65 device_set_node(&bus->dev, of_fwnode_handle(node)); 66 } 67 68 void pci_release_bus_of_node(struct pci_bus *bus) 69 { 70 of_node_put(bus->dev.of_node); 71 device_set_node(&bus->dev, NULL); 72 } 73 74 struct device_node * __weak pcibios_get_phb_of_node(struct pci_bus *bus) 75 { 76 /* This should only be called for PHBs */ 77 if (WARN_ON(bus->self || bus->parent)) 78 return NULL; 79 80 /* 81 * Look for a node pointer in either the intermediary device we 82 * create above the root bus or its own parent. Normally only 83 * the later is populated. 84 */ 85 if (bus->bridge->of_node) 86 return of_node_get(bus->bridge->of_node); 87 if (bus->bridge->parent && bus->bridge->parent->of_node) 88 return of_node_get(bus->bridge->parent->of_node); 89 return NULL; 90 } 91 92 struct irq_domain *pci_host_bridge_of_msi_domain(struct pci_bus *bus) 93 { 94 #ifdef CONFIG_IRQ_DOMAIN 95 struct irq_domain *d; 96 97 if (!bus->dev.of_node) 98 return NULL; 99 100 /* Start looking for a phandle to an MSI controller. */ 101 d = of_msi_get_domain(&bus->dev, bus->dev.of_node, DOMAIN_BUS_PCI_MSI); 102 if (d) 103 return d; 104 105 /* 106 * If we don't have an msi-parent property, look for a domain 107 * directly attached to the host bridge. 108 */ 109 d = irq_find_matching_host(bus->dev.of_node, DOMAIN_BUS_PCI_MSI); 110 if (d) 111 return d; 112 113 return irq_find_host(bus->dev.of_node); 114 #else 115 return NULL; 116 #endif 117 } 118 119 bool pci_host_of_has_msi_map(struct device *dev) 120 { 121 if (dev && dev->of_node) 122 return of_get_property(dev->of_node, "msi-map", NULL); 123 return false; 124 } 125 126 static inline int __of_pci_pci_compare(struct device_node *node, 127 unsigned int data) 128 { 129 int devfn; 130 131 devfn = of_pci_get_devfn(node); 132 if (devfn < 0) 133 return 0; 134 135 return devfn == data; 136 } 137 138 struct device_node *of_pci_find_child_device(struct device_node *parent, 139 unsigned int devfn) 140 { 141 struct device_node *node, *node2; 142 143 for_each_child_of_node(parent, node) { 144 if (__of_pci_pci_compare(node, devfn)) 145 return node; 146 /* 147 * Some OFs create a parent node "multifunc-device" as 148 * a fake root for all functions of a multi-function 149 * device we go down them as well. 150 */ 151 if (of_node_name_eq(node, "multifunc-device")) { 152 for_each_child_of_node(node, node2) { 153 if (__of_pci_pci_compare(node2, devfn)) { 154 of_node_put(node); 155 return node2; 156 } 157 } 158 } 159 } 160 return NULL; 161 } 162 EXPORT_SYMBOL_GPL(of_pci_find_child_device); 163 164 /** 165 * of_pci_get_devfn() - Get device and function numbers for a device node 166 * @np: device node 167 * 168 * Parses a standard 5-cell PCI resource and returns an 8-bit value that can 169 * be passed to the PCI_SLOT() and PCI_FUNC() macros to extract the device 170 * and function numbers respectively. On error a negative error code is 171 * returned. 172 */ 173 int of_pci_get_devfn(struct device_node *np) 174 { 175 u32 reg[5]; 176 int error; 177 178 error = of_property_read_u32_array(np, "reg", reg, ARRAY_SIZE(reg)); 179 if (error) 180 return error; 181 182 return (reg[0] >> 8) & 0xff; 183 } 184 EXPORT_SYMBOL_GPL(of_pci_get_devfn); 185 186 /** 187 * of_pci_parse_bus_range() - parse the bus-range property of a PCI device 188 * @node: device node 189 * @res: address to a struct resource to return the bus-range 190 * 191 * Returns 0 on success or a negative error-code on failure. 192 */ 193 static int of_pci_parse_bus_range(struct device_node *node, 194 struct resource *res) 195 { 196 u32 bus_range[2]; 197 int error; 198 199 error = of_property_read_u32_array(node, "bus-range", bus_range, 200 ARRAY_SIZE(bus_range)); 201 if (error) 202 return error; 203 204 res->name = node->name; 205 res->start = bus_range[0]; 206 res->end = bus_range[1]; 207 res->flags = IORESOURCE_BUS; 208 209 return 0; 210 } 211 212 /** 213 * of_get_pci_domain_nr - Find the host bridge domain number 214 * of the given device node. 215 * @node: Device tree node with the domain information. 216 * 217 * This function will try to obtain the host bridge domain number by finding 218 * a property called "linux,pci-domain" of the given device node. 219 * 220 * Return: 221 * * > 0 - On success, an associated domain number. 222 * * -EINVAL - The property "linux,pci-domain" does not exist. 223 * * -ENODATA - The linux,pci-domain" property does not have value. 224 * * -EOVERFLOW - Invalid "linux,pci-domain" property value. 225 * 226 * Returns the associated domain number from DT in the range [0-0xffff], or 227 * a negative value if the required property is not found. 228 */ 229 int of_get_pci_domain_nr(struct device_node *node) 230 { 231 u32 domain; 232 int error; 233 234 error = of_property_read_u32(node, "linux,pci-domain", &domain); 235 if (error) 236 return error; 237 238 return (u16)domain; 239 } 240 EXPORT_SYMBOL_GPL(of_get_pci_domain_nr); 241 242 /** 243 * of_pci_preserve_config - Return true if the boot configuration needs to 244 * be preserved 245 * @node: Device tree node. 246 * 247 * Look for "linux,pci-probe-only" property for a given PCI controller's 248 * node and return true if found. Also look in the chosen node if the 249 * property is not found in the given controller's node. Having this 250 * property ensures that the kernel doesn't reconfigure the BARs and bridge 251 * windows that are already done by the platform firmware. 252 * 253 * Return: true if the property exists; false otherwise. 254 */ 255 bool of_pci_preserve_config(struct device_node *node) 256 { 257 u32 val = 0; 258 int ret; 259 260 if (!node) { 261 pr_warn("device node is NULL, trying with of_chosen\n"); 262 node = of_chosen; 263 } 264 265 retry: 266 ret = of_property_read_u32(node, "linux,pci-probe-only", &val); 267 if (ret) { 268 if (ret == -ENODATA || ret == -EOVERFLOW) { 269 pr_warn("Incorrect value for linux,pci-probe-only in %pOF, ignoring\n", 270 node); 271 return false; 272 } 273 if (ret == -EINVAL) { 274 if (node == of_chosen) 275 return false; 276 277 node = of_chosen; 278 goto retry; 279 } 280 } 281 282 if (val) 283 return true; 284 else 285 return false; 286 } 287 288 /** 289 * of_pci_check_probe_only - Setup probe only mode if linux,pci-probe-only 290 * is present and valid 291 */ 292 void of_pci_check_probe_only(void) 293 { 294 if (of_pci_preserve_config(of_chosen)) 295 pci_add_flags(PCI_PROBE_ONLY); 296 else 297 pci_clear_flags(PCI_PROBE_ONLY); 298 } 299 EXPORT_SYMBOL_GPL(of_pci_check_probe_only); 300 301 /** 302 * devm_of_pci_get_host_bridge_resources() - Resource-managed parsing of PCI 303 * host bridge resources from DT 304 * @dev: host bridge device 305 * @resources: list where the range of resources will be added after DT parsing 306 * @ib_resources: list where the range of inbound resources (with addresses 307 * from 'dma-ranges') will be added after DT parsing 308 * @io_base: pointer to a variable that will contain on return the physical 309 * address for the start of the I/O range. Can be NULL if the caller doesn't 310 * expect I/O ranges to be present in the device tree. 311 * 312 * This function will parse the "ranges" property of a PCI host bridge device 313 * node and setup the resource mapping based on its content. It is expected 314 * that the property conforms with the Power ePAPR document. 315 * 316 * It returns zero if the range parsing has been successful or a standard error 317 * value if it failed. 318 */ 319 static int devm_of_pci_get_host_bridge_resources(struct device *dev, 320 struct list_head *resources, 321 struct list_head *ib_resources, 322 resource_size_t *io_base) 323 { 324 struct device_node *dev_node = dev->of_node; 325 struct resource *res, tmp_res; 326 struct resource *bus_range; 327 struct of_pci_range range; 328 struct of_pci_range_parser parser; 329 const char *range_type; 330 int err; 331 332 if (io_base) 333 *io_base = (resource_size_t)OF_BAD_ADDR; 334 335 bus_range = devm_kzalloc(dev, sizeof(*bus_range), GFP_KERNEL); 336 if (!bus_range) 337 return -ENOMEM; 338 339 dev_info(dev, "host bridge %pOF ranges:\n", dev_node); 340 341 err = of_pci_parse_bus_range(dev_node, bus_range); 342 if (err) { 343 bus_range->start = 0; 344 bus_range->end = 0xff; 345 bus_range->flags = IORESOURCE_BUS; 346 } else { 347 if (bus_range->end > 0xff) { 348 dev_warn(dev, " Invalid end bus number in %pR, defaulting to 0xff\n", 349 bus_range); 350 bus_range->end = 0xff; 351 } 352 } 353 pci_add_resource(resources, bus_range); 354 355 /* Check for ranges property */ 356 err = of_pci_range_parser_init(&parser, dev_node); 357 if (err) 358 return 0; 359 360 dev_dbg(dev, "Parsing ranges property...\n"); 361 for_each_of_pci_range(&parser, &range) { 362 /* Read next ranges element */ 363 if ((range.flags & IORESOURCE_TYPE_BITS) == IORESOURCE_IO) 364 range_type = "IO"; 365 else if ((range.flags & IORESOURCE_TYPE_BITS) == IORESOURCE_MEM) 366 range_type = "MEM"; 367 else 368 range_type = "err"; 369 dev_info(dev, " %6s %#012llx..%#012llx -> %#012llx\n", 370 range_type, range.cpu_addr, 371 range.cpu_addr + range.size - 1, range.pci_addr); 372 373 /* 374 * If we failed translation or got a zero-sized region 375 * then skip this range 376 */ 377 if (range.cpu_addr == OF_BAD_ADDR || range.size == 0) 378 continue; 379 380 err = of_pci_range_to_resource(&range, dev_node, &tmp_res); 381 if (err) 382 continue; 383 384 res = devm_kmemdup(dev, &tmp_res, sizeof(tmp_res), GFP_KERNEL); 385 if (!res) { 386 err = -ENOMEM; 387 goto failed; 388 } 389 390 if (resource_type(res) == IORESOURCE_IO) { 391 if (!io_base) { 392 dev_err(dev, "I/O range found for %pOF. Please provide an io_base pointer to save CPU base address\n", 393 dev_node); 394 err = -EINVAL; 395 goto failed; 396 } 397 if (*io_base != (resource_size_t)OF_BAD_ADDR) 398 dev_warn(dev, "More than one I/O resource converted for %pOF. CPU base address for old range lost!\n", 399 dev_node); 400 *io_base = range.cpu_addr; 401 } else if (resource_type(res) == IORESOURCE_MEM) { 402 res->flags &= ~IORESOURCE_MEM_64; 403 } 404 405 pci_add_resource_offset(resources, res, res->start - range.pci_addr); 406 } 407 408 /* Check for dma-ranges property */ 409 if (!ib_resources) 410 return 0; 411 err = of_pci_dma_range_parser_init(&parser, dev_node); 412 if (err) 413 return 0; 414 415 dev_dbg(dev, "Parsing dma-ranges property...\n"); 416 for_each_of_pci_range(&parser, &range) { 417 /* 418 * If we failed translation or got a zero-sized region 419 * then skip this range 420 */ 421 if (((range.flags & IORESOURCE_TYPE_BITS) != IORESOURCE_MEM) || 422 range.cpu_addr == OF_BAD_ADDR || range.size == 0) 423 continue; 424 425 dev_info(dev, " %6s %#012llx..%#012llx -> %#012llx\n", 426 "IB MEM", range.cpu_addr, 427 range.cpu_addr + range.size - 1, range.pci_addr); 428 429 430 err = of_pci_range_to_resource(&range, dev_node, &tmp_res); 431 if (err) 432 continue; 433 434 res = devm_kmemdup(dev, &tmp_res, sizeof(tmp_res), GFP_KERNEL); 435 if (!res) { 436 err = -ENOMEM; 437 goto failed; 438 } 439 440 pci_add_resource_offset(ib_resources, res, 441 res->start - range.pci_addr); 442 } 443 444 return 0; 445 446 failed: 447 pci_free_resource_list(resources); 448 return err; 449 } 450 451 #if IS_ENABLED(CONFIG_OF_IRQ) 452 /** 453 * of_irq_parse_pci - Resolve the interrupt for a PCI device 454 * @pdev: the device whose interrupt is to be resolved 455 * @out_irq: structure of_phandle_args filled by this function 456 * 457 * This function resolves the PCI interrupt for a given PCI device. If a 458 * device-node exists for a given pci_dev, it will use normal OF tree 459 * walking. If not, it will implement standard swizzling and walk up the 460 * PCI tree until an device-node is found, at which point it will finish 461 * resolving using the OF tree walking. 462 */ 463 static int of_irq_parse_pci(const struct pci_dev *pdev, struct of_phandle_args *out_irq) 464 { 465 struct device_node *dn, *ppnode = NULL; 466 struct pci_dev *ppdev; 467 __be32 laddr[3]; 468 u8 pin; 469 int rc; 470 471 /* 472 * Check if we have a device node, if yes, fallback to standard 473 * device tree parsing 474 */ 475 dn = pci_device_to_OF_node(pdev); 476 if (dn) { 477 rc = of_irq_parse_one(dn, 0, out_irq); 478 if (!rc) 479 return rc; 480 } 481 482 /* 483 * Ok, we don't, time to have fun. Let's start by building up an 484 * interrupt spec. we assume #interrupt-cells is 1, which is standard 485 * for PCI. If you do different, then don't use that routine. 486 */ 487 rc = pci_read_config_byte(pdev, PCI_INTERRUPT_PIN, &pin); 488 if (rc != 0) 489 goto err; 490 /* No pin, exit with no error message. */ 491 if (pin == 0) 492 return -ENODEV; 493 494 /* Local interrupt-map in the device node? Use it! */ 495 if (of_property_present(dn, "interrupt-map")) { 496 pin = pci_swizzle_interrupt_pin(pdev, pin); 497 ppnode = dn; 498 } 499 500 /* Now we walk up the PCI tree */ 501 while (!ppnode) { 502 /* Get the pci_dev of our parent */ 503 ppdev = pdev->bus->self; 504 505 /* Ouch, it's a host bridge... */ 506 if (ppdev == NULL) { 507 ppnode = pci_bus_to_OF_node(pdev->bus); 508 509 /* No node for host bridge ? give up */ 510 if (ppnode == NULL) { 511 rc = -EINVAL; 512 goto err; 513 } 514 } else { 515 /* We found a P2P bridge, check if it has a node */ 516 ppnode = pci_device_to_OF_node(ppdev); 517 } 518 519 /* 520 * Ok, we have found a parent with a device-node, hand over to 521 * the OF parsing code. 522 * We build a unit address from the linux device to be used for 523 * resolution. Note that we use the linux bus number which may 524 * not match your firmware bus numbering. 525 * Fortunately, in most cases, interrupt-map-mask doesn't 526 * include the bus number as part of the matching. 527 * You should still be careful about that though if you intend 528 * to rely on this function (you ship a firmware that doesn't 529 * create device nodes for all PCI devices). 530 */ 531 if (ppnode) 532 break; 533 534 /* 535 * We can only get here if we hit a P2P bridge with no node; 536 * let's do standard swizzling and try again 537 */ 538 pin = pci_swizzle_interrupt_pin(pdev, pin); 539 pdev = ppdev; 540 } 541 542 out_irq->np = ppnode; 543 out_irq->args_count = 1; 544 out_irq->args[0] = pin; 545 laddr[0] = cpu_to_be32((pdev->bus->number << 16) | (pdev->devfn << 8)); 546 laddr[1] = laddr[2] = cpu_to_be32(0); 547 rc = of_irq_parse_raw(laddr, out_irq); 548 if (rc) 549 goto err; 550 return 0; 551 err: 552 if (rc == -ENOENT) { 553 dev_warn(&pdev->dev, 554 "%s: no interrupt-map found, INTx interrupts not available\n", 555 __func__); 556 pr_warn_once("%s: possibly some PCI slots don't have level triggered interrupts capability\n", 557 __func__); 558 } else { 559 dev_err(&pdev->dev, "%s: failed with rc=%d\n", __func__, rc); 560 } 561 return rc; 562 } 563 564 /** 565 * of_irq_parse_and_map_pci() - Decode a PCI IRQ from the device tree and map to a VIRQ 566 * @dev: The PCI device needing an IRQ 567 * @slot: PCI slot number; passed when used as map_irq callback. Unused 568 * @pin: PCI IRQ pin number; passed when used as map_irq callback. Unused 569 * 570 * @slot and @pin are unused, but included in the function so that this 571 * function can be used directly as the map_irq callback to 572 * pci_assign_irq() and struct pci_host_bridge.map_irq pointer 573 */ 574 int of_irq_parse_and_map_pci(const struct pci_dev *dev, u8 slot, u8 pin) 575 { 576 struct of_phandle_args oirq; 577 int ret; 578 579 ret = of_irq_parse_pci(dev, &oirq); 580 if (ret) 581 return 0; /* Proper return code 0 == NO_IRQ */ 582 583 return irq_create_of_mapping(&oirq); 584 } 585 EXPORT_SYMBOL_GPL(of_irq_parse_and_map_pci); 586 #endif /* CONFIG_OF_IRQ */ 587 588 static int pci_parse_request_of_pci_ranges(struct device *dev, 589 struct pci_host_bridge *bridge) 590 { 591 int err, res_valid = 0; 592 resource_size_t iobase; 593 struct resource_entry *win, *tmp; 594 595 INIT_LIST_HEAD(&bridge->windows); 596 INIT_LIST_HEAD(&bridge->dma_ranges); 597 598 err = devm_of_pci_get_host_bridge_resources(dev, &bridge->windows, 599 &bridge->dma_ranges, &iobase); 600 if (err) 601 return err; 602 603 err = devm_request_pci_bus_resources(dev, &bridge->windows); 604 if (err) 605 return err; 606 607 resource_list_for_each_entry_safe(win, tmp, &bridge->windows) { 608 struct resource *res = win->res; 609 610 switch (resource_type(res)) { 611 case IORESOURCE_IO: 612 err = devm_pci_remap_iospace(dev, res, iobase); 613 if (err) { 614 dev_warn(dev, "error %d: failed to map resource %pR\n", 615 err, res); 616 resource_list_destroy_entry(win); 617 } 618 break; 619 case IORESOURCE_MEM: 620 res_valid |= !(res->flags & IORESOURCE_PREFETCH); 621 622 if (!(res->flags & IORESOURCE_PREFETCH)) 623 if (upper_32_bits(resource_size(res))) 624 dev_warn(dev, "Memory resource size exceeds max for 32 bits\n"); 625 626 break; 627 } 628 } 629 630 if (!res_valid) 631 dev_warn(dev, "non-prefetchable memory resource required\n"); 632 633 return 0; 634 } 635 636 int devm_of_pci_bridge_init(struct device *dev, struct pci_host_bridge *bridge) 637 { 638 if (!dev->of_node) 639 return 0; 640 641 bridge->swizzle_irq = pci_common_swizzle; 642 bridge->map_irq = of_irq_parse_and_map_pci; 643 644 return pci_parse_request_of_pci_ranges(dev, bridge); 645 } 646 647 #ifdef CONFIG_PCI_DYNAMIC_OF_NODES 648 649 void of_pci_remove_node(struct pci_dev *pdev) 650 { 651 struct device_node *np; 652 653 np = pci_device_to_OF_node(pdev); 654 if (!np || !of_node_check_flag(np, OF_DYNAMIC)) 655 return; 656 pdev->dev.of_node = NULL; 657 658 of_changeset_revert(np->data); 659 of_changeset_destroy(np->data); 660 of_node_put(np); 661 } 662 663 void of_pci_make_dev_node(struct pci_dev *pdev) 664 { 665 struct device_node *ppnode, *np = NULL; 666 const char *pci_type; 667 struct of_changeset *cset; 668 const char *name; 669 int ret; 670 671 /* 672 * If there is already a device tree node linked to this device, 673 * return immediately. 674 */ 675 if (pci_device_to_OF_node(pdev)) 676 return; 677 678 /* Check if there is device tree node for parent device */ 679 if (!pdev->bus->self) 680 ppnode = pdev->bus->dev.of_node; 681 else 682 ppnode = pdev->bus->self->dev.of_node; 683 if (!ppnode) 684 return; 685 686 if (pci_is_bridge(pdev)) 687 pci_type = "pci"; 688 else 689 pci_type = "dev"; 690 691 name = kasprintf(GFP_KERNEL, "%s@%x,%x", pci_type, 692 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 693 if (!name) 694 return; 695 696 cset = kmalloc(sizeof(*cset), GFP_KERNEL); 697 if (!cset) 698 goto out_free_name; 699 of_changeset_init(cset); 700 701 np = of_changeset_create_node(cset, ppnode, name); 702 if (!np) 703 goto out_destroy_cset; 704 705 ret = of_pci_add_properties(pdev, cset, np); 706 if (ret) 707 goto out_free_node; 708 709 ret = of_changeset_apply(cset); 710 if (ret) 711 goto out_free_node; 712 713 np->data = cset; 714 pdev->dev.of_node = np; 715 kfree(name); 716 717 return; 718 719 out_free_node: 720 of_node_put(np); 721 out_destroy_cset: 722 of_changeset_destroy(cset); 723 kfree(cset); 724 out_free_name: 725 kfree(name); 726 } 727 #endif 728 729 /** 730 * of_pci_supply_present() - Check if the power supply is present for the PCI 731 * device 732 * @np: Device tree node 733 * 734 * Check if the power supply for the PCI device is present in the device tree 735 * node or not. 736 * 737 * Return: true if at least one power supply exists; false otherwise. 738 */ 739 bool of_pci_supply_present(struct device_node *np) 740 { 741 struct property *prop; 742 char *supply; 743 744 if (!np) 745 return false; 746 747 for_each_property_of_node(np, prop) { 748 supply = strrchr(prop->name, '-'); 749 if (supply && !strcmp(supply, "-supply")) 750 return true; 751 } 752 753 return false; 754 } 755 756 #endif /* CONFIG_PCI */ 757 758 /** 759 * of_pci_get_max_link_speed - Find the maximum link speed of the given device node. 760 * @node: Device tree node with the maximum link speed information. 761 * 762 * This function will try to find the limitation of link speed by finding 763 * a property called "max-link-speed" of the given device node. 764 * 765 * Return: 766 * * > 0 - On success, a maximum link speed. 767 * * -EINVAL - Invalid "max-link-speed" property value, or failure to access 768 * the property of the device tree node. 769 * 770 * Returns the associated max link speed from DT, or a negative value if the 771 * required property is not found or is invalid. 772 */ 773 int of_pci_get_max_link_speed(struct device_node *node) 774 { 775 u32 max_link_speed; 776 777 if (of_property_read_u32(node, "max-link-speed", &max_link_speed) || 778 max_link_speed == 0 || max_link_speed > 4) 779 return -EINVAL; 780 781 return max_link_speed; 782 } 783 EXPORT_SYMBOL_GPL(of_pci_get_max_link_speed); 784 785 /** 786 * of_pci_get_slot_power_limit - Parses the "slot-power-limit-milliwatt" 787 * property. 788 * 789 * @node: device tree node with the slot power limit information 790 * @slot_power_limit_value: pointer where the value should be stored in PCIe 791 * Slot Capabilities Register format 792 * @slot_power_limit_scale: pointer where the scale should be stored in PCIe 793 * Slot Capabilities Register format 794 * 795 * Returns the slot power limit in milliwatts and if @slot_power_limit_value 796 * and @slot_power_limit_scale pointers are non-NULL, fills in the value and 797 * scale in format used by PCIe Slot Capabilities Register. 798 * 799 * If the property is not found or is invalid, returns 0. 800 */ 801 u32 of_pci_get_slot_power_limit(struct device_node *node, 802 u8 *slot_power_limit_value, 803 u8 *slot_power_limit_scale) 804 { 805 u32 slot_power_limit_mw; 806 u8 value, scale; 807 808 if (of_property_read_u32(node, "slot-power-limit-milliwatt", 809 &slot_power_limit_mw)) 810 slot_power_limit_mw = 0; 811 812 /* Calculate Slot Power Limit Value and Slot Power Limit Scale */ 813 if (slot_power_limit_mw == 0) { 814 value = 0x00; 815 scale = 0; 816 } else if (slot_power_limit_mw <= 255) { 817 value = slot_power_limit_mw; 818 scale = 3; 819 } else if (slot_power_limit_mw <= 255*10) { 820 value = slot_power_limit_mw / 10; 821 scale = 2; 822 slot_power_limit_mw = slot_power_limit_mw / 10 * 10; 823 } else if (slot_power_limit_mw <= 255*100) { 824 value = slot_power_limit_mw / 100; 825 scale = 1; 826 slot_power_limit_mw = slot_power_limit_mw / 100 * 100; 827 } else if (slot_power_limit_mw <= 239*1000) { 828 value = slot_power_limit_mw / 1000; 829 scale = 0; 830 slot_power_limit_mw = slot_power_limit_mw / 1000 * 1000; 831 } else if (slot_power_limit_mw < 250*1000) { 832 value = 0xEF; 833 scale = 0; 834 slot_power_limit_mw = 239*1000; 835 } else if (slot_power_limit_mw <= 600*1000) { 836 value = 0xF0 + (slot_power_limit_mw / 1000 - 250) / 25; 837 scale = 0; 838 slot_power_limit_mw = slot_power_limit_mw / (1000*25) * (1000*25); 839 } else { 840 value = 0xFE; 841 scale = 0; 842 slot_power_limit_mw = 600*1000; 843 } 844 845 if (slot_power_limit_value) 846 *slot_power_limit_value = value; 847 848 if (slot_power_limit_scale) 849 *slot_power_limit_scale = scale; 850 851 return slot_power_limit_mw; 852 } 853 EXPORT_SYMBOL_GPL(of_pci_get_slot_power_limit); 854